(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No.- AU 200041657 B2
(10) Patent No. 763958

(54)

Title

Technigques for permitting access across a context barrier in a small
footprint device using global data structures

Internaticnal Patent Classification(s)
GOeF 009-46

Application No: 200041657
WIPO No: W000-45262
Pricrity Data

(22) Application Date:

Number (32) Date (33) Country
09-235156 1999.01.22 us
Publication Date : 2000.08.18

Publication Journal Date : 2000.10.19

Accepted Journal Date : 2003.08.07

Applicant(s)

Sun Microsystems. Inc.

Inventor(s)

Joshua Susser: Mitchel B Butler: Andy Streich
Agent/Attorney

PIZZEYS.GPO Box 1374,.BRISBANE QLD 4001
Related Art

W0 98-19237

2000.01.20

Sam-Antoaio-Reed—Prio At CAH303-(H8). | N
‘ZHSO Network C‘irb'é, qu'd'n Clmra) Cﬂiifcf"'a q505Y4

T

A

/45262 A3

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

{19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A W 0 A

(1¢) International Publication Number

3 August 2000 (03.08.2000) PCT WO 00/45262 A3
(51) International Patent Classification”: GO6F 9/46, (74) Agents: STEWAREPavI, LT 3t NEDermos—Wall
1/00, GOTF 710 0 2 R o\ 5 -
PRes). RITCHTE w28 Gox b4o 640, SanT:
(21) lnternational Application Number: PCT/USC0/01234 Dhhessandro cn(n <:s fa:‘ff- o:wooil ©s) ese

(22) International Filing Date: 20 January 2000 (20.01.2000)

(25) Filing Language: English

(26) Publication Langnage: English
{30) Priority Data:

09/235,156 22 January 1999 (22,01.1999) US

{71) Applicant: SUN MICROSYSTEMS, INC. [US/US]-9&H

(72) Inventors: SUSSER, Joshua; 4150 17th Street #11, San
Francisco, CA 94114 (US). BUTLER, Mitchel, B.; 522 N.
Cascade Terrace, Sunnyvale, CA 94087 (US), STREICH,
Andy; 693 Beach Park Boulevard, Foster City, CA 94404
(US).

(81) Designated States frational): AE, AL, AM, AT, AU, AZ,
BA, BB,BG, BR,BY,CA, CH,CN, CR,CZ,DE, DX, DM,
EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, XG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, FL, PT, RO, RU,
8D, SE, 8G, 81, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ,
VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, 8D, SL, 8Z, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY,KG,KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE.IT, LU,
MC, NL, PT, SE), OAPT patent (BF, BJ, CF, CG, CL, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— With international search report.

(88) Date of publication of the international search report:
25 Fanuary 2001

[Continued on next page]

(54) Title: TECHNIQUES FOR PERMITTING ACCESS ACROSS A CONTEXT BARRIER IN A SMALL FOOTPRINT DE-

VICE USING GLOBAL DATA STRUCTURES

P

el e e pors

Machine virtush or pinesis)

EXECUTIOH CONTEXT Y

e

L a0

= (57) Abstract: A small footprint device can securely run multiple programs from unrelated vendors by the inclusion of a context
barrier isolating the execution of the programs. The context barrier performs sceurity checks to see that principal and object are
within the same namespace of MEMOTY 5pace or to see that a requested action is authorized for an object to be operated upon. Bach
program or set of programs runs in a separate context. Access from one program (o another program across the context barrier can
be achieved under controlled circumstances by using a global data structure.

10

15

20

25

WO 00/45262 PCT/US00/01234

1

TECHNIQUES FOR PERMITTING ACCESS ACROSS A
CONTEXT BARRIER IN A SMALL FOOTPRINT DEVICE
USING GLOBAL DATA STRUCTURES

CROSS-REFERENCES TQ RELATED APPLICATIONS
This application is related to U.S. Patent Application Serial Number (8/839,621
filed April 15, 1997, entitled "VIRTUAL MACHINE WITH SECURELY
DISTRIBUTED BYTE CODE VERIFICATION®, in the name of inventors Moshe
Levy and Judy Schwabe (Docket No. 50253-221/P3263), which application is

incorporated herein by reference in its entirety.

This application is related to U.S. Patent Application Serial Number 09/235,158
filed January 22, 1999, entitled "TECHNIQUES FOR IMPLEMENTING SECURITY
ON A SMALL FOOTPRINT DEVICE USING A CONTEXT BARRIER", in the name
of tnventors Joshua Susser, Mitchel B. Butler, and Andy Streich, (Docket No. 50253-
216/P3708), which application is incorporated herein by reference in its entirety.

This application is related to U.S. Patent Application Serial Number (9/235,157
filed January 22, 1999, entitled "TECHNIQUES FOR PERMITTING ACCESS
ACROSS A CONTEXT BARRIER ON A SMALL FOOTPRINT DEVICE USING
AN ENTRY POINT OBJECT", in the name of inventors Joshua Susser, Mitchel B.
Butler, and Andy Streich, (Docket No. 50253-217/P3709), which application is
incorporated herein by reference in its entirety.

This application is related to U.S. Patent Application Serial Number 09/235,155
filed Janwary 22, 1999, entitled "TECHNIQUES FOR PERMITTING ACCESS
ACROSS A CONTEXT BARRIER ON A SMALL FOQTPRINT DEVICE USING
RUN TIME ENVIRONMENT PRIVILEGES", in the name of inventors Joshua Susser,
Mitchel B. Butler, and Andy Streich, (Docket No. 50253-218/P3710), which application
is incorporated herein by reference in its entirety. .

This application is related to U.S. Patent Application Serial Number 09/235,159
filed January 22, 1999, entitled "TECHNIQUES FOR PERMITTING ACCESS
ACROSS A CONTEXT BARRIER IN A SMALE FOOTPRINT USING SHARED

10

15

20

25

WO 00/45262 PCT/US00/01234

2

OBJECT INTERFACES", in the name of inventors Joshua Susser, Mitchel B. Butler,
and Andy Streich, (Docket No. 50253-220/P3712), which application is incorporated

herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates o computer security and more particularly to techniques

for implementing a security on small footprint devices, such as smart cards.

Description of Related Art

A number of object oriented programming languages are well known in the art.
Examples of these include the C++ language and the Smalltalk language.
Another such object oriented language is the JAVA™ language. This language

is described in the book Java™ Language Specification, by James Gosling et al. and

published by Addison-Wesley. This work is incorporated herein by reference in its
entirety. The JAVA™ langunage is particularly well suited to run on a Java™ Virtual
Machine,. Such a machine is described in the book Java'™ Virtual Machine

Specification, by Tim Lindholm and Frank Yellin which is also published by Addison-

Wesley and which is also incorporated herein by reference in its entirety.

A number of small footprint devices are also well known in the art. These
include smart cards, cellular telephones, and various other small or miniature devices,

Smart cards are similar in size and shape (o a credit card but contain, typically,
data processing capabilities within the card (e.g. a processor or logic performing
processing functions) and a set of contacts through which programs, data and other
communications with the smart card may be achieved. Typically, the set of contacts
includes a power source connection and a return as well as a clock input, a reset input
and a data port through which data communications can be achieved.

Information can be written to a smart card and retrieved from a smart card using
a card acceptance device. A card acceptance device is typically a peripheral attached to
a host computer and contains a card port, such as a slot, in to which a smart card can be

inserted. Once inserted, contacts or brushes from a connector press against the surface

10

15

20

25

30

WO 00/45262 PCT/US00/01234

3

connection area on the smart card to provide power and to permit communications with
the proc:essor and memory typically found on a smart card.

Smart cards and card acceptance devices (CADs) are the subject of extensive
standardization efforts, e.g. ISO 7816.

The use of firewalls to separate authorized from unauthorized users is well
known in the network environment. For example, such a firewall is disclosed in U.S.
Patent Application Serial No. 09/203,719, filed December 1, 1998 and entitled
"AUTHENTICATED FIREWALL TUNNELLING FRAMEWORK" in the name of
inventor David Brownell (Docket No. 50435-023/P2789/TJC), which application is
Incorporated herein by reference in its entirety.

A subset of the full Java™ platform capabilities has been defined for small
footprint devices, such as smart cards. This subset is called the Java Card™ platform.
The uses of the Java Card™ platform are described in the following publications.

JAVA CARD™ 2.0 -- LANGUAGE SUBSET AND VIRTUAL MACHINE
SPECIFICATION;

JAVA CARD™ 2.1 - APPLICATION PROGRAMMING INTERFACES;

JAVA CARD™ 2.0 -- PROGRAMMING CONCEPTS;

JAVA CARD™ APPLET DEVELOPER'S GUIDE.

These publications are incorporated herein by reference in their entirety.

A working draft 6f ISO 7816 -- Part 11 has been circulated for comment. That
draft specifies standards for permitting separate execution contexts to operate on a smart
card. A copy of that working draft is hereby incorporated by reference in its entirety.

The notion of an execution context is well known in computer science.
Generally speaking, the use of multiple execution contexts in a computing environment
provides a way to separate or isolate different program madules or processes from one
another, so that each can operate without undue interference from the others.
Interactions —-if any-- between different contexts are deliberate rather than accidental,
and are carefully controlled so as to preserve the integrity of each context. An example
of multiple contexts is seen in larger hardware devices, such as mainframes, where a
plurality of virtual machines may be defined, each such virtual machine having its own

execution context. Another example is seen in U.S. Patent No. 5,802,519 in the name of

10

15

20

25

30

WO 00/45262 PCT/US00/01234

4

inventor De Jong, which describes the use of multiple execution ¢ontexts on a smart
card, It will be appreciated by those of skill in the art that a computing environment
which provides multiple execution contexts also needs to provide a mechanism for
associating any given executing code with its corresponding context.

Also well known is the notion of a current confext. Certain computing
environments that support multiple contexts will, at any given time, treat one context in
particular as an active focus of computation. The context can be referred to as the
“current context.” When the current context changes, so that some ather context
becomes the current context, a "context switch” is said to occur. As will be appreciated
by those of skill in the art, these cornputing environments provide mechanisms for
keeping track of which context is the current one and for facilitating context switching,

In the prior art, in the world of small footprint devices, and particularly in the
world of smart cards, there was no inter-operation between contexts operating on the
small footprint devices. Each context operated totally separately and could operate or
malfunction within its context space without affecting other applications or processes in
a different context.

One layer of security protection utilized by the Java™ platform is commonly
referred to as a sandbox model. Untrusted code is placed into a "sandbox” where it can
"play" safely without doing any damage to the "real world" or full Java™ environment.
In such an environment, Java™ applets don't communicate, but each has its own name
space.

Some smart card operating systems don't permit execution contexts to
communicate directly, but do permit communications through an operating system, or

through a server.

The Probiems

A number of problems exist when trying to place computer programs and other
information en a small footprint device. One of the compelling problems is the
existence of very limited memory space. This requires often extraordinary efforts to
provide needed functionality within the memory space.

A second problem associated with small footprint devices is the fact that

different small footprint device manufacturers can utilize different operating systems.

10

»
.

*en

0115

.
.o

s sas sas
-
.

.
vens
.
[XIT YT
- -

20

35

A second problem associated with small footprint devices is the
faet that different small footprint device manufacturers can utilize
different operating sgystems. As a result, applications developed
for one operating system are not necessarily portable to small
footprint devices manufactured by a different manufacturer.

If programs from more than one source of programs (manufacturer
or vendor]) are to be applied to a single small footprint device,
security becomes a factor as one attempts to aveid corruption of
existing programs and data when a new program is loaded on to the
small footprint device. The same concern exists when one wishes to
prevent a hacker or a malicious person from accessing programs and
data.

It is clear that small footprint devices such as smart cards
don't have the resources necessary to implement separate virtual
machines. Nevertheless, it is desirable to maintain strict security
between separate execution contexts.

In the past, security was provided by lcading only applications
from the same socurce or from a known trusted source onto a smart
card or other small footprint device.

Accordingly, it would be desirable to allow object-oriented
interaction betwéen selected execution contexts only in safe ways
via fast efficient peer to peer communications which do not impose
undue burdens on the programmer but facilitate dynamic loading of

applets written at different times by untrusted sources.

SUMMARY OF THE INVENTION

The invention is directed to providing a context barrier

(sometimes referred to as a firewall}

for providing separation and

isolation of one context from another and to provide controlled

access across the barrier when that is needed.

e.g.
logical

Two execution contexts, each containing one or more

applets, running in the same {i.e., wvirtual or real)

machine, protected from each other, can share information in a

controlled, secure way, using language mechanisms, such as object-

oriented language mechanisms, Security can be, for

10

.
‘eee

.
ey

.
casass
. -

context, but not a second object B in the second execution context
cn a selective basis.

According to a first aspect of the present invention there is
provided a method for operating a small footprint device that
includes a processing machine, wherein program modules are executed
on the processing machine, characterized by:

executing groups of one or more program modules in separate
contexts;

providing a context barrier for separating and isolating the
contexts and for

controlling the access of a program module executing in one
context to information and/or a program module executing in another
context; and '

‘providing a global data structure, wherein each program module
of each context is allowed to read data from and write data to the
global data structure.

In accordance with one exemplary embodiment, an enhanced Java™
Virtual Machine (VM) provides certain run-time checks of attempted
access across execution contexts in the VM. Checks can be automatic

by the VM or cocded by the programmer

5A

10

*ees 25

+ we

..::;3,0

35

with support from the VM. This can be done using’ language-level
communication mechanisms. In this way, one can express object access
across execution contexts on in the same way as other object accesses
using the language are made. These run-time checks provide a second
dimensions of defence/security beyond that which the Java™ language and
platform already provide. '

The mechanisms provide protecticn against, e.g., security holes
due to programming bugs (such as declaring a datum “public” (global)
when it shouldn’t be accessible to all contexts). They also allow
fine-grain control of sharing (such as selection of objects to share
and applets to share to).

The invention is also directed toc small footprint devices,
computer program products and use of a network for transmitting code
related to the other aspects of the invention.

The foregoing and other features, aspectz ad advantages of the
present invention will become more apparent from the following detailed
description of the present invention when taken in conjunction with the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will be
apparent from the following descriptien in which:

Figure 1 is an illustration of a computer equipped with a card
acceptance device and of a smart card for use with the card acceptance
device.

Figure 2 illustration of a computer equipped with a card
acceptance device connected to a network.

Figure 3 is an exemplary hardware architecture of a small
footprint device, such as a smart card, of the prior art.

Figure 4 illustrates cbjects being accessed by principals as done
in the priorlart.

Figure 5 is an exemplary security model which can be used in
explaining the various embodiments of the invention.

Figure 6 is a block diagram showing separation of execution
contexts by a firewall or context barrier in accordance with one aspect
of the invention.

Figure 7 is a representation of a software architecture useful in

carrying out the invention.

10

15

20

25

30

WO 00/45262 PCT/US00/01234

7

Figure 8 is a flow chart of a security enforcement process implementing 2
firewall in accordance with one aspect of the invention.

Figure 9 is a block diagram showing object access across a firewall in
accordance with one aspect of the invention.

Figure 10 is a block diagram showing cascaded object access across a firewall.

Figure 11 is a flow chart of a process for permitting access by a principal in one
context across a firewall into another context.

Figure 12 is a block diagram illustrating the use of an entry point object to
permit access across a firewall.

Figure 13 is a block diagram illustrating the use of a global data structure such
as an array for access across a firewall.

Figure 14 is a block diagram illustrating the use of a supercontext to permit
access across a ﬁrewall.

Figure 15 is a block diagram illustrating the use of shareable mterface objects to
permit access across a firewall.

Figure 16 is a flow chart of a security enforcement process permitting access
across a firewall.

Figure 17 is the flow chart of Figure 16 showing details of block 1620.

Figure 18 is a flow chart showing an exemplary implementation of block 1629
of Figure 17.

NOTATIONS AND NOMENCLATURE
The detailed descriptions which follow may be presented in terms of program

procedures exccuted on a computer or network of computers. These procedural
descriptions and representations are the means used by those skilled in the art to most
effectively convey the substance of their work to others skilled in the art.

