wo 2009/123952 A2 || 0K O 0 R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. TN
1 1d Intellectual P t t) e
(19) World Intellectual Property Organization /i 1IN NI A0 00 8001000 00O O AN A
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
8 October 2009 (08.10.2009) PCT WO 2009/123952 A2
(51) International Patent Classification: 94089 (US). THEKKATH, Radhika [US/US]; 738
GO6F 9/30 (2006.01) Rosewood Drive, Palo Alto, CA 94303 (US).
(21) International Application Number: (74) Agents: GALLIANI, William @ et al.; Cooley Godward
PCT/US2009/038745 Kronish LLP, 777 6th Street, NW, Suite 1100, Washing-
ton, DC 20001 .
(22) International Filing Date: on, DC (Us)
30 March 2009 (30.03.2009) (81) Designated States (unless otherwise indicated, for every
re) . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ.
(26) Publication Language: English CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
L. EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
(30) Priority Data: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
12/060,204 31 March 2008 (31.03.2008) us KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(71) Applicant (for all designated States except US): MIPS MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL NO,
TECHNOLOGIES, INC. [US/US]; 1225 Charleston NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
Road, Mountain View, CA 94043 (US) SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and . L
(75) Inventors/Applicants (for US only): BERG, Thomas (84) Designated States (unless otherwise indicated, for every

[US/US]; 14321 NW Spruceridge Lane, Portland, OR
97229 (US). KINTER, Ryan [US/US]; 6204 41St Av-
enue, NE, Seattle, WA 98115 (US). PATWARDHAN,
Jaidev [IN/US]; 1179 Kassel Terrace, Sunnyvale, CA

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR CONDENSING TRACE INFORMATION IN A MULTI-PROCESSOR SYS-

TEM
302 1 302 N
304 — -
102 M\\\ »\\ \
. ooy Py CPU
—\ LERJ
5 CSynclD I ! CSyndDE
< t 2 | @
] & &
= g & 300
& O
Coherence
Manager
1 {CM)
=312
To CPUs !\ t To CPUS'
Intervention Ports
Resync - 326
request | so o314 oo s
SRH Seriglized | /318 -
Trace Control | PDTrace Frames Request [Corernt Fovas nxmrvgntson
Block Handler ~ym Unit
3 CSyndiD -
(CMTCH) o (SRH) i A1 v
[trace_enable’ -
330 - 379 = L322 3201 “~316
cM Non-Coherent Requests 328
PDTrace To Memory or MMIO a2
334 —| Trace Words IVU PDTrace Frames
332
PDTrace -———m to PDTrace Pins
Trace Words » PDTrace {___ or
M .
From CPUs :7—4' Funned 338 On-chip Memory
336
FiG. 3

(57) Abstract: A computer readable storage medium in-
cludes executable instructions to characterize a coherency
controller. The executable instructions define ports to re-
ceive processor trace information from a set of processors.
The processor trace information from each processor in-
cludes a processor identity and a condensed coherence in-
dicator. Circuitry produces a trace stream with trace met-
rics and condensed coherence indicators.

WO 2009/123952 A2 0000 OO AR AU A

OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, Published:

MR, NE, SN, TD, TG). — without international search report and to be republished
Declarations under Rule 4.17: upon receipt of that report (Rule 48.2(g))

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

WO 2009/123952 PCT/US2009/038745

APPARATUS AND METHOD FOR CONDENSING TRACE INFORMATION
IN A MULTI-PROCESSOR SYSTEM

CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to U.S. Patent Application Serial Number
12/060,204 filed March 31, 2008, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION
[0002] This invention relates generally to processing trace information to identify
hardware and/or software problems. More particularly, this invention relates to compact

trace formats for utilization in a multi-processor environment.

BACKGROUND OF THE INVENTION

[0003] The PDTrace™ architecture refers to a set of digital system debugging
methodology and its implementations available through MIPS Technologies™, Inc.,
Mountain View, California. The PDTrace™ technology is described in U.S. Patents
7,231,551; 7,178,133; 7,055,070; and 7,043,668, the contents of which are incorporated
herein by reference.

[0004] Current PDTrace™ technology supports single processor systems. It would be
desirable to extend PDTrace™ technology to support multi-processor systems.

[0005] Time stamps or other high overhead techniques may be used to organize trace
information from multiple processors. However, this results in voluminous information and
large computational demands. Similarly, tracing information in a multi-processor system
may result in information overload and long processing times.

[0006] Therefore, it is desirable to condense the amount of information to be
processed, while still providing adequate information to support meaningful debugging
operations. Ideally, different trace formats would be provided depending upon debugging
requirements. In addition, an efficient technique to correlate information from different trace

streams is desirable to reduce information bandwidth and processing times.

SUMMARY OF THE INVENTION
[0007] A computer readable storage medium includes executable instructions to
characterize a coherency controller. The executable instructions define ports to receive

processor trace information from a set of processors. The processor trace information from

WO 2009/123952 PCT/US2009/038745

cach processor includes a processor identity and a condensed coherence indicator. Circuitry

produces a trace stream with trace metrics and condensed coherence indicators.

BRIEF DESCRIPTION OF THE FIGURES

[0008] The invention is more fully appreciated in connection with the following
detailed description taken in conjunction with the accompanying drawings, in which:

[0009] FIGURE 1 illustrates a system configured in accordance with an embodiment
of the invention.

[0010] FIGURE 2 illustrates processing operations associated with an embodiment of
the invention.

[0011] FIGURE 3 illustrates a coherence manager configured in accordance with an
embodiment of the invention.

[0012] FIGURE 4 illustrates the use of a condensed coherence indicator by a
processor and a coherence manager in accordance with an embodiment of the invention.

[0013] FIGURE 5 illustrates the use of condensed coherence indicators associated
with a processor and a coherence manager to correlate trace information in accordance with
an embodiment of the invention.

[0014] FIGURE 6 illustrates the toggling of a condensed coherence indicator in
accordance with an embodiment of the invention.

[0015] FIGURE 7 illustrates the flow of trace information in accordance with an
embodiment of the invention.

[0016] Like reference numerals refer to corresponding parts throughout the several

views of the drawings.

DETAILED DESCRIPTION OF THE INVENTION

[0017] Figure 1 illustrates a system 100 configured in accordance with an
embodiment of the invention. The system 100 includes a multi-processor system 102. The
multi-processor system 102 includes multiple processors either on a single semiconductor
substrate or multiple semiconductor substrates linked by interconnect (e.g., a printed circuit
board). A probe 104 receives trace information from the multi-processor system 102 and
conveys it to a computer 120. The probe 104 may perform initial processing on the trace
information, temporarily store selected trace information and perform other probe operations

known 1n the art.

