WO 2004/008348 A1 ||| 080 A0 0 000 X 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
22 January 2004 (22.01.2004)

(10) International Publication Number

WO 2004/008348 Al

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/US2003/022464

(22) International Filing Date: 16 July 2003 (16.07.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/396,439 16 July 2002 (16.07.2002) US

(71) Applicant and
(72) Inventor: HORN, Bruce, L. [US/US]; 207 Ridge Creek
Drive, Mammoth Lakes, CA 93546 (US).

(74) Agent: DULIN, Jacques, M.; Innovation Law Group,
Ltd., Suite 201, 224 W. Washington Street, NetPort Cen-
ter, Sequim, WA 98382-3338 (US).

(81) Designated States (national): AU, BG, BR, BY, CA, CN,
GE, HR, ID, IL, IN, IS, JP, KR, LT, LV, MX, NO, NZ, PH,
PL, RU, SG, UA, YU, ZA.

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: COMPUTER SYSTEM FOR AUTOMATIC ORGANIZATION, INDEXING AND VIEWING OF INFORMATION

FROM MULTIPLE SOURCES

101

MFS, 1

102 103

Classifier Notifier ‘

104

Updater ’
s

Input/Qutput

1

1

1

|

1

[
(Display/Layout) 1
? 1
1

I

i

|

I

107 y §
Catalog

108
Object Store

112

Images Domain

¥

1i3

—»| EMail Domain

115 %

Personat Info
Domain

Network

(57) Abstract: A computer data processing system including a
central processing unit configured with a novel integrated com-
puter control software system for the management of data ob-
jects including dynamic and automatic organization, linking,
finding, cross-referencing, viewing and retrieval of multiple ob-
jects regardless of nature or source (fig. 1). The system pro-
vides underlying component architecture having an object-ori-
ented database (108) structure and a metadata database struc-
ture which is unique in storing only one instance of each object
while linking the object to multiple collections and domains by
unique metadata links for the grouping into and retrieval from
any of the collections (102). The system employs configurable,
extensible attribute/properties of data objects in metadata for-
mat, and a truly user-friendly configurable interface that facil-
itates faster, more unified, comprehensive, useful and mean-
ingful information management. Additional features include a
sticky path object hierarchy viewing system, key phrase link-
ing, viewing by reference, and drag-and-drop relationship link
creation.

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

COMPUTER SYSTEM FOR AUTOMATIC ORGANIZATION, INDEXING
AND VIEWING OF INFORMATION FROM MULTIPLE SOURCES

INVENTOR: BRUCE L. HORN

Cross-Reference to Related Application

This application is the Regular US Application of Provisional US Application SN
60/396,439, filed July 16, 2002 by the same inventor under the title: System, Method and
Software for Dynamic, Automatic Organization, Archiving, Retrieval, Indexing and Viewing of
Information Objects from Multiple Sources. The benefit of the filing date of that Provisional
Application is claimed under 35 US Code §§ 119 and 120, and the international treaties and

conventions to which the United States is a signatory.

Field of the Invention

The invention relates to computer data processing systems that include central
processing units configured with novel software-based information management systems,
including but not limited to: file system browsers; personal information management systems;
database storage, organization, accessing and retrieval systems; digital asset management
systems; email client and server operation; integrated software development environments;

internet- or intranet-based search engines; and similar information services and systems.

Background of the Art

A primary use of computer information systems is the creation, organization,
transmission and storage of information of a variety of tyf)es in the form of content. data,
including but not limited to word processing documents; spreadsheets, images; drawings;
photographs; sounds; music; email; software source code; web pages, both local and remote;
application programs; name and address lists; appointments; notes; calendar schedules; task
lists; personal finance management data; corporate customer, department, employee, stocking
and accounting data; and so on.

Generally, this information data is stored in either individual file system entities (files)
of proprietary formats stored on a local or LAN or WAN network disk drive or accessed via the
Internet, such as a word processing d ocument or d atabases with s pecialized access s oftware.
For example, email messages are often stored bundled together in a single file, and new
messages are retrieved from a remote server via an Internet protocol; access requires a specific
email client to manage these messages. Similarly, accessing information in a database requires

specialized programs that are compatible with the database format or network access protocol to
1

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

communicate with a server to store or retrieve the information and display it in a useful format.

Although file data strings (the string of digital bits that comprise the content data or
object) are generally accompanied by a small, rudimentary amount of metadata about the file,
i.e., data that represents properties describing the file contents (such as one or more of: the file’s
name, the creation date, the last modification date, access privileges, and possibly a comment),
there is typically very little or no metadata conveying information as to the internal structure or
meaning of the file’s contents, that is, no metadata about the content data. Some files do have
internal descriptions of the contents, but this data is often difficult to access, requiring special
applications to read and not otherwise generally available to the user. Similarly, records in a
database lack information that is needed for use in file systems. In general, database records
cannot be manipulated in the same way as files in a file system.

Thus, the differences in the nature and manner in which content data is stored in
individual files and in proprietary databases, and the lack of useful metadata about the files or
the database content data, makes them closed and partitioned. This closed and partitioned
nature of files and databases poses numerous, significant organizational, archival and retrieval
problems.

File system browsers, due to their bounded (strictly limited) knowledge of file contents
created by various and possibly unknown software applications, are limited to organizing files
by the basic metadata properties provided by the file system itself: by name, various dates, and
by directory or folder.

Finally, there is no general software mechanism (program) in contemporary operating
systems to link or group information from diverse independent sources when they are managed
by separate applications. This problem with presently available operating systems and
application programs was succinctly set forth by Mr. Mundie of Microsoft as follows (referring
to Bill Gates):

The scenario is the dream, not something defined in super-gory detail,” s ays Mundie.

“It’s what Bill and I focus on more than the business plans or P&Ls. For a project as big

as Longhorn, there could have been 100 scenarios, but Bill does this thing with his mind

where he distills the list down to a manageable set of factors that we can organize
developer groups around.” Gates’ scenarios usually take the form of surprisingly simple
questions that customers might have. Here’s a sampling from our interviews:

“Why are my document files stored one way, my contacts another way, and my e-mail

and instant-messaging buddy list still another, and why aren’t they related to my

calendar or to one another and easy to search en masse?...”
2

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

(Quote from Fortune Magazine, available on the Internet at: http://www.fortune.com/
fortune/ceo/articles/0,15114,371336-3,00.htm]

In addition, d ata stored in c omputer s ystems does not have, as a fundamental aspect,
relationship information other than the most trivial of forms. For example, files may be grouped
together within folders or directories, or they may be labeled with a color, but otherwise there is
very little functionality to allow the grouping or linking of disparate pieces of information
within the system.

In particular, when a file or other piece of information is logically involved in multiple
groupings, linking, cross-referencing or relating the groupings is cumbersome at best with
current systems. For example, where a given file “myCarFinances.doc” logically should be
grouped in both a “Finances” group and an “Autos” group, there are no truly easy choices for
accomplishing such multiple grouping. Either a copy of the file must be made in two separate
“Finances” and “ Autos” folders, in which case the user must b e careful to update b oth files
when changes are made; or a shortcut or alias file must be created and placed in these folders.
Both currently available approaches involve tedious, repetitive manual effort to create and
manage that becomes exponentially more difficult as the number of groupings or cross-
references increases.

Because of this, cross-referencing and filing objects in multiple locations is difficult,
error-prone, and time-consuming. If copies are made for each location, valuable disk space is
wasted, and the user is left with having to manage changes by making new copies whenever the
original is modified and remembering every location of every copy. Many cross-references
require many copies, further complicating the task. And even if the user decides to create alias
files i nstead o f m aking a ctual c opies, the alias files still take up space, and the m anagement
issue is equally complex and time-consuming,.

Accordingly, there is a long felt need in the art to provide a truly open computer system
having data structures, input interfaces, displays and operational systems that permits the organ-
ization of information, as data objects, in a wide variety of files and databases, which computer
system is independent of the source of the information objects, is dynamic and automatic, per-
mitting faster archiving, retrieval and viewing of the information and providing more
meaningful and useful links for better organization and indexing of the information. What is
needed is a simple-to-use data structure and operating mechanism to link information together in
a dynamic, memory-and-space-efficient manner, without modifying the original information or
propagating numerous, storage-space-robbing duplicates, each of which individually must be

updated as new versions arise.

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

THE INVENTION
Definition of Terms

It is to be understood that references to the following terms in this application shall have
the corresponding meaning provided (even when used in lower case and not in bold):

Metadata Filing System, abbreviated herein MFS: means the inventive integrated
software system for the management of informational objects on a computer system through the
comprehensive use of metadata as defined herein, for recognizing, organizing, creating and
viewing relationships between such objects which comprises one or more software applications
that provide both a user-interface and an underlying component architecture for the management
and display of the user’s information.

Annotation or annotation metadata: means metadata that was not originally
associated with an object, but which is defined or specified by either the user or the system for
organizational purposes.

B-Tree: means a data structure by which information may be stored efficiently on disk,
with a minimum of disk accesses to fetch a particular piece of information using an ordered key
such as a numeric identifier or a sortable string of text.

Cache: means a special storage location in memory or on disk where objects and their
associated metadata properties may be very quickly retrieved.

Catalog: means a special database built upon the object store that stores and retrieves
reference objects addressed by UUID and their s pecial metadata properties of this invention;
performs queries on objects by specified metadata property selection or designation; notifies
other processes of the metadata property changes; and maintains a dependency graph of objects.

Classifier: means a process by which objects are examined and assigned to one or more
containers or collections for the purpose of gathering together objects with similar or the same
properties specified in a Boolean-type metadata expression and/or key phrase match.

Collection: means a grouping of objects based on a metadata specification describing
properties that all objects in the group have in common, or objects that were grouped together
specifically by the user as having some shared meaning or logical grouping.

Container: means an object in which other objects may be grouped together for the
purpose of organization. A collection is a special type of container, and containers may contain
other containers.

Domain: means an object that includes processes for creating and managing reference
objects of specific types, including new classes of objects, in a consistent manner. Domains
permits grouping objects by nature, class of information in them, or processes of dealing with

4

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

them. For example, a domain designated “EMail” may define reference objects for email mes-
sages; a mailbox object; a mailbox signature; and so on. The EMail domain also provides a I-
cation and retrieval process by which messages are retrieved from a central server and stored
locally in the system. A domain designated “File” may define reference objects, explained
below, for files, directories, and volumes, as well as a scanning and matching process that
creates a mirrored representation within MFS of a directory subtree specified in a Working Set.

Event: an occurrence of note that may be acted upon by a thread (defined below) to
perform a task.

Link or link metadata: means metadata that is specifically defined, updated, and
accessed for the purpose of linking together and organizing reference objects logically in
collections and other containers.

Metadata: means data representing a set of properties of a given type and meaning,
that is user-definable and selectable data about the contents of an object, possibly including
but having more data than conventional, ordinary, presently used “metadata”. Examples of
metadata properties in the inventive application software system include, but are not limited to,
names; dates and times; comments; locations; descriptions; markers; icons; sizes; dimensions,
exposure data, and copyright of images; keywords and phrases; colors; annotations; links;
groups; containment; ownership; access restrictions; and so on. Metadata as refetred to herin is
to be distinguished from currently used “ordinary metadata”, which is rudimentary data that
identifies or names an object, such as a file (e.g. “miscellaneous” or “photos”), but that does not
include data about the contents of an object (about the content data of the object). Metadata as
used herein more particularly includes specially formulated and used “annotation metadata” and
“link metadata”, defined in detail in the description below, including by context and example.

Object: means any piece of information stored in a digital format, including but not
limited to file system entities such as files and folders; specific entities such as documents,
applications, images, sounds, music files, and the like; contact or name/address records, which
may be stored as individual files or multiple records within a single file; received and sent email
messages; and objects that act as containers to hold other objects.

Object Store: means a special database that stores and retrieves object data by unique
identifier (UID).

Property: means a user definable or selected descriptor of a certain kind for the purpose
of attributing characteristics or values to an object in the form of content information metadata
that can be used to classify objects into collections. A group of properties set, created or
selected by the user or a Domain for a particular object is considered the object’s metadata. In

5

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

the inventive system, specific link metadata is a special property of all reference objects in the
MFS, provided to organize reference objects logically in collections and other containers.

Reference Object: means an object internally created and stored in the catalog and
object store, which represents data originating externally (such as files or email messages) that
are managed within MFS, the inventive metadata filing system.

Thread: means a software entity that performs a particular task simultaneously, and
asynchronously, with other threads.

Unique Identifier, UID: means an identifier that is unique within the scope of an object
store.

Universally Unique Identifier, UUID: means an identifier which is used to uniquely
specify reference objects within the inventive metadata filing system, as well as provide a one-
to-one mapping between external data (for example, files in the file system) and reference
objects.

Value: means a Boolean, float, integer, date, time, text string, image, or other measure
or metric of a property of an object.

Working Set: means the set of sources of information, either created internally or
imported from or received from external originators, that the inventive M FS, metadata filing
system, manages. This includes data from file systems, either local or remote on a network;

web addresses; email servers; and the like.

Summary, Including Objects and Advantages of the Invention

The invention comprises a computer data processing system, described in more detail
below, that includes a central processing unit configured with operating system and applications
software, the latter which includes a novel integrated computer control software system for the
management of informational objects including recognizing, organizing, creating and viewing
relationships between multiple objects. The overall inventive computer control system, given
the shorthand term “MFS” for metadata filing system, includes one or more novel software
applications that provide both a user-interface and underlying component architecture, including
an object-oriented database structure, or object store, and a metadata database structure, or
catalog, for the management and rendering of these objects to a display viewable by a user in
response to user input, regardless of the source or nature of the object.

The inventive MFS computer data processing system for automatic organization,
indexing and viewing of information objects from multiple sources is characterized by: at least
one central processing unit configured with client operating system and applications software;

(and/or in the case of Internet operations the MFS system is configured with server software to
6

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

host a site on the Internet including the serving of both static, generally informational Web
pages, and dynamic Web pages, of information to individuals including information that may be
generated on the fly in response to individual requests, routers and interfaces including at least
one client and/or network interface to at least one network data communication device for
exchange of data among computers, routers and input devices); and peripheral input and output
devices linked to said client/server central processing unit in an architecture so as to provide
client and/or site operation and functionality; said central processor unit includes at least one
memory coupled to a bus; said memory including selected program structures stored therein,
including an operating system program structure, at least one client and/or server system
management program structure, at least one hierarchical data storage management system
program structure, and selected application program code structures including the novel MFS
code structure described herein; said central processing unit reading data input so as to
implement system functionality selected from operational, computational, archival, sorting,
screening, classification, formatting, rendering, printing and communication functions and
processes; and data record structures selectably configurable in object, metadata, relational or
hierarchical databases and which data records are selectably associatable, correlatable and
callable; said central processing unit reading from user, network or Internet server input devices
data relating to objects received by, created by or selected by individual users, and processing
such data in said central processing unit so as to generate and manage informational objects by
special metadata linking to reference objects created, received or selected and/or input by users,
and so as to provide information management tools that facilitate communication to generate,
transmit and receive, archive, search, order, retrieve and render objects, including information
organization personalized for each individual user based on preferences selected by the user.

The inventive MFS computer data processing system apparatus for automatic
organization, indexing and viewing of information objects from multiple sources includes a
computer-readable memory structured to store object information in an object oriented database
and metadata in a catalog database, a computer display connected to said memory means for
displaying said objects, a computer-operator (user) interface device for inputting information to
specify objects or properties of objects, sources of external objects for management by the
inventive MFS system, a computer processor c onnected to said memory for transferring said
specifying information to storage in said memory, link metadata in a second catalog database in
said memory linking said specifying information to said objects to provide rendering thereof on
a display for viewing by the computer system users.

The computer(s) of the invention can be configured in a system architecture, for

7

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

example, as one or more client or server computer(s), database computer(s), routers, interfaces
and peripheral input and output devices, that together implement the system and network(s) to
which a client computer system may be connected. A computer used in the inventive system
typically includes at least one processor and memory coupled to a bus. The bus may be any one
or more of any suitable bus structures, including a memory bus or memory controller, peripheral
bus, and a processor or local bus using any of a variety of bus architectures and protocols. The
memory typically includes volatile memory (e.g., RAM) and fixed and/or removable non-
volatile memory (e.g., ROM, Flash, hard disk including in RAID arrays, floppy disc, mini-drive,
Zip, Memory stick, PCMCIA card, tape, optical (CD-ROM, etc.), DVD, magneto-optical, and
the like), to provide for storage of information, including computer-readable instructions, data
structures, program modules, operating systems, and other data used by the computer(s). A
network interface is coupled to the bus to provide an interface to the data communication
network (LAN, WAN, and/or Internet) for exchange of data among the various local network
users, site computers, routers, and other computing devices. The system also includes at least
one peripheral interface coupled to the bus to provide communication with individual peripheral
devices, such as keyboards, keypads, touch pads, mouse devices, trackballs, scanners, printers,
speakers, microphones, memory media readers, writing tablets, cameras, modems, network
cards, RF, fiber-optic and IR transceivers, and the like,

A variety of program modules can be stored in the memory, including OS, server system
programs, HSM (Hierarchical Storage Management) system programs, application programs
including the MFS control system program(s), other programs modules and data. In a net-
worked environment, the program modules may be distributed among several computing
devices coupled to the network, and used as needed. When a program is executed, the program
is at least partially loaded into the computer memory, and contains instructions for
implementing the operational, computational, archival, sorting, screening, classification, for-
matting, rendering, printing and communication functions and processes described herein for the
inventive MFS operation of automatic organization, indexing and viewing of information
objects from multiple sources.

The inventive information object management system manages these objects, in the
applications control program CPU-configured aspect, by scanning the created, selected or
incoming objects’ source data, whether files on disk or data provided by remote servers. When
individual objects are recognized as contained in the source data, reference objects within the
MFS system are created and tagged with UUIDs to provide a one-to-one mapping between
external data and MFS reference objects. Specific knowledge of the data formats is used to

8

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

extract any relevant information from the objects (e.g. ID3 tags for artist, genre, and so on for
music files) to be used as metadata. This metadata is attached to the reference objects, which
are stored in the catalog for fast access. As reference objects are created or are updated by MFS,
they are collected into system and user-defined collections, which provide a logical grouping of
objects based on one or more of three criteria: 1) user-defined categorization; 2) user or system-
defined metadata query specification(s); and 3) user or system-defined key phrase matching.

The inventive MFS-configured CPU(s) streamline information management by pro-
viding a view of information objects of all domain natures (varieties) from different sources,
with a simple, direct, shared and unified storage and linkage system that comprises the salient
functionality of storage of only one object, the MFS reference object, and linking it to one ot
more collection groups by special user-created or selected MFS link metadata, including a
UUID, which is in turn stored in a special MFS catalog database. The link metadata, including
the UID and UUID, are aliased to the various MFS collections selected, set or created by the
user in order to create the retrieval links from the various relevant collections to the reference
object. The inventive MFS-configured system automatically updates stored reference objects’
metadata (names, sizes, and the like) and links (collection and container membership),
classifying incoming and changed objects by their content data and metadata, thereby
automatically updating and creating new links to the growing number of objects in the various
collections.

The inventive MFS-configured system provides an organizational structure and
methodology for information management, including archival storage, retrieval, indexing, cross-
referencing, logically grouping, and display of informational objects of all kinds. Objects may
be created within MFS directly by the user, or within MFS through software components that
create representations of information not stored directly within MFS, such as files and folders on
a storage medium.