A procedure is here, and generally, conceived to be a self-consistent sequence of
steps leading to a desired result. These steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, transferred, combined, compared,

and otherwise manipulated. It proves convenient at times, principally for reasons of

10

15

20

25

WO 00/45262 PCT/US00/01234

8

common usage, to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. Tt should be noted, however, that all of these and similar
terms are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities,

Further, the manipulations performed are often referred to in terms, such as
adding or comparing, which are commonly associated with mental operations performed
by a human operater. No such capabitity of 2 human operator is necessary, or desirable
in most cases, in any of the operations described herein which form part of the present
invention; the operations are machine operations. Useful machines for performing the
operation of the present invention include general purpose digital computers or other
computational devices.

The present invention also relates to apparatus for performing these operations.
This apparatus may be specially constructed for the required purpose or it may comprise
a general purpose computer as selectively activated or reconfigured by a computer
program stored in the computer. The procedures presented herein are not inherently
related (o a particular computer or other apparatus. Various general purpose machines
may be used with programs written in accordance with the teachings herein, or it may
prove more convenient to construct more specialized apparatus to perform the required
method steps. The required structure for a variety of thesc machines will appear from

the description given.

DETAILED DESCRIPTION
Attached as an Appendix to this specification is an unpublished draft of a
document entitled JAVA CARD RUNTIME ENVIRONMENT 2.1 SPECIFICATION.
This draft document, which provides further detailed description of specific

embodiments of the invention, is incorporated in its entirety as an integral part of the
present specification.

Although the inventive techniques are described hereinafter in the context of a
smart card example, the example is merely illustrative and shouldn't limit the scope of

the invention.

10

15

20

25

30

WO 00/45262) PCT/US00/01234

9

Figure 1 is an illustration of a computer 120 equipped with a card acceptance
device 110 and a smart card 100 for use with the card acceptance device 110. In
operation, the smart card 100 is inserted info card acceptance device 110 and power and
data connections applied through a set of contacts 105 accessible at the surface of the
smart card 100. When the card is inserted, mating contacts from the card acceptance
device 110 interconnect with the surface contacts 105 to power-up the card and permit
communications with the onboard processot and memiory storage.

Figure 2 is an illustration of a computer equipped with a card acceptance device,
such as 120 in Figure 1, connected to a network 200. Also connected to a netwqu are a
plurality of other computing devices, such as server 210. Tt is possible to load data and
software onto a smart card over the network 200 using card equipped device 120.
Dovmloads of this nature can include applets or other programs to be Ioaded onto a
smart card as well as digital cash and other information used in accordance with a
variety of electronic commerce and other applications. The instructions and data used to
control processing elements of the card acceptance device and of the smart card may be
stored in volatile or non-volatile memory or may be received directly over a
communications link, e.g., as a carrier wave containing the instructions and/or data.
Further, for example, the network can be a LAN or a WAN such as the Internet or other
network.

Figure 3 is an exemplary hardware architecture of a smali footprint device, such
as a smart card, of the prior art. As shown in Figure 3, a processor 300 interconnects
with primary storage 310 which may include read only memory 315 and/or random
access memory 316. The processor also connects with a secondary storage 320 such as
EEPROM and with an input/output 330, such as a serial port. One can see the small
footprint devices of this nature can be very simple.

Figure 4 illustrates objects being accessed by principals as done in the prior art.
As shown in Figure 4, physical device 400, such as the small footprint device may have
contained within it one or more processing machines (virmal or physical) which are
Tumning an execution context 420. The execution context may be, for example, a
context associated with a particular applet. One or more principals 430 (e.g., applets or

applications) in the execution context may seek to access other objects within the

10

15

20

25

30

WO 00/45262 PCT/US00/01234

10

execution context. As long as the access occurs within the execution context, the
accesses will be permitted and everything will function normally.

Figure 5 is an exemplary security model which can be used in explaining the
various embodiments of the invention. It is just one of many models which might be
uiilized but is a convenient model for this purpose. In this model, a principal
(sometimes called entity) 500 proposes to take an action 510 on an object, such as object
§20. Security checks may be imposed on the principal, on the object, and/or on the
action proposed to be taken.

In Figure 5, two types of objects are shown on which action may be taken by a
principal. These include data objects, (e.g. datal and data2 (520, 520")) and entity 530.
A principal may operate or atternpt to operate on any of these objects.

While data Is passive, an entity $30 is active. The diagram line from Principal to
an active entity is also labeled "action,” but this could be a more sophisticated and
arbitrarily complex action, such as making a function or method call or sending a
message as compared with action on a data object. As with data, a security check
enforced by the operating system may use the identity of the principal, the identity of the
entity, and/or the type of action. Furthermore, the entity, being active, can perform its
own additional security checks. These can be as arbitrarity complex as one desires, and
can make use of the identity of the Principal, the identity of the entity itself, the action,
and/or any other information that is available.

In an object-oriented system (such as the Java Card™ platform) “objects" are
typically a combination of data and entity. When a Principal tries to access a field of an
object, this is a data access—a fairly simple action protected by a fairly simple security
check. When a Principal tries to access a method of an object, this is an entity access,
which ean be arbitrarily complex both in action and in security check.

Figure 6 is a block diagram showing separation of execution contexts by a
firewall or context barrier in accordance with one aspect of the invention. The physical
device 400 and the machine 410 correspond to the same items shown in Figure 4. An
execution context 420 shows one principal 430 attempting to access object 440 within
the context. This access would normally succeed. However, execution context 420 also

shows a principal 639 attempting to access object 640 of execution context 620, across a

10

15

20

25

30

WO 00/45262 PCT/US00/01234

11

context barrier 600. Normally, this access would be prohibited as indicated by the X
636 where the action 635 crosses the context barrier 600.

Figure 7 is a representation of a sofiware architecture useful in carrying out the
invention. This software architecture is shown as a run time environment 760. An
operating system 710 for the small footprint device is commeonly used. A virtual
machine 720, in an exemplary embodiment of the invention, is implemented over the
operating system, The virtual machine could be a Java Card™ virtual machine or other
virtual machine. The capabilities of a standard virtual machine can be expanded to
provide the additional functionality described herein or the functionality can be provided
as separate modules. The virtual machine 720 may include an interpreter or native
implementation 730 which provides access to a run time system 740. The run time
system includes object system 750 for managing the objects of an object oriented
implementation. Three contexts, 760, 770 and 780, are shown. FEach context is
separated from the other by a context barrier (sometimes referred to as a firewall)
between the execution contexts. Context 760 is, in one specific embodiment, a
supercontext. That is, context 760 has privileges and capabilities not available to
subordinate contexts 770 and 780, potentially including privileges to create entry point
objects or global data structures, and to access objects in subordinate contexts 770 and
780.

Every object is associated with one particular context. That context is said to
own each object that is associated with it. The runtime system 740 provides a means for
uniquely identifying contexts, and a means for specifying and identifying the currently
exgeuting context. The object systemn 750 provides 2 mechanism for associating objects
with their owning contexts.

For example, the runtime 740 can identify contexts with a unique name, and
correspondingly the object system 750 can associate objects with that context by
recording the context's name in the object's header. Information in the object's header
cannot be accessed by programs written in the object-criented language, but is only
available 1o the virtual machine 720 itself. Altemately, the runtime system 740 can
identify contexts by dividing the memory space into separate regions, each for a

particular context, and correspondingly the object system 750 can associate objects with

10

15

20

25

30

WO 00/45262) PCT/US00/01234

12

that context by allocating the object's storage in that context's memory space.

Figure 8 is a flow chart of a security enforcement process implementing a
context barrier in accordance with one aspect of the invention. When a principal
invokes an action on an object (800) a check is made to determine whether the object is
within the context of the principal (810). If it is not, the action is disallowed (840).
Otherwise, the action is permitted (830). This is the simplest form of context barrier or
firewall. In one specific embodiment the action is disallowed (840) by throwing 2
security exception if the object is outside of the namespace or the memory space of the
context requesting access,

Figure 9 is a block diagram showing object access across a firewall in
accordance with one aspect of the invention. Figure 9 is substahtially similar to Figure
6. However, Figure 9 also shows principal 900 seeking to access object 910 in order to
perform action 905 on the object 910. According to the invention, rather than having
the access blocked by the firewall 600, in the way that action 635 is blocked, action 905
is permitted to occur across the firewall through access point 920 so that principal 900
can perform action 903 on object 910 notwithstanding the fact that the principal and the
object are in different execution contexts. The mechanisms behind access point 920 are
described below with reference to Figures 12-18. Note that access point 920 can
coexist with obstructed accesses such as X 636. Thus access point 920 provides fine-
grain control of sharing (object by object security) across context barrier 600.

When object access 900 is initiated, the current context setting is context 420. If
the object 910 is a data object, the action 905 is a simple data access, and no cede is
executed in the second context 620. If the object 910 is an entity object, and the action
905 resuits in that object's code being executed, that code is executed in the second
context 620. To execute the code of object 910 in the correct context 620, the virtual
machine 410 performs a context switch. The context switch changes the current context
setting to be context 620, and the previous value of the current context setting is stored
so that it can be restored later. From that point on code will execute in the new current
context. When the action 905 completes, control is returned to the point following
access 900. During the return, the virtual machine 410 must restore the value of the

current context setting to its previous value.

10

15

20

25

30

WO 00/45262 PCT/US00/01234

13

Figure 10 is a block diagram showing cascaded object accesses across a
firewall. Figure 10 shows three execution contexts, 1000, 1010 and 1020. Principal
1030 in execution context i seeks to invoke an action 1635 on object 1050 in execution
context 2 and does so through access point 1070 in context barrier 600. Object 1050 in
execution context 2 has an object access 1040 which seeks to perform an action 1045 on
the object 1060 in execution context 3. It achieves this by using access point 1080 in
context barrier 600' separating execution contexts 2 and 3. Object 1050 in execution
context 2 also has another object access 1090 which invokes an action 1095 on an object
1099 in the same execution context, that is, in execution context 2. Both actions 1035
and 1045 result in context switches as described in the explanation of Figure 9. But as
action 1095 does not cross the context barrier, a context switch is not required for its
execution, and therefore does not occur.

Figure 11 is a flow chart of a process for permitting access by a principal in one
context across a firewall into another context. There are essentially three steps to this
process. In execution context 2, an object to be accessed is created and designated as
shared (1100). In execution context 1, the principal obtains a reference to the object in
¢xecution context 2 (1110). The principal in execution context 1 then invokes an action
upon the object designated as shared in context 2 (1120).

With respect to identifying or designating a created object as shareable as
discussed in item 1100 of Figure 11, this can be done, in accordance with a specific
embodiment of the invention, by including a shareable attribute in the header of an
object's representation. Information in an object's header cannot be accessed by
programs written in the object-oriented language, but is only availabic to the VM itself.

Obtaining a reference to an object in another context is a special case of
accessing an object in another context. A mechanism that provides access to an object
in another context can make other objects availsble also. For instance, invoking a
method on an object in another context may return a reference to a second object in a
different context. An additional mechanism is required to allow an initial reference to
an object in a different context to be obtained. In a specific embodiment, references to
certain well-known entry point objects can be obtained using a public API. Once the

initial reference to an object in a different context is obtained, further references can be

10

15

20

25

30

WO 00/45262 PCT/US00/01234

14

obtained from that object, and so on.

There are four general approaches to obtaining information across a context
barrier in accordance with the invention. These approaches can be utilized individually
or in combination in order to access an object across a context bar‘rier or to obtain a
reference of an object to be accessed across a context barrier (1110). These approaches
are described in Figures 12-18.

Figure 12 is a block diagram illustrating the use of entry point objects to permit
dccess across a context barrier. As shown in Figure 12, some object 1200 in context
770 (context 1) desires access to information in supercontext 760. In the specific
embodiment, a supercontext 760 contains at least one entry point object 1210. The
enfry point object 1210 can be published as part of a public APL or can be made
available indirectly through a published API (e.g,, in accordance with the mechanisms
described previously with reference to Figure 11), so that each context subordinate to
the supercontext may communicate with the entry point object of the supercontext, (It
will be appreciated that in other embodiments, entry point objects may be housed by a
context other than the supercontext.)

Figure 13 is a block diagram illustrating the use of global data structures to
permit access across a firewall. In this approach, supercontext 760 creates a global data
structure such as a global array. In the specific embodiment supercontext 760 is the
only context permitted to create such a global data structure. (It will be appreciated that
in other embodiments, global data may be housed by a context other than the
supercontext.) By virtue of its global status, each of the contexts 770 and 780 may read
and write to the global data structure. Thus, information written into the global data
structure by one context can be read by another context. For example, this mechanism
can be used to pass binary data or references to objects between contexts.

Figure 14 is a block diagram illustrating the use of supercontext privileges to
permit access across a context barrier. In Figure 14, an object in supercontext 760 secks
access to context 780 across the context barrier separating the two. Supercontext 760
can invoke any of the methods of context 780 and can access any of the data contained

within context 780, by virtue of the privileges associated with the supercontext.

10

15

20

25

30

WO 00/45262 PCT/US00/01234

15

Figure 15 is a block diagram illustrating the use of shareable interface objects to
permit access across a firewall. A shareable interface defines a set of shareable interface
methods. A shareable interface object is an object that implements at least the set of
methods defined in a shareable interface. In Figure 15, abject 1210 in context 2 (780)
is a shareable interface object. An object access 1200 in another context 770 can invoke
any of the shareable interface methods on the object 1210 if the principal of the object
access 1200 is authorized to do so by the object 1210 itself. This authorization is further
discussed with reference to Figure 18 below.

It will be appreciated that a virtual machine consistent with the invention
provides fimetionality beyond that of earlier virtual machines, such as the virtual

machine described in the Java™ Virtual Machine Specification. In particular,

consistently with the invention, the virtual machine provides functionality to implement
or to facilitate a security enforcement process that permits access across a firewall. This
process is described next with reference to Figures 16-18. Note that it is applicable to
any approach for providing access across the firewall, including but not limited to the
four approaches described with reference to Figures 12-15 above.

Figure 16 is a flow chart of a security enforcement process permitting access
across a firewall. When a principal attempts to invoke action on an object 1600, a check
is made to determine if the object is within the context of the principal (1610). If it is,
(1610-Y), the action is permitted (1630). Ifit is not, (1610-N), a check is made to see if
the action by the principal is permitted on the object (1620). Ifit is, (1620-Y), the action
is permitted (1630). If it is not, (1620-N), the action is disaliowed. In the specific
embodiment a security exception is thrown (1640).

Figure 17 is the flow chart of Figure 16 showing further details of block 1620.
If the object is not within the context of the principal (1610-N), a plurality of tests, 1621,
1622, 1623... 1629 are undertaken to see if the action by the principal is permitted on the
object. These tests can be done by the virtual machine alone or by the virtual machine
plus the object, in a virtual machine object oriented implementation. If any of the tests
results in a pass, the action is permitted (1630). However, if all tests result in a negative
determination (162X~-No), the action will be disallowed. In a specific embodiment, a

security exception will be thrown (1640). These tests relate to the permitted access

10

20

25

30

WO 00/45262 PCT/US00/01234

16

discussed in conjunction with Figures 12-15.

Figure 18 is a flow chart showing an exemplary implementation of block 1629
of Figure 17 for usc with access method described in Figure 15. In a test, such as 829
or 1629, a virtal machine checks if the object is a shared object 1810. If it is not (1810-
No), the test will fail. However, if it is (1810-Yes), the virtual machine will invoke the
method A on object O (1820). If the method A on object O determines that the principal
is anthorized (1830), the test will be passed (1840) and access permitted. Otherwise, the
test will fail (1850). This allows the authorization text to be programmed into the code
of the object itself.

Although the invention has been illustrated with respect to a smart card
implementation, the invention applies to other devices with a small footprint, not just to
smart cards. Devices with a small footprint are generally considered to be those that are
restricted or limited in memory or in computing power or speed. Such small footprint
devices may include boundary scan devices, field programmable devices, pagers and
cellular phones among many others.