WO 2009/123952 PCT/US2009/038745

[0018] The computer 120 includes standard components, such as input/output devices
122 connected to a central processing unit 124 via a bus 126. A memory 128 is also
connected to the bus 126. The memory 128 includes a debug module 130, which includes
executable instructions to debug trace information from multiple processors. The debug
module 130 includes executable instructions to process condensed coherence indicators of the
invention to isolate individual trace streams associated with individual processors. The
debug module 130 also includes executable instructions to process trace metrics, processor
identifiers and various information in PDTrace™ technology trace formats, as discussed
below. The debug module 130 also includes executable instructions to evaluate interactions
between processors, as indicated in the traced information.

[0019] Figure 2 illustrates processing operations associated with the system 100.
Initially, multi-processor trace information with condensed coherence indicators is generated
200. As discussed below, each processor generates a coherence indicator that demarks
selective shared memory transactions within the multi-processor system. The coherence
indicator may be derived as a function of a processor synchronization signal and a shared
memory miss signal, as discussed below. In one embodiment, the condensed coherence
indicator is a two-bit value to synchronize core trace messages with trace messages received
from a coherence manager.

[0020] The next operation of Figure 2 is to generate coherence manager trace
information with trace metrics and condensed coherence indicators 202. The multiple
processors of the multi-processor system communicate with a coherence manager that
generates the coherence manager trace information, as discussed in connection with Figure 3.
The multi-processor trace information combined with the coherence manger trace
information can be used to analyze the interaction of transactions from different processors.
This analysis can aid debugging hardware and/or software problems.

[0021] Individual processor trace streams can be identified 204. For example, the
debug module 130 may process core trace messages and trace messages from the coherence
manager to recreate an accurate execution trace. The coherence indicators of the core trace
messages are correlated with the coherence indicators of the coherence manager trace
information to identify individual trace streams.

[0022] Once individual trace strecams have been identified, individual trace streams
may be debugged 206. In particular, the individual trace streams may be debugged for
hardware and/or software problems. Information in individual trace streams allows one to

debug interactions between the individual processors of the multi-processor system.

WO 2009/123952 PCT/US2009/038745

[0023] Figure 3 illustrates a multi-processor system 102 configured in accordance
with an embodiment of the invention. The multi-processor system 102 includes individual
processors 302 1 through 302 N. Each processor is configured to produce core trace
information and a condensed coherence indicator. In one embodiment, the core trace
information adheres to PDTrace™ technology trace formats. In one embodiment, the
condensed coherence indicator is a two-bit value that demarks selective shared memory
transactions. The condensed coherence indicator is typically accompanied by a processor
identifier. The combination of a processor identifier and a condensed coherence indicator
allows individual trace streams to be identified in the multi-processor system.

[0024] The multi-processor system 102 may also include an input/output coherence
unit 304 to process requests from input/output units (not shown). Traffic from the processors
302 and input/output coherence unit 304 is applied to a coherence manager 310. The
coherence manager 310 queues, orders and processes all memory requests in the multi-
processor system. The processors of the multi-processor system communicate with one
another through shared memory regions. The coherence manager 310 serializes memory
operations and provides global ordering of memory operations.

[0025] The coherence manager 310 includes a circuit 312 to serialize requests.
Serialized requests are then processed by the serialized request handler 314. The serialized
request handler 314 provides global transaction ordering. More particularly, the serialized
request handler 314 interprets and routes each request to a memory interface, a memory
mapped input/output interface or the intervention unit 316.

[0026] The serialized request handler 314 routes coherent requests to the intervention
unit 316, as shown with arrow 318. Non-coherent requests to memory or memory mapped
input/output are also controlled by the serialized request handler 314, as shown with arrow
319. The serialized request handler 314 also sends a coherence indicator to the intervention
unit 316, as shown with arrow 320. The coherence indicator is periodically referred to herein
as “COSID or “CSynclID”. A trace enable signal is also applied to the intervention unit 316
from the serialized request handler 314, as shown with arrow 322. This signal helps the
intervention unit identify transactions that are traced by the serialized request handler. This
in turn enables the intervention unit to only trace transactions traced by the serialized request
handler. The serialized request handler can selectively trace transactions based on control
register settings. The serialized request handler 314 produces serialized request handler trace

frames, as shown with arrow 324.

WO 2009/123952 PCT/US2009/038745

[0027] As previously indicated, the coherence manager 310 also includes an
intervention unit 316. The intervention unit 316 sends coherent requests to processors,
collects responses to requests and takes specified actions. The intervention unit 316 also
provides intervention cache state for cach transaction. The intervention ports 326 of the
intervention unit 316 service coherence requests from processors that can affect the state of
local cache lines. The intervention unit 316 generates intervention unit trace frames, as
shown with arrow 328.

[0028] The serialized request handler trace frames and the intervention unit trace
frames are processed by a coherence manager trace control block 330. The coherence
manager trace control block 330 processes the serialized request handler trace frames and the
intervention unit trace frames to produce trace words, which are sent to a trace funnel 332, as
shown with arrow 334. The trace funnel 332 receives trace words from the processors 302,
as shown with arrows 336. The funnel 332 interleaves trace words from the processors and
the coherence manager 310. The resultant trace stream is applied to trace pins of a probe or
is stored in on-chip memory, as indicated with arrow 338.

[0029] If the serialized request handler 314 or the intervention unit 316 produces a
trace message, but it cannot be accepted by the trace control block 330 and the Inhibit
Overflow bit in the trace control block control register is 0, then an overflow occurs and the
message is dropped. At this point, the serialized request handler 314 and intervention unit
316 stop tracing. All transactions that are pending in the intervention unit 316 that have not
been traced will not be traced (i.e., the trace enable bit associated with that transaction is
cleared). The trace control block 330 then waits until all trace words in its FIFO have been
accepted by the trace funnel 332. At that point, the resynchronization signal is asserted to all
processors and the serialized request handler 314 and the intervention unit 314 are allowed to
start tracing messages again (assuming that trace is still enabled via the trace control
registers).

[0030] Figure 4 illustrates a single processor 302 and the coherence manager 310.
The processor 302 passes a request and a coherence indicator to the coherence manager 310,
as indicated with arrow 400. The core 302 also produces a processor or core trace message
402, which includes the coherence indicator 404 (i.e., COSId). The processor trace message
402 includes information on the internal pipeline activities of the processor.

[0031] The coherence manager 310 produces a coherence manager trace message
406, which includes the same coherence indicator 404. The coherence manager trace

message 406 provides information on common memory port transactions. As discussed

WO 2009/123952 PCT/US2009/038745

below, the coherence manager trace information includes trace metrics. Embodiments of the
invention provide different formats for the trace metrics depending upon debugging
requirements.

[0032] Using the coherence indicator 404, which is common to both the processor
trace message 402 and the coherence manager trace message 406, the different types of trace
messages may be correlated downstream, e.g., at the debug module 130. This is more fully
appreciated in connection with Figure 5.

