
US006047356A

United States Patent (19) 11 Patent Number: 6,047,356
Anderson et al. (45) Date of Patent: Apr. 4, 2000

54 METHOD OF DYNAMICALLY ALLOCATING 5,381,539 1/1995 Yanai et al. 711/133
NETWORK NODE MEMORY'S PARTITIONS 5,390,318 2/1995 Ramakrishnan et al. 711/129
FOR CACHING DSTRIBUTED FILES 5,394,531 2/1995 Smith 711/136

OTHER PUBLICATIONS
75 Inventors: David P. Anderson, Berkeley; James

A. Moorer, San Rafael, both of Calif. M. Seltzer et al., “Disk Scheduling Revisited,” Proceedings
1990 Winter USENIX, pp. 313–324.

73 Assignee: Sonic Solutions, Novato, Calif. T.S. Bowen, “Software update speeds NFS write process on
server,” Digital Review, vol. 7, No. 30, p. 17, Aug. 6, 1990.

21 Appl. No.: 08/229,041 C. Ruemmer et al., “UNIX disk access patterns.” Proceed 21 App 1229, p
ings 1993 Winter USENIX, pp. 405-420, Jan. 1993.

22 Filed: Apr. 18, 1994 S. Sivaprakasam, “Performance Enhancements in SunOS
(51) Int. Cl. .. G06F 1208 NFS." Technical Report TR93–18, State University of New

York, Buffalo Computer Science Dept., May, 1993.
52 U.S. '', 137,777. 2H12. A. A. C. Juszczak, “Improving the Write Performance of an NFS

707/104. 707/205, 709203, 709/21 4. 7091215. Server.” Proceedings 1994 Winter USENIX, pp. 247-259,
709/216. 709/217. 709/218: 709/219. 709/234; Jan. 1994.

710/52; 710/56; 710/60 Primary Examiner Hiep T. Nguyen
58 Field of Search 711/113, 117, Attorney, Agent, or Firm Townsend and Townsend and

711/118, 129, 137, 173, 170, 171, 172, Crew LLP; Kenneth R. Allen
153, 168; 707/104, 205; 709/203, 214,

215, 216, 217, 218, 219, 234; 710/52,56, 157 ABSTRACT
60 A distributed file system with dedicated nodes capable of

being connected to WorkStations at their bus. The System
56) References Cited uses a complementary client-side and Server-side file cach

U.S. PATENT DOCUMENTS ing method that increases parallelism by issuing multiple
Server requests to keep the hardware devices busy Simulta

4,882,642 11/1989 SR et al - 360/78.11 neously. Most of the node memory is used for file caching

2. so t - 70% and input/output (I/O) device buffering using dynamic

4.956.803 9/1990 E. et al... ... 711A113 memory organization, reservation and allocation methods
5,163.131 11/1992 Raw. ... 700202 for competing memory-intensive activities.
5,357,623 10/1994 Megory-Cohen 711/129
5,381,528 1/1995 Brunelle 710/56 5 Claims, 11 Drawing Sheets

BEGIN SOFT
RESERVATION

RECALCULATE SOFT
RESERVATIONS

CALL REGISTERED
CALLBACK

FUNCTIONS FOR
ALL OTHER SOFT
RESERVATIONS

RETURN ACTUAL
RESERVED VALUE

84

86

82

83

6,047,356 Sheet 1 of 11 Apr. 4, 2000 U.S. Patent

| I I 1 | | | | I I I I | 1 | | 1 | I | I | | | |

| 92
! | 1 I ! | | | | +

92

ZZ

U.S. Patent Apr. 4, 2000 Sheet 2 of 11 6,047,356

FIG. 2

U.S. Patent Apr. 4, 2000 Sheet 3 of 11 6,047,356

BEGIN HARD
RESERVATION

72
SUM OF
ALL HARD

RESERVATIONS >
TOTAL BUFFER
MEMORY?

NO

RECALCULATE SOFT
RESERVATIONS

CALL REGISTERED
CALL BACK
FUNCTIONS

GRANT HARD
RESERVATION

81

DENY REGUEST

76

78

80

84

CALL REGISTERED
CALLBACK

FUNCTIONS FOR
ALL OTHER SOFT
RESERVATIONS

RETURN ACTUAL
RESERVED VALUE

83

86

82

U.S. Patent Apr. 4, 2000 Sheet 4 of 11 6,047,356

CLENT HANDLER TASK

SLEEP

98
90 96 HOST

REGUEST?
HOST
REPLY

YES 106
92

CREATE OPEN READ READ
EMPTY ROUTINE
CACHE

94 CLOSE WRITE FLUSH

1 OO WRITE
ROUTINE

REMOVE WAIT FOR
CACHE PENDING

WRITESTO
FINISH

HOST
REPLY

HOST
REPLY

98

93

FIG. 6

U.S. Patent Apr. 4, 2000 Sheet 5 of 11 6,047,356

WRITE ROUTINE

SET CACHE
STATE TO WRITE

OMATO LAST
CACHE BLOCK

MORE
DATA TO BE
WRITTENT

NEXT CACHE ISSUE REMOTE
WRITE REGUEST BLOCK

WAIT FOR FIRST
BLOCK TO FINISH

FIG. 7

108

ALLOCATE
12

116

U.S. Patent Apr. 4, 2000 Sheet 6 of 11 6,047,356

READ ROUTINE

START

WAIT FOR 127
PENDING WRITE

126

SECRUENTIAL
READ?

SET CACHE TO
SEOUENTIAL SET CACHE 150

READ TO READ

REGUEST REOUEST BLOCK 152
132 BLOCKS F NEEDED

WAIT FOR FIRST
REGUEST TO

128

136 COMPLETE

OMADATA
142 TO HOST

147
MORE DATA
RECURED

OR
READ-AHEAD
AND END OF

BLOCK

END NO

DELETE FIRST
BLOCK, REQUEST

144 NEW BLOCK

159

NO MORE DATA
END REOURED?