In general, small footprint devices are resource constrained computational
devices and systems where secure interoperation of execution contexts is a concem.
Such small devices impose constraints on the implementation of security measures
because of their limited resources, Because of resource constraints, in a virtual machine
implementation, a single virtual or physical machine must be used as opposed to
multiple virtual machines.

The invention may also be applied to devices with larger footprints where the
characteristics of the invention may prove beneficial. For example, the invention may
prove advantageaus when using servlets if there is object sharing between them. Even
some desktop systems may profitably utilize the techniques of the invention.

While the Java™ language and platform are suitable for the invention, any
language or platform having certain characteristics would be well suited for
implementing the invention. These characteristics include type safety, pointer safety,
object-oriented, dynamically linked, and virtual-machine based. Not all of these
characteristics need to be present in a particular implementation, In some embodiments,

languages or platforms lacking one or more of these characteristics may be utilized. A

WO 00/45262 PCTUS00/01234
17

“virtual machine" could be implemented either in bits (virtual machine) or in silicon
(real/physical machines).

Although the invention has been illustrated showing object by object security,
other approaches, such as class by class security could be utilized.

Although the present invention has been described and illustrated in detail, it is
clearly understood that the same is by way of iHusiration and exampie only and is not to
be taken by way of limitation, the spirit and scope of the present invention being limited

only by the terms of the appended clzims and their equivalents.

WO 00/45262 PCT/US00/01234

18

Java ™ Card ™ Runtime Environment{JCRE)
2.1 Specification

Draft 2

Sun Mierosystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Draft 2, December 14, 1998

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

19

Copyright © 1998 Sun Microsystems, Inc.
90! San Antonio Road, Falo Alto, CA 94303 USA
All rights reserved. Copyright in this document is owned by Sun Microsystems, inc.

Sun Microsystems, Inc. (SUN) hercby grants to you at no charge a fusive, ferable, worldwide, limited license
(without the right 1o sublicense) under SUN's intel lectual property rights that are essential 10 practioe the Java ™ Card ™
Runtime Environment (JCRE) 2.1 Specification ("Specification”) to use the Specification for internal evaluati purposes only.

Other than this limited license, you acquire no right, title, or interest in or 1o the Specification and yau shalt have no right to use
the Specification for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclasure by the U.S. Ge is subject 1o restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/8T), or DFAR 252.227-7015(b)6/95) and DFAR 227.7202-1{a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, ETTHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE
OR ITS DERIVATIVES. ’

TRADEMARKS

Sun, the Sun logo, Sun Mictosystems, JavaSoR, JavaB JDK, Java, Java Card, Hotlava, Hotlava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, Personallava, SNM, SunNet Manager, Solaris
sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultza,
Ultracomputing, Ultraserver, Where The Netwerk Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,
and Visual Java are trademarks or registered trademarkcs of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS FUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TOQ THE INFORMATION HEREN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR

CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

20

Java ™ Card ™ Runtime Envirornment (JCRE) 2.1 Specification

Contents
Preiace vi
1. Iatred 11
2. Lifedme of the Java Card Virtual Machi 2-1
3. Java Card Applet Lifetime 3-1
3.1 The Method inscall 3
32 The Mcthod select 32
33 The Method process 3.2
3.4 The Method deselect 3-3-
3.5 Power Loss and Reset 3-3
4. Transient Objects 4-1
4.1 Events That Clear Trensient Objects, 4-2
5. Sel 51
5.1 The Defauk Applet 5-1
52 SELECT Command Processi -2
5.3 Non-SELECT Command Pr i 53
6. Appiet Isolation and Object Sharing. 61
6.1 Applet Firewatl 6-1
6.1.1 Contexts and Context Switching 6-1

Copyright ® December 14, 1998 Sun Microsystems, inc. il

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

21

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

6.1.2 Object Ownership 62
6.1.3 Object Access 62
6.1.4 Firewall Protection 6.2
6.1.5 Static Fields and Methods 63

6.2 Object Access Across Contexts b3
62.1 JCRE Entry Point Objects 6-4
6.22 Global Amays 64
623 ICRE Privileges 65
62.4 Shareable [nterfaces 6-5
6.2.5 Determining the Previous Context 66
62.6 Shoreable Interface Detals 6-7
6.2.7 Obtaining Shareable Interface Objects 6-7
6.28 Object Access Behavior 6-8

6.3 Transient Objects and Applet 6-12
T Tr tions and At 7-1
71 A y 71
2. T 7-t
723 T ion D .72
74 Nested T 72
7.5 Tear or Reset Transaction Failure. 72
76 Aborting a Transaction 7.3
7.6.1 Programmatic Abortion 73
7.672 Abortion by the JCRE 73
763 Cleanup Responsibilities of the JCRE 7.3

7.7 Transient Objects 73
78 Commit Capacity... .73
8. API Topics 8-1
8.1 The APDU Class 81
8.L1 Te=0 specifics for outgoing data transfers 81

iv Copyright © Dacember 14, 1998 Sun Microsystems, inc.

SUBSTITUTE SHEET {RULE 26)

PCT/US00/01234

WO 00/45262

22

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

8.1.2 T=I specifics for outgoing data transfers
82 The security and crypto packages...,

83
84

83 JCSystem Class

8-5

9. Virtual Machine Topics

9.1 Resource Failures.

9-1

10. Applet Instalier.

10.] The installer
10.1.1 Insaller implementation
10.1.2 Installer AID - -.
10.1.3 [nstailer APDUs
10.1.4 installer Behavior
10.1.5 Installer Privileges

102 The Newly Installed Applet

10.2.1 Instaltation Parameters

11. API Constants

10-1

10-1

10-1
10-2

102,

10-2
16-3
103
10-3

Copyright © December 14, 1998 Sun Microsystems, tnc.

SUBSTITUTE SHEET (RULE 26)

PCT/US00/01234

v

WO 00/45262 PCT/US00/01234

23
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Preface
Java™ Card™ technoiogy combines a portion of the Java programming | with a nmtime envir
optimized for smart cards and related, small bedded devices. The goal of Java Card technology is to

bring many of the benefits of Java software prngmmnung o the resource-consmained world of smart cards.

This document is a specification of the Java Card Runtime Environment (JCRE) 2.1. A vendor of 2 Java Card-
enabled device provides an implementation of the JCRE. A JCRE implemeatation within the context of this
specification refers to & vendor's implementation of the Java Card Virnial Machine (VM), the Java Card
Application Progrmming Interface (API), or cther component, based on the Java Card technology
specifications. A Reference Impiementation is an implementation produced by Sun Microsystems, Inc. Applets
written for the Java Card platform are referred to as Java Card appiets.

Who Should Use This Specification?

‘This specification is intended to assist JCRE implementers in creating an implementation, developing a
specification to extend the Java Card technalogy specifications, or in creating an extension 1o the Java Card
Runtime Environment (JCRE). This specification is also intended for Java Card applet developers who want 2
greater understanding of the Java Card technology specifications.

Before You Read This Specification

Before reading this guide, you should be l‘amdla.r with the Java programming language, the Java Card
technology specifications, and smart card technology. A good far b g farniliar with Java
technology and Java Card technology is the Sun Microsystems, Inc. website, lmted at:
heep://java.sun.com

How This Specification Is Organized

Chapter 1, “The Scope sud Responsibilities of the JCRE,” gives an overview of the services required of 3
JCRE impicmentation.

Chapter 2, “Lifetime of the Virtual Machine,” defines the lifetime of the Virtual Machine.

vi Copyright © December 14, 1998 Sun Microsystems, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

PCT/US00/01234

24

Java ™ Card ™ Runtime Envirosument ({CRE) 2.1 Specification

Chapter 3, “Applet Lifetime,” defines the lifotime of an applet.

Chapter 4, “Trasient Objects,” provides an overview of transient objects.

Chapter §, “Selection,” describes how the JCRE handles applet selection,

Chapter 6, “Appiet Isalation and Object Sharing,™ describes applet isolation and object sharing,
Chapter 7, “Transactions and Atomicity,” provides an overview of atomicity during trapsactions,

Chapter 8, “API Topics,” describes AP} funetionality required of a JCRE but ot completely specified in the
Java Card 2.1 APf Specification.

Chapter 9, “Virtual Machine Topies,” describes virtual machine specifics,
Chapter £0, “Applet Installer,” provides an overview of the Applet Instalier.

Chapter 11, “APT Constants,” provides the numeric value of constants that are not specified in the Java Card
API 2.1 Specification.

Glossary is a list of words and their definitions to assist you in using this book.

Related Documents and Publications

References to various documents or products are made in this manual. You should have the following
documents available:
W Java Card 2.1 API Draft 2 Specification, Sun Microsystems, Inc.

W Java Card 2.0 Language Subset and Virgugl Machine Specification, October 13, 1997, Revision 1.0 Final,
Sun Microsystems, Ing.

& Java Card Applet Developer's Guide, Sun Mitrosystems, Inc.

B TheJava Language Specification by James Gosling, Bill Joy, and Guy L, Steele. Addison-Wesley, 1996,
ISBN 0-201-63451-1.

B The Java Virtual Machine Specification (Java Series) by Tim Lindholm and Frank Yellin. Addison-
Wesley, 1996, 1SBN 0-201-63452.X.

W The Java Class Libraries: An Annotated Reference (Java Series) by Patrick Chan and Rosanna Lee.
Addison-Wesley, two valumes, ISBN: 0201310023 and 0201310031,

B 1SO 7816 Specification Parts 1-6,
& EMV *96 Integrated Circuit Card Specification for Payment Systemns.

Copyright ® Dacember 14, 1958 Sun Microsystems, inc. il

SUBSTITUTE SHEET (RULE 26)

WO 00/45262) PCT/US00/01234

25
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

1. Introduction

The Java Card Runtime Environment (JCRE) 2.1 contains the Java Card Virtual Machine (VM) the Java Card
Application Programming Interface (AP} classes (and industry-specific extensions), and support services.

This document, the JCRE 2.1 Specificatian, specifies the JCRE functionality required by the Java Card
technology. Any implementation of Java Card technology shall provide this necessary behavior and
environment.

Copyright @ December 14, 1998 Sur Micrasystems, Inc. ~ 1-1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

2.

PCT/US00/01234

26
Java ™ Card ™ Runtime Environment (ICRE) 2.1 Specification

Lifetime of the Java Card Virtual Machine

In a PC or workstation, the Java Virtual Machine nms 28 an operating system process. When the 08 process is
inated, the Java applications and their objects are awmomaticaity destroyed. .

In Java Card technology the execution lifetims of the Virual Machine (VM) is the lifetime of the card. Most of
the information stored on a card shall be preserved even when power is removed from the card. Persistent
metmnory technology (such as EEPROM) enables a smart card to store information when. power is removed.
Since the VM and the objects created on the card are used to Fepresent application information that is persistent,
the fava Card VM appears to nm forever. When power isremoved, the VM stops only temporarily, When the
card is next reset, the VM starts up again and recovers its previous object heap from Ppevsistent storage.

Aside from its persistent nature, the Java Card Virtuat Machine is just like the Java Virtual Maghine,

The JCRE implementer shall make an object persistent when:
* The Applet .register method is <alled. The JCRE stores 4 reference 10 the instance of the applet abject.

The JCRE implementer shall ensure that instances of class applec are persistent,

* Acreference to an object is stored in a field of any other persistent object or in a class's static field. This
Tequirement stems from the need 0 preserve the integrity of the JCRE's imternal data structures,

Copyright © December 14, 1993 Sun Microsystems, Ing, 2.1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

3.

27
Java™ Card ™ R*ntime Environment (JCRE) 2.1 Specification

Java Card Applet Lifetime

For the purpases of this specification, 3 Java Card applet's lifetime begins at the point that it has been correctly
loaded into card memory, linked, and otherwise prepared for execution. (For the inder of this specification
appiet refers to an applet written for the fava Card platform.) Applets registered with the Appiet . register
method exist for the lifetitne of the card: The JCRE intevacts with the applet via the applet's public methods
install, select, deselect, and process. An applet shall implement the static install method, If the
install method is not impiemented, the applet's objects cannot be ¢reated or initialized. A JCRE
implementation shall call an applet’s install, select, deselect, and process methods as deseribed
Delow.

When the applet is installed on the smart card, the static inscall method is called once by the JCRE for each
applet instance created. The JCRE shall pot call the applet's constructor dircctly.

3.1

The Method install

When tnseall is called, no objects of the applet exist. The main task of the install method within the applet
is to create an instance of the Applet class, and to register the instance. All other abjects that the applet will
need durtng its lifetime can be created as is feagible. Any other preparations negessary for the applet to be
selected and accessed by a CAD also can be done as is feasitle, The ingtall method obtains initialization

p from the of the i ing byte array parameter.

Typically, an applet creates vatious objects, initializes them with predefined values, sets some internal state
variables, and calls the Applet . register method to specify the AID (applet IDentifier as defined in ISO
7816-5) to be used to select it. This installation is tonsidered successful when the cali to the
Applet.register method completes withaut an exception. The installation is deened unsuccessful if the
install method doss not call the Applet . register method, or if an exception is thrown from within the
install method prior to the Applet. register method being cailed, or if the Applet . register method
throws an exception. If the installation is ful, the JCRE shall perform elf cieanup when it regains
control. That is, all persistent objects shall be rentrned to the state they had prior to cailing the install
method. [fihe installation is successful, the JCRE can mark the appiet as availsble for selection.

Copyright © Decamber 14, 1998 Sun Microsystems, inc. 3-1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

28

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Spacification

3.2

The Method select

Applets remain in a suspended state until they are explicitly setected. Selection occurs when the JCRE receives
a SELECT APDU in which the name data matches the AID of the applet. Selection causes an applet to become
the currently selected applet.

Prior to cailing SELECT, the JCRE shall deselect the prmously selected applet. The JCRE ifidicates this to the
applet by invoking the applet’s deselect method.

The JCRE informs the applet of selection by invoking its select method.

The applet may decline to be selected by retuming £alge from the call to the select method or by throwing
an exception. [f the applet returns + rue, the achual SELECT APDU command is supplied to the applet in the
subsequent call fo its process method, so that the applet can examine the APDU cantents. The applet can
process the SELECT APDU command exactly like it processes any gther APDU command. It can respond to
the SELECT APDU with data (see the process method for details), or it can flag.errors by throwing an
180Exception with the appropriate SW (rehumed status word), The SW and optional responsc data are
returned to the CAD. '

The Applet .select ingApplet method shall retum true when called during the seiect method. The
Applect.selectinghpplet method will continue to return true diring the subsequent process method,
which is called to process the SELECT APDU command.

If the applet declines to be selected, the JCRE will retum an APDU response status word of
150.5W_APPLET_SELECT_FAILED to the CAD. Upon selection failure, the JCRE smte is set to indicate that
no applet is selected.

Afer successfui selection, all subsequent APDUs are delivered to the currently selected applet via the process
method.

33

The Method process

All APDUs are received by the JCRE, which passes an instance of the APDU class to the process method of
the currently selected applet.

Note - A SELECT APDU might cause a change in the cuzrently selected applet prior to the call to the
process method.

On normal return, the JCRE automatically appends 0x9000 as the completion response SW to any data already
sent by the applet. ’

At any time during process, the applet may throw an 150Exeeption with an approprizte SW, in which case
the JCRE catches the exception and retums the SW to the CAD.

I my‘ other exception is thrown during process, the JCRE catches the exception and returns the stats word
1507816 . SW_UNKNOWN to the CAD,

32 Copyright @ December 14, 1998 Sun Microsystams, Inc.

SUBSTITUTE SHEET (RULE 25)

WO 00/45262 PCTAUS00/01234

29
Java ™ Card ™ Runtime Enviror-nent (J CRE) 2.1 Specification

3.4

The Method deselect

When the JCRE receives a SELECT APDU command in which the name matches the AID of an applet, the
JCRE calls the DESELECT method of the currently selected applet. This allows the appiet to perform any
cleanup operations that may be required i order 10 allow same other appiet to execite,

The Applet.selectinghpplet method shall return false when called during the deselect method.
Exceptions thrown by the deselect method are caught by the JCRE, but the applet is deselected.

