«» UK Patent Application «GB .2 362482 .., A

{(43) Date of A Publication 21.11.2001

{21} Application No 0011599.8 {(51) INTCL?

GO6F 12/10 9/35 12/02
{22) Date of Filing 15.05.2000
{52) UK CL (Edition S)

G4A AFGDC AND
(71} Applicant(s)
Ridgeway Systems & Software Ltd {56) Documents Cited
{Incorporated in the United Kingdom} GB 2307569 A
66 Suttons Business Park, READING, Berkshire,
RG6 1AZ, United Kingdom (68) Field of Search
UK CL (Edition R) G4A AFGDC AND
(72) Inventor(s) INT CL7 GO6F 9/35 12/00 12/02 12/04 12/06 12/08
Nevil Morley Hunt 12/10 13/00 13/10 13/12 13/14 13/16 13/28 13/36
Malcolm Philip Ross Online: EPODOC, WPI, JAPIO
(74) Agent and/or Address for Service
Dummett Copp
25 The Square, Martlesham Heath, IPSWICH, Suffolk,
IP5 3SL, United Kingdom

(54) Abstract Title
Direct slave addressing to indirect slave addressing

(57) A computer bus system comprises: a direct address bus; at least one bus master device and at least one
bus slave device, the bus master device and bus slave device being connected to the bus so that the bus
master device may communicate with the bus slave device over the bus. The bus has an address space
assigned to different devices connected to the bus and is a multiplexed address/data bus for transferring
blocks of data (63,76) in a direct address transaction {(60) between the devices. Each direct address transaction
(60) comprises a burst transaction {61) having an address phase with a bus space address value (62) followed
by a data phase (61). The bus slave device includes an indirect address device addressable in an indirect
address transaction (70) that has an address register load transaction (71) followed by a data register load
transaction (72). The indirect address device has a memory with memory locations identified by address
values loaded into the address register of the indirect address device. The slave device includes a transaction
translation device between the bus and the indirect address device that translates the direct address
transaction (61) to an indirect address transaction (71,72) including mapping {64) the bus space address value
(62) to the destination address value (74). Therefore, a direct address transaction {60) received by the slave
device for communicated blocks of data is presented to the indirect address device as an indirect address
transaction (71,72).

70/’/ 73° 7 (% /7

SN72 76

Fig. 6

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

This print takes account of replacement documents submitted after the date of filing to enable the application to comply
with the formal requirements of the Patents Rules 1995

VY ¢8v29€C 99

AN 5~ s G ~6

Fig. 3

30 3
AN 32 .-
— Ay X A AW 01 X 02
333 3{. 35> 36 T

3/5

H\ \w\ A L
LL ! dsa dsd dsa dsa
- \“\ 202900ZESIWL | | 202900ZESIL || Z0Z9D0ZESINL Z0Z9D0ZESINL
g8 N snqx snqx snqy snqy ‘
| lava avx TLoxjj lavl avx Ta10x]| [lav1 avx TLOX} flav1 avx TMLOX
. 7y TR . = : y
0g " Cop <8 Cog <] 6 | N
| L - L 98
i L
| !_I_ 18
|)
18 88
=l
|
" sng.f LT
—. .
m €8 avil 1411
]
" s
" avl HLOT
| b@\\\ . _
_ ¥S06-10d
" X'1d
“ 4 snaDd
_. /

ﬁ,

w
(s 0]

e e e o o s o e e e e e o e o ———— T — T — = e

K

200\)\ 194 196 _—
Master XBus 1 o2
Transaction < AJ %1_64 189 DX >—+

[~ PR PROG| P PROG

o e/ | Loglc

191 |GENERATED ,'ﬁ?gﬁp GENERATED | l I\issb

170
Slave Xb\nk

575

6 b

68l

E\ Gel (LLL Ly sl LLLY
dsa ~dsa - dsda dsa
TOZ9O0ZESILL | | TOT9DOTESIL || ZOTOOOTESINL TOT9D0ZESNL [2
snqy snqgx snqx snqx
avl avx 10|l Jlav avx THLOX|| {|dVT avX TJLOX| Hav1 avX ._E.ox.N
J ’ h .
98l Cog1 98l | 98t
~—— 191
181~ P Ag‘ _ ™
€6l —
Y8l

sngL : avl

10

15

20

25

30

35

2362482

Direct Slave Addressing to Indirect Slave Addressing

The present invention relates to a computer bus system
which uses direct addressing, where devices may be
accessed using either direct addressing or indirect
addressing.

Computer busses such as the PCI bus and J-Bus, multiplex
the address and data onto a common bus. The address is
presented for one clock cycle followed by the data on the
next clock cycle. This has the advantage of halving the
number of connections needed when compared with a non-
multiplexed bus. For example, the PCI bus is a 32-bit bus
with 32 data lines for communicating 32-bit words between
devices connected to the bus. If the PCI bus did not
multiplex address and data, there would need to be 32
lines for both data and address, making a total of 64
lines. Such a non-multiplexed bus would be relatively
costly to implement, and would require a more complex
system board.

