wo 2012/057942 A1 | I IO 0O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 AL 000D O 0
ernational Bureau S,/ ‘ 0 |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
3 May 2012 (03.05.2012) WO 2012/057942 Al

(51) International Patent Classification: F. [US/US]; San Martin, CA 95046 (US). CUYK-
GO6F 9/455 (2006.01) ENDALL, Blaine, T. [US/US]; San Jose, CA 95126
(US). SATTERLEE, Thomas, J. [IN/US]; Felton, CA

(21) International Application Number:
PCT/US2011/052844 93018 (US).
(74) Agent: GARD, V., Randall; Gard & Kaslow LLP, 4

(22) International Filing Date: Main Street, Suite 120, Los Altos, CA 94022 (US).

22 September 2011 (22.09.2011)
(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,

(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

o CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

61/407,133 27 October 2010 (27.10.2010) Us HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(71) Applicant (for all designated States except US): HIGH KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

CLOUD SECURITY, INC. [US/US]; 236 Castro Street, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

Suite 201, Mountain View, CA 94041 (US). NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,

RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(72) Inventors; and TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(71) Applicants : PATE, Stephen, D. [GB/US]; El Dorado M, ZW.

Hills, CA 95762 (US). TAMBAY, Tushar, Y. [IN/US]; . o
Sunnyvale, CA 94087 (US). PRYSE, Kelvin, J. (84) Designated States (unless otherwise indicated, for every

[US/US]; Morgan Hill, CA 95037 (US). KERBY, Lynn, kind of regional protection available). ARIPO (BW, GH,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SECURE STORAGE OF VIRTUAL MACHINES

(57) Abstract: A virtual file system is described that is implement-
FIGURE 2 ed in a virtualization platform as a stackable file system layer that
intercepts file operations between a hypervisor and a physical file
system. The virtual file system encrypts (at least in part) VM files
HYPERVISOR to be stored, organizes the encrypted VM files into VM sets, and
then maps and stores the encrypted VM sets into storage pools.
Storage and access to files within the VM sets is controlled through

GUEST G5 M

o1

CLOUD AWARE FILE SYSTEM the use of administrator-determined policies governing storage, se-
fears) 23 curity, access control, authentication, and auditing. The system and

l method described herein allow a seamless integration between a

data center (e.g., a private cloud) and computing resources served

PHYSICAL FILE SYSTEM 108 across the internet and supported by cloud service providers (e.g.,

public clouds) while ensuring that the security needs of customers
and cloud service providers are met.

BACKURS DISASTER PUBLIC
RECOVERY CouDs

STORAGE
POOLS
206

CUSTOMER

A
WA SETS

207
CUSTOMER
B

L J

A d
CUSTOMER
C

WO 2012/057942 A1 I 0000) 00T O A

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, GW, ML, MR, NE, SN, TD, TG).

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, .

EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, Ly, Yublished:

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — with international search report (Art. 21(3))

WO 2012/057942 PCT/US2011/052844

System and Method for Secure Storage of Virtual Machines

CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This application claims the benefit of U.S. Provisional Patent Application No.
61/407,133 filed on October 27, 2010 and entitled “CAFS-A Cloud Aware File System,”
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

1002] The present invention relates generally to computer file storage, particularly

storage of virtual machine files.

Deseription of the Prior Art

[003] Server virtualization is a technology that allows the transition from distinct
physical servers each running different operating systems and applications to a
virtualized server that enables muoltiple physical servers to run concurrently as
independent virtual machines (VMs) on one single physical server (the “virtual server”).
The software component that allows multiple guest operating systems (“guests™) to run
simultaneously on the virtual server is the hypervisor (e.g., the VMware® ESX Server,
Citrix® XenServer, and Microsoft” Hyper-V). The hypervisor is responsible for creating,
releasing, and managing the resources of the guest VMs installed.

[004] Server virtualization offers savings over traditional dedicated physical servers.
Using virtual servers minimizes up-front capital costs, requires less hands-on
management, and may even reduce software costs since most software that runs on a
given operating system can be installed on virtual servers, often with fewer restrictions
than for software installed in shared hosting environments. Due to the number of VMs
typically running on a single machine, however, a virtual physical server tends to have

limited processor time, RAM, and disk space available.

WO 2012/057942 PCT/US2011/052844

[005] Storage and security products that have worked weil in the physical computing
world, however, are not well suited to server virtualization and cloud computing
environments. The cost benefits of server virtualization are offset by poor storage
utilization which results in increased storage costs and a new set of security threats that
did not exist in the physical computing world. These security threats are one of the major
reasons why information technology (IT) organizations are reluctant to use VMs for
storing sensitive data and have turned instead to cloud service providers (CSPs) who
provide computation, software, data access, and storage services without requiring end-
user knowledge of the physical location and configuration of the system that delivers the
services.)

{006] Storage vendors, as a group, have done little to accommodate the influx of server
virtualization. Lack of innovation and security capabilities has resulted in the use of
traditional and expensive storage solutions that are ill-equipped to deal with the new
v1rtuahzatton and cloud computing worlds. Placing cloud-stored sensmve data in the
hands of strangers (unknown CSPs) is not just unnerving, but could also engender major
legal issues when dealing with auditors and regulatory bodies (e.g., the Payment Card
Industry (PCI) Security Standards Council), especially in light of data breach laws now
common across the United States and in other countries.

[007] Virtualization servers are typically set up as shown in FIG. 1. A guest operating
system 101 (e.g., Microsoft® Windows XP VM) is accessed and managed by a hypervisor
102 on a virtualization server 103. The hypervisor communicates with a physical file
system 104 which organizes VM files 105 stored on a local disk or via network-attached
storage accessed via protocols such as an Internet-based Small Computer System
Interface (iSCSI) protocol or a Network File System (NFS) protocol.

[008] In the older, physical hardware-based computing world when mainframes and
mini-computers ran in the data center and Intel-based PCs were found at home, an
average consumer was not sophisticated enough to access mainframes and mini-
computers to steal stored data. Current virtual servers are more vulnerable, however,
both because VMs are very mobile and because home and office computing hardware
(Intel® x86 architecture) is often the same as that used in a data center so an average

computer user is often knowledgeable enough to access a VM which is stored in a folder

WO 2012/057942 PCT/US2011/052844

on a disk. In short, what would be the operating system’s physical disks (for example C:
and D:) are now regular files that are easily viewable and easy to copy. Stealing a VM
then, is simply a matter of copying {(e.g., to 2 USB thumb drive) 106 the set of VM files,
and carrying them out of a data center without authorization. Alternatively, the set of
files can be copied over a network (107) to another machine, again without authorization.
These appropriated files can run on a home personal computer using free tools from all
the major hypervisor vendors.

[009] Virtual servers can be secured, but that security comes at a cost. And, if that
security impedes the technological benefits that virtualization provides, some companies
will avoid virtualization when sensitive data is being processed and thereby miss out on

the benefits of virtualization and cloud computing.

WO 2012/057942 PCT/US2011/052844

SUMMARY

[0010] In one example is provided a computing system for secure storage of one or more
virtual machine file comprising: a file system driver of a first computing system
configured to intercept from a hypervisor of the first computing system a command to
store one or more virtual machine file; a communication module of the first computing
system configured to communicate securely with a key store on a second computing
system to retrieve one or more encryption key and with a policy store on the second
computing system to retrieve one or more policy rule; a key management module of the
first computing system configured to obtain the one or more encryption key from the
communication medule; and a storage management module of the first computing system
configured to obtain the one or more policy rule from the communication module and to
inform the file system driver based on the obtained one or more policy rule how to store
the one or more'virtual machine file in one or more storage pool of a third éomputing
system; wherein the file system driver is further configured to encrypt at least partially
the one or more virtual machine file using the one or more obtained encryption key
received from the key management module; and transfer the one or more at least partially
encrypted virtual machine file through a virtual machine file system of the first
computing device to the one or more storage pool based on the retrieved one or more
policy rule.

{0011] In another example is provided a computing system for accessing one or more
virtual machine file stored securely and at least partially encrypted, the system
comprising: a file system driver of a first computing system configured to intercept from
a hypervisor of the first computing system a command to access the one or more at least
partiaily encrypted virtual machine file: a communication module of the first computing
system configured to communicate securely with a key store on a second computing
system to retrieve one or more encryption key and with a policy store on the second
computing system to retrieve one or more policy rule; a storage management module of
the first computing system configured to obtain the one or more policy rule from the
communication module and to inform the file system driver based on the one or more

obtained policy rule how to access the one or more at least partially encrypted virtual

WO 2012/057942 PCT/US2011/052844

machine file in one or more storage pool of a third computing system; and a key
management module of the first computing system configured to obtain the one or more
encryption key from the communication module; wherein the file system driver is further
configured to retrieve the one or more at least partially encrypted virtual machine file
through a virtual machine file system of the first computing device; decrypt the one or
more at least partiaily encrypted virtual machine file using the one or more obtained
encryption key received from the key management module; and transfer the one or more
decrypted virtual machine file to the hypervisor.