FIG. 8

U.S. Patent Apr. 4, 2000 Sheet 7 of 11 6,047,356

GET INTO SERVERL/166
TASK OUEUE

SERVERTASK

162 SLEEP

164-1 LOOKATHEAD OF
REGUEST OUEUE

SKIP

READ
yESNPENDING2

REOUESTED
BLOCKN
CACHE2

READ WITHOUT
OVERWRITING
DIRTY CACHE

BLOCKS

192 194

DELETE BLOCK DATAACK.

SCANOUEUE,
SEND CACHE LINK BLOCK

182 BLOCKS

19 7

READ FROM DISK 616ENNG
AND OVERWRITE PAST EOF?

WRITE 196
CONTIGUOUS LAST
DIRTY BLOCKS CACHE BLOCKN

IN SAME ALLOCATION
UNIT?

NO

ALLOCATION UNIT

FIG. 9

U.S. Patent Apr. 4, 2000 Sheet 8 of 11 6,047,356

CLIENT

CENT SERVER

2O4

2O6

210

FIG. 1 OB

6,047,356 Sheet 9 of 11 Apr. 4, 2000 U.S. Patent

98

ºg CGNED LINEAE ETISS| SEA

ogz (GNED
883 LINEAE ETISS|

SEA

CINE

ON

ONCINE

CINE SEJA &,5)NICINECH CIV/EH
ZZZ

| NEAE ETISS|

g?z GCNED
ON

XISWIL HEAHES LSE TOETH HOW/T]d

U.S. Patent Apr. 4, 2000 Sheet 10 of 11 6,047,356

CUSTODAN PROCESS
SLEEP 246

248

TIME MODN 0 FLUSH DIRTY 250
16 SEC. - CACHE BLOCKS
7-O 254

252

O RECALCULATE REALLOCATE 256
CLIENT CACHE CLIENT CACHES
DATA RATES

AO
258 260 SOFT
YES YES RESERVATION OF-262

ALL BUFFER
MEMORY

NO NO

HARD
RESERVATION

START SERVER - 266
TASKS

268

DEVICESNYES KILL SERVER 270
REMOVED? TASKS

NO per REDUCE HARD - 272
RESERVATION

271
LAST

DEVICE
REMOVED

YES
CANCEL SOFT 273
RESERVATION

FIG. 12

U.S. Patent Apr. 4, 2000 Sheet 11 of 11 6,047,356

CLIENT CACHE REALLOCATION ROUTINE

256

RECALCULATE
CLIENT CACHE

SIZES

274

IS THERE
NO1A CLIENT CACHENYES

TO BE REDUCED2

IS THERE
NO1a CLIENT CACHE TO

BE INCREASED?

YES

ADD BLOCKS

ISSUE
ASYNCHRONOUS
READ REQUESTS
FOR NEW BLOCKS

DELETE CACHE WAIT FOR
BLOCKS WRITES

DELETE CACHE
BLOCKS

280

282

FIG. 13

6,047,356
1

METHOD OF DYNAMICALLY ALLOCATING
NETWORK NODE MEMORY'S PARTITIONS

FOR CACHING DISTRIBUTED FILES

BACKGROUND OF THE INVENTION

The present invention relates generally to distributed file
Systems, and more particularly to distributed file Systems
optimized for time-critical Sequential access to large files.

Distributed file systems include network nodes, which are
computer Systems attached directly to a network. Each
network node has a processor, random-acceSS memory
(RAM), and an interface to a communication network.
Nodes that are able to act as "servers' are interfaced to mass
Storage devices Such as disk drives. The mass Storage
devices are usually partitioned in allocation units and data is
read from or written to the device in multiples of Sectors up
to one allocation unit. In an access to a file on a given disk,
the network node where the disk is located is called the
“server” and the node from which the request was issued is
called the "client.” In a read access, data flows from the
Server to the client; in a write access, data flows from the
client to the Server. A Single node may act as both client and
Server, and may run concurrent tasks. While one task waits,
for example, for required data, other tasks can execute.

Because disk access is orders of magnitude slower than
RAM access, large chunks of data may be read from the disk
to RAM memory under the assumption that portions of, or
near to, the data presently accessed have a high likelihood of
being accessed in the near future. This is termed “caching.”
Caching may also be used with data to be written to the disk,
to avoid the first disk acceSS if the same data is later
overwritten. A unit of cache data is said to be “dirty’ if it has
been modified in RAM memory, and therefore the corre
sponding data on disk must eventually be modified. The
present invention uses read-ahead and write-behind caching
techniques for Sequential rather than repetitive file access,
which attempt to Separate the disk or network access from
the read or write Steps of application programs in order to
lessen the need for waiting by the application program. In
read ahead, future file read access by an application is
predicted and the data is read into the cache before being
requested by the application. In write behind, data to be
written is placed into a cache and, after the application
program resumes execution, written to the disk.
AS distributed computing in multimedia, Video, and audio

data processing becomes widespread, the low speed of
multi-megabyte file access over local area networks (LANs)
becomes a Significant problem. Even when high-speed
networks, such as fiber distributed data interface (FDDI)
token rings with data rates of 100 megabit per Second
(Mbps) are used, the combined latency (file access delay)
due to client- and Server-node task Scheduling, their
network-adapter data-transfer rates, the Server disk latency
and the network latency, has heretofore diminished the
practicality of LANs for Such data processing. For example,
the throughput of Appletalk networks may be as low as 0.3
megabytes per second, and the throughput of Sun NFS
(network file server) may be as low as 1 megabyte per
Second. To Supply, in real time, Sixteen Sound channels
requires a throughput of almost 2 megabytes per Second.
As a result of this difficulty, a number of professional

digital audio WorkStation manufacturerS Support the use of
Storage devices that are removable from fixed drives
(removable media), Such as disks based on magneto-optic
(MO) technology for file transfers between workstations.
This technology has been deemed necessary even though

15

25

35

40

45

50

55

60

65

2
MO disk drives cost more than hard disk drives of compa
rable Storage and have slower access times. Therefore, local
hard disks are still used as the “workspace” for holding the
data that is being worked with.