To achieve fast data transfer on a multiplexed bus,
'burst' transfers are used. This involves a single address
word 'A' followed by one or more data words where the
first data word 'DO' is the data for address 'A', the
second data word 'D1l' is the data for address 'A+1', 'D2!
is the data for address 'A+2', and so on. Each transaction
therefore consists of an address phase followed by a data
phase. Such a protocol for transferring data is known as
"direct addressing”, and devices that use this are called
"direct address" devices. Direct address devices
automatically increment the address for each sequential
data word during the transfer of a block of data.
Ve

If a direct address burst is terminated befor? the data
transfer is complete, when the burst resumes thére must be

10

15

20

25

30

35

a new address cycle giving the address of the next data

word as shown below.

Certain devices which may be connected to a bus using
address/data multiplexing, use a different protocol for
communicating data to or from the bus. These devices are
known as "indirect address devices" and use a protocol
called "indirect addressing", in which an address value is
loaded in a first transaction into an "address register"
of the device. The data is then loaded in a second
transaction into a data register which may be a burst
transaction of data into the data register. Indirect
address devices automatically increment the address for
each sequential data word during the transfer of a block a
data. Thus this whole process involves two separate
transactions across the bus to the memory of the indirect
address device.

An advantage of indirect addressing is that it permits a
much larger address space to be accessed within an
indirect address device, whilst occupying a much smaller
area of address space on the bus.

It is possible to access an indirect address device across
a direct address bus by communicating sequentially two
direct address transactions. During the address phase of
the first transaction, the address of the address register
is presented onto the bus, then during the data phase the
address value is loaded into the address register. In the
second transaction, the address of the data register is
presented onto the bus during the address phase, followed
one or more sequential data words loaded into the data
register during the data phase loads.

Although it is possible to use an indirect address device

10

15

20

25

30

35

on a direct address bus, there are two main problems that
make it difficult in practice to integrate an indirect
address device with a direct address bus. The first of
these is that if there are other devices connected to the
bus which may communicate with the indirect address
device, then these other devices may attempt to access the
indirect address device in between the two sequential
direct address transactions needed to complete the
indirect address transaction. The second problem is that
some direct address devices do not have the capability to
perform two sequential direct address transactions to
communicate with an indirect address device. Although it
is in principle possible to devise a bus control system to
avoid such problems, existing hardware and software for
many applications will have to be completely redesigned to
ensure that direct address devices can reliably
communicate with indirect address devices using two

sequential direct address transactions.

It is an object of the present invention to provide a

computer bus system that addresses these problems.

Accordingly, the invention provides a computer bus system,
comprising: a bus; at least one bus master device and at
least one bus slave device, the bus master device and bus
slave device being connected to the bus so that the bus
master device may communicate with the bus slave device

over the bus; wherein:

i) the bus has an address space with parts of the bus
address space being assigned to different devices
connected to the bus;

ji) the bus is a multiplexed address/data bus for

transferring in a direct address transaction between said

10

15

20

25

30

35

devices, blocks of data, each of said direct address
transactions comprising one or more burst transactions
consisting of an address phase followed by a data phase,
the address phase including a bus space address value;

iii) the bus slave device includes an indirect address
device, addressable in an indirect address transaction,
said transaction comprising an address register load
transaction followed by a data register load transaction;

iv) the indirect address device has a memory with memory

locations identified by address values;

v) the address register load transaction comprises a
destination address value for blocks of data communicated
to/from the memory of the indirect address device;

characterised in that the slave device includes a
transaction translation device between the bus and the
indirect address device, the transaction translation
device being adapted to translate a direct address
transaction on the bus to an indirect address transaction
including a mapping of the bus space address value to the
destination address value.

The bus may be a system bus, for example for a perscnal
computer. Alternatively, the bus may be a local bus, such
as a J-bus, for example a dedicated bus connecting a
number of devices together separate from any other general
bus such as one linking the devices to a system

microprocessor.

Therefore, a direct address transaction received by the
slave device is presented to the indirect address device
as an indirect address transaction. In other words, one

10

15

20

25

30

35

direct address transaction can be translated to construct

two sequential transactions to access the indirect address

device.

The data transferred in the indirect address transaction
may be data that is either written to the slave device
from the master device, or data that is read from the

slave device to the master device.

In a preferred embodiment of the invention, the address
values for the indirect address device are used to
identify both an address register and a data register in
the indirect address device. The address register load
transaction for blocks of data communicated to/from the
memory of the indirect address device may then comprise
two address values: an address register value and the
destination address value. The data register load
transaction then includes a data register address value.
The transaction translation device, as part of the
translation of the direct address transaction to the
indirect address transaction, can then be arranged to
generate both the address register address value and the

data register address value.

