
US 2004.0060037A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0060037A1

Damm et al. (43) Pub. Date: Mar. 25, 2004

(54) METHOD FOR GESTURE BASED Publication Classification
MODELING

(51) Int. Cl." ... G06F 9/44
(76) Inventors: Christian Heide Damm, Arhus (DK); (52) U.S. Cl. 717/104; 717/116; 717/109;

Klaus Marius Hansen, Risskov (DK); 717/113
Michael Thomsen, Arhus (DK);
Michael Tyrsted, Arhus (DK)

(57) ABSTRACT
Correspondence Address:
James C Wray
Suite 300 A computer program based method is described for creating
1493 Chain Bridge Road models using gestures. On an input device, Such as an
McLean, VA 22101 (US) electronic whiteboard, a user draws a gesture which is

recognised by a computer program and interpreted relative
(21) Appl. No.: 10/240,188 to a predetermined meta-model. Based on the interpretation,

an algorithm is assigned to the gesture drawn by the user.
(22) PCT Filed: Mar. 27, 2001 The executed algorithm may, for example, consist in creat

ing a new model element, modifying an existing model
(86) PCT No.: PCT/DKO1/00204 element, or deleting an existing model element.

801 802 803 41804 805 80
A drawin A A gesture A notation+ 806 808

: GESTURE RECOGNIZE
i GESURE :

GET :
ALGORITHMS:

NOTFY THA
cREATE NEW NEWMODEL
USE CASE ELEMENT HAS

: BEEN CREATED

CREATE NEw NOTIFY THAT
USE CASE : NEW SYMBOL:
SYMBOL HAS BEEN

CREATED :
NOTFY THAT : 813
NEW SYMBOL:
HAS BEEN :
CREATED

815

Patent Application Publication Mar. 25, 2004 Sheet 1 of 11 US 2004/0060037 A1

F.G. 1

US 2004/0060037A1

6 IZ

8 IZ
8 IZ

SJZ

60Z| F-ziz N [07· .|-I IZSº?; 80Z~)-LINEWEITETEgow|-)01z
Patent Application Publication Mar. 25, 2004 Sheet 2 of 11

Patent Application Publication Mar. 25, 2004 Sheet 3 of 11 US 2004/0060037A1

302

304

Patent Application Publication Mar. 25, 2004 Sheet 4 of 11 US 2004/0060037 A1

40 406

40 1405

40 404

FIG. 4a FIG. 4b

Patent Application Publication Mar. 25, 2004 Sheet 5 of 11 US 2004/0060037A1

F.G. Sa. FIGS)

Patent Application Publication Mar. 25, 2004 Sheet 6 of 11 US 2004/0060037 A1

F
W

601

602 603

F
F

FIG. 6a F.G. 6b

Patent Application Publication Mar. 25, 2004 Sheet 7 of 11 US 2004/0060037 A1

Example Variati
Gesture Before After OS Gesture Algorithm Before of gesture

Create a is O B 'OO
Create a

UML package
Create a

OSE. o O O
C3SC

Create a S" | NE - \ / dependenc
Move a UML a SE "E. E.
Delete a WEE ER, I was
Create a

generalization

navigability
of UML
association

8 "OIH

US 2004/0060037A1

9 [8

* - ||
TOE WAS

CJELLVERHO NEE8 SWH

GELVENO L. ? NBBE SVH | JOEWAS ? TOEWAS MEN; ESVO ESn ? LVH LABILON MEN BLVEHO

|æZI8 ? ?ELVEHO NEBB !} | SvH INEWEIE !..?$Y25$Q_j
TEGOW NAEN ?MENawa, 1WHL X-ILLON ;)

• •

EHTISE9) là az N565?s ? atinis=0';

•

S08

Patent Application Publication Mar. 25, 2004 Sheet 8 of 11

US 2004/0060037 A1

906

06
| 06

£06

Patent Application Publication Mar. 25, 2004 Sheet 9 of 11

US 2004/0060037 A1 Patent Application Publication Mar. 25, 2004 Sheet 10 of 11

Patent Application Publication Mar. 25, 2004 Sheet 11 of 11 US 2004/0060037A1

1 105
1 104 Q (

(2 O K
1 101 102 1 103 1 106

F.G. 11a F.G. 11b)

US 2004/0060037A1

METHOD FOR GESTURE BASED MODELING

FIELD OF THE INVENTION

0001. The present invention relates to gesture based
modeling.

DESCRIPTION OF PRIOR ART

0002) Object-oriented programming languages provide
many technical qualities but, more importantly, object
oriented languages and object-oriented development in gen
eral also provide a conceptual framework for understanding
and modeling. This conceptual framework provides abstrac
tion mechanisms for modeling, Such as concepts (classes),
phenomena (objects), and relations between these (inherit
ance, association, dependency) that allow developers to
describe what their system is all about and to formulate
Solutions on a higher level of abstraction than program code.
0003. In practice, developers build models at several
abstraction levels. The program code can be seen as an
executable model, but for purposes Such as analysis, Speci
fication, documentation, and communication, models visu
alized graphically in the form of diagrams are often used.
The Unified Modeling Language, UML Rumbaugh, J.,
Jacobson, I., & Booch, G. (1999). The Unified Modeling
Language Reference Manual. Addison Wesley is a promi
nent example of a graphical notation that is used for Such
purposes. The Unified Modeling Language is a general
purpose visual modeling language that is used to Specify
Visualize, construct, and document the artifacts of a Software
System.

0004 Models have two major aspects: semantic informa
tion (Semantics) and visual presentation (notation). Semantic
model elements carry the meaning of the model, and they are
used for code generation, validity checking, complexity
metrics etc. The Semantic information is often for Simplicity
called the model. The Visual presentation shows Semantic
information in a form that can be seen, browsed, and edited
by humans. Presentation elements carry the Visual presen
tation of the model-that is, they show it in a form directly
apprehensible by humans. Presentation elements are shown
on diagrams. The UML is formally defined using a meta
model-a model of the constructs in UML. The UML
metamodel defines how a definite model may be con
structed, i.e., it defines the set of all legal UML models.
0005 UML models are often used in object-oriented
Software development. Simplistically, object-oriented Soft
ware development can be viewed as mapping a Set of
real-world phenomena and concepts to corresponding
objects and classes. The Set of real-world phenomena and
concepts is called the referent System and the corresponding
computerized System is called the model System.
0006 Mapping a referent system to a model system is
called modeling. Modeling is often iterative, and it is thus
important to be able to discuss a model System in terms of
the referent System. We call this reverse process interpreta
tion. Modeling is concerned with expressing an understand
ing of a referent System in a fluent, formal, and complete
way, for which usable and formal notations, Such as dia
gramming techniques, are crucial. Interpretation is con
cerned with understanding a model System in terms of the
referent System. For doing this, it is important that central
concepts in a model System are understandable in the
referent System.