If a network rather than removable media is used for file
transfers, multiple operators may work on different parts of
the same project at the Same time and concurrent access of
multiple files is possible from each WorkStation or host
computer. Accordingly, a primary object of the present
invention is to provide a cooperative client-side and Server
Side file caching method that maximizes the end-to-end
throughput of Sequential file read and write access.

Another object of the present invention is to provide
dynamic memory organization, reservation and allocation
methods for competing memory-intensive activities.
A further object of the present invention is to provide a

distributed file system with dedicated nodes capable of being
connected to a WorkStation's memory bus and providing file
Server and client-Side caching functions independent of the
WorkStation.

Additional objects and advantages of the invention will be
set forth in the description which follows, and in part will be
obvious from the description, or may be learned by practice
of the invention. The objects and advantages of the invention
may be realized and obtained by means of the instrumen
talities and combinations particularly pointed out in the
claims.

SUMMARY OF THE INVENTION

The present invention is directed to a distributed file
System. At least one node of the System operates as a Server
providing network access to files on a local disk, and at the
Same time operates as a client on behalf of a host computer
to which it is attached via a bus interface.

A memory organization method of the present invention
includes partitioning mass Storage device cache and I/O
device buffer memory into a plurality of memory units of
equal size. A plurality of Sets of the units are dynamically
assigned to mass Storage device caches and I/O device
buffers, independent of the order and distribution of the units
in physical memory. A data Structure of remaining unused
units is maintained independent of the order and distribution
of the unused units in physical memory. The Sets of memory
units are used as mass Storage device caches and I/O buffers.
The assignment of at least one unit is changed from one Set
to a Second Set.

A memory reservation method of the present invention
includes Specifying a minimum and a maximum amount of
memory to be reserved for an activity. If enough memory is
available, an amount of memory between the minimum and
the maximum is reserved for the activity. For each activity
for which memory has been reserved, the amount of memory
reserved is dynamically adjusted between the minimum and
the maximum Such that the Sum of all reservations is leSS
than or equal to the memory available.
A method for file read caching of the present invention on

the client or Server Side includes verifying that the cache
blocks are a range of blocks contiguous in the file and
beginning with the required cache block, and, if the full
range of blocks are not in the cache, reading the missing
blocks into the cache. The read request may be served before
or after any missing blocks are read into the cache depending
on whether the requested data is initially available in cache.
A method of the present invention for mounting of mass

Storage devices includes periodically testing to determine

6,047,356
3

what mass Storage devices are connected to a node. After
physically connecting mass Storage devices to the node, the
presence of the mass Storage devices is detected, and at least
one proceSS is started for each device, dedicated to Said mass
Storage device for Serving file acceSS requests to the device.
A method for disk file write caching of the present

invention includes determining whether the data is to be
written in a cache block at the end of a mass Storage device
allocation unit. In Such a case, the cache block and all other
dirty contiguous cache blocks in the same mass Storage
device allocation unit are written to the mass Storage device.
Otherwise, the data is written to the cache only.
A method of the present invention for caching file-acceSS

using a limited amount of memory includes providing one
cache for each file that is being accessed. The present or
future rate of file data access through each Said cache is
estimated. Memory is allocated to each cache in an amount
dependent on the estimated rate of data flow.
A method of the present invention for caching file reads

by a client from a network file Server includes providing
caches on both the Server and the client, the Server cache
reading the data in mass Storage device allocation units,
remainders of files, or whole caches, whichever is less, and
the client cache Storing the data in multiples of cache blockS.
Sufficient cache blocks are read ahead into the client cache
to keep the Server cache one mass Storage device acceSS
ahead of the data currently read by the client application.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the Specification, Schematically
illustrate a preferred embodiment of the invention and,
together with the general description given above and the
detailed description of the preferred embodiment given
below, Serve to explain the principles of the invention.

FIG. 1 is a schematic block diagram of a distributed file
System according to the present invention.

FIG. 2 is a schematic block diagram of a buffer memory
reservation System according to the present invention.

FIG. 3 is a schematic block diagram of allocation of
memory reserved using the System of FIG. 2.

FIG. 4 is a flow chart of the processing of a hard memory
reservation request.

FIG. 5 is a flow chart of the processing of a soft memory
reservation request.

FIG. 6 is a flow chart of a client handler task according to
the present invention.

FIG. 7 is a flow chart of the write routine of the client
handler task of FIG. 6.

FIG. 8 is a flow chart of the read routine of the client
handler task of FIG. 6.

FIG. 9 is a flow chart of a server task according to the
present invention.

FIG. 10A is an illustration of a network read protocol that
can be used to practice the present invention.

FIG. 10B is an illustration of a network write protocol that
can be used to practice the present invention.

FIG. 11 is a flow chart of a network interrupt handler that
can be used to practice the present invention.

FIG. 12 is a flow chart of a custodian process that can be
used to practice the present invention.

FIG. 13 is a flow chart of a client cache reallocation
routine according to the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention will be described in terms of the
preferred embodiment. The preferred embodiment is an

15

25

35

40

45

50

55

60

65

4
apparatus and method for high Speed file access with a
distributed file system. Such a system 20 is shown in FIG.
1.

System 20 includes two or more subsystems 22 and 22'
connected by a network 48. Subsystems 22 and 22' are
identical so that only subsystem 22 will be described, with
the understanding that an analogous description applies to
Subsystem 22".