[0033] Figure 5 illustrates a set of processor trace messages 500 and coherence
manager trace messages 502 from a single core. Each message includes a two bit condensed
coherence indicator. In this example, the first four processor trace messages 500 include a
condensed coherence indicator value of “00”. The first two coherence manager trace
messages include the same “00” value. The condensed coherence indicator value
subsequently toggles to a “01” value. As indicated with arrow 504, the transitioning of the
condensed coherence indicator demarks related trace events. Therefore, relying upon the
transitioning of the condensed coherence indicator for a given processor, processor trace
messages 500 and coherence manager trace messages 502 may be correlated. This
functionality is more fully appreciate with reference to Figure 6.

[0034] Figure 6 illustrates three events with three separate horizontal lines 600, 602
and 604. The first event, line 600, is the toggling of the condensed coherence indicator value,
in this case, a two bit value identified as COSId. The next event, shown with line 602, is the
triggering of a processor synchronization value identified as PCSync. PCSync is an internal
periodic synchronization mechanism used in the PDTrace™ technology. For every specified
number of clock cycles (e.g., 1K cycles), a processor inserts a special synchronization frame
into its trace stream. Trace processing software may use this synchronization frame to align
its view of program execution. A synchronization frame may also be issued when a
processor drops a trace frame due to a trace overflow within the processor and/or when a
processor execution mode is altered.

[0035] The third line of Figure 6, line 604, indicates cache miss events. Starting from
left and moving to the right in Figure 6, initially the coherence indicator value is “00”. A
synchronization signal 606 is then issued. After the next cache miss, indicated by arrow 608,
the coherence indicator value 610 is incremented to the value “01”. Subsequently, two
synchronization signals are issued, but the coherence value is not incremented until the next
cache miss, as indicated with arrow 612. Thereafter, a single synchronization signal is

followed by a cache miss to increment the coherence indicator to “11”. After the coherence

WO 2009/123952 PCT/US2009/038745

indicator is cycled to “00”, multiple cache misses occur before a synchronization signal. The
coherence indicator increments after a combination of a synchronization signal and a cache
miss, at this point resulting in a “01” value. A coherence manager overflow signal, indicated
by arrow 614, operates as a synchronization signal, with the result that the coherence
indicator is incremented with the next memory miss, as indicated with the value incrementing
to “10”.

[0036] Figure 7 illustrates a first processor core 302 1 providing first core trace data
to a funnel 332 and a second processor 302 2 providing second core trace data to the funnel
332. Each core also supplies information, including the coherence indicator, to the coherence
manager 310. The coherence manager trace data includes a processor identifier and a
coherence indicator. The processor identifier allows a module downstream of the funnel 332
(e.g., the debug module 130) to correlate each trace stream with each processor.
Furthermore, the coherence indicator allows processor trace messages and coherence trace
messages to be correlated.

[0037] The invention is more fully appreciated in connection with the following
specific examples of an embodiment of the invention. The core specific trace signals
associated with the PDTrace™ technology are compatible with the present invention. The
only alteration required to these signals is to include a coherence indicator. In one
embodiment, a two bit coherence indicator is used to synchronize core trace messages with
trace messages received from the coherence manager.

[0038] The coherence manager 310 may be implemented to process a set of serialized
request handler signals and a set of intervention unit signals. In one embodiment, the
serialized request handler signals may include various trace metrics, including a source
processor, a serialized command, stall information, the address of a request being processed,
and a target address. The intervention unit signals may include various trace metrics,
including a source processor, a bit vector of intervention port responses, a global intervention
state for a cache line, a transaction cancelled indicator, an intervention that will cause a
cancelled store condition to fail, an intervention that will cause a future store condition to fail,
transaction delay information, and stall cause information. These signals are characterized in

the tables below.

WO 2009/123952

PCT/US2009/038745

Table 1 — Serialized Request Handler (SRH) and Intervention Unit (IVU) Signals

Signal Name Width Description

SRH SrcPort 3 Source of the request that was serialized.

SRH_COSId 2 Coherent Sync ID of transaction. Used to correlate CPU
and Coherence Manager (CM) transactions.

SRH MCmd 5 Command in the request that was serialized (See Table 2)

SRH WaitTime 8 This is active only in timing mode. Tracks how many
cycles the transaction spent stalled in the SRH. Saturates at
255 cycles.

SRH_Address 29 | This is active when tracing addresses from the SRH —
provides the address corresponding to the request being
traced.

SRH_Addrtarg 3 Target of the current request (see Table 3). Indicates
speculative reads as well.

IVU _COSId 2 Coherent Sync ID at the Intervention Unit.

IVU_SrcPort 3 The core that made the original request that resulted in this
intervention.

IVU RespBV 6 Bit vector of intervention port responses. Bit corresponding
to a core is set to ‘1’ if the intervention hit and set to ‘0’ if
the intervention missed.

IVU IntvResult 3 Global Intervention State for this cache line (see Table 4).

IVU_SC Cancel 1 This transaction was cancelled due to a previous store
condition failure.

IVU_SC Failed 1 This intervention will cause a future store condition to fail.

IVU _PIQ WaitTime 8 Count the number of cycles each transaction spends at the
top of the Pending Intervention Queue (PIQ). Saturates at
255

IVU _PIQ_StallCause 3 The last reason this transaction was stalled on top of the
PIQ. (see Table 5)

Table 2 — Serialized Commands
Command Description Value Command | Description
Value
IDLE 0x0C COH_UPGR | Coherent
x00 ADE Upgrade
(SCbit=0)
LEGACY_WR_ Uncached legacy 0x0D COH_WB Coherent
x01 ucC write, Writeback
CCA=Uncached
(UC), Uncached
Accelerated (UCA),
Write Through (WT)
LEGACY RD Uncached legacy 0x10 COH_COPY | Coherent
x02 ucC read, CCA =UC BACK Copyback
LEGACY_WR_ | Cached legacy write, 0x11 COH_COPY | Coherent
x03 WB CCA = Write Back BACKINV Copyback
(WB) Invalidate
LEGACY RD Cached legacy read, 0x12 COH_INV Coherent

WO 2009/123952 PCT/US2009/038745
x04 WB CCA=WB, WT Invalidate
LEGACY SYN Uncached legacy 0x13 COH WR 1 Coherent
x05 C read with MRe- NV Write
qlInfo[3] == Invalidate
L2 L3 CACHE Uncached legacy Ox14 COH_CMPL | Coherent
x06 OP_WR write with _SYNC Completion
MAddrSpace ! =0 Sync with
MReqlnfo[3
1=0
L2 L3 CACHE Uncached legacy 0x15 COH_CMPL | Coherent
x07 OP RD read with _SYNC _ME | Completion
MAddrSpace!=0 M Sync with
MReqlnfo[3
1=1
COH_RD OWN | Coherent Read Own 0x17 COH_WR 1 Coherent
x08 NV _FULL Invalidate
due to a full
line
COH_RD_SHR Coherent Read 0x18 COH _RD O | Coherent
x09 Shared WN_SC Read own
with SC bit
=1
COH RD Coherent Read 0x1C COH_UPGR | Coherent
x0A DISCARD Discard ADE SC Upgrade
with SC bit
=1
COH_RD SHR | Coherent Read Share
x0B ALWAYS Always
Table 3 — Target of Current Request
Value Target Value Target
0x0 | Memory/L2 with no Memory/L2 with
speculation. L2 no speculation. L2
allocation bit =0 allocation bit = 1
0x2 Memory/L2 with Memory/L2 with
speculation. L2 speculation. L2
allocation bit =0 allocation bit = 1
0x4 Global Control GIC
register (GCR)
0x6 Memory Mapped Reserved
/0 (MMIO)