Mar. 25, 2004

0007 Neither understanding the referent system nor
building a model System is unproblematic. Understanding
the referent System is within the domain of user-oriented
disciplines Such as ethnography and participatory design.
The ethnographic perspectiv on System development is
concerned with basing System design on actual work per
formed within the referent System. The participatory design
perspective on System design is concerned with designing
Systems in active collaboration with potential users. Both
perspectives produce knowledge of the referent System.
Finally, building the model system is within the domain of
object-oriented Software engineering. Software engineering
is concerned with building robust, reliable, and correct
Systems. In iterative development, then, co-ordination, com
munication, and collaboration between different perspec
tives and individual developerS is crucial. Thus, when con
sidering tool Support for a System development process, tool
Support for the modeling and the interpretation processes is
important.
0008. In iterative development, modeling and interpreta
tion are interleaved. When different competencies work
together, it is crucial that both processes are, to a certain
extent, understood by all involved parties. For example,
during user involvement it is both important that the devel
opers understand the work of the users (i.e., the referent
System) and that the users are able to react on and help
design the application (i.e., the model System.)
0009. The so-called Computer-Aided Software Engineer
ing tools (CASE tools) are diagram editors that provide tool
Support for modeling. These tools let a user design a System
using a graphical design notation and usually generate at
least code skeletons or a code framework. CASE tools,
among other things, help users to create, edit, and layout
diagrams, to perform Syntactic and Semantic checks of
models, to Simulate and test models, to share diagrams
between and combine diagrams from Several users, togen
erate code or code skeletons from models (forward engi
neering) and generate diagram or diagram Sketches from
code (reverse and round-trip engineering), and to produce
documentation based on models and diagrams. Many CASE
tools are based on UML, i.e., they allow users to create UML
models and diagrams.
0010 Examples of commercially available CASE tools
are Rational Rose(R), which currently can be found on the
Internet Site http://www.rational.com, and Microgold With
ClassTM, which currently can be found on the Internet Site
http://www.microgold.com.

0011. But even though CASE tools offer these many
attractive features, they are in practice not widely and
frequently used. CASE tools clearly Support design and
implementation phases, but have leSS Support for the initial
phases, when the focus is on understanding the problem
domain and on modeling the System Supporting the problem
domain Jarzabek, S. & Huang, R. (1998) The Case for
User-Centered CASE Tools. Communications of the ACM,
41 (8)).
0012. In practice, CASE tools are supplemented with
whiteboards in the creative phases of development. The
most appealing aspects of whiteboards are their ease of use
and their flexibility. Whiteboards require no special skills,
they do not hamper the creativity of the user, and they can
be used for a variety of tasks. Their many advantages aside,

US 2004/0060037A1

for most development projects whiteboards are not Suffi
cient, as they do not Support, for example, advanced editing
and loading and Saving a diagram.

0013. It would thus be desirable if CASE tools had
Support for intuition, flexibility, and collaboration, giving a
more direct, leSS complex user-interface, while preserving
the current Support for more technical aspects Such as
implementation, testing, and general Software engineering
SSCS.

0.014 AS user studies have shown Damm, C. H.,
Hansen, K. M., & Thomsen, M. (2000). Tool Support for
Cooperative Object-Oriented Design: Gesture Based Mod
eling on an Electronic Whiteboard. In Proceedings of Com
puter Human Interaction (CHI 2000), The Hague, The
Netherlands, CASE tools are primarily used for code gen
eration, reverse engineering, and documentation, whereas
whiteboards are used for collaborative modeling and idea
generation. This mix causes a number of problems: Whereas
whiteboards are ideal for quickly expressing ideas collabo
ratively and individually, they are far from ideal for editing
diagrams etc. This means that in all the user Studies, draw
ings have been transferred from whiteboards to CASE tools
and from CASE tools back to whiteboards. The conflicting
advantages and disadvantages of whiteboards and CASE
tools thus lead to frustrating and time consuming Switches
between the two technologies.
0.015 Electronic whiteboards have been used as a com
putational extension of traditional whiteboards. A goal in
Systems running on electronic whiteboards has often been to
preserve desirable characteristics of whiteboards Such as
lightweight interaction and informality of drawings.
0016. From a project at the University of California, it is
known to combine the versatility of an electronic whiteboard
with object-oriented modeling. An electronic whiteboard is
coupled to asketch interpreter in order to recognize a variety
of drawn gestures on the whiteboard as classes and relations
in UML static structure diagrams. However, though the
method facilitates modeling of UML diagrams, the method
does not imply the variety of features and modeling possi
bilities as known from CASE tools.

0.017. It is the purpose of the invention to provide a
method for modeling employing the ease and flexibility of
user-friendly input and output devices, Such as whiteboards
where the modeling is dependent on predetermined meta
models, for example to Secure compatibility with external
computer programs, preferably CASE tools.

DESCRIPTION OF THE INVENTION

0.018. This purpose is achieved by a method for gesture
based modeling comprising

0019 a predetermined metamodel for a model
including a number of general elements and possible
relations between these general elements,

0020 a number of predetermined genera gestures,
each general gesture linked to at least one general
algorithm,

0021)
0022 comparing Said input gesture with said num
ber of predetermined general gestures, identifying at

reading of an input gesture,

Mar. 25, 2004

least one Specific gesture among Said predetermined
general gestures as resembling Said input gesture,

0023 assigning among said at least one general
algorithm, a Specific algorithm to Said specific ges
ture,

0024 determining the allowance of said specific
algorithm according to Said metamodel and model
and, in case of allowance,

0.025 upon request as a response to said specific
gesture modifying Said model in accordance with
Said Specific algorithm,

0026 upon request modifying a diagram repre
Senting Said model on an output display to indicate
the response to Said input gesture.

0027. The core of the invention is embodied as a com
puter program which in one embodiment works as a Stand
alone program for construction of diagrams/models and in
another embodiment as a plug-in interface between on the
one hand different user-friendly input and output media, for
example, a whiteboard or a touch Sensitive computer Screen
and on the other hand different external programs, for
example CASE tools as Rational Rose(R) or Microgold
WithClassTM.

0028. The method according to the invention is a gesture
based modeling tool, where the models that can be created
are linked to a metamodel, which has been determined in
advance.