From the perspective of process, or method of operation of the MFS-configured
computer system the CPU is caused to process as follows (by reference to an “external object”
is meant an object outside MES, although it can be one created by the client computer system or
could be an incoming foreign object, that is, one sent from a distant server). When an external
object is to be managed by MFS (whether incoming or locally created), MFS creates an internal
representation of the object and stores the representation in the MFS object oriented database
(OODB), called the object store, which assigns an internal unique identifier (UID), upon which
it is termed the “reference object” (RO). The RO is simultaneously scanned and metadata is
created (including a desktop icon) and/or extracted, and this metadata is associated (bit strings

9

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

added to the object data) with the reference object. Only this metadata (including unique
reference information for finding the external object, called the universally-unique ID, or
UUID) is stored in the catalog database, not the entire external object itself. This process is
“mirroring”, with the reference object identified within the system by internal UID, and the
association properties metadata being the “image” (or “virtual image”) in the catalog. The
system, as metadata are created upon selection or creation of collections or containers, “reflects”
the reference object in them through tagging additional “path” and “hierarchy” link metadata to
the properties metadata that is automatically associated with the reference object and stored in
the catalog. Updates and changes to the reference objects also update the metadata in the catalog
with the changes rippling throughout all the images in all collections instantly and
simultaneously. User identification, selection, or creation of a collection writes the metadata for
the selected object; dragging and dropping an object into a collection or container also auto-
writes to the metadata, adding the relevant link. Searching the metadata, via automatic or user
selected or created queries recalls the single reference object from the OODB, and if selected,
the external object is retrieved from the external source (hard drive or other data storage),
permitting a comprehensive desktop interface.

The inventive MFS-configured computer system application programs may be written in
a wide range of computer languages, a suitable exemplary language being the C++ language.
A number of equivalent versions of the inventive MFS program(s) can be written by a person
skilled in the art of software development upon an understanding of the architecture,
methodology and functional features disclosed herein. The inventive MFS applications can be
run on a standard computer system architecture including a standard industry computer
processor, input/output devices, a bitmapped display, and at least one primary defined physical
data storage area for temporary and permanent storage of data objects.

The following summary of the features of the inventive MFS-configured computer
system(s) and how these features are functionally realized will enable one skilled in the art to
write suitable code for applications that realize the MFS functionality.

Collections: The inventive MFS-configured CPU control program simultaneously
classifies objects into multiple containers using link metadata rather than duplication, thereby
allowing users to categorize objects in ways that most clearly reflect different approaches and
ways of viewing the same information. Users can select predetermined collections provided in a
basic menu, such as Family, Friends, Work, To Do, Activities, and Vacation when running the
MFS program for the first time, and can create and set up user-defined collections as well.

Drag-And-Drop Categorization: Another feature of the inventive MFS-configured

10

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

computer system enables the user to organize all kinds of information, not merely simple files,
through a dragQand-drop windows-and-icons software functionality, making it easy to organize
objects and cross-reference them from place to place using a desktop-style interface. That is,
clicking on the icon or list reference to an object in one collection window and dragging it into
another collection window establishes a new link; the object is now accessible from both
collections. And, rather than being duplicated in an object database, only the link metadata is
placed in the catalog, with that catalog being updated for retrieval of the reference object from
either collection. This drag-and-drop linkage creation without duplication is an extremely
powerful function of the inventive application program.

Dynamic Queries: Another function of the inventive MFS-configured computer system
provides novel ways to show relationships between information objects based on shared pro-
perties by querying the MFS metadata and creating links dynamically, including but not limited
to matching key phrases in an object’s textual properties; matching dates and times, including
date and time ranges or exact matches; filtering on sizes, ordering, or type; a.ﬁd so forth.

Partitioned Storage: Another function of the inventive MFS applications program
structure provides a unique and efficient mechanism for storage of objects and their properties,
for fast and dynamic updating and retrieval, a partitioned storage organization comprising a
catalog (a metadata database) and object store (an object database for storing object data,
including B-Tree nodes, foundation and reference objects).

View By Reference: Another function of the inventive MFS program provides a novel
mechanism for presenting non-apparent or unexpected relationships between objects by
leveraging both the system’s and the user’s categorization mechanisms to show only relevant
information through filtering and cross-referencing.

Sticky Paths: Another function of the inventive MFS program provides a variety of
hierarchical views of objects and their containment relationships and/or location paths within
the user’s computer system, including but not limited to list views whereby the visible objects’
containment hierarchies are continuously made visible in a dynamically-updating portion of the
window.

People, Activities, Time Orientation: Another function of the inventive MFS-config-
ured computer system provides a basic set of organizational principles so users can intuitively
manage their information in a way that reflects the information’s relationships as they occur in
the real world, including organizations based on people, projects, activities, time, places, etc.

Consistency Maintenance: Another function of the inventive MFS-configured system
keeps all object relationships up to date automatically, so that any changes in the user’s

11

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

information space (e.g., desktop) results in timely and appropriate changes to any object views.

Automatic Hypertext Linking: Another function of the inventive MFS—conﬁguréd
system utilizes the existing organizational structures and data to automatically create links
between objects, including but not limited to hypertext inks in textual properties of objects such
as the bodies of email messages or the contents of a document.

Extensible Domains: Another function of the inventive MFS-configured system pro-
vides a plug-in mechanism for other applications to take advantage of the features of the
invention: MFS provides interfaces to permit one or more client applications to actively create
new objects for, apply properties to, store, link, and classify the client application’s information
such that it may be viewed and collected in the same way as any other objects in the system.
MFS provides the software functionality to dynamically restructure and link preexisting file

systems, files, and databases in a way that is modular, scalable, and extensible.

Brief Description of the Figures and Drawings

The invention is described in more detail by reference to the figures and drawings in
which: ,

Figure 1 is an overview of the inventive system’s major features;

Figure 2 is a depiction of the Mirrored Object System;

Figure 3 describes the Property-Based Information Access;

Figure 4 is a display depicting the MFS inventive system desktop interface;

Figure 5 is a display showing the preview viewing mode for images;

Figure 6 is a display of the list viewing mode;

Figures 7a, 7b and 7c show several displays of the small and large icon views, with
added property tags;

Figure 8 includes two displays depicting the view scaling mechanism;

Figures 9a and 9b include two displays of the image and text window views;

Figures 10a and 10b show two displays of the Information windows for image and music

files;

Figures 11a and 11b show two displays of the confent view mode, for images and email;

Figures 12a and 12b describe the sticky path mechanism for viewing hierarchies in a list
format;

Figure 13 depicts link metadata between objects and collections;

Figure 14 shows two displays of creating a collection of JPEG image files;

Figure 15 shows two displays of creating a collection of objects related to Scandinavia
by key phrase;

12

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

Figures 16a and 16b depict the hyperlinking mechanism for objects with textual
properties;

Figure 17 shows an information window displaying the multiple classification of an
image;

Figure 18 shows a contact object and its corresponding collection;

Figure 19 depicts creation of a new object, and dynamic updating of a collection
classifying same;

Figure 20 is a display depicting the Today collection, showing all objects that had
activity today;

Figure 21 is a display of Today, cross-referenced by collection;

Figure 22 is a refinement of Figure 21, Today cross-referenced by Received email,

Figure 23 is a depiction of the demain mechanism for extending MFS;

Figure 24 shows adding folders to the MFS working set,

Figures 25a and 25b show the workspace during and after folders have been added;

Figure 26 shows the workspace view;,

Figure 27 shows the standard container and content views;

Figure 28 shows a sticky path view;

Figure 29 shows creation of a collection;

Figure 30 shows manually adding objects to a collection;

Figure 31 shows a metadata query specification for a collection;

Figure 32 is a schematic describing an overview of comsistency maintenance:. how
objects are processed within the inventive system to update properties, classified into
collections, and notified of changes by other objects;

Figure 33 is a schematic describing in detail the updater process: how objects’ properties
are updated and their values stored into the metadata catalog;

Figure 34 is a schematic describing in detail the synchronizer process: how changed
metadata is written back to the object store;

Figure 35 is a schematic describing in detail the notifier: how objects are notified of
changes in metadata, and when the classifier and updater are notified of changes;

Figure 36 is a schematic describing the classifier process: how objects are processed for
classification into collections; and

Figure 37 is a schematic describing in detail the classification of a single object.

Detailed Description of The Inventions, Including the Best Mode

The following detailed description illustrates the invention by way of example, not by
13

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

way of limitation of the principles of the invention. This description will clearly enable one
skilled in the art of computer programming and software design to make and use the invention,
and describes several embodiments, adaptations, variations, alternatives, and uses of the
inventions, including what we presently believe is the best mode of carrying out the invention.

In this regard, the invention is illustrated in the several figures, and is of sufficient
complexity that the many parts, interrelationships, and sub-combinations thereof simply cannot
be fully illustrated in a single patent-type drawing. For clarity and conciseness, several of the
drawings show in schematic, or omit, parts that are not essential in that drawing to a description
of a particular feature, functionality, aspect or principle of the invention being disclosed. Thus,
the best mode embodiment of one feature may be shown in one drawing, and the best mode of
another feature will be called out in another drawing.

All publications, patents and applications cited in this specification are herein
incorporated by reference as if each individual publication, patent or application had been
expressly stated to be incorporated by reference.

The Inventive System Implementation

The operation of the inventive MFS-configured computer system is enabled, and by way
of example, embodied in one or more software program(s) that configure the CPU to provide(s)
the functionalities described above. The overview of the system architecture is shown in Figure
1 as implementing a Mirrored Object System providing Property-Based Information Access,
through a Comprehensive Desktop Interface, with Collections Providing Logical Groupings,
with a unique method of Viewing By Reference, as an Extensible Platform. Each of these
functionalities is described below, with reference to corresponding figures and discussion.

Figure 1 illustrates a computer system comprising a computer 101 with an output display
screen, an input keyboard and a memory unit, such as a hard drive, 110, and one or more
network link(s) via an e-mail server 114. MFS, 1 comprises code modules, described in detail
below, that interact as shown by the arrows, including: classifier 102, notifier 103, updater 104,
synchronizer 105, a display, layout and input/output manager 106, the catalog metadata database
107, and the object store reference object database 108. Representative domains viewable on the
desktop include a file domain 109, a music domain 111, images domain 112 an e-mail domain
113 and a personal information domain 115. The e-mail domain is linked through a network for
the communication of files, music and images to and from a network link, e.g. the Internet.

Mirrored Object System. MFS, by which is meant the inventive system disclosed herein,
comprises one or more application(s) for organizing all types of text and image information -
from word processing documents and spreadsheets; to web pages and multimedia; to illus-

14

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

trations, images, movies, and photographs; to contacts, notes, and appointments; to sounds and
music; or anything else that is stored and retrieved on a computer - using the concept of exten-
sible properties and link information stored as unified metadata (annotation and link metadata)
associated with a reference object.

Many of the different instances of information that a user may want to organize are
already stored as different types of files in the file system, or otherwise external to the user’s
client computer or the user’s MFS, such as web pages on the World Wide Web or records in an
online database. Some information is stored one-for-one: that is, a single file represents a single
piece of information (say, a text file). Other information is aggregated into a single file, or is
spread across multiple files: for example, email messages are typically stored many to a file due
to their small size, and records in a database may be stored across multiple files as well. MFS
provides the software-enabled computer system functionality so that the user can manage all of
these different sizes and types of information through portable and replicatable links to
reference objects without repetitive duplication and with automatic updating. Only one of each
reference object is stored in the object store, and the reference objects mirror one-for-one the
pieces of information found externally (external to MES as described above).

MFS may b e used ¢ oncurrently with o ther s oftware or applications that o perationally
configure the computer system to modify the external data sources; these sources do not notify
MFS of any changes, nor do the other applications that make changes in the system. MFS
provides an internal client computer mechanism for noticing external changes in data sources
such as individual files that may contain objects of interest, and for creating, deleting, or
updating the appropriate reference objects within MFS as necessary, by comparing external data
sources with the reference objects and making the appropriate additions, deletions and changes
in the reference objects and metadata. (See Figure 2).

Property-based Information Access. A property is information about an object.
Currently properties are used in conventional metadata format in a primitive form on computers:
filenames, modification dates, folders, and possibly comments. The MFS inventive system,
through the use of unified metadata (locally-stored, having been extracted from the original
object, as well as links and annotations created by MFS) makes possible the attachment of
system-defined as well as user-selected or created extensible properties about the content data
of, or in, the object for different types of objects, thereby organizing information, regardless of
the nature of the object, based on the unified metadata values stored in the catalog by the MFS
inventive system.

MFS maintains for each kind of object the conventional, ordinary types of properties that

15

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

common operating systems support—name and modification date, and the folder in which the
file is stored—as well as links and annotations in the form of corresponding metadata defined by
the MFS itself. In addition, for images, MFS stores and maintains up to date in the catalog
metadata representing the imaget dimensions in pixels and the pixel size, as well as resolution,
size, and quality. For music files, MFS stores as metadata the album, artist, song title, genre and
length of song in the catalog. For contacts, the metadata information stored is the typical contact
record: first and last name, phone numbers, and so on in the catalog. For Adobe documents,
special Adobe-specific properties called XMP (Extended Metadata Protocol) is read from each
document and stored in the metadata database catalog as well. These properties may be
available by examining the images, music files, Adobe files, and so on, but are not available in a
way that makes it easy to organize these pieces of information due to the data being embedded
in the files in proprietary and changeable formats. MEFS extracts the selected properties and
stores them in the catalog in the form of metadata, where they may be viewed, modified, and
used for classification into collections. These are only a few of the different types of objects
managed by MES, and the types of objects managed is unlimited by the system architecture.

Because of the use of a special metadata data storage structure in the MFES, the catalog, it
is very easy and fast to find the information needed. Objects may be quickly retrieved by any
expression denoting desired property values stored in the MFS metadata. Since MFS provides a
separate location to store this metadata and relationships, MFS may be used with any operating
system regardless of the metadata supported by the operating system directly. (See Figure 3)

Comprehensive Desktop Interface. MFS presents information in a familiar desktop-
style interface, with windows that show objects as icons or list views, among others. Window
and icon sizes and locations are maintained persistently, to preserve the user’s spatial
arrangements. Figure 4 shows a list of folders (401), an icon view of Photoshop files (402), a
list of user-defined collections and the counts of objects within (403), a list of domains (404), a
partially-hidden text view (405), a contact record (406), a note (407), and an appointment (408).

MFS goes much farther than other desktop interfaces, however, in providing new and
Innovative viewing mechanisms that leverage the ability of MFS to store and retrieve arbitrary
metadata.

For example, preview images are created and stored by MFS as annotations, and can be
very quickly displayed in a slide view. Figure 5 shows a typical MFS window with the object
name (501), a type identifier showing that it is a collection (502), a count of the objects
displayed (503), a get info button (504), and a content region in which the objects are shown
(505).

16

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

In a list view, Figure 6, appropriate properties are shown for the types of objects being
viewed; no longer is the user limited to viewing only the basic name-size-and-date list view.
For example, music properties are shown when appropriate, since they are stored as metadata in
the catalog and can be quickly retrieved. Figure 6 shows the Music collection (601), with
columns for filename (602), song title (603), artist (604), and genre (605). List views may be
sorted ascending or descending; the control (606) determines this, while clicking on the column
headers determine the property on which to sort.

In the icon views of Figures 7a, 7b and 7¢, arbitrary layouts of icons and their related
properties are possible; this can be done programmatically, or laid out by user preference. The
standard view adornments (701 through 704) are available, and the content may be viewed
either as large icon (705), large icon with additional properties available (706), or small icon
(707).

As shown in Figure 8, all views may be scaled within the window, regardless of view
type (icon or list). Window (801) is scaled at 100%, while window (802) is scaled at 150%.
Views may also be sorted by a variety of properties that are shared by most objects: by name, by
date, by size, by count (for folders and other containers); and by kind. This is also extensible by
MES to new property types.

As illustrated in Figures 9a and 9b, objects may also be viewed directly in their own
windows. Images and text files in particular are easily examined within MEFS, allowing the user
direct access to the data. The image window has the typical adornments (901-904; note that 903
displays the image size and percentage zoom) and the content region (905) displays the image
itself. Resizing the window also resizes the image to fit the window. A text window has the
standard adornments (906-909; note that 908 displays the text file size) and the content region
(910) displays thé file’s text.

Because each object type may have different MFS-usable metadata that can be extracted
or synthesized from the original content data, the information windew changes depending on
the type o fobject being viewed. For example, Figures 10a and 10b show that image files
present their metadata properties (resolution, dimensions, and so on) differently than music files
(artist, song title, genre). An image file information window displays the file name (1001), tabs
for file and photo data (1002 and 1003), and image-file-specific information such as width,
height, resolution, and depth (1004). All information windows have a tab to show comments
(1005) as well as a view of containers in which the object resides (1006), and relevant contacts
and projects. A Music file information window displays the filename (1007), common file
information (1008), and custom properties for music files including title, artist, album, and

17

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

genre (1009).

Sometimes it is convenient to view objects in a single window without opening new
windows for each. MFS provides this through the content view, illustrated in Figures 11a and
11b. For example, when viewing images, the content view is divided into a view of the objects
in the c ontainer (1101) and the content o fthe selected object (1102). O fcourse, thisisnot
limited to showing individual objects. Folder contents, contacts, email, and so on may also be
viewed in this way. A list of email messages (1103) may be examined one at a time by
selecting them; the contents are shown in the right hand pane (1104).

Finally, MES provides a unique list view feature. List views can have arbitrary columns
for property values, depending on the type of objects being displayed; these can be determined
programmatically or by user preference. As is common in list-type views of data, objects in the
view that are containers for other objects may be expanded, showing their contents in-line with
the other objects in the list, and generally indented to indicate depth in the hierarchy.

One of the problems with a list view is that it is easy to lose one’s place when scrolling
through a hierarchical list of containers. When the user is looking at an item in the list, how
does the user know what that item’s container is if it has scrolled off the top? The hierarchical
path is easily forgotten. The unique sticky path view functionality of MFS, shown in Figures
12a and 12b, displays hierarchies in list format, while also maintaining a current-path view at
the top of the window (1201) that keeps the user oriented as to location in the hierarchy (on the
path) as scrolling occurs. In this way the user always knows what the path is to the items and
where the items (or, conversely, the user) are in the hierarchy. As the user scrolls through the
list, MFS maintains a Sticky Path Pane at the top of the window that always displays the path to
the topmost item in the list (1202, 1204, 1206), updating dynamically. When the path changes
(branches) due to scrolling, the sticky path redraws to correctly identify the new current path.
Only the bottom part of the window (1203, 1205, 1207) scrolls while the path is updated as
required. Each branch successively “sticks” in a multi-line window at the top of the scroll
window.

Collections Providing Logical Groupings. The MFS system tags objects of various
kinds with the special attributes, links, and general descriptive metadata described above. Users
may leverage this MFS metadata information to logically group related objects through special
containers called collections. Collections permit selection of objects and contain objects that are
logically-grouped by 1) user-defined categorization; 2) user or system-defined metadata query;
and 3) user or system-defined key phrase matching.

User-defined categorization is enabled by a user directly specifying that a given object

- 18

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

belongs to a given collection; this is generally achieved through dragging the object to the
collection’s icon in a window, though there are additional ways to provide user-defined
categorization. This updates specific link metadata in both the object and the collection to
indicate the relationship between the objects. (Figure 13)

User-defined metadata queries, as shown in Figure 14, provide automatic grouping of
objects that share certain property values. These are Boolean metadata expressions used by
MEFS to define which objects should belong to the collection (in addition to those that were
categorized by the user). For example, a collection of all JPEG files may be created by the user
selecting (via a MFS-provided popup menus, and/or a type-in query line) all objects in the
system that have names that end in .jpg or .jpeg, or have a file type of JPEG. The objects are
immediately retrieved and displayed in the collection window. The collection’s metadata query
is specified in an information window, which consists of the collection name (1401) and a pane
of terms (1402) which must be satisfied for objects to be collected. When the information
window is closed, the collection window is shown with the c ollected o bjects (1403). T ime-
based collections, such as “Today”, d ynamically modify their m etadata q ueries to reflect the
meaning of the collection. For example, Today will update the metadata query each day to
correctly specify only those objects whose modification date is during the current day. Time-
based collections are particularly applicable to viewing by reference.