WO 2009/123952

PCT/US2009/038745

Table 4 — Global Intervention State for Cache Line

Value State
0x0 Invalid
0x1 Shared
0x2 Modified
0x3 Exclusive

0x4-0x7 Reserved

Table 5 — Transaction Stall Reason

Value Cause Value Cause
0x0 No Stall 0x1 Awaiting Intervention from
CPU(s)
0x2 IMQ Full 0x3 | Intervention Write Data Buffer
(IWDB) Full
0x4 TRSQ Full 0x5 Intervention Response
Transaction Queue (IRTQ) Full
0x6 | Waiting for IMQ emptyona | 0x7 Stall due to PDtrace™
sync architecture

[0039] The following signals represent updates to the PDTrace™ architecture
interface that allow interaction with the disclosed coherence manager. The Trace Control
Block (TCB) registers are used to enable or disable coherence manager (CMP) trace, as well
as to enable/disable various available features. A new register TCBControlD is added to
control various aspects of the trace output. The various bits used in TCBControlD are

defined in Table 6. Bits 7 to 22 are reserved for implementation specific use.

Table 6

e ew emxon e
S PR R S

! | R S P ifor
TWEE O RY] Ther [aBLT

3'33".‘:5 R { pi'\"f § [N Faoses : E
Table 7 - TCBCONTROLD Register Field Description
Fields Read/ Reset
Name Bits Description Write State Compliance
0 31:26 | Reserved for implementations. 0 0 Required
Check core documentation
P4 Ctl 25:24 | Implementation specific ~ finer Impl. Dep
grained control over tracing Port 4
traffic at the CM. See Table 1.9

10

WO 2009/123952

PCT/US2009/038745

Fields

Name

Bits

Description

Read/
Werite

Reset
State

Compliance

P3 Ctl

23:22

Implementation specific finer
grained control over tracing Port 3
traffic at the CM. See Table 1.9

Impl. Dep

P2 Ctl

21:20

Implementation specific finer
grained control over tracing Port 2
traffic at the CM. See Table 1.9.

Impl. Dep

P1 Ctl

19:18

Implementation specific finer
grained control over tracing Port 1
traffic at the CM. See Table 1.9

Impl. Dep

PO_Ctl

17:16

Implementation specific finer
grained control over tracing Port 0
traffic at the CM. See Table 1.9.

Impl. Dep

Reserved

15:12

Reserved for future use. Must be

written as 0, and read as 0

Required

TWSrcVal

11:8

The source ID of the CM.

Required

WB

When this bit is set, Coherent
Writeback requests are traced. If
this hit is not set, all Coherent
Writeback requests are suppressed
from the CM trace stream

R/W

Required

Reserved

Reserved for future use. Must be

written as 0, and read as 0

Required

10

Inhibit Overflow on CM FIFO full
condition. Will stall the CM until
forward progress can be made

R/W

Undefined

Required

TLev

4:3

This defines the current trace level
being used by CM tracing

Encoding
00 No

Information

01 Include Stall Times,

Causes

10 Reserved

11 Reserved

Meaning
Timing

R/W

Undefined

Required

AE

When set to 1, address tracing is
always enabled for the CM. This
affects trace output from the

R/W

Required

11

WO 2009/123952 PCT/US2009/038745

Fields Read/ Reset

Name Bits Description Write State Compliance

serialization unit of the CM. When
set to 0, address tracing may be

enabled through the
implementation specific P[x] Ctl
bits
Core CM_En 1 Each core can enable or disable | R/W 0 Required

CM tracing using this bit. This bit
is not routed through the master
core, but is individually controlled
by each core. Setting this bit can
enable tracing from the CM even if
tracing is being controlled through
software, if all other enabling
functions are true.

CM_EN 0 | This is the master trace enable | R/W 0 Required
switch to the CM. When zero
tracing from the CM is always
disabled. When set to one, tracing
is enabled if other enabling
functions are true.

[0040] Observe that the PX Ctl fields allow the coherence manager to trace a
different amount of information for each port. For example, for the port connected to the
IOCU 304, it is beneficial to trace the address because there is no other tracing in the ICOU
304. However, for ports connected to a processor, the address may not be as useful since it is
already traced by the processor.

Table 8 - Core/IOU specific trace control bits

Value Meaning
00 Tracing Enabled, No Address Tracing
01 Tracing Enabled, Address Tracing
Enabled
10 Reserved
11 Tracing Disabled

[0041] Table 8 illustrates values to support flexibility in the amount of information
being traced. The architecture enables implementations to enable and disable trace features
per input port of the coherence manager.

[0042] Since each core in the system has its own set of TCBControl registers, one
core is made the ‘master’ core that controls trace functionality for the coherence manager

(CM). This can be done using a CMP GCR to designate a core as the master trace control for

12

WO 2009/123952 PCT/US2009/038745

the CM. This control register is located in the global debug block within the GCR address
space of the CM, at offset 0x0000. The format of the register is given below in Table 9.

Table 9 — The PDtrace Architecture Control Configuration Register

Read/ Reset

Name Bits Description Write State | Compliance
0 31-5 | Reserved for future use. Must be
written as zero; returns zero on read. R 0 Required
TS 4 The trace select bit is used to select

between the hardware and the
software trace control bits. A value
of zero sclects the external hardware
trace block signals, and a value of
one selects the trace control bits in
the CMTraceControl register R/W 0 Required

CorelD 3:0 |[ID of <core that controls
configuration for the coherent
subsystem R/W 0 Required

[0043] Software control is enabled through the CMTraceControl register in the GCR
register space (Debug Control Block, offset 0x0010). This register is very similar to
TCBControlD, and is described below.

Table 10 - CMTraceControl Register Format

3 o T S & S S S - T E L I - 7 § & 3 3 2 &

Bapd § Pé O PS.CH | PR | PG| PO_Csl | Reserved | A Tiow [ARIT
A R B =T | ooVl

H 5 : i
¢ : i

Table 11 CMTraceControl Register Field Descriptions

Fields Read/ | Reset
Name Bits Description Write State Compliance
0 31:26 | Reserved for implementations. 0 0 Required

Check core documentation

P4 Ctl 25:24 | Implementation specific finer Impl. Dep
grained control over tracing
Port 4 traffic at the CM. See
Table 1.9

13

WO 2009/123952

PCT/US2009/038745

Fields

Name

Bits

Description

Read/
Werite

Reset
State

Compliance

P3 Ctl

23:22

Implementation specific finer
grained control over tracing
Port 3 traffic at the CM. See
Table 1.9

Impl. Dep

P2 Ctl

21:20

Implementation specific finer
grained control over tracing
Port 2 traffic at the CM. See
Table 1.9.