0029. In principle, the invention works as a tool for
creating any kind of diagram, where the diagram represents
the graphical notation for a model. The term diagram has to
be understood in a wide Sense, Such that also drawings, for
example technical Sketches, with general elements, for
example boxes, lines, or curves, are to be understood as
diagrams. However, the invention differs from prior art in
that the possible diagrams that can be created by the user are
limited to those diagrams and corresponding models, which
are allowed by the predetermined metamodel. By defining a
metamodel in advance, the user or group of users working
at the same input device or output device, is prevented from
creating diagrams and corresponding models with Structural
mistakes, which is a great advantage for the working pro
ceSS. During the creation of the diagram and corresponding
model, the user will be controlled on-line by the metamodel,
and the user will be informed during his diagramming,
whether the elements and the relations between elements in
the diagram and corresponding model are acceptable or not.

0030. A key ingredient is the user-friendliness of the
method in that input is gesture based. An input gesture from
the user can be a handdrawn curve, for example a box or a
line, on an input device as an electronic whiteboard. How
ever, the input device can also be a touch-Sensitive computer
Screen, a drawing tablet, a mouse, a pen-based computer, a
joy Stick System coupled to a computer, or even a movement
Sensor System, where the gesture of the user is performed in
free Space and read by the Sensor due to light or Sound
detection. In all cases, feedback is given to the user on the
output device in the form of a curve shaped exactly as the
movement read by the input device. After interpretation of
the drawn gesture, the feedback curve is removed, and the

US 2004/0060037A1

drawing is changed in accordance with an algorithm that is
linked to the interpreted gesture.
0031. It should be acknowledged that a gesture in this
Sense differs from a simple mouse operation in known
computer programs, where a pointer on a computer Screen is
Steered with the mouse, for example in connection with
drag-and-drop, or a function is initiated by a mouse click
operation. In contrast to gestures according to the invention,
these operations do not provide feedback to the user on the
output device in the form of a curve shaped exactly as the
movement of the input device
0032. As exemplified in FIG. 11a and FIG. 11b, a
gesture may consist of one or more curves. AS an example
of a gesture consisting of one curve, consider an O-shaped
gesture 1101, which results in the letter O 1102. Gestures
consisting of one curve are Sufficient in most situations, but
for more complex Symbol, gestures consisting of Several
curves-complex gestures-may be more appropriate,
because visual Similarity with the result of the gesture is hard
to obtain with a single curve. As an example, consider a
K-shaped gesture 1103, which is composed by a vertical
curve 1104 and an angled curve 1105 and results in the letter
K 1106.

0033. A further alternative is reading of input gestures
from a database, where a sequence of input gestures has
been stored from an input device beforehand. The latter
opens the possibility for performing a number of input
gestures before computer capacity is used for identification.
0034. After reading of an input gesture, for example from
an input device, the input gesture is compared to a number
of predetermined general gestures, which are Stored in the
System. The predetermined general gestures are those ges
tures that have been determined to be generally allowable in
accordance with the notation and the metamodel.

0.035 Usually, the gesture input from the user will not be
of a form which is precisely equal to the general gesture.
However, the computer program will compare the input
gesture with the predetermined general gestures and identify
a number of Specific gestures among the general gestures
which resemble the input gesture the most.
0036) To each specific gesture, a number of specific
algorithms are linked. Examples of algorithms are drawing
certain elements, linking certain elements, transforming
certain elements, deleting certain elements, and moving
certain elements.

0037 Having determined the specific gesture, the allow
ance of that gesture and the corresponding algorithm is
controlled in accordance with the metamodel. It may be that
the input gesture and corresponding algorithm is allowable
as Such, but hat it is not allowable in the present context in
the model. If this is the case, the gesture and corresponding
algorithm is not allowable, and the user is notified. For the
notification, a connected Visual output device can be used or
a Sound generator. In the Simplest and preferred embodi
ment, the user is notified in the way, that no change occurs
on the output device, but alternatively a failure message or
a certain Symbol is displayed on the output device.
0.038 If the identified input gesture is accepted, the
model is modified in accordance with the algorithm linked
to the gesture, and the diagram that represents the actual

Mar. 25, 2004

model is changed accordingly. However, the modification
according to the algorithm is only performed if the computer
program receives a request for the modification. This request
can be of various natures. The request can be the Simple
lifting of the drawing pen from the electronic whiteboard. It
can also be a certain command given by the user with the
pointing device. Alternatively, the request may occur auto
matically when the user Stops drawing for a certain time
period, for example a few Seconds.
0039. In certain cases, the input gesture is ambiguously
recognized by the program, for example if the gesture is
performed So imprecisely that it can be assigned to two
different general gestures. Therefore, in a further embodi
ment of the invention, the identification of the gesture is
linked to a quantitative measure reflecting the possibility
that the Specific gesture actually resembles the input gesture.
This quantitative measure can be used to indicate the uncer
tainty of the recognition of the gesture to the user. If, for
example, the program cannot recognize the gesture, it will
propose a gesture with a very low probability, eventually
Zero probability.
0040. In order that the method according to the invention
can be used directly in connection with a different external
program, for example a drawing program, a CASE tool
computer program or another type of Software engineering
tool, the electronic format of the model, or alternatively of
the modification of the model, is, if necessary, changed to a
format that is readable by the external program. This way,
the model with the modifications can be implemented in the
external computer program. On the other hand, the response
of the external program can be read after a retranslation of
the format.

0041. In one embodiment, the method according to the
invention is linked to a modeling language that Supports
object-oriented modeling, especially UML.
0042. The gesture recognition can be performed in dif
ferent ways, for example by utilizing Rubine's algorithm
Rubine, D. (1991). Specifying Gestures by Example. In
Proceedings of SIGGRAPH '91, 329-337).

SHORT DESCRIPTION OF THE DRAWINGS

0043. The invention will be explained in more detail with
reference to the drawings, where
0044 FIG. 1 is a schematic drawing of a possible hard
ware Setup according to the invention,
004.5 FIG. 2 shows a typical appearance of the main
drawing canvas of the invention,
0046 FIG. 3 shows a radar view of the drawing canvas
in FIG. 2,
0047 FIG. 4 illustrates a drawn gesture and a corre
sponding UML element, a class, after transformation,
0048 FIG. 5 shows a line gesture and a corresponding
UML element, an association, after transformation,
0049 FIG. 6 shows a gesture changing an association
into a composition,

0050 FIG. 7 shows an overview of some of the available
gestures for UML diagrams,
0051 FIG. 8 shows a UML sequence diagram,

US 2004/0060037A1

0.052 FIG. 9 shows examples of pie menus,
0053 FIG. 10 shows a UML class diagram
0.054 FIG. 11 shows a one-curve gesture and a com
pound gesture.