[0012] In another embodiment is provided a method for secure storage of one or more
virtual machine file, the method comprising: intercepting with a file system driver on a
first computing system from a hypervisor of the first computing system a command to .
store the one or more virtual machine file; retrieving with a communication module of the
first computing system through a secure communication channel one or more encryption
key from a key store- on a second computing system and one or more policy rule-from a
policy store on the second computing system; obtaining with a key management module
of the first computing system the one or more encryption key from the communication
module; obtaining with a storage management module of the first computing system the
one or more policy rule from the communication module and informing the file system
driver how to store the one or more virtual machine file in one or more storage pool of a
third computing system based on the one or more received policy rule; encrypting at least
partially one or more virtual machine file using the one or more encryption key received
from the key management module; and transferring with the file system driver the at least
partially encrypted one or more virtual machine file through a virtual machine file system
of the first computing system to the one or more storage pool based on the retrieved one
or more policy rule.

[0013] In another embodiment is provided a method to access one or more virtual
machine file stored securely and at least partially encrypted, the method comprising:
intercepting with a file system driver on a first computing system from a hypervisor of
the first computing system a command to access the one or more at least partially
encrypted virtual machine file; retrieving with a communication module of the first

computing system through a secure communication channel one or more policy rule from

WO 2012/057942 PCT/US2011/052844

a policy store on a second computing system and one or more encryption key from a key
store on the second computing systetn; obtaining with a storage management module of
the first computing system the one or more policy rule obtained from the communication
module; accessing through a virtual machine file system of the first computing system the
one or more at least partially encrypted virtual machine file in the one or more storage
pool of the third computing system based on the obtained one or more policy rule;
obtaining with a key management module of the first computing system the one or more
encryption key from the communication module; decrypting the one or more accessed
partially encrypted virtual machine file based on the one or more obtained encryption
key; and transferring with the file system driver the decrypted one or more virtual
machine file to the hypervisor. .

[0014] In yet another embodiment is provided a non-transitory computer readable
medium having stored thereupon computing instructions comprising: a code segment to
intercept with a file systém driver on a first computing system from a hypervisor of the
first computing system a command to store the one or more virtual machine file; a-code
segment fo retrieve with a communication module of the first computing system through
a secure comynunication channel one or more encryption key from a key store on a
second computing system and one or more policy rule from a policy store on the second
computing system; a code segment to obtain with a key management module of the first
computing system the one or more encryption key from the communication module; a
code segment to obtain with a storage management module of the first computing system
the one or more policy rule from the communication module and informing the file
system driver how to store the one or more virtual machine file in one or more storage
pool of a third computing system based on the one or more received policy rule; a code
segment to encrypt at least partially one or more virtual machine file using the one or
more encryption key received from the key management module; and a code segment to
transfer with the file system driver the at least partially encrypted one or more virtual
machine file through a virtual machine file system of the first computing system to the
one or more storage pool based on the retrieved one or more policy rule.

[0015] In yet another embodiment is provided a non-transitory computer readable

medium having stored thereupon computing instructions comprising: a code segment to

WO 2012/057942 PCT/US2011/052844

intercept with a file system driver on a first computing system from a hypervisor of the
first computing system a command to access the one or more at least partially encrypted
virtual machine file; a code segment to retrieve with a communication module of the first
computing system through a secure communication channei one or more policy rule from
a policy store on a second computing system and one or more encryption key from a key
store on the second computing system; a code segment to obtain with a storage
management module of the first computing system the one or more policy rule obtained
from the communication module; a code segment to access through a virtual machine file
system of the first computing system the one or more at least partially encrypted virtual
machine file in the one or more storage pool of the third computing system based on the
obtained one or more policy rule; a code segment to obtain with a key management
module of the first computing system the one or more encryption key from the
communication module; a code segment to decrypt the one or more accessed partially
encrypted virtual machine ﬁie' based on the one or more obtained encryption key; and a
code segment to transfer with the file system driver the decrypted one or more virtual

machine file to the hypervisor.

WO 2012/057942 PCT/US2011/052844

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating the typical organization of a virtualization
server known in the art.

10017} FIG. 2 is a block diagram illustrating where CAFS resides within a virtualization
platform according to one embodiment.

[0618] FIG. 3 is a block diagram illustrating how CAFS interfaces with a physical file
system to intercept file calls in one embodiment.

j0019] FIG. 4 is a block diagram showing components of CAFS according to one
embodiment. '

(0020] FIG. 5 is a block diagram illustrating how CAFS maps virtual machine file names
through links to storage pools in one embodiment.

10021} FIG. 6 is a block diagram illustrating policy evaluation in one embodiment.

10022] FIG. 7 is a schematic diagrém illustrating a list of available storage pools in one
embodiment.

[0023] FIG. 8 is an exemplary process flow detailing the method to securely store virtual
machine files.

{0024] FIG. 9 is an exemplary process flow detailing the method to access securely

stored virtual machine files.

WO 2012/057942 PCT/US2011/052844

DETAILED DESCRIPTION OF THE INVENTION

10025] A cloud-aware file System (CAFS) is described herein that bridges physical and
virtual computing worlds and the traditional storage servers that still dominate the IT
industry today. CAFS ensures that VMs are protected, regardless of where they are used
or whether they are moved, and allows CSPs to support secure, multi-tenant
environments in which different customer workloads can be run securely but with no
overlap in administrative, access, or auditing capabilities. CAFS offers a variety of
features which provide a seamless integration between on-line access, backup and cloud
migration to achieve security and maximize the use of existing storage technologies.
j0026] CAFS provides support for standard protocols that allow client machines to
retrieve files from a server machine. CAFS’ ability to integrate with standard protocols
allows CAFS to be plugged into any virtualization platform that supports NFS (e.g.,
VMware® ESX, Microsoft™ Hyper-V, (fitrix® XenServer, and Red Hat KVM) or similar
protocols.

[0027] Although most virtualization platforms support iSCSI and Fiber Channel, CAFS
offers greater flexibility by being able to see individual files of the VM and then store and
access those files according to storage policies {(described in greater detail below). By
having access to the different files within the VM, files can be encrypted on an as-needed
basis as data is written through CAFS to back-end storage. CAFS minimizes the impact
on computing performance caused by encryption by only encrypting those parts of the
VM that customers require to be encrypted {e.g., application data). CAFS further reduces
any performance penalty associated with encryption by utilizing any hardware
cryptographic support available.

[0028] CAFS integrates policy and encryption key management thereby allowing CAFS
to build storage, encryption, and access controls that apply to a single VM or a set of
VMs. By grouping one or more related VMs into VM sets, and having policies that apply
to a VM set, CAFS provides a separation of duties at the storage layer, a feature that
would be beneficial to multi-tenant providers such as CSPs. To maintain security,
encryption Keys and policies are created and managed on an external key and policy

server which is a hardened appliance with no login access. The encryption keys

WO 2012/057942 PCT/US2011/052844

themselves are protected on disk by being encrypted with a symmetric key which is itself
encrypted with a Master Key. CAFS further supports automatic (i.e., while the VM is
being accessed) key rotation (a process that requires decrypting with an old key and re-
encrypting with a new key) while on-line (i.e., without the need to shut down the VM).
This can be significant since routine encryption key rotation processes are often required
by regulatory bedies such as PCI.

[0029] CAFS implements a flexible storage mode! in which a storage pool mapper is able
to store separate files of a VM in one or more storage pool (a collection of similar iocal or
remote storage devices) and migrate VM files among the storage pools while the VM is
being accessed for other purposes. One of skill in the art will understand that the one or
more storage pool can exist on the same physical host on which CAFS is running, and/or
one or more storage pool can be located on non-direct-attached, separate storage devices.
At an administrator-defined time interval, CAFS makes VM replicas which can be sent to
remote servers for disaster recovery purposeé or to move the VMs into and out of the
cloud.

(0030} When a VM is accessed, CAFS provides audit records that aid in support of
various compliance requirements for an organization or service provider. Furthermore,
CAFS provides information about VM usage and sets of VMs that allow cloud service
providers to provide per-customer billing.

[0031] CAFS Fundamentals. One of skill in the art will recognize that although CAFS
is discussed herein as using NFS as an exemplary standards-based file system protocol,
CAFS can interface with any standards-based file system or storage protocol that allows
client machines to retrieve files from a server machine.

