
US006047356A 

United States Patent (19) 11 Patent Number: 6,047,356 
Anderson et al. (45) Date of Patent: Apr. 4, 2000 

54 METHOD OF DYNAMICALLY ALLOCATING 5,381,539 1/1995 Yanai et al. ............................. 711/133 
NETWORK NODE MEMORY'S PARTITIONS 5,390,318 2/1995 Ramakrishnan et al. ............... 711/129 
FOR CACHING DSTRIBUTED FILES 5,394,531 2/1995 Smith ...................................... 711/136 

OTHER PUBLICATIONS 
75 Inventors: David P. Anderson, Berkeley; James 

A. Moorer, San Rafael, both of Calif. M. Seltzer et al., “Disk Scheduling Revisited,” Proceedings 
1990 Winter USENIX, pp. 313–324. 

73 Assignee: Sonic Solutions, Novato, Calif. T.S. Bowen, “Software update speeds NFS write process on 
server,” Digital Review, vol. 7, No. 30, p. 17, Aug. 6, 1990. 

21 Appl. No.: 08/229,041 C. Ruemmer et al., “UNIX disk access patterns.” Proceed 21 App 1229, p 
ings 1993 Winter USENIX, pp. 405-420, Jan. 1993. 

22 Filed: Apr. 18, 1994 S. Sivaprakasam, “Performance Enhancements in SunOS 
(51) Int. Cl. ................................................ G06F 1208 NFS." Technical Report TR93–18, State University of New 

York, Buffalo Computer Science Dept., May, 1993. 
52 U.S. '', 137,777. 2H12. A. A. C. Juszczak, “Improving the Write Performance of an NFS 

707/104. 707/205, 709203, 709/21 4. 7091215. Server.” Proceedings 1994 Winter USENIX, pp. 247-259, 
709/216. 709/217. 709/218: 709/219. 709/234; Jan. 1994. 

710/52; 710/56; 710/60 Primary Examiner Hiep T. Nguyen 
58 Field of Search ..................................... 711/113, 117, Attorney, Agent, or Firm Townsend and Townsend and 

711/118, 129, 137, 173, 170, 171, 172, Crew LLP; Kenneth R. Allen 
153, 168; 707/104, 205; 709/203, 214, 

215, 216, 217, 218, 219, 234; 710/52,56, 157 ABSTRACT 
60 A distributed file system with dedicated nodes capable of 

being connected to WorkStations at their bus. The System 
56) References Cited uses a complementary client-side and Server-side file cach 

U.S. PATENT DOCUMENTS ing method that increases parallelism by issuing multiple 
Server requests to keep the hardware devices busy Simulta 

4,882,642 11/1989 SR et al - - - - - - - - - - - - - - - - - - - - - - - - 360/78.11 neously. Most of the node memory is used for file caching 

2. so t - - - - - - - - - - - - - - - - - - - - - - - - - - - - 70% and input/output (I/O) device buffering using dynamic 

4.956.803 9/1990 E. et al... ... 711A113 memory organization, reservation and allocation methods 
5,163.131 11/1992 Raw. ... 700202 for competing memory-intensive activities. 
5,357,623 10/1994 Megory-Cohen ... ... 711/129 
5,381,528 1/1995 Brunelle .................................... 710/56 5 Claims, 11 Drawing Sheets 

BEGIN SOFT 
RESERVATION 

RECALCULATE SOFT 
RESERVATIONS 

CALL REGISTERED 
CALLBACK 

FUNCTIONS FOR 
ALL OTHER SOFT 
RESERVATIONS 

RETURN ACTUAL 
RESERVED VALUE 

84 

86 

82 

83 

  

  

    

  

  

  

  

  



6,047,356 Sheet 1 of 11 Apr. 4, 2000 U.S. Patent 

| I I 1 | | | | I I I I | 1 | | 1 | I | I | | | | 

| 92 
! | 1 I ! | | | | + 

92 

ZZ 

  



U.S. Patent Apr. 4, 2000 Sheet 2 of 11 6,047,356 

FIG. 2 

  



U.S. Patent Apr. 4, 2000 Sheet 3 of 11 6,047,356 

BEGIN HARD 
RESERVATION 

72 
SUM OF 
ALL HARD 

RESERVATIONS > 
TOTAL BUFFER 
MEMORY? 

NO 

RECALCULATE SOFT 
RESERVATIONS 

CALL REGISTERED 
CALL BACK 
FUNCTIONS 

GRANT HARD 
RESERVATION 

81 

DENY REGUEST 

76 

78 

80 

84 

CALL REGISTERED 
CALLBACK 

FUNCTIONS FOR 
ALL OTHER SOFT 
RESERVATIONS 

RETURN ACTUAL 
RESERVED VALUE 

83 

86 

82 

  

  

    

    

  

    

    

  

        

  



U.S. Patent Apr. 4, 2000 Sheet 4 of 11 6,047,356 

CLENT HANDLER TASK 

SLEEP 

98 
90 96 HOST 

REGUEST? 
HOST 
REPLY 

YES 106 
92 

CREATE OPEN READ READ 
EMPTY ROUTINE 
CACHE 

94 CLOSE WRITE FLUSH 

1 OO WRITE 
ROUTINE 

REMOVE WAIT FOR 
CACHE PENDING 

WRITESTO 
FINISH 

HOST 
REPLY 

HOST 
REPLY 

98 

93 

FIG. 6 

    

  

    

    

    

    

  

  



U.S. Patent Apr. 4, 2000 Sheet 5 of 11 6,047,356 

WRITE ROUTINE 

SET CACHE 
STATE TO WRITE 

OMATO LAST 
CACHE BLOCK 

MORE 
DATA TO BE 
WRITTENT 

NEXT CACHE ISSUE REMOTE 
WRITE REGUEST BLOCK 

WAIT FOR FIRST 
BLOCK TO FINISH 

FIG. 7 

108 

ALLOCATE 
12 

116 

  

  

  

  

  

    

  



U.S. Patent Apr. 4, 2000 Sheet 6 of 11 6,047,356 

READ ROUTINE 

START 

WAIT FOR 127 
PENDING WRITE 

126 

SECRUENTIAL 
READ? 

SET CACHE TO 
SEOUENTIAL SET CACHE 150 

READ TO READ 

REGUEST REOUEST BLOCK 152 
132 BLOCKS F NEEDED 

WAIT FOR FIRST 
REGUEST TO 

128 

136 COMPLETE 

OMADATA 
142 TO HOST 

147 
MORE DATA 
RECURED 

OR 
READ-AHEAD 
AND END OF 

BLOCK 

END NO 

DELETE FIRST 
BLOCK, REQUEST 

144 NEW BLOCK 

159 

NO MORE DATA 
END REOURED? 