Impl. Dep

P1 Ctl

19:18

Implementation specific finer
grained control over tracing
Port 1 traffic at the CM. See
Table 1.9

Impl. Dep

PO_Ctl

17:16

Implementation specific finer
grained control over tracing
Port 0 traffic at the CM. See
Table 1.9.

Impl. Dep

Reserved

15:13

Reserved for future use. Must
be written as 0, and read as 0

Required

TF8 Present

12

If set to 1, the TF8 trace
format exists and will be used
to trace load/store hit/miss
information, as well as the
CoherentSyncID. If set to 0,
cach existing trace format is
augmented to include
load/store hit/miss indication.
See Section 1.1.7 for more
details

Preset

Required

TWSrcVal

11:8

The source 1D of the CM.

Required

WB

When this bit is set, Coherent
Writeback requests are traced.
If this hit is not set, all
Coherent Writeback requests
are suppressed from the CM
trace stream

R/W

Required

Reserved

Reserved for future use. Must
be written as 0, and read as 0

Required

14

WO 2009/123952

PCT/US2009/038745

Fields

Name

Bits

Description

Read/
Werite

Reset
State

Compliance

10

5

Inhibit Overflow on CM FIFO
full condition. Will stall the
CM until forward progress can
be made

R/W

Undefine
d

Required

TLev

4:3

This defines the current trace
level being used by CM
tracing

Encodi
ng
00 No Timing

Information

01 Include Stall

Times, Causes

10 Reserved

11 Reserved

Meaning

R/W

Undefine
d

Required

AE

When set to 1, address tracing
is always enabled for the CM.
This affects trace output from
the serialization unit of the
CM. When set to 0, address
tracing may be enabled
through the implementation
specific P[x]_Ctl bits

R/W

Required

SW _Trace ON

Setting this bit to 1 enables
tracing from the CM as long
as the CM_EN bit is also
enabled.

R/W

Required

CM_EN

This is the master trace enable
switch to the CM. When zero
tracing from the CM is always
disabled. When set to one,
tracing is enabled if other
enabling functions are true.

R/W

Required

[0044] The PDtrace™ architecture requires some information to be traced out from

cach core to allow correlation between requests from the core with transactions at the

coherence manager. The information required includes the coherent synchronization ID. The

exact implementation of how this information is made available is highly dependent on the

particular core on which it is implemented.

15

WO 2009/123952 PCT/US2009/038745

[0045] One embodiment of the invention expands PDTrace™ architecture trace
formats TF2, TF3, and TF4. Each of these formats is expanded by one to four bits. Each
instruction that is capable of generating a bus request ("LSU" instruction) adds at least two
bits. All non-LSU instructions add a single bit (0) to the end of the trace formats. An LSU
instruction that hits in the cache adds two bits "10". If the instruction misses in the cache, it
adds four bits - 11XY where XY represent the COSId. The hit/miss/COSId information for
an LSU instruction is sent after the instruction completion message for that instruction has
been sent. Specifically, it is attached to the second LSU instruction after the original
instruction. For some architectures, this guarantees that the hit/miss information is available
at the time it needs to be sent out.

[0046] A second mechanism introduces three variants of a new CPU trace format
(TF8). A TF8 message is output on any memory operation that misses in the cache. The

format is shown in Table 12A.

Table 12A - CPU Trace Format 8 (TF8)

35 B

RO H
aount i
i

[0047] As previously discussed, trace data can have two sources within the coherence
manager — the serialization response handler (SRH) or the Intervention Unit (IVU). The SRH
uses two trace formats (CM_TF1, CM_TF2), and the IVU uses one format (CM_TF3). One
trace format (CM_TF4) is used to indicate that overflow has occurred. Since overflow
implies that trace messages have been lost, the system must be resynchronized. The first one
to four bits of a trace word can be used to determine the packet type.

[0048] Different SRH trace formats are selected based upon the type of debugging
one wants to perform. For example, more information is traced for hardware debugging
compared to software debugging. The SRH produces trace metrics including a source
processor, a serialized command, stall information, the address of the request being traced,
and a target address. One or more of these metrics may be arranged in various formats.
When request addresses are not being traced, the CM _TF1 trace format, shown in Tables 12
and 13 is used. If the TLev field in TCBControlD (or CMTraceControl) is set to 1, each
packet also includes the SRH_ WaitTime field, as shown in Table 13. The packet width

16

WO 2009/123952 PCT/US2009/038745

varies from 14 bits (trace level 0; Table 12) to 22 bits (trace level 1; Table 13). Trace
reconstruction software determines the total packet length by examining the appropriate

control bits in TCBControlD or the CMTraceControl register.

Table 12B - CM Trace Format 1 (CM_TF1) - Trace Level 0

13 [ki & 5§ 4 3 R

{ AddrTarp | MOmd [COSW SePar L

Table 13 - CM Trace Format 1 (CM_TF1) Trace Level 1

F ¢ 13 FE S £1] v 5 4 3 if

[wanTwe AddTeg . MOnd QO8I Sebos |1

[0049] When request addresses are being traced, the CM_TF2 trace format, shown in
Tables 14 and 15 are used. Since each core sets the lowest three address bits to zero, only
address bits [31:3] are traced. If the TLev field in TCBControlD (or CMTraceControl) is set
to 1, each packet also includes the SRH_ WaitTime field. The packet width varies from 45
bits (trace level 0; Table 14) to 53 bits (trace level 1; Table 15). Trace reconstruction

software determines the total packet length by examining the appropriate control bits in

TCBControlD or the CMTraceControl register.

Table 14 - CM Trace Format 2 (CM_TF2) - Trace Level 0

(')
-

&

44 16 15 33 12 5 7 6 % 3 .
P Addressf3T3] | AddrTarg | MCrad jmsm; SRost | tiof0]d

Table 15 - CM Trace Format 2 (CM_TF2) - Trace Level 1

35 44 4 I8 i3 12 8 T & § 320108

]
¥t

Wait T P addressi3 3T | AddTarg | Bl Tned VUDSK SeeBor T IR Q)

[0050] The IVU produces trace metrics including a source processor, a bit vector of
intervention port responses, global intervention state for a cache line, a transaction cancelled

indicator, an indication that an intervention will cause a cancelled store condition to fail, an

17

WO 2009/123952 PCT/US2009/038745

indication that an intervention will cause a future store condition to fail, transaction delay
information, and stall cause information. One or more of these metrics may be arranged in
various formats. Trace data from the IVU uses the CM_TF3 trace format, shown in Tables 16
and 17. If the trace level (TLev in TCBControlD or CMTraceControl) is set to 1, each packet
also includes two additional fields (WaitTime and StallCause). Each packet is 18 bits (trace
level 0; Table 16) or 29 bits (trace level 1; Table 17). The SCF field indicates if a Store
Conditional Failed, and the SCC field indicates if a Store Conditional was cancelled. Trace
reconstruction software determines the trace level being used by examining the

TCBControlD register or the CMTraceControl register.