(0032] FIG. 2 illustrates how CAFS is positioned within the virtualization environment.
Within a computing system, a hypervisor 102 provides a virtualization platform for a
guest operating system 101, and is responsible for managing execution of its commands.
CAFS 203 is implemented between hypervisor 102 and an existing physical file system
104 to control the organization of and access to local and/or remote storage pools 206 in
which VM files 105 are stored as VM sets 207 (discussed in greater detail below). If
CAFS 203 itself is being run as a VM, CAFS 203 can be on the same physical host as

10

WO 2012/057942 PCT/US2011/052844

hypervisor 102. Preferably, however, CAFS is on a physical host separate from the
physical host running hypervisor 102.

j0033] CAFS 203 is a virtual file system (VFS), preferably implemented as a stackable
file system layer preferably in a FreeBSD file system framework, although one of skill in
the art will understand that CAFS 203 can be implemented in other computing
frameworks and environments. FIG. 3 illustrates how CAFS functions as a stackable file
system layer. CAFS 203 intercepts file operations at a VFS/vnode interface layer 301.
Physical file system 104 is unaware of the presence of CAFS 203. The kernel responds
to any file-related system calls by packaging arguments and invoking the top-most layer
of the stack through a set of VFS or vnode interfaces 302. VFS interfaces are application
programming interfaces (APIs) in the kernel that allow file system-level operations 304
such as mount, unmount, and stat (for printing file system statistics). Vnode operations
are file-level operations 305 such as open, read, write, close and stat (for printing file
statistics). Through the use of private data structui‘es 303 (which are referenced from the
v_data field of the vnode structure), CAFS 203 is able to maintain the mapping between
its vnode structure and the vnode structure of the underlying file in the physical file
system. Further details about the BSD VFS are accessible at

http:/www.cs. berkeley.edu/~pal/os/vfs.ps, which is incorporated herein by reference in
its entirety.

[0034] Each open file in FreeBSD UNIX is represented by a vnode structure. All VM
files 105 have entries in the physical file system where CAFS is mounted, an area used
by CAFS as the default backing store. Some of those entries are special redirector links
that reference files in one of the available storage pools. In this case, the CAFS vnode
private structure will point to the vnode of the file in that particular storage pool.

f0035] As shown in the block diagram of FIG. 4, several components collectively form
the CAFS framework. Some of these components run in user space 408 as background
applications (e.g., daemons) while others run inside the operating system kernel 409. The
specific components are a CAFS file system driver 401, a CAFS portal 402, a storage
management module 403, a secure communications module 403, and an encryption/key

management module 406.

11

WO 2012/057942 PCT/US2011/052844

[0036] CAFS driver 401 is a virtual file system driver conforming to the VFS / vnode
architecture as described above. CAFS driver 401 is preferably implemented as a
stackable file system driver, as for example, in a UNLX FreeBSD kernel. Stacking CAFS
driver 401 on top of physical file system 104 provides additional capabilities above those
of physical file system 104, thereby achieving greater flexibility because new file system
features can be added without modifying physical file system 104. CAFS driver 401 sits
on top of one or more storage pool that can be represented by a file system exporting
local physical storage or one of a number of other storage pools comprised of different
storage types such as iSCSI and NFS.

[0037] CAFS portal 402 is a pseudo device driver used for communication between
CAFS driver 401 and storage management module 403.

[0038] Storage management module 403 is a management module (preferably a daemon)
responsible for performing tasks that are best suited to running outside of kernel 409 (i.e.,
those tasks easier to implement in user space). Storagé management module 403 is
responsible for handling policy decisions, including informing CAFS of where to store
VM files 105 (i.e., into which storage pools) as the VM files 105 are created.

[0039] CAFS driver 401, CAFS portal 402, and storage management module 403 also act
in concert as a storage pool mapper 404 (as discussed in greater detail herein).

[0040] Secure communications module 405 is a module (preferably a daemon) that is
responsible for communications with a key and policy server 407 to fetch policies and
keys as VMs are accessed.

[6041] Encryption/key management module 406 is a kernel module that interfaces with
the operating system’s cryptographic interfaces as well as with secure communications
module 405 to fetch encryption keys on an as-needed basis (as discussed in greater detail
below).

[0042] Storage pools. CAFS stores each VM in one or more storage pool 206 through
the use of storage pool mapper 404 with individual plugin modules that make use of the
API (e.g., one plug-in module may be for SCSI storage, and another may be for cloud
storage, but both wiil use the same API). Storage pool mapper 404 is a software
interface between CAFS driver 401, storage management module 403, and CAFS portal

402 which provides a set of functions that make each storage pool look identical

WO 2012/057942 PCT/US2011/052844

regardless of whether the storage pool is backed by physical disks or by a layer that
supports backup and/or replication. Storage pool mapper 404 maps components of each
VM (i.e., VM files 105) to their various storage pools (for example, C: uses mirrored
storage, D: uses encrypted SSD storage), and is also able to move VM files 105 among
storage pools while the VM is still being accessed.
[0043] The operations exported by each storage pool mapper 404 to the storage pools
206 allow the seamless migration of VM components between different pools, the
dynamic rekeying of encrypted VM files 103, and the shredding of VM files 105.
Operations supported by each storage pool mapper include, without limitation:
e OPEN - return a handle to a file within the pool.
-e READ —read from the file.
o WRITE — write to the file.
o COMPRESS — compress one or more components of a VM. This operation
will compress the portions of the VM that are held within this storage pool.
This operation is used when the VM is not being accessed to further reduce
storage space.
s REKEY - rotate encryption keys. This involves switching from one
encryption key to another.
o SHRED - remove data completely. This operation involves data scrubbing.
e SNAPSHOT ~ used for backup capabilities, this operation takes a snapshot of
a set of VM files.
e SPACE_ALLOC - pre-allocate space for a future VM. When creating new
VMs, one of the most time-consuming operations is allocation of a zero-filled
disk. Some storage pools may be using file systems that support pre-
allocation, and most file systems will support sparse files. A mapper running
on top of such a file system will utilize the features of the underlying file
system to best achieve space allocation.
e PULL — pull data from a VM in another storage pool.

o PUSH - push data to a VM in another storage pool.

13

WO 2012/057942 PCT/US2011/052844

[0044] Storage pool 206 can be any back-end storage device, including, without
limitation, locally attached storage (e.g., SATA (Serial Advance Technology Attachment
(SATA) drives, solid-state drives (SSD), or a redundant array of independent disks
(RAID) controller), network-attached storage (NAS), storage area networks (SAN) (via
Fiber Channel), an archive server located on a separate server, a tape archive, a cloud
portal (a pool that has storage in the cloud), and/or block storage over internet protocols
(e.g., iSCSI). Storage pools may comprise local storage for on-line access, local or
remote storage for secure backups, and/or remote storage for disaster recovery or for
interaction between the data center and the cloud.

[0045] Administrators can use different classes of storage and different levels of
redundancy when provisioning storage for a physical system depending on the data being
stored. In a UNIX database server running Oracle, for example, a root file system (*/)
of the operating system does not need to be stored in a device with high access speeds,
but S:hOU]d be mirrored because losing the file system would ren&er the machine
unusable. Access performance and redundancy are critical, however, for customer
database files (“/uol™, “uo2/"), so the fastest storage available should be used and the
storage will be mirrored. Swap space files (“/swap™), on the other hand, are not critically
important, so the data can be stored unmirrored in inexpensive storage. And temporary
files (“/tmp”, files which are not expected to survive a reboot) can be stored in any
storage pool. When using virtualization technology such as VMware’s ESX Server,
however, this logical separation of data types becomes blurred. VMs may be stored on an
external server using NFS, in which case the storage backing the NFS exported data store
is all one type. In this scenario, expensive enterprise storage could end up being used for
both /swap and /tmp, with the consequent result that the move to virtualization (which
should reduce costs) could end up costing more than physical servers because of
increased storage costs.

