
US 2014O129878A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0129878 A1

SALTZMAN et al. (43) Pub. Date: May 8, 2014

(54) INDICATING COVERAGE OF WEB Publication Classification
APPLICATION TESTING

(51) Int. Cl.
(71) Applicant: INTERNATIONAL BUSINESS G06F II/36 (2006.01)

MACHINES CORPORATION, (US) (52) U.S. Cl.
CPC G06F II/3668 (2013.01)

(72) Inventors: ROISALTZMAN, RISHON LE ZION USPC 71.4/38.1
(IL); ORI SEGAL TEL AVIV (IL) (57) ABSTRACT

Testing a system under test includes intercepting, within a
(73) Assignee: INTERNATIONAL BUSINESS proxy system, a request from a client system sent to the

MACHINES CORPORATION, system under test. The request is analyzed within the proxy
ARMONK, NY (US) system and sent to the system under test. Within the proxy

system, a response from the system under test sent to the
(21) Appl. No.: 13/671,972 client system is intercepted. The response is instrumented

creating a modified response indicating test coverage accord
ing to the request. The modified response is sent to the client

(22) Filed: Nov. 8, 2012 system.

Proxy
System

O.

System Under
Test (SUT)

5

Web Application

Request | --
30 Runtime Analysis

Response Module
35 22

(Optional) Test
Modified -Coverage Data

t 40

May 8, 2014 Sheet 1 of 3 US 2014/0129878A1 Patent Application Publication

90? JOSS350.13
Z “OICH

I "OIH

Patent Application Publication May 8, 2014 Sheet 2 of 3 US 2014/0129878A1

300 Intercept request sent from
client system to SUT

305

Analyze intercepted request
3 O

Forward request to SUT
315

intercept response from SUT
320

Analyze response
325

Correlate elements of
response with list of selected

elements
330

Optionally receive test
coverage data from SUT

335

Instrument response
340

Send modified response to
the client system

350

FIG. 3

Patent Application Publication May 8, 2014 Sheet 3 of 3 US 2014/0129878A1

Web Application
File Edit View Go Bookmarks Tools Help

FIG. 4

US 2014/0129878 A1

INDICATING COVERAGE OF WEB
APPLICATION TESTING

BACKGROUND

0001 Testing a Web application often involves the use of
an automated Web crawler. The Web crawler is configured to
fill in forms, Submit the forms, click (e.g., select) links in the
Web application and the like. A large number of modern Web
applications, however, have taken on a look and feel that
closely parallels that of traditional desktop applications.
0002 One consequence of Web applications emulating
aspects of desktop applications is that automated testing
methodologies are of limited benefit. Web crawlers and other
forms of automated testing using Scripts, for example, are
unable to test a Web application with the same attention to
detail as a human tester. Unlike automated testing method
ologies, a human tester is able to manually navigate the Web
application and determine an order of navigation and testing
that follows the logic of the Web application when performing
functional and/or security related testing.

BRIEF SUMMARY

0003. A method includes intercepting, within a proxy sys
tem, a request from a client system sent to a system under test
(SUT). The request is analyzed within the proxy system and
sent to the SUT. Within the proxy system, a response from the
SUT that is sent to the client system is intercepted. The
method includes instrumenting the response, using a proces
sor of the proxy system, thereby creating a modified response
indicating test coverage according to the request. The modi
fied response is sent to the client system.
0004. A system includes a processor programmed to ini

tiate executable operations. The executable operations
include intercepting, within a proxy system, a request from a
client system sent to an SUT, analyzing the request within the
proxy system, and sending the request to the SUT. The opera
tions further include intercepting, within the proxy system, a
response sent from the SUT to the client system, instrument
ing the response within the proxy system creating a modified
response indicating test coverage according to the request,
and sending the modified response to the client system.
0005. A computer program product for testing an SUT
includes a computer readable storage medium having pro
gram code embodied therewith. The program code is execut
able by a processor to perform a method. The method includes
intercepting, within a proxy system using the processor, a
request from a client system sent to an SUT, analyzing the
request within the proxy system and sending the request to the
SUT using the processor. The method further includes inter
cepting, within the proxy system using the processor, a
response sent from the SUT to the client system, instrument
ing the response, using the processor, creating a modified
response indicating test coverage according to the request,
and sending the modified response to the client system using
the processor.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0006 FIG. 1 is a block diagram illustrating an example of
a computing environment.
0007 FIG. 2 is a block diagram illustrating an example of
the proxy system of FIG. 1.