Subsystem 22 includes a host computer 24 with bus 30, a
network node 34 connected to bus 30 and possibly periph
erals Such as disk 32. Host computer 24 may be an Apple
Macintosh computer having a Motorola 68040 micropro
cessor as a CPU 26 and 64 megabytes of RAM 28. Node 34
may be a NuBus bus-compatible card having a Motorola
68030 microprocessor as a CPU 44 and 4 megabytes of
RAM 40. Bus 36 of the node is connected to bus 30 of the
host via direct memory access (DMA) hardware 12 capable
of DMA between RAM 28 and RAM 40 in either direction.
This is the main means of data transfer between host 24 and
node 34. Node 34 also has access to the disk 32 via Small
computer system interface (SCSI) 46 and communicates
with node 34 of the second subsystem 22 via FDDI network
48 to which it is connected with interface 38. Disk 32 and
SCSI interface 46 may be missing, in which case node 34
could work only as a client and not also as a Server.
Node 34 is the server for access to files on disk 32, and

the client for remote file accesses, i.e. access to files outside
of subsystem 22 requested by host 24. In the preferred
embodiment, host 24 an Apple Macintosh computer that is
not multitasking, So there will always be at most one request
from it for remote file access pending at any given time.
Thus in this preferred embodiment there is only one task
running on node 34 for handling requests from host 24. The
present invention, however, is not limited to non-concurrent
requests from the host, and the teaching herein is Sufficient
to allow one skilled in the art to practice it with multitasking
hosts. In order to run concurrently as client and Server, or to
Serve multiple requests concurrently, nodes 34 and 34" may
run a multitasking operating System Such as PSOS. It should
also be noted that the present invention is not limited to
nodes that are contained within host computers. For
example, the nodes could be Self-contained computers.
Node 34 receives a Sequence of client file access requests

from host 24. The requests could also originate from the
node itself without departing from the Scope of the present
invention. The types of requests include: 1) open a particular
local or remote file; 2) read a range of bytes from an open
local or remote file into a memory cache in the node; 3) write
a range of bytes from a local-node memory buffer to an open
local or remote file, 4) close an open local or remote file and
5) to flush a cache by writing dirty blocks to the disk. The
Server activities of the nodes maintain as little State infor
mation as possible, for instance, by Serving read and write
requests without designating files as open or closed.
Some of the node RAM 40 holds executable code, stacks

and heaps for the programs executed by the node. To allow
communication between CPUs 26 and 44, part of RAM 40
is also mapped into the address Space of CPU 26, using bus
30. However, because the node 34 is dedicated to network
and file acceSS functions, most of the memory is used for
temporary Storage of data being transferred: buffers for
incoming and outgoing network packets, caches of file data
for both the client and Server Sides, and caches of file System
index structures (disk allocation maps, directories, etc.).
Each use of memory has a natural allocation unit: network
packets may be about 4 kilobytes (kB), and disk cache units

6,047,356
S

may be 64 kB or larger. The memory available for temporary
Storage of data (i.e., memory not used for Storing executable
code, fixed variables, etc.) will be called “buffer memory.”
To allow memory to be dynamically assigned to any of

these uses, the system divides buffer memory in blocks that
are preferably of equal size, for example 4 kB. Each block
is called a “buffer'; the entire set is called the “buffer pool.”
To allow Structures larger than 4 kB. the System uses a data
Structure Such as an array of pointers to 4 kB buffers,
together with functions that map offsets in the buffers to
physical addresses. Device drivers (functions to read and
write data to I/O devices) are written to handle buffers in this
form using DMA without copying data from buffer to buffer
in RAM 40. This scheme allows most physical memory to
be used for any purpose, without memory fragmentation,
and without Virtual-memory hardware.
As shown schematically in FIGS. 2 and 3, the nodes of the

present invention use a novel technique termed dynamic
memory scheduling or DMS 54 for managing the buffer pool
in RAM 40. The blocks in FIGS. 2 and 3 are Software or data
entities. They are held in RAM 40, and the executable
portions are executed by CPU 44. In FIG. 2 the arrows are
function calls, and in FIG. 3 the arrows are pointers. DMS
54 serves to divide a node's memory between a set of
competing “activities'. Any distinct uses of memory can be
designated as a distinct activity, independent of whether the
activity is implemented using one or more tasks, functions
or objects, and independent of whether two activities are
implemented using the same or separate tasks, functions or
objects. For example, in the preferred embodiment there are
two activities, client caching and file Service, as discussed in
greater detail below, and a third activity, network traffic
other than file Service, which requires a constant Small
amount of memory and will not be described. In the example
of FIGS. 2 and 3, there are three activities 50, 52 and 53. The
DMS 54 has separate notions of “reservation” and “alloca
tion.” An activity can reserve some number of buffers; this
does not allocate Specific buffers, but ensures that a Subse
quent allocation request will succeed. In FIG. 2, the DMS 54
arbitrates conflicting memory reservations by activities 50,
52 and 53.

The DMS 54 provides two types of memory reservation.
An activity makes a “hard” reservation for its minimal
memory requirement. A hard reservation request Specifies a
number of buffers, and either Succeeds or fails. In FIG. 2,
arrows 56, 58 and 60 represent hard reservation interactions,
with requests HR, HR and HR transmitted from the
activities 50, 52 and 53 to DMS 54 and true or false (T/F)
responses from the DMS 54 conveying the outcome to the
activities. In addition, an activity can make a “Soft reser
Vation request, in which it specifies the maximum number of
buffers it can use, represented by arrows 62, 64 and 66 in
FIG. 2, with the maximum numbers of buffers being SR,
SR and SR, respectively. Furthermore, as shown by the
broken arrows in FIG. 2, the activity must Supply or register
the address of a callback function (C,C and C in FIG. 2),
that is to be called by DMS 54 whenever the soft reservation
changes. DMS 54 returns the actual number of buffers
available to the activity, AF, AF and AF by calling
callback functions C, C and C as indicated by arrows 63,
65 and 67. If the Soft reservation has decreased, this callback
function must free buffers accordingly. If the soft reservation
has increased, the function can initiate actions to use the
newly-available buffers. As shown in FIG. 3, portions M
and M2, M and M, and M of the buffer pool 68 in
RAM 40 may be allocated to activities 50, 52 and 53,
respectively. The activities maintain the information of

15

25

35

40

45

50

55

60

65

6
which buffers they control using data Structures allocated on
the heap (Hi, Hand H in FIGS. 2 and 3), such as the arrays
of pointers mentioned above. The free buffers or their
locations may be Stored as a linked list.
The DMS module uses a policy for dividing the buffer

pool, leSS hard reservations, among the Soft reservation
requests (boxes 76 and 84, FIGS. 4 and 5). The policy in the
preferred embodiment is that each activity receives 1/n of
the available bufferS rounded down to the nearest integer, or
its request, whichever is less, where n is the number of
activities. The remainder is divided arbitrarily, without
dividing any of the buffers. Other policies are also possible.
For example, the soft reservation for an activity could be
kept proportional to the recent data rate (bytes per Second)
of file access handled by that activity.