[0046] CAFS allows individual files from any given VM to be mapped to separate
storage pools (each of which may have different characteristics) regardless of the guest
operating system. A major advantage of this purpose-directed storage provisioning is
that storage and performance costs can be minimized. As one example, storage

provisioning can be arranged as follows:

14

WO 2012/057942 PCT/US2011/052844

e Some virtual disk files can be placed in storage with de-duplication
capabilities. If a customer is storing 1,000 VMs running Windows, significant
cost reductions can be achieved if the C: drives are placed in de-duplicated
storage since the C: drives are likely substantially identical.
e Application data (e.g., D: drive files) can be placed on faster storage.
o Encryption of only sensitive data (rather than all files on a VM) can provide
security guarantees that a customer needs while allowing non-sensitive data
to be stored in pools requiring less performance overhead.
e Storage pools can reference external storage in the cloud rather than remain
‘local to the environment in which CAFS runs, yet still prm;ide secure VM
backups:
[0047] To migrate stored VM files 105 from one storage pool to another, a snapshot of
the VM is taken and copied (entirely or incrementally) elsewhere (to disk or tape). The
same principle applies for replication for disaster recovery or for moving in or out of a
cloud: a copy of the VM is made and moved to another server in a different physical
location.
[0048] Multi-tenancy features (VM sets). Many CSPs operate “customer islands” to
customize multi-tenant virtualization environments. Each customer is given a group of
physical machines and the CSP provides a way to segregate these machines into customer
islands so that there is no overlap between the workloads and data of one customer and
those of another customer. This practice is an inefficient way of managing physical
servers and diminishes the benefits of using cloud storage. CAFS instead enables multi-
tenant virtualization environments through the use of VM sets.
[6049] A VM set is a collection of VMs that are related and governed by the same
customer-specific policies. VM sets share a similar set of properties such as: storage type
(mirroring, de-duplication, number of replicas), security (keys, key states, and associated
encryption policies), access controls, and audit records. Grouping VMs into sets with
different policies based on customer-specific needs ensures that customers’ groups of
VMs do not overlap in either use or storage. In a multi-tenant environment, grouping of
VMs into a VM set allows one tenant’s VMs to be virtually (but not necessarily

physically) separated from those of another tenant and to be managed independently,

15

WO 2012/057942 PCT/US2011/052844

even if the same physical servers and the same storage are being used by one or more
tenant. In a CSP model where multi-tenant capabilities are needed, each tenant has a
separate administrator who controls its own VM sets, as well as separate administrators
managing encryption keys and VM storage. Referring again to FIG. 2, for example, VM
set 207 for Customer A may have VM files 105 in local storage pools, SAN/NAS pools,
and backup pools, VM set 207 for customer B may have VM files 105 in backup pools,
disaster recovery pools, and public clouds, and VM set 207 for customer C may have VM
files 105 stored in SAN/NAS pools, backup pools, disaster recovery pools, and public
clouds. Customers A, B, C may all have VM files 105 in the same backup pool, but since
VM files 105 are grouped into sets, customer A’s policies restrict access to its VM files
105 such that only customer A’s administrators/users can access VM set 207 belonging to
A. Likewise, customer B’s policies and customer C’s policies restrict access to their
respective administrators/users. Yet each customer A, B, and C gains the benefit of
lower storage éosts because each has optimized its storage based on the tfpe of storage
needed for its VM files.
[0050] Grouping VMs into VM sets can be beneficial within an [T department as well as
in a multi-tenant cloud environment. Within a company’s IT department’s infrastructure,
for example, VM sets may be preferred because:

e Different VMs can have different storage requirements based on the importance

of the application data and the application’s performance profile.
e A VM set may have different replication {disaster recovery) and backup needs.

e A VM set can be accessed by a set of virtual servers that have been specified to
have access.
For a CSP, the reasons are somewhat similar but in addition, the following security
capabilities can be achieved:

» VM sets can have different adininistrators.
e VM sets can be assigned to different storage pools.

o Customer-specific data can be provided by audit records generated on a per-VM

set basis.

16

WO 2012/057942 PCT/US2011/052844

e Separate billing capabilities can be provided by assessing VM usage on a per-VM

set basis.

= Access can be controlled with different encryption keys for different VM sets, as

well as for VM components within a VM set.

[0051] VM set policies. Each VM set has associated policies that establish the
administrator-determined rules governing storage, security, access, authentication, and
auditing for that VM set. The defined parameters of each policy are defined within the

policy descriptor and include information such as, without limitation:
e Storage Policy
Which storage pools should be used?
Which parts of a VM should be placed in which storage pool?
Which VM compenents should use de-duplication?
Which VM components should be encrypted?
How many replicas are needed?

Where are replicas stored?

e Security Policy
How many encryption keys are used and for which VM components?

When do encryption keys expire (thereby rendering the VM unusable)?
How often and when do encryption keys need to be rotated?

& Access Control Policy
Which hypervisors/servers can access this VM?

During what timeframe can VMs in the VM set be accessed?

Should an audit record be generated?

If the VM set is accessed outside of the time window, should further

access be prevented?

e Authentication Policy

17

WO 2012/057942 PCT/US2011/052844

Is communication with a centralized management server required prior to

allowing access?
Can authentication occur locally and if so, by what mechanism?

e Audit Policy
What level of granularity is needed (open, close, read, write, time of day)?

Where should audit data be sent?

[0052] Because NFS has limited security mechanisms, CAFS uses these policy
descriptors as authentication and access controls for any VM set accessed through NFS.
For example, when a VM set is created, the servers that are allowed to access the' VM are
specified within the policy for that VM set. Access by any server not listed will be denied .
and an audit record will be generated. Policies also designate access windows (the
specific time periods during which the VM can be accessed). As an example, a customer
workload running in the cloud should only be accessed during business hours Monciay to
Friday. Any attempt to access the VM at night or over the weekend will result in a denial
and an audit record being generated.

j0053] In a preferred embodiment, policies themselves are not stored with the VM set or
with any of the VMs. Instead, CAFS stores a globally unique identifier (GUID) with
each VM file. The GUID is a reference to an object (or file) that is stored on the key and
policy server and used to fetch the associated policy keys when VM files are accessed.
The object or file referenced by the GUID contains CAFS-specific metadata that travels
with the VM and has enough information to allow CAFS to find the appropriate key and
policy server to fetch the associated policies and encryption keys. Such a reference
system is desirable for two reasons. First, VMs are not static. They can be accessed on-
line, moved to backup media, migrated from one storage platform to another (including
in and out of a cloud), and moved from large servers to desktops and notebooks. Because
of security concerns, policy descriptors and encryption keys should not be stored directly
with the VM. Second, VM sets names can be reused. For example, a VM set called
my_vimset that is accessible through NFS mount point /mnt could be archived and deleted
from primary storage. In the meantime, another VM with the same name and mount point

could be created. At some stage in the future, restoration of one of these VMs could be

18

WO 2012/057942 PCT/US2011/052844

problematic because both have the same name and mount point. 1f each VM contains
encrypted data, CAFS needs to know which policy descriptor and which encryption keys
to use, and which storage policy to apply on restore.
[0054] FIG. 5 shows the interaction between the different CAFS components when
receiving new or updated VM set information. CAFS maps VM file names through links
to one or more storage pools. Creation of a new VM set involves pushing a VM set
descriptor from key and policy server 407 through secure communications module 403
and storage management module 403 to CAFS driver 401, which then creates the
appropriate storage for the new VM set and exports one or more VM file 105 (with VM
redirector links 501 and GUIDs 502) through an NFS mount point.
{0055] Shown below is an exemplary XML representation of VM set information that is
received from the key and policy server:
<Zxml version="1.0" encoding="150-8859-1"?>
<vmset> '
<name>my_vmse!</name>
<mnt>/mfs</nmit>
<pd>43aa%e57-bf6+4-11df-8d3e-000c29abeb4d</pd>
<vmserv>7353083456</vinserv>
</vmset>
[0056] The mount point (s tag) and name of the VM set (name tag) contain enough
information to create an appropriate path from which the VM set can be accessed. The
vmsery tag lists the virtualization servers that are able to access this VM set. The policy
descriptor (pd tag), also referenced by a GUID, is fetched in response to a VM access or
creation. Once fetched, policy descriptors are cached in memory so that they can be
easily retrieved on a subsequent access from a virtualization server.
[0057} CAFS reacts to vnode operations that affect the VM set. As an example shown in
FIG. 6, when an attempt is made to access a VM, stored under
/mfs/my_vmset/windows_xp and for which there is no cached policy descriptor, CAFS
driver 401 executes the following sequence:
e An NFSPROC_CREATE() request is generated by virtualization server kernel
101 which passes the request to NES 602. NFS 602 calls VOP_CREATE(),

19

WO 2012/057942 PCT/US2011/052844

which results in a call to cafs_create(). From the pathname for the create
operation, CAFS driver 401 determines that a request is being made for the
windows_xp VM that resides in the my_vmset VM set.

e CAFS driver 401 sends a CREATE request to CAFS portal 402 which queues
the request for processing by storage management module 403 (listening for
requests via CAFS portal 402).

e Storage management module 403 begins processing to determine whether the
policy descriptor is stored locally. If the policy is not local (i.e., not present in
storage management module 403), a request is sent (via secure
communications module 405, not shown) to fetch the policy descriptor from
key and policy server 407.