In particular, the transaction translation device may
translate the direct address transaction to the indirect
address device as follows. First, the transaction
translation device generates the address register address
value for the indirect address device. It then translates
the address value from the bus and loads it into the
address register of the indirect address device. Then, it
generates the data register address value for the indirect
address device. Finally, it either passes the data word or
words transparently through from the bus and loads them
into the data register of the indirect address device, if

16

15

20

25

30

35

it is a data write transaction, or it passes the data word
or words transparently through from the indirect address
device data register to the bus, if it is a data read

transaction.

The invention is therefore applicable to the case of a
computer bus system conforming to the direct address
protocol of busses such as the PCI bus, as used in
personal computers, or the J-Bus as used by the Intel i960
family of microprocessors, and bus slave devices such as
those based on the Expansion Bus (Xbus) standard, as
implemented in the TMS320C6 series of digital signal
processing (DSP) chips manufactured by Texas Instruments,

Inc.

A block of data may comprise one or more data words, for
example 32-bit data words. The data register 1load
transaction may then comprise the data register address
value followed by one or more data words.

The address of the address register and the address of the
data register could be communicated by the master device
to the slave device, therefore, either or both of the
address register address value and/or the data register
address value may be alterable and stored in the
transaction translation device.

This, however, is information that does not normally need
to be altered, therefore in some cases it is preferred if
the address register address value and the data register
address value are both fixed and generated internally by

the transaction translation device.

Also according to the invention, there is provided a
method of communicating blocks of data over a computer bus

10

15

20

25

30

35

system, the system comprising: a bus, the bus having an
address space and being a multiplexed address/data bus for
transferring in a direct address transaction blocks of
data; at least one bus master device and at least one bus
slave device, the bus master device and bus slave device
being connected to the bus so that the bus master device
may communicate with the bus slave device over the bus,
the bus slave device including an indirect address device;
the indirect address device has a memory with memory
locations identified by address values; wherein the method

comprises the steps of:

a) assigning parts of the bus address space to different

devices connected to the bus;

b) communicating a block of data to/from a bus master
device from/to a bus slave device in the form of a direct
address transaction over the bus comprising one or more
purst .transactions consisting of an address phase followed
by a data phase, the address phase including a bus space

address value;

c) storing in the memory of the indirect address device a
block of data communicated to the bus slave device , or
retrieving from the memory of the indirect address device
a block of data to be communicated to the bus master
device, in the form of an indirect address transaction,
the indirect address transaction comprising an address
register load transaction followed by a data register load
transaction, the address register load transaction
comprising a destination address value for the received
block of data;

characterised in that the method comprises the steps of:

10

15

20

25

30

d) prior to step «c), translating the direct address
transaction to the indirect address transaction including
mapping the bus space address value to the destination

address value.

The invention will now be described by way of example,
with reference to the accompanying drawings, in which:

Figure 1 shows schematically a system bus for a
computer to which a number of devices are connected;

Figure 2 shows schematically a burst transaction on a
direct address bus with address/data multiplexing;

Figure 3 shows schematically multiple burst
transactions on a direct address bus with

address/data multiplexing;

Figure 4 shows schematically an indirect address
transaction for an indirect address device;

Figure 5 shows schematically how an address register
of an indirect address device can be corrupted if a
direct address device interrupts two sequential
direct address transactions to the indirect address

device;

Figure 6 shows schematically how, according to a
preferred embodiment of the invention, a single
direct address transaction can be translated to an

indirect address transaction;

Figure 7 shows a block circuit diagram of direct

slave address interface logic used to translate a

10

15

20

25

30

direct address transaction to an indirect address

transaction; and

Figure 8 shows schematically the translation by the
circuit in Figure 7 of a single direct address
transaction to an indirect address transaction.

Figure 1 shows a block schematic diagram of a conventional
computer system 1, for example for a personal computer,
having a system bus 2 to which a number of devices 3-6 are
connected. The system bus 2 is a 32-bit PCIbus using
address/data multiplexing with a direct address protocol
for transferring data over the bus between devices 3-6.

The devices include a system central processor unit (uP)
3, a random access memory (RAM) 4, a sound card (S8) 5, and
a graphics card (G) 6. For clarity, not shown are the
usual other inputs to and outputs from each of the devices
3-6, such as a keyboard connection to the microprocessor,
a speaker output from the sound card 5, or a video monitor

output from the graphics card 6.

A bus arbiter devicé (A) 8 is also connected to the system
bus 2. In additional to 32 address/data lines, the bus 2
includes a variety of control lines. One purpose of these
control lines is to control access to the bus 2. There may
be only one bus master device at any one time, and the bus
arbiter 8 controls which one of the devices 3-6 has access
to the bus 2 as a master device so that it may communicate
with one of the other devices 3-6 as a slave device.