FIG. 8 

  

  

    

  

  

  

    

    

  

    

  

  



U.S. Patent Apr. 4, 2000 Sheet 7 of 11 6,047,356 

GET INTO SERVERL/166 
TASK OUEUE 

SERVERTASK 

162 SLEEP 

164-1 LOOKATHEAD OF 
REGUEST OUEUE 

SKIP 

READ 
yESNPENDING2 

REOUESTED 
BLOCKN 
CACHE2 

READ WITHOUT 
OVERWRITING 
DIRTY CACHE 

BLOCKS 

192 194 

DELETE BLOCK DATAACK. 

SCANOUEUE, 
SEND CACHE LINK BLOCK 

182 BLOCKS 

19 7 

READ FROM DISK 616ENNG 
AND OVERWRITE PAST EOF? 

WRITE 196 
CONTIGUOUS LAST 
DIRTY BLOCKS CACHE BLOCKN 

IN SAME ALLOCATION 
UNIT? 

NO 

ALLOCATION UNIT 

FIG. 9 

  

  

    

    

  

    

      

  

  

  

    

  

  

  

  

  

  



U.S. Patent Apr. 4, 2000 Sheet 8 of 11 6,047,356 

CLIENT 

CENT SERVER 

2O4 

2O6 

210 

FIG. 1 OB 

  



6,047,356 Sheet 9 of 11 Apr. 4, 2000 U.S. Patent 

98 

ºg CGNED LINEAE ETISS| SEA 

ogz (GNED 
883 LINEAE ETISS| 

SEA 

CINE 

ON 

ONCINE 

CINE SEJA &,5)NICINECH CIV/EH 
ZZZ 

| NEAE ETISS| 

g?z GCNED 
ON 

XISWIL HEAHES LSE TOETH HOW/T]d 

  

  

  

  

  

  

  

  



U.S. Patent Apr. 4, 2000 Sheet 10 of 11 6,047,356 

CUSTODAN PROCESS 
SLEEP 246 

248 

TIME MODN 0 FLUSH DIRTY 250 
16 SEC. - CACHE BLOCKS 
7-O 254 

252 

O RECALCULATE REALLOCATE 256 
CLIENT CACHE CLIENT CACHES 
DATA RATES 

AO 
258 260 SOFT 
YES YES RESERVATION OF-262 

ALL BUFFER 
MEMORY 

NO NO 

HARD 
RESERVATION 

START SERVER - 266 
TASKS 

268 

DEVICESNYES KILL SERVER 270 
REMOVED? TASKS 

NO per REDUCE HARD - 272 
RESERVATION 

271 
LAST 

DEVICE 
REMOVED 

YES 
CANCEL SOFT 273 
RESERVATION 

FIG. 12 

    

  

  

  

  

    

  

    

  



U.S. Patent Apr. 4, 2000 Sheet 11 of 11 6,047,356 

CLIENT CACHE REALLOCATION ROUTINE 

256 

RECALCULATE 
CLIENT CACHE 

SIZES 

274 

IS THERE 
NO1A CLIENT CACHENYES 

TO BE REDUCED2 

IS THERE 
NO1a CLIENT CACHE TO 

BE INCREASED? 

YES 

ADD BLOCKS 

ISSUE 
ASYNCHRONOUS 
READ REQUESTS 
FOR NEW BLOCKS 

DELETE CACHE WAIT FOR 
BLOCKS WRITES 

DELETE CACHE 
BLOCKS 

280 

282 

FIG. 13 

  

    

  

      

  

    

  

  

  

  

  

  

  

    

  



6,047,356 
1 

METHOD OF DYNAMICALLY ALLOCATING 
NETWORK NODE MEMORY'S PARTITIONS 

FOR CACHING DISTRIBUTED FILES 

BACKGROUND OF THE INVENTION 

The present invention relates generally to distributed file 
Systems, and more particularly to distributed file Systems 
optimized for time-critical Sequential access to large files. 

Distributed file systems include network nodes, which are 
computer Systems attached directly to a network. Each 
network node has a processor, random-acceSS memory 
(RAM), and an interface to a communication network. 
Nodes that are able to act as "servers' are interfaced to mass 
Storage devices Such as disk drives. The mass Storage 
devices are usually partitioned in allocation units and data is 
read from or written to the device in multiples of Sectors up 
to one allocation unit. In an access to a file on a given disk, 
the network node where the disk is located is called the 
“server” and the node from which the request was issued is 
called the "client.” In a read access, data flows from the 
Server to the client; in a write access, data flows from the 
client to the Server. A Single node may act as both client and 
Server, and may run concurrent tasks. While one task waits, 
for example, for required data, other tasks can execute. 

Because disk access is orders of magnitude slower than 
RAM access, large chunks of data may be read from the disk 
to RAM memory under the assumption that portions of, or 
near to, the data presently accessed have a high likelihood of 
being accessed in the near future. This is termed “caching.” 
Caching may also be used with data to be written to the disk, 
to avoid the first disk acceSS if the same data is later 
overwritten. A unit of cache data is said to be “dirty’ if it has 
been modified in RAM memory, and therefore the corre 
sponding data on disk must eventually be modified. The 
present invention uses read-ahead and write-behind caching 
techniques for Sequential rather than repetitive file access, 
which attempt to Separate the disk or network access from 
the read or write Steps of application programs in order to 
lessen the need for waiting by the application program. In 
read ahead, future file read access by an application is 
predicted and the data is read into the cache before being 
requested by the application. In write behind, data to be 
written is placed into a cache and, after the application 
program resumes execution, written to the disk. 
AS distributed computing in multimedia, Video, and audio 

data processing becomes widespread, the low speed of 
multi-megabyte file access over local area networks (LANs) 
becomes a Significant problem. Even when high-speed 
networks, such as fiber distributed data interface (FDDI) 
token rings with data rates of 100 megabit per Second 
(Mbps) are used, the combined latency (file access delay) 
due to client- and Server-node task Scheduling, their 
network-adapter data-transfer rates, the Server disk latency 
and the network latency, has heretofore diminished the 
practicality of LANs for Such data processing. For example, 
the throughput of Appletalk networks may be as low as 0.3 
megabytes per second, and the throughput of Sun NFS 
(network file server) may be as low as 1 megabyte per 
Second. To Supply, in real time, Sixteen Sound channels 
requires a throughput of almost 2 megabytes per Second. 
As a result of this difficulty, a number of professional 

digital audio WorkStation manufacturerS Support the use of 
Storage devices that are removable from fixed drives 
(removable media), Such as disks based on magneto-optic 
(MO) technology for file transfers between workstations. 
This technology has been deemed necessary even though 
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2 
MO disk drives cost more than hard disk drives of compa 
rable Storage and have slower access times. Therefore, local 
hard disks are still used as the “workspace” for holding the 
data that is being worked with. 