FIG. 4 is a flow chart of the handling of hard reservation
requests, to be executed by CPU 44. The DMS 54 gives each
hard request 56, 58 and 60 priority over all soft requests, so
a particular hard request is not granted only when the Sum
of all hard reservations would become greater than the total
buffer memory portion of RAM 40, as indicated by boxes
72, 73 and 74. Clearly, this would not happen if an existing
hard reservation is being reduced or canceled. Since the
amount of buffer memory available for soft reservations is
changed by the granting of a hard reservation, the actual Soft
reservations are recalculated using the predetermined policy
for division of the memory discussed above, as indicated by
box 76. The new soft reservations are put into effect by
calling each of the reservations callback functions in turn,
as indicated by box 78. After the callback functions C, have
been called, any needed memory has been freed, and the
hard reservation is granted as indicated by block 80. The
hard reservation algorithm ends here as indicated by box 81.
When a Soft reservation is requested or changed, the

amount of memory available for Soft reservations does not
change, but the distribution of Soft reservations is reevalu
ated by the DMS 54 executed by CPU 44 in view of the new
soft reservation, as indicated by box 84 in FIG. 5. To ensure
that there is memory available for the new soft reservation,
the callback functions C, for the preexisting Soft reserva
tions are each called in turn Such that memory is released by
the other activities if necessary (box86). The actual reserved
amount of memory may then be returned by calling the
registered callback function as indicated by box 82. The soft
reservation algorithm ends here as indicated by box 83.
At any given time, Several tasks may be executed con

currently on each node by CPU 44. A client-handler task
receives and handles host requests for file access one at a
time. When not handling a host request, this task goes to
Sleep until the host makes a new request for file access. At
that point, an interrupt handler Sends an event to the client
handler task, which proceeds to handle the new request. An
event wakes up a process if it is sleeping. For every mass
Storage device connected to the node, two server tasks (see
FIG. 9) run concurrently, each task being capable of han
dling remote requests for access to the device. These
requests are provided by a network interrupt handler, which
also provides the client handler task with data it requested
from other nodes. A custodian process (see FIG. 12) per
forms periodical housekeeping functions at regular time
intervals. An Appletalk handler task, not described, is also
running. The Appletalk protocol is described in Inside
Appletalk, Second Ed., by Sidhu GurSharan, Richard
Andrews and Allan Oppenheimer, Addison Wesley, Menlo
Park, Calif., 1990, incorporated herein by reference. The
above processes are all executed by CPU 44.

Host 24 makes requests to its node 34 by writing data into
the shared portion of RAM 40 and then interrupting the CPU

6,047,356
7

44. CPU 44 then runs a host request interrupt handler (not
shown) that issues events to the client handler task. After
issuing a request, host 24 waits until it receives a host reply
from node 34. The host reply is given by modifying data in
the shared portion of RAM 40. The waiting of host 24 is
acceptable in the preferred embodiment because host 24 is
not a multitasking System. If host 24 were multitasking, the
proceSS issuing the host request would then sleep, and the
node would give the host reply by interrupting CPU 26 of
host 24, to signal that the process that issued the host request
may be woken up.

FIG. 6 is a simplified flow chart of the client handler task.
AS mentioned above, this task goes to Sleep after Serving a
host request, as indicated by box 88. As indicated by box 90,
the task goes back to sleep if it receives an event other than
a host request. There are five types of host requests in the
preferred embodiment of the present invention. There are
also additional requests for the Apple name binding protocol
which is well known and with which the preferred embodi
ment of the present invention is compatible, but which are
not shown in FIG. 6. The five requests are open, close, read,
write and flush, and are handled by five branches Starting at
the request identification Stage 92. The way these requests
are handled will be described after the client caches are
described.

The client handler task maintains a “client cache” in RAM
40 for each open file. Each client cache Stores a contiguous
range of data from that file. Each cache is divided into
non-overlapping "client cache' blockS. These blocks are
typically of a constant size, but need not be. Each client
cache is in one of the following four States: empty, read,
read-ahead, and write. Each client cache has an “ideal size”
(depending only on its state), a "maximum size” (depending
on the memory management decisions) and an “actual size”
(the number of cache blocks in memory).

The client handler task running on node 34 makes
requests to read or write client cache blocks for various files,
possibly on other nodes over the network. These are called
“Server requests.” Such a request initiates a read or write
activity involving network communication for remote disks,
and disk I/O operations for local disks. AS mentioned earlier,
there are no Server requests for opening and closing files.
The network address of the server and the disk are obtained
by the requesting host, using the above-mentioned name
binding protocol. Similar protocols exist for other networks
such as Sun NFS. The server requests are “asynchronous”,
i.e., they start an activity, but do not wait for it to finish. At
Some future point a task can check if the operation is
completed, wait for it to finish, or (for read operations)
cancel it. Cancelling an operation frees any bufferS already
used, and causes Subsequent network packets for that opera
tion to be discarded on arrival.

In the empty State, a client cache contains no data. Its
ideal, maximum and actual sizes are Zero. A client cache is
in this State initially, and whenever memory allocation has
reduced its allocated size to Zero.