Either the microprocessor 3 or the sound card may be a
master device, while the random access memory 4 and

graphics card 6 may only be slave devices.

10

15

20

25

30

35

As shown in Figure 2, all the devices 3-6 communicate with
each other in a direct address protocol 10 in which one or
more burst transactions 11, as shown in Figure 2, are
communicated over the bus from a master device 3,5 to a
slave device 3-6. The burst transaction consists of an
address phase 12 consisting of a 32-bit address word
followed by a data phase 13 consisting of one or more data
words. Each device 3-6 has assigned to it an address space
on the system bus 2 . The address word 12 therefore points
to one of the devices as a slave device, and is
interpreted by the slave device to be an address location
associated with that device 3-6. The slave device receives
the burst transaction 10 with each data word 13 being
stored in a location in memory that is automatically
incremented starting at the address value 12.

Figure 3 shows another example of the direct address
protocol 20. The burst transaction 12 is interrupted and
the master device 3,5, must request use of the bus again.
Once it is allowed access to the system bus 2 by the bus
arbiter 8, it communicates a further burst transaction 21
with an address value 22 incremented by an appropriate
amount so that the remainder 23 of the data is transferred
as a block to the correct address range associated with
the slave device 3-6. The burst transaction(s) 20 make up
a direct address transaction.

Indirect addressing uses an indirect address protocol 30,
comprising two sequential transactions, as shown in Figure
4. The first of these transactions is an address register
load transaction 31, which is followed by a data register
load transaction 32.

As will be explained in greater detail below with

10

15

20

25

30

- 11 -

reference to Figure 7, the present example concerns the
indirect addressing mechanism as used on a Texas
Instruments (trade mark) TMS320C6 family of digital signal
processors (DSP) 85 and its Expansion Bus (Xbus) 86. The
indirect address transaction 30, involves firstly loading
an address into the address register in the Xbus 86 before
loading, or retrieving, a burst of one or more data words
to, or from, the data register in the Xbus 86. This
involves two separate accesses as shown in Figure 4,

where:

. A, is the address 33 of the address register.

. A is the destination address 34 for the data in a DSP
memory 77.

. A, is the address 35 of the data register.

. DO, D1, D2, etc are the data words 36 to be loaded

into addresses A, A+l, A+2, etc.

Note that in a burst access to the data register, the
address register auto-increments so that it always
contains the address of the next data word in the data
burst. Note also that these addresses 12,22,34 are word
addresses. If the bus is 32-bit, as is the case with the
Xbus 86 then the byte address equals the word address
times four.

The advantage of the indirect addressing mechanism is that
it can give access to a large address area via just two
registers. If we take for example the PCIbus 2 connected
to a TMS320C6 Xbus 86, the TMS320C6 Xbus 86 has a local
address space of 4 GB, all of which can be accessed via
two Xbus registers which can occupy Jjust two PCIbus
address locations.

10

15

20

25

30

35

Referring again to Figures 1-3, In a system such as PCIbus
2 which allows multiple bus master devices 3,5 the various
bus masters request use of the bus 2 when they have data
to transfer across the bus 2 to the target device 3-6. The
bus arbiter 8 is then responsible for granting access to
the bus 2. Once granted access to the bus 2, the bus
master 3,5 presents the address cycle 12 followed by one
or more data cycles 13. If this is a burst access then the

data cycles 13 will continue until:
a) the bus master 3,5 completes its transfer.

b) the target device 3-6 tells the bus master 3,5 to
terminate the burst.

c) the bus master 3,5 terminates the burst if for
instance its FIFO buffers become full (read) or empty
(write) .

d) another bus master 3,5 has requested use of the bus

and the bus arbiter 8 tells the current bus master

3,5 to relinquish control of the bus 2.

If the burst terminated before the bus master device 3,5
has completed its data transfer (i.e. cases b, ¢ and d
above) it must re-arbitrate for use of the bus in order
for it to complete its transfer.

If multiple bus masters 3,5 are accessing a device 85
using indirect addressing then there is a danger that in
between the time that the bus master 3,5 writes to the
address register and the data register, another bus master
3,5 may have written another wvalue to the address
register. This possibility 40 is illustrated in Figure 5,

where:

10

15

20

25

30

. B,, is the address 43 of the address register driven by
a first bus master.

. A, is a first destination address 44, loaded by the
first bus master.

. A,, is the address 53 of the address register driven by
a second bus master.

. A, is a second destination address 54 loaded by the
second bus master, thus corrupting the first value 44,
previously loaded by the first bus master.

. A, is an address 45 of the data register loaded by the
first bus master.

B DO, is the first data word 46 loaded by the first bus
master, intended to be loaded into the first
destination address A, 44, which will in fact get
loaded into the second destination address A, 54.