» Storage management module 403 then looks at the policy to determine
whether the CREATE request is allowed and returns this information back to
CAFS driver 401 via CAFS portal driver 402.

[0058] CAFS driver 401 reacts in a similar manner to other vnode operations that affect
the VM set (e.g., an NFSPROC_READDIR() request to view the contents of the VM set
directory). Regardless of the operation requested, CAFS driver 401 responds by
informing storage management module 403 which, in turn, requests that secure
communications module 405 retrieve the policy descriptor from the key and policy server
407.
[0059] Mapping VMs to storage pools. VM files are created based on properties of the
policy descriptor. The policy descriptor contains, in addition to the policy parameters, a
set of virtual objects that describe the mapping between VM files and the different
storage pools available. The virtual objects also determine whether the file will be
encrypted and if so, with what encryption key.
[0060] A VM consists of a number of files that can be divided into two basic types:
o Disk Images, which are files that store blocks of information representing
what would be a disk in the physical world. Bytes 0-511 represent block 0,
bytes 512 to 1023 represent block 1, etc.. In VMware® terminology, these
files have a ‘.vmdk’ extension, while the file extension is *.vhd’ in

Microsoft” Hyper-V terminology. The Citrix® open source Xen platform

20

WO 2012/057942 PCT/US2011/052844

tends to promote the use of disk slices for VMs, but can also use files,
although the virtual disk files have no specific naming scheme.

e Metadata, which are any information that is not part of the VM disk
images. Metadata include virtualization configuration files that inform the
hypervisor of the resources that the VM needs to run {e.g., number of
CPUs, networking configuration, disk information, etc.) and provide a
snapshot of the memory image of the VM if the machine is suspended.

[6061] Most storage products used in virtualization environments do not offer any
services that are particularly well-suited to the needs of the virtualization environment.
For example, if iSCSI is being used, the logical unit numbers are carved out from the
block-based back-end storage, whereas if NFS is used, the NFS shares are exported and
access is controlled through standard UNIX permission mechanisms. One problem with
these approaches is that all storage is created equal within the virtualization environment,
and therefore less important applicatioﬁ data are stored identically to more critical data.
[0062] When creating the policy descriptor used by CAFS, the VM administrator is able
to determine the type of storage and backup/disaster recovery capabilities of specific
VMs and also of data classes within the VM. For example, a pseudo-storage policy for a

VM with three virtual disks might be:

Meta Data:
Mirrors=2
Replicas =3

Export policy = ENCRYPT_ALL | LOCAL_PASSWD | LOW_AUDIT
Backup policy = ENCRYPT_ALL
Storage:
Disk-1 = DE_DUP | NO_REPLICAS | NO_MIRROR
Disk-2 = ENCRYPT | REPLICATE | MIRROR
Disk-3 = DE_DUP | REPLICATE | NO_MIRROR
[0063] Within the policy descriptor, virtual objects are used to determine how to store
one or more components within a VM. An exemplary fragment of the policy descriptor
XML is shown below. The policy descriptor contains two policy statements (or “virtual

objects” contained within each voby tag) that map a file within a VM to its storage pool,

WO 2012/057942 PCT/US2011/052844

describe the window in which the file can be accessed, the amount of audit data to be
generated, and the encryption key to be used. If encryption is not required, the symkey tag
will reference a “clear-text” key.
<vobj-list>
<vobj>
<vglob>*osdisk*</vglob>
<symkey>062b9056-b{64-11df-8d3e-000c29abebdd</symkey>
<storepol>mirrored_pool A</storepol>
<access>Mon-Fri{%am-5pm)</access>
<audit>all_records</audit>
</vobj>
<vobj>
<vglob>hc_default</vglob>
<symkey>0}010101-0101-0]01;0101-010101010] 0l</symkey>
<storepol>default_pool</storepol>
<access>at_all times</access>
<audit>none</audit>
</vobj>
</vobj-list>
[0064] A default virtual object (a “catch-all” policy) is included. In this example, an
additional virtual object will match one or more virtual disks containing the word
“osdisk™
<vglob>*osdisk*</vglob>
[0065] Standard regular expressions are preferably used to match against the VM name
and files within the VM. These regular expressions are simple enough to match any file
within any VM that contains the word “osdisk™. For example, if a VM set is exported
through /nfs/my_vimset, the virtual object will match against each of the following virtual
disks:
mfs/my_vmset/windows_xp/osdisk]. vindk
/mfs/my_vmset/windows_xp/osdisk2.vindk
/nfs/my_vmmset/rh_lim/dinux_osdisk.vimdk

22

WO 2012/057942 PCT/US2011/052844

/mfs/my_vmset/rh_Iinux/root_osdiskvmdk
[0066] Regular expressions allow CAFS to match against any naming scheme used by
any virtualization platform. VM administrators preferably use a meaningful naming
scheme within VM templates to simplify VM administration and ensure that VM disks
are recognizable.
[0067] CAFS Redirector Links. Storage pools managed by CAFS 203 are separate
physical file systems 104 that are created with the desired storage characteristics and
performance. During system initialization, CAFS driver 401 builds a list of available
storage pools so that it can map existing files to their correct location and can store newly
created files in the storage pool that policy dictates. An exemplary list for three different
storage pools (sp_flat, sp_raidi, and sp_raid5) is shown in FIG. 7. In this embodiment,
storage pool file systems (e.g., symbolically named RAIDS5) can be found under the
/storage_pools directory as shown on the right hand side of the figure. Whenever CAFS
is running, storage pool mapper 404 maintains a_!ink to each storage pool file system.
[0868] Storage pool mapper 404 also maintains a mapping between files scen by
hypervisor 102 and actual files stored within each storage pool 206. Hypervisor 102,
however, is unaware of how files are stored and of the mapping between what the
hypervisor sees and the actual storage location of the files. Hypervisor 102 accesses a
VM file 105 by going through a redirector file created by CAFS driver 401. As an
example, to store file /res/nfs/vm_set]win_xp/wvinxp.vmx to a VM, hypervisor 102 sends
a CREATE request which is intercepted by CAFS driver 401,
[0069] Ifthe CREATE request for a specific VM file 105 matches a rule in the VM
policy (obtained from external key and policy server 407) that requires a specific storage
pool, storage management module 403 informs CAFS driver 401 that the VM has been
authenticated, that a VM file 103 can be created, and where the VM file 103 should
reside. CAFS driver 401 then creates the VM file 103 in the file system namespace of the
storage pool (/storage_pools/sp_raidl/vm_seti/win_xp/winxp.vmx) and creates the
redirector file (/cafs/vm_setl/win_xphvinxp.vimxit#sp raidl}.
[0070) Each VM set contains directories for each VM within its correct storage pool

along with a list of redirector files. When hypervisor 102 wants to obtain the list of files

23

WO 2012/057942 PCT/US2011/052844

in a VM, hypervisor 102 issues an NFS_READDIR() operation which translates to a call
into CAFS driver 401 through vnode operation cafs_readdir().

[0871] The cafs_readdir() vnode operation performs the mapping between what a
virtualization server expects and how the files are actually stored on disk. This mapping
layer has a number of advantages including the ability to move a file dynamically within
the VM from one storage pool to another by modifying only the redirector link for

the move to take effect. In the example above, the file
‘hes/nfs/vm_setl/win_xp/winxp.vmx is contained within the sp_raidl storage pool. To
move this file to the sp_raid) storage pool, the file is copied

from /storage_pools/sp_raidl to /storage_pools sp_raid5/, and the redirector link is
changed to /cafs/vim_set!win_xp/winxp. vmx##isp _raid5. Hypervisor 102 remains
unaware of these changes, and of the original or modified location of the VM file 105.
[0072] NFS/VNODE friggers. CAFS is able to determine actions being taken by any
supported hypervisor. For example, in response to an'NFS request to access a /mnt
directory, a file handle for the /mnt directory is returned and two operations are
performed:

e NFSPROC_LOOKUP { Looking up a file inside the /mnt directory to CAFS
means that a VM needs to be opened. Before access is granted, CAFS driver 401
(1) determines whether hypervisor 102 has the correct access rights and (2)
downloads the policy that applies to this VM set. If the virtualization server is
authenticated and the VM is allowed to run on the requesting hypervisor, CAFS
driver 401 allows aceess to the files that comprise the VMs.

e NFSPROC_MKDIR | This NFS operation informs CAFS driver 401 that a new
VM is being created. For example, an NFSPROC_MKDIR operation for
/mut/vimset _a/myVM results in creation of a new VM called my VM within the VM
set vinse! _a.