DETAILED DESCRIPTION OF THE
INVENTION

0.055 The invention extends existing external programs,
as CASE tools, by providing an alternative user interface,
which has Support for creative, flexible, and collaborative
modeling. The method according to the invention is embod
ied as a computer program, preferably being a link between
the external program and an input and an output device.
0056 Though UML is preferred, the invention in a gen
eral sense is not limited to UML, but can also be applied to
other notations, such as the so-called flow charts Boillot, M.
H., Gleason, G. M., & Horn, L. W. (1995). Essentials of
Flowcharting, McGraw-Hill or Gantt charts Clark, Wal
lace (1942). The Gantt chart, Sir I. Pitman & Sons, ltd.,
London. However, in the following, it will be assumed that
the predetermined metamodel is the UML metamodel. The
invention will also be explained in connection with an
electronic whiteboard as input and output device, though the
invention may be used with different input and different
output devices.
0057. As illustrated in FIG. 1, an electronic whiteboard
101 is the preferred input medium. An electronic whiteboard
consists of a large area resembling a traditional whiteboard,
which in addition is touch-sensitive, allowing for input, and
contains a display, allowing for Output. Examples of com
mercially available electronic whiteboards are the SMART
Board TM, which currently can be found on the Internet Site
http://www.smarttech.com, and Mimio TM, where a white
board is combined with a computer projector, currently to be
found on the Internet Site http://www.mimio.com.
0058. The electronic whiteboard 101 is functionally
coupled to a computer 102, for example by a Suitable
electronic or optical buS 103 or by radio transmission, as a
BluetoothE) link. Since a major design goal of the invention
is to make the interaction similar to that of an ordinary
whiteboard, the user interface displayed on the electronic
whiteboard 101 is very simple: it is a white surface on which
users can draw objects in diagrams, for example UML
diagrams, with a pointing device, for example a dry pen.
0059. As an alternative to a pointing device touching the
whiteboard, it is also possible to use a remote pointer, which
is moved in free Space, where the movement is read by a
remote control device converting the movement into corre
sponding coordinates which are shown on the whiteboard or
on a computer Screen.

0060 FIG. 2 shows a so-called window 201 on the
display of the whiteboard 101, appearing similar to known
computer screen interfaces. The window 201, which is a
drawing window in which elements are drawn and dis
played, has a frame containing a top bar 202 with user
information, for example the name of the loaded model 203,
the current diagram type 204, the name 205 of the current
diagram 219, and the name of the part of the model 206 that
the current diagram 219 belongs to. Below the top bar 202
is a menu 207 containing buttons for invoking commands
and changing options.

Mar. 25, 2004

0061 Below the menu is a drawing canvas 208 showing
a part of the current diagram 219. The current diagram 219
comprises rectangular elements 209 representing UML
classes. Each of these rectangular elements 209 is divided
into three Sub Sections 210, 211, 212. The first Sub Section
210 contains identifying information about the class, for
example the name of the class. The Second Sub Section 211
contains information about the attributes of the class. The
third Sub Section 212 contain information about the opera
tions on the class.

0062 Straight lines 213 may interconnect rectangular
elements 209, 214. These lines 213 represent relationships,
as for example UML ASSociations, Generalizations, or
Dependencies, between UML classes. If the line represents
an ASSociation, it has a black diamond 215, a white diamond
216 at the end, an arrowhead 220 at the end, or it has no
figure at the end 217. If the line represents a Generalization,
it has a white triangle at the end 218.

0063 FIG. 3 shows another window 301, a so-called
radar window, which may be shown simultaneously on the
display of the whiteboard. This window will generally be
displayed considerably Smaller than the drawing window
201. While only a part of the current diagram is shown in the
first window 201, the entire current diagram is shown in this
window 301, which is the reason for calling this a radar
window or a window with a bird’s eye view. The top bar 302
contains the name of the window 301. Below the top bar 302
is a display 303 showing the complete current diagram 219
of FIG. 2. This window 301 has an indicator 304 indicating
which part of the current diagram 219 is actually shown in
the first window 201.

0064. The radar window 301 shows the fill diagram 219,
part of which is also shown in the drawing canvas 208 of the
first window 201. To pan, the user can drag the rectangular
indicator 304 in the drawing canvas 303 by pressing the
pointing device, in the following for Simplicity called pen,
inside the rectangular indicator 304 and moving the pen
acroSS the drawing canvas 303. To Zoom, the user can press
the pen against the canvas at the position of one of the
circular indicators 305 and move the pen across the canvas.
A Zoom results in a resize of the rectangular indicator 304
and, consequently, of a Zoom in the drawing canvas 208 of
the first window 201. In order to provide overview and
context awareness, one or more floating radar windowS 301
can be displayed on the display of the whiteboard 101. Using
several radar windows 301, multiple users can have conve
nient access to pan and Zoom on the relatively large white
board 101.

0065. The input on the drawing canvas 208 of the white
board 101 can be performed in two operating modes: an
informal freehand mode and a formal mode according to a
predetermined metamodel for example the UML metamodel
or a comparably extended or limited metamodel.
0066. In freehand mode, the user may add arbitrary
annotations to the diagram 219, where the annotations are
left as-is and are not interpreted as UML elements.

0067. In UML mode, the strokes of the user are inter
preted as UML elements. For example, to create a new UML
class, the user can draw a gesture with the approximate form
of a rectangle with a pen on the drawing Surface 208, which
will ultimately result in the creation of a new UML class,

US 2004/0060037A1

which is displayed as a rectangle further containing two
horizontal lines. The situation is illustrated in FIG. 4a and
FIG. 4b. The user draws a rectangle 401 by touching the
drawing canvas 208 of the whiteboard 101 with a pointing
device, for example a dry pen, Staring, for example, at a
location for the upper left corner 402 of the rectangle 401
and going counter-clockwise in a rectangular fashion, which
is illustrated in FIG. 4a. The stroke will appear on the
canvas as a Squiggly drawn rectangle as if the pen had left
ink on the whiteboard. When the user lifts the pen, the drawn
rectangle 401 is recognized at a particular position and with
a particular size and, as illustrated in FIG. 4b, a rectangle
406 representing a UML class is displayed on the drawing
canvas 208 of the whiteboard 101 instead of the gesture 401.
0068 A rectangular element may also be recognized as a
UML class, if the drawing of the rectangle 401 is performed
in a different way by starting in any of the four corners 402,
403, 404, 405 and in clockwise as well as in counter
clockwise direction. Because the gesture 401 is visually
similar to the symbol 406 for a UML class-they are both
rectangles-the interaction is direct and intuitive.
0069. A likewise interaction is used when the user wants
to create other types of UML elements. A further example is
illustrated in FIG. 5a and FIG. 5b. If the user wants an
asSociation between two classes, the user just draws a line
501 between the rectangular elements 502,503 representing
the classes, which is illustrated in FIG. 5a The line 501 is
drawn from the upper rectangular element 502 to the lower
rectangular element 503. The line 501 is recognized as the
gesture for an association, after which the hand-drawn line
501 is converted to a straight line 504 as shown in FIG. 5b,
the Straight line 504 represents an association. The user can
change the association to a composition type of association,
which is illustrated in FIG. 6a and FIG. 6b. The user draws
a diamond 601 at one end of the line 602 in FIG. 6a, which
leads to a different interpretation, such that the line 602 in
connection with the diamond 601 is recognized as a com
position 603 as shown in FIG. 6b.
0070 There are gestures for creating most UML elements
as well as for other common operations Such as deleting and
moving elements. A Subset of the possible recognizable
gestures is shown in FIG. 7. The fist column 701 contains
the gestures. The small dot 706 on the gesture indicates
where the gesture should begin The second column 702
describes one of the algorithms associated with each gesture.
The third column 703 shows an example diagram with the
gesture in the first column 701 drawn, in a situation where
the algorithm in the second column 702 is assigned. The
resulting diagram after drawing the gesture is shown in the
fourth column 704. The last column 705 lists. Some of the
variations of each gesture.
0071 An important aspect for the user-friendliness of the
method according to the invention is a visual Similarity of
the gesture to be drawn and the following illustration on the
output device of the linked algorithm. AS classes are repre
Sented by rectangular shapes in a diagram, drawing of a
rectangle will be interpreted as adding a class to the model.
This is intuitive for a user and easy to remember.
0.072 A gesture recognition algorithm is used to recog
nize the gestures that users draw, i.e., to link an input gesture
to one or more predetermined general gestures. One Such
algorithm is Rubine's algorithm. This algorithm has the