A client cache is in the read State when the last operation
on the file was a read, but a sequential read pattern has not
been detected. A sequential pattern exists when the client
reads or writes Starting from Some point in the file, and
proceeding towards the end of the file without Skipping any
blockS. Since no reading ahead is being done, the cache
contains a Single block, the one containing the last byte read.
The ideal, allocated and actual sizes are all one.
When the last operation was a read and a sequential read

pattern has been detected, the client cache is in the read

15

25

35

40

45

50

55

60

65

8
ahead State. The cache contains a contiguous range of file
data. ASynchronous “read-ahead’ requests are issued for all
blocks in the client cache not yet retrieved from the server
to maximize performance by increasing parallelism. The
goal is to keep all the hardware devices involved (disk,
busses, network links, etc.) busy simultaneously. For a given
open file, the optimal number N of parallel requests depends
on the client cache block size X, the disk allocation unit size
Y, the average network latency Z, and the network band
width B. If X-Y and Z is small, then we use N=(Y/X)+1. If
Z is Significant, then we use the more general formula
N=(Y/X)+(ZB/X)+1. In this way, when a disk read com
pletes at the Server, there are Y/X requests eat the Server to
handle the data in that allocation unit, and an additional
request that will immediately initiate another disk I/O. Thus
the ideal Size of a read-ahead cache is N as defined above.
The maximum arid actual sizes depend on memory alloca
tion.
The client cache is in the write state when the last

operation was a write. The cache contains a contiguous
range of file data, the last block of which is the block to
which the last byte was written. The blocks have asynchro
nous write operations pending or have already been written
to the server. The ideal size is N as defined above.

Client cache sizes are determined as follows. One soft
reservation is made, equal to the Sum of the ideal size is of
all client caches. When the soft reservation is fully granted,
the actual size of each client cache is its ideal size. If,
however, the Soft reservation request is not fully granted, the
memory is divided among client caches in proportion to the
predicted data rate of client access to each open file. This
rate may be calculated periodically by the custodian task
running on the node and described in greater detail below. In
the preferred embodiment, this rate is computed as an
exponentially weighted average of the number of bytes
transferred in fixed periods of time. This average is calcu
lated by adding one-half the previous average and one-half
the number of bytes transferred during the latest time period.
Other prediction techniques are possible without departing
from the Scope of the present invention.
When the Soft reservation for the client caches has

changed, when a client cache has been created or deleted,
when data rates have changed, or when a new device has
been added or removed, the cache Sizes must be adjusted by
the node 34 as shown in the flow chart of FIG. 13. First, sizes
to be allocated are calculated in proportion to the predicted
data-transfer rates (box 274). However, before any caches
can be increased or created, memory must be freed by
reducing the sizes of the caches whose rates have decreased
and deleting any caches for files that have been closed. One
such cache is identified (box 276) and the status of the cache
is then determined (box 284). If the cache is in the read
ahead State, the requests for blocks at the end of the cache
are simply cancelled and the blocks are removed (box 286).
In the write state it is necessary to wait for the write
operations of blocks at the Start of the cache to finish So the
data is not lost (box 288) before deleting those blocks from
the cache (box 290).

Turning back to FIG. 6, when the host 24 makes a
file-open request to node 34, no access to the server (which
may be node 34) is required, since the server does not keep
track of the State of the files. An empty cache is created on
node 34 (box 94), and a reply is sent to the host 24 as
described above (box 96). The task then goes back to sleep
(box 78).
When the host 24 makes a flush request, the client handler

task running on node 34 waits for all the pending writes to
finish (box 91) after which it sends a host reply (box 93).

6,047,356
9

When the host 24 makes a file-close request, the cache is
flushed if necessary and the cache is removed (box 100) by
the client handler task running on node 34. A host reply is
then sent (box 98).

FIG. 10A illustrates the network protocol for a read
transaction. The client (Such as node 34) sends a read request
packet 200 over the network 48 to the server (such as node
34), in response to which the server sends the requested data
in multiple packets 202 (sixteen packets in the preferred
embodiment where the transactions handle one cache block
at a time). If not all the data 202 is received by the client
within a predetermined amount of time, the request 200 is
reSent.

FIG. 10B illustrates the network protocol for a write
transaction. First, the client (Such as node 34) sends a write
request packet 204 over the network 48 to the server (such
as node 34), in response to which the server sends a request
acknowledgement packet 206 back to the client indicating
that the write transaction may proceed. The client then sends
the data in packets 208 (sixteen in the preferred
embodiment). When all of the data is received, the server
Sends a data acknowledgement packet 210 to the client. If
the server does not receive all of the data packets 208 within
a predetermined time, it discards the data received and does
not Send a data acknowledgement packet 210. If the client
does not receive either of the acknowledgement packetS 206
or 210 within a predetermined time, it restarts the transaction
of FIG 10B.

The operation of the network interrupt handler running on
each node is illustrated by the flow chart of FIG. 11. First,
the packets received by network interface 38 are examined
to determine whether they are for the server or the client
functions of the node (box 212), and to determine the request
type (boxes 214 and 232).

Write requests for the Server are placed in the request
queue for the appropriate device (box 216) and then an event
is issued to the Server task at the head of the Server task
queue (box 218). Read requests for the Server are placed in
the request queue for the appropriate device (box 220) but an
event is issued (box 224) only if there is no read pending on
the device (box 222) as explained below.

Write data for the server is assembled into a cache block
(box 226). If the block is filled by this process (box 228) an
event is issued to the server task (box 188 of FIG.9) waiting
for the write data (box 230).
On the client side, the packets are determined to be (box

232) write request acknowledgements (206 of FIG. 10B),
write data acknowledgements 210, or read request data 202.
If a write data acknowledgement 210 is received, an event
is issued to the client handler task (box 234). If the packet
consists of read data, it is assembled into a cache block (box
240) if one exists (determined at box 236). If no cache block
exists, the handler ends (box 238). If the block is not full
(box 242) no event is issued. Otherwise an event is issued to
the client handler task (box 244). If a write request acknowl
edgement 206 is received, the corresponding block is sent
(box 233) as a series packets 208.

It should be noted that the network interrupt handler also
handles timeouts for read and write network transactions on
the client side. This is not described to simplify the
discussion, although the implementation will be apparent to
those skilled in the art.