[6073] Because CAFS sits at the VFS/vnode layer, the NFS operations described above
map to vnode operations at the file system layer. For example, NFSPROC MKDIR will
result in a call to the cafs_mkdir() vnode operation. CAFS driver 401 then responds with
an up-call to storage management module 403 to determine what to do with the call based

on the VM set policy.

24

WO 2012/057942 PCT/US2011/052844

[0074] Referring again to FIG. 6, when an NFS operation is received, this triggers CAFS
driver 401 to invoke storage management module 403 by placing a request in CAFS
portal 402 request queue. Once the request is received by storage management module
403, the request is matched to an appropriate VM set policy and associated policy
descriptor. As an example, a request may be made from ESX Server 10.2.45.67 to create
a directory called windows_vm under the path /nfs/ny_vmset. This request corresponds to
the first step in creation of a new VM. CAFS driver 401 first determines whether this
server has the right privileges and is in the right time window to be able to create this
VM. Assuming the server is authenticated, calls to create files within the new directory
are matched with the virtual objects list to determine the storage pool needed for the file
and whether the file should be encrypted.
10075] Encryption mechanism. CAFS implements encryption on selected portions of
the VM using industry standard encryption algorithms such as, without limitation, the

| Advanced Encryption Standard (AES, e.g., AES-128 or AES-256). The VM
components to encrypt are determined by the policy descriptor which in turn references
symmetric encryption keys that are used to perform the encryption/ decryption.
[0076] VM files are encrypted or decrypted by intercepting read/write operations {e.g.,
VOP_REAIX), VOP_STRATEGY() and VOP_WRITE()) at the vnode layer. Encryption
or decryption of VM files is performed using an encryption framework, preferably BSD
Open Cryptographic Framework (OCF) which also allows the addition of hardware
cryptographic support.
{00771 CAFS preferably uses Advanced Encryption Standard (AES)-128 or AES-256
encryption with a cipher-block chaining (CBC) mode. CBC generates a cipher text
{encrypted data) for a given plaintext (unencrypted data) by XORing the AES-generated
cipher text with a previous AES-sized block (16 bytes). This, however, forces the OCF to
read the prior block whenever a read/write request is issued in order to retrieve the
previous 16 bytes to use as the initialization vector (IV). The only exception to this
process is for the first 16 bytes (i.e., when the file pointer is set to the beginning of the
file), in which case a well-known IV can be used. Using this encryption mode negatively
impacts performance because so much data need to be read. CAFS attenuates this impact

on performance by using an encrypted salt-sector initialization vector (ESSIV) method

WO 2012/057942 PCT/US2011/052844

(e.g., preferably ESSIV 2010) which generates an initial IV for each sector-sized (512
byte) read/write operation by combining a sector number with a hash of the encryption
key used for the file. The ESSIV method is known in the art, as described at
http:/fenwikipedia.org/wiki/Disk_encryption_theory, incorporated by reference herein.
[0078] Authentication. During the bootstrap process, CAFS driver 401 starts up, and
secure communications module 405 authenticates the virtualization server with key and
policy server 407. This authentication allows CAFS driver 401 to make subsequent calls
to retrieve policy descriptors and encryption keys as VM sets and VM are being
accessed. Specifically, when a subsequent attempt is made to access a VM, CAFS driver
401 determines whether the request is coming from a previously authorized virtualization
server. If.so, CAFS driver 401 obtains from encryption/key management module 405 the
appropriate VM set policy and encryption keys so that CAFS driver 401 can decrypt data
appropriately (for VMs that already exist) or can know how to store VMs that are being
créated. Virtualization servers that are not authorized are prevénted from accessing VM
sets using standard NFS export mechanisms. CAFS can also prevent access to VM sets
from authenticated servers during specified time windows.
[0079] Access to a particular VM set or VM is determined in part by pathname and NFS
operations (NFSPROC_LOOKUP, NFSPROC CREATE, etc.) and in part by the way
that the polices are defined by the administrator and associated with either a mount point
or a position with a specific pathname. Specifically, CAFS responds to NFS (vnode)
operations that in turn reference VM sets or the VMs contained within. For example:
e NFS_LOOKUP: a mount point is unlikely to refer to a specific VM, and, in fact,
multiple VM sets may reside under the same NFS mount point as shown below:
/mfsivmset-A/VM-1 - VM set |
mfsivmset-A/VM-2 - VM set 1
/mfs/vmser-B/VM-1 - VM set 2
In this example, two VM sets reside under the same mount point (/nfs). As part of
policy definition, an administrator designates a position within the pathname
where the policy resides. The administrator can specify that a mount point itself is
governed by a VM set policy or that multiple VM set polices reside under the

same mount point.

26

WO 2012/057942 PCT/US2011/052844

= Other NFS operations within a specific VM or VM set: Because NFS is stateless,
(i.e., there is no NFSPROC_CLOSE operation), CAFS driver 401 does not know
when access to a VM ceases (other than by recording a lack of access over a
specific period of time). Thus, any operation within a specific mount point outside
of a window of access time is denied.
[0080] Auditing. Because the operating system under which CAFS runs is preferably
securely locked down to prevent tampering, system information is not available using
traditional means such as logging into the machine and running diagnostic utilities.
Instead, when a VM is accessed, CAFS tracks and generates audit records about VM and
VM set usage by the organization or service provider. These records provide information
that CSPs use to provide per-customer billing. Specifically, CAFS tracks -
logging/auditing information useful in both data centers and within cloud computing
environments, including, without limitation: (1) access information (i.e., information
about who is accessing which VM set and which VM within the set; when the access
occurs, the type of access (lookup, read or write), and the name of the server seeking
access); (2) svstem information (e.g., diagnostic information about the machine
environment in which CAFS is running which can be used by administrators to determine
faults within the VMs and VM sets); and (3) capacity planming information (e.g., how
much storage is availabie, which VM sets are occupying how much space, and when disk
space crosses a predefined thresholds (e.g., 80% full) so CSPs can easily charge their
customers based on expected and actual storage use. CAFS has the ability to generate
both alerts and log messages. The location to which these alerts and log messages are to
be sent is contained within the VM set policy.
(0081} Secure Storage of VM files. An exemplary flow chart detailing one embodiment
of a method to securely store VM files 105 is presented in FIG. 8. In step 801, CAFS
driver 401 intercepts a command from hypervisor 102 to store one or more VM file 105.
CAFS driver 401 communicates that request through CAFS portal 402 to storage
management module 403, which in turn requests secure communications module 405 to
retrieve policies and encryption keys for the VM set containing the one or more VM file

105.

WO 2012/057942 PCT/US2011/052844

[0082] In step 802, secure communications module 405 communicates with external key
and policy server 407 to fetch the policy descriptor containing one or more policy for VM
file(s) 105.

i0083] In step 803, secure communication module 405 communicates with
encryption/key management module 407 to determine whether one or more encryption
key is needed. If any encryption key is needed, secure communications module 405
communicates with external key and policy server 407 to fetch the necessary encryption
key(s) for the VM file(s) 105 to be stored.

[0084] In step 804, encryption/key management module 406 obtains (from secure
communication module 405) the encryption key(s) for the VM file(s) 105 to be stored,
and then transfers the encryption key(s) to CAFS driver 401. CAFS driver 401 encrypts
(at least in part) the VM file(s) using the encryption key(s) obtained from encryption/key
management module 406.

{0085 In stép 805, storage management module 403 obtains the policy &escriptor from
secure communication module 405. Storage management module 403 informs CAFS
driver 401 how to store the VM file(s) 1035 based on the policy descriptor obtained from
storage management module 403.

[0086] In step 806, CAFS driver 401 transfers the at least partially encrypted VM file(s)
105 through the physical file system to one or more storage pool 206 based on the
policies contained within the policy descriptor.

[0087] Access fo securely stored VM files. An exemplary flow chart detailing one
embodiment of a method to access securely stored VM files 105 is presented in FIG. 9.
In step 901, CAFS driver 401 intercepts a command from hypervisor 102 to access one or
more at least partially encrypted VM file 105 securely stored in one or more storage pool
206. CAFS driver 401 communicates that request through CAFS portal 402 to storage
management module 403. Storage management module 403 determines whether the
policy descriptor for the encrypted VM file(s) 105 is stored locally. If the policy
descriptor is not stored locally, storage management module 403 requests secure
communications module 405 to retrieve policies and any necessary encryption key(s) for

the VM set containing the encrypted VM file(s) 105. If the policy descriptor is stored

28

WO 2012/057942 PCT/US2011/052844

locally, storage management module 403 requests secure communications module 405 to
retrieve the encryption key(s) for the VM set containing the encrypted VM file(s) 103.
[0088] In step 902, secure communications module 405 communicates with external key
and policy server 407 to fetch, if necessary, the policy descriptor containing one or more
policy for the encrypted VM file(s) 105. Storage management module 403 obtains the
policy descriptor, if necessary, from secure communications module 403, and informs
CAFS driver 401 of policies governing access to the encrypted VM file(s) 105.