If a network rather than removable media is used for file 
transfers, multiple operators may work on different parts of 
the same project at the Same time and concurrent access of 
multiple files is possible from each WorkStation or host 
computer. Accordingly, a primary object of the present 
invention is to provide a cooperative client-side and Server 
Side file caching method that maximizes the end-to-end 
throughput of Sequential file read and write access. 

Another object of the present invention is to provide 
dynamic memory organization, reservation and allocation 
methods for competing memory-intensive activities. 
A further object of the present invention is to provide a 

distributed file system with dedicated nodes capable of being 
connected to a WorkStation's memory bus and providing file 
Server and client-Side caching functions independent of the 
WorkStation. 

Additional objects and advantages of the invention will be 
set forth in the description which follows, and in part will be 
obvious from the description, or may be learned by practice 
of the invention. The objects and advantages of the invention 
may be realized and obtained by means of the instrumen 
talities and combinations particularly pointed out in the 
claims. 

SUMMARY OF THE INVENTION 

The present invention is directed to a distributed file 
System. At least one node of the System operates as a Server 
providing network access to files on a local disk, and at the 
Same time operates as a client on behalf of a host computer 
to which it is attached via a bus interface. 

A memory organization method of the present invention 
includes partitioning mass Storage device cache and I/O 
device buffer memory into a plurality of memory units of 
equal size. A plurality of Sets of the units are dynamically 
assigned to mass Storage device caches and I/O device 
buffers, independent of the order and distribution of the units 
in physical memory. A data Structure of remaining unused 
units is maintained independent of the order and distribution 
of the unused units in physical memory. The Sets of memory 
units are used as mass Storage device caches and I/O buffers. 
The assignment of at least one unit is changed from one Set 
to a Second Set. 

A memory reservation method of the present invention 
includes Specifying a minimum and a maximum amount of 
memory to be reserved for an activity. If enough memory is 
available, an amount of memory between the minimum and 
the maximum is reserved for the activity. For each activity 
for which memory has been reserved, the amount of memory 
reserved is dynamically adjusted between the minimum and 
the maximum Such that the Sum of all reservations is leSS 
than or equal to the memory available. 
A method for file read caching of the present invention on 

the client or Server Side includes verifying that the cache 
blocks are a range of blocks contiguous in the file and 
beginning with the required cache block, and, if the full 
range of blocks are not in the cache, reading the missing 
blocks into the cache. The read request may be served before 
or after any missing blocks are read into the cache depending 
on whether the requested data is initially available in cache. 
A method of the present invention for mounting of mass 

Storage devices includes periodically testing to determine 
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what mass Storage devices are connected to a node. After 
physically connecting mass Storage devices to the node, the 
presence of the mass Storage devices is detected, and at least 
one proceSS is started for each device, dedicated to Said mass 
Storage device for Serving file acceSS requests to the device. 
A method for disk file write caching of the present 

invention includes determining whether the data is to be 
written in a cache block at the end of a mass Storage device 
allocation unit. In Such a case, the cache block and all other 
dirty contiguous cache blocks in the same mass Storage 
device allocation unit are written to the mass Storage device. 
Otherwise, the data is written to the cache only. 
A method of the present invention for caching file-acceSS 

using a limited amount of memory includes providing one 
cache for each file that is being accessed. The present or 
future rate of file data access through each Said cache is 
estimated. Memory is allocated to each cache in an amount 
dependent on the estimated rate of data flow. 
A method of the present invention for caching file reads 

by a client from a network file Server includes providing 
caches on both the Server and the client, the Server cache 
reading the data in mass Storage device allocation units, 
remainders of files, or whole caches, whichever is less, and 
the client cache Storing the data in multiples of cache blockS. 
Sufficient cache blocks are read ahead into the client cache 
to keep the Server cache one mass Storage device acceSS 
ahead of the data currently read by the client application. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, which are incorporated in 
and constitute a part of the Specification, Schematically 
illustrate a preferred embodiment of the invention and, 
together with the general description given above and the 
detailed description of the preferred embodiment given 
below, Serve to explain the principles of the invention. 

FIG. 1 is a schematic block diagram of a distributed file 
System according to the present invention. 

FIG. 2 is a schematic block diagram of a buffer memory 
reservation System according to the present invention. 

FIG. 3 is a schematic block diagram of allocation of 
memory reserved using the System of FIG. 2. 

FIG. 4 is a flow chart of the processing of a hard memory 
reservation request. 

FIG. 5 is a flow chart of the processing of a soft memory 
reservation request. 

FIG. 6 is a flow chart of a client handler task according to 
the present invention. 

FIG. 7 is a flow chart of the write routine of the client 
handler task of FIG. 6. 

FIG. 8 is a flow chart of the read routine of the client 
handler task of FIG. 6. 

FIG. 9 is a flow chart of a server task according to the 
present invention. 

FIG. 10A is an illustration of a network read protocol that 
can be used to practice the present invention. 

FIG. 10B is an illustration of a network write protocol that 
can be used to practice the present invention. 

FIG. 11 is a flow chart of a network interrupt handler that 
can be used to practice the present invention. 

FIG. 12 is a flow chart of a custodian process that can be 
used to practice the present invention. 

FIG. 13 is a flow chart of a client cache reallocation 
routine according to the present invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The present invention will be described in terms of the 
preferred embodiment. The preferred embodiment is an 
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4 
apparatus and method for high Speed file access with a 
distributed file system. Such a system 20 is shown in FIG. 
1. 

System 20 includes two or more subsystems 22 and 22' 
connected by a network 48. Subsystems 22 and 22' are 
identical so that only subsystem 22 will be described, with 
the understanding that an analogous description applies to 
Subsystem 22". 