The host write request from host 24 is handled by the
client handler task running on node 34 as shown in the flow
chart of FIG. 7 using the network protocol of FIG. 10B.
First, the client cache on node 34 is flushed and set to the

15

25

35

40

45

50

55

60

65

10
write state (box 108) possibly waiting for completion of
pending block writes from a prior write request or discarding
blocks previously read ahead. If the write begins in the
middle of a block not yet in the cache, the block must also
be read from the server, which may be node 34. A block of
data to be written is transferred by the DMA 42 from the host
24 to the node RAM 40 and linked into the cache (box 110).
Write request packet 204 (FIG. 10B) is then sent to the
server 34 (box 112). If there is no more write data to be
copied from the host 24 into the cache on node 34 (box 114),
the write routine is finished (box 111) because the pending
write transactions are handled by the network interrupt
handler running on node 34, and the last block to arrive from
host 24 is not sent to the server. If there is more data to be
written, a write request is issued for the last cache block (box
112). If the cache is full (determined at box 115), the task
goes to sleep (box 116) while waiting for the completion of
the writing of the first existing cache block, which is handled
by the network interrupt handler. When the client handler
task running on client node 34 wakes up by receiving an
event from the network interrupt handler, there is room for
copying additional data into the cache (boxes 113 and 110).
The host read request is handled as shown in the flow

chart of FIG.8 using the network protocol diagram of FIG.
10A. First, the client handler task running on the client node
flushes the cache and waits for any pending writes from the
cache to complete (box 127). The read request and the prior
Status of the cache are examined to detect a possible Sequen
tial read (box 126). A sequential read is detected whenever
at least 64 kB are to be read, when the data begins within a
range already read into the cache, or when the cache was in
the read State and more than 8 kB are to be read Starting
beyond the cache block.

If a Sequential read is detected, the cache is Set to
sequential read status (box 128). The first block (if not
already in the cache) and the appropriate number (as dis
cussed above) of Subsequent blocks are requested (box 132).
If the block is not in the cache (box 134), the task waits for
it to arrive (box 136). When the block arrives, it is trans
ferred to the host (box 142). If the host request did not reach
the end of the block and no more data is required
(determined at box 130), the read routine is complete (box
147). Otherwise, the block is deleted and the next block not
yet in the cache is requested (box 144). If the host is
expecting more blocks (box 146) they are Sought in the
cache as described above (the operations beginning with box
136). Otherwise, the read operation is complete (box 159).

If the read is not sequential, the cache is set to read (box
150). If there is a cache hit, no data is requested from the
Server. A cache hit occurs when the data is found already in
the cache. If there is a cache miss, the block is requested
from the server (box 152) by sending a read request packet
200 (FIG. 10A) and the task goes to sleep while waiting for
the data (box 136). When the block is received, the task
receives an event front the network interrupt handler, and the
block is transferred to the host (box 142). The operation
continues as described above for the case of read-ahead with
the difference that it ends when no more data is required
even if the host request reaches the end of the block at box
130.
A node (Such as node 34) may have several storage

devices (Such as disks 32 or disks arrays) attached to it. Each
Storage device contains one or more “file Systems” (a set of
data Structures on the disk that describe a set of directories
and files). Each file system stores file data in “allocation
units, i.e. physical Sectors on disk that contain a contiguous
range of bytes from a particular file. For each Storage device

6,047,356
11

attached to a node, the Server Software maintains a “data
cache, i.e. a set of cache blocks, each of which has one or
more memory buffers containing user file data. The unit or
block of these caches may be smaller than the file systems
allocation unit. In the preferred embodiment, the file System
allocation unit is 256 kB for large files and 512 bytes for
Small files, and the data cache unit is 64 kB.

The Server-side Software maintains caches of file System
indexing information (metadata) as well as data. Units of all
these caches are Stored in a global list in LRU (least
recently-used) order. The server-side Software makes a Soft
reservation request for the entire buffer pool when the first
device is detected, and cancels it when the last device is
removed. When the Soft reservation is decreased, or when
the cache is full and new elements must be read from disk,
the System "purges' entries from the global cache. Purges
are accomplished by writing the entries to disk if dirty, and
removing them from the cache.
On the server side, each device is handled by multiple

Server tasks running on the node (for example two), accord
ing to the flow chart of FIG. 9. In the absence of remote
requests, the server tasks are placed into a queue (box 166)
and go to sleep (box 162). A server task wakes up when the
network interrupt handler of the node, described above,
issues an event. The network interrupt handler maintains a
Separate queue of requests for each device and the Server
task begins to Scan the queue (box 164). If the server task
reaches the end of the request queue as determined at box
168, it gets placed in the Server queue (box 164) and goes to
Sleep (box 162). Otherwise, the request is examined to
determine whether it is a read or a write (box 170). In order
to optimize the disk accesses, read requests are not served
when there is another read pending, in which case
(determined at box 174) the read request is skipped (box
172). This policy ensures that when the disk read operation
completes, at least one server task will be immediately
available to handle the next operation, thereby maximizing
the overlap of disk I/O and network utilization. If a read is
not pending, the device checks whether the requested block
is already in the data cache (box 178), and if so goes to box
182. Otherwise, it transfers into the cache from the disk the
cache block and possibly Several Subsequent blocks of the
Same file in the same allocation unit, without overwriting
dirty cache blocks, in a single disk I/O request (box 180).
The number of additional blocks read is limited to the lesser
of the size of the file, the range of blocks not already in the
cache, and the amount of cache Space available.
At the completion of the disk read operation, the Server

task Scans the request queue for additional requests for
blocks in the range it read from the disk. It removes all Such
requests from the queue, removes the corresponding blockS
from the data cache, and replies to the requests over network
48 (box 182).

If the request is determined to be a write request at Step
170, the server task running on the server node provides a
cache block for the data (box 184) and sends a request
acknowledgement packet 206 (FIG. 10B) to the client over
network 48, after which it goes to sleep while waiting for the
write data (box 188). When it wakes up, it determines
whether enough data has been written to the block to fill the
cache block (box 190) or a timeout occurred, in which case
the block will not be full. A timeout occurs when a particular
operation has not completed in a predetermined amount of
time. In case of a timeout, the block is deleted (box 192). If
the block is full, a data acknowledgement 210 (FIG. 10B) is
sent to the client (box 194) and the block is linked in the
corresponding data cache (box 195). If the block is only

15

25

35

40

45

50

55

60

65

12
partially written and not past end of file (EOF) as determined
at box 197, the block is first read from disk, and then
modified according to the received data (box 199). If the
block is the last block of a disk allocation unit (as deter
mined at box 196), the task checks the data cache for the
range of blocks that are dirty, and are contiguous with the
new one and in the same allocation unit. It then writes these
blocks to disk in a single disk I/O request (box 198).
Remaining dirty blocks are written when the cache is
periodically flushed by the custodian task as discussed
below or purged as discussed above.