Mar. 25, 2004

advantage of being relatively easy to train: To add a new
gesture command, one simply draws a number of gesture
examples. Potential problems with this algorithm, and ges
ture recognition according to prior art in general, is that,
usually, only a limited number of gestures can be recognized
and that no feedback is given while gestures are drawn,
except the link that shows the Shape of the gesture. To
overcome these problems, the principles of compound ges
tures and eager recognition, respectively, are used in con
nection with the invention.

0073. The principles of compound gestures Landay, J. A.
& Myers, B. A. (1995). Interactive Sketching for the Early
Stages of User Interface Design. In Proceedings of CHI '95,
45-50 combine gestures that are either close in time or
Space to one diagram element. For example, a user can
change a UML association (represented by an undecorated
line) to a unidirectional association (represented by a line
with an arrowhead) by drawing an arrowhead at the appro
priate end of the line. In this way, users can gradually build
up a diagram, refining it step-by-step. Another advantage of
using compound gestures is that it reduces the number of
different shapes that the recogniser should distinguish
between and thus increases the recognition rate, and it does
this without limiting the variety of diagrams that the users
can Create.

0074 The principle of eager recognition is that gestures
are continuously tried to be classified while being drawn.
When a gesture is recognized and interpreted, feedback is
given to show that the gesture has been recognized. Among
others, this feature is used for moving elements with a
gesture: when the move gesture has been recognized, the rest
of the gesture is used as parameters to the move command,
and the elements located at the Starting point of the gesture
will follow the pen while it is pressed down-like in an
ordinary drag-and-drop desktop computer application.
0075 Some gestures always result in an action, which is
independent of the location inside the drawing window 201
on the drawing canvas 200. If a user draws a rectangle, a
UML class is created independent of the location. This is
also true for other UML elements Such as packages, use
cases, actors, and comments. Other gestures have different
effects, depending on where they are made.
0076 For example, a triangle drawn near the end of a
UML association will turn the association into a UML
generalization, but a triangle drawn on a UML class has no
effect. Another example is a line: A line drawn from a UML
class to another UML class will create a UML association
between the classes, but a line drawn from a UML class to
a UML comment will create a UML dependency, because
UML associations are not allowed between classes and
comment in the UML metamodel. A further example: A
triangle drawn near the end of a UML dependency attached
to a UML class will turn the dependency into a UML
generalization. However, if the dependency is attached to a
UML comment, the triangle has no effect, because UML
generalizations are not allowed to be attached to comments
by the UML metamodel.
0077. In one embodiment of the invention, the gesture
recogniser is programmed to distinguish between only the
basic shapes, Some of which are shown in the first column
701 of FIG. 7. The small dot 706 on each gesture denotes
the beginning of the gesture. Thus, in order to create a UM

US 2004/0060037A1

class, the user Should draw a rectangle starting in the upper
left corner and drawing counter-clockwise 706. However,
different users draw the same shapes in different ways. For
example, Some users prefer to draw a rectangle clockwise. In
order to cope with this problem, the gesture recogniser in
another embodiment of the invention has been programmed
to not only contain the shapes in the first column 701, but
also a number of strokes that can be derived from those basic
shapes, for example, normal rotation, mirror projection,
resizing, Stretching, and reversion 705. For example, in
order to handle lines in any direction, general line shape
gestures exist for 16 different directions. Similarly, the other
basic shapes have been generalized.

0078 However, the recognition rate decreases as the
number of different shapes increases. By rotating and invert
ing basic shapes, the number of generalized shapes increases
by an order of magnitude, requiring higher computer power
to distinguish the shapes properly.

0079. In order to optimize the number of generalized
shapes dependent on the computer power, it is possible to
choose a limited number of shapes and a limited number of
transformations in the generalisation process. User Studies
have shown that left-handed and right-handed perSons draw
differently (clockwise VS. counter-clockwise), and this is
important to Support. On the other hand, it is acceptable to
force the users to draw a rectangle starting in one of the
upper cornerS.

0080 A UML sequence diagram in FIG. 8 shows a
Working Sequence according to the invention, where a
gesture is drawn on the drawing canvas 208. The eight boxes
801-808 in the upper part of the figure represent different
components of the computer program implementing the
method according to the invention. Time is represented by a
Vertical axis Starting in the upper part of the figure and
directed downwards with time.

0081. Initially, a user draws a gesture with the pointing
device 809, in the following for simplicity called a pen, on
the drawing canvas 208 in the window 201 on the white
board 101. During the drawing action on the drawing canvas
208, the stroke with the pen touching the whiteboard is read
electronically and converted to coordinates. The path of the
pen on the drawing canvas 208 is displayed as a curve on the
canvas 208.