Note that the ‘'corruption' of the address register Dby
second bus master could occur between the first bus
master's address register load transaction 41 and data
register load transaction 42 (as shown in Figure 5), or it
could occur when a burst transfer 42 to the data register
gets broken up into a series of bursts due to reasons b),
c) or d4d) above.

Possible solutions for the problem of multiple bus master
devices are either to allow only a single bus master
device 3,5 to access the indirect address device 85, or to
disable all other bus master devices 3,5 until an active
bus master device has completed all phases of its
transfer. Both of these possibilities adversely affect the
system's flexibility, add additional complexity in
controlling the multiple bus master devices 3,5 and reduce
the effective data transfer rate.

10

15

20

25

30

35

As mentioned above, bus master devices 3 driven by a
microprocessor can be programmed to carry out the two
stage process involved in accessing a device, which uses
indirect addressing. Other non-intelligent bus master
devices, such as the sound card 5, may only have the
ability to read or write blocks of data 13,23 to a
pre-programmed address. These devices 5 cannot be
programmed to pre-load the address register of an indirect
address device 85 prior to reading or writing its block of
data. As a result such non-intelligent bus master devices
5 cannot directly read and write data to a device 85,

which uses indirect addressing.

An example of a non-intelligent bus master device is the
widely used Intel (trade mark) 82557 Ethernet LAN
Controller. This is a PCIbus device for interfacing to
10BASE-T and 100BASE-T Ethernet. Buffer Descriptors give
the device the PCIbus address to which it should write its
receive data and from which it should read its transmit
data. With the Xbus on the TMS320C6 family of DSPs using
an indirect addressing mechanism this means that the Intel
82557 cannot read or write its data buffers directly from
the TMS320C6é DSPs.

In the above example, to get data from the Intel 82557 to
the TMS320C6 DSP, the data to/from the Intel 82557 must go
via a buffer memory on the PCIbus where a microprocessor
could then send, or retrieve, the data to, or from, the
TMS320Cé DSP. This means that the data must be sent twice
over the PCIbus, thus consuming additional bus bandwidth
and adding latency to the transfer.

As described below with reference to Figures 6, 7 and 8, a
preferred embodiment of the invention therefore provides

10

15

20

25

30

- 15 -

ndirect slave address interface logic" 84,87 that allows
bus master devices 3,5 on the address/data multiplexed
direct address bus 2, for example the PCIbus, to directly
address memory locations on a slave device 85 which also
uses an address/data multiplexed bus but which uses an
indirect addressing mechanism, for example the Expansion
Bus Xbus 86 on the Texas Instruments T™™S320C62 family of
DSPs. The net result of this interface logic 84,87 is that
any bus master 3,5 can read and write to the memory 77 on
the slave device 85 as if the memory 77 were directly
memory-mapped onto the bus 2.

The essence of the invention is summarised in Figure 6.
The interface logic 84,87 takes a direct address bus
transaction 60, consisting of one or more burst
transactions 61, each of which has an address phase 62
followed by a data phase, consisting of one or more data
cycles 63, and presents it to the indirect address device
85 as a slave bus transaction 70 consisting of two
transactions 71,72. The first 71 of these two transactions
takes the address cycle 62 of the original transaction 61,
and remaps 64 the address 62 to a remapped address value
74 and writes this into the address register of the slave
device 85. In general this remapping 64 will change the
original address value 74, but the remapping may in some
cases leave the address value 74 unchanged. For a data
write transaction it then takes the one or more data
cycles 63 and transfers 65 these to data values 76 of the
data register load transaction 72 so that these are
written without change into the data register of the slave
device 85. This is shown in Figure 6, where:

. A, is the address 62 of the slave device's memory 77 in

the main bus's (e.g. the PCIbus 2) address space.

10

15

20

25

30

..16..

. A, is the remapped address value 74 generated from A,
but is remapped 64 by the interface logic 84,87 to
give the correct address in the slave device's address
space, and is then loaded into the address register of
the slave device's Xbus 86.

. A, is the address 73 of the address register generated
locally by the interface logic 84,87.

. A, is the address 75 of the data register generated
locally by the interface logic 84,87.

. DO, D1, D2 etc are the data words 76 to be loaded into
addresses A,, A,+1, A+2, etc of the slave device's

memory 77.