The operation of the custodian process running on each
node is illustrated with the flow chart of FIG. 12. This
process usually sleeps (box 246) and executes at regular
time intervals. Every 16 seconds (as determined at box 248),
the dirty cache blocks in the server cache are flushed (box
250). Every second (as determined at box 252), the client
cache data rates are recalculated (box 254), and the client
caches are reallocated (box 256 and FIG. 13).
The custodian task then checks whether new devices have

been added to the node (box 258). When the first device on
the node is detected (box 260), a soft reservation for the
entire buffer pool is made (box 262). Wherever a new device
is detected, a hard reservation is made in an amount Suffi
cient for device metadata and for three cache blocks for use
by the cache and the server tasks (box264), and Server tasks
are started (box 266).

If devices are removed (box 268), the server tasks are
killed (box 270) and the hard reservation is reduced (box
272). When the last device is removed (box 271), the soft
reservation for the server is canceled (box 273). The custo
dian process then goes back to sleep (box 246).

Source code in C++ for an implementation of the node
Software is included in the appendix. The Source code is
included by way of Specific illustrative example only, and
those skilled in the art will recognize that other and different
code could be written to implement the claimed invention.

In Summary, an apparatus and method for high Speed file
access with a distributed file server has been described. In
the case of the Apple Macintosh, the present invention
allows a 2-3 times higher network throughput than is
currently available.
The present invention has been described in terms of a

preferred embodiment. The invention, however, is not lim
ited to the embodiment depicted and described. Rather, the
Scope of the invention is defined by the appended claims.
What is claimed is:
1. In a distributed file System including high Speed ran

dom acceSS general purpose memory within a network node
coupled to a host computer and a plurality of mass Storage
devices interconnected via a network for Storing data files in
disparate locations, a method for caching data files from Said
mass Storage devices using a limited amount of Said general
purpose memory, Said method comprising the Steps of:

providing at least one cache area in Said general purpose
memory for each accessed file,

evaluating a data flow rate over network data paths and
direct data paths associated with Said each accessed file
through said at least one cache area (" file data flow
rate ’); and

allocating, by means of a processor within Said network
node, a portion of Said general purpose memory to Said
at least one cache area in an amount proportional to Said
asSociated file data flow rate.

2. The method according to claim 1 for caching data in
response to instructions for performing read operations by a

6,047,356
13

client device from a network file server, said network file
Server defining file Structures on Selected ones of Said at least
one mass Storage device, Said method comprising the Steps
of:

providing, on Said network file Server, a first cache area of
Said at least one cache area for caching first data from
Said at least one mass Storage device;

providing, on Said network file Server, a Second cache area
of Said at least one cache area for caching Second data
which is to be read by an application program from Said
at least one mass Storage device, Said Second data being
Stored on Said network file Server; and

reading ahead into the Second Server cache area enough
data to keep operations involving the first Server cache
area at least one mass Storage device access interval
ahead of operations involving data currently being read
by Said application.

3. The method according to claim 1 further including the
Step for organizing Said general purpose memory, Said Step
of organizing comprising the Substeps of:

establishing a plurality of units of Said general purpose
memory of equal size;

assigning each of Said units to one of a plurality of Sets of
the units, Said Sets being defined for mass Storage
device cache areas and for I/O device buffers, the order
of the units of each Set being independent of the order
and distribution of the units in Said general purpose
memory;

maintaining a data Structure of remaining unassigned
units, the data Structure being independent of the order
of the remaining unused units in Said general purpose
memory,

using Said Sets of units as Said cache areas for Said mass
storage devices and for said I/O device buffers; and

changing assignment of at least one of Said units from a
first one of Said Sets to a Second one of Said Sets.

4. The method according to claim 1 further including the
Step for organizing Said memory, Said Step for organizing
Said memory comprising the Substeps of

Specifying a first minimum amount and a first maximum
amount of Said general purpose memory to be reserved
for a first one of a plurality of activities,

if a Sum of minimum amounts of Said general purpose
memory to be reserved by all Said activities is less than
a total amount of Said general purpose memory avail

15

25

35

40

45

14
able for Said activities, reserving for a first one of Said
activities an actual amount of Said general purpose
memory between said first minimum amount and Said
first maximum amount; and

if said general purpose memory has been reserved for Said
first one of Said activities, and thereafter if a Second one
of Said activities requests a change in a Second mini
mum amount and a Second maximum amount of Said
general purpose memory to be reserved for Said Second
one of Said activities, adjusting Said actual amount of
Said general purpose memory reserved for Said first one
of Said activities and for Said Second one of Said
activities between Said first and Second minimum
amounts and Said first and Second maximum amounts
Such that a Sum of all actual reservations is less than or
equal to total available amount of Said general purpose
memory.

5. The method according to claim 1 further including the
Step of caching, responsive to a first read request, a first
block of file data from a local mass Storage device which is
one of Said at least one mass Storage devices into a first cache
area associated with Said accessed file, Said caching com
prising the Sub-Steps of

determining whether Said first read request is part of a
Sequential pattern of read requests,

if Said first read request is part of a Sequential pattern of
read requests and Said first block of file data is not in
Said first cache area of Said general purpose cache
memory, reading a range of blocks beginning with Said
first block of file data into said first cache area from said
local mass Storage device;

if Said first read request is part of a Sequential pattern of
read requests and Said first block of file data is in Said
first cache area, Verifying that Said range of blockS
beginning with said first block of file data is in said first
cache area; and

if Said first read request is part of a Sequential pattern of
read requests, said first block of file data is in Said first
cache area and Said range of blockS beginning with Said
first block of file data is not in Said first cache area,
reading those blocks of Said range which were not in
Said first cache area into Said first cache area from Said
local mass Storage device.

k k k k k