0082 The workspace 802 is a component in the program,
which coordinates the interaction with the users. The physi
cal drawing canvas 208 in FIG. 2 is represented by a
corresponding program component 801 in FIG. 8. It is
controlled by the workspace component 802, which receives
the user inputs and displays the results of user inputs in the
drawing canvas 801. The workspace 802 has access to a
gesture recogniser 803, which is an algorithm in the pro
gram, for example Rubine's algorithm Rubine, D. (1991).
Specifying Gestures by Example. In Proceedings of SIG
GRAPH '91,329-337). The workspace 802 also has access to
a predetermined metamodel and a notation 804.
0.083. When the user has drawn an input gesture on the
drawing canvas 208 and this is read by the corresponding
computer program component 801, it is received 809 as a
data set by the workspace 802. The workspace 802 in turn
Sends 810 the data Set representing the input gesture to the
gesture recogniser 803. The gesture recogniser 803 then

Mar. 25, 2004

identifies a number of general gestures that approximately
resemble the input gesture. The gesture recogniser 803 sends
the identified general gestures back to the workspace 802
together with Some information about the Similarity between
the input gesture and the identified general gestures, for
example a quantitative indication of the probability that each
chosen general gesture is the one that Visually resembles the
input gesture the most.
0084. In the next step 811, the specific algorithm or
algorithms associated with the gesture are identified with
corresponding allowance based on the actual metamodel and
notation 804, for example, the UML metamodel's use case
diagram notation. In case of allowance, the Specific algo
rithm is then executed 812.

0085. In the following, some examples are given depend
ing on, whether the notation is a UML class diagram or a
UML use case diagram:

0086 1. If the gesture is drawn on a UML class
diagram, and the gesture is a rectangle, then a new
UML class is created.

0087 2. If the gesture is drawn on a ML class diagram,
and the gesture is a triangle, then any UML associations
or UML dependencies close enough to the gesture
should be turned into UML generations.

0088. 3. If the gesture is drawn on a UML use case
diagram, and the gesture is a rectangle, then the gesture
is ignored, because there are no algorithms associated
with the rectangle gesture on a use case diagram (there
are no rectangle-shaped UML elements, Such as a UML
classes, on use case diagrams).

0089. In FIG. 8, the specific algorithm is creating a new
UML use case 812 and a new symbol for the use case 813.
The new symbol is then added 814 to a diagram 808. The
WorkSpace 802 observes changes in the diagram component
808 of the program, so the workspace 802 is notified when
the new Symbol has been added to the diagram component
808 of the program. The workspace 802 reacts by ordering
the drawing canvas component 801 to draw the symbol on
the drawing canvas 208 in the window 201.
0090 So-called Observers Gamma, E., Helm, R.,
Johnson, R., & Vlissides, J. (1995). Design Patterns. Ele
ments of Reusable Object-Oriented Software. Addison Wes
ley Longmar can be attached to a diagram component 808.
Observers are notified when elements have been created,
changed, or deleted. Generally, observers are used for a
variety of purposes in connection with the invention. For
example, as described above, the WorkSpace 802 uses an
Observer in its implementation: when a diagram element
(symbol) is created 813, the workspace 802 creates a cor
responding visual representation 816 of the new diagram
element in the workspace 208 on the whiteboard. The small
radar window is also updated by observance of the diagram
component 808. Observers are used for various other things,
Such as debugging and integrating with CASE tools.
0091. As illustrated in FIG. 9a, a context-dependent
marking pie menu 901 Kurtenbach, G. (1993). The Design
and Evaluation of Marking Menus. Unpublished Ph.D.
Thesis, University of Toronto) is provided to enable easy
access to leSS common operations. The user may either press
the pen against the Surface of the drawing canvas 208 for a

US 2004/0060037A1

Short while in order for the menu to pop up, or make a short
Stroke (mark) in the direction of the desired command
according to the pie menu. For example, in order to undo a
previous action, the user can press the pen for a short while
and choose the “undo' segment 902. The user may also just
make a short left stroke, i.e., in the direction of the “undo'
Segment 902. The marking pie menus are also used to Switch
between gesture recognition mode and freehand mode 903.
0092. The marking pie menus are context-dependent,
meaning that, depending on the immediate context of the
Stroke or press, a specific pie menu will be activated. For
example, the pie menu in FIG. 9a is activated when no
element is below the pen, where it touches the whiteboard,
whereas the pie menu in FIG.9b is activated when the pen
is pressed near the end of a relationship, for example, a UML
generalization 905.

0.093 Marking pie menus Support the interaction on large
Surfaces, Such as the drawing canvas 208 on a large white
board 101, well, because they are always ready at hand
unlike usual buttons and menus. Apart from Supporting a
transition from initial to expert use, the marking menus also
conveniently provide an alternative way of creating certain
diagram elements. This situation is shown in FIG. 9b, where
the user has activated a hierarchical pie menu near the end
of a UML generalization 905 and can choose to, for
example, turn the generalization into a composite associa
tion 904.

0094. In order to differentiate between the contributions
of each perSon in a group Working together on the Same
diagram, the invention has foreseen personal pointing
devices, for example pens, for drawing on the whiteboard.
For each pen, there is the possibility of a separate gesture Set,
Separate modes, Separate colors, adding of user-defined
Stereotypes to diagrams, or other personal Settings.

0.095 So-called filtering has also been considered with
the invention. After a diagram has reached a certain size, it
becomes hard to overview, and navigation in the drawing
canvas 208 becomes time consuming. Therefore, it is poS
Sible to Selectively hide parts of a model, or give drawing
elements temporality, So that elements may exist only for a
certain period of time. Also, users may employ a specific
Semantic filtering to decide the important elements of a
diagram. Such a filtering may result in that only the name of
a class 210 is shown, or that modeling is restricted to the part
of an application related to the user interface.
0096. In one embodiment, the invention is implemented
with the programming language incr-Tcl McLennan, M. J.
(1993) incr Tcl: Object-Oriented Programming in Tcl/Tk.
In Proceedings of the Tcl/Tk Workshop, University of Cali
fornia at Berkeley, June 10-11), which is an object-oriented
extension of Tcl/Tk Ousterhout, J. (1990). Tcl: An
Embeddable Command Language, in Proceedings of the
Winter 1990 USENIX Conference, January 22-26, Washing
ton, D.C., USA), and runs on the UNIX, LINUX and
Microsoft Windows(R platforms.

0097. The internal data model or data structure in the
computer program implementing the method according to
the invention is based on a metamodel, for example, the
UML metamodel. A simplified part of the UML metamodel
version 1.3 is shown in FIG. 10 using the UML notation
itself, namely a UML class diagram.

Mar. 25, 2004

0098. From the diagram in FIG. 10, it is apparent that a
Relationship 1001 is a Generalization of both Generalization
1002 and Association 1003, meaning that Generalization
1002 and Association 1003 are both a kind of Relationship
1001. We can also see that a Generalization 1002 has a child
element 1004 and a parent element 1005. In other words, a
Generalization connects two GeneralizableElements 1006 in
a special kind of Relationship 1001. FIG. 2 contains an
example of a Generalization 218.
0099. Also apparent from the diagram in FIG. 10 is that
an Association 1003 contains 1009-in a composite Asso
ciation-to two or more 1007 ASSociationEnds 1008. Each
AssociationEnd 1008 refers to exactly one 1010 Classifier
1011. A Classifier 1011 is a Generalization 1002 of a Class
1012, i.e., a Class 1012 is also a Classifier 1011-a Class
1012 just has some extra features that a Classifier 1011 does
not have, for example, an “is Active' attribute 1013. In FIG.
2, there are also Several examples of ASSociations 215, 216,
217.