3.5

Power Loss and Reset

Power loss octurs when the card is withdrawn from the CAD or if there is some other mechanical or electrical
failure. When power is reapplied to the card and on Card Reset (warm or cold) the JCRE shall ensure that:

¢ Transient data is reset to the defauit vaiue.

* The transaction in progress, if any, when power wag Jost (or reset oceurred) is aborted.

. Theapp}ctﬂutwasselectodwhmpawerwas lost (or reset) by implicitly desetected. (In
this case the deselect method is not called.)

e Ifthe JCRE implements default applet selection (see paragraph 5.1), the default appiet js selected as the

currently selected applet, and that the default applet’s select method is called. Otherwise, the JCRE sets
its state to indicate that no applet s selected.

Copyright @ December 14, 1058 Sun Microsystems, Inc. 3-3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

30
Java ™ Card ™ Runtime Environment (ICRE) 2. Specification

Transient Objects

PCT/US00/01234

Applets sometimes require objects that contain temporery (transient) data that nced not be persistent actoss
CAD sessions. Java Card does not support the fava keyword trangient. However, Java Card technology
provides methods to create ransiemt arrays with primitive components or references to cbject,

The term “ransient object” is a mi . It can be i y interpreted to mean that the object itself is
transient. However, only the coments of the fields of the object (except for the length field) have a ransient
nature, As with any other object in the Java progr ing i £e, ransient objects within the Java Card
platform exist as long as they are referenced from: ’

s Thestack

* Local variables

* A class static field

¢ A field in another existing object

A transient object within the Java Card platform has the following required behavior:

¢ The fields of a transient object shall be c/zared to the field’s default value (zero, false, or null) at the
occutrence of certain events (see below).

* For security reasens, the fields of a ransient obiect shall never be stored in a “persistent memory

technology.” Using current smart card technology as an example, the contents of transient objects can be
stared in RAM, but never in EEPROM, The purpose of this requi is to atiow objects to be

used to store session keys.

¢ Writes to the fields of a transicnt object shall nothave 2 performance penalty. (Using current smart card
technology as an example, the contents of transient objects can be stored in RAM, while the contents of

non-transient objects can be stored in EEPROM, Typically, RAM technology haz a much faster write cycle

time than EEPROM.)

s Writes to the fieids of a ransient object shall not be affected by “transactions.” That is,an
abortTransaction will never cause a ficld in a transient object to be restored to a previous value.

This behavier make transient objects ideal for smali amounts of temporary applet data that is frequently
modified, bat that nced not be preserved across CAD or select sessions.

Copyright @ December 14, 1938 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

41

WO 00/45262 PCT/US00/01234

31
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

4.1 Events That Clear Transient Objects

Persistent objects are used for maintaining states that shall be preserved across card resets. When a transient
abject is ereated, one of two events are speeified that cause its fields to be cleared. CLEAR_ON_RESET
transient objects are used for maintaining states that shall be preserved across applet sclections, but not acrass
card resets. CLEAR_ON_DESELECT transient objects are used far maintaining states that must be preserved
while an applet is selected, but not across applet selections or card resets.

Details of the two clear events are as follows:

s CLEAR_ON_RESET--the object’s fields are cleared when the card is reset. When a card is powered on,
this also causes a card reset.

Note ~ it is not necessary to clear the fields of transient objects befare power is removed from a card.
However, it is necessary to guarantee that the previous contents of such fields cannot be recovered once
power is lost. :

» CLEAR_ON_DESELECT-the obiect's fields are cleared whenever any applet is deslected. Because a

card reset implicitly deselects the currently selected applet, the fields of CLEAR_ON_DESELECT objests
are also cleared by the same cvents specified for CLEAR_ON_RESET.

The currently selected applet is explicitly deselected (its deselect method is called) only when a SELECT
command is processed. The currently selected applet is desclected and then the fields of all
CLEAR_ON_DESELECT transient objects are cleared regardless of whether the SELECT command:

s Fails to select an applet.

s Sclects a different applet.
s Reselects the same applet.

4-2 Copyright © December 14, 1938 Sun Microsystsms, Inc,

SUBSTITUTE SHEET {RULE 26)

WO 00/45262 PCT/US00/01234

32
Java ™ Card ™ Runtime Environment (ICRE) 2.| Specification

5. Selection

Cards recrive requests for service from the CAD in the form of APDUS. The SELECT APDU is used by the
JCRE to designaze a currently selected applez. Once selected, an applet receives ail subsequent APDUs until the
applet becotnes deselected.

There is no currently selected applet when gither of the following oceurs:

* The card is reset and no applet has been pre-designated as the default applet.
¢ A SELECT command fails when aempting to select an appiat,

5.1

The Default Applet

Narmally, applets become selected only via a ful SELECT ¢ d. H , some smart card CAD
applications require that there be a defauit applet that is implicitly selected after every card reset, The behavier
is:

i After card reset (or powet on, which is a form of reset) the JCRE performs its initiatizations and checks
to see if'its internal state indicates that a particular applet is the default applet. If 5o, the JCRE makes this
appiet the currently sclected appiet, and the applet’s select method is called. If the applet’s select
method throws an exception or retums £alse, then the JCRE sets s state to indicate that no applet is
selected. (The applet’s process method is not catled during defauit applet selection because there is no
SELECT APDU.) When a default applet is sclected af card reset, it shall not require its process
method to be called,

2. The JCRE ensures that the ATR has been sent and the card is now ready 1o accept APDUJ commands,

If a default applet was successfully selected, then APDU commands can be sent directiy to this applet. [fa
default applet was not selected, then only SELECT commands can be processed.

The mechanist for specifying a default applet is not defined in the Java Card AP[2.1. It is a JCRE
implementation detail and is left to the indjvidual JCRE implementers.

Copyright @ December 14, 1998 Sun Microsystems, Inc. 51

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US00/01234

33
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

5.2 SELECT Command Processing

The SELECT APDU command is used to setect an applet. [ts behavior is:
1. The SELECT APDU is always processed by the JCRE regardless of which, if any, applet is active,

2. The JCRE searches its intenal table for a matching AID. The JCRE shall support sclecting an applet where
the ful} AID is present in the SELECT command.

JCRE implementers are frec to enhance their JCRE to support other selection criterion. An example of this
15 selection via partial AID match as specified in [SO 7816-4. The specifie requirements are as follows:

Note — An asterisk indicates binary bit numbering as in ISO7816. Most significant bit = b8, Least significant
bit = bl.

a) Applet SELECT command uses CLA=(x00, INS=OxA4.
b} Applet SELECT command uses "Selection by DF name”. Therefore, P1=0x04.

©) Any other value of P1 implies that is not an applet select. The APDY is processed by the currently
selected applet.

d) JCRE shall suppore exact DF name (ALD) seiection i.e P2=%%b0000 xx00. (bd,b3* are don' care).

&

All other partial DF name SELECT aptions (b2,b1*) are JCRE implemnentation dependent.

f) Al file control information option codes (b4,b3%) shall be supported by the JCRE and interpreted
and processed by the applet.

3. lfno ALD match is found;

a. Ifthere is no currently selected applet, the JCRE responds to the SELECT command with status code
0x6399 (SW_APPLET_SELECT_FAILED),

b. Otherwise, the SELECT command is forwarded to the currently sciected applet’s process method.
A context switch into the applet's context ocours at this paint. {The applet context is defined in
paragraph 6.1.1.) Applets may use the SELECT APDU cormand for their own internal SELECT
processing.

4. Ifamaching AID is found, the JCRE prepares to seleet the new applet. Ifthere ison currently selected
appiet, it is deselected via a cali t0 its deselect method. A context switch into the deselected applet’s
context occurs at this point. The JCRE context is restored upon exit from deselect,

3. The JCRE sets the new currently sejected applet. The new applet is selected via a call to its select
method, and a context switch into the new applet’s context occurs.

a. Ifthe applet's select methed throws an exception ot returns £alee, then JCRE state is set so that no
applet is selected. The JCRE responds to the SELECT command with status code 0x6999
{SW_APPLET_SELECT_FAILED).

b. The new curtently selected applet’s process method is then called with the SELECT APDU asan
input parameter. A context switch into the applet’s context occtirs.

Notes -

5.2 Copyright ® Dacember 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 286)

WO 00/45262

PCT/US00/01234

34

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

If theze is no matching AID, the SELECT command is forwarded to the currently selected appletﬁmy} for
processing as a normzl applet APDU command.

If there is a matching AID and the SELECT command fails, the JCRE always enters the state where o applet is
sefected,

If the matching AID is the same as the currently seiected applet, the JCRE still goes through the process of
deselecting the applet and then selecting it. Reselection could fail, leaving the card in a state where no applet is
selected. .

3.3

Non-SELECT Command Processing

When 2 non-SELECT APDU is received and there is no currently selected appiet, the JCRE shall respond to the
APDU with status code 0x6999 (SW_APPLET_SELECT_FAILED). '

When a non-SELECT APDU is received and there is a currently selected applet, the JCRE invokes the
process method of the currently selected epplet passing the APDU as a parameter. This causes a context
switch from the JCRE context into the currently selected applet’s context. When the process method exits,
the VM switches back to the JCRE cantext. The JCRE sends a response APDU and waits for the next command
APDU,

Copyright © December 14, 1998 Sun Microsystems, Inc. 5.3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

35

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Applet Isolation and Object Sharing

Any implementation of the JCRE shall supportisolation of contexts and appiets. [solation means that one applet
can not access the fields or objects of an applet in another context unless the other applet explicitly provides an
interface for access. The JCRE mechanisms for applet isolation and object sharing are detailed in the sections
below.

6.1

6.1.1

Applet Firewall

The applet firewall within Java Card technology is runtime-enforced protection and is separate from the Java
technology protections. The Java language protections still apply to Java Card applets. The Java language
ensures that strong typing and protection atiributes are enforced.

Applet firewalls are always enforced in the Java Card VM, They allow the VM to automatically perform
additional security checks at nmtime.

Contexts and Context Switching

Firewalls essentially partition the Java Card platform's object system into separate protected object spaces
called comrexzs. The firewall is the boundary between one context and another. The JCRE shall allocate and
manage an gppiler context for each appiet that is installed on the card. (But see¢ paragraph 6.1.1.2 below for a
discussion of group contexts.)

In addition, the JCRE maintains its own JCRE context. This context is much like an applet context, but it has
special system privileges so that it can perform operations that are denied to applet contexts.

At any point in time, there is enly one active context withinthe VM. (This is cailed the currently active
context.) All bytecodes that access objects are checked at runtime against the currently active context in order to
determine if the access is allowed. A java.lang.SecurityException is thrown when an access is
disaliowed.

‘When certain well-defined conditions are met during the execution of invoke-type bytecodes as described in
paragraph 6.2.8, the VM performs a context switch. The previous context is pushed on an internal VM stack, 2
new context becomes the currently active context, and the invoked method executes in this new context. Upon
exit from that method the VM performs a restoring context switch. The original context (of the caller of the
method) is pepped from the stack and i3 restored as the cumently active context. Context switches can be
nested. The maximum depth depends on the amount of VM stack space available.

Copyright © December 14, 1998 Sun Microsystems, Inc. 6-1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

36
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Most method invocations in fava Card technology do not cause a context switch. Context switches only occur
during invocation of and rerurn from certain methods, a5 well as during exception exits from those methods (see
6.2.8).

During a context-switching method invocation, an additional picce of data, indicating the currently active
context, is pushed onto the return stack. This context is restored when the method is ¢xited.

Further details of contexts and context switching are provided in later sections of this chapter.

6.1.1.1 Group Contexts

Usually, each instance of a Java Card applet defines a separate context. But with Java Card 2.1 techmology, the
concept of group context is introduced. If more than one applet is contained in a single Java package, they share
the same context. Additionally, all instances of the same applet class share the same context. In other words,
there is no firewall between two applet instances in a group context.

The discugsion of contexts and context switching above in section 6.1.1 assumes that each applet instance is
associated with 2 separate context. In Java Card 2.1 technology, contexts are compared to enforce the firewall,
and the instance AID is pushed onto the stack. Additionally, this happens not only when the context switches,
but also when control switches from an object owned by one applet instance to an object pwned by anather
instance within the same package.

6.12 Object Ownership

When a new object is created, it is associated with the curently active context. But the object is owned by the
applet instance within the currently active context when the object is instantiated. An cbject is owned byan
applet instance, of by the JCRE.

6.1.3 Object Access

In general, an object can only be accessed by its owning context, that is, when the QWRINg context is the
currently aotive context. The firewail prevents an object from being accessed by another applet in a different
context.

In implementation terms, each time an object is accessed, the object’s owner context is compared to the
currently active context. [f these do not maich, the access is not performed and a SecuricyException is
thrown,

An object is accessed when one of the followi g b des is d using the object's reference:

L4

gecfield, putfield, invokevirtual, invokeinterface,
athrow, <T»aload, «T>astore, arraylength, checkeast, instanceof
<T> refers to the various types of array bytocodes, such asbaload, sastors, #te,

‘This iist includes any speciai or optimized forms of these bytecodes implemented in the Java Catd VM, such as
getfield b, sgetfield_s_this, eic.

6.14 Firewall Protection

The Java Card firewall provides protection against the most frequently anticipated security concern: deveioper
mistakes and design oversights that might allow sensitive data to be “leaked" to another applet. An applet may
be able 10 obtain an cbject reft from a publicly ible location, but if the object is owned by a
different applet, the firewall ensures security.

82 Copyright ® December 14, 1998 Sun Microsystems, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

6.1.5

PCT/US00/01234

37
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

The firewatl also provides protection against incorreet code, If incorrect code is loaded onto a card, the firewal]
still protects objects from being accessed by this code.

The Java Card API 2.1 specifies the basic minimum protection requirements of contexts and firewalls because
these features shall be supported in ways that are not transparent o the applet developer. Develapers shall be
aware of the behavior of objccts, APls, and exceptions related to the firewall. ’

JCRE implementers are frec to implement additional security mechanisms beyond those of the applet firewall,
as long as these mechanisms are fransparent to applets and do not change the externally visible operation of the
VM.

Static Fields and Methods

It should also be noted that classes are not owned by contexts. There is na runtime context check that can be

performed when a class sttic ficld is accessed, Neither is (here a context switch when s staric method is

6.1.5

'

invoked. (Similarly, invokespecial causes no context switch.)

Public static fields and public staric methods are accessible from any context: static methods execute in the
same context as their caller,)

Objects refetenced in static fields are Just regular objects. They are owned by whemever created them and
standard firewall access rules apply. If it is necessary to share them across multiple applet contexts, then these
objects need to be Shareable Interface Objects (S10s). (See paragraph 6.2.4 below.)

Of ceurse, the conventional Javs technology protections are stilf enforced for static fields and methods, In
addition, when applets ars installed, the Installer verifics that each attempt to link to an external static field or
d is permitted. Installation and specifics about linkage are beyond the scope of this specification.

I Optional static access checks

The JCRE may perform optional nmtime checks that are redundant with the canstraints enforced by a verifier.
A Java Card VM may detect when code violatcs fundamental language restrictions, such as mveking a private
method in another class, and feport or otherwise address ihe violation,

6.2

Object Access Across Contexts

To enable spplets to nteract with each other and with the ICRE, some well-defined yel secure mechanisms are
provided 80 one context can access an object belonging to anather context,

Thess mechanisms are provided in the Java Card API 2.1 and are discussed in the following sections:

JCRE Entry Point Objects
Global Arrays

JCRE Privileges
Shareable Interfacas

Copyright © Decamber 14, 1898 Sun Microsystems, Inc. 6-3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

PCT/US00/01234

38

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

6.2.1

6.2.2

JCRE Entry Point Objects

Secure computer systems shall have a way for non-privileged user processes (that are restricted to a subset of
resources) (0 request system services performed by privileged “system”” routines.

in the Java Card AP! 2.1, this is accomplished using JCRE Entry Point Objects. These arc objects owned by the
JCRE context, but they have been flagged as containing entry point methods.