May 8, 2014

0008 FIG. 3 is a flow chart illustrating an exemplary
method of testing a Web application.
0009 FIG. 4 is a block diagram illustrating an exemplary
graphical user interface for a Web application undergoing
testing.

DETAILED DESCRIPTION

0010. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer-readable medium(s) hav
ing computer-readable program code embodied, e.g., stored,
thereon.
0011. Any combination of one or more computer-readable
medium(s) may be utilized. The computer-readable medium
may be a computer-readable signal medium or a computer
readable storage medium. A computer-readable storage
medium refers to a non-transitory storage medium. A com
puter-readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor System, apparatus, or device, or
any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer-readable
storage medium would include the following: an electrical
connection having one or more wires, a portable computer
diskette, a hard disk drive (HDD), a solid state drive (SSD), a
random access memory (RAM), a read-only memory (ROM),
an erasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), a digital versatile disc
(DVD), an optical storage device, a magnetic storage device,
or any Suitable combination of the foregoing. In the context of
this document, a computer-readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0012. A computer-readable signal medium may include a
propagated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter-readable signal medium may be any computer-readable
medium that is not a computer-readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0013 Program code embodied on a computer-readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber,
cable, RF, etc., or any Suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as JavaM,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language

US 2014/0129878 A1

or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0014 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer, other programmable data process
ing apparatus, or other devices create means for implement
ing the functions/acts specified in the flowchart and/or block
diagram block or blocks.
0015 These computer program instructions may also be
stored in a computer-readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer-readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0016. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0017 For purposes of simplicity and clarity of illustration,
elements shown in the figures have not necessarily been
drawn to scale. For example, the dimensions of some of the
elements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference
numbers are repeated among the figures to indicate corre
sponding, analogous, or like features.
0018. One or more embodiments relate to indicating the
coverage of Web application testing. In accordance with the
inventive arrangements disclosed within this specification, a
proxy system is inserted between a client system used by a
tester, e.g., a human being, and a Web application undergoing
testing and executing in a data processing system. The proxy
system is configured to monitor and analyze communications
exchanged between the client system and the Web application
to determine which portions of the Web application have and
have not been executed or visited by the client system. The
proxy system instruments communications sent from the Web
application to the client system to indicate to a tester what has
or has not yet been tested.

May 8, 2014

0019 FIG. 1 is a block diagram illustrating an example of
a computing environment 100. Computing environment 100
is configured for testing a Web application and, in particular,
Web application 120. As shown, computing environment 100
includes a client system 105, a proxy system 100, and a
system under test (SUT) 115 communicatively linked with
one another through a network 125. Exemplary implementa
tions of network 125 include a WAN, a LAN, a wireless
network, a mobile network, a Virtual Private Network (VPN),
the Internet, other known networks and/or various combina
tions of the listed network types.
0020 SUT 115 is a data processing system such as a server
that is configured to execute a Web application 120. Web
application 120 is undergoing testing. In this regard, SUT 115
refers to the data processing system in combination with Web
application 120. In another aspect, the data processing system
is further configured to execute a runtime analysis module
122. In that case, SUT 115 refers to the data processing
system in combination with Web application 120 and runtime
analysis module 122.
0021. In general, Web application 120 is undergoing test
ing by a user or tester working at client system 105. In one
aspect, Web application 120 is instrumented with program
code that performs coverage analysis. For example, the
instrumented program code of Web application 120, when
executed, can interact with runtime analysis module 122,
which generates coverage data indicating which portions of
Web application 120 have been executed during the testing
session and which have not.
0022. Client system 105 is a data processing system that
either executes a browser or includes browser functionality.
Through client system 105, a user, in reference to a human
being ora“tester, can send requests for content such as pages
to SUT 115, receive content such as pages from SUT 115, and
render the pages up a display of client system 105. A "page'
generally refers to a markup language file or files in addition
to any other elements that may be incorporated within or
referenced by Such page. Exemplary implementations of cli
ent system 105 include a desktop computer as pictured, a
portable computing device Such as a laptop or a tablet, a
mobile computing device Such as an Internet-enabled mobile
phone, or the like.
0023 Proxy system 110 is implemented as a data process
ing system that intercepts communications sent from client
system 105 to SUT 115 and further intercepts communica
tions sent from SUT 115 to client system 105. Proxy system
110 is configured to analyse received communications
whether from client system 105 or from SUT 115. For
example, proxy system 110 identifies the various components
included within the intercepted communications, determines
correlations between components in communications
received from client system 105, determines correlations
between components in communications from SUT 115, and/
or determines correlations between components received in
communications from client system 105 and components in
communications from SUT 115. Based upon the analysis,
proxy system 110 modifies communications received from
SUT 115 and forwards, or sends, the modified communica
tion on to client system 105.
0024. Within computing environment 100, to effectuate
testing, client system 105 is configured to direct requests
intended for the SUT to proxy system 110. Similarly, SUT
115 is configured to direct responses, e.g., pages, intended for
client system 105 to proxy system 110. With this configura