0100. This way the UML metamodel defines how a UML
model is allowed to be constructed.

0101 Besides validating models, the metamodel is also
used when Storing actual models. A given metamodel can be
translated into a data Structure, which can be used in the
implementation of a program that operates on models
according to that metamodel. The program according to the
invention is based on this translation. For example, the UML
metamodel is used to implement the program, and the
metamodel is thus a part of the program.
0102) It is impossible to implement one tool that supports
all activities in Software development. The program accord
ing to the invention has a user-friendly interface, making it
easy to construct big and complex models. However, many
Software developerS do not just use the models as they
are-they also use models for code generation, database
generation, etc. Thus, it is important that the program
according to the invention is able to exchange models with
other tools that Support these activities.
0103) One way to exchange models is through a common
interchange format, for example, in the form of a file. XMI
XMI Partners (1999). XML Metadata Interchange (XMI)
1.1 RTF Final Report. OMG Document ad/99-10-04, Octo
ber 20 is an accepted Object Management Group (OMG)
Specification that provides the basis for an interchange
format for models such as UML models. The specification is
general in the Sense that it specifies a way of creating an
interchange format for any data that can be described by a
metamodel.

0.104) The XMI standard uses XML DTD's (extensible
Markup Language Document Type Definitions W3C
(1998). Extensible Markup Language (XML) 1.0. W3C
Recommendation REC-xml-19980210, 10 Feb. 1998. Avail
able online at http://www.w3.org/TR/1998/REC-xml
1998.0210.1) and the actual exchange files are then XML
files conforming to this DTD. In other words, XMI specifies
a set of rules for mapping a metamodel to a DTD, and a way
of mapping a model to an XML file conforming to this DTD.
Based on the UML metamodel, several companies have
produced a UML DTD using the rules in the specification.
0105. Another way to exchange models with other tools
is through runtime connections to those tools. Such Syn

US 2004/0060037A1

chronous integration is typically component-based. The
most widespread component technologies are CORBATM
Henning, M., Vimoski, S. Advanced CORBA Programming
with C++. Addison Wesley Longman, 1999 and Microsoft
COMGRRogerson, D. (1997). Inside COM: Microsoft's
Component Object Model. Microsoft Press). The choice of
component technology is not essential for the invention, but
since most CASE tools today only support COMOR, COMOR
is preferred. The implementation of Synchronous integration
is thus based on runtime COMCE) connections with other
CASE tools.

0106 If a user wants to work on an existing model made
in a CASE tool, the initial Synchronization includes trans
ferring the model to the program according to the invention.
It may also be the case that both the CASE tool and the
program according to invention contain models that should
be used in a modeling Session. In this case, the Synchroni
Zation is a merge of the two models.
0107 While synchronizing between the CASE tool on
the one hand and the program according to the invention, a
mapping between the data in these two programs is built.
The mapping is used in the incremental Synchronization,
allowing, for example, a change to a class in the program
according to the invention to be propagated to the corre
sponding class in the CASE tool.
0108. In order to keep the models in the CASE tool and
the program according to the invention Synchronized after
the initial Synchronization, changes in one model should
propagate to the other model. For this purpose, two integra
tion-specific Observers observe the models. The Observer of
the CASE tool relies on COMCE) events.

0109) If, for example, a new class is created in the
program according to the invention, an Observer will get
notified, and it will then cause the new class to be transferred
to the CASE tool. In a similar way, changes to, or deletion
of, existing elements in the program according to the inven
tion will be propagated to the CASE tool. Updates in the
CASE tool are propagated to the program according to the
invention in a similar way.
0110. A third way of exchanging models with other tools
is to have the program according to the invention and the
other tools work Synchronously on the same data. This is not
much different from the situation described above, where the
program according to the invention and the Case tool have
Separate data, and where the data thus has to be Synchro
nized. It would be easy to modify the program according to
the invention to work on, for example, a Rational Rose(R)
data Structure, instead of having its own data, which, con
ceptually, is just a copy of the data in Rational Rose(R).
However, by having its own data, the program according to
the invention can run as a Stand-alone tool without Rational
Rose(R). Also, if the program according to the invention uses
Rational Rose's data format, it cannot run with Microgold
WithClass(R or any other tool.

Further Applications

0111 AS mentioned above, the method and computer
program according to the invention can be used in combi
nation with a variety of external programs, as for example
CASE tools. Further possible applications are mentioned in
the following.

Mar. 25, 2004

0112 A number of computer programs are available for
process engineering, the So-called Computer Aided ProceSS
Engineering, CAPE, which are Suitable for creation or
optimisation of processes in industry. CAPE tools are, for
instance, also used for design for chemical or mechanical
production plants and for the design and optimisation of
pipeline Systems in Such plants or in general. Such kind of
programs are commercially available from companies as
Aspen Technology with Internet address http://www.aspen
tech.com, for example Aspen Engineering Suite", Hypro
tech Lifecycle Innovation with Internet address http://ww
w.hyprotech.com, for example the HYSYSTM program
family, and EPCON International with Internet address
http://www.epcon.com, for example AICHE DIPPRE).
0113. From these companies, CAPE tools are available
not only for hardware design, for example chemical plants,
refineries, production lines, venting Systems, pipeline Sys
tems, flare and vent Systems, distillation Systems, but also
for proceSS design, Simulation and evaluation, for example
polymer proceSS analysis and design, general energy opti
misation, petrochemically planning, food production, Semi
conductor production processes, and general component
interaction simulation, where also profitability, administra
tion and operation optimisation is included. Including prof
itability and administration in these programs is important in
order to achieve optimisation not only for the process, for
example production, in terms of time and efficiency, but also
to find and control the commercially most attractive con
figuration.