User- or system-defined Key Phrase Matching shown in Figure 15 provides for auto-
matic grouping of objects whose textual contents contain certain key phrases. For example, to
group all emails, text files, etc. that mention cities and countries in Scandinavia, a collection
may be created for that purpose with a query based on key words or phrases that are related to
Scandinavia, and MFS will collect them together. As before, the collection’s Information
window specifies the collection definition; its name (1501) and a list of key phrases (1502), at
least one of which must exist in an object for it to be collected. The result collection is
displayed in a standard MFS icon window (1503).

As shown in Figs. 16a and 16b, because collections can group objects based on key
phrases as well as by metadata properties, examining the objects can provide automatic cross-
indexing and hypertext linking based on the collections defined. Text windows (1601) are ann-
otated by underlining and coloring hypertext-linked phrases (1602). Clicking on a link will
provide a popup of the collections that specify that key phrase (1603); choosing one will open
that collection. If more than one collection specifies the same key phrases, all appropriate col-
lections will be listed.

An important aspect of the inventive MFS-enabled computer system control program is

19

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

shown in Figure 17. Since it simply modifies the metadata links to indicate collection and con-
tainer membership, and does not move or copy the original objects at all, objects may be
classified into several different collections at once. For example, this image is in the Images
collection; it is taken from the air and so was categorized in the Flying collection; it is a JPEG
file so it is in the JPEG collection; it’s a photo of children, so it is in the Kids collection; it was
taken during a trip to Mono L ake, so it is in the Mono L ake (Blake) folder; and finally, the
children in the photo are in the Ward family. All the containers that contain the object are listed
(1701) and can be opened directly. In this way the user is spared from having to decide what
single folder the file or object should be stored; collections can have MFS metadata links to
many objects, and object links may be stored in many different collections. For example, an
automobile repair bill can be filed in Auto, Repairs, and Bills simultaneously.

By way of further enabling example, a typical logical grouping involves People, Places
and Activities. As part of the Personal Information Management Domain, MFS provides the
ability to create named collections for places, as well as contacts and projects, around which
objects may be grouped. A collection is defined for each contact, and for every project
currently being worked on.

As shown in Fig. 18, MFS automatically c reates such collections and organizes your
email and files by examining them for the contact or project name. Automatic collections may
be extended as d esired; for example, if c ontacts h ave nicknames it would b e appropriate for
their collections to search for their nicknames as well. In a Contact window (1801) a Collection
button (1802) opens the Collection that is automatically linked (1803). Note how the Bruce
Homn collection has collected together all emails that reference “Bruce Horn” as well as all of
the source files that were written by Bruce Horn in the development of MFS.

While metadata-query specification and key phrase matching can be viewed as database
queries, collections are also dynamic: when new objects appear, or objects are edited by the user
that then satisfy the metadata query, the collections are updated immediately. The collections
need not be visible for this to occur, as MFS operates in the background. All collections are
kept up to date at all times.

For example, as shown in Fig. 19, creating a new note regarding a trip to Norway this
summer is automatically added to the Scandinavia collection. The original collection (1901)
does not include the note (1902) until it is created and the word Norway is noted by MFS; then
it is added (1903) and hyper-linked automatically (1904).

One easy way to leverage MFS’s metadata capability is to write meaningful descriptions
in the comment field for files that can be searched by collections. While some operating

20

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

systems, such as Mac OS9, provide direct support for storage of comments, MFS supports
comments for all objects whether or not the operating system does. All metadata created for
objects within MFS 1is available, whether or not the host operating system provides such a
feature.

Viewing by Reference. Because a collection specifies what objects should appear in the
collection, objects may be in many different collections simultaneously if they satisfy each of
the collections’ specifications. This is a great benefit in that it allows the user to view data in a
variety of ways. For example, a car repair bill can appear in the Car collection, the Repairs
collection, and Bills simultaneously.

The more collections there are, the more different ways there are to examine and
navigate through information. Each collection is defined by the user as a meaningful way to
view objects in the user’s information s pace. The unique MFS cross-reference display, c om-
bined with a dynamic, time-based collection set, provides the user insight into the relationships
between various objects.

This display is called view by reference. For example, the user might want to view what
has happened today: what new email has been received, and what documents have been created
or modified. The Today collection shows this in Figure 20. The collection window (2001) is
the same as any other Collection with the exception that the query is automatically maintained
by MFS, changing as necessary.

As shown in Fig. 21, now, by switching to the reference view, the user sees all the
collections that contain objects that were created or modified today. This is extremely useful in
that it filters for only those collections that are relevant to Today, with no refinement (2101).
Instead of showing all of the collections for all of the people that may have sent email in the
past, the reference view shows only the collections that have had activity today. For exarﬁple,
by clicking on the Received collection (2102), the view shows the all received email (2103).

Further, as shown in Figure 22, if the user is only interested in the Received email
today, the reference view can be further refined by double-clicking on the Received collection in
the left pane. This moves the Received collection to the shelf above (2201), and now only those
collections relevant to Received email Today are visible. Clicking on each collection in turn
shows the collection’s objects that fit the specification. Selecting the Financial collection (2202)
shows all the email received today that is related to financial news (2203).

Because MFS remembers settings and views, the user can set up collections and
preferred ways of viewing them and keep them available at all times, constantly updated. A
user may prefer to always view email through the Received collection, filtered by Today; if the

21

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

user ever chooses to view previous days’ email she can always view by other time collections
such as Last Week, Last Month, or all received email.

Extensible Platform. Although many of the types of objects that people use in their daily
work with computers are already provided by MFS, there are many scenarios where third-
parties might want to leverage the power of MFS’s desktop metaphor, single reference object
storage, metadata linking functionality, and collection capabilities.

MFS provides an extension mechanism by which new object types, new views, and new
capabilities are easily added to MFS such that their functionality is presented as seamlessly as
built-in MFS features. Extensions of this sort are provided in MFS through Domains. While the
MFS email and personal information domains provide much of what the standard user may want
and are built in as basic application functionalities, other email and PIM domains can be
developed that function within MFS following the principles of the invention disclosed herein.

Examples of other significant domains that may be developed include, but are not lim-
ited to: a music jukebox, a domain that allows the user to organize his/her music in the same
way as every other piece of information in MFS; an extended Image cataloger domain;
WebDAV support domain; personal finance domain; and many more. These can be easily
supported and implemented within the MFS architecture as disclosed herein. (Figure 23)

Description Summary. The extensible architecture of the inventive system enables
disparate applications to share and merge information: email, contacts, notes, and so on are
stored in the same data space, and can refer and cross-index each other as needed. Separate
email databases, personal information management systems, and file browsers cannot perform
this task. All-in-one solutions, such as Microsoft Outlook, or application suites such as
Microsoft Office, are limited to the functionality provided by the original developer, and cannot
be extended by third parties. The inventive MFS-enabled computer system’s catalog mechan-
ism provides unlimited support for new types of objects and new metadata, regardless of the
underlying file system or operating system’s features or lack thereof.

Being able to organize all of these disparate types of information using the same
mechanism provides unique benefits. For example, a user can maintain a collection of all
correspondence to and from a given person or related to a particular project easily, whether the
correspondence was via email, documents, voice mail, fax, or image files. Similarly, a user may
organize his information on a project-by-project basis; because a given item may appear in
many different collections simultaneously, a person may work on several projects and their
contact information will therefore appear in all of the relevant projects.

The system architecture and methodology in providing dynamic collection functionality

22

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

(such as time-based collections: Today, Yesterday, Last Year, and so on), combined with real-
time updating and referencing (Viewing by Reference), provides a unique and valuable
mechanism for examining a user’s changing information environment.

Finally, the benefits and advantages of the inventive data organization and archival
system includes real-time updating of collections, which allows the software to notify the user in
a variety of ways as objects enter and 1eave collections. For e xample, the user may want to
attach a notification to a given person’s collection, so that when the user receives email from
that person a particular musical piece is played, or a voice speaks a phrase.

By way of further description of the inventive system, the following is a specific
example of the use of an application program, having the functionalities outlined above which
one skilled in the art will recognize is enabled in the following description, including where
pertinent, pseudocode outlines.

Exemplary Methods of Use of the Inventive MFS-Enabled System

The following is a step-by-step description of a typical use of the inventive system,
embodied in a computer program running on a client (user) computer with a standard operating
system and file system to store documents and other data. The use described below is of
organizing and retrieving images created with a digital camera and stored on the computer in

individual image files.

Adding Sources to the Working Set

In order to inform MFS of sources of information to track, the user must give MFS the
appropriate directions and specifications so that MFS may find and cross-index the information.
In the case ofan email source, the user creates a mailbox within MFS and lists the i nternet
addresses o fthe servers needed (e.g. POP/SMTP or IMAP servers). Inthe case oftracking
information stored in files and directories in a file sy stem, the user clicks on a folderinthe
computer’s desktop application (the Finder in the Macintosh OS, or Explorer in Microsoft
Windows) and drags it to the workspace window to add it to MFS’s working set. Other sources
will require different mechanisms.

The following describes use of MFS to manage and organize files in a file system; in
particular, image files. For example, assume that, over a period of time, a particular computer
user has taken thousands of digital images with his/her digital camera, in various places,
including images of various friends and family. Assume further that he/she has already grouped
these images in folders with descriptive names such as “Crest Hike 6/01” and “Cycle Oregon
9/02”. These images may, in general, have embedded information in the form of metadata

properties, such as image size, bit depth, date on which the photo was taken, etc.
23

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

The user starts the MFS program, and, b}} dragging the desired folders of images to the
MEFS workspace, begins the organization process. (Figure 24)

MES brings up a window showing the progress of the importing process, while MFS
scans each file and folder, recursively, in the working set (Figure 25a). At the end of this

process, the window is removed, and the folders appear in the Workspace. (Figure 25b)

Viewing User Data

The user may now navigate this folder using the standard and traditional methods of disk
navigation in graphical user interfaces: double-clicking to open the folder into a new window;
clicking on the disclosure triangle to show the folder’s contents in the same view; and so on.
The windows display the images in a variety of ways, including well-known icon and list views
showing icons representing either the type of the file (such as a Photoshop JPEG file) or a
miniature “slide” view (thumbnail) of the image itself. Displayed with the icon, typically, are
properties of the object such as the object’s physical size, its image dimensions, the last
modified date, and so on. MFS provides additional features for viewing the images; viewing the
image properties (width, height, bit depth, and so on), and basic editing features (rotation, for
example).

MES also provides a Workspace view (Figure 26) in which the following information is
visible in four separate panes:

1) the original folders from which the images were examined (the working set); (2601)

2) alist of all collections defined by MFS and the user; (2602)

3) acontent pane, which dynamically displays the contents of whatever item is selected
in the first two views (2603). In the case of a folder or collection, the contents of the
folder or collection is shown in an icon or list view; in the case of an individual item,
the item itself is shown in detail (such as the full image, or contact information)

4) and a metadata pane, which describes the currently-selected item’s metadata,
including the set of containers to which the item belongs. (2604)

The user may double-click on any of the folders in the top-left pane, collections in the

bottom-left pane, or any item in the metadata collection set to open them in a new window.

Two other views are available (Figure 27): a standard window, which displays the
content of a folder, collection or item (2701); and a content window (2702), which displays a
list of the objects within a folder or collection on the left and the details of the selected object on
the right.

Double-clicking on any item opens a window on that item, at which point the user may

choose how to view the item’s contents. Other data, t ypically considered to be the object’s
24

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

metadata properties (e.g. name, modification date, and so on) may be displayed by selecting the
item and choosing the Get Info command, which will bring up a custom information window for
each type of object that displays that object’s particular properties. For example, a music file
would be able to show the music genre, album name, and so on, while an image file would show
image width and height, along with other image-specific metadata,

Folders and collections may be viewed in a list format with the sticky path view,
described above. This provides dynamic path information to the items you are viewing as you
scroll through a hierarchical (folders within folders) list. (Figure 28)

Creating a Collection

By selecting the New Collection command, the user creates a new collection for
organizing the images. (Figure 29) Two windows are then opened: the first showing the
contents of the untitled empty collection, and the second, above, showing the information about
the collection including the collection’s title (2901). The user then types in a name for the
collection—for example, “Western Travel”—and closes the window. The main collection
window remains (2902), and an icon for the collection is created in the Workspace collection

pane (2903).

Manually Cai‘egorizing Objects into Collections

The user may now view images from any of the source folders, and by dragging their
icon representations to either the collection window or the icon representation in the Workspace,
add those images to the collection. This does not move the images, nor modify them in any
way; it simply updates the links in the catalog indicating that they belong to the collection.
Items from any source may be dragged in this way to any collection, and items may belong to
more than one collection at a time. (Figure 30)

The user may also quickly create a collection o fimages by selecting t he images and
choosing the Collect command; this gathers together the images into a collection, which then
may be renamed by the user.

Items may be re-categorized into different collections by dragging them to the new
collections directly. Also, items may be removed from a collection by choosing the Remove
command, which removes the items from the collection but does not otherwise delete the item

from the source (e.g. the file system) or any other collections.

Creating a Collection with a Metadata Specification Query
Once the user has told MFS which information on the disk should be tracked,

independent collections based on the metadata of images, say the width or height properties,

25

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

may be made of the items imported as well. These collections are the same collections as
described before, with the additional specification of a metadata query.

For example, say that the user would like to collect all images that have a width of 1600
pixels and a height of 1200 pixels. The user would then do the following:

Choose New Collection from the File menu. A window opens, showing the contents of
the untitled empty collection, and a Get-Info sub-window opens above that with information
about the collection.

The user selects the “untitled” text and changes it to “1600x1200 Images”. Then the user
clicks on the Query tab. An empty query appears. The user clicks on the popup menu and
chooses Image.

The user clicks on the (+) button, creating a term in the query. The user clicks on the
first popup, choosing the “Width” property. The user clicks on the second popup, choosing the
“Equals” property. The user types 1600 into the text field.

Then, then user clicks on the (+) button again, creating a second term, and clicks on the
OR popup menu. The user then p erforms similar o perations to choose “Height E quals”, and
types 1200 into the text box.

Finally, the user closes the Get Info subwindow, and the appropriate images appear in

the collection window. (Figure 31)

Creating a Collection with a Key Phrase List

Another variant of the collection is one that collects items that include in their textual
properties specific key phrases. For example, a Scandinavia collection may be quickly created
by specifying a collection that includes the key phrases “Oslo”, “Norway”, “Bergen”,
“Copenhagen”, “the little mermaid,” and so on. I tems with textual properties, such as a file
comment or the contents of a text file that include any of these will be gathered into the

collection.

Synchronizing with Changes

From time to time, the user may want to ensure that the data he/she is viewing from
within MFS is consistent with the data from the outside sources, such as the file system. The
user may then choose the Update command to tell MFS that it should synchronize its mirrored
data structures with those elsewhere (such as the file system, the email servers, and so on). MFS
will then update all information stored in the catalog and object store as required; the user will
simply see the changes in the items (e.g. new items in a folder window; changed names; etc.) as

they are discovered.

26

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

Overview of Specific Functional Modules Enabling the Inventive System

An exemplary MFS-enabled computer system to implement the inventive information man-

agement features comprises the following elements from which one skilled in the art will be

enabled to make and use MFS:

a computer system as described above including a CPU, one or more input peripheral a
display device and an operating system;

an object store data structure in which data is stored persistently on a device such as a
disk drive;

a set of foundation objects that define items, containers, and collections, and which may
be refined for particular uses;

a catalog data structure in which foundation objects and their properties are maintained,
using the object store for reading and writing low-level data;

a set of consistency maintenance threads that manage information flow through the
system, comprising at least one of each of: an wpdater, which is responsible for
maintaining correct metadata for objects; a motifier, which manages dependency
relationships between objects; a classifier, which assigns objects to containers and
collections based on their property values; and a synchronizer, which is responsible for
writing changed metadata back to the object store.

a display and layout system, consisting of window management routines; scenes for
displaying groups of objects; figures for each object’s display; forms for defining figure
layout of properties; and a set of views for displaying various types of content data; and

a set of domains, which define objects and behaviors for different information-
management tasks such as p ersonal information management (contacts, appointments,
and so on); file management (files, folders, documents, and so on); and also define
scanners and matchers, which are responsible for scanning external data sources,
creating and updating reference objects for each of the external objects that will be

managed within MFS.

Figure 32 describes in overview the communications between these modules. The object

store (3201) sets and gets values, communicating with the synchronizer (3202). The catalog

(3203) reads and writes values through the synchronizer to the catalog’s property B-Trees when

values change. The updater (3204) determines what the values of properties should be for

various objects, and is notified by the notifier (3205) when the synchronizer (3202) writes

changes to the object store (3201). The classifier (3206) determines what collections objects

27

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

should be in, and runs when the notifier (3205) tells it of changes. It then writes new values for
object’s c ontainer list ¢ ausing the c atalog (3203) to write b ack the ¢ ontainer list through the

synchronizer (3202) and finally to the object store (3201).

The Object Store

The fundamental storage mechanism for MFS architecture is an object-oriented data-
base, or the object store, that provides permanent and temporary storage facilities for low-level
objects. This object store is capable of saving and restoring the complete state of any object,

thus providing a persistent repository of the user’s information.

Implementation. Object classes are registered with the object store at program
initialization time, in order to inform the object store of the classes of objects that may be
created by reading from the store. When an object is requested, the object store looks up the
class of the object, which is noted in the data header of the object in the store, and requests that
the object be created by the class.

A class whose instances can be stored in the object store provide six basic operations:
Initialize, StreamlIn, StreamOQOut, StreamLength, Reference, and Finalize.

Initialize is called by the object store after the object is read into memory to allow it to
perform any one-time setup that is required.

StreamlIn, StreamOut, StreamLength are functions that are called to ask the object to
create a flattened representation o f the object’s information. T his may include r eferences to
other objects, values, or raw data. These operations are called by the object store when creating
an object to initialize the object’s state from a stream of data read from the store, or to transform
the object into a flat stream of data for writing out to the store. In this way each object class
specifies the particular information that must be written in order that the object may be
completely recreated at a future time.

Reference is called by the object store to traverse an object’s reference tree. If a given
object has references to any other objects, Reference must be defined to provide access to these
references. This is used to attach recursively all objects that are referenced by a given object
when the main object is attached to the object store. Similarly, when an object is detached the
object store detaches all objects referenced by it that are referenced by that object. This
operation allows the object store to determine where references to other objects occur within a
given object, to allow objects within the store to contain other objects as parts.

Finalize is called just before the object is written out to the object store. It allows the

object to perform any final cleanup before the object ceases to exist in memory.

28

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

Objects are attached to the object store to allow them to be stored persistently within the
object store, and are detached from the object store when they are no longer persistent. Objects
have a UID that is unique in the object store that never changes during the life of the program.
Objects may be referenced and loaded from the object store by using this UID. The object store
automatically calls the correct constructor for creating an object given an object’s UID by
looking up the object’s class, which also resides in the object store.

All storable objects maintain a reference count for memory management. Objects that
are attached to the object store may be written to the object store and removed from memory
when their reference counts reach one (e.g. are only referenced by the object store). Objects
that are not attached to the object store are reclaimed when their reference counts reach zero.
Circular references are not detected nor managed in any way. A special smart pointer structure
keeps track of when objects are being used in the program, and increments and decrements the
reference count as needed. This structure maintains a pointer to the object and a reference count
when the object is in memory, and a UID and pointer to the current object store when the object

has not yet been loaded.