[0089] In step 903, secure communication module 405 communicates with external key
and policy server 407 to fetch the encryption key(s) for the encrypted VM file(s) 105.
Secure communications module 405 conveys the encryption key(s) to encryption/key
management module 406.

[0090] In step 904, CAFS driver 401 accesses (through the physical file system) the
encrypted VM file(s) 103 stored in one or more storage pool. CAFS’ access is based on
One or more polic.y contained within the policy descriptor obtained from stora-ge
management module 403.

[00st] In step 905, CAFS driver 401 decrypts the accessed encrypted VM file(s) 1053
using the encryption key(s) obtained from encryption/key management module 406.
[0092] In step 906, CAFS driver 401 transfers the decrypted VM file(s) 105 to hypervisor
102.

[0093] It is to be understood that embodiments of the system and method herein can all
be implemented in software stored in a computer readable storage medium for access as
needed to run such software on the appropriate processing hardware of the computing
system.

10094] It is to be understood that the examples given are for illustrative purposes only
and may be extended to other implementations and embodiments with different
conventions and techniques. For example, although FreeBSD is used as an exemplary
operating system for descriptive purposes throughout the specification, there is no intent
to limit the disclosure to that operating system, or to any embodiment(s) disclosed
herein. On the contrary, the intent is to cover all alternatives, modifications, and

equivalents apparent to those familiar with the art.

29

WO 2012/057942 PCT/US2011/052844

[0095] In the foregoing specification, the invention is described with reference to specific
embodiments thereof, but those skilled in the art will recognize that the invention is not
limited therete. Various features and aspects of the above-described invention may be
used individually or jointly. Further, the invention can be utilized in any number of
environments and applications beyond those described herein without departing from the
broader spirit and scope of the specification. The specification and drawings are,
accordingly, to be regarded as illustrative rather than restrictive. It will be recognized
that the terms “comprising,” “including,” and “having,” as used herein, are specifically

intended to be read as open-ended terms of art.

30

WO 2012/057942 PCT/US2011/052844

CLAIMS
What is claimed is:

1. A computing system for secure storage of one or more virtual machine file
comprising:
a file system driver of a first computing system configured to intercept from a
hypervisor of the first computing system a command to store one or more
virtual machine file:
a communication module of the first computing system configured to
communicate securely with a key store on a second computing system to
retrieve one or more encryption key and with a policy store on the second
computing system to retrieve one or more policy rule;
a key management rﬁodule of the first computing system configured to obtain tﬁe
one or more encryption key from the communication module; and
a storage management module of the first computing system configured to obtain
the one or more policy rule from the communication module and to inform
the file system driver based on the obtained one or more policy rule how
to store the one or more virtual machine file in one or more storage pool of
a third computing system;
wherein the file system driver is further configured to
encrypt at least partially the one or more virtual machine file using the one
or more obtained encryption key received from the key
management module; and

transfer the one or more at least partially encrypted virtual machine file
through a virtual machine file system of the first computing device
to the one or more storage pool based on the retrieved one or more

policy rule.

2. The computing system of claim 1 wherein at least one of the one or more storage

pool is local storage.

31

WO 2012/057942 PCT/US2011/052844

3. The computing system of claim 1 wherein at]east one of the one or more storage

pool is remote storage.

4. The computing system of claim 3 wherein the remote storage is cloud-based

storage.

5. The computing system of claim 1 wherein the one or more virtual machine file

comprises a set and wherein the policy rule applies to the set.

6. The computing system of claim 1 wherein the one or more policy rule defines

which components of the one or more virtual machine file are to be encrypted.

7. The computing system of claim 1 wherein the storage management module is a

daemon,

8. The computing system of claim 1 wherein the secure communications module is a

daemon.

9. A computing system for accessing one or more virtual machine file stored
securely and at least partially encrypted, the system comprising:

a file system driver of a first computing system configured to intercept from a
hypervisor of the first computing system a command to access the one or
more at least partially encrypted virtual machine file;

a communication module of the first computing system configured to
communicate securely with a key store on a second computing system to
retrieve one or more encryption key and with a policy store on the second
computing system to retrieve one or more policy rule;

a storage management module of the first computing system configured to obtain
the one or more policy rule from the communication module and to inform
the file system driver based on the one or more obtained policy rule how
to access the one or more at least partially encrypted virtual machine file

in one or more storage pool of a third computing system; and

WO 2012/057942 PCT/US2011/052844

a key management module of the first computing system configured to obtain the
one or more encryption key from the communication module;
wherein the file system driver is further configured to
retrieve the one or more at least partially encrypted virtual machine file
through a virtual machine file system of the first computing device;
decrypt the one or more at least partially encrypted virtual machine file
using the one or more obtained encryption key received from the
key management module; and

transfer the one or more decrypted virtuai machine file to the hypervisor.

10. The computing system of claim 9 wherein at least one of the one or more storage

pool is cloud-based storage.

11. The computing system of claim 9 wherein the one or more virtual machine file

comprises a set and wherein the one or more policy rule applies to the set.

I2. A method for secure storage of one or more virtual machine file, the method

comprising:

intercepting with a file system driver on a first computing system from a
hypervisor of the first computing system a command to store the one or
more virtual machine file;

retrieving with a communication module of the first computing system through a
secure communication channel one or more encryption key from a key
store on a second computing system and one or more policy rule from a
policy store on the second computing system;

obtaining with a key management module of the first computing system the one
or more encryption key from the communication module;

obtaining with a storage management module of the first computing system the
one or more policy rule from the communication module and informing

the file system driver how to store the one or more virtual machine file in

33

WO 2012/057942 PCT/US2011/052844

one or more storage pool of a third computing system based on the one or
more received policy rule;
encrypting at least partially one or more virtual machine file using the one or
more encryption key received from the key management module; and
transferring with the file system driver the at least partially encrypted one or more
virtual machine file through a virtual machine file system of the first
computing system to the one or more storage pool based on the retrieved

one or more policy rule.

13. The method of claim 12 wherein at least one of the one or more storage pool is

local storage.

14. The method of claim 12 wherein at least one of the one or more storage pool is

remote storage.
15. The method of claim 14 wherein the remote storage is cloud-based storage.

16. The computing system of claim 12 wherein the one or more policy rule defines

which components of the one or more virtual machine file are to be encrypted.

17. The method of claim 12 wherein the one or more virtual machine file comprises a

set and wherein the one or more policy rule applies to the set.

18. The method of Claim 12 further comprising the step of authenticating a request
from an external server to access one or more virtual machine file based on the

one or more policy rule.

19. A method to access one or more virtual machine file stored securely and at least
partially encrypted, the method comprising:
intercepting with a file system driver on a first computing system from a
hypervisor of the first computing system a command to access the one or

more at least partially encrypted virtual machine file;

34

WO 2012/057942 PCT/US2011/052844

retrieving with a communication module of the first computing system through a
secure communication channel one or more policy rule from a policy store
on a second computing system and one or more encryption key from a key
store on the second computing system;

obtaining with a storage management module of the first computing system the
one or more policy rule obtained from the communication module;

accessing through a virtual machine file system of the first computing system the
one or more at [east partially encrypted virtual machine file in the one or
more storage pool of the third computing system based on the obtained
one or more policy rule;

obtaining with a key management module of the first computing system the one
or more encryption key from the communication module;

decrypting the one or more accessed partially encrypted virtual machine file based
on the one or more obtained enc'ryption key; and

transferring with the file system driver the decrypted one or more virtual machine

file to the hypervisor.

20. The method of claim 19 wherein at least one of the one or more storage pool is

cloud-based storage.

21. The method of claim 19 wherein the one or more virtual machine file comprises a

set and wherein the one or more policy rule applies to the set.

22. The method of claim 19 wherein the one or more policy rule defines which

components of the one or more virtual machine file are to be encrypted.

23. The method of Claim 19 further comprising the step of authenticating a request
from an external server to access one or more virtual machine file based on the

one or more policy rule.