The direct slave address interface logic 84,87 shown in
Figure 7 has been implemented as part of a slave device 80
connected to the bus 2, to interface between a 32-bit
33 MHz PCIbus 2 and the Expansion Bus (Xbus) 86 of a Texas
Instruments TMS320C6202 DSP 85. The interface logic
consists of a PLX PCI-9054 PCIbus interface IC 87 and a
Xilinx XC95288XL programmable logic IC 84, and supports
the connection of four TMS320C6202 DSPs 85 onto the PCI
bus 2. Each of the DSPs 85 can be a PCIbus master or a
PCIbus slave. The direct slave address interface logic
84,87 1is also used to support local Xbus-to-Xbus data
transfers, which would otherwise get corrupted, as
described later. The various control lines of the Xbus 86
indicated in Figure 7 are:

. LAD - J-bus Address/Data Bus 83

. XAD - Xbus Address/Data bits remapped by Programmable
Logic 81

. LCTRL - J-bus Control Signals 82 (LHOLD, LHOLDA, LADS,
LW/R, LBLAST, LREADY, LWAIT, LBE[3:0])

* XCTRL - Xbus Control Signals 88 (XHOLD, XHOLDA, XCS,

10

15

20

25

30

35

- 17 -
XCNTL, XADS, XW/R, XBLAST, XREADY, XWAIT, XBOFF)

Figure 7 will now be described in more detail, with
reference also to Figure 8. The PLX PCI-9054 chip 87
interfaces the PCIbus 2 through onto the J-Bus
address/data bus 83, remapping 64a the PCIbus address (A;)
62 to a required J-bus address (A,;) 94. The interface logic
includes the programmable logic array 84 that remaps 64b
the J-bus address (B,) 94 to the required TMS320C6202 DSP
memory address (A;) 74.

Note that by careful design of the J-bus memory map it is
possible to minimise the number of J-bus Address/Data
lines, which need to be remapped. Thus only those
Address/Data lines which must be remapped need to connect
via the programmable logic 84.

The programmable logic 84 also connects to all of the Xbus
control signals 88. "State machines" in the programmable
logic 84 generate 91 the Xbus 86 address register address
cycle (A,) 73, and also generate 89 the Xbus 86 data
register address cycle (A,) 75. During the data cycles (DO,
D1, D2 etc) 76 the J-bus Address/Data signals 96 are
passed 65a,65b transparently through the programmable
logic 84.

As shown in Figure 8, this permits the translation of a
single direct address transaction 60 to be translated into
an indirect address transaction 70 via a J-bus transaction
100 consisting of the J-bus address (A;) 94, followed by a
short time delay 90 until the programmable 1logic has
generated 89 the data register address cycle (a,) 75. To
summarise, Figure 8 shows this for the case of a PCIbus 2
to Xbus 86 direct slave address translation, where:

10

15

20

25

30

- 18 -

. A, is the address 62 of the DSP's memory 77 in PCIbus
address space.

. A, is a J-bus address 94 taken from A, 62 but remapped
64a by the PLX PCI-9054 chip 87 to give the address 94
of the DSP's memory 77 in J-bus address space.

. A, is the required DSP memory address 74 taken from A,
94 but remapped 64b by the programmable logic 84 to
give the address 74 of the DSPs' memory 77 in DSP
address space, and is loaded into the Xbus 86 address
register.

. A, is the address 73 of the address register generated
91 locally by the programmable logic 84.

. A, is the address 75 of the data register generated 89
locally by the programmable logic 84.

. DO, D1, D2 etc are the data words 76 to be loaded into
DSP addresses A,, A,+1, A_+2, etc.

A second preferred embodiment of the invention is shown in
Figures 9 and 10. For convenience, those parts of the
drawings corresponding with Figures 6 and 7 are indicated
by reference numerals incremented by 100. The second
preferred embodiment provides "direct slave address
interface logic" 184 that allows one TMS320C6 Xbus 185 as
bus master to directly address memory locations on a slave
TMS320Cé6 Xbus device 185, which is connected to the same
J-Bus 183. The net result of this interface logic 184 is
that any Xbus as J-Bus master 185 can read and write to
the memory 177 of the Xbus slave device 185 as if the
memory 177 were memory-mapped directly onto the bus 183.
More importantly, the "direct slave address interface
logic", when used in conjunction with Xbus "back-off"
logic, allows master Xbus to slave Xbus read or write data
transfer across the J-Bus 183 without data corruption.

10

15

20

25

30

- 19 -

The direct slave address interface logic 184 shown in
Figure 9 has been implemented to interface between the
Xbuses 186 of four Texas Instruments TMS320C6202 DSPs 185.
In this implementation, any one of the four Xbuses 1is
capable of mastering the J-Bus 183 and reading or writing
to the memory of any of the other three indirect address
slave Xbus devices on the J-Bus 183 via the transaction
translation device interface logic. The various control
lines of the Xbus 186 indicated in Figure 9 are:

. LAD - J-Bus Address/Data Bus 183

. XAD - Xbus Address/Data bits remapped by programmable
logic 181

. XCTRL - Xbus Control Signals 188 (XHOLD, XHOLDA, XCS,
XCNTL, XADS, XW/R, XBLAST, XREADY, XWAIT, XBOFF)

Figure 9 will now be described in more detail, with
reference also to Figure 10. The interface logic consists
of the programmable logic array 184 that remaps 164b the
J-Bus address (A,) 194 generated by the master Xbus to the
required slave TMS320C6202 DSP memory address (A;) 174.