US 2014/0129878 A1

tion in place, client system 105 initiates a testing session with
SUT 115. As part of the testing session, client system 105
sends a request 130 to SUT 115. Request 130 specifies a
particular page of Web application 120 that is to be retrieved.
Proxy system 110 intercepts request 130 and performs an
analysis upon request 130. Proxy system 110 forwards
request 130 to SUT 115.
0025 SUT 115 sends a response 135, e.g., a response to
request 130, to client system 105. Proxy system 110 inter
cepts response 135. Proxy system 135 performs analysis upon
response 135. In one aspect, proxy system 110 is in commu
nication with SUT 115 to receive optional test coverage data
140 from SUT 115. Proxy system 110 modifies, e.g., instru
ments, response 135 thereby generating modified response
145, which is sent to client system 105.
0026. In one aspect, proxy system 110 is configured to
determine which portions of Web application 120 have and
have not been executed or visited based upon intercepted
requests and/or intercepted responses. Proxy system 110
instruments responses from Web application 120 to client
system 105 in real time to aid the tester in determining what
has or has not yet been tested. As used herein, “instrument
ing an object that includes executable program code (e.g.,
object code or a binary file), interpretable program code (e.g.,
a script or markup language), or source code, refers to insert
ing additional program code into the object, deleting program
code from the object, modifying existing program code of an
object, or any combination of the aforementioned actions. As
used herein, the phrase “real time” means a level of process
ing responsiveness that a user or system senses as Sufficiently
immediate for a particular process or determination to be
made, or that enables the processor to keep up with some
external process.
0027. In one aspect, proxy system 110 modifies an ele
ment of response 135 based upon one or more previously
received and analysed requests from client system 105. For
example, proxy system 110 modifies a visualization param
eter of an element in response 135 to visually indicate that the
element has already been selected via client system 105. The
modified element is visually distinguished from an element
that has not been visited or selected.

0028. In another example, proxy system 110 modifies an
element of response 135 based upon test coverage data 140
that is received from runtime analysis module 122. For
example, one or more additional visual elements can be added
to response 135 resulting in modified response 145. In still
another example, Scripts can be modified, added, or removed
with respect to response 135. Further aspects of the analysis
performed by proxy system 110 and the instrumentation of
response 135 are described within this specification.
0029 FIG. 2 is a block diagram illustrating an example of
proxy system 110 of FIG. 1. As noted, proxy system 110 is
implemented as a data processing system. Proxy system 110
includes at least one processor (e.g., a central processing unit)
205 coupled to memory elements 210 through a system bus
215 or other suitable circuitry. As such, proxy system 110 can
store program code within memory elements 210. Processor
205 executes the program code accessed from memory ele
ments 210 via system bus 215. In one aspect, proxy system
110 is implemented as a computer or other programmable
data processing apparatus that is suitable for storing and/or
executing program code. It should be appreciated, however,
that proxy system 110 can be implemented in the form of any