Foundation Objects

An MFS Object is something that can be organized, sorted, searched for, and otherwise
manipulated by the user in MFS. MFS Objects represent entities that encapsulate a given kind
of information: email messages, mailboxes, image files, text documents, and so on. Objects
have intrinsic data and type (e.g. an object may be an email message) and also have attached
property values.

Reference Objects. Reference objects are mapped from the external world by the
creation of an identifier, the UUID that uniquely specifies a given external object. Each object
type is responsible for the creation of the UID. By way of example, a file may create a UUID
by using the file system’s file ID or inode, combined with the volume’s creation date. This
allows a fast and reliable mapping between an external entity and one stored within MFS; this is
needed, for example, when a file has changed on disk and MFS needs to find the internal

representation to update the object’s properties.

Containers. Containers group objects together. There are many different kinds of
containers: disk volume, folder, and collection, by way of example. Each kind of container has
different properties: a folder groups objects together physically, and a collection groups objects
together logically, based on the user’s specification.

Each object maintains a set of the containers in which it appears as a property of the

29

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

object, called pContainers; similarly, all containers maintain a set of objects that appear in the
container, called pObjects. Other properties are computed from these, such as pObjectCount,
which is computed from the pObject property. These properties define some of the basic link-
metadata stored for all objects in the MFS.

Collections. Collections group objects together logically, rather than physically, as
folders in file systems do. Rather than specifying where an object is (e.g. in the folder named
“Leslie’s Finances™), collections allow the user to specify which objects should be grouped
together in a variety of ways. Collections are containers, like folders or directories, in that they

can be open-ed to display their contents, but they differ in that they:

contain objects from a variety of locations;

e contain objects of a variety of types (e.g. not just files or folders);

e can have objects manually categorized by being added to the collection, or removed
from the collection, without moving the original objects themselves;

e can display dynamic, changing contents, updated in real time, based on a working set;

e can automatically collect objects based on a specification, similar to a database query, by
which objects are selected by Boolean combinations of property terms and operators;

e and can also automatically collect objects based on a key phrase search of the objects’
textual properties, including its contents.

By way of example, a collection may have files from both the local file system and email
messages fetched from a server; images from a digital camera may be manually classified by the
user into named collections such as “Summer Vacation” and “Kids”; different sizes of digital
images can be automatically classified as they are added to the working set into “4x6” and
“8x10” collections by specifying different width and height queries for the given collections;
and a collection for objects that have something to do with Scandinavia might have a set of key
phrases defined that include the names of Scandinavian countries, cities, and geographical areas
(See Figure 15).

Like containers, collections have the link metadata property pObjects that is a set of
reference objects that belong to the collection. Collections also have additional link-metadata
properties called pInsiders and pOQutsiders, and use additional link metadata properties in
reference objects called pInclusions and pExclusions.

Plnsiders is a property that contains the set of reference objects that always belong to
the collection, regardless of any other collection specification. Similarly, pInclusions is the set
of collections to which a given reference object belongs, again, regardless of any other action by

a collection to select the object. This permits manual inclusion (categorization) of objects by
30

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

MFS into collections that persists despite any automatic collection processes, such as collecting
objects by metadata or key phrase query. Manually categorizing an object by adding it
specifically to a given collection results in the following changes to the link-metadata:

* The object’s pInclusions and pContainers properties are modified, to insert the given

collection to each set;

* The collection’s pInsiders and pObjects properties are similarly modified, to insert the

given object into each set.

Automatic classification of objects into collections is done when the collection’s pQuery
property, which defines the Boolean metadata specification for objects belonging to the col-
lection, is set to a non-empty value by the user. Setting the pKeyPhrases property also triggers
automatic classification by key phrases. This begins the classification process:

1) First, the collection’s pObjects property is invalidated. This adds the collection to the

Updater thread, which then requests the collection to update its metadata.

2) The collection determines that its pObjects property is invalid. The collection asks

the catalog to perform the query on the contents of the catalog, returning a set of

reference objects that match the query.

3) If the pKeyPhrases property is not empty, then the catalog also returns a set of

reference objects whose textual properties (e.g. name, textual contents, etc.) contain one

or more of the key phrases.

4) The union of these two sets of objects is compared to the current set of objects that is

the value of the pObjects property. This comparison returns a set of added objects,

removed objects, and objects that persisted in the collection.

5) For each added object, the object’s pContainers property is updated by inserting the

collection, and the collection’s pObjects property is updated by inserting the object from

the set;

6) For each removed object, the object’s pContainers property is updated by removing

the collection, and the collection’s pObjects property is updated by removing the object

from the set;

7) By setting the pObjects property for the collection, and the pContainers properties for

the added and removed objects, the catalog creates notify events for each affected object;

these events are handled by the notifier, causing affected windows to redraw as required.
In this way, the link metadata is updated so that both object metadata specifies container
membership, and containers (in this case, collections) have metadata specifying the objects that
belong to them.
31

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

Collections respond to changes in the environment by adding and removing objects as
needed to satisfy their specification. This occurs in real time as objects change their properties
(e.g. their names or textual content), as new objects are created or added to the working set, or
as objects are deleted or removed from the working set. For example, if the user adds a
comment to a file object and there exists a collection that specifies a key phrase that occurs in
that object’s comment, then the object will be immediately added to the collection. This is done
by the classifier thread, described below.

For each object to be reclassified, all collection specifications are evaluated, resulting in
a new set of collections for the changed object. For key phrases, the classifier can return all
matching collections in one pass: key phrases are compiled into a graph, with terminal nodes
listing all matching collections. Novel use of the Aho-Corasick algorithm allows text to be
scanmed efficiently, returning all matching collections into which the object will be classified.
Then, the following MFS process occurs:

1) The set of collections is compared to the object’s pContainers property, resulting in

three subsets: added, removed, and persistent objects. The pInclusions set is also

inserted to the added set, and the pExclusions set inserted to the removed set, to ensure
that manual classifications are taken into account;

2) For each added container, the object adds itself to the collection in the manner

described above: updating its pContainers property by inserting the collection, and

updating the collection’s pObjects property by inserting itself;

3) For each removed container, the object removes itself from the collection in the

manner described above; updating its pContainers property by removing the collection,

and updating the collection’s pObjects property by removing itself.

4) Setting these properties causes the catalog to enqueue events on the notifier, which

then causes windows to be appropriately updated (e.g. the contents of collection

windows).

These processes will be described in more detail below.

The Catalog

An object may have an arbitrary number of property values attached to it in the form of
MEFS metadata. Property values can be textual, date, numeric, Boolean, type, or image values,
among others. The catalog manages the definition of metadata (e.g. the property names and
types), and the linking of objects to their property values.

Implementation. The catalog database structure stores an object’s properties by

providing a property object that contains a B-Tree to store the property values. The property
32

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

object is stored in the object store and maintains certain information such as the property name,
whether the property is a sortable or searchable property, the order of sorting, the property’s
data type, whether changing the property should notify other objects, the B-Tree itself, and so
on. The object store provides a function to retrieve an object by name; thus, if the property
PpModificationDate is required, the object store is called to retrieve the object by providing the
name ‘“Modification Date,” which is the property object itself. The property B-Tree data
structure is also stored in the object store, and maps the object’s UID to the property value for
that object. In this way a new property can be added at any time, simply by creating a new
property object and corresponding B-Tree in the object store. New property values for an
existing property are also easily added, by first finding the correct property object and B-Tree,
and then by inserting a value for an object’s unique ID into that B-Tree.

Values are flattened into streams of data to be stored in the B-Tree. The value can have
any length; the B-Tree node is variable length depending on the lengths of the values stored
within the node.

As object MFS metadata is written through the catalog, the catalog maintains a value
cache, mapping objects and properties to property values, as well as a change set that maps
objects to a set of properties that have been changed. The values in the value cache are
eventually written back to the property B-Trees via the synchronizer, by using the change set to
determine which values need to be written.

The catalog is also responsible for notifying other parts of the MFS system of changes in
objects via the consistency maintenance processes. When an object’s property is written, the
value is compared with the value as stored in the catalog. If the value is different, an event is

created and posted to a notification queue described later in this document.

Consistency Maintenance

MFS provides a sophisticated architecture for maintaining object property values and
information displays correct by supporting a threaded dataflow mechanism that processes
events. In particular, the catalog provides change notification, such that when objects change
their property values by setting them in the catalog, a process is started to tell all potential users
of that object of the change. For example, when an object is added to or removed from a
collection, all objects that are affected by that change are notified, in particular the collection’s
window.

Objects may depend on the property values of other objects. In the process of updating
one object, others may be notified of the change; and when a property value changes,

dependents are notified and specific dependent properties are then made invalid, to be updated
33

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

by the updater thread.

For example, the physical size of a folder depends on the physical size of all the objects
contained in that folder. Those objects may be files or other folders. The folder is thus a
dependent of all the items in the folder, and thus is notified if any of them change so that it may
recompute as required.

In this way, any changes to objects can be tracked and values propagated to dependent
objects. For example, in a personal finance application, the values of checks written must be
taken into account when balancing the checkbook; reconciling the checkbook involves

propagating values from reconciled checks to the current balance.

Implementation details. The consistency maintenance process is a composite process by
which objects are created; their properties computed and set; their collections determined
through classification; their dependents notified o f the changes; and finally, deleted when no
longer used.

There are four separate processes that communicate between one another and provide
distinct services: the updater, the synchronizer, the notifier, and the classifier. Each process
communicates with the others by means of an event queue: a queue of events describing tasks to
handle in order. Events on the event queue specify the information needed by each process to
perform the required function.

Objects maintain a set of properties in an update set that need to be refetched from the
original source (via the domain) or recomputed. When this set is changed due to the object
invalidating an individual property through the Invalidate function, the object asks the catalog
to add the object to the updater’s queue. | V

Values are stored temporarily in a value cache, keyed by property and UID. Periodically
the cache is synchronized with the value trees stored in the object store. At this time a
notification event is queued on the notifier thread.

The notifier thread’s job is to tell interested listeners which objects have been changed,
and which properties of those objects. Listeners include dependent objects (e.g. containers may
want to know that they have to invalidate their physical sizes if any of their contained objects
had changed size) and user interface elements (windows displaying object information).

The Updater. The updater is the process by which invalid object properties are computed
and new values set for future retrieval. The updater walks through the update queue and tells
each object to update its properties. This is a two-part process, involving two functions: Fetch
and Compute, as follows:

Fetch, causes the object to find the needed property values from their original sources.
34

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

These are considered concrete properties in that there is a direct one-to-one correspondence
between the property value for the object and a value stored elsewhere in the operating system.
For example, if a file object’s name is invalid, Fetch will ask the file’s domain to get the
filename from the file system directly; and

Compute, updates properties that are derived from the concrete properties. For example, a
derived property called pFullName might be the concatenation of pFirstName and pLastName
in a contact record; or, the physical size of a folder might be the sum of the sizes of the objects
within the folder.

During the Fetch and Compute methods, the object will call SetValue(property, value) on
the properties for which it has determined values. SefValue tells the catalog that the property
for this object has the given value, and the catalog will store it away.

In the process of storing the value for the object, the catalog determines whether the object
actually changed the value; if the value being set was the same as the previous value, then
nothing occurs. If the value did in fact change, the property is added to an update set
maintained for that object. More specifically, the updater performs the following procedure,
illustrated in Figure 33:

1) First, the updater retrieves an update event from the updater event queue (3301). The
update event record consists of an object specifier and a set of properties that require
updating for that object: the invalid set.
2) Next, the updater forwards thé invalid set to the object (3302), and requests that the
object Fetch the given properties (3303). It is the object’s responsibility to know how to
do this, since for each type of object this procedure may be different. Then the updater
requests the object Compute derived properties (3304) that may be based on the
properties fetched (e.g. the physical size of a folder is derived from the sum of the sizes
of each object in the folder).
3) During the Fetch and Compute procedures, the object being updated will set the
property values that were requested (3305). In setting the value for the given object and
property, the catalog stores the object and its new property and value in the
synchronizer’s data structure (typically a hash table) (3306), and then updates a change
set (3307): a set of objects and associated properties that have been changed. This
change set will be referenced by the synchronizer later in the process.

The Synchronizer. The synchronizer is the process by which objects’ updated property
values are written back to the object store. On a periodic interval, the synchronizer will perform
the following procedure, illustrated in Figure 34:

35

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

For each object in the catalog’s change set (3401), the synchronizer will walk through
the value cache (3402), where it will fetch the current (old) value (3403) and new (cached) value
(3404) compare the object’s property value with the current value in the property B-Tree (3405).
If the value is different, the new value will replace the old (3406) and the property will remain
in the value cache. If the value is the same, the property will be removed from the change set
(3407).

When the object’s values have been synchronized with the values stored in the object
store, a notifier object changed event is created and added to the notifier’s event queue (3408,
3409). This event includes the object specifier and the set of properties for which new values
were written. Note that properties whose values were the same were removed from the set, so
only properties with new values remained in the set and are in the notification.

The Notifier. The notifier is the process by which other processes, and objects, are
notified of additions, changes, and removal of objects in the system. Concurrently, the notifier
performs the following procedure, illustrated in Figure 35:

1) The next notifier event is removed from the notifier event queue (3501). There are
three different types of notifier events: an object added event, which is queued by
another thread when an object is first created in the system; an object changed event,
which is enqueued by the synchronizer when an object’s property values are changed;
and an object removed event, which is enqueued when an object is removed from the
system.

2) The notifier then broadcasts the event to all listeners by going through the subscriber

set (3502), copying the event (3503), and enqueuing the event on the subscriber’s queue

(3504). One of the typical subscribers is the classifier (3505), which receives events and

determines whether the object needs to be reclassified.

3) If the event is an object changed event (3506), then the object itself is subsequently

notified of the change (3507). This is done by computing dependent properties (3508),

invalidating them (3509), and queuing an update event (3510) to the updater (3511) so

that they are refetched and recomputed. T he e ffect o f this is that the object can then
notify its own dependents, such as figures depicting the object on the screen, or other
objects whose properties are dependent on properties of the original object.
Dependent properties allow the object to invalidate certain properties that are computed from
other properties that had changed; for ekample, a container may invalidate its physical size
property if its object set property had changed. Invalidating one or more of an object’s
properties in this way will result in the object in turn being placed on the updater’s event queue
36

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

as described, for further processing to compute the desired properties.

Other p arts o f the M FS sy stem c an subscribe to the notifier thread at any time. For
example, when an object is displaying properties in a window, the window management system
in MFS temporary subscribes to the notifier thread so that it may update the window contents
when the object changes, such as the object’s containers.

The Classifier. The classifier is the process by which objects are added to and removed
from collections based on their property values. Concurrently, the classifier performs the
following procedure, described in Figure 36:

The next classifier event is removed from the classifier’s event queue (3601). Since the
classifier is subscribed to the notifier, it receives notifier events when objects are added to the
system; when objects change their property values; and when objects are removed. In each of
these cases the classifier is responsible for determining the set of containers (folders, collections,
or other specific containers) to which the object belongs.

1) If the event is an object added event (3602), then the classifier determines the set of
containers to which the object belongs and creates an added set and an empty removed
set (3603).
2) If the event is an object changed event (3604), then the classifier performs the
following procedure (3605). First, the existing container set is retrieved. Next, the
object is classified, resulting in a set of containers to which the object should now
belong. Next, these two sets are compared, resulting in the added set, which includes
containers to which the object should be added; and the removed set, containers from
which the object should be removed.

3) If the event is an object removed event (3606), then the classifier creates an empty

added set, and sets the removed set to the object’s container set (3607).

4) Finally, the object is added to the containers in the added set (3608), and removed

from containers in the removed set (3609).

In this way, each object referenced in the classifier event queue ends up in the correct set of

containers that select for its current property values.

Classification of a Single Object

The classifier determines container membership for an object through the process
described in Figure 37:

Initially, the result set, which contains the set of containers to which the object should
belong, is set to empty (3701). T hen the classifier asks the object’s source (e.g. the File or

EMail domain) to perform an initial classification of the object (3702), resulting in a new result
37

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

set. The Files domain, by way of example, would add a file object to its enclosing folder.

Objects can be classified into collections by specifying in each collection a list of key
phrases whose occurrence in an object means that the object should be referenced in the
collection. A collection may have many key phrases, and the same key phrases may be
specified in many different collections. The MFS-configured computer system’s key phrase
classifier performs a single-pass, multiplex sorting of a given object into an unlimited number of
collections based on the pKeyPhrases properties defined in those collections and the textual
content of the object.

The classifier runs through each text property in the object (3703) and for each property
goes through each key phrase in the classifier (3704) determining whether the key phrase exists
in the property’s value text (3705). If so, it adds the entire set of collections associated with the
key phrase, since a single key phrase may be listed by multiple collections (3706).

The key phrase classifier is based on a novel use and implementation of the Aho-
Corasick string search algorithm. The classifier begins by scanning each collection when MFS
is launched, and adds each key phrase to the Aho-Corasick finite state machine. At the terminal
nodes for each key phrase is a list of collections that specify that phrase; as the collections are
scanned and each key phrase is added, the list of collections at each key phrase is kept up to date
with all collections that specify it.

All objects maintain a list of collections in which they occur. Classification is
accomplished by scanning the text body of an object using the Aho-Corasick algorithm. When
a key phrase is found within the text, the list of collections for that phrase is fetched from the
finite-state machine and united to a final (list or set) of collections in which this object should
appear. When the entire text body has been scanned, the final set is compared with the initial
set. For collections that appear in both sets, nothing is done. For collections that appear in the
initial set but not the final set, the object is removed from those collections. For collections that
appear in the final set but not in the initial set, the object is added to those collections. Finally,
the object’s collection set becomes the final set, reflecting that object’s membership in those
sets.

Next, the classifier goes through each collection (3707) and determines if the object
satisfies the query specified by the collection (3708). If so, the collection is inserted into the
result set (3709).

Finally, the result set is returned (3710) and the object is placed into the collections
listed in same.

View by Reference
38

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

A container C (folder, collection, or any other container) is viewed by reference using

the following process.

1)
2)

3)
4)

5)

An empty result set R is created.

For each object in the container C, the set of collections to which that object belongs
is added to the result set.

A new container V representing the reference view, is created.

For each collection A in the result set R, a new proxy collection P is created, where-
by the contents of the proxy collection P is simply the objects in C that are also in the
collection A; this is done through a set intersection of the collection A and the con-
tainer C. G enerally, this proxy collection is simply d efined by an MFS m etadata
query on P which states that the contents of the proxy collection are the intersection
of the contents of collection A and container C.

The final container V that is the reference view now contains a set o f proxy col-

lections, each of which holds a subset of the original objects in C.

The reference view may then be further refined by choosing a proxy collection P’s

contents (a subset of C’s) to view by reference. This is done as follows:

1y
2)

The reference view V adds P to its prefix set.

V replaces its proxy collections with new proxy collections, using the same process
as above, but with one difference: each proxy collection’s MFS metadata query now
states that the contents of the proxy collection are the intersection of the contents of

collection A, container C, and all the collections in V’s prefix set.

In this way, a view of the “Today” collection, which shows the objects modified today,

can more easily be viewed by reference, which shows that (for example) the Received email

collection was changed today, as well as the Documentation project. Clicking on the Received

proxy collection in the view reveals email objects received today; further refining by Received

will show the collections in which email was received today: typically a list of the contacts from

whom email was received.

Display and Layout

MFS provides an architecture for display and layout of objects in a variety of ways.

Individual objects are viewed in content viewers defined by each domain, which is responsible

for the individual object types. Viewing containers of objects (e.g. collections or folders in icon

or list views) is based on three classes of objects: forms, figures, and scenes. A unique type of

list view is implemented by MFS’s sticky paths mechanism.

39

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

Content Viewers. For each specific type of object, a content viewer is available for
viewing the actual object data. By way of example, contact objects are displayed in a window
showing first and last names, addresses, and so on. Email messages have their own specific
viewer, with the standard to, from, and body panes within the window. Text files or notes are
displayed in a standard text-editing window.