Subsystem 22 includes a host computer 24 with bus 30, a 
network node 34 connected to bus 30 and possibly periph 
erals Such as disk 32. Host computer 24 may be an Apple 
Macintosh computer having a Motorola 68040 micropro 
cessor as a CPU 26 and 64 megabytes of RAM 28. Node 34 
may be a NuBus bus-compatible card having a Motorola 
68030 microprocessor as a CPU 44 and 4 megabytes of 
RAM 40. Bus 36 of the node is connected to bus 30 of the 
host via direct memory access (DMA) hardware 12 capable 
of DMA between RAM 28 and RAM 40 in either direction. 
This is the main means of data transfer between host 24 and 
node 34. Node 34 also has access to the disk 32 via Small 
computer system interface (SCSI) 46 and communicates 
with node 34 of the second subsystem 22 via FDDI network 
48 to which it is connected with interface 38. Disk 32 and 
SCSI interface 46 may be missing, in which case node 34 
could work only as a client and not also as a Server. 
Node 34 is the server for access to files on disk 32, and 

the client for remote file accesses, i.e. access to files outside 
of subsystem 22 requested by host 24. In the preferred 
embodiment, host 24 an Apple Macintosh computer that is 
not multitasking, So there will always be at most one request 
from it for remote file access pending at any given time. 
Thus in this preferred embodiment there is only one task 
running on node 34 for handling requests from host 24. The 
present invention, however, is not limited to non-concurrent 
requests from the host, and the teaching herein is Sufficient 
to allow one skilled in the art to practice it with multitasking 
hosts. In order to run concurrently as client and Server, or to 
Serve multiple requests concurrently, nodes 34 and 34" may 
run a multitasking operating System Such as PSOS. It should 
also be noted that the present invention is not limited to 
nodes that are contained within host computers. For 
example, the nodes could be Self-contained computers. 
Node 34 receives a Sequence of client file access requests 

from host 24. The requests could also originate from the 
node itself without departing from the Scope of the present 
invention. The types of requests include: 1) open a particular 
local or remote file; 2) read a range of bytes from an open 
local or remote file into a memory cache in the node; 3) write 
a range of bytes from a local-node memory buffer to an open 
local or remote file, 4) close an open local or remote file and 
5) to flush a cache by writing dirty blocks to the disk. The 
Server activities of the nodes maintain as little State infor 
mation as possible, for instance, by Serving read and write 
requests without designating files as open or closed. 
Some of the node RAM 40 holds executable code, stacks 

and heaps for the programs executed by the node. To allow 
communication between CPUs 26 and 44, part of RAM 40 
is also mapped into the address Space of CPU 26, using bus 
30. However, because the node 34 is dedicated to network 
and file acceSS functions, most of the memory is used for 
temporary Storage of data being transferred: buffers for 
incoming and outgoing network packets, caches of file data 
for both the client and Server Sides, and caches of file System 
index structures (disk allocation maps, directories, etc.). 
Each use of memory has a natural allocation unit: network 
packets may be about 4 kilobytes (kB), and disk cache units 
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may be 64 kB or larger. The memory available for temporary 
Storage of data (i.e., memory not used for Storing executable 
code, fixed variables, etc.) will be called “buffer memory.” 
To allow memory to be dynamically assigned to any of 

these uses, the system divides buffer memory in blocks that 
are preferably of equal size, for example 4 kB. Each block 
is called a “buffer'; the entire set is called the “buffer pool.” 
To allow Structures larger than 4 kB. the System uses a data 
Structure Such as an array of pointers to 4 kB buffers, 
together with functions that map offsets in the buffers to 
physical addresses. Device drivers (functions to read and 
write data to I/O devices) are written to handle buffers in this 
form using DMA without copying data from buffer to buffer 
in RAM 40. This scheme allows most physical memory to 
be used for any purpose, without memory fragmentation, 
and without Virtual-memory hardware. 
As shown schematically in FIGS. 2 and 3, the nodes of the 

present invention use a novel technique termed dynamic 
memory scheduling or DMS 54 for managing the buffer pool 
in RAM 40. The blocks in FIGS. 2 and 3 are Software or data 
entities. They are held in RAM 40, and the executable 
portions are executed by CPU 44. In FIG. 2 the arrows are 
function calls, and in FIG. 3 the arrows are pointers. DMS 
54 serves to divide a node's memory between a set of 
competing “activities'. Any distinct uses of memory can be 
designated as a distinct activity, independent of whether the 
activity is implemented using one or more tasks, functions 
or objects, and independent of whether two activities are 
implemented using the same or separate tasks, functions or 
objects. For example, in the preferred embodiment there are 
two activities, client caching and file Service, as discussed in 
greater detail below, and a third activity, network traffic 
other than file Service, which requires a constant Small 
amount of memory and will not be described. In the example 
of FIGS. 2 and 3, there are three activities 50, 52 and 53. The 
DMS 54 has separate notions of “reservation” and “alloca 
tion.” An activity can reserve some number of buffers; this 
does not allocate Specific buffers, but ensures that a Subse 
quent allocation request will succeed. In FIG. 2, the DMS 54 
arbitrates conflicting memory reservations by activities 50, 
52 and 53. 

The DMS 54 provides two types of memory reservation. 
An activity makes a “hard” reservation for its minimal 
memory requirement. A hard reservation request Specifies a 
number of buffers, and either Succeeds or fails. In FIG. 2, 
arrows 56, 58 and 60 represent hard reservation interactions, 
with requests HR, HR and HR transmitted from the 
activities 50, 52 and 53 to DMS 54 and true or false (T/F) 
responses from the DMS 54 conveying the outcome to the 
activities. In addition, an activity can make a “Soft reser 
Vation request, in which it specifies the maximum number of 
buffers it can use, represented by arrows 62, 64 and 66 in 
FIG. 2, with the maximum numbers of buffers being SR, 
SR and SR, respectively. Furthermore, as shown by the 
broken arrows in FIG. 2, the activity must Supply or register 
the address of a callback function (C,C and C in FIG. 2), 
that is to be called by DMS 54 whenever the soft reservation 
changes. DMS 54 returns the actual number of buffers 
available to the activity, AF, AF and AF by calling 
callback functions C, C and C as indicated by arrows 63, 
65 and 67. If the Soft reservation has decreased, this callback 
function must free buffers accordingly. If the soft reservation 
has increased, the function can initiate actions to use the 
newly-available buffers. As shown in FIG. 3, portions M 
and M2, M and M, and M of the buffer pool 68 in 
RAM 40 may be allocated to activities 50, 52 and 53, 
respectively. The activities maintain the information of 
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which buffers they control using data Structures allocated on 
the heap (Hi, Hand H in FIGS. 2 and 3), such as the arrays 
of pointers mentioned above. The free buffers or their 
locations may be Stored as a linked list. 
The DMS module uses a policy for dividing the buffer 

pool, leSS hard reservations, among the Soft reservation 
requests (boxes 76 and 84, FIGS. 4 and 5). The policy in the 
preferred embodiment is that each activity receives 1/n of 
the available bufferS rounded down to the nearest integer, or 
its request, whichever is less, where n is the number of 
activities. The remainder is divided arbitrarily, without 
dividing any of the buffers. Other policies are also possible. 
For example, the soft reservation for an activity could be 
kept proportional to the recent data rate (bytes per Second) 
of file access handled by that activity. 