The programmable logic 184 also connects to all of the
Xbus control signals 188. "State machines” in the
programmable logic 184 generate 191 the slave Xbus 186
address register address cycle (3,) 173, and also generates
189 the slave Xbus 186 data register address cycle (Bp)
175. During the data cycles (DO, D1, D2 etc) 176 the J-Bus
Address/Data signals 196 are passed 165b transparently
through the programmable logic 184.

As shown in Figure 10, this permits the translation of a
single direct address transaction 200 to be translated

into an indirect address transaction 170. To summarise,

10

15

20

25

30

- 20 -

Figure 10 shows this for the case of a Xbus-to-Xbus 186

direct slave address translation, where:

. A; is the address 194 of the slave DSP's memory 177 in
J-Bus address space.

. A, is the required slave DSP memory address 174 taken
from A, 194 but remapped 164b by the programmable logic
184 to give the address 174 of the slave DSP's memory
177 in DSP address space, and is loaded into the slave
Xbus 186 address register.

. A, is the address 173 of the slave Xbus address
register generated 191 locally by the programmable
logic 184. A

. A, is the address 175 of the slave Xbus data register
generated 189 locally by the programmable logic 184.

. DO, D1, D2 etc are the data words 176 to be 1loaded
into DSP addresses A,, A,+1l, A+2, etc.

To avoid data corruption during master Xbus to slave Xbus
data transfers via the J-Bus, the burst transfer must be
terminated by issuing a "Back off" to the master Xbus and
a "Burst Last" to the slave Xbus, if during the transfer
the slave Xbus is ready to send or receive the next data
word when the master Xbus is not ready. The logic issues a
"Back off" by asserting XBOFF; it issues a "Burst Last" by
asserting XBLAST; the slave Xbus is ready when it asserts
XREADY and the master Xbus is not ready when it asserts
XWAIT.

Adding the direct slave address interface logic 84,87;184
to devices 85,185 that operate with an indirect addressing

interface enables the following:

1) Multiple bus master devices 3,5,185 can perform

10

15

20

25

30

35

- 21 -

unrestricted concurrent accesses tO the indirect address

slave device 85,185.

2) Non-intelligent bus master devices 5 can read and write

data directly to the slave device 85.

3) When using Texas Instruments TMS320C62 family of DSPs
which are directly connected Xbus-to-Xbus, data can be
transferred without corruption so long as the "Back off"

logic is also implemented.

The advantages provided by the invention in each of these

three cases will now be considered in turn.

Unrestricted concurrent access to a slave device has a
number of performance advantages. Firstly, data can be
transferred directly from source toO destination across the
bus without the need for all data to go via a single
system master device. This halves the bus bandwidth used
for the transfer and more than halves the latency of the
transfer. Secondly, all Dbus master devices can Dbe
permanently enabled without the danger that one bus master
device might corrupt the indirect address register setting
of the indirect address device that has been set by
another bus master device. Without this, other bus master
devices would have to be disabled for the duration of
every transfer to the Slave. This would result in
inefficient bus usage, with data transfers being delayed.
Finally, bus control is simplified since all bus master

devices can be left enabled.

Direct access to a slave device from a non-intelligent bus
master device provides the advantage that data can be
transferred directly from source to destination across the
bus without the need for all data to go via a single

10

15

20

25

30

35

- 22 -

system master device. This halves the bus bandwidth used
for the transfer and more than halves the latency of the

transfer.

The TMS320C6 family of DSPs can transfer data directly to
or from other TMS320C6 DSPs, from Xbus-to-Xbus, without
data corruption, so long as the Xbus-to-Xbus interface
includes the "Transaction Translation" logic and the
"Back-off" logic. Without the "Transaction Translation"
logic and the "Back-off" logic, direct Xbus-to-Xbus data
transfers cannot be guaranteed to be free from data
corruption. This has the advantage that data can be
transmitted directly from one TMS320C6 DSP to another.

In conclusion, the direct slave address interface logic
allows bus masters on an address/data multiplexed bus
(e.g. PCIbus or J-Bus) to directly address memory
locations on a slave device, which also uses an
address/data multiplexed bus but which uses an indirect
addressing mechanism, for example, the Expansion Bus
(Xbus) on the Texas Instruments TMS320C62 family of DSPs.

The direct slave address interface 1logic thus allows
multiple bus masters to perform unrestricted concurrent
accesses using byte, word or burst data read or write
transfers to a slave device that uses an indirect
addressing mechanism. It also allows non-intelligent bus
master devices to read and write data directly to an

indirectly addressable slave device.

In particular the direct slave address interface logic
allows the Expansion Bus on the Texas Instruments
TMS320C62 family of DSPs to connect to a PCIbus such that
its memory is directly memory-mapped into the PCIbus's
address space

10

The direct slave address interface logic also allows two
Texas Instruments TMS320C62 family DSP devices to connect
to each other via their Expansion Bus (XBus) ports such
that they can transfer bursts of data between each other

without data corruption.