0114. Further computer tools, for example from Aspen
tech, are available for teaching Several of the above-men
tioned processes at universities. Especially in this case, a
method according to the invention is useful. Typically,
Students will discuss projects during the design phase.
Including a whiteboard with gesture recognition and feed
back according to a predetermined metamodel promotes the
interactivity during these discussions.
0115 Today, there is no single agreed-upon metamodel
for expressing processes, which means that different tools
implement different metamodels. However, work on creat
ing a unified metamodel is in progress, and this will improve
the interoperability of the tools implementing the unified
metamodel. One Step towards a unified metamodel has been
taken with the VelDa metamodel (Bernd Lohmann: Towards
Supporting the Workflow during Computer-Aided Modeling
of Chemical Processes, Fortschritt-Berichte VDI, Reihe
3:Verfahrenstechnik, Nr. 531, ISBN 3-18-353103-8, Dissel
dorf, 1998).
0116. Another example of an application of a method and
program according to the invention is design of electronic
circuits by diagrams, where only functionable connections
between electronic components are accepted during the
design. When connected, Voltages and currents may be
indicated on the various electronic connections and compo
nents, which facilitates the understanding of the diagram as
a whole and of the influence of the individual component on
the remaining electronic circuit.
0117 Still another example of an application is town
planning, where Statutes and regulations have to be taken
into account. During the planning in a diagram on the
whiteboard, certain elements as Schools, highways, facto
ries, and parks may only be added in accordance with those

US 2004/0060037A1

regulations. Furthermore, the metamodel may also regulate
allowance of element placement in accordance with geo
graphical conditions. For instance, a power plant may only
be placed at a location, where a cooling water Supply, as a
river, is available. Another example may be the denial of
highways in a diagram where the landscape in the diagram
is filled with mountains.

0118. A further example is general architecture. For the
design of a house, a number of regulations or just practical
conditions have to be taken into account. Electrical instal
lations are Subject to a number of regulations. Regulations
may also govern the Overall outside appearance of the
building. These regulations and conditions may be used for
control of the design preventing mistakes and reducing the
overall building costs.

0119) A still further example is the design of vehicles,
shipS and aeroplanes Subject to rules, conditions and regu
lations to be taken into account.

0120 An even further example is the composition of
music, where a team of composers work on the same
composition. By the metamodel, the time Sequences for the
Single musicians may be controlled, and it may be indicated,
if a passage is too difficult for the musician according to
certain models.

0121 An even still further example is the design of
games, especially electronic games. In a variety of So-called
adventure games, the Single figures in a game have certain
characteristics. Designing a game requires a thorough con
trol of possible reactions of these figures, which during
design on a whiteboard may be controlled in accordance
with a metamodel.

0122) For the design of comic movies, a method accord
ing to the invention is especially useful as well. In case a
comic figure is to perform a movement, the figure may be
drawn on a whiteboard in one initial posture and in one final
posture. By the metamodel, this figure moves in a certain
characteristic way, for example heavy and Slow or fast and
Staccato-like. Thus, the program automatically may design
the complete movement of the figure from the initial posture
to the final posture in accordance with the characteristic way.

0123 The method according to the invention may be
used for the generation of Sale plans, where a company may
have certain rules for the Sale and distribution of goods.
These rules may be contained in the metamodel Such that
only Sales plans are accepted which are in accordance with
these rules. This way, wrong planning may be prevented for
the companies and large amounts of cost may be Saved.

0.124 Planning in accordance with regulations is also
known from hospitals, where resource allocation has to be
controlled thoroughly. Also in this case, metamodel restric
tions may Support the interactive planning in a very useful
way prohibiting mistakes that may be annoying for the
perSonnel and maybe fatal for patients.

0.125. In connection with financial planning, the method
according to the invention may be used with Spreadsheets
and related diagrams on a whiteboard, where financial
models may be discussed by a group of collaborators. Also,
SAPOE) applications can work in combination with the inven
tion facilitating financial planning in a variety of companies.

Mar. 25, 2004

1. Method for gesture based modeling comprising
a a model including a number of general elements and

possible relations between these general elements,
a number of predetermined general gestures, each general

gesture linked to at least one general algorithm,
reading of an input gesture,
comparing Said input gesture with Said number of prede

termined general gestures, identifying a specific gesture
among Said predetermined, general gestures as resem
bling Said input gesture,

assigning among Said at least one general algorithm a
Specific algorithm to Said Specific gesture,

characterised in that Said method comprises
providing a metamodel for Said model and determining

the allowance of Said Specific algorithm according to
Said metamodel and model and, in case of allowance,
upon request as a response to Said specific gesture

modifying Said model in accordance with Said Spe
cific algorithm,

upon request modifying a diagram representing Said
model on an output display to indicate the response
to Said input gesture.

2. Method according to claim 1, characterised in that Said
input gesture has visual Similarity with an element created or
modified in response to Said input gesture.

3. Method according to claim 1 or 2, characterised in that
Said identifying is linked to a quantitative measure reflecting
the possibility for that Said Specific gesture resembles Said
input gesture.

4. Method according to claim 1-3, characterised in that
Said method further comprises adapting the model format of
Said model to a external format readable by an external
computer program.

5. Method according to claim 4, characterised in that Said
external computer program is a CASE tool computer pro
gram, preferably Rational Rose(R) or Microgold With
ClassTM, or a CAPE tool computer program.

6. Method according to claim 4 or 5, characterised in that
Said method further compriseS reading of a response from
Said external computer program and changing Said external
format to a format in congruence with Said model.

7. Method according to any one of the preceding claims,
characterised in that Said model is linked to a modeling
language Supporting object-oriented modeling.

8. Method according to claim 7, characterised in that said
modeling language is UML.

9. Method according to any one of the preceding claims,
characterised in that Said identifying of Said one specific of
Said predetermined general gestures implies Rubine's algo
rithm.

10. Method according to any one of the preceding claims,
characterised in that Said reading of Said input gesture is
from an input device which comprises at least one from the
group consisting of a touch-Sensitive computer Screen,
touch-Sensitive whiteboard, a drawing tablet, a mouse, a
pen-based computer, a joy Stick System coupled to a com
puter, or a movement Sensor System.

11. Method according to claim 1-9, characterised in that
Said reading of Said input gesture is from a database in which
a Sequence of input gestures is Stored.

US 2004/0060037A1

12. Computer program comprising program code per
forming the method according to any one of the claims 1-11
when Said program is run on a computer.

13. Computer program product comprising program code
means Stored on a computer readable medium for perform
ing the method according to any one of the claims 1-11 when
Said computer program product is run on a computer.

14. Use of a method according to the invention for at least
one from the group consisting of

design and optimisation of chemical or mechanical pro
duction plants, production lines, refineries, pipeline
Systems, flare and vent Systems, or distillation Systems,

design, Simulation, administration, evaluation and opti
misation of production processes, preferably for poly
mers, Semiconductors, petrochemical products, or food
products,

Mar. 25, 2004

teaching of Students in design, Simulation, administration,
evaluation and optimisation of processes,

design, Simulation, evaluation and optimisation of elec
tronic circuits, vehicles, ships, aeroplanes or parts
thereof,

town planning,
general architecture;
composition of music,
design of games,
design of movies,
generation of Sale plans or goods distribution plans,
reSSource allocation in hospitals.

k k k k k