24. A non-transitory computer readable medium having stored thereupon computing

instructions comprising:

35

WO 2012/057942 PCT/US2011/052844

25.

a code segment to intercept with a file system driver on a first computing system
from a hypervisor of the first computing system a command to store the
one or more virtual machine file;

a code segment to retrieve with a communication module of the first computing
system through a secure communication channel one or more encryption
key from a key store on a second computing system and one or more
policy rule from a policy store on the second computing system;

a code segment to obtain with a key management module of the first computing
system the one or more encryption key from the communication module;

a code segment to obtain with a storage management module of the first
computing system the one or more policy rule from the communication
module and informing the file system driver how to store the one or more
virtual machine file in one or more storage pool of a third computing
system based on the one or more recéived policy rule;

a code segment to encrypt at least partially one or more virtual machine file using
the one or more encryption key received from the key management
module; and

a code segment to transfer with the file system driver the at least partially
encrypted one or more virtual machine file through a virtual machine file
system of the first computing system to the one or more storage pool

based on the retrieved one or more policy rule.

A non-transitory computer readable medium having stored thereupon computing

instructions comprising:

a code segment to intercept with a file system driver on a first computing system
from a hypervisor of the first computing system a command to access the
one or more at least partially encrypted virtual machine file;

a code segment to retrieve with a communication module of the first computing
system through a secure communication channel one or more policy rule
from a policy store on a second computing system and one or more

encryption key from a key store on the second computing system;

36

WO 2012/057942 PCT/US2011/052844

a code segment to obtain with a storage management module of the first
computing system the one or more policy rule obtained from the
communication module;

a code segment to access through a virtual machine file system of the first
computing system the one or more at least partially encrypted virtual
machine file in the one or more storage pool of the third computing system
based on the obtained one or more policy rule;

a code segment to obtain with a key management module of the first computing
system the one or more encryption key from the communication module;

a code segment to decrypt the one or more accessed partially encrypted virtual
machine file based on the one or more obtained encryption key; and

a code segment to transfer with the file system driver the decrypted one or more

virtual machine file to the hypervisor.

37

PCT/US2011/052844

WO 2012/057942

1/9

ARG
GWNHL 850

g0

01
531 WA

8901

el SMOGNIM

L ETY

(1dv HONd)
T 3HNSH

woﬂm&mhm»m T4 TYOISAH
0t
HOSIAHIdAH
10T
&0 15305

HAANIS NOLLVZITYNLHIA

WO 2012/057942 PCT/US2011/052844

2/9
GUEST 0S FIGURE 2
101
HYPERVISOR
CLOUD AWARE FILE SYSTEM
{cars) 203
PHYSICAL FILE SYSTEM
104
LOCAL 5AN[’NAS BACKUPS BHSASTER PUBLIC
STORAGE RECOVERY CLOUDS

STORAGE
POOLS
206
h'd
CUSTOMER
A
i‘“ " J VRA SETS
207
CUSTOMER
L B)
4
CUSTOMER

C

PCT/US2011/052844

WO 2012/057942

3/9

£0E

SIUNLINYLS YAVA JLVARD

MNQM ERAELERR L wmQZ.}\mw}

£EGE

SFUNLONYULS YiVA JLVARd

m ¢oe FXYIHILNI mmﬁwh}\mm}

¢ ddNBId

$5330V 304

&0¢ vt
‘ADILYHELS
ﬁmmmu ‘SIALVLS
P TENNOWND
idin ‘INNOW
e
“YUNET
SNOILLYYI4O SNOLLYHI40
FAAZ -3 TIATT-IATLSAS
N F
4
S0t y0E
ADILVYULS
@Mwwmu ‘SIALYLS
‘ INNOWND
HIGIAY ' NAOW
DA
“URT
SHNOLLYYIdO SNOLLYHIJO
RETCREERIE] FAAIT-NILGAS

yOT
WILSASIT
TWIISAHd

10t
HIAVT

IAONASSIA

4174
54Y3

10E
HIAYT

§§§§§§§§§§§§§§§§§§§§§§ JAONASSIA

PCT/US2011/052844

WO 2012/057942

4/9

202 vy

S0y
FINGOW LINDIN

M&mvm\wzgmnmanm%ymuzm 7" RRRRERRRRRRRRRRRRERRERRRFRRRSS mwsA

Y

PP R RN AR R BRI RN ERI VI DI D DRI RENBRBRBIRBRB Ry

0¥ w3ddv N T100d 3IDVHOLS

x>

08 00 A% 00 08 X0

20y

HIAMA S4Y0 TWLdOd 5490

& ©° B 00 00 00 0% 00

Y

®
&
:
]
]
8
]
-]
]
-]
L]
3
L]
]
g
]
607 " :
D : :
- ; ;
: 8
0% 39vas wasn ; :
AAAAAAAA :
g]
50p : £07 ;
LO% : :
FINGOW u ‘ :
mm>&mm >meﬂ@ﬂm AAAAAAAAAA AAAAAAAAAAAAAAA Q AAAAAAAAAAAAAA m.nmmm@m}m M
Jan N |1 mzmﬁwmmwmw%mu [0 ININIDYNYIN :
8 IDVHOLS ;
.
¥ 3dNHi

PCT/US2011/052844

WO 2012/057942

5/9

14 WA
50z €08 |
3 100d IDVHOLS QNS
557 T0% m
8 100d I9VH0LS SAHNT :
HOLIINIGES WA | |
an7 o ’
¥ 100d IOVHOLS e w
Tov
YIAING S4vD
5 60% y3nuay
80Y 39wds wasn
50p £0Y
5%
YIAHIS TINAOW TINAOW
A0 A3 3| SNOLYOINAWWOD LNIWIDYNYIN
whaana | HSOd IUNDIS IDVHOLS
G NS4

PCT/US2011/052844

WO 2012/057942

y09

HIAYT ICONA - = == oo oo oo o

L0%

HIAYIS A0
JATH TYNUILKI

207
TWid0d $4V0

e L)] —
a0oNAfsaN [TOY
7 — HIAAING I

o .

NGO

> 93dnoid

6/

ANIWIDYNYIN
IDVHOLS

@,Emmuw.&g
‘dMICOT 40A

07

IERLEER ERY.ER
NOILYZITYNLYIA

PCT/US2011/052844

WO 2012/057942

7/9

L dNSI

. /TOIvd dS/100d 3DVH0LS/

%

%4

&

£0Z

5493

8/9

WO 2012/057942

PCT/US2011/052844

FIGURE 8

INTERCEPT HYPERVISOR COMMAND
TG STORE VM FILE

801
RETRIEVE POLICIES
FROM POLICY STORE
OR POLICY STO a02
RETRIEVE ENCRYPTION KEY(S)
FROM KEY STORE 203

ENCRYPT VM FILE USING RETRIREVED
ENCRYPTION KEYS

804
INFORM FILE SYSTEM DRIVER
HOW TO STORE VM FILE
BASED ON POLICIES 305

TRANSFER VM FILE
TG STORAGE POOL

806

9/9

WO 2012/057942

PCT/US2011/052844

FIGURE S

INTERCEPT HYPERVISOR COMMAND
TO ACCESS VM FILE

301
RETRIEVE POLICIES
EROM pe::s;,sc:v STORE 5032
RETRIEVE ENCRYPTION KEY(S)
FROM KEY STORE 903

ACCESS VM FILE
IN STORAGE POOL
BASED ON RETRIEVED POLICIES 204

DECRYPT ACCESSED VM FILE

USING RETRIEVED KEY{S)
905

TRANSFER VM FILE
TO HYPERVISOR
306

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/52844

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 9/455 (2012.01)
USPC - 718/1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ¢
USPC: 718/1

lassification symbols)

USPC: 718/1; 713/1,2,150,155-159,189-193; 726/2-10,16-21; 380/44

Documentation searched other than minimim documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of
PubWest(PGPB,USPT,USOC,EPAB,JPAB); Google, scholar with pat

data base and, where practicable, search terms used)
ents, web

Terms: hypervisor, encrypt, machine file, key, policy, cloud, partial, virtual machine, rule

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2010/0169948 A1 (Budko et al.) 01 July 2010 (01.07.2010), entire document, especially 1-25
paras [0028], [0044], [0084], [0087], [0093], [0104], [0117], [0164), [0170}-{0171].
A US 2010/0146501 A1 (Wyatt et al.) 10 June 2010 (10.06.2010), entire document. 1-25
A US 2009/0204964 A1 (Foley et al.) 13 August 2009 (13.08.2009), entire document. 1-25
A US 2009/0249337 A1 (Visilevsky et al.) 01 October 2009, entiré document. 1-25
A US 2009/0319782 A1 (Lee) 24 December 2009 (24.12.2009), entire document. 1-25
A US 2008/0155223 A1 (Hiltgen et al.) 26 June 2008 (26.06.2008), entire document. 1-25

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0”" document referring to an oral disclosure, use, exhibition or other
means

“P" document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

02 February 2012 (02.02.2012)

Date of mailing of the international search report

07 FEB 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: §71-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report