In the case of content viewers that provide text fields, key phrases can be highlighted
automatically when examining the object’s contents and provide a hyperlink to the defining
collection automatically. If multiple collections specify a given key phrase, the popup menu
will list all collections that do so, allowing the user to choose which collection should be
opened.

An object that has been classified into several different containers will indicate this in
the Information window, where all of the containers are listed and may be opened.

Forms. A form is a 2-dimensional layout of property values of a single object. For
example, a standard icon view includes two fields: the icon property situated and centered above
the name property. A list view form will include a left to right arrangement of the object’s icon,
name, and additional properties as required by the display. Forms are used by figures to
determine the appearance of the object in the window.

Figures. A figure is a drawable entity representing an object. Figures are linked to
forms, which define how the figure should be drawn. Figures also provide the ability to be
highlighted when clicked; to have their properties edited directly, such as the name in an icon
view; and to be dragged from one place to another within the MFS interface. Figures are
arranged within scenes, which determine where each figure should be located.

Scenes. A scene is an arrangement of figures in 2 or 2 1/2 dimensions (2 1/2 dimensions
include a representation of depth). The scene is generally responsible for determining the form
the figures within the scene should take; thus, MFS defines a small icon scene whereby the form
defines a small rectangle for the icon property and a rectangle to its right for the name property;
a large icon scene with the icon rectangle above the name rectangle; variants on the previous;
and a preview scene where the object’s preview property is drawn within a slide frame, along
with the object’s name, size and modification date; and various list views, among others.

The scene is also responsible for locating each figure within the scene based on certain
conditions. F or example, in the small icon scene the objects are sorted by a given property
(chosen by the user) and then laid out top-down, left-to-right in the window; scrolling to the
right shows additional figures. The large icon scene lays out the figures lefi-to-right, then top-
down in the window; scrolling down shows additional figures.

40

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

The user typically chooses which scene to display objects in, by selecting an item in the
View menu. Unique and specialized scenes may be defined by domains as well, if needed.
Sticky Paths

Sticky paths are a unique way of displaying hierarchies of objects within MFS. Often
hierarchies of objects are displayed in a sort of outline view, whereby objects are listed in some
order (typically alphabetical), and sub-objects that are contained in other objects may be
displayed or hidden at the user’s control. An object that contains other objects in this way may
be either expanded (displaying its sub-objects) or collapsed (hiding them). Each object has a
depth, a numeric value that describes how far down the hierarchy it exists; in particular, how
many nodes down the hierarchy tree from the root. Objects at the same depth are known as
siblings. The depth determines how far the object is indented to the right in the outline display.

When an object is collapsed, any object that contains others is indicated in some way
with a clickable region, typically a symbol such as a + sign or a triangle, that may be clicked.
Clicking on the region expands the object by displaying those objects which are contained
within below the object and indented to the right by a specific amount, due to their depth being
one greater than the depth of the parent object. Other objects that were at the same level as the
object being expanded are moved down the display by the amount needed by the expanded
object.

Objects within an expanded object may in turn be expanded, resulting in several levels
of expanded objects and multiple indentations.

The path to an object is defined as the name of the object itself, prefixed by the names of
the nested containers in which the object exists in outermost order. For example, if an object E
is contained in an object D, and in turn D is contained in C, and C is contained in B, the path to
the object E is generally described as B:C:D:E.

In a highly-hierarchical display with many objects that do not fit on a single screen, the
user must scroll the hierarchy display in order to see objects lower down on the list. In
particular, if some objects have many sub-objects which are in turn expanded to show their
respective sub-objects, it is quite easy to forget what part of the hierarchy one is looking at, i.e.,
where the user is on the path, since the enclosing objects have scrolled off the top of the display.

Sticky paths are a mechanism by which a scrollable outline of this form is displayed in two
dynamic parts: a path area and a scrollable area. Sticky paths provide the user with a constant
awareness of his location in the hierarchy by:

1) constantly displaying the current path to the topmost item in the scrollable area above

the scrollable area, and dynamically updating the path as the objects are scrolled up and
41

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

2)

down;

dynamically resizing the scrollable area to accommodate the path display.

Implementation Details. The sticky path scrolling mechanism is implemented, by way of

example, in the following pseudocode:

1)
2)
3)
4)
5)
6)

7)

8)

9

Get the old path frame from the current display.

Get a list of container objects that comprise the path to the topmost figure in the outline.
Do this by determining the object at the top of the scrolling region, and then walking up
the outline item’s parent tree until there are no more parents.

Set the path display by starting at the top of the list and drawing each parent in turn,
indented appropriate to the parent’s depth.

Get the size of the new path frame.

Determine the difference between the heights of the old and new frames.

If the difference is zero, then the size of the path hasn’t changed, and the bits can be
scrolled within the scrolling region.

If there is a difference in height, then we first adjust the size and location of the scrolling
region based on the amount of the change.

If the difference is greater than zero (e.g. the path is smaller than it had been previously),
then we don’t scroll, but we do have to refresh the topmost figures of the area that was
vacated when the path region was made smaller.

If the difference is less than zero (e.g. the path is larger than it had been previously) then
the resizing of the scrolling region is sufficient, and no scrolling is necessary since the
topmost figure in the scrolling region will have been moved up into the vacated path

area.

In this way, the current path to the topmost item is always visible.

Domains

Domains define an “area of expertise” for MFS. Typical domains include personal

information management (appointments and contacts); file management (folders, files, disks);

image file m anagement (also known as digital a sset m anagement); and email, among o thers.

Domains provide a way to extend MFS’s capabilities and functions by leveraging MFS’s

architecture in new ways.

A domain is responsible for implementing the following procedures:

Registration of new object classes and properties for same;

Creation of new objects of specific classes when needed;

42

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

o Creating and managing UUID mappings between reference objects and external data;

¢ Adding metadata properties to objects;

e Basic classification of objects by class and property values;

e Updating of object metadata in response to changes in the operating environment; and

e Performing basic operations on behalf of objects that the domain manages.

The following describes these procedures for domains defining file management, email
handling, music organization, personal information management, image management, and
organization by time.

The File Domain. This domain registers new object classes for disks, folders, and files.
The properties that are registered include file and folder names; creation date; modification date;
physical size; and permissions, among others.

The domain is also responsible for scanning folder and file objects, and resolving
changes with the objects on the disk as the disk contents change. For example, when a folder’s
modification date differs from its corresponding object in MFS, the domain compares the
folder’s contents with the contents of the folder object, and creates or deletes file and folder
objects in the folder object as required to match exactly the contents of the disk folder.
Similarly, if a file’s modification date changes, its corresponding file object is updated with the
current filename, modification date, size, and so on in order to mirror exactly the file’s property
values.

Certain file types are handled specially by this domain. In particular, application and
document files must have the appropriate i cons associated with them, and b ehaviors such as
opening a document must be defined to launch the correct application.

This domain provides window layouts for information about files and folders, and
utilizes built-in MFS windows for displaying folder contents. Window layouts for certain types
of files also are supported, including text files and clippings.

All sources provide the ability to scan external data to add information to the Working
Set, and match the external data to update MFS’s internal reference objects as the external data
changes. By way of example we describe the File domain’s implementation details of these two

processes.

Implementation Details. The File domain is notified of files to add to the Working Set
as follows. The user drags a folder to MFS’s workspace window; this causes a reference object
is created for the folder by the specific s ource handling the folder; in this case, File source,

which is responsible for all file system objects. Next, a scanner thread is created with the

43

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

reference object as a parameter. This thread performs the following functions, in order:

1) Traverse: A procedure recursively descends the folder hierarchy, creating data

entries that are stored in an array. Each entry contains a file system specifier that

represents the file; a depth in the folder hierarchy; and a flag that determines whether the
file system specifier is for a folder or a file. The array is then sorted, deepest objects in
the tree first (so that files within a folder are created before the folder is).

2) Annotate: Once this array has been populated, the entries are annotated with

metadata that can be efficiently fetched “en masse”, such as file and folder comments.

3) Create: The entries are fetched one by one from the array. For each entry, a

reference object is created with the entry’s information (e.g. the file specifier and any

metadata that was previously fetched and added to the catalog). A new array of
reference objects is created.

4) Classify: Each object in the array is then classified by examining its metadata and

determining in which collections the object belongs, based on the collections’

specifications. Every collection that is modified (e.g. that has received a new object
through the classification process) is added to yet a third array for notification.

5) Notify: Finally, each collection that participated in the classify step is notified that it

has been changed. This typically results in the collection updating dependent property

values (e.g. count of contained objects), which are then updated in a separate thread.

Then, the folder reference object is then added to the HFS source’s working set, which is
the set of all folders that MFS should manage. The Workspace window is then updated, since
the working set property determines which folders are shown in the window.

Because the file system data that the File source tracks changes over time, the File
source has the ability to match these changes and propagate them throughout the catalog and
object store. This is done as follows:

1) During the match process, MFS compares its stored information against the source’s
versions of the same information. If there is an indication of difference between a
reference object in MFS and the actual external object (by noting a changed
modification date, for example), MFS invalidates the reference object’s metadata.

2) Once the metadata has been invalidated for all objects suspected of being changed
externally, MFS puts each object on the updater queue.

3) While items exist on the updater queue, the updater does the following:

4) Takes the next item off the queue

5) Tells the object to update itself. This, in turn, causes the object to go to the source to

44

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

determine what the true values should be for each of the invalid property values.
Once the values have been retrieved from the source (by asking the file system for
file metadata such as name, modification date, etc.), the new values are set in the
catalog and the property is validated.

6) The catalog then creates notification events based on the objects and values that were
set, and enqueues them on the notifier queue

7) The notifier goes through each event, telling all of the object’s dependents (any
containers to which the object belongs as a member, as well as any other dependent
objects) that it has changed the given properties.

8) Those objects, in turn, determine whether any of their properties need invalidation.
For example, if a file’s size has changed, the containing folder’s size property needs
to be updated, since it is dependent on the sizes of all the files within the folder.

Using these two processes, scan and match, the File domain creates a Mirrored Object

System within MFS that exactly represents the file and folder hierarchy that the Domain tracks,

regardless of external changes.

The EMail Domain. This domain registers new object classes for mailboxes, which
describe servers and passwords for retrieving mail; signatures, for signing messages; and email
messages themselves. Properties for these objects include server names, addresses, and
passwords, for mailboxes; a name and text string, for signatures; and the full suite of email
properties for messages, including From, Date, Subject, and message body.

The domain is responsible for communicating with mail servers for both sending and
receiving email; creating outgoing message objects; and for creating new received message
objects as they are downloaded from the server. Attachments are handled by communication
with the File domain for creating and linking to file objects as they are downloaded to disk.
Finally, window layouts are provided for outgoing and incoming email messages; mailboxes;
and signatures. Behaviors such as sending messages, forwarding, replying, and so on are also

supported by the domain.

The Music Domain. This domain, a client of the File domain, registers a new object for
a music file, generally in the MP3 format. Properties registered include the track’s title, artist,
album, genre, and comments.

The domain is responsible for extracting the property values from the file using the ID3
tags that are embedded in the file, and for setting the properties in the catalog for the object.

The domain also creates predefined collections for titles by album, and albums by artist, based

45

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

on the music files that are handled by the system.

The domain may also provide a music player for all files in a given container; in this
way the user can play all the tracks on a given album, or tracks grouped together in an arbitrary
collection.

Finally, a window layout is provided for information about the music track, showing
album, artist, title, and so on in addition to the generic file information such as filename, file
size, and so on. |

The Personal Information Domain. This domain registers new objects for contacts, '
notes, appointments, projects, events, and tasks. Specific properties are registered for each
object: for contacts, the standard list of contact information such as first and last name, email
address, phone, and so on; for notes, the note text; for appointments, the date and time, repeat
interval, description, contacts, and so on; for projects, the project name and description; for
events, the event name, date, and so on; and for tasks, the task description, priority, and the like.

The domain is responsible for scanning and matching with system-level address book
databases, creating, d eleting, and m odifying c ontacts as required. D epending on the d omain
implementation, it may also match with other PIM databases such as Outlook and Palm in the
same way, by creating mirror objects in MES for each object in the target database.

The domain creates predefined collections for all notes, all contacts, and so forth, as well
as predefined collections for each contact that collect all objects that reference the contact’s
name.

Finally, window layouts are provided for each type of object to allow display and editing

of the object’s data.

The Image Management Domain. This domain, a client of the File domain, registers
new objects for file types that store images. Properties registered include image resolution,
width, height, depth, and the like.

The domain is responsible for extracting the attribute from the file and attributing the
MFS object appropriately, as well as for reading the file data and displaying it as an image
within an MFS window.

The d omain creates p redefined c ollections for all images o f various types (e.g. JPEG
files, GIF files, Photoshop files, etc.), as well as a single Images collection for all images.

Finally, a window layout is provided for the display of image files.

The Time Domain. This domain provides no new object classes, but creates and

maintains a set of dynamic collections that are based on relative time. For example, the domain

46

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

creates and keeps up to date a Today collection that changes each day; similarly, Last Week,
Last Month, Last Year, and collections created on demand by the user are handled by this
domain.

The domain provides a root collection called Time; in this collection the various other
collections are created and stored. A collection for the current year contains collections for each
month of the year to date; in turn, each month has collections for each week of the month.

Finally, the domain provides window layouts for unique views of objects by time,
including a Timeline view where documents are arranged by a date property within a given
range, among others. This domain is particularly adaptable to use in the legal field where

extensive docketing systems are required.

Additional Domains. It should be understood, as will be evident to one skilled in the art
that a wide variety of other Domains may be added, e.g., Location, Space, Event, Symptom,
Cause of Action, etc., as the Domains described above are merely exemplary and not limiting of
the scope, nature and character of domains that the inventive system can employ. The Domains
can be special in nature, as noted by the Symptom for those in the medical profession, and
Cause of Action for those in the legal services profession. Another Domain could be “MO” for
modus operandi, for use by investigators and police, which can be set to automatically group in
collections sets of facts (objects representing text narratives of criminal activities, images and
the like) based on similar MOs. This automatic building of collections could be a powerful tool
in the criminal justice field. Likewise, engineering professions can build collections with simi-
larities in data trends or values, e.g., temperatures, materials values, velocity, concentrations of

chemical components, etc. for analytic purposes.

INDUSTRIAL APPLICABILITY

The inventive data storage organization, archiving, retrieval and presentation system
architecture and technology can be used in a wide variety of applications; the primary being
desktop file organization and server data management. The inventive system is remarkably
robust, yet is a relatively small application program that can function with any type of Operating
System: Microsoft Windows, Windows NT, Windows 2000, and Windows XP; Apple
Macintosh OS 9 and OSX; BSD Unix, HP-UX, Sun Solaris, Linux, and the like. Currently the
inventive technology is preferably implemented in its current best mode in a form that is
executable on the Apple Macintosh OS9 and OSX operating systems.

As to Desktop Organization, the invention is useful as an improved desktop organization

application for all types of data, limited only by the domains that can be conceived-of. Domains

47

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

may be easily created to extend the MFS capabilities to new areas of expertise.

As to File Organization, similar to the Apple Macintosh Finder or Microsoft Windows
Explorer, the inventive MFS sy stem provides b asic disk navigation and display features. In
addition, the File domain allows additional properties to be specified for files, including: a due
date; a file species (e.g. an application, a bookmark, a text-readable file, an image file, a font
file, etc.); and a file path. Folders have additional properties that are maintained automatically:
the size of the contents of the folder; and the depth of the folder from the root directory of the
disk, among others.

As to Image Cataloging, image asset management is easily implemented as an extension
of the MFS File domain. A domain that can extract relevant information from images found on
disk (e.g. size, type of image, colors used, resolution, and so on) is created as a representative
object within MFS that has the given properties. Users can then view and select the images that
satisfy certain collection criteria. Comments on the objects can also be used to describe and/or
define the content of the images, and collections can be created to organize all images based on
their described/defined content.

As to Personal Information Management the inventive MFS system is useful for
scheduling, organization and tracking of appointments, contacts, events, notes, projects, and
tasks as typical kinds of objects that are defined by the PIM (Personal Information
Management) domain. What makes the inventive system of particular interest to industry is that
the PIM Domain functionality provides a new feature: the ability to organize information
objects by person and by project.

As to EMail, a basic embodiment of the inventive MFS system provides basic EMail
client services. The objects that the basic EMail domain defines include: mailboxes, email
messages, and signatures. This can be expanded to include all types of e-business trust services,
including: signature legalization; payment transfers; electronic record retention and verification;
electronic filing of documents, including formal/legal documents, applications, forms and the
like; privacy and confidentiality guards; identity verification and authentication; access guards;
time verification and authentication, including times of sending, acceptance, receipt and
performance; and the like.

As to EMail Notification, the inventive MFS system permits the user to watch all
postings and create emails describing when a message will be classified into a given collection
(automatic forum). This results from the functionality of the classifier; as it is data-driven, it
classifies all collections simultaneously. When a key phrase is found it lists all collections from
all users that specify that phrase. The phrases can be defined in Boolean search terms for the

48

10

15

20

WO 2004/008348 PCT/US2003/022464

broadest inclusive categorization and inclusion.

As to Custom Desktop Client, the inventive MFS system includes, by way of example,
the useful functionality of Portfolio management by which the user, as a customer of a financial
services site, such as Marketocracy.com, can communicate with the site server to synchronize
data, e.g., to provide automatic portfolio updates, stock quote display, market, sector and stock
performance graphing, and the like.

As to Personal Finance, a personal finance domain may be implemented in MFS to
provide objects for checks, checkbooks, receipts, invoices, stocks, funds, and so on. The normal
accounting principles apply; the value propagation feature mechanism is used to ensure that the
checkbook properties (e.g. balance) are computed from the check properties (e.g. amount of
check). Stocks and funds can be updated over the network and their values displayed in MFS.

Tt should be understood that various modifications within the scope of this invention can
be made by one of ordinary skill in the art without departing from the spirit thereof and without
undue experimentation. It is apparent to those skilled in the art that many features and
functionalities of the inventive MFS can be enabled and realized separately. For example,
sticky paths or drag and drop link creation can each be coded in a separate application or applet,
or can be provided as incremental upgrades to a program, or as plug-ins or add-ons to existing
other productivity, organizational or creativity application programs or applets. That is, MFS
can include less than all the dozen or more features described above, and, conversély, MFS is
extensible to include additional features and is adaptable to co-operatingly interact and enhance
other applications. This invention is therefore to be defined by the scope of the appended claims
as broadly as the prior art will permit, and in view of the specification if need be, including a

full range of current and future equivalents thereof.

49

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

CLAIMS

1. A computer data processing system including a central processing unit configured
with an integrated computer control software system for the management of information data
objects including automatic organization, indexing and viewing of information, said data pro-
cessing system comprising:

a) a computer-readable memory structured with a partitioned storage organization hav-
ing at least one object store object-oriented database including B-Tree nodes, foundation objects
and reference objects, and at least one catalog database containing metadata;

b) a computer display connected to said memory for displaying objects from said object-
oriented database in a desktop-style interface;

c¢) a computer-user interface device for inputting information to said data processing
system, including information to specify objects or properties of objects, and for input of objects
from external sources;

d) an applications program having component architecture code processed by said
central processing unit so as to scan source data of objects, create or extract metadata from said
scanned objects, store said metadata in said catalog database, and store reference objects in said
object store with metadada links attached to said reference objects to provide automatic
organization, indexing and viewing of information objects from multiple sources in said

desktop-style interface while storing only one instance of said reference object.