FIG. 4 is a flow chart of the handling of hard reservation 
requests, to be executed by CPU 44. The DMS 54 gives each 
hard request 56, 58 and 60 priority over all soft requests, so 
a particular hard request is not granted only when the Sum 
of all hard reservations would become greater than the total 
buffer memory portion of RAM 40, as indicated by boxes 
72, 73 and 74. Clearly, this would not happen if an existing 
hard reservation is being reduced or canceled. Since the 
amount of buffer memory available for soft reservations is 
changed by the granting of a hard reservation, the actual Soft 
reservations are recalculated using the predetermined policy 
for division of the memory discussed above, as indicated by 
box 76. The new soft reservations are put into effect by 
calling each of the reservations callback functions in turn, 
as indicated by box 78. After the callback functions C, have 
been called, any needed memory has been freed, and the 
hard reservation is granted as indicated by block 80. The 
hard reservation algorithm ends here as indicated by box 81. 
When a Soft reservation is requested or changed, the 

amount of memory available for Soft reservations does not 
change, but the distribution of Soft reservations is reevalu 
ated by the DMS 54 executed by CPU 44 in view of the new 
soft reservation, as indicated by box 84 in FIG. 5. To ensure 
that there is memory available for the new soft reservation, 
the callback functions C, for the preexisting Soft reserva 
tions are each called in turn Such that memory is released by 
the other activities if necessary (box86). The actual reserved 
amount of memory may then be returned by calling the 
registered callback function as indicated by box 82. The soft 
reservation algorithm ends here as indicated by box 83. 
At any given time, Several tasks may be executed con 

currently on each node by CPU 44. A client-handler task 
receives and handles host requests for file access one at a 
time. When not handling a host request, this task goes to 
Sleep until the host makes a new request for file access. At 
that point, an interrupt handler Sends an event to the client 
handler task, which proceeds to handle the new request. An 
event wakes up a process if it is sleeping. For every mass 
Storage device connected to the node, two server tasks (see 
FIG. 9) run concurrently, each task being capable of han 
dling remote requests for access to the device. These 
requests are provided by a network interrupt handler, which 
also provides the client handler task with data it requested 
from other nodes. A custodian process (see FIG. 12) per 
forms periodical housekeeping functions at regular time 
intervals. An Appletalk handler task, not described, is also 
running. The Appletalk protocol is described in Inside 
Appletalk, Second Ed., by Sidhu GurSharan, Richard 
Andrews and Allan Oppenheimer, Addison Wesley, Menlo 
Park, Calif., 1990, incorporated herein by reference. The 
above processes are all executed by CPU 44. 

Host 24 makes requests to its node 34 by writing data into 
the shared portion of RAM 40 and then interrupting the CPU 
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44. CPU 44 then runs a host request interrupt handler (not 
shown) that issues events to the client handler task. After 
issuing a request, host 24 waits until it receives a host reply 
from node 34. The host reply is given by modifying data in 
the shared portion of RAM 40. The waiting of host 24 is 
acceptable in the preferred embodiment because host 24 is 
not a multitasking System. If host 24 were multitasking, the 
proceSS issuing the host request would then sleep, and the 
node would give the host reply by interrupting CPU 26 of 
host 24, to signal that the process that issued the host request 
may be woken up. 

FIG. 6 is a simplified flow chart of the client handler task. 
AS mentioned above, this task goes to Sleep after Serving a 
host request, as indicated by box 88. As indicated by box 90, 
the task goes back to sleep if it receives an event other than 
a host request. There are five types of host requests in the 
preferred embodiment of the present invention. There are 
also additional requests for the Apple name binding protocol 
which is well known and with which the preferred embodi 
ment of the present invention is compatible, but which are 
not shown in FIG. 6. The five requests are open, close, read, 
write and flush, and are handled by five branches Starting at 
the request identification Stage 92. The way these requests 
are handled will be described after the client caches are 
described. 

The client handler task maintains a “client cache” in RAM 
40 for each open file. Each client cache Stores a contiguous 
range of data from that file. Each cache is divided into 
non-overlapping "client cache' blockS. These blocks are 
typically of a constant size, but need not be. Each client 
cache is in one of the following four States: empty, read, 
read-ahead, and write. Each client cache has an “ideal size” 
(depending only on its state), a "maximum size” (depending 
on the memory management decisions) and an “actual size” 
(the number of cache blocks in memory). 

The client handler task running on node 34 makes 
requests to read or write client cache blocks for various files, 
possibly on other nodes over the network. These are called 
“Server requests.” Such a request initiates a read or write 
activity involving network communication for remote disks, 
and disk I/O operations for local disks. AS mentioned earlier, 
there are no Server requests for opening and closing files. 
The network address of the server and the disk are obtained 
by the requesting host, using the above-mentioned name 
binding protocol. Similar protocols exist for other networks 
such as Sun NFS. The server requests are “asynchronous”, 
i.e., they start an activity, but do not wait for it to finish. At 
Some future point a task can check if the operation is 
completed, wait for it to finish, or (for read operations) 
cancel it. Cancelling an operation frees any bufferS already 
used, and causes Subsequent network packets for that opera 
tion to be discarded on arrival. 

In the empty State, a client cache contains no data. Its 
ideal, maximum and actual sizes are Zero. A client cache is 
in this State initially, and whenever memory allocation has 
reduced its allocated size to Zero. 