Table 16 - CM Trace Format 3 (CM_TF3) with Trace Level 0

17 16 3% 13 12 76 8 4 201 00

DRI S ¢ X) . §eovasr b o NI
]:u(.t.;\x(\}-; IntvResuit FespBY (CONId) AwePort Y

Table 17 - CM Trace Format 3 (CM_TF3) with Trace Level 1

18 1 2% B w18 13 12 T I I

SullCanse | WairTine [SCCISUF! bvResslr] RespBV W0OOSK] SwPat [110

[0051] Various formats can be selected based upon the circumstances. For example,
if bandwidth is plentiful and/or one wants maximum information, the trace level may be set
to 1 and address tracing may be enabled. This provides information about why certain stalls
occur and how long they are (trace level 1). This also provides an additional level of
correlation between addresses seen at the CPU and addresses seen at the coherence manager.
The trace formats of Tables 15 and 17 may be used in these circumstances.

[0052] If the system is bandwidth limited and/or the user is only interested in
software debugging, trace level 0 may be selected with address tracing disabled. This
provides a minimal level of information about CPU requests that reaches the coherence
manager (e.g., information about sharing, global cache line state, etc.), but excludes
information about stalls and does not include the address. The trace formats in this case may

be those of Tables 12 and 16.

18

WO 2009/123952 PCT/US2009/038745

[0053] If the system is bandwidth limited, but the user is interested in performance
debugging, the trace level may be set to 1 with disabled address tracing. This provides some
additional information about stalls. The trace formats in these instance may be those of
Tables 13 and 17.

[0054] If the coherence manager inhibit overflow bit (CM_10) is not set, it is possible
for trace packets to be lost if internal trace buffers are filled. The coherence manager
indicates trace buffer overflow by outputting a CM_TF4 packet. Regular packets resume
after the CM_TF4 packet. The coherence manager resynchronizes with all cores by

requesting a new COSId. Table 18 illustrates the overflow format.

Table 18 — Overflow Format

[0055] The PDtrace architecture defines mechanisms that allow hardware breakpoints
to start (or stop) tracing. An embodiment of the invention extends these mechanisms to allow
the triggering of trace from the Coherence Manager. Each breakpoint trigger within the
TraceIBPC and TraceDBPC registers can also be set to start tracing from the core and
coherence manager. If a trigger that is set to enable coherence manager tracing is fired, the
corresponding Core CM_EN bit in TCBControlD is set to one. Similarly, if a trigger that is
set to disable tracing fires on a core, the Core CM_EN bit is set to zero. The TraceIBPC and
TraceDBPC registers are shown below. Tables 19 through 23 show the new encodings that
allow triggering of the coherence manager trace. The PDtrace architecture currently uses
TF6 to indicate the staff/end of a trace due to a hardware breakpoint trigger. We define a
new bit (bit 14 of TF6) within the TCinfo field in TF6 to indicate if the coherence

managerwill be affected by the current trigger.

Table 19 - TracelBPC Register Format

kN o 2 g & ¥ & Y

Kt
r

oL OIRPOG | OIRRG, | IR,

LIEPC, | OIREC, | OIBRC, |

19

WO 2009/123952

Table 20 - TracelBPC Register Field Descriptions

PCT/US2009/038745

Fields Read/ Reset
Name Bits Description Write State Compliance
MB 31 Indicates that more instruction R 0/1 Required
hardware breakpoints are present
and register TraceIBPC2 should
be used.
0 30:29 | Reserved. Reads as zero, and R 0 Required
non-writable
IE 28 | Used to specify whether the| R/W 0 Required
trigger signal from EJTAG
instruction breakpoint should
trigger tracing functions or not:
0: disable trigger signals
from instruction breakpoints
1: enables trigger signals
from instruction breakpoints
ATE 27 | Additional trigger enable signal. R Preset Required
Used to specify whether the
additional trigger controls such
as ARM, DISARM, and data-
qualified tracing introduced in
PDTrace™ architecture revision
4.00 are implemented or not.
IBPCn 3n- | The three bits are decoded to| R/W 0 LSB required,
1:3n-3 | enable different tracing modes. Upper two
Table 1.14 shows the possible bits are
interpretations. Each set of 3 Optional.
bits represents the encoding for Required for
the instruction breakpoint n in breakpoints
the EJTAG implementation, if it implemented
exists. If the breakpoint does not in EJTAG

exist then the bits are reserved,
read as zero and writes are
ignored. If ATE is zero, bits 3n-
1:3n-2 are ignored, and only the
bottom bit 3n-3 is used to start
and stop tracing as specified in
versions less than 4.00 of this
specification.

20

WO 2009/123952 PCT/US2009/038745

Figure 21 - TraceDBPC Register Format

X4

340 Fa s 8O W oA ¥ & [

DRPC, | DBPC, | DBPC, |

N
b

Table 22 - TraceDBPC Register Field

Fields Read/ Reset
Name Bits Description Write State Compliance
MB 31 Indicates that more R 0/1 Required
instruction hardware

breakpoints are present
and register TraceIBPC2
should be used.

0 30:29 Reserved. Reads as zero, R 0 Required
and non-writable

DE 28 Used to specify whether R/W 0 Required
the trigger signal from
EJTAG instruction
breakpoint should trigger
tracing functions or not:

0: disable trigger
signals from data
breakpoints
1: enables trigger
signals from data
breakpoints

ATE 27 Additional trigger enable R Preset Required
signal. Used to specify
whether the additional
trigger controls such as
ARM, DISARM, and
data-qualified tracing
introduced in PDTrace™
architecture revision 4.00
are implemented or not.

DBPCn 3n-1:3n-3 | The three bits are decoded R/W 0 LSB required,
to enable different tracing Upper two
modes. Table 1.14 shows bits are
the possible Optional.
interpretations. Each set Required for
of 3 bits represents the breakpoints
encoding for the implemented
instruction breakpoint n in in EJTAG

21

WO 2009/123952 PCT/US2009/038745
Fields Read/ Reset
Name Bits Description Write State Compliance
the EJTAG
implementation, if it
exists. If the breakpoint
does not exist then the bits
are reserved, read as zero
and writes are ignored. If
ATE is zero, bits 3n-1:3n-
2 are ignored, and only the
bottom bit 3n-3 is used to
start and stop tracing as
specified in versions less
than 4.00 of this
specification.
Table 23 - BreakPoint Control Modes: IBPC and DBPC
Value Trigger Action Description
000 Unconditional Trace Stop Unconditionally stop tracing if tracing
was turned on. If tracing is already
off, then there is no effect.
001 Unconditional Trace Start Unconditionally start tracing if tracing

was turned off. If tracing is already
turned off then there is no effect.