2. A computer data processing system as in claim 1 wherein said central processor unit
processes said code so as to generate and provide:

i) automatic, collection-based key-phrase hyperlinking;
ii) viewing by reference, by applying a user’s categorizations in an inverse manner
to show relationships between objects and filtering out those that are not relevant to
the current view;
iii) refining of views, by automatically conjoining specifications of multiple chosen
collections;
iv) time-based dynamic hierarchical collections;
v) sticky path hierarchical scroll display;
vi) automatic generation of collections by one or more object content attributes
selected by the user from among user-defined categorization(s), user of system-
defined metadata query specification(s), user or system-defined key phrase matching,
and combinations thereof;,

vii) worksets for determining the union of applications used to create/edit a given set
50

10

15

20

30

WO 2004/008348 PCT/US2003/022464

of objects in a collection or other container;

viii) an extensible domain mechanism for adding functionality to the system;

ix) an extensible mechanism for extracting, storing, displaying (via get info) and
managing attribute from files of many different formats;

x) real-time filtering/sorting;

xi) notification to the user of collection establishment and changes in collections;
xii) link creation between objects and collections by drag-and-drop attribution,
including the use of collections to add key phrases to an object by dragging into a
collection; and

xiii) the setting of specific property values of objects by dragging object icons to
special drop-targets.

3. A computer data processing system as in claim 1 wherein said central processing unit
processes so as to generate and store in said catalog database metadata selected from association
metadata and link metadata, said metadata permitting storage of only one reference object and

linking it to one or more collection groups.

4. A computer data processing system as in claim 3 wherein said central processing unit
processes so as to include in said metadata a UID and a UUID and to alias said UID and UUID
to collections selected, set or created by the user to create retrieval links from the relevant
collections to the reference object so that only one instance of said reference object is stored in

said object oriented database, thereby saving data storage capacity.

5. A computer data processing system as in claim 4 wherein said central processing unit
processes so as to scan an incoming object’s source data, and upon recognition of individual
objects as contained in said source data, create reference objects tagged with UUIDs to provide
a one-to-one mapping between external data and said reference objects, and to automatically
classify and place representative icons of objects into multiple collections or containers using
said link metadata rather than duplication of said objects, thereby allowing users to categorize
objects in ways that most c learly reflect d ifferent a pproaches and ways o f viewing the same
information, and to apply a user’s categorizations in an inverse manner to show relationships
between objects and filter out those that are not relevant to the current view for user viewing by

reference.

6. A computer data processing system as in claim 3 wherein said central processing unit
processes so as to place only link metadata in said catalog for ease of organization and cross-

referencing of objects among a large group of collections and containers by clicking on the icon
51

10

15

20

235

30

WO 2004/008348 PCT/US2003/022464

representing an object in one collection window and dragging it into another collection window
to establish a new link and new link metadata entry in said catalog database so that said

reference object is viewable, accessible and retrievable from both collections.

7. A computer data processing system as in claim 3 wherein said central processing unit
processes so as to query said metadata, including queries selected from matching key phrases in
an object’s text, matching dates and time ranges or exact matches, matches of sizes, ordering or
type, and to create dynamic links based on matches detected, including automatic query
processing of incoming external and internally created objects for dynamic updating of all
relevant collections so that any changes in the user’s information space or desktop results in
timely and appropriate changes to affected object views and for hypertext generation,
highlighting and linking in textual properties of objects, including objects selected from e-mail

text and document text.

8. A computer data processing system as in claim 1 wherein said central processing unit
processes so as to provide, during user scrolling, views of objects and their containment
relationships or location paths within said memory in a window on said display so the visible
object’s containment hierarchies are continuously made visible in a dynamically-updating
portion of the window, and as the scrolling continues in descending hierarchical order, the
container of each branch remains visible in, or sticks-to, a dynamically-updating portion of the

window, and in ascending hierarchical order, the stuck container views are deleted.

9. A computer data processing system as in claim 1 wherein said central processing unit
processes so as to provide to users a basic set of organization principles for users to intuitively
manage their information so as to reflect the information’s relationships as they occur and
change in the real world, including relationship principles based on people, projects, activities,

events, time and place.

10. A computer data processing system as in claim 1 wherein said central processing unit
processes so as to create a mirrored object system of text and image information, to provide
object property-based information access, to provide a comprehensive desktop interface having
collections of logical groupings of objects and to permit user viewing by reference, and said
processing is structured as an extensible platform.

11. Method of management of informational objects by a computer system having a
central processing unit, interface devices, computer-readable memory, and a display, comprising
the steps of providing code structure that partitions said memory to provide storage organization

having at least one object store object-oriented database including B-Tree nodes, foundation
52

10

15

20

25

30

WO 2004/008348 PCT/US2003/022464

objects and reference objects, and at least one catalog database, and causes said computer
system to process by scanning source data of objects, creating or extracting metadata from said
scanned objects, storing said metadata in said catalog database, storing reference objects in said
object store with metadata links attached to said reference objects, thereby to provide automatic
organization, indexing and viewing of information objects from multiple sources in a desktop-

style interface while storing only one instance of said reference object.

12. Method of management of informational objects by a computer system as in claim

11 wherein said central processor unit processes said code in steps generating and providing:

1) automatic, collection-based key-phrase hyperlinking;

ii) viewing by reference, by applying a user’s categorizations in an inverse manner

to show relationships between objects and filtering out those that are not relevant to

the current view;

iil) refining of views, by automatically conjoining specifications of multiple chosen

collections;

iv) time-based dynamic hierarchical collections;

v) sticky path hierarchical scroll display;

vi) automatic generation of collections by one or more object content attributes

selected by the user from among user-defined categorization(s), user of system-

defined metadata query specification(s), user or system-defined key phrase matching,

and combinations thereof;

vii) worksets for determining the union of applications used to create/edit a given set

of objects in a collection or other container;

viii) an extensible domain mechanism for adding functionality to the system;

ix) an extensible mechanism for extracting, storing, displaying (via get info) and

managing attribute from files of many different formats;

x) real-time filtering/sorting;

xi) notification to the user of collection establishment and changes in collections;

xii) link creation between objects and collections by drag-and-drop attribution,

including the use of collections to add key phrases to an object by dragging into a

collection; and

xiii) the setting of specific property values of objects by dragging object icons to

special drop-targets.

53

WO 2004/008348 PCT/US2003/022464
1/45

|
Classifier Notifier !
<« |
104 105 1
106 |

Updater Synchroni
p yncnronizer | {‘ I_nput/Output I
' (Display/L.ayout) I
A !
107 108 |
> Y vy |
——> Catalog < » Object Store I

——

1
|

109 i

File Domain

111 1

L——— Music Domain

112

— | Images Domain (<¢——

113

- 114
T S
| Network {58 T @

»! EMail Domain

115 t

Personal Info
Domain

4

EMail Server

Figure 1

WO 2004/008348
2/45

File Domain

PCT/US2003/022464

el

;l

Catalog Contents

| dir1 | file1

file3

|
| file2
|
|

file4

References by dir ID

———————————————————

EMail Domain |«

e i
D

T

__1

Catalog Contents

o eIt S e A s b e

| messaget | | message4 |- 1-
| message2 | | message5 |-{-
| message3 | | message6 .}._.;’_

EMail Server

Figure 2

WO 2004/008348

—

3/45

PCT/US2003/022464

File Domain

Music Domain

A/

A

Y

—

Image Domain

Catalog

filename: song1.mp3
filePath: ~/musicl/...
Artist: Joe Songwriter
Genre: Folk
Album: Best Of JS
FileLength: 1.2MB
FileType: mp3
Icon: ...
FilelD; 3433435

filename: song1.mp3
filePath: ~/music/...
Artist: Joe Songwriter
Genre: Folk
Album: Best Of JS
FileLength: 1.2MB
FileType: mp3
Icon: ...
FilelD; 3433435

Figure 3

Y

filename: mountain.jpg

filePath: ~/myPics/...
— Width: 1600
Height: 1200
Depth: 24

FileLength: 4,3MB

FileType: jpeg
Icon: ...

FilelD: 5678392

filename: river.jpg
filePath: ~/myPicsl/...
Width: 1600
Height: 1200
Depth: 24
FileLength: 3,3MB
FileType: jpeg
lcon: ...
FilelD: 5622392

<t

PCT/US2003/022464

WO 2004/008348

4/45

e T e R

B cshon B S

mnnp a.mah& m\w fepipg

0% TRIAIN Az s abaday

He1GZ w e 362} sy
E L i

FYITOIYRIE

SHD A APTIY. Pk

e ‘.ai..ouoﬁ,@“m SN

annﬂh

JSIEIPFIR SpEpTdacs Hrauss £ sy o oIesy si T,
Lawsar losa a7 Oz pIsIds 3Iqy =<K,

3% MYAq STz U T CTI5RI OIPE AW W,
NS IP R .itrazg Tcyram.

! Voo agay fsplzase yo amay
et 3> T>Eh o3z geas Sy

:] b <
i Lamsg g ﬁn SoreE aroOad <an A2,
! i = wer

p LEDIEPOM Wn WAL TN "kl 1A

m ﬁ!W)l.-tnlwu z=nl w307,

ZITI-S85-203 | wnag dumy iy ey

SHElgg

-,.OF WXSEF TPRIPAICL F=NC I

HAGSOL s M cIFes I te Cw

9.

NISEZ 00T S BN
RAREZ TOOT S W S
P SETEOT S ¥ 1S

NdirdgRIiee

WA BEZ TOOT 5 ¥ WS

[e

seneorsars £

g suwes £
saes (0}

Do L SEB o

STEMRY 49 2SRy m w

muu«mﬂ SuTy TuRY 52

TTEYL Y SGE NS SITISS SO AT TEOLFI DIINS T 61 ,w.nm.mfw.m

—— - P - ,HN " + E Y
o #-RE 4t STL: g wﬂnmﬂ“:ﬂﬂﬂﬂﬁﬁ”ﬂ!m.mﬁnm.
OIHLY 0L SIERY HUN IR % s e
. o “ ~a TIEdA€TaA0 uremyy | 35wy ¥) |‘.) _ :mo.q
JPR3F Y HEI0E- G ; i e foo TEhaTE T
. 4 : Lo ¢] N ose :
Rysatiy B | e : =¥ e d e <
z doac a» 123401 2 €38 L — £3SE qur - !
S134 ISy 3 T 30) 5 adey) ‘8w 8 j2auc | T aoy] meteA | m@ m = £ W
sc v oy 366 €1 pe g ent sipeg hnw.mﬂ T o prwn D11 cagnwosing £ M
3ue B gou SOIEIID CHALIU B S IRUT ¥,] - i i I i :
4 okl
T 2HAnd ef 9uoe =] i
= oS snaes ws Ty sy A s €1 _ yovy
> T3S 3 2 FY ;
B - P IR A FICR P AN m w
= % ssng wwgmpy D)

fwzamrepk 7] s

LN T B

........

SUCHIOD

, sopuw Tl 0 w4
~ :.M . = L w.e.,,ﬁ, . 4m ey i
rAr) £ 18 w511 | LOY | msren
P T i Hovsgichyd s e v Iy

TNl & =

svﬂm:%im [

ClgH AWPULW 9D uBL SES

= T

Figure 4

WO 2004/008348

000 .

5/45

Minarets | 501

PCT/US2003/022464

Cj Collection | 502

19 items 503

i

En N e

DSCN1334.0°6

Minarats; lmagss

DSCNIZ32IPGE

Minarats; Images

L p“-:'::’
DSCN1348.4PG

Sally and Rick; Minarets; L.

DSCNI335.0PG

R

Minarzts; Images . I

505

DSCN1340.4P6
Favorites; Minarets; Images

DSCNI 343,06

Favorites; Sally and Rick; ...

Figure 5

. DSCN13S0.0PG

&
504 | [i]

Wosnns
DSCN1336.7G ‘
Minarets: Images [ol

§

1 DSCNI1347.5°6 :
Sally and Rick; Minarets; L.,

Sally and Rick: Minarets; L.

WO 2004/008348 PCT/US2003/022464

6/45
s 1601 T . e
8] __Music ‘
{;} Collection ' 27 items Eﬁi—
‘ Song Title | Artist Ganrs }é.[-
f‘ | 5:;2‘_? 01’ .A:sz Ey%ys@ » Just By Mjseif {reg Brov 604] i Fi 605 ﬁ
(3] 0. Stwpid Americanmp3 Stupid American Eddis From Dhio Folk ; |
(i1 e28yfmThensops BilyFromTheHils Greg Brown Folk i
({3 o2 Fifc of dily.mp3 Fifsh of July Eddie From Ohio Folk 1
;_m 03. Bosmtown.mp3 Baomtawn Lreg Browin Folk ;i
[03. 0t Dominion.mp3 Old Dominion. |~ EddsFrom Ohio Folk i
{@ @4, From Daccamp3 from Datea Eddiz From Ohic Folk "{
[l 04. Spring wind.mp3 SpringWind Greg Brovin Folk w
2;33 05. Laughing River.mp3 Laughing River Greg Brown Folk
@ a5, Woman of Faithanp3 Woman of Faith Eddie From Ohio Folk (
[08 Goodar Thatmp3 ~ Goed ac That Eddie From Ohio Folk
f@ 08 Yo Deive Mo Cragymp3 You Drive Me Crazy {irag Brovin Folk
g@ G7. Canned Goods.npld Canned Goods Greg Brown Folk
@ 87, Minnesota J345.mp3 Minnespta 15945 Eddie From Ghio Folk
i;j;{ 83 font Want tolre anpd 1Don't Want to Have... Greg Browin Folk “:

Figure 6

WO 2004/008348

PCT/US2003/022464
7/45

701

Black Butte 7/03

75 items, 1.208 available 703 704

e [702

T

%
1% 4
W

! DSCN2908.3PG

| DSCN2914.4PG

m

- DSCN2920.PG

LRSI

| DSCN2932.00G

§
i
ey

. R St i v s s
Lia, LI TR e :

7.0PG DSCNZESBIPG DEC

o 74 :,

d A Y 3 phy POY E % o b 2o W
: DSCN2902.0PG DECN2303.0PG DSON2204.9PG DSCN2905.0PG - DSCN2906.PG DSCNZS07.PG

| DSCNZ938.PG DSCN2839.0PG

| DSCN2944.JPG DSCN2945.4PG

=+m|0

e e
Habesk

DECN29I0IPG DSINZ2911.PG DSCN2S12.0PG

LB

DEON2824.00G

THS e

fasad

DSCN2930.4PG DSCN2931.0PG | |

* e o i

0SCN2936.JPG DSCIN2837.0PG

DSCN2942.00G DSCN2843.PG

DSCN2848.PG DSCN2949.JPG

Figure 7a

WO 2004/008348

8/45

PCT/US2003/022464

Figure 7b

Black Butte 7/03 -
75 items, 1. 2(58 avaotable Eﬂ
| DSCN2896.JPG DSCNZB97.JRG DSCNZB98.JPG ssc':uaass JPG
Imagss Fawerites; To Pring; L. Images Images A
A;?.«‘S.’{}B 7:27 AM 73703 808 AM FIRAG3 B3 AM TA3503 10:12 M g
661.3K 514.2K 595.6K 674.0K e
. DSCN2800.JPG DS&&Z&O‘I JRG D%ﬁZSGZ.JPG ’ DSCN2803.JPG E
. Imagas Imanas Images To Pring Images Al
;3’!3/3‘33 113 PM FA3403 HER2E PN FAAM3 122 P FA3A03 127 P
d 630.6K 6233 631.3K B50.4K \ Q&
706 “
: DSCﬁZ&M.JPG DSCN2805.JPG DSCNZR06.JPG DSCN2907.JPG
Fayorites; To Print; .. Images Imagss Imagss i
F43/03 10:28 PM /3503 1035 P FARA0R 10:25 PV 7303 135 P
674.3K 70398 680.4K G81.86K
=
| DSCN2808.JPG DECNZRDS.IPG DSCNZ&’I 0.JPG DSCNZS11.4PG
i Imagss Images Imagas Imagas
F73503 10:36 PN T30 1036 M T43703 10:36 P TE3703 10:37 PM
6749.7K 717.2K 721.2K 688.8K i
%!’(,,vt” 'ﬁf* gia e 4
: U R
: DSCN2O12.JPG DSCNZM:%.JPG DAON2314.0PG DSCNZ&‘!S.JPG
© Imagss Images Images Images
773703 10:41 PM 743703 1041 P TrEAO3 1041 PN 773703 ?0:41 2]
! 684.3K B0 7K 690.5K 661,58
] DSCN2916.JPG DSCN2ZSN 7.0PG D$CN2':}1 &JPG DSCN2918.0rG
To Print; Imagss Images images Images
FA3703 1042 PM 743702 1042 PN PR3 1042 PN 775703 10:43 PM i
873.1K 660.85K 673.3K B73.0K e
I 4

WO 2004/008348 PCT/US2003/022464
9/45
s . “BlackButte 7/03
E; Folder 75 items, 1.28 available Eij
€38 DSCNZBIE.IPG T DSCN2920.0PG ld DSCN2944.1PG E& DSCN2968.IPG
B osenzgaz.irg Saod DSCN2821IPG §:d oscnzass.rG Ui DSCN2963.4PG ':
- P DsoNRBIB.IPG e DSCNROZ2Z.IFG o Dsenza46.IPG &l DSCN2870.1P6
244 DSCN2899.1PG 3% DSCNZOZL.IRG B osanzasz.ire :
- el DSCN2800.1PG #ll DSCN2D24.4PG 3 DSCNREAB.IPG 707
=l DSCN2901.4PG & psenzozs.arG £ DsCN2049.1PG
. P DSCH2802.1PG Y DSCNZB26.0PG ¥4 DSCN2850.0PG
| B DSCN2803.0PG fd Dsenzazz.iPe 23 DSCN251.IPG
B¥ Dscnzo04.4P6 BY psenzazs.1re 13 DSCK2952.1PG
M DSCNZ905.4PG T2 DSCNRE2.IPG ¥4 DSCNRESLIPG
* %8 DSCNZ806.1P0G ki DSCH230.4PG £54 DSCNZ954.1P0
¥ DsCnz807.1P6 sl DSCHN2831.0PG) DSCN29SS.IPG
?52 DSCN2B0B.IPG B DSCN2932.4PG BN DSCN2956.0PG
fi%aﬁmmmm i DSCH2933.0P0 W oscrzasz.ipe
- K DSCN2910.0PG §dli DSCHRY34.1PG I pscneass.rs
12 DSCNZBT1.4PG i DSCNZD35.476 B3 pscnzasa.rs
; &l DsCN2ZE12.0P6G i DSCN2836.4G E§ DSCN2860.1PG
il DSCN2913.47G B DSCR2937.0PG &4 DSCN2961.4PG
P2 Dscnzat4.4pG X DSCH2938.1PG Y& DSCNZDE2.1PG
. 1% psenz15.4p0 Ll DsCNzazO.IPE &G DSCN2963.0PG
| B3 DSCN2916.4PG Jd DseNza40.1PG 544 DSCN2964.1P6
|8 osenze1 709G %4 DSCN2I41.1PG s DSCNZE65.1PG
5 DSCN2918.4PG i osenessz.ies $84 DSCN2866.1PG
DSCNZ819.0PG &l DSCN2943.1P0 K DSCN2967.1PG
T o o esegensspssn YUMRNS Ty

Figure 7c

WO 2004/008348 PCT/US2003/022464
10/45

\ @__ , S e sy

@ Collection 27 items

Namé v songTide | Artist jo.. =]
ij oi. Jastﬂy Myseitmpd st By %yseéf oo W &!eg grovn Folk [
Zr?‘} 01, Swpid Amedcanamp3 Stupid American dd: From Ohio Folk -
f}}? G2, 8% From The Hisanp3 Billy From The Hills Lreg Bravn Folk
&2, Fifth of July.mp3 Fifth of July Eddie Fram Grio Folk