A client cache is in the read State when the last operation 
on the file was a read, but a sequential read pattern has not 
been detected. A sequential pattern exists when the client 
reads or writes Starting from Some point in the file, and 
proceeding towards the end of the file without Skipping any 
blockS. Since no reading ahead is being done, the cache 
contains a Single block, the one containing the last byte read. 
The ideal, allocated and actual sizes are all one. 
When the last operation was a read and a sequential read 

pattern has been detected, the client cache is in the read 
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ahead State. The cache contains a contiguous range of file 
data. ASynchronous “read-ahead’ requests are issued for all 
blocks in the client cache not yet retrieved from the server 
to maximize performance by increasing parallelism. The 
goal is to keep all the hardware devices involved (disk, 
busses, network links, etc.) busy simultaneously. For a given 
open file, the optimal number N of parallel requests depends 
on the client cache block size X, the disk allocation unit size 
Y, the average network latency Z, and the network band 
width B. If X-Y and Z is small, then we use N=(Y/X)+1. If 
Z is Significant, then we use the more general formula 
N=(Y/X)+(ZB/X)+1. In this way, when a disk read com 
pletes at the Server, there are Y/X requests eat the Server to 
handle the data in that allocation unit, and an additional 
request that will immediately initiate another disk I/O. Thus 
the ideal Size of a read-ahead cache is N as defined above. 
The maximum arid actual sizes depend on memory alloca 
tion. 
The client cache is in the write state when the last 

operation was a write. The cache contains a contiguous 
range of file data, the last block of which is the block to 
which the last byte was written. The blocks have asynchro 
nous write operations pending or have already been written 
to the server. The ideal size is N as defined above. 

Client cache sizes are determined as follows. One soft 
reservation is made, equal to the Sum of the ideal size is of 
all client caches. When the soft reservation is fully granted, 
the actual size of each client cache is its ideal size. If, 
however, the Soft reservation request is not fully granted, the 
memory is divided among client caches in proportion to the 
predicted data rate of client access to each open file. This 
rate may be calculated periodically by the custodian task 
running on the node and described in greater detail below. In 
the preferred embodiment, this rate is computed as an 
exponentially weighted average of the number of bytes 
transferred in fixed periods of time. This average is calcu 
lated by adding one-half the previous average and one-half 
the number of bytes transferred during the latest time period. 
Other prediction techniques are possible without departing 
from the Scope of the present invention. 
When the Soft reservation for the client caches has 

changed, when a client cache has been created or deleted, 
when data rates have changed, or when a new device has 
been added or removed, the cache Sizes must be adjusted by 
the node 34 as shown in the flow chart of FIG. 13. First, sizes 
to be allocated are calculated in proportion to the predicted 
data-transfer rates (box 274). However, before any caches 
can be increased or created, memory must be freed by 
reducing the sizes of the caches whose rates have decreased 
and deleting any caches for files that have been closed. One 
such cache is identified (box 276) and the status of the cache 
is then determined (box 284). If the cache is in the read 
ahead State, the requests for blocks at the end of the cache 
are simply cancelled and the blocks are removed (box 286). 
In the write state it is necessary to wait for the write 
operations of blocks at the Start of the cache to finish So the 
data is not lost (box 288) before deleting those blocks from 
the cache (box 290). 

Turning back to FIG. 6, when the host 24 makes a 
file-open request to node 34, no access to the server (which 
may be node 34) is required, since the server does not keep 
track of the State of the files. An empty cache is created on 
node 34 (box 94), and a reply is sent to the host 24 as 
described above (box 96). The task then goes back to sleep 
(box 78). 
When the host 24 makes a flush request, the client handler 

task running on node 34 waits for all the pending writes to 
finish (box 91) after which it sends a host reply (box 93). 
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When the host 24 makes a file-close request, the cache is 
flushed if necessary and the cache is removed (box 100) by 
the client handler task running on node 34. A host reply is 
then sent (box 98). 

FIG. 10A illustrates the network protocol for a read 
transaction. The client (Such as node 34) sends a read request 
packet 200 over the network 48 to the server (such as node 
34), in response to which the server sends the requested data 
in multiple packets 202 (sixteen packets in the preferred 
embodiment where the transactions handle one cache block 
at a time). If not all the data 202 is received by the client 
within a predetermined amount of time, the request 200 is 
reSent. 

FIG. 10B illustrates the network protocol for a write 
transaction. First, the client (Such as node 34) sends a write 
request packet 204 over the network 48 to the server (such 
as node 34), in response to which the server sends a request 
acknowledgement packet 206 back to the client indicating 
that the write transaction may proceed. The client then sends 
the data in packets 208 (sixteen in the preferred 
embodiment). When all of the data is received, the server 
Sends a data acknowledgement packet 210 to the client. If 
the server does not receive all of the data packets 208 within 
a predetermined time, it discards the data received and does 
not Send a data acknowledgement packet 210. If the client 
does not receive either of the acknowledgement packetS 206 
or 210 within a predetermined time, it restarts the transaction 
of FIG 10B. 

The operation of the network interrupt handler running on 
each node is illustrated by the flow chart of FIG. 11. First, 
the packets received by network interface 38 are examined 
to determine whether they are for the server or the client 
functions of the node (box 212), and to determine the request 
type (boxes 214 and 232). 

Write requests for the Server are placed in the request 
queue for the appropriate device (box 216) and then an event 
is issued to the Server task at the head of the Server task 
queue (box 218). Read requests for the Server are placed in 
the request queue for the appropriate device (box 220) but an 
event is issued (box 224) only if there is no read pending on 
the device (box 222) as explained below. 

Write data for the server is assembled into a cache block 
(box 226). If the block is filled by this process (box 228) an 
event is issued to the server task (box 188 of FIG.9) waiting 
for the write data (box 230). 
On the client side, the packets are determined to be (box 

232) write request acknowledgements (206 of FIG. 10B), 
write data acknowledgements 210, or read request data 202. 
If a write data acknowledgement 210 is received, an event 
is issued to the client handler task (box 234). If the packet 
consists of read data, it is assembled into a cache block (box 
240) if one exists (determined at box 236). If no cache block 
exists, the handler ends (box 238). If the block is not full 
(box 242) no event is issued. Otherwise an event is issued to 
the client handler task (box 244). If a write request acknowl 
edgement 206 is received, the corresponding block is sent 
(box 233) as a series packets 208. 

It should be noted that the network interrupt handler also 
handles timeouts for read and write network transactions on 
the client side. This is not described to simplify the 
discussion, although the implementation will be apparent to 
those skilled in the art. 