The firewall protects these objects from access by applets. The entry point designation altows the methods of
these objects to be invoked from any context. When that cccurs, 2 context switch to the JCRE context is
performed. These methods are the gateways thraugh which applets request privileged JCRE system services.

There are two categories of JCRE Entry Point Objects :
* Temporary JCRE Entry Point Objects

Like all JCRE Entry Point Objects, methods of temporary JCRE Entry Point Objects can be invoked from
any spplet context. However, references to these objects cannot be stoved in class variables, instance
variables or array components. The JCRE detects and restricts attempts to store references to these objects
a5 part of the firewall functionality to prevent unauthorized re-se.

The APDU object and all JCRE owned exception objects are examples of temporary JCRE Entry Point
Objects.

* Permanent JCRE Entry Point Objects

Like alt JCRE Entry Point Objects, methods of permanent JCRE Entry Point Objects can be invoked frem
any applet context. Additionally, references 10 these objects can be stored and frecly re-used.

JCRE owned AID i are ples of

7 JCRE Entry Point Objects.
The JCRE is responsible for:

Determining what privileged services are pravided to applets.
Defining classes containing the entry point methods for thase services.
Creating one or more object instances of those classss.

Designating those instances as JCRE Entry Point Objects.

Designating JCRE Entry Point Objects as temporary or pamanent.
Making references to those objects available to applets as needed.

Nole — Only the methods of these objects are accessible through the fircwall. The fields of these objects are still
protected by the firewall and can only be accessed by the JCRE context

Only the JCRE itself can designate Eniry Point Objects and whether they are temporary ot permanent. ICRE
impl are responsible for impl ing the mechanism by which JCRE Eatry Point Objects are
designated and how they b porary or per '

Global Arrays

The global hature. of some objects requires that they be accessible from any applet context. The firewail would
ordinarily prevent these objests from being used in a flexible manner. The Java Card VM allows an object tobe
designated as global.

All giobal amays are temporary global array objects. Thess objects are owned by the JCRE context, but can be
accessed from any applet context. However, teferences to these objects cannot be stored in class variables,

64 Copyrighl © December 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

6.2.3

6.2.4

39
Java ™ Card ™ Runtime Environment (JCRE) 2. 1 Specification
instance variables or array components. The JCRE detects and resiricts attempts to store references to these
objects as part of the firewali functionality (o prevent unauthorized ré-use.
For added security, onty ammays can be designated as giobal and only the JCRE itself can designate global

arrays. Because applets cannot create them, no AP methods are defined ICRE implementers are responsible
for implementing the machanism by whick global arvays are designated.

At the time of publication of this pecification, the only global arrays required in the Java Card AP 2. | arc the
AFDU buffer and the byze Array Input parameter (bArray) to the applets install method,

Note - Because of irs global status, the APl specifies that the AFDU buffer is cleared to zeroes whenever an
applet is selected, before the ICRE 2ccepts a new APDU command. This is to prevent an appiet's potentially
sensitive data from being “lezked” to another applet via the global APGU buffer. The APDU buffer can be
accessed from a shared interface object context and is suitable for passing data across applet contexts. The
2pplet is responsible for Protecting secret data that may be d ftom the APDU buffer,

JCRE Privileges

Becausc it is the “system™ context, the JCRE context has a special privilege. Ik can invoke a method of any
object on the card. For example, assume that object X is owned by applet A. Normatly, only context A can
access the ficlds and methods of X. But the JCRE context is allowed to invoke any of the mathods of X, During
such an invocation, a eontext switch ocours from the JCRE context to the applet context that owns X.

Note = The JCRE can access both methods and fields of X. Method access is the mechanism by which the
JCRE enters an applet context. Although the JCRE could invoke any method through the firewall, it shall only

invoke the select, brocess, deselect, and getShareablelInterfaceChbject (se¢ 6.2.7.1) methods
defined in the Appiet clags,

The JCRE context is the currently active context when the VM begins running afier 2 card reset. The JCRE

context is the “root” context and is always cither the currently active context or the battom context saved on the
stack.

Shareable Interfaces

Shareable interfaces are a new feature in the Java Card AP1 2.1 10 tnable applet interaction. A shareable
interface defines a set of shared interface methods. These interface methods can be invoked from one applet
context even if the object tmplementing them is owned by another applet context.

In this specification, an cobject instance of a clags implementing a shareable interface is called aShareable
Interface Object (510).

To the owning context, the 510 is a norrmal object whose fields and methods can be accessed, To any other
context, the SIO is an instance of the shareable interface, and only the methods definied in the sharesble
interface are accessible. All other fields and methods of the SIO are protected by the firewall,

Shareable mterfaces provide 2 secure mechanism for inter-applet communication, as follows:

l. Tomake an object available to ancther applet, applet A first defines a shareable mterface, SL A shareable
interface extends the interface javacard. framework, Shareable, The methods defined in the
shareable interface, S1, represent the services that applet A makes aceessible to other applets.

2. Applet A then defines a class C that impiements the shareabie interface SI. C implements the methods
defined in SI. C may also define other methods and fields, but these are protected by the applet firewail.
Only the methods dafined in SI are aeeessible to other applets,

Copyright © December 14, 1998 Sun Microsystems, Inc. 6-5

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

40

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

3. Applet A creates an object instance O of class C. O belongs to applet A, and the firewall allows A to access
any of the fields and methods of Q.

4. Toaccess applet A's object O, applet B creates an object reference S10 of type SL

5. Applet B invokes a special method (JCSystem.gatappletshareablelnterfacebsect, described in
paragreph 6.2.7.2) ta request a shared interface object reference from appiet A,

G, Applet A receives the request and the AID of the requester (B) via

Applet ,getShareablelnterfacedbject, and delermines whether or not it will share object O with
applet B.

7. I1f applet A agrets to share with app]d B, A responds to the request with a reference to O. This reference is
cast to type Shareable so that none of the fields or methods of O are visible.

8. Applet B receives the object reference from applet A, casts it to type 51, and stores it in object reference
510. Even though SI0 actually refers to A's object Q, §10 is of rype SL. Only the shareable interface
methods defined in 51 are visible to B. The firewall prevents the other fields and methods of O from being
accessed by B.

9. Applet B can request service from applet A by invoking one of the shareable interface methods of S1O0.
During the invocation the Java Card VM performs a context switch. The original currently active context
(B) is saved on a stack and the context of the owner (A) of the actual object (O) bacomes the new curreatly
active context. A's implementation of the shareable interface method (SI method) executes in A's context.

10. The SI method can find out the AID of its client (B) via the JCSystem. getPrevicusContextAID
method. This is described in paragraph 6.2.5. The method determines whether or not it will perform the
setvice for applet B,

11. Because of the context switch, the firewall aliows the SI method to access all the fields and methods of
object O and any other object owned by A. At the same time, the firewall prevents the method from
accessing non-shared objects owned by B.

12. The Sl method can access the parameters passed by B and can provide a return value to B.

{3. During the retum, the Java Card VM performs 4 restoring context switch, The original currently active
context (B) is popped from the stack, and again becomes the current context

14. Because of the context switch, the firewal! again allows B to access any of its objects and preveats B from
accessing non-shared objects owned by A.
6.2.5 Determining the Previous Context

When an applet calls JCSystem, getPreviousContextAID, the JCRE shall return the instance AID of the
applet instance active at the time of the last context switch.

6.2.5.1 The JCRE Context

The JCRE context does not have an AID. If an applet calls the get PreviousContextAID method when the
applet context was entered directly from the JCRE context, this method retums null .

If the applet calls getPrevicusContextAID from 2 method that may be accessed either from within the
applet itself or when accessed via a shareable interface from an external applez, it shall check for null retumn
before performing caller AID authentication,

66 Copyright © Dacember 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCTAIS00/01234

6.2.6

41
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Shareable Interface Details

A shareable interface is simply one that extends (cither directly or indirectly) the togging interface
javacard, framework.Shareable. This Shareable interface is similar in concept to the Remote interface
used by the RM? facility, in which calls to the interface methods fake place across a iocalfremote boundary.

4 6.2.6.1 The Java Card Shareable Interface

6.2.7

Interfaces extending the Shareable tagging interface have this special property: calls to the interface
methods take place across Java Card's appiet firewal| boundary via a context switch.

The Shareable interface serves to identify all shared objects. Any object that needs 0 be shared through the
applet firewall shall directly or indirectly implement this interface. Only those methods specified in a shareable
interface are available through the firewall.

Implementation classes can imph any ber of shareable interfaces and can extend other shareable
implementation classes.

Like any fava platform interface, a shareable interface simply defines a set of service methods. A service
provider class declares that it “implements” the shareable interface and provides implementations for each of
the service methods of the interface. A service client class accesses the services by obtaining an object
reference, casting it to the shareable interface type if necessary, and invoking the service methods of the
interface.

The shareable interfaces within the Java Card technology shall have the following properties:

* When a method in a sharcable interface is invoked, a context switeh ocours to the context of the object’s
owner.

e When the method exits, the context of the calier is restored.

¢ Exception handling is enhanced sa that the currently active context is comectly restored during the stack
frame unwinding that accurs as an exception is thrown,

Obtaining Shareable Interface Objects

Inter-applet ¢ ication is plished when a ciient applet invokes a shareable interface method of a SIO
belonging to a server applet. In order for this to work, there must be a way for the client applet to obtain the SIO
from the server applet in the first place. The JCRE provides a mechanism to make this possible. The Applet
class and the JCSysten class provide methods to enable a client to request services from the server,

6.2.7.1 The Method Applet . getShareablelnterfaceObject

This method is implemented by the server applet instance. it shall be calied by the JCRE to mediate batwaen 3
client applet that requests to use an abject belonging to another applet, and the server applet that makes its
objects available for sharing.

The default behavior shall return null, which indicates that an apptet does not participate in inter-applet
communicatior.

A server appiet that is intended to be invoked from another applet needs to override this method. This method
should examine the clienthTD and the parameter. Ifthe c2ientATD is not one of the expected AlDs, the
method should return null. Similarly, if the parameter is not recognized or if it is not aliowed for the

Copyright © December 14, 1998 Sun Microsystems, ine, 67

SUBSTITUTE SHEET (RULE 28)

WO 00745262 PCT/US00/01234

42

Java ™ Card ™ Runtime Envirorment (JCRE} 2.1 Specification

clientAID, then the method also should return matl. Otherwise, the applet should retum an SIO of the
sharcable interface rype that the client has requested.

The server applet need not respond with the same SIO to all clients. The server can suppert multiple types of
shared interfaces for different purposes and use ¢l ient AID and parameter to determine which kind of SIO
to return to the client.

6.2.7.2 The Method JCSystem.getAppletShareableInterfaceObjgct:

6.2.8

The JCSystenm class contains the method getAppletShareableInt erfaceCbject, which is mvoked by a
client applet to communicate with a server applet.

The JCRE shall implement this method to behave as follows:
1. 'The ICRE searches its internal applet table for one with serverAID. Ifnot found, null is retumed.

2. The JCRE invokes this applet's getshareablelInterfaceCbject methad, passing the cliencAlD of
the cailer and the parameter,

3. A context switch accurs to the server zpplet, and its implementation of getShareableInterfaceObject
proceeds as described in the previous section. The server applet returns & SIO (ot nwli).

4. gechppletsShareablelnterfaceCbject returns the same SI0 (or null) 10 its caller.
For enhanced ity, the imy ion shall make it impossible for the ciient to tell which of the following
conditions caused a null value to be reumed:

1

The serveraId was not found.

The server applet does not participate in inter-applet communication.

The server applet does not recognize the clientAID e the parameter.

The server appiet won't cotmmunicate with this client.

The server applet won't communicate with this client as specified by the parameter.

LI)

Class and Object Access Behavior
A static class field is accessed when one of the following java bytecodes is executed:
getstatic, putstatic

An objeet is accessed when one of the following Java bytecodes is d using the object’s reference:

getfield, putfield, invokevirtual, invokeinterface, athrew,
<Traload, «T»astore, arraylength, checkcast, instanceof

<T> tefers to the various types of array bytecodes, such as baload, sastore, efc.

This list #lso includes any specizl or optimized forms of these bytecodes that may be impi lin the Java
Card VM, such as gectield b, sgetfiel d_s_this, ¢ic.

Prior to performing the work of the bytecode as specified by the Java VM, the Java Card VM will perform an
access check on the referenced object. If access is denied, then 8 Securitybxception is thrown.

The access checks performed by the Java Card VM depend on the type and awner of the referenced object, the
bytecode, and the currently active comext. They are described in the following sections,

6-8 Copyright ® December 14, 1988 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

6.2.8.1

PCT/US00/01234

43
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Accessing Static Class Fields

Bytecodes:

getstatic, putstatic

6.2.8.2

If the JCRE is the currently active context, then access is al lowed.

Otherwise, if the bytecode is putstatic and the field being stored is a reference type and the reference
being stored is 2 reference to a temporary JCRE Entry Point Object or a global array then access is denied.

Otherwise, access is allowed,

Accessing Array Objects

Bytecodes:

<Traload, «Trastore, arraylength, checkcast, instanceof

6.2.83

If the JCRE is the cutrently active context, then access is allowed.

Otherwise, if the bytecode is aastore and the component being stored is a reference type and the

reference being stored is a reference to a temporary JCRE Entry Point Object or a global array then access
is denied. ’

Otherwise, if the array is owned by the currently active context, then access is allowed,
Otherwise, if the amay is designated globa!, then access is aliowed.

Qtherwise, access is denied.

Accessing Class Instance Object Fields

Bytecodes:

getfield, putfield

6.2.8.4

IFthe JCRE is the currently active context, then access is aliowed.

Ortherwise, if the bytecode is puc£ield and the field being stored is a reference type and the reference
being stored is a reference to a temporary JCRE Entry Point Object or a global array then access is denjed,

Otherwise if the object is owned by the currently active context, then access is allowed.
Otherwise, aceess is denied.

Accessing Class Instance Object Methods

Bytecodes:

invokevirtual

I the object is owned by the currently active context, then access is allowed, Context is switched to the
object owner's context.

Otherwise, if the object is designated a JCRE Entry Paint Object, then access is allowed. Context is
switched to the object owner’s context (shall be JCRE),

Copyright © Dacember 14, 1998 Sun Microsystems, fnc. 69

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

PCT/US00/01234

44

Java™ Card ™ Runtime Environment (JCRE) 2.1 Specification

B Otherwise, if JCRE is the curren tly active cofttext, then access is allowed, Context is switched to the object
owner's context.

B Otherwise, access is denied.

6.2.8.5 Accessing Standard Interface Methods

Bytecodes:

invokeinterface

B If the object is owned by the currently active context, then access is allowed,

W Otherwise, if the JCRE is the currently active context, then access is allowed. Context is switched 1o the
object owner's context.

B Otherwise, access is denied,

6.2.8.6 Accessing Shareable Interface Methods

Bytecodes:

invekeinterface

@ Ifthe objoct is owned by the currently active context, then access is allowed.

W Otherwise, if the object’s class implements a Shareable interface, and if the interface being invoked
extends the Shareable interface, then aceess is allowed. Context is switched to the object owner's
context.

M Otherwise, if the JCRE is the currently active context, then aceess is allowed. Context is switched to the
object owner’s context.

B Otherwise, access is denied.

6-10 Copyright © December 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 25)

WO 00/45262

6.2.8.7

PCT/US00/01234

45
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Throwing Exception Objects

Bytecodes:

athrow

6288

If the object is owned by the currently active context, then access is allowed.
Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed,
Otherwise, if the JCRE is the currently active context, then access is allowed.

Otherwise, access is demied.

Accessing Class Instance Objects

Bytecodes:

checkeast, instanceof

6.2.89

If the object is owned by the currently active context, then aceess is allowed.

Otherwise, if JCRE is the currently active context, then access is allowed.

Otherwise, if the object is designated a JCRE Entry Point Object, then access is allowed.
Otherwise, ifthe JCRE is the cutrently active context, then access ts allowed.
Otherwise, access is denied.