010 [Old values will be [Unused]
deprecated]
011 Unconditional Trace | Unconditionally start tracing if tracing was
Start (from CM and Core) turned off. If tracing is already turned off then
there is no effect.
100 | [Old values will be deprecated] Unused
101 | [Old values will be deprecated]
110 | [Old values will be deprecated]
111 | [Old values will be deprecated]

[0056] Trace Format 6 (TF6) shown in Table 24 is provided to the coherence

manager trace control block (TCB) to transmit information that does not directly originate

from the cycle by cycle trace data on the PDtrace™ architecture interface. That is, TF6 can

be used by the TCB to store any information it wants in the trace memory, within the

constraints of the specified format. This information can then he used by software for any

purpose. For example, TF6 can be used to indicate a special condition, trigger, semaphore,

breakpoint, or break in tracing that is encountered by the TCB.

22

WO 2009/123952

Table 24 - TF6 (Trace Format 6)

PCT/US2009/038745

TCRmin

The definition of TCBcode and TCBinfo is shown in Table 25.

Table 25 - TCBcode and TCBinfo fields of Trace Format 6 (TF6)

TCBcode

Description

TCBinfo

0000

Trigger Start: Identifies start-point of trace.
TCBinfo identifies what caused the trigger.

0100

Trigger End: Identifies end-point of trace.
TCBinfo identifies what caused the trigger.

1000

Trigger Center: Identifies center-point of trace.
TCBinfo identifies what caused the trigger.

1100

Trigger Info: Information-point in trace.
TCBinfo identities what caused the trigger.

Cause of trigger. Taken
from the Trigger control
register generating this
trigger.

0001

No trace cycles: Number of cycles where the
processor is not sending trace data
(PDO IamTracing is deasserted), but a stall is
not requested by the TCB

(PDI StallSending is not asserted). This can
happen when the processor, during its execution,
switches modes internally that take it from a trace
output required region to one where trace output
was not requested.

For example, if it was required to trace in User-
mode but not in Kernel-mode, then when the
processor jumps to Kernel-mode from User-
mode, the internal PDtrace™ architecture FIFO
is emptied, then the processor deasserts
PDO IamTracing and stops sending trace
information. In order to maintain an accurate
account of total execution cycles, the number of
such no-trace cycles have to be tracked and
counted. This TCBcode achieves this goal.

0101

Back stall cycles: Number of cycles when
PDI StallSending was asserted, preventing the
PDtrace™ architecture interface from
transmitting any trace information.

Number of cycles (All
zeros 1S equal to 256).
If more than 256 is
needed, the TF6 format
is repeated.

23

WO 2009/123952

PCT/US2009/038745

TCBcode

Description

TCBinfo

1001

Instruction or Data Hardware Breakpoint
Trigger: Indicates that one or more of the
instruction or data breakpoints were signalled and
caused a trace trigger. Bit 8 of the TCBinfo field
indicates whether it was an instruction (0) or data
(1) breakpoint that caused the trigger. Bit 9
indicates whether or not trace was turned off (0)
or on (1) by this trigger. Bits 13:10 encodes the
hardware breakpoint number. Bit 14 indicates if

tracing from the coherence manager was affected
(1) or not (0).

When tracing is turned off, a TF6 will be the last
format that appears in the trace memory for that
tracing sequence. The next trace record should
be another TF6 that indicated a trigger on signal.

It is important to note that a trigger that turns on
tracing when tracing is already on will not
necessarily get traced out, and is optional
depending on whether or not there is a free slot
available during tracing. Similarly, when tracing
is turned off, then a trigger that turns off tracing
will not necessarily appear in trace memory.

Values are as described.

1101

0010, 0110,
1010

Reserved for future use

Undefined

1110

Used for processors implementing MIPS MT
ASE, see format TF7

TC value

Xx11

TCB implementation dependent

Implementation
dependent

[0057] Revision 4.0 (and higher) of the PDtdrace specification uses two of the

TCBcode fields to indicate that Instruction or Data Hardware Breakpoints were caused by the

instruction in the trace format immediately preceding this TF6 format. Whether the trigger

caused by the breakpoint turned trace off or on is indicated by the appropriate TCBinfo field

value. Note that if the processor is tracing and trace is turned off this would be passed on to

the external trace memory appropriately. If the processor is not tracing, and trace is turned on

by a hardware breakpoint, then this record would show up in trace memory as the first

instruction to be traced (it is also the one that triggered trace on). If tracing is on-going and

other triggers continue to keep turning on trace, then this would show up as a TF6 in trace

memory.

24

WO 2009/123952 PCT/US2009/038745

[0058] While various embodiments of the invention have been described above, it
should be understood that they have been presented by way of example, and not limitation. It
will be apparent to persons skilled in the relevant computer arts that various changes in form
and detail can be made therein without departing from the scope of the invention. For
example, in addition to using hardware (e.g., within or coupled to a Central Processing Unit
(“CPU”), microprocessor, microcontroller, digital signal processor, processor core, System
on chip (“SOC”), or any other device), implementations may also be embodied in software
(e.g., computer readable code, program code, and/or instructions disposed in any form, such
as source, object or machine language) disposed, for example, in a computer usable (e.g.,
readable) medium configured to store the software. Such software can enable, for example,
the function, fabrication, modeling, simulation, description and/or testing of the apparatus
and methods described herein. For example, this can be accomplished through the use of
general programming languages (e.g., C, C++), hardware description languages (HDL)
including Verilog HDL, VHDL, and so on, or other available programs. Such software can
be disposed in any known computer usable medium such as semiconductor, magnetic disk, or
optical disc (e.g., CD-ROM, DVD-ROM, etc.). Embodiments of the present invention may
include methods of providing the apparatus described herein by providing software
describing the apparatus. For example, software may describe multiple processors, the
coherence manager, etc.

[0059] It is understood that the apparatus and method described herein may be
included in a semiconductor intellectual property core, such as a microprocessor core (e.g.,
embodied in HDL) and transformed to hardware in the production of integrated circuits.
Additionally, the apparatus and methods described herein may be embodied as a combination
of hardware and software. Thus, the present invention should not be limited by any of the
above-described exemplary embodiments, but should be defined only in accordance with the

following claims and their equivalents.

25

WO 2009/123952 PCT/US2009/038745

In the claims:

1. A computer readable storage medium with executable instructions to characterize a
coherency controller, comprising executable instructions to define:

ports to receive processor trace information from a plurality of processors, wherein
the processor trace information from each processor includes a processor identity and a
condensed coherence indicator; and

circuitry to produce a trace stream with trace metrics and condensed coherence

indicators.