The host write request from host 24 is handled by the 
client handler task running on node 34 as shown in the flow 
chart of FIG. 7 using the network protocol of FIG. 10B. 
First, the client cache on node 34 is flushed and set to the 
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write state (box 108) possibly waiting for completion of 
pending block writes from a prior write request or discarding 
blocks previously read ahead. If the write begins in the 
middle of a block not yet in the cache, the block must also 
be read from the server, which may be node 34. A block of 
data to be written is transferred by the DMA 42 from the host 
24 to the node RAM 40 and linked into the cache (box 110). 
Write request packet 204 (FIG. 10B) is then sent to the 
server 34 (box 112). If there is no more write data to be 
copied from the host 24 into the cache on node 34 (box 114), 
the write routine is finished (box 111) because the pending 
write transactions are handled by the network interrupt 
handler running on node 34, and the last block to arrive from 
host 24 is not sent to the server. If there is more data to be 
written, a write request is issued for the last cache block (box 
112). If the cache is full (determined at box 115), the task 
goes to sleep (box 116) while waiting for the completion of 
the writing of the first existing cache block, which is handled 
by the network interrupt handler. When the client handler 
task running on client node 34 wakes up by receiving an 
event from the network interrupt handler, there is room for 
copying additional data into the cache (boxes 113 and 110). 
The host read request is handled as shown in the flow 

chart of FIG.8 using the network protocol diagram of FIG. 
10A. First, the client handler task running on the client node 
flushes the cache and waits for any pending writes from the 
cache to complete (box 127). The read request and the prior 
Status of the cache are examined to detect a possible Sequen 
tial read (box 126). A sequential read is detected whenever 
at least 64 kB are to be read, when the data begins within a 
range already read into the cache, or when the cache was in 
the read State and more than 8 kB are to be read Starting 
beyond the cache block. 

If a Sequential read is detected, the cache is Set to 
sequential read status (box 128). The first block (if not 
already in the cache) and the appropriate number (as dis 
cussed above) of Subsequent blocks are requested (box 132). 
If the block is not in the cache (box 134), the task waits for 
it to arrive (box 136). When the block arrives, it is trans 
ferred to the host (box 142). If the host request did not reach 
the end of the block and no more data is required 
(determined at box 130), the read routine is complete (box 
147). Otherwise, the block is deleted and the next block not 
yet in the cache is requested (box 144). If the host is 
expecting more blocks (box 146) they are Sought in the 
cache as described above (the operations beginning with box 
136). Otherwise, the read operation is complete (box 159). 

If the read is not sequential, the cache is set to read (box 
150). If there is a cache hit, no data is requested from the 
Server. A cache hit occurs when the data is found already in 
the cache. If there is a cache miss, the block is requested 
from the server (box 152) by sending a read request packet 
200 (FIG. 10A) and the task goes to sleep while waiting for 
the data (box 136). When the block is received, the task 
receives an event front the network interrupt handler, and the 
block is transferred to the host (box 142). The operation 
continues as described above for the case of read-ahead with 
the difference that it ends when no more data is required 
even if the host request reaches the end of the block at box 
130. 
A node (Such as node 34) may have several storage 

devices (Such as disks 32 or disks arrays) attached to it. Each 
Storage device contains one or more “file Systems” (a set of 
data Structures on the disk that describe a set of directories 
and files). Each file system stores file data in “allocation 
units, i.e. physical Sectors on disk that contain a contiguous 
range of bytes from a particular file. For each Storage device 



6,047,356 
11 

attached to a node, the Server Software maintains a “data 
cache, i.e. a set of cache blocks, each of which has one or 
more memory buffers containing user file data. The unit or 
block of these caches may be smaller than the file systems 
allocation unit. In the preferred embodiment, the file System 
allocation unit is 256 kB for large files and 512 bytes for 
Small files, and the data cache unit is 64 kB. 

The Server-side Software maintains caches of file System 
indexing information (metadata) as well as data. Units of all 
these caches are Stored in a global list in LRU (least 
recently-used) order. The server-side Software makes a Soft 
reservation request for the entire buffer pool when the first 
device is detected, and cancels it when the last device is 
removed. When the Soft reservation is decreased, or when 
the cache is full and new elements must be read from disk, 
the System "purges' entries from the global cache. Purges 
are accomplished by writing the entries to disk if dirty, and 
removing them from the cache. 
On the server side, each device is handled by multiple 

Server tasks running on the node (for example two), accord 
ing to the flow chart of FIG. 9. In the absence of remote 
requests, the server tasks are placed into a queue (box 166) 
and go to sleep (box 162). A server task wakes up when the 
network interrupt handler of the node, described above, 
issues an event. The network interrupt handler maintains a 
Separate queue of requests for each device and the Server 
task begins to Scan the queue (box 164). If the server task 
reaches the end of the request queue as determined at box 
168, it gets placed in the Server queue (box 164) and goes to 
Sleep (box 162). Otherwise, the request is examined to 
determine whether it is a read or a write (box 170). In order 
to optimize the disk accesses, read requests are not served 
when there is another read pending, in which case 
(determined at box 174) the read request is skipped (box 
172). This policy ensures that when the disk read operation 
completes, at least one server task will be immediately 
available to handle the next operation, thereby maximizing 
the overlap of disk I/O and network utilization. If a read is 
not pending, the device checks whether the requested block 
is already in the data cache (box 178), and if so goes to box 
182. Otherwise, it transfers into the cache from the disk the 
cache block and possibly Several Subsequent blocks of the 
Same file in the same allocation unit, without overwriting 
dirty cache blocks, in a single disk I/O request (box 180). 
The number of additional blocks read is limited to the lesser 
of the size of the file, the range of blocks not already in the 
cache, and the amount of cache Space available. 
At the completion of the disk read operation, the Server 

task Scans the request queue for additional requests for 
blocks in the range it read from the disk. It removes all Such 
requests from the queue, removes the corresponding blockS 
from the data cache, and replies to the requests over network 
48 (box 182). 

If the request is determined to be a write request at Step 
170, the server task running on the server node provides a 
cache block for the data (box 184) and sends a request 
acknowledgement packet 206 (FIG. 10B) to the client over 
network 48, after which it goes to sleep while waiting for the 
write data (box 188). When it wakes up, it determines 
whether enough data has been written to the block to fill the 
cache block (box 190) or a timeout occurred, in which case 
the block will not be full. A timeout occurs when a particular 
operation has not completed in a predetermined amount of 
time. In case of a timeout, the block is deleted (box 192). If 
the block is full, a data acknowledgement 210 (FIG. 10B) is 
sent to the client (box 194) and the block is linked in the 
corresponding data cache (box 195). If the block is only 
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partially written and not past end of file (EOF) as determined 
at box 197, the block is first read from disk, and then 
modified according to the received data (box 199). If the 
block is the last block of a disk allocation unit (as deter 
mined at box 196), the task checks the data cache for the 
range of blocks that are dirty, and are contiguous with the 
new one and in the same allocation unit. It then writes these 
blocks to disk in a single disk I/O request (box 198). 
Remaining dirty blocks are written when the cache is 
periodically flushed by the custodian task as discussed 
below or purged as discussed above. 