O3, Boomtown.opd Boomtown o Lirag Brovn Folk

(3] 03. 0 Dominion.mp3 Ol Dominion ~ Eddie From Ohio Folk

f}?@ 84. From Daccampd From Dacss e L Eddie From Ohio Folk

E}ﬁz 84. Spring Wind.mp3 Spring Wind {rag Brown Folk
. f}j% 05, Laughing Riveranp3 L.aughing River Greg Brovin Folk ?‘;““

R TR

o802 L
L , Music ‘ A

27 tems

CsongTie | aws [&]s

01. Just B)Myseiﬁmp.? JustBy Myéélﬂ‘r: WGrég Brown 15
01. Stupid American.mp3 Stupid American Eddie From Ohio
02. Bily From The Hils.mp3 Billy From The Hills Greg Brown

02. Fifth of July.mp3 Fifthof Juy Eddie From Ohio

i 03. Boomtown.mp3 Boomtown - Greg Brown i
J7) 03. Otd Dominion.mp3 Old Dominion Eddie From Ohio -

A

Figure 8

WO 2004/008348 PCT/US2003/022464

11/45
901

0 : DSCNO552.JPG »

g JPEGimage | 902 2048x1536 (25%) | 903

Figure 9a

WO 2004/008348 PCT/US2003/022464

12/45

906

2006 | FullPath.c

909

CodeWarrior source file | 90 8.9K 908

> i

pascal O0SExr FSplocationFromFullPath(short fullPathlength,
const void *fullPath,
_FSSpec *spec) K

{
AliasHandle alias;
O8Err result;
Boolean wasChanged; 910
Str32 nuwllString;

7* Create & minimal alias from the full pathname */

nullString[0] = 0; /* null string to indicate no zone or server name */
result = NewdliastlinimalFromPullPath(£ullFathlength, follPath, nullString,
nullsString, &aliss);

if { result == nolrr)

{
/* Let the &lias Manager resolve the alias, */
result = Resolvedlias{NULL, aliss, spec, SwasChanged);

/% gork srouvnd alias tigr sloppy volume matching bug */
if (spec->vReffum == 0)

{

7% invalidate wromg FiSpec +/

spec->parll = 0;

spec~yname[0] = O0;

result = nevEry;

}
DisposeHandle((Handle)slias); /% Free up memory used */

retwrn (result);

}

Figure 9b

P FaTeew oo oo

oo

At

[,

WO 2004/008348

800

13/45

DSCNOSSE.JPG Info

PCT/US2003/022464

gﬁ JFE{; image

s o N N v it

| DSCNO558.JPG

1002

1003 |

age.-

Phote | Comments

- See Also |

[File

i e

Width:
H Resolution:
Depth:

2048
300.00
24

Height:
V Resolution:
Quality:

Preview

15386
300.00
Normal

1004

DSCNOSS58JFPG Info

Med JPEG image

L AR T Lo STy 52

| DSCNOS58.JPG

1005

Filg

“image {1 Phote | Comments

[5eea

K

S sl 0t S,

mimages

[Yosemite 7/01

ARSI

1006]

Figure 10a

AN

WO 2004/008348 PCT/US2003/022464

14/45

05, Woman of Faith.mp3 Info

@ MP3 Audio File

1007 |

o
H

" et o

AR At ey AL g B e

Path: TiBook:Users:bruce:Deskiop.ingenuity:ifile Test:Volume

1:Music:Looking Out the Fishbowl

" . 1008
Kind: MP3 Audio File :
Type: MPG3 | Creator: SJAM
Created: 2714700 $:30 PM - Modified: 7/30/01 5:12 PM
Size: 4.3M8B

~ Comments | See Also |

A0 05 wWoman of Faith.mp3 info

[fy MP3 Audio File ‘

{05, Woman of Faith.mp3
I File Mf Commants | See Also |

Song Title: Woman of Faith 1009

Artist: Eddie From Ohio Cenre: Folk
Album: Looking Out the Fishbow! Comments:

Figure 10b

WO 2004/008348 PCT/US2003/022464
15/45

') o . ~ Claude Fiddler o
ﬁ: 35.items (one selected), 1.2G8 available [ﬂ ﬁ Adobe Photoshop file 2134x2736 (17%)

RGO g A

o

1101

¢ i
N
H

SN 203 7x8 100/1 USM.....
favorites; Phatoshop; ...

¢
i
H

- SN 208 5x7.psd)
Photoshop; My 5x7 phot...

Figure 11a

WO 2004/008348 PCT/US2003/022464

16/45
‘80 . Received 2
Y evan i

{:} C...51 items (one selected)

‘; !:} New f¢z£uras 19
) B Leamn to make at b, a'&eoﬁ's
") Adisiincing Seaitais) 1) Graphin

) & Anza-Barrego Dese.. .{:} i this §

’ {jm:a»ao 1103 QJFMCC;‘
+) Atachmants I raxecs
. {3 bounce test msg B%’mk yaui“

s D Bozosity - Septemb... a Lunche::

NE - Gi J
: ,:) Bruce Hom- Give 4 ... QNesv M{
" D\cro Digest 0923+, JNew Ad

: {:}Compum « Protecti.. ,{:] Order

‘ ,{:} Design by Conteact ... | }Re: a:.zg
“ Y esan alert tor 199... {7} Re: Con:

T esan avert tor 120 [} Reztes,

MNye: Rev.
,{:} Re: R -
I esavetwade readL.. | JRe:Revt
: B ESANatwark: read L. ?:} e Rev
DraxFrom 1650649... | JRe: Ra\.;
B Be: R»:«v :
a Rex Rw-jl

I} esan special bulizt...
" 7Y esant special Com...

@?ax raceived
> DY ro: Y2k

D Grifs ;

Hb Forward 1 Redirect |

[new 1] Reply

E.] From: Andrese Segel
Dotes 775/83 1:32 M 11 04
Subject: Anrouncing Starloga 1.9 Beta 2111

Tor <starlogo-usersfmadia.mit.edu?

traffic jans, and market economies {see

Hi everyone,

The second beta of Starloge 1.8 is now availablel Our ariginal
varsion of Storkoge, which runs only on Macintosh computers, has been
renomed MacStarlogo. This version of Storlogo is implemented in Java
and is able to run on many di fferent platforms. Since our first beta
ralease, we hove been hard at work adding many new features and
fixing bugs. He have also expanded our development efforts to include
Mac0S, Unix and 0572, so this new Starlogo should run pratty well on

many more computers than bufora.

You ean dounload this second bata version of StarLogo from the Starlogo Heb

site {http://ow.media.mit.edu/starlogo). See the Ueb site
information.

Ue look forward to heoring your comments and suggestions!

-~ The Starlogo Developnent Team

. o st e 9 9o o o o

for more

He include the RERDME that comes with the Starlogo download in the

renainder of this letter.

STARLOGD (Bata 2)
September 22, 1999

1« INTRODUCT 1ON

Ualcome to the second beta relaase of Starlago, a totally new version
of StarLogo. Our original version of Starloge, which runs only on

Macintosh computers, hos been renamed HocStarlogo. As with

HacStarloge, this new verxion i designed to halp you model und
explore the workings of decentralized systems, such as bird flocks,

Figure 11b

g e

PR

WO 2004/008348

17/45

PCT/US2003/022464

P

000

Sticky Paths

i

I:] Collection

S0 items

[i]

vE
b 15
a0
W 44

| count f

[f'j: Akbar Underway
(7] tyciing

Afrplangs

@ Family
B evtheins
DSCNO372.4PG

KD DSCHO374.0P5

000

1

. Kind

Collection

Foldar

Collection

Collection
JPEG lmage
JPEG fraage

Sticky Paths

JPEG Image | |

Modified

BEr

Sat, Jul §, 2002 2:38 P

Wed, Apr 2, 2003 342 PN
Sat, Jul 5, 2003 Z:39 PM

Tue, Jul 15, 2003 &:41PM ©
Sat, Nov 2, 2002 10:51 A%
Fei, Feb 2, 2001 5:23 M ©

(5] Collection

50 items

i: Caggt '

L Fa;nc”{w
B avnedng
DSCNO372.0PG
B DSCHO374.0P6
B oscno37p.006
B DSCNOESS.IPG

B Dsc0esy.aps

Collaction

Kind ,

JPEG tmage
JPEG Imsage
JPEG image A
JPEG tmage
JPEG [mage
JPEG Image

S

Tue, Jul 15, 2003 6:41 PM

Fri, Dec 31, 1999 9:00 PM j;

© Modfed | &|4

Sat, Nov 2, 2002 10:51 AM ™
Fri, Feb 2, 2001 5:23 PM
sat, Jun 10, 2000 9:29 PN
Sat, Jun 10, 2000 5:28 PM
Frl, Dac 31,1988 9:00 PM f

PR
4

Sticky Paths

{:j Collection

57 tams.

[i]

W 44

| comt |7

m Fanily

1201

Kind
Collection

o % 'Sioﬁiﬁed"

Br

Tug, Jul 15, 2003 €:41;

w7 [l Ma&CamFiying 5/03

ED oscri2498.4°8
B OSCN2498.JPG
Ba DSCN2500.4PG
R OScnes0;.Jpa

R OSCN2S02.0PG

" Foldar

JPEG tmage
JPEG Image

JPEG age

JPEG Image

JPEG Image

Figure 12a

'Mon, May 26, 2003 71
Sat, May 10, 2608 214,
Sat, May 10, 2003 2:4?
Sat, May 10, 2003 2:4.
Sat, May 10, 2003 2:4 l‘i
Sat, May 10, 2003 2:5 v ’

sEe

WO 2004/008348

18/45

Sticky Paths

PCT/US2003/022464

{j Collection

57 items

[i]

BN 0scrio009.4PG

JPEG lreage

Sun, Apr 20, 2003 51 \;_

| count | - Kind Modified || 4
¥ 44 ™ Callection Tue, Jul 15, 2003 641
v 7 f’*” Foldar Mon, May 26, 2003 711,

CEm DSONZ503.0P6 PEG Image " sat, May 10, 2003 235,

; B pscuz504.0P5 1203 JPEG Image Sat, May 10, 2003 25"

B 110 [Mia, Cam & Chioe 5/03 Faldar Fri, Jun 27, 2003 1121
5 stom - JPEG bmage Sat, Fzb 10, 200 5:2¢
1 Mom 2 . PEG Image Sat, Fab 10, 2001 6:2€

Sticky Paths o

(73 Coliection 167 items [i]

l Count Kind Modified ot
W 44 (7] Famiy 204 Callection Tue, Jul 15, 2003 &:41
W 110 EN . Mig, Cam & Chilos 32'63 Foldar Fri, Jun 27, 2003 11211,
o TS pscwoooddpe JPEGimage Sun, Aor 20, 2003 MU

WS DSCNOO0E.IPG JPEG Image Sun, Apr 20, 2003 4:4"7
U OSCNOOO7.4PG JPEG Image Sun, Apr 20, 2003 441
BY oscrooog.irs JPEG Image Sun, Apr 20, 2003 5:1 "

T

£

000

Sticky Paths

{:j Collection

167 items

i Count f

11206 |

Kind
‘ C&i(ectlen

Maodified

v 44 { ”j F,am
t’; MOJ" 3
g Mom At Bristlecones. PG
iy MomArCheckerboard JPG
ﬁ Sam at Hang Ten

i() Finanelial

O3 sommors

[48
57

:1207|

JPEG lma ge

JPEG Image
JPEG Imuge
JPEG Image
Collection

Collection '