2. The computer readable storage medium of claim 1 wherein the circuitry includes a

serialized request handler to provide global transaction ordering of the trace information.

3. The computer readable storage medium of claim 2 wherein the serialized request

handler produces trace metrics including a source processor.

4. The computer readable storage medium of claim 2 wherein the serialized request

handler produces trace metrics including a serialized command.

5. The computer readable storage medium of claim 2 wherein the serialized request

handler produces trace metrics including stall information.

6. The computer readable storage medium of claim 2 wherein the serialized request

handler produces trace metrics including the address of a request being traced.

7. The computer readable storage medium of claim 2 wherein the serialized request

handler produces trace metrics including a target address.
8. The computer readable storage medium of claim 2 wherein the serialized request

handler produces trace metrics in a format specifying a source processor, a coherence

indicator, a command and an address target.

26

WO 2009/123952 PCT/US2009/038745

9. The computer readable storage medium of claim 2 wherein the serialized request
handler produces trace metrics in a format specifying a source processor, a coherence

indicator, a command, an address target, and a serialize request handler wait time.

10. The computer readable storage medium of claim 2 wherein the serialized request
handler produces trace metrics in a format specifying a source processor, a coherence

indicator, a command, an address target and a request address.

11. The computer readable storage medium of claim 2 wherein the serialized request
handler produces trace metrics in a format specifying a source processor, a coherence
indicator, a command, an address target, a request address and a serialize request handler wait

time.

12. The computer readable storage medium of claim 1 wherein the circuitry includes an
intervention unit to send coherent request to the plurality of processors, receive coherent
responses from the plurality of processors and generate intervention unit trace metrics

including a coherence indicator.

13. The computer readable storage medium of claim 12 wherein the intervention unit

produces trace intervention unit trace metrics including a source processor.

14. The computer readable storage medium of claim 12 wherein the intervention unit
produces trace intervention unit trace metrics including a bit vector of intervention port

responses.
15. The computer readable storage medium of claim 12 wherein the intervention unit
produces trace intervention unit trace metrics including a global intervention state for a cache

line.

16. The computer readable storage medium of claim 12 wherein the intervention unit

produces trace intervention unit trace metrics including a transaction cancelled indicator.

27

WO 2009/123952 PCT/US2009/038745

17. The computer readable storage medium of claim 12 wherein the intervention unit
produces trace intervention unit trace metrics indicating that an intervention will cause a

cancelled store condition to fail.

18. The computer readable storage medium of claim 12 wherein the intervention unit
produces trace intervention unit trace metrics indicating that an intervention will cause a

future store condition to fail.

19. The computer readable storage medium of claim 12 wherein the intervention unit

produces trace intervention unit trace metrics including transaction delay information.

20. The computer readable storage medium of claim 12 wherein the intervention unit

produces trace intervention unit trace metrics including stall cause information.

21. The computer readable storage medium of claim 12 wherein the intervention unit
produces intervention unit trace metrics in a format specifying a source processor, a
coherence indicator, a vector of intervention port responses, a global intervention cache line

state, a source condition failure command, and a previous source condition failure indication.

22. The computer readable storage medium of claim 12 wherein the intervention unit
produces intervention unit trace metrics in a format specifying a source processor, a
coherence indicator, a vector of intervention port responses, a global intervention cache line
state, a source condition failure command, a previous source condition failure indication, an

intervention unit wait time, and a stall cause indicator.

23. The computer readable storage medium of claim 1 wherein the circuitry selectively

generates a trace buffer overflow indicator.

24. The computer readable storage medium of claim 1 wherein the circuitry supports

hardware trace breakpoints.

25. The computer readable storage medium of claim 1 wherein the circuitry supports the

storage of selective trace information in trace memory.

28

WO 2009/123952 PCT/US2009/038745

26. The computer readable storage medium of claim 25 wherein the selective trace
information is selected from a special condition, a trigger, a breakpoint and a trace control

block break in tracing.

29

WO 2009/123952 PCT/US2009/038745

15
100 -\
P 120

102~ 104 =, '

| \ /
Muiti-
Processor - Probe w0 CPRU
System _
128 N z’)
1304
‘ Debug Module

FIG. 1

WO 2009/123952 PCT/US2009/038745

2/5

200

Geanerate Mulit-Processor Trace information
With Condensed Coherence Indicators

7202
e

- o

Gengrate Coherence Manager Trace Informastion With
Trace Melrics and Condensed Coherance Indicators

Identify Individual Processor Trace Streams

f“206
J

Debug Indbvidual Processor Tracs Streams

FIG. 2

WO 2009/123952

PCT/US2009/038745

3/5
, 302 N
304 302 1 w\\ N
\‘\ \
102 - -
N\ locuy CPU CPU
XX
GSynclD | C8ynelD
S ?\ - \ -
S N8 i
£ 15 S
2 & S
<« o >
5 5 Rl
& 4
Coherence
‘ s Manager
oy $ Lo
To CPUs 3 To CPUs'
Resync o Intervention Ports
request T oce T ‘ jo 34 :’ . '%"'*'326
A N SRH Serialized | /738 o
Tramv {;eroi il)_Tﬁa_(:‘e_ lirarz)_ei Request | Conwert Renie o ﬁﬁ? intewe\f}t:am‘i
Block) 7 Handlar b Unit
TOES 324 ancier I ESndiD VU
(CMTOB) -~ {BRH) - = /.\ (VU
. , - | trace_enable\ oo
330 -~ | I 319 g e 322 320 316
3 CM E Non-Coherent Requests i 328
E PDTrace | To Memory or MMIO ,'/—
334 —j Trace Words | IVU PDTrace Frames |
\i ____________________________ —
: —
v 332
PDTrace ~———-m , to PDTrace Pins
Trace Words E ?S?‘race N or
From CPUs '_7—% Funngl L338 On-chip Memory
336

FIG. 3

WO 2009/123952 PCT/US2009/038745

4/5
/404
3027 Ccosld
- /402
Sore '
i CPU Trace Message
o Request 404
400
+COSId /-
310 cosid
: 406
M e /—
> Do
CM Trace Message
FIG. 4
500 —\ /—502
CPU Trace Messages CM Trace Messages
00 00
00 00
00 a1
504~ A e
00 01
o1l 01
01 01
01 01
FIG. 5
6107 600
COSld 00 ~—#e-01 - 10 oo 11 o () i O 10

PC§ync PCSync PCSync PCSync PCSync PCSync PCSync Tsme

Cache \\ *{‘:{3‘1 7777 g0z y ?w»é;i ? ? f? ?¢¢ ,,,,,,,,,,,,,,,

Mss = 506 eor 514 ——ICM Overflow

WO 2009/123952 PCT/US2009/038745
5/5
ra 302 1
, Trace Data From Core 0
Corg O e 332
‘f,f"“ Fii !{;
Trace Data o] ,
CM ™ Funnsl i~
Core 1 Trace Data From Core 1
A 302 2

FIG. 7

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