The invention therefore provides a convenient and
economical solution to the problems associated with
integrating an indirect address device with a direct

address bus.

10

15

20

25

30

35

Claims

1. A computer bus system, comprising: a bus; at least
one bus master device and at least one bus slave device,
the bus master device and bus slave device being connected
to the bus so that the bus master device may communicate
with the bus slave device over the bus; wherein:

i) the bus has an address space with parts of the bus
address space being assigned to different devices

connected to the bus;

ii) the bus 1is a multiplexed address/data bus for
transferring in a direct address transaction between said
devices, blocks of data, each of said direct address
transactions comprising one or more burst transactions
consisting of an address phase followed by a data phase,
the address phase including a bus space address value;

iii) the bus slave device includes an indirect address
device, addressable in an indirect address transaction,
said transaction comprising an address register load
transaction followed by a data register load transaction;

iv) the indirect address device has a memory with memory
locations identified by address values;

v) the address register load transaction comprises a
destination address value for blocks of data communicated
to/from the memory of the indirect address device;

characterised in that the slave device includes a
transaction translation device between the bus and the
indirect address device, the transaction translation
device being adapted to translate a direct address

10

15

20

25

30

35

- 25 -

transaction on the bus to an indirect address transaction
including a mapping of the bus space address value to the

destination address value.

2. A computer bus system as claimed in Claim 1, in

which:

i) the address values for the indirect address device may
be used to identify both an address register and a data

register in the indirect address device;

ii) the address register load transaction for blocks of
data communicated to/from the memory of the indirect
address device comprises two address values: an address

register address value and the destination address value;

iii) the data register load transaction includes a data

register address value;

characterised in that the transaction translation device,
as part of the translation of the direct address
transaction to the indirect address transaction, dgenerates
both the address register address value and the data
register address value.

3. A computer bus system as claimed in Claim 1 or Claim
2, in which a block of data comprises one or more data
words, the data register load transaction comprising the
data register address value followed by one or more of the

data words.

4. A computer bus system as claimed in any preceding
claim, characterised in that the address of the address
register and the address of the data register are both
fixed and generated internally by the transaction

10

15

20

25

30

35

translation device.

5. A computer bus system as claimed in any of Claims 1
to 3, in which the address register address value and/or
the data register address value is/are alterable and
stored in the transaction translation device.

6. A method of communicating blocks of data over a
computer bus system, the system comprising: a bus, the bus
having an address space and being a multiplexed
address/data bus for transferring in a direct address
transaction blocks of data; at least one bus master device
and at least one bus slave device, the bus master device
and bus slave device being connected to the bus so that
the bus master device may communicate with the bus slave
device over the bus, the bus slave device including an
indirect address device; the indirect address device has a
memory with memory locations identified by address values;
wherein the method comprises the steps of:

a) assigning parts of the bus address space to different
devices connected to the bus;

b) communicating a block of data to/from a bus master
device from/to a bus slave device in the form of a direct
address transaction over the bus comprising one or more
burst transactions consisting of an address phase followed
by a data phase, the address phase including a bus space
address value;

c) storing in the memory of the indirect address device a
block of data communicated to the bus slave device , or
retrieving from the memory of the indirect address device
a block of data to be communicated to the bus master
device, in the form of an indirect address transaction,

10

15

20

- 27 -

the indirect address transaction comprising an address
register load transaction followed by a data register load
transaction, the address register load transaction
comprising a destination address value for the received
block of data;

characterised in that the method comprises the steps of:

d) prior to step <), translating the direct address
transaction to the indirect address transaction including
mapping the bus space address value to the destination

address value.

7. A computer bus system, substantially as herein
described, with reference to oxr as shown in the

accompanying drawings.

8. A method of communicating blocks of data over a
computer bus system, substantially as herein described,
with reference to or as shown in the accompanying

drawings.

e

N N
& The % -
Q,P*R?’@ ’: mm * \\\;} \gl
&Y, = 4] Y
S0 5 Office # -
% INVESTOR IN PEOPLE
e ppd
2% |
Application No: GB 0011599.8 Examiner: Brian Ede
Claims searched: 1-8 Date of search: 14 December 2000

Patents Act 1977
Search Report under Section 17

Databases searched:

Other:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.R): G4A(AFGDC, AND)
Int Cl (Ed.7): GO6F 9/35 12/00 12/02 12/04 12/06 12/08 12/10 13/00 13/10 13/12

13/14 13/16 13/28 13/36
Online: EPODOC, JAPIO, WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
A GB 2307569 A (HOLTEK MICROELECTRONICS INC) see Fig 4
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined with P Document published on or afier the declared priority date but before the
one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier than,
& Member of the same patent family the filing date of this application.

An Executive Agency of the Department of Trade and Industry