Figure 12b

Sat. F‘e»b ‘10, 300! 6.2i
Maon, May 21, 2001 S".‘

Tue, May 22, 2001 10:
Fri, Jul 27, 2001 9:05 |

B

‘f“uez. .Jul 1 5 2063 6 41

Mon, Jul 14, 2003 5:33 1

Ly

ston, ui 14, 2003 5131 ¥

e

WO 2004/008348 PCT/US2003/022464

19/45
Collection1
- ,
Cbe-a filel
. IUPEL it b 1
file1 < - 4 file5 .
V ot v am e e - o mm - 1
. Metadata S opmmemeesa- .
AN Links Ry a filee
fl|92 \\ / - - —————— '
v\ M il ,’I 4l file7 !
S N S STIooIonoo
N A 4 ,/ ’] f.
\ N NS , s ile12 !
file3 Q AN \,\' Y i II—\' ---------)
\ S)t \\ /, ,". PR
\ l"\\ /'\\ / Il
. A
file4 S A,
\/\ ’ LN N
,/\‘ ,/ /l \\ -
VA ’ « 71, Collection2
file5 P 2 \‘/\I \I(\ el '
S0 PN G [N A filel 1
’ % ~] Ve e - =)
, 7 \\ \7.[\\ __________ '
/ ‘ . { file2 -
. \ N
fle6 ¥ N . Lo TPl Vo
! ¥ ! AR el ! x
/ N s filed n
’ v, | memmeeeeee- 1
4 \I ‘et el 1
file7 R TS file7 1
II DO :
\ o TS ess-
;) __._——: file8 '
. syt L N B e i 1 3
file8 <q--- A '
II \ 3
\
Il \\ ; M
" 1 \
fil
e9 V\\ ll \\
~ i \
I~ .
; Sso v Collection3
fl|e10 7 \‘\ Ve mmmm e e o= = 1
N~ {7 il ~
1 ~o I e e et 1
! ~S . - SO mmm e — - 1]
. ’ Ssol ~y o file9 |
file11 V\'l\ ~o} memmmee--- 1
-~ - S o - - - - - 1 1
) S~al 5 file10 |
’ N - ~e | mEmmmmmeme- 1
. ~N ~ = 1
flel2 .. ~{ THeri
~~~~~~~~ oo
= file12 1
__________ 1

Figure 13



WO 2004/008348 PCT/US2003/022464
20/45

' € : ‘ JPEG Collection Info

{:j Callection

11401

[ ltﬁﬂ‘j"’QuefY }‘ Commentsi See Also }

FR NS PP M g AL Y N A oo e et i LR U NP T e A N e
i e

Of Class: | Image e

(Name  [3}{Endswitn T3] 1o -
{3) Name I3 [ Ends With F+] ipeg i

[Fle Type %) s Equal To i) ;JPEG

For |4 fwt
1402 Click to add a term: o

(606 . JPEG Collection } =)

Cj Collection . 4207 items [i:j

7 7.91'.,,§og i‘?fdar&’ dog 270 lmage Q0F 2411 lmage 002 2711 Image 8O3 2711 ng& 4

Lo

- B P HaE Hoskis R
‘;2/20 ImageQl¥ 2/20Imagel]  2001-48ng 2001-5ipg 20015200y 2002-31 jng 2002-02 jou

gy ez s Bt Dl WS B,
f‘ 200203 jpg 2002-04 jog 2002-05 jpg 2002-08 jog 200207 jpg 2002-08 jng 2002-89.jpg 3: ;"

Figure 14



WO 2004/008348 PCT/US2003/022464
21/45

B0 . T Scandinavia Info

‘C’) Collection

.Scandlinavia 1501

{ tem | Query: éj:‘Key,;;Ehr;iSe" ! See Also E

o
N g ot A S R Y N D e A S S P P i

Sweden
Swedish-

Penmark I
floeland | 1502

Norway : - -
Norwegian ) ‘ :
Finland (IR

an ish :

eCcoe ~ Scandinavia
{7J Colection ' 28 items

B ety
e AL G %
9 ok P R AR L
Oy :

A Lt T A
BB ek 2y K
WAL Q2 Ve h G R a9 3H &
5L WARER waes Skl
o Wiy wyom yoes Ryl
AT Y IS

O ANy G0 & B
$A R Sk TR AR
e ekt bk ekl W

R FEGMAR PR H
B i T )
AERREF RN NI

0 PRI 55 W
F W iR

¥
#eh gy
R e Bl Py
Gt e Yoo wiky 4

P

}
i

TR T BB RES LG e
ok WRUTHRA S W b i LA LS %
B e e ———— crme e
v Re XC ski comic stop bruce gt Contradanze CD's
Teat; Scandipavia “Text; Test; Scandinavia Kavin's Projects; Texs; S¢... %
PS— } 4 o by &
R AR R LY TR E kM EE .
AW (R FIA KA B R D, 4
iy, | iy .
HRIREHIBOY S LAY % ; Avweg 'é%&*dh [RE7IS T2
BIED 0 KO HR] L <300 50 i PRI W Ty I
IO SR TR Y £ Y HIE TSV RS XTI ¥ Y 4
AOK WRh € AR bt 1 ; O P N IW“ 5 [
2 RN 58 S v A B A KA R e o e
1 rwucat Py U ek 40 %00 b
ENSRIE R Pr P e I s o WA Wb 5EE Ik ,i'
sl R Ew AT g H At $AERIW A §) 3908 L
ek DRI AUR e 8K Y [ e ko SR YRR : i ,
Country Cauntey Danish.orof "
Kavin's Projects; Text; S2... Kevin's Projects; Text; Sc... Scandinavia 5
‘3’*‘»

Figure 15



WO 2004/008348 PCT/US2003/022464

22/45
K& . LString.cp =
CodeWarrior source fﬂe‘ rﬁo—r - S4.0K E]

/7
/7 » Assign ( long double, ConstStringPtr, ResIDT )
/7

/7 Bssignment from a lony dovble uwsing s formatting string and the

/7 resowrce ID of & FunberParts table

77

// This funotion allows you to specify number formatting strings using
// & standard NunmberParts table, and then obtain format records that
/7 use the local System NumberParts as specified by the user.

17

/4 For example, assuming that 'NoPt' resource 200 is a standard US

{

/4 WumberParts table, o \

1/ T

£/ myString. Assign(1234 .56, "hpiHd #4840, 200)

14

// On & machine with US number formetiing, myString =ill be “1,234.56".
/7 On & machine with Danis r formetting, myString will be

A4 "1.234,56" (Danish use| 1602 | the thousands separator and ', as
/4 the decimal point).

vy

// However, if you use the dssign() routine ebowve:

ry

/¢ myString. dssign(1234.56, “\pidd, . 4",

14

/4 This will correctly set myString to "1,234.36" on & mechine with

£/ U8 number formatiing. Bub will mot work for Danish number formatbing,
// where the format string is invalid.

27

/¢ outFormatResvlt may be nil. If so, not formal result is passed back.

LString&
LString: :Assign(
long double  inKumwber,
ConstStringPtr dinFormatsString,
ResIDT inNumberPartsid,
FormatResultType* outFormatResult)

{
Hardle partsH = ::GetResouwrpe(ResType NumberParts, intfumbexPartsID);

ThrowIlfResFail (partsH);
StHandleLocker lock(partsH);

Figure 16a



WO 2004/008348 PCT/US2003/022464

23/45

i 000 . B L‘Stfing.cp“

CodeWarrior source file $4.0K

17

74 ¢ &ssign ( long double, ConstStringPtr, ResIDT )
/7

/7 Bssigrment from 4 long double uvwsing a formabting string and the
77 resource ID of a NumberParts table

17

2/ This function allows you to specify mumber formatting strings uwsing
// & standard NumberParts table, and then obtain format records that
7/ vse the local System NumberParts as specified by the user,

14

77 For example, assuwning that 'MoFt' resouwrce 200 iz a standard us
/4 BumberParts table, o b

14 -

77 wyString, &ssxgn(m% 56 o CADREE HERS HET 200);

17

7/ On 2 machine with US‘ Scandmawa u;fstr:mg will be “1,234.56".

77 On s machine with Dst__. Ty —— PO 2325 e xS N be

77 "1.234,56" (Danish use '\.' thousamls separstor and .’ as
77 the deoimal point}.

/7

74 However, if you use the Assign() roubine sbove:

24

/7 wyString. Assign(1234.56, “\pHkE S4E H¥");

27 '

7/ This will correctly set myString to "1,234.56" on 4 machine with

2/ US number formatting. But will not work for Dandsh nomber formatting,
/7 where the format string is invelid.

i

// outFormetResult may be nil. If so, not formet result is pessed beck.

LStringk
LString: :Assign(
long double  inNumber,
ConstStringPtr dinFormetString,
ResIDT inNumberPertsID,
FormatResultType* outFormatResult)
{
Handle partsH = ::GetResouwrce(ResType_KumberParts, inNumberPartsIO);
ThrowlfResFail_{partsH),;
StHandleLocker lock(partsH);

Figure 16b

e




WO 2004/008348 PCT/US2003/022464
24/45

R

o) IMG_D914 JPG Info
i JPEGImage

IMG_0914.JPG

[ Fite-] Image | Photo

- Comments - | -See/Alsa- ]

T e o et i AL ot " T ¢ S DRI RO T

; @‘images : ‘ B
[ drying [1701]]
1 | JJPEG Cellection

[Dxias

i

[ Mono Lake (Blake} ...

]

" JWard Family

L

Figure 17



WO 2004/008348 PCT/US2003/022464

25/45
1801
e Bruce Horn 7
[5] Contact {:ﬂ
CeMal T hoe ][ Appt ] 1802 | e oiecton.. ]
Last:: Horn i First:’ Bruce .
Titke:) i Company:
SWW-E 1234 Main Street ;
City: | dnytown - . Saterca | 2P54321 :
Home Phane: g00-555-1212 i
Wark ?honezg { Webpage:g ' i
Cell Phone:| | Birthday: |
Fax Phona:! ’ j
. o . 3 ’é,j::
e e ———— PR, RO RSO B 1 B . F— 1803 — ;
Bruce Hom Collection . o o
674 items
i G g e Lpen S A ot b ey i*
TN = m
b ) ¥
N Mevs Histary.ext  Artachments Beuce Horn Bruce Horr G,
Y £ G 2N 7
$h R i A FA
I = B
brucesitad CAppleationcp  CAppicationd  CAwaySoctercgp  CAmaySoctech

% KDY 1 41 %
b ] z 7
( / z z
18 1B ‘ 7
7z / (4 Y

CA:mﬁur«bﬁe o CAraburableh C8Treecp Cam*a. L8Tresitaratoncy

m

7 [A [A
. z 1 Z I z [
4 (A 7§
= B B
; 7} ’ v
Cllass.h

B Treeitersrondy  CCatalog.ep

41
rq
&
=]
Al

/]

Cllassifier.cp Clfassifiert C{:om;. ?rab.fe cp CComparabledy  Llontalnablecp

ENSAARY
]

N

Figure 18



WO 2004/008348

PCT/US2003/022464

26/45
‘BEA Scandinavia 1901 el
(7] Cotection 28 itarns {1}
PP - .o O O O Make travel plans for trip to Norway
G Al S z: "“‘.’l Note [i.]
; '& K)\ ﬁm —r o . : W Y e 5 A S A s VWAV s T At 18 g P 8 L
. Localnndsne UStringop {Stringucp Nowway 7702 Nofway shrepa. noewaydny 7745/03 7:18 PM 155k
t oy o = Make travs! plans for trip to Horway this summer:
i W e : &J . passport, tickets, bike shipping, etc. Call friends
norvas 6 # RO Fe Sebgiofle, Remegictdo ) in Oslo $0 that we can get together while I'm
gL At 5 Ah thers,
o » 1902
' Rty in Arere.. Skaveg gers  WERTFLangus...  WEUn: VE ! Y
! g I D - By V' *
|
SO ] W—— S s —_— /;;
Scandinavia , E
29 items o (i
VRe XCskie..  brucohted  Comradance O Countr) 1903
g D\ g D g £ r "‘«3
12 [iis Al 4 e
Localizedasee LString.cp LString.co Make teaved pl..  Norway 7708 Noeway ski mp...
av:‘&ﬁi%' éf“:@
AOIWIY D DoAY foneaylnt jpg  nomvayhuntsm..  aorvayskijeg  Re Sking oM.
PR S R
Remember to ... Riding in Arcti..  Skating gears  WERIFLangua...  Wellnicodaec Webnicodae

Welnieoda.e

-
A
B

WeEUnicodac

3

i 6 O Make travel plans for trip to Norway

there.

passport, tickets, bike shippin
in Oslo so that we can get togetherwhile fim™

17} Note [ﬂ
715403 18 PM 558
pake travel plans for trip to [amsios this ammne

Scandinavia ¢

1904

Figure 19



WO 2004/008348

PCT/US2003/022464
27/45
—
, 2001
(5] g Today L—— o
"] Collection items
5 : i

Acrobat
Today

Received
Today

v Othar é;:tda@r

Appaintments
Taday

Today

ﬁersméj infis

Today; Domains

W

Figure 20



WO 2004/008348

28/45

Q0o

2101

.

e h b

Today Reference

PCT/US2003/022464

g

[R—

m Collegtion

519 ftems

b Scandinavia

f:} €... 7 ivams {one selected)

N L RN

£

Outdoor sttt

Newr featurss at aytio.

T

Raceived

2103-

_

Learn to make at lsast §...

Financial; Recaived

Anza«Bérregan Dasert Sta...
Financial; Received; Outd...

Figure 21

G D adrows  a
3, B0 ks S Ok
A ORI

s A e
"‘% e
o o
A?Mm”““m v
T

Anza»Bor?éga Dasert Sta...
Finansial; Receivad, Qutd...

Attachments

Recaived

_,;

Sy g

&
S

-?.quﬂu§.vw.x,\
i

=,
e



e S 0 O S O S 1o 4L o T A 3 0 O N

WO 2004/008348
29/45

e N

800 -

Today Referen;ié

PCT/US2003/022464

L S A IR © g e mger Ge pe S ami et

{:} Raceived

2201 |

{:} ... 4 items {ona selected)

45 items

{:} Collection

e T

Enancial

PG h ot

1ast2; Sticky Paths; Tada...

4t i

st vy g
o i s

RN

John Public
test2; Contacts; Today R...

s o g
¥,

sy et

TR Tk

P

Microsoft

3,;

test2; Today Referente Financial; Ragaived

<

Anza-Borrega Deseet St...
¢ Finandial; Received; Qutd...

Pl Design by Conteace Se...

G 3
ESAN Afart far F999 Au.
“nancial; Maramoth; Rec...

CFO Digest 09-23-59 #... :
Finarcigh Mictoseft; Race..,

ESAN Afert for 1999 A...

Financial: Mammotn; Rec... ;;‘

Figure 22



WO 2004/008348

Files Domain

Music Domain

Images Domain

WebDAV Domain

Finance Domain

30/45

Collections
Volumes

Collections
Artist
Album
Genre
Rating

Collections
JPEG

PDF

BMP

Black and White

Nikon Coolpix

Collections

Remote Volumes

Websites

Collections
Accounts
Payables
Receivables

Figure 23

PCT/US2003/022464

Objects
Volume
Directory
File

Objects
mp3 file
wmp file

Objects
JPEG file
PDF file
BMP file
GIF file
PSD file

Objects
Remote files

Objects
Payees
Checks



PCT/US2003/022464
31/45

WO 2004/008348

Wd £52 maﬁnmw
Wd 20°E $07714%
PV TICLE 'g0f ez

. AV SEIEEiziL

rd 27 ‘5047

Wd £5°2 S0/ 774

; ~Nd IO 5021}

d 878 £ad Tig
Wd 80T t0/€2
Wd?FE mmw

Wid BE:7 "£OSSTSS

Wd ST°Z "£0I8275

Wi

¢

’\&i‘

‘k

m

m L

WJ ‘%‘2‘

QT & =p BpIsyERg ¢

"e O FHRIS uRSEg
T Bunazw rmdeEaag
Ioftease vaeg ¢

m@w wmm,. use g .&m

1219pH RME0

TCIT seaoyd wee .
TR JUCT W)

A pueq

MM DousoITgg Mmm i
: somEtes (T1]
z ¥
o %)
szfmgy ™
e

: SorERST P

e

[eHpEa

Figure 24

g

payg 10w e )

ety

Iqr] AT 3D 9T

<

5070Ud |V

T seds

I




PCT/US2003/022464

WO 2004/008348

32/45

Figure 25a

IR © URY: S5 £ J0 62

—~sauzdord apy Sunndwon 1p Jo €

zoig unhan 3zAg, mmmnm«um ‘ :

anedsyjion




PCT/US2003/022464

WO 2004/008348

33/45

aney o

zasgusdsnyspiy T FACIE
irasnsn Tl w4

aoedsyiony

Figure 25b



PCT/US2003/022464

34/45

wgRE R oY ielizug

ador) g oA

Srsia0Ea

S

Mgl - v e T & oo 2t I

b}

DU IFE M

= R0

VR O Selma

=" BbES

LTINS

&

gy ey

; LA e RELOE |
1 FIEGRTR
mﬂl -

it Ziaiy ¥
k] e S e

= - sxEy

¢ SNEERGES

ARBEEAS

FQRETVE SO | [PRITHIS FL0E SURGE

-

e S

— -—

LD

uobaI0y

WO 2004/008348

Figure 26

i




WO 2004/008348 PCT/US2003/022464
35/45

2701

000 V Cycling

{:} Collection ‘ 22 items

. DSCN1898.176 | _Dscugsows | OSCNISOZMG .
images; JPEG Collection; ... images; JPEG Collection; ... imagas JPEG Collzetion; ...

Imagss; JREG Collection; ... Bike Friday; Images; JPEG... Images: IFEG Collaction; ... i

A 2702 |
e e Cycling B o
"7} -C...22 items (one selected) {:ﬂ" fy3 IPEG Image 16001200 (19%) -

PO

. L. pscwigseies |
Y Imagas: JFEG Collsction; ...

T S A

R

DSCNIB2D.IPG

TR

ey

images; JPEG Co’llaction;"..

RIS L R MW e L T T L e g

Figure 27



PCT/US2003/022464

WO 2004/008348

36/45

<
A
4

2
b
DR

b

Egrrn

mtsxu tm..ru.mnmu xmnw mvm& m

Uy Lmuonjey noer -sefrns

Sk fuens

&

SIS 9347 S=heus Seonug

RIS SEIDATY s=Feq SEPLEL EIEN

oz Emm:u@m@u oopF sebauy
Xy taces m_n.ww T sebawy
S Lpoapay Oer sebray
By Ssoroeon ooy sebzag
Ly Loy omf sebag

| WEpEs sraz ‘FzierTaL
W 5152 00T "6 $3g PEML
F 5LZ 2002 <7 995 TEm,
Wi 51°F 2007 "eZ das e
WI 025 5007 ETLEC R
W4 6155 ETOT “EZ L5 TaL
W S1Z 2007 €2 dos N
W 50 7002 <7 985 'pem
194 0255 STOT “E7 e TL

BHEEZIE

P EEEIHIST

BIFEESEHXIRT

BIF L0583
BIrFLSINIE2

B s ¥
BHBISHRIET |

BIFEGTINITT ;

0SSP Isyeg TS

Fd OE°L. £902 °SL ¥¥ 5L

SUITESD nE PRUPT sumEN
53 IE1
= sucImICT

Figure 28



WO 2004/008348

2901

PCT/US2003/022464

37/45

Untitled

et C:’; Collection

£ §Westem Travel

! [ § Query Y comments YSeedlio |

Location: Jfile Object Store

Size:

Created: 7715703 1148 PM

Modified: 7715703 1148 PM

f |

000 Western Travel ‘ P!
{:}' Cobaction noitems m
< *
000 Western Travel o
2903 {"3 colisction 00 items ::i]
[ |0 S (2]
» 43 5 crest ke 8/0)
w217 [ cysleOregon 02
| comt
b3 {73 Tomay
., ] gj Todsy Referenca
' m Trave! .
! m Vavation i
{':3 Yanous
w8 [ vantesdy
B - R
o g g st e i ey e e e S g e £}
P e e o
L ~ - Western Trave! See Alsos ¢
i . Collection , ) ‘ - ‘ )
n 1 Created: 7715/03 11:48 PM Width:, = . . Height:. - B
| * Modified: 7/15/03 11:48 PM |, HRes: . = VRes: ., « S
! t ' Sizes - : L Depthy o Qualitys - /

Figure 29



WO 2004/008348 PCT/US2003/022464
38/45

Cycle Oregon 9702
E:jy Folder 217 itams {6 Selected), 1.2GB available

MPUNMIIHPPINIIN PSR

Dl l.bsowsorses | § 1 psowiscagpa B . DSeNianar
Today i U imsges JPEG Colleanon: .. images: JPEG Collestion; ... Bike Friday: Images; JFEG...

v
EN
; =
&
g
x
:

b8

it % . AR

i v
P4, psonigiedes
imagas; JPEG Colizetion] ...

ey vpgerm e

Images; JPEG tc;l!ecn'on

pebv e eweree Seses: whes SEERNINI  TMIY € SHTNWIMATIOR N 42343 0 M IMiem aravs i bewed HORE 40T wEw SRAT S8 v SvesenTI NI ewTY L e ———————r—

00 Cycle Oregon 9102 o oo
: 217 items (6 selected);’ 1.2G8 avadiable m

Workspace

b 217 [ Cyide Oieatn9/02

e

| pseworaes ;L psovisewd i psaweonwed |
3 m Today } Imagas; Westetn Teavel, ... tmages: Wastam Travel .. Bike Friday: Images; Wes... "
- {73 roday Ratecence . ;
{:’3 Travel .
‘:} Vagation :

m Various

W & Veand Fasly
| Westemn Travel

:
|
;

) DSENT910.UPG DSCRINTIRG pEoNI 912,006
S b b b TR SO bbbl b S T okl - SO
Images; Westem Travel; ... images; Western Travel ... Images; Westam Traval; .. [

ﬁﬁﬁﬁﬁ s FERSPR S —— P OBV S S

Figure 30



WO 2004/008348 PCT/US2003/022464
39/45

600 “ Untitled

C} Collection

; 16001200 Images
fy { Comments | See Also |

_Of Class: | image =

¢ Width 14 ! 1s Equal To i+]:1600

=
) Height [7) (sequaito {71200 (-]
&)

Click to add a term: | 4

@@ ,,,@ e e Ml’é‘o 0x1266 léiéées' o o =
Q Collaction 217 items [i]

DSCNI896.4P6 - DSCN1887.0°G DSCNISS8.UPG DSCNIBORIAG

sunsets; images; 16003} ... Images; 160021200 Ima... Images; 160021200 Ima... fmages; 160021200 ima.., 33
Nice sunses, Nyssa i‘
DSCHTO00.IPG DSCHTI01IPG . DSCNIRO2.0PG . DSCNIR03.0G
images; 1600x)1 200 Ima.., Images; 1600x) 200 Ima... Images; 160041200 Ima... images; 160021200 Ima..,
-
iy

o
&

Figure 31



WO 2004/008348 PCT/US2003/022464
40/45

3201

—— pp{  Object Store | dt————

GetValueFromStore(object, property)
3202

Synchronizer

N

GetCachedValue(object, property) E CacheValue(object, property)
3203 '-----me e m e o

e o Catalog <<————

GetValue(object, property)

3204

SetValue(object, property, value)

A (

Updater

EnqueueNotifyEvent(object, changedProperties)
y 3205

;

BroadcastEvent(object, changedProperties)

SetValue(object, pContainers, value) Classifier

Figure 32



WO 2004/008348 PCT/US2003/022464

41/45
3301
Fetch event E from queue:
(object O, update properties U))
¢ 3302 3308
Ask object O to Update(U): __ value = Fetch(P);
for all properties P in U do: each P catalog SetValue(O, P, value) i

I ¥
Done 3304
| ;.

value = Compute(P); .
catalog SetValue(O, P, value) |

l 3305
Catalog SetValue(object
O, property P, value V)

Find B-Tree for
property P

Insert value V at
key UID(O)

Figure 33

¢ 3306

Add O to catalog |
SyncSet

# 3307

Add (O, P) to
catalog
changeSet




WO 2004/008348

syncSet do:

Figure 34

For each object O |
incatalog's  — Each O » PinQ's

42/45

3402
For each property |

changeSet do:

Each P

l 3403

oldValue = :
GetValueFromStore(O, P) -

l 3404

newValue =
GetCachedValue((O, P)

3405

oldValue
differentthan >
newValue?

No

v 3407

i

Remove P from changeSet

PCT/US2003/022464

3406

Yes

SetValueToStore(O, P, newValue)

3408

EnqueueEvent(O, changeSet)

T T

3409

Notifier




WO 2004/008348

Fetch event E from queue:
——»{ (event type T, object O, changed
properties G) f

i—_ 3502

For each process P in

Subscriber Set S do: | each P »

PCT/US2003/022464
43/45
3503
event E2 = CopyEvent(E)
l 3504

3505

QueueEvent(P, E2)

— Classifier

Yes
v 3507 3508
Compute dependent
object O: ChangedProperties(G): ——] properties D of object O
: based on G

l 3509

Invalidate(D) for object O |

l 3510 3511

QueueEvent(O, D)

— Updater

Figure 35




WO 2004/008348

PCT/US2003/022464

|

Figure 36

44/45
3601
Fetch next event from queue:
(event type T, object O)
3603
T= Set A = Classify(O)
ObjectAdded? " Yes e Set R ={ empty }
No
3605
3604 i
Set P = O's container set
T= Set F = Classify(O)
ObjectChanged? Yes Set A = objects in F, notin P
Set R = objects in P, notin F
No
3607
3606
T= SetA={empty}
ObjectRemoved? Yes Set R = O's container set
No
I
l 3608
For each .
container CinA —— EachC — Add object O to C
do: ;
T
Done
y 3609
For each i
container CinR —— Each C —»| Remove object O from C
do: ’
Done




WO 2004/008348

45/45
3701
R=resultset{} |
Allow object's 3702
domain to classify |
it; union with R
3703 3704
Foreachtext | For each
property P in —— Each P »| keyphraseKin |— Each K
object do: ! classifier do: |
Done
Y 3707 3708
For each
collectionCin | Each C »< satisfiesC's >
classifier do: i query? "
Yes
Done i
3709
3710 Insert G into

Return result )}
setR

result set R

Figure 37

PCT/US2003/022464

Yes
v

Union set of
collections for K

3706

with R {



INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/22464

A.  CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 17/30
USCL 707/103R

According to International Patent Classification (IPC) or to both national classification and IPC

B.  FIELDS SEARCHED

U.S. : 707/103R;707/103Y;707/103X,707/103Z;707/10

Minimum documentation searched (classification system followed by classification symbols)

\

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C.  DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

5, lines 1-30

A US 5,899,997 (ELLACOTT) 4 May 1999 (04.05.1999), column 3, lines 40-67; column 4, i-12
lines 1-30
AP US 6,523,022 B1 (HOBBS) 18 February 2003 (18.02.2003), column 7, lines 50-67; column 1-12
8, lines 1-67; column 9, lines 1-67
A US 6,094,649 (BOWEN ET AL) 25 July 2000 (25.07.2000), column 4, lines 20-67; column 1-12

L__] Further documents are listed in the continuation of Box C.

[l

See patent family annex.

* Special categories of cited documents:

“A"  document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L"  document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“0"  document referring to an oral disclosure, use, exhibition or other means

“P" . document published prior to the international filing date but lmer than the
priority date claimed

“T™ later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“xn document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

wy" document of particular relevance; the claimed invention cannot be
considered 1o involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

12 November 2003 (12.11.2003)

Date of mailing of the mtemanonal search re

Name and mailing address of the ISA/US
Mail Stop PCT, Atn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

ort
DEC 2003

Authorized officer

Apu Mofiz ()-26{)’:@*’\&&/\1\«02”(

Telephone No. 7036054240

Form PCT/ISA/210 (second sheet) (July 1998)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