Accessing Standard Interfaces

Bytecodes:

checkcast, instanceof

I£ the object is owned by the currently active cantext, then aceess is aliowed.
Otherwise, if the ICKRE is the currently active context, then access is atiowed.
Otherwise, access is denied.

6.2.8.10 Accessing Shareable Interfaces
Bytecodes:

checkcast, instanceot

1f the object is owned by the curmrently active context, then access is aflowed.

Otherwise, if the object’s class implements 8 Shareabie interface, and if the object is being cast into
{check) ot i an i of (i f) an interface that extends the Shareable interface, then access
is allowed.

Otherwise, if the ICRE is the currently active context, then access is allowed.
Otherwiss, access is denied.

Copyright © Dacember 14, 1998 Sun Microsystems, inc. 6-11

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

46

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specificaticn

6.3

Transient Objects and Applet contexts

Transient objects of CLEAR_ON_RESET type behave like persistent objects in that they can be accessed only
when the currently active applet context is the same as the owner of the object (the currcatly active applet
context at the time when the object was created).

Teansient objects of CLEAR_ON_DESELECT type can oniy be created or accessed when the currently active
applet context is the currently selected applet context. if any of the makeTransient factory methods is
calied 10 create a CLEAR_ON_DESELECT type transient object when the currently active appiet context is not
the currently selected applet context, the method shali throw 2 SystemException with reason code of
ILLEGAL_TRRNSIENT. Ifan attempt is made to access a ransient object of CLEAR_ON_DESELECT fype
when the currently active applet context is not the currently selected appist context, the JCRE shall throw a
SecurityException,

Appiets that are part of the same package share the same group context. Every applet instance from a package
shares all its object instances with ail other instances from the same package. (This includ ient objects of
both CLEAR_ON_RESET fype and CLEAR_ON_DESELECT typs owned by these applct Instances.)

The transient objects of CLEAR_ON_DESELECT type owned by any applet instance within the same package
shall be accessible when any of the appiet instances in this package 1 the currently selected applet.

6-12 Copyright © December 14, 1998 Sun Microsysiems, inc,

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

7.

47
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Transactions and Atomicity

A transaction is a logical set of updates of persistent data, For example, ransferting some amount of money
from ene account to another is & banking transaction. 1t is important for transactions to be atomic: either all of
the data fields are updated, or none are. The JCRE pravides robust support for stomic wansactions, so that card
data is restored to its otiginal pre-transaction state if the transaction does not complete normally, This
mechanism protects against events such as power joss in the middle of a transaction, and against program errors
that might cause data corruption should all steps of 2 tra M not /! mally.

7.1

Atomicity

Atomicity defines how the card handles the contents of: persistent storage after a stop, failure, or fatal exesption
during an update of a single object or class field or array component. If power is lost during the update, the
applet developer shall be able torely on what the field 'or array companent contains when power is restored.

The Java Card platform guarantees that any updatc to a single persistent object or class field will be atomic. In
addition, the Java Card platform provides single component levei atomicity for persistent arrays, That is, if the
smart card loses power during the update of a data element (field in an objecticlass or component of an array)
that shall be preserved acrass CAD sessions, that data ¢lement will be restored to its previous value.

Some methods also icity for block updates of multiple data clements. For example, the atomicity

of the Uei1 . arTayCopy method guarantees that either all bytes ate correctly copied or else the destination
array is restored (o its previous byte values.

An applet might not require atomicity for array updates. The Ut i1, arrayCepyNonAtomic method is provided
for this purpose. It does not use the transaction commit buffer even when called with a transaction in progress.

7.2

Transactions

An applet might need to atomically update several different fields or array components in several different
objects. Either all updates take place correctly and consistently, or else all fields/components are restored to
their previous values.

The Java Card platform suppons a transactional model in which an applet can designate the beginning of an
atomic set of updates with 2 call to the JCSystem. beginTransaction method. Each object update afler this

Copyright © December 14, 1988 Sun Microsystems, Ing. 71

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

47/1

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification ¢

peint is conditionaliy updated. The field or arTay component appears to be updated—reading the field/array
comparnent back yields its latest conditional value—but the updatz is not yet committed.

When the applet calls JCSystem.commitTransaction, all conditional updates are committed 10 persisient
storage. [f power is lost of if some other system failure occurs ptior to the completion of

JCSystem. conmitTransact icn, all conditionally updated fields or array components are restored to their
previous values. If the apptet ani | problem or decides to cancel the ransaction, it can
programmaticaily unde conditional updates by calling JCsysten. abortTransaction.

7.3

Transaction Duration

A transaction always ends when the JCRE Tegains programmatic control upon reqzn from the applet's selece,
deselect, process or install methods., This is true wheth atr ion ends ily, with an applet’s
call to commit Transaction, or with an abertion of the transaction (either programmatically by the applet, or
by default by the JCRE). For more details on transaction abortion, refer to pamgraph 7.6.

Transaction duration is the life of a tansaction berween the call to JCSystem -beginTransaction, and either
a call to commitTransaction or an zbottion of the transaction.

74

Nested Transactions

The model currently that nested tra ions are not possible. There can be only one transaction in
Progress at a time. [f JCSyatem. beginTransaction is called whils & ransaction is already in'progress, then
a8 TransactionException is thrown,

The JCSystem. transactionDepth method is provided to allow you to determine if a transaction is in
progress.

1.5

Tear or Reset Transaction Failure

If power is lost (tear) o the card is reset or some other System failure oceurs while a transaction is in progress,
then the JCRE shall restore to their previous values all fields and aay components conditionally updated since
the previous call to JCSystem. beginTransaccion.

This action is performed automatically by the JCRE when it reinitializes the card afier recovering from the
power loss, reset, o failure, The JCRE determines which of those objects (if any} were conditionally updated,
and cestores them,

Note ~ Object space used by instances created during the transaction that failed due to power loss or card reset
can be recovered by the JCRE. :

T-2 Copyright © December 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

47/2

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

7.6

7.6.1

7.6.2

7.6.3

Aborting a Transaction

Transactions can be aborted either by an applet or by the JCRE.

Programmatic Abortion

If an applet encounters an internal problem cr decides to cancet the iom, it can pre ically undo
conditional updates by calling JCSystem. abartTransaction. Ifthis method is called, all conditionally
updated fields and array components since the previous ¢al to JCSystem.beginTransaction are restored to
their previous values, and the JCSystem. transactionDepch value is resetto 0.

Abortion by the JCRE

If an applct retums from the select, deselect, process. or install methods with a transaction in
progress, the JCRE 2utomatically abons the ransaction. [fa return, from any of select, deselect, process
or install methods oceurs with a transaction in progress, the JCRE acts as if an exception was thrown,

Cleanup Responsibilities of the JCRE

Object instances created during the transaction that is beingaborted can be deleted only if ali references to these
objects can be focated and converted into null. The JCRE shall emsure that references to objects created
during the aboted transaction are equivalent to anul1 reference, '

7.7

Transient Objects

Only updates to persistent objects participate in the transaction. Updates to transient objects are never undone,
regardless of whether or not they were “inside a transaction”

7.8

Commit Capacity

Since platform resources are limited, the number of bytes of conditionally updated data that can be accumulated
during 2 ransaction is limited. The Java Card technology provides methods to determine how much comemir
capacity is available on the implementation. The commit capacity represents an upper bound on the number of
conditional byte updates available. The actual gumber of conditienal byte updates availabie may be lower due
to management overhead. .

An exception is thrown: if the commit capacity is ded during a

Copyright © December 14, 1998 Sun Microsystems, lnc. 7-3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

8.

47/3

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

API Topics

The topics in this chapter compl the requi pecified in the Java Card 2.1 API Drafft 2
Specification. The first topic is the Java Card 1/O functionality, which is implemented entirely in the ApDU class,

The secand topic is the APl supporting Java Card szeurity and cryptography. The JCSystem class encapsulates
the AP] version level. :

Transactions within the AP

Unless specifically called out in the Java Card 2.1 API Specification, the impl ion of the AP! classes
shall not initiate or otherwise alter the state of a transaction if one is in progress.

Resource Use within the API

Unless specifically calied out in the Java Card 2.1 API Specification, the implementation shall support the
invocation of AP] instance methods, even when the owner of the object instance is not the currently selected
applet. [n other words, unless specifically called out, the implementation shall not use resources such as
transient objects of CLEAR_ON_DESELECT type.

Exceptions thrown by AP classes

All exception objects thrown by the AP1implementation shall be temporary JCRE Entry Point Objects.
Tempotary JCRE Entry Point Objects cannot be stored in class variables, instance variables or array
components. (See 6.2.])

8.1

8.1.1

The APDU Class

The APDU class encapsuiates access to the ISO 78164 based 'O acfoss the card serial iine, The APDU Class is
designed to be independent of the underlying IO transport protocol.

The JCRE may support T=D or T=1 transport protocols or both,
T=0 specifics for outgoing data transfers
For compatibility with legacy CAD/terminals that do not support block chained mechanisms the APDU Class

allows mode selection via the setOutgoingNoChaining methed.

Copyright @ Dacember 14, 1998 Sun Microsystems, Inc. 81

SUBSTITUTE SHEET (RULE 25)

WO 00/45262

PCT/US00/01234
47/4

Java ™ Card ™ Runtime Environrment (JCRE) 2.1 Specification

8.1.1.1 Constrained transfers with no chaining

When the no chaining mode of output transfer is requested by the applet by calling the
setGutgoeingNoChaining method, the following p) shall be followed.

Note — when the no chaining mode is used, calls to the waitExt engion method shall throw an
APDUExcept.ion with reason code ILLEGAL_USE.

Motation

Le = CAD expecied length.

Lr = Applet response length set via setOQutgoinglength method.

<INS> = the protocol byte equal 10 the incoming header INS byte, which indicates that al! data bytes
will be transferred next.

<~INS> = the protocol byte that is the complement of the incoming header INS byte, which indicates
about 1 data byte being transferred next.

<SW1,5W2> = the response status bytes as in [ISO7816-4.

1SO 78164 CASE 2

Le==Lr

Lr<Le

Lr>Le

1. The card sends Lt bytes of output data vsing the standard T=0 <IN$> or <~[NS> procedure
byte mechanism.

2. The card sends <SW1,5W2> completion status on completion of the Applet .process
method.

1. The card sends <0x61,Lr> completion status bytes
2. The CAD sends GET RESPONSE command with Le = Lr.

3. The card sends Lt bytes of output data using the standard T=0-<INS> or <~INS> procedure
byte mechanism.

4. The card sends <SW1,SW2> completion status on completion of the Applet .process
method,

1. The card sends Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

2. The card sends <0x61,(Lz-Le}> completion status bytes
3. The CAD sends GET RESPONSE command with new Le <= Lr.

4. The card sends {new) Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

8-2 Copyright ® December 14, 1938 Sun Microsystems, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234
47/5

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

5. Repeat steps 2-4 as necessary to send the remaining output data bytes (Lr) as required.
6. The card sends <SW1,5W2> compietion status on completion of the Applet . process
method.
{SQ 78164 CASE 4
In Case 4, L¢ is determined after the following initial exchange:
1. The card sends <0x61,Lr status bytes>
2. The CAD sends GET RESPONSE command with Le <= Lr,
The rest of the protocol sequence is identical to CASE 2 described above,
If the applet aborts early and sends less than Le bytes, 2¢eros may be sent instead to fill out the length of the
transfer expected by the CAD.)
8.1.1.2 Regular Output transfers

When the no ¢chaining mode of output transfer is not requested by the applet (that is, the setCutgoing
method is used), the following protocol sequence shall be followed:

Any 1SO-7816-3/4 compliant T=0 protoco} transfer sequence may be used.

Note — The waitExtension method may be invoked by the applet between successive calls to sendBytes
or sendBytesLong methods. The wait Extension method shall request an additional work waiting time
(1SO 7816-3) using the 0x60 procedure byte.

£.1.1.3 Additional T=0 requirements
At any time, when the T=0 cutput transfer pratocol is in use, and the APDU class is awaiting a GET
RESPONSE command from the CAD in reaction 10 a response status of <0x61, xx> from the card, if the CAD
sends in a different command, the sendBytes or the sendBytesLong methods shall throw an
APDUExcepticn with reason code NO_TO_GETRESPOMNSE.
Calls to sendBytes of sendBytesLong methods from this point on shail result in an APDUException with
reason code ILLEGAL_USE. If an 180Exception is thrown by the applet after the NO_T0_GETRESPONSE

exception has been thrown, the JCRE shall discard the response status in its reason code. The JCRE shall restart
APDU processing with the newly received command and resume APDU dispatching.

8.1.2 T=I specifics for outgoing data transfers

8.1.2.1 Constrained transfers with no chaining

‘When the na chaining mode of output ranster is requested by the applet by calling the
setoutgoingNoChaining method, the following protocol sequence shall be foliowed:

Notation
Le = CAD expected length,

Lr = Applet response length st via setOutgeingLength method.

Copyright © Decamber 14, 1998 Sun Microsystems, inc. 83

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

47/6

Java ™ Card ™ Runtime Egviromaent (JCRE) 2.1 Specification

The transport prote: ol sequence shall nat use block chaining, Specifically, the M-bit (more data bit) shall not be
set in the PCB of the I-blocks during the transfers (SO 7816-3). in ather words, the entire outgoing data (Lr
bytes) shall be transferred in one I-biock.

(If the applet aborts early and sends less than Lr bytes, 2eres shall be sent instead to fill out the remzining
[ength of the block.)

Note — When the no chaining mode is used, calls to the wait Extension methed shall threw an
APDUEXcept ion with reason code ILLEGAL USE.

8.1.2.2 Regular Qutput transfers

When the no chaining mode of output transfer is not requested by the appleti.c the setOutgoing method is
used, the foltowing protocel sequence shail be followed:

Any [50-7816-3/4 comptiant T=) pratocol transfer sequence may be used,

Note — The waitExtension method may be invoked by the applet between successive calls 1o sendBytes
or sendBytesLong methods, The waitExtension method shall send an S-biock commang with WTX

request of INF units, which is equivaient to a request of | additional work waiting time in T=0 mode. (See ISO
7816-3).

8.2

The security and crypto packages

The get Instance method in the following classes retumn an implementation instance in the context of the
calling applet of the requested algorithn:

javacard.security. MessageDigest

javacard.security. Signacture

javacard, security. RandomData

javacardx.crypto, Cipher.

An mplementation of the JCRE tmay implement 0 or moce of the algorithms listed in the APL. When an

algorithm that is not impl d is req ¢ this meth d shall throw a CryptoException with reason
tode NO_SUCH_ALGORITEM.

Implementations of the sbove classes shall extend the cortesponding base class and implement all the abstract
methods. All data ailocation associated with the implementation instance shall be performed at the time of
instance construction 10 ensure that any Jack of required resources can be flagged early during the installation of
the applet.

Similarly, the buildKey method of the javacard. security.keyBuilder class retums an
itnplementation instance of the requested Key type. The JCRE may implement 0 or more types of keys. When s
key type that is not implemented is requested, the method shall throw s CryptoException with reason code
NO_SUCH_ALGORITEM.

84 Copyright © Dacember 14, 1998 Sun Microsystems, Ine.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234
47/7

Java ™ Card ™ Runtime Environment (ICRE) 2.1 Specification

Implementations of key types shal} impl the iated interface. All data allocati iated with the
key implementation instance shall be performed at the time of instance construction to ensure that any lack of
required resources can be flagged early during the inswliation of the applet.

8.3 JCSystem Class

In Java Card 2.1, the getVersion method shall retyrn {short) 0x0201,

Copyright © December 14, 1998 Sun Microsystems, Inc. 8-5

SUBSTITUTE SHEET (RULE 26)

WO 00/45262
47/8

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

9. Virtual Machine Topics

PCT/US06/01234

The topics in this chapter detail virtual machine specifics.

0.1 Resource Failures

A lack of resources condition (such as heap space) which is recoverable shall result in a SystemExcepticn
with reason code NO_RESOURCE. The factory methods in JCSys tem used to create ransient arrays throw a
SystemException with rezson code NO_TRANSIENT_ SPACE to indicate lack of transient space.