The operation of the custodian process running on each 
node is illustrated with the flow chart of FIG. 12. This 
process usually sleeps (box 246) and executes at regular 
time intervals. Every 16 seconds (as determined at box 248), 
the dirty cache blocks in the server cache are flushed (box 
250). Every second (as determined at box 252), the client 
cache data rates are recalculated (box 254), and the client 
caches are reallocated (box 256 and FIG. 13). 
The custodian task then checks whether new devices have 

been added to the node (box 258). When the first device on 
the node is detected (box 260), a soft reservation for the 
entire buffer pool is made (box 262). Wherever a new device 
is detected, a hard reservation is made in an amount Suffi 
cient for device metadata and for three cache blocks for use 
by the cache and the server tasks (box264), and Server tasks 
are started (box 266). 

If devices are removed (box 268), the server tasks are 
killed (box 270) and the hard reservation is reduced (box 
272). When the last device is removed (box 271), the soft 
reservation for the server is canceled (box 273). The custo 
dian process then goes back to sleep (box 246). 

Source code in C++ for an implementation of the node 
Software is included in the appendix. The Source code is 
included by way of Specific illustrative example only, and 
those skilled in the art will recognize that other and different 
code could be written to implement the claimed invention. 

In Summary, an apparatus and method for high Speed file 
access with a distributed file server has been described. In 
the case of the Apple Macintosh, the present invention 
allows a 2-3 times higher network throughput than is 
currently available. 
The present invention has been described in terms of a 

preferred embodiment. The invention, however, is not lim 
ited to the embodiment depicted and described. Rather, the 
Scope of the invention is defined by the appended claims. 
What is claimed is: 
1. In a distributed file System including high Speed ran 

dom acceSS general purpose memory within a network node 
coupled to a host computer and a plurality of mass Storage 
devices interconnected via a network for Storing data files in 
disparate locations, a method for caching data files from Said 
mass Storage devices using a limited amount of Said general 
purpose memory, Said method comprising the Steps of: 

providing at least one cache area in Said general purpose 
memory for each accessed file, 

evaluating a data flow rate over network data paths and 
direct data paths associated with Said each accessed file 
through said at least one cache area (" file data flow 
rate ’); and 

allocating, by means of a processor within Said network 
node, a portion of Said general purpose memory to Said 
at least one cache area in an amount proportional to Said 
asSociated file data flow rate. 

2. The method according to claim 1 for caching data in 
response to instructions for performing read operations by a 
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client device from a network file server, said network file 
Server defining file Structures on Selected ones of Said at least 
one mass Storage device, Said method comprising the Steps 
of: 

providing, on Said network file Server, a first cache area of 
Said at least one cache area for caching first data from 
Said at least one mass Storage device; 

providing, on Said network file Server, a Second cache area 
of Said at least one cache area for caching Second data 
which is to be read by an application program from Said 
at least one mass Storage device, Said Second data being 
Stored on Said network file Server; and 

reading ahead into the Second Server cache area enough 
data to keep operations involving the first Server cache 
area at least one mass Storage device access interval 
ahead of operations involving data currently being read 
by Said application. 

3. The method according to claim 1 further including the 
Step for organizing Said general purpose memory, Said Step 
of organizing comprising the Substeps of: 

establishing a plurality of units of Said general purpose 
memory of equal size; 

assigning each of Said units to one of a plurality of Sets of 
the units, Said Sets being defined for mass Storage 
device cache areas and for I/O device buffers, the order 
of the units of each Set being independent of the order 
and distribution of the units in Said general purpose 
memory; 

maintaining a data Structure of remaining unassigned 
units, the data Structure being independent of the order 
of the remaining unused units in Said general purpose 
memory, 

using Said Sets of units as Said cache areas for Said mass 
storage devices and for said I/O device buffers; and 

changing assignment of at least one of Said units from a 
first one of Said Sets to a Second one of Said Sets. 

4. The method according to claim 1 further including the 
Step for organizing Said memory, Said Step for organizing 
Said memory comprising the Substeps of 

Specifying a first minimum amount and a first maximum 
amount of Said general purpose memory to be reserved 
for a first one of a plurality of activities, 

if a Sum of minimum amounts of Said general purpose 
memory to be reserved by all Said activities is less than 
a total amount of Said general purpose memory avail 
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able for Said activities, reserving for a first one of Said 
activities an actual amount of Said general purpose 
memory between said first minimum amount and Said 
first maximum amount; and 

if said general purpose memory has been reserved for Said 
first one of Said activities, and thereafter if a Second one 
of Said activities requests a change in a Second mini 
mum amount and a Second maximum amount of Said 
general purpose memory to be reserved for Said Second 
one of Said activities, adjusting Said actual amount of 
Said general purpose memory reserved for Said first one 
of Said activities and for Said Second one of Said 
activities between Said first and Second minimum 
amounts and Said first and Second maximum amounts 
Such that a Sum of all actual reservations is less than or 
equal to total available amount of Said general purpose 
memory. 

5. The method according to claim 1 further including the 
Step of caching, responsive to a first read request, a first 
block of file data from a local mass Storage device which is 
one of Said at least one mass Storage devices into a first cache 
area associated with Said accessed file, Said caching com 
prising the Sub-Steps of 

determining whether Said first read request is part of a 
Sequential pattern of read requests, 

if Said first read request is part of a Sequential pattern of 
read requests and Said first block of file data is not in 
Said first cache area of Said general purpose cache 
memory, reading a range of blocks beginning with Said 
first block of file data into said first cache area from said 
local mass Storage device; 

if Said first read request is part of a Sequential pattern of 
read requests and Said first block of file data is in Said 
first cache area, Verifying that Said range of blockS 
beginning with said first block of file data is in said first 
cache area; and 

if Said first read request is part of a Sequential pattern of 
read requests, said first block of file data is in Said first 
cache area and Said range of blockS beginning with Said 
first block of file data is not in Said first cache area, 
reading those blocks of Said range which were not in 
Said first cache area into Said first cache area from Said 
local mass Storage device. 

k k k k k 