All other (non-recoverable) virmal machine errors such as stack overfiow shali result in a virtual machine errer.
These conditions shall cause the virtual machine to halt, When such a non-recoverable virtual machine error
©Oceurs, an implementation can optionally require the card to be muted or blocked from further use,

Copyright @ Decamber 14, 1998 Sun Microsystems, lnc. 6-1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

10.

41/9

Java ™ Card ™ Runtime Environment {JCRE) 2.1 Specification

Applet Installer

Applet installation on smart cards using Java Card technology is 2 complex topic. The Java Card API 2.1 is
intended to give ICRE implementers as much freedom as possible in their implementations. However, some
basic common specifications are requited in order to allow Java Card applets to be instailed without knowing
the implementation detaiis of a particular installer,

‘This specification defines the concept of an Installer and specifies minimal installation requirements in order 10
achieve interoperability across a wide range of possible Installer implementations.

The Applet Installer is an optional part of the JCRE 2.1 Specification. That is, an implementation of the JCRE
does rot necessarily need to include a post-issuance installer. However, if implemented, the instalier is required
1o support the behavior specified in section 9.1,

10.1

10.1.1

The Installer

The mechanisms necessary to install an applet on smart cards using Java Card technology ate embodied in an
on-card comg called the Jnstaller,

To the CAD the Installer appears to be an applet. It has an AID, and it b the currently sclected applet

when this ALD is successfully processed by a SELECT command, Once setected, the Installer behaves in much
the same way as any other applet:

+ Itreceives all APDUS just like any other selected applet.

¢ bts design specification prescribes the various kinds and formats of APDUs that it eXPECts to receive along
with the semantics of those commands under various preconditions,

¢ It processes and responds to all APDUs that it receives. [APDUs are

ponded to with an error
condition of some kind,

¢ When another applet is selected (or when the card isreset or when power is removed from the card), the
Instalier b deselected and i ded until the next time that it is SELECTed.

Installer Implementation

The Instailer need not be implemented as an applet on the card. The requirement is only that the Installer
functionality be SELECTable. The corollary to this requirstient s that Installer compoencnt shall not be able to
be invoked when a non-Installer applet is selected nor when no applet is selected.

Capyright © December 14, 1998 Sun Microsystems, Inc. 101

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234
47/10

lava ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Obviously. 2 JCRE implementer could choose to implement the Installer as an applet, If so, then the Instatler
might be coded to extend the Applet class and respond 1o invocations of the select, process, and
deselect methods.

But a JCRE implementer could also implement the Instatier in other ways, as long as it provides the
SELECTable behavior to the outside world. In this case, the JCRE implementer has the freedom to provide
some other mechanism by which APDUs are delivered to the Installer code module.

10.1.2 Installer AID

Because the installer is SELECTable, it shall have an AID. JCRE implementers are free 1o choose their own
AlID by which their Installer is selected. Multiple installers may be implemented.

10.1.3 Installer APDUs

The Java Card API 2.1 does not specify any APDUs for the Installer, JCRE lmplmenlm are entirely free to
choose their own APDU commands to direct their Instalier in its work.

The model is that the Instalier on the card is driven by an installation program nunning on the CAD In order for
installation to succeed, this CAD installation program shall be able to;

¢ Recognize the card.
« SELECT the Installer on the card.

+ Drive the instailation process by sending the appropriate APDUs 1o the card Instaler. These APDUS will
contain:
* Authentication information, to ensure that the installation is authcrized.
> The appiet code to be loaded into the card's memory.
» Lmlcage mfommon to Jink the applet code with code already on the card.
» tnitial P data to be sent 1o the applet’s install method.

The Java Card AP] 2.1 does not specify the details of the CAD installation program nar the APDUs passed
between it and the [nstalter.
10.14 Installer Behavior .

JCRE implementers shall also define other behaviors of their Installer, including:

+ Whether or not installation can be abarted and how this is done.
* What happens if an exception, reset, or power faii occurs during instafiation.
¢ What happens if another applet is selected before the Instalier is finished with its work.

The JCRE shall guaranter that an apptet wiil not be decmed successfully ingtalled if:

* the applet’s install method throws an exception before successful return from the Applet.register
method. (Refer to paragraph 9.2.)

10-2 Copyright ©® December 14, 1998 Sun Microsystems, Inc.

SUBSTITUTE SHEET [RULE 26)

WO 00/45262 PCT/US00/01234

10.1.5

47/11
Java ™ Card ™ Runtime Environument (JCRE) 2.1 Specification

Installer Privileges

Although an Installer may be implemented as an applet, an Installer will typically require access to features that
are not available to “other applets. For example, depending on the ICRE implementer's implementation, the
Installer will need to:

Read and write directly 10 memory, bypassing the chject system and/or standard security.
Access objects owned by other applets or by the JCRE.

Invoke non-entry point methods of the JCRE.

Be able to invoke the install method of a newly installed applet.

L Y

Again, it is up to each JCRE implementer to determine the Installer implementation and supply such features in
their JCRE implementations as necessary to support their Installer. JCRE implementers are also responsible for
the security of such features, so that they are not available to normal applets.

10.2

10.2.1

The Newly Installed Applet

There is a single interface between the Installer and the applet that is being mnstalled. After the Installer has
correctly prepared the applet for execution (performed steps such as joading and linking), the Installer shall
invoke the applet's install method. This method is defined in the Applet class.

The precisc mechanism by which an applet's install method is mvoked from the Installer isa JCRE

impi g d imp} ion detail, H , there shall be a context switch so that any context-
related operations performed by the install method (such as creating new objects) are done in the context of
the new applet and not in the context of the Installer. The Instailer shall atso ensure that array objects created
during appiet class initialization (<clinit>) methods are also owned by the context of the new applet.

The installation of an applet is deemed complete if all steps are completed without failure or an exception being
thrown, up to and including successful return from executing the Applet . register method. At that point, the
installed applet will be selectable.

The maximum size of the parameter data is 32 bytes. And for security reasons, the bArray parameter is zeroed
after the retum (just as the APDU buffer is zeroed on retum from an applet’s process methed.)

Installation Parameters
Other than the maximum size of 32 byles, the Java Card API 2.1 does not specify anything about the contents

of the instailatien p byte aray seg ‘This is fully defined by the applet designer and can be in any
format desired. In addition, these installation parameters are intended to be opaque to the Instailer.

JCRE implementers should design their instailers so that it is possible for an installation program nmning in a
CAD to speeify an arbitrary byie say to be delivered to the lnstaller. The Installer simply forwards this byte
array to the target applet’s install method in the baAryay parameter. A fypical implementation might define a
JCRE impiementer-proprietary APDU d that has the ics “call the applet’s install method

ing the of the panying byte array.”

Copyright © December 14, 1998 Sun Microsystems, Inc. 10-3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234
47/12

Java ™ Card ™ Runtime Environrnent (JCRE) 2.1 Specification

11. API Constants

Somie of the AP] classes don’t have values specificd for their constants in the Java Card AP 2.1 Reference. If
constant values are not specified consistently by implementers of this JCRE 2.1 Specification, industry-wide
interoperability is impossible. This chapter provides the required values for constants that are not specified in
the Java Card API 2.] Reference. .

Class javacard framawork APDU

public static final byte PROTOCOL_TO = 0;
public static final byte PROTOCOL_T1 = 1;

Class javacard.framework. APDUException

public static final short ILLEGAL_USE = 1;

public static final short BUFFER_BOUNDS = 2;
public static final short BAD LENGTH = 3;

public static final short IO ERROR = 4;

public static final short NO_TO_GETRESPONSE = OxAk;

Intertace javacard framework 1ISO7816

public final static short SW_NO_ERROR = {£hort)0xS000;

public final static short SW_BYTES REMAINING_00 = 0x6100;
public final static short SW_WRONG_LENGTH = 0x6700;

public static final short SW_SECURITY_STATUS_NOT_SATISFIED = 0x6982;
public final static short SW_FILE INVALID = 0x6983;

public final static short SW_DATA INVALID = Ox6984;

public final static shert SW_CONDITIONS NOT SATISFIED = Ox6985;
public final atatic short SW_COMMAND MOT ALLOWED = Ox6986;
public final static short SW_APPLET SELECT PAILED = 0x699%;
publi¢ final static short SW WRONG_DATA = OXGAR0;

public final static short SW_FUNC_NOT_SUFPORTED « Ox6A81,
public final static short SW_FILE_NOT_ FOUND = 0x6AB2;

public final static short SW_RECORD_NOT_FOUND = Ox€A83;

public final statie shert SW_INCORRECT_PlP2 = OxEAB&;

public final static chort SW_WRONG P1lP2 = 0x8300;

public final static short SW_CORRECT LENGTH_00 = 0XEC00;

public final static ghort SW_INS_NOT_SUPPORTED = 0X6D00;
public final static short &W_CLA_NOT_SUPPORTED = OX6EQC;

public final static short SW_UNKNOWN = Ox6FC0;
public static final short SW_FILE FULL = OX6A84;
public final static byte OFPSET_CLA = 0;

public final static byte OFFSET INS = 1;

public final static byte OFFSET_P1 = 2:

public final static byte OFFSET P2 = 3;

t

Copyright © December 14, 1998 Sun Microsystems, Inc. 1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 . PCT/US00/01234
47/13

Java ™ Czrd ™ Runtime Environment (JCRE) 2.1 Specification

public final static byte OFFSET_LC = 4;

public final static byte OFFSET_CDATA= 5;

public final static byte CLA_ISO7B16 = 0OX0D;

public final static byte INS_SELECT = (byte) Oxh4;

public £inal static byte INS_EXTERNAL AUTHENTICATE = {byte) OxB2;

Class javacard.framewerk.JCSystem

public static final byte NOT_A_TRANSIENT OBJECT = ©;
public static final byte CLEAR_ON_RESET = i;
public static final byte CLEAR_ON_DESELECT = 2;

Class javacard.framework.PINExcaption
public static final short ILLEGAL_VALUE = 1;

Class javacard.framework. SystemException

public stati¢ final shor: ILLEGAL VALUE = 1;
public static final shert NO_TRANSIENT SPACE = 2;
public static final short ILLEGAL_TRANSIENT = 3;
public static f£inal short ILLEGAL AID = 4;
public static fipal short NO_RESQURCE = S;

Class javacard.security. CryptoException

public static final sheort ILLEGAL VALUE = 1;
public static final short WNINITIALIZED KEY = 2;
public static final short NO_SUCH_ALGORITHM = 3;
public static final short INVALID INIT = 4;
public static final short ILLEGAL USE = 5;

Class javacard.security, KeyBuilder

public static final byte TYPE_DES_TRANSIENT RESET = 1:
public static final byce TYPE_DES TRANSIENT DESELECT = 2;
public static final byte TYPE_DES = 3;

public static final byte TYPE RSA_PUBLIC = 4:

public static final byte TYPE_RSA PRIVATE = §;

public static final byte TYPE RSA_CRT_PRIVATE = §;
public static £inal byte TYPE_DSA_PUBLIC = 7;

public static final byte TYPE_DSA_PRIVATE = 8;

Public static final short LENGTH DES e 64,

public static final short LENSTH_DESI_2KEY = 128;
public static final short LENGTH DES3 3KEY & 192;
public static final short LENGTH RSA_S512 » 512;
public static final shorc LENGTH RSA_768 = 768;
public stacic final short LENGTH RSA_1024 = 1024;
public atavic f£inal short LENGTH RSA 2048 = 2046;
public static final short LEMGTH DSA_S12 = 512;
public static final short LENGTH_DSA_768 » 768;
public static final short LENGTH DSA_1024 = 1024;

Class javacard.sacurity. MessageDigest

public static final hyts ALG_SHA = 1;

public static final byte ALG MDS w 2; .
public static final byre ALG RIPEMD16D = 3;
Class javacard.security.RandomData

public static final byte ALG_PSEUDO_RANDOM = 1;
public static final byte ALG_SECURE_RAMDOM = 2;
Class javacard.security.Sighature

public static final byte ALG_DES_MAC4_NOPAD = 1;
public static final hyte ALG_DES MACB_NOPAD = 2;
public static final byte ALS_DES MAC4_IS09757_M1 = 3;

2 Copyright © December 14, 1358 Sun Microsystems, Inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

public stacic
public static
public static
public static
public statie
publie static
public static
public static
public etatic
public static
public static
public static
public scatic

Class javacardx.crypto.Cipher

publiec stakic
public static
public static
public static
public static
public static
public static
public static
public static
public scatic
public static
public static

final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final hyte

final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte
final byte

47/14

ALG_DES_MACS_JS09797_ML ~ 4,
ALG_DES_MAC4_I1S0$787 M2 = §;
ALG_DES_MACB_ISO3757_M2 = 6;
ALG_DES MAC4_PKCSS = 7;

ALG DES_MACE_PKCS5 = 4;

ALG RSA_SHA_IS05796 = 9;
ALG_RSA_SHA_PKCS1 = 10;
ALG_RSA_MDS PKCS1 = 11;
ALG_RSA_RIFEMD160_1509796 = 12;
ALG_RSA_RIPEMDISO_PKCS1 = 13;
ALG_DSA_SHA = 14;

MODE_SIGN = 1;

MODE_VERIFY = 2;

ALG

DES_CBC_NOFAD = 1;
_DES_CBC_I509797_M1 = 2;
_DES_CRC_1S09757 M2 = 3;
_DES_CBC_PKCSS « 4,
DES_ECE_NOPAD = 5;

ALG_DES_ECB_I509797_ Ml = §;
ALG_DES_ECE_1SQ9797 M2 = 7;
ALG_DES_ECB_PKCSS = 8;
ALG_RSA 15014888 a o:
ALG_RSA_PKCS1 = 10;
MODE_DECRYPT = 1;
MODE_ENCRYPT = 2;

ALG
ALG
ALG
ALG

PCT/US00/01234

Copyright © Decamber 14, 1998 Sun Microsystems, Ing.

SUBSTITUTE SHEET (RULE 26)

3

WO 00/45262 PCT/US00/01234

47/15

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

Glossary

AID is an acronym for Application 1Dentifier s defined in ISO 7816-5.
APDU is an acronym for Application Protocol Data Unit as defined in 150 7816-4,

APl is an acronym for Application Programming Intetface. The API defines cailing conventions by which an
application program accesses the operating system and other servites, R .

Applet within the context of this document means a Jave Card Applet, which is the basic unit of szlection,
context, functionality, and security in Java Card technology,

Applet developer refers to a person creating a Java Card applet using the Java Card technology specifications.
Applet firewall is the mechanism in the Java Card technology by which the VM prevents an applet from

g ized 10 objects owned by other applet contexts or the JCRE context, and reparts or
otherwise addresses the violation.

Atomic operation is an operation that either completes in its entirety (if the operation succeeds) or no part of
the aperation completes at all (if the operation fails).

Atomicity refers to whether a particular operation is atomic or not and is necessary for proper data recovery in
cases in which power is lost or the card is unexpectadly removed from the CAD.

ATR i5 an acronym for Answer to Reset. An ATR is & string of bytes sent by the Java Card afier a reset
condition.

CAD is an acronym for Card Acceptance Device. The CAD is the device in which the card is inserted.
Cast {s the explicit conversion from one data type to another,

cJCK is the test suite to verify the compliance of the implementation of the Java Card Technotogy
specifications. The ¢JCK uses the JavaTest tool to run the test suite.

Class is the prototype for an object in an cbject-oriented language. A class may also be considered a set of
objects that share a common structure and behavior. The syucture of a class is determined by the class variables
that represent the state of an object of that class and the behavior is given by 8 set of methods associated with
the class.

Classes are related in & class hicvarchy, One class may be specialization (a subclass) of another (its
superciass), it may have reference 10 ether classes, and it may use other classes in a client-server relationship.

Context (See Appict execution context)

Currently active context. The JCRE keeps track of the currently active Java Card applet context. When a
virtual method is invoked on an object, and a context switch is required and permitted, the currently active

Copyright ® December 14, 1398 Sun Microsystems, Inc. 1

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234
47/16

Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification

context is changed te correspond to the 2pplet context that owns the object. When that method returns, the
previous context is r d. L ions of static methods have no effect on the corrently active context. The

currently active context and sharing status of an object together determine if acoess to an object is permissible.

Currently selected applet The JCRE keeps track of the currently sciected Java Card applet. Upon receiving a
SELECT command with this applet's AID, the JCRE makes this applat the currently selected applet. The JCRE
sends all APDU commands to the currently selected applet.

EFEPROM is an acronym for Electrically Erasable, Programmabie Read Only Memory.
Firewai} (ses Applet Firewall),

Framework is the set of classes that implement the APL. This includes core and i K

Responsibilities inciude dispatching of APDUs, applet selection, managing atomicity, and irnsullf'mg applets.
Garbage collection is the process by which d ically all d storage is ically reclaimed during
the execution of a program. .

Instance variables, also kmown as fields, represent a portion of an object’s internal state, Each cbject has its
owa set of instance variabies. Objects of the same class will have the same instance variables, but each object
can have different values. ’

instantiation, in cbject-oriented programming, means to produce a particular object from its class template.
This invoives allocation of a data structure with the types specified by the template, and initialization of
instance variables with either default values or those provided by the class’s constructor finction.

JAR is an acronym for Java Archive. JAR is a platform-independent file format that combines many files into
ane.

Jave Card Runtime Enviroument (JCRE) consists of the Java Card Virtual Machine, the framework, and the
associated native methods.

JC21RI is 2n acronym for the Java Card 2.1 Reference Impicmentation.

JCRE implementer refers to a person creating 2 vendor-specific implementation using the Java Card API

JCVM is an acronym for the Java Card Virtual Machine. The JCVM is the foundation of the OP card

ar The JCVM byte code and manages classes and objects. It enforces separation between
applications (firewalis) and enabies secure data sharing.

JDK is an acromym for Java Deveiopment Kit. The JDK is 2 Sun Microsystems, Inc. product that provides the
environment fequired for programming in Java. The JDK is availabie for a variety of platforms, but most
notably Sun Solaris and Microsoft Windows®.

Method is the name given 1o a procedure or routine, associsted with one or more classes, in object-oriented
languages.

Namespace is a set of names in which all names arc unique.

Object-Oriented is a programming methodology based on the ot of an object, whick: is a data structure
encapsulated with a set of routines, called methods, which operase on the data,

Objects, in object-oriented programming, arc unique instances of & data sructurs defined according to the
template provided by its class. Each object has its own values for the variables belonging to its class and can
d to the g2 thods) defined by its class.

2 Copyright @ December 14, 1988 Sun Microsystems, inc.

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

47/17
Java ™ Card ™ Runtime Environment (JCRE) 2.1 Specification
Package is a namespace within the Java programming language and ¢an have classes and interfaces. A package
is the smallest unit within the Java programming language.
Persistent object Persistent objects and their values persist rom one CAD session to the next, indefmitely.
Objects are persistent by defauit. Persistent object values arc updated atomically using transactions. The term
persistent docs not mean there is an object-orientad database on the card or that ehjects are

serialized/deserialized, just that the objects are not lost when the card loses power.

Sharesble interface Defines a set of shared interface methods. These interface methods can be invoked fram
ane applet context when the object impiementing them is owned by another applet context,

Shareable interface object (S10) An object that implements the shareable interface,

Transaction is an atomic operation in which the developer defines the extent of the aperation by indicating in
the program code the beginning and end of the wansaction.

Transient object. The values of fransient objects do not persist from one CAD session to the next, and are reset
toa default state at specificd intervals. Updates to the values of transient objccts are not atomic and are ot
affected by transactions.

Copyright © Dacember 14, 1998 Sun Microsystams, Inc. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 . PCT/US00/01234
47/18

1/5/99 12:49 PM Havnor; Stuff: JCRE D2 14DEC98: READ-ME-JCRE21-DF2.txt Page |
Date: 16 December 1998

Dear Java Card Licensee,

JCRE21-DF2-14DECY8.zip contains a second draft of the Java Card 2.1

Runtime Environment specification, dated December 14, 1998, for

Licensee review and comment. We have worked incorporate and clarify

the document based upon the review feedback we've received to date.

Complete contents of the zip archive are as follows:

READ-ME-ICRE21-DF2.txt - This READ ME text file

JCRE21-DF2,pdf - "Java Card Runtime Environment (JCRE)
2.1 Specification” in PDF format

JCRE21-DF2-changebar.pdf - The revised document with change bars

from previous version for ease of review.
Summary of changes:
1. This is now a draft 2 reiease and will be published on the public web site shortly.

2. New description of temporary JCRE Entry Point Objects has been introduced for putposes
of restricting unauthorized access.
Firewall chapter 6.2.1.

3. Global arrays now have added security related restrictions similar to temporary JCRE
Entry Point objects. Firewall chapter
62.2.

4. Detailed descriptions of the bytecodes with respect to storing restrictions for temporary
JCRE Entry Point Objects and
Global arrays added. Chapter 6.2.8.

5. General statement about JCRE owned excepticn objects added in chapter 8.

6. Corrected description of Virtual machine resource failures in transient factory metheds.
Chapter 9.1.

The "Java Card Runtime Environment 2.1 Specification” specifies the minimum behavior and runtime
envirenment for complete Java Card 2.1 implementation, as referred to by the Java Card APT 2.1 and Java Card
2.1 Virtual Machine Specification documents. This specification is required to ensure compatible operation of
Java Card applets. The purpose of this specification document is to bring all the JCRE elements together in a
concise manner as part of the Java Card 2.1 specification suite.

Please send review comments to <javaoem-javacard@sun.com> or to my address as below. On behaif of the
Java Card team, I look forward to hearing from you

Best,
Godfrey DiGiorgi

Godfrey DiGiorgi - godfrey.digiorgi@eng.sun.com
OEM Licensee Engineering

Sun Microsystems / Java Software

+1 408 343-1506 - FAX +1 408 517-5460

SUBSTITUTE SHEET (RULE 26)

EDITORIAL NOTE

APPLICATION NUMBER - 41657/00

This specification does not contain a page 48 ,

10

25

.
semwes
. .

sanng

-
nans

20

“« .
s

35

The claims defining the invention are as follows:

1. A method for operating a small footprint device that
includes a processing machine, wherein program modules are
executed on the processing machine, characterized by:

executing groups of one or more program modules in
separate contexts;

providing a context barrier for separating and isclating
the contexts and for

controlling the access of a program module executing in
one context to information and/or a program module executing
in another context; and

providing a global data structure, wherein each program
module of each context is allowed to read data from and write

data to the global data structure.

2, The method of claim 1 wherein said global data structure

is provided temporarily.

3. The method of claim 1 or 2 wherein only one of the

contexts is allowed to create said global data structure.

4. The method of any one of the preceding claims 1 to 3
wherein said method further comprises allocating separate

respective name spaces for each context.

5. The method of any one of the preceding claims 1 to 3
wherein said method further comprises allocating respective

memory spaces for each context.

6. The method of any one of the preceding claims 1 to 5
wherein said controlling of the access of a program medule
executing in one context to infeormation and/or a program
module executing in another context by said context barrier

further comprises preventing the access if the access is

49

10

.
.

-

-

*

ROXT:

*
csasn
.
cemans
- .
ene

.

save

30

35

unautheorized and enabling the access if the access is

authorized.

7. The method of claim 6 wherein said authorization of said

access includes at least one security check.

8. The method of any one of the preceding claims 1 to 7
wherein the processing machine comprises a virtual machine

running cn a processor.

9. A computer program product embodying a program of
instructions for operating a small footprint device according

to any one of the method claims 1 to 8.

10. A small footprint device that includes a processing
machine, wherein program modules are executed on the
processing machine, characterized by:

meansg for executing groups of one or more prdgram modules
in separate contexts;

a context barrier for separating and isolating the
contexts and for controlling the access of a program module
executing in one context to information and/or a program
medule executing in another context; and

at least one global data structure means for temporarily
creating at least one glcbal data structure, wherein each
program module of each context is allowed to read data from

and write data to the global data structure.

11. The small footprint device of claim 10 wherein only omne
of the contexts is allowed to create said global data

structure.

12. The small footprint device of claim 10 or 11 wherein said
device further comprises means for allocating separate

respective name spaces for each context.

50

10

A5

s wed ses
. -
. .

. .
LR Y]
*
sumsasn
.

cues

13. The small footprint device of claim 10 or 11 wherein gaid
device further comprises means for allocating respective

memory spaces for each context.

14, The small footprint device of any one of the preceding
claims 10 to 13 wherein said controlling of the access of a
program module executing in one context to information and/or
a program mcdule executing in another céntext by said context
barrier further comprises preventing the access if the access
is wunauthroized and enabling the access if the access is

authorized.

15. The small footprint device of claim 14 wherein the
authorization of said access includes at least one security

check.

16. The small footprint device of any one of the preceding
claims 10 to 15 wherein the proceasing machine comprises a

virtual machine running on a processor.

17. Use of a network for tramsmitting code from a server over
a communicationg link, the code comprising instructions for
operating a small footprint device according to any cne of the

method claims 1 to 8.

18. A method for operating a small footprint device
substantially as described herein in the detailed description

with reference to the drawings.
13. A computer program product substantially as described

herein in the detailed description with reference to the

drawings.

51

10

()

"9 e99 see
-
‘e
-
.

-
rass
.
evumen
-
ser e
.

“ens

20. A small footprint device sgsubstantially as described
herein in the detailed description with reference to the

drawings.

21. Use of a network for transmitting code from a server over
a communications link substantially as described herein in the

detailed description with reference to the drawings.

DATED THIS FIFTEENTH DAY OF AUGUST 2002.
SUN MICROSYSTEMS, INC
BY

PIZZEYS PATENT AND TRADE MARK ATTORNEYS

52

WO 00/45262 PCT/US00/01234

1118

120

110

100
—a
105

FIG. 1

SUBSTITUTE SHEET {RULE 26)

WO 00/45262 PCT/US00/01234

2118
210
[
SERVER
200
120
/[
CAD EQUIPPED
NETWORK DEVICE

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

38
Small-Footprint Device
/O (e.g., serial port)p~ 330
Primary storage
30 \
35 [~
/ |- 340
ROM ‘
Ve 300
B * Processor(s)
RAM
\316 |
Secondary Storage {320
(e.g., EEPROM)
FIG. 3
(PRIOR ART)

SUBSTITUTE SHEET {RULE 25)

WO 00/45262 PCT/US00/01234

4/18 4
e 00
Physical Device
~ 419
Machine (virtual or physical)

EXECUTION CONTEXT
430

Object
access

440

OBJECT

Object OBJECT
access

OBJECT

FIG. 4

(PRIOR ART)

SUBSTITUTE SHEET (RULE 28)

WO 00/45262 PCT/US(00/01234

518

520
510 4
OBJECT 1
(DATA)
ACTION \@
Vs 500
PRINCIPAL o520

ACTION
(ENTITY) _& OBJECT 2

GB (DATA)

ACTION

[NN]

/530

OBJECT N
(ENTITY)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

6/18

PCT/US00/01234

7 400

Physical Device

/410

Machine (virtual or physical)

EXECUTION CONTEXT 1
430

Object
access

44¢

OBJECT

635

| — 420

\, 636

(600

I‘\

EXECUTION
CONTEXT 2

OBJECT
OBJECT

620
640

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

7118

PCT/USD0/01234

, 700

RUNTIME ENVIRONMENT

%&’vﬁfV///////////////////

/////// ;
ﬁ CONTEXT O CONTEXT 1 / CONTEXT 2 ///
7] (SUPER / 770 780 1]
Jeonexny f &= ¢ = ¢
A % []
1 160 % / 4
N
11
rrrrrarrl rrrrraarr oot/

VIRTUAL MACHINE

-720

INTERPRETER
OR
NATIVE IMPLEMENTATION

~ 730

RUNTIME SYSTEM

SYSTEM

OBJECT L/

750

1 740

OPERATING SYSTEM

760

FIG. 7

SUBSTITUTE SHEET {RULE 26)

WO 00/45262 . PCT/US00/01234

8/18

PRINCIPAL INVOKES ACTION ON 08JeCT 800

840
_ 810 /

IS OBJECT WITHIN CONTEXT DISALLOW

OF PRINCIPAL? (N—— " ACTION

i

PERMIT ACTION |~ 830

FIG. 8

SUBSTITUTE SHEET (RULE 25)

WO 00/45262 PCT/US00/01234

9/18

Physical Device

Machine (virtual or physical)

EXECUTION CONTEXT 1

Object
access
900
Object
access

| 420

440

OBJECT
905

630
Object
access 635

J\<920 836 600

\/

EXECUTION|CONTEXT 2

|
Ej , 640
OBJECT - 620

910

OBJECT

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

1018
400

Physicalf Device
~ 410

Machine (virtual or physical)

EXECUTION CONTEXT 1

Object
access

10007

1070 (500

EXECUTION CONTEXT 2

Y

A
1010 0BJECT

Object

access
fLY1080 (600
EXECUTION|CONTEXT 3

1020’ Y 1060
OBJECT

1050

1090
t
s

1095 1099
OBJECT

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

1118

, 1100

In execution context 2,
create Object and
designate as shared
(e.g., entry point)

v 110

In execution context 1
{Principal}, obtain a
reference fo Object

V1120

Principal invokes
Action on Object

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

12118

PCT/US00/01234

Physical Device
—410
Machine (virtual or physical)
SUPERCONTEXT /760
ENTRY POINT
600
4
770
1200
™~1205
CBJECT
ACCESS
CONTEXT 1
FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

13/18

PCT/US00/01234

400

Physical Device

Machine (Virtual or Physical)

SUPERCONTEXT

760
/

410

(600

70, 1205

1210
OBJECT

1220
\:\

¥

,ﬂ780

ACCESS

CONTEXT 1

OBJECT
ACCESS

1250

CONTEXT 2

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 00/45262 PCT/US00/01234

14/18

- 400

Physical Device
: 410

Machine (Virtual or Physicat)

SUPERCONTEXT 760

1200

OBJECT
ACCESS
,¢£1220 \Xr(127° /500

1250

1205~
1255
770\ 180
1210 1260
OBJECT ' OBJECT
CONTEXT 1 CONTEXT 2
FIG. 14

SUBSTITUTE SHEET {RULE 26)

WO 00/45262

PCT/USI0/01234
15/18
400
Physical Device
410
Machine (Virtual or Physicai)
- 600
770 780
£ /
1200 1210
1205 | 1220 SHAREABLE
OBJECTY 1/ o INTERFACE
ACCESS Y OBJECT
CONTEXT 1 CONTEXT 2
FIG. 15

SUBSTITUTE SHEET {RULE 26)

WO 00745262 PCT/US00/01234

16/18

I~ 1600
PRINCIPAL INVOKES ACTION ON OBJECT

1610

IS OBJECT
WITHIN CONTEXT OF
PRINCIPAL?

1620

IS ACTION

BY PRINCIPAL
PERMITTED ON
OBJECT

1640
;Y 1630) L

DISALLOW
PERMIT ACTION ACTION

FIG.16

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

17118

PRINCIPAL INVOKES
ACTION ON OBJECT

|- 1600

IS OBJECT
WITHIN CONTEXT OF
PRINCIPAL?

r

PCT/US00/01234

1620

{S ACTION BY
PERMITTED
ON OBJECT?‘

'
Yes 4 Pass?

PRINCIPAL

1621

Yes 1622

Test 2: Pass?

(optionally-more tests)
No
1629

Yes Test N: Pass?

RS

No

Note: Test can

be done by VM

alone or by VM
plus Object

1630
PERMIT ACTION

Y

-~ 1640

DISALLOW ACTION

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 00/45262

18/18

1629

1800

PCT/US00/01234

I""[__—_ T Ty T T T /———————1

VM checks if O is a
shared object

Test t-N for P invokes
Aon O

VM invokes method A
of objects O

1820

Method A of object O

1830

checks if P is authorized

SUBSTITUTE SHEET {RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