May 8, 2014

system including a processor and memory that is capable of
performing the functions and/or operations described within
this specification.
0030 Memory elements 210 can include one or more
physical memory devices such as, for example, local memory
220 and one or more bulk storage devices 225. Local memory
220 refers to RAM or other non-persistent memory device(s)
generally used during actual execution of the program code.
Bulk storage device(s) 225 can be implemented as a hard disk
drive (HDD), solid state drive (SSD), or other persistent data
storage device. Proxy system 110 also can include one or
more cache memories (not shown) that provide temporary
storage of at least Some program code in order to reduce the
number of times program code must be retrieved from bulk
storage device 225 during execution.
0031. Input/output (I/O) devices such as a keyboard 230, a
display 235, and a pointing device 240 optionally can be
coupled to proxy system 110. The I/O devices can be coupled
to proxy system 110 either directly or through intervening I/O
controllers. One or more network adapters 245 also can be
coupled to proxy system 110 to enable proxy system 110 to
become coupled to other systems, computer systems, remote
printers, and/or remote storage devices through intervening
private or public networks. Modems, cable modems, and
Ethernet cards are examples of different types of network
adapters 245 that can be used with proxy system 110.
0032. As pictured in FIG. 1, memory elements 210 can
store a proxy application 250. Proxy application 250, being
implemented in the form of executable program code, is
executed by proxy system 110 and, as such, can be considered
an integrated part of proxy system 110. Proxy application
250, requests from the client system, responses such as pages
and coverage data sent from the SUT are functional data
structures that impart functionality when employed as part of
a data processing system as described within this specifica
tion.
0033. Though FIG. 2 is presented as an exemplary imple
mentation of proxy system 110, it should be appreciated that
the architecture described also can be used to implement
client system 105 and/or SUT 115 regardless of the particular
form factor of the resulting data processing system. Appre
ciably, client system 105 executes different operational soft
ware and/or application Software than proxy system 110 as
would SUT 115.
0034 FIG. 3 is a flow chart illustrating an exemplary
method 300 of testing a Web application. More particularly,
FIG. 3 is illustrative of a method of providing indications of
test coverage to a user during testing of a Web application.
Method 300 is implemented by the proxy system described
with reference to FIGS. 1 and 2 of this specification. Method
300 can begin in a state where a testing session has been
started involving a computing architecture as described in
FIG 1.
0035. In block 305, the proxy system intercepts a request
that is sent from the client system to the SUT. In one example,
the request is a Hypertext Transfer Protocol (HTTP) request
and can include markup language content. The markup lan
guage content can be specified as Hypertext Markup Lan
guage (HTML) program code, but is not limited in this regard.
0036. In block 310, the proxy system analyzes the inter
cepted request. In one aspect, the proxy system is configured
to fully parse markup language and, in particular, HTML. As
Such, the proxy system parses the intercepted request into
constituent Document Object Model (DOM) elements such

US 2014/0129878 A1

as links, forms, buttons, comments, JavaScripts and/or
equivalents thereof (hereafter “scripts”), etc. The proxy sys
tem can analyze requests (e.g., HTTP requests) from the
client system in real time or in Substantially real time. In one
aspect, as part of the analysis, the proxy system creates and/or
stores a record of the intercepted request from the client
system. The record can be a representation of the request, a
copy of the request itself, a list of the DOM elements of the
request, or the like.
0037. In one example, as part of the analysis, the proxy
system determines the particular element that was selected
from the client system that initiated the intercepted request.
For example, the client system will have a page loaded therein
that was retrieved or obtained from the SUT, e.g., a prior
response, as part of the testing of the Web application. The
proxy system determines the element of the page that was
selected to initiate or generate the request that was intercepted
in block 305. The request, for example, can include an iden
tifier of the particular element that was selected. The identi
fier, e.g., a record of the element and/or identifier of the
element, can be stored within the proxy system. The proxy
system can maintain records indicating elements selected by
the client system. For example, the proxy system can main
tain a list of selected elements by the client system (i.e., a list
of elements of the Web application selected by a tester using
the client system).
0038. In block 315, the proxy system forwards the request

to the SUT. The request can be forwarded in real time or in
substantially real time as the analysis described with refer
ence to block 310 can be performed efficiently and quickly.
Responsive to the received request, the SUT provides a
response to the request. In block 320, the proxy system inter
cepts the response from the SUT. As noted, in one aspect, the
response is a page from the SUT, e.g., from the Web applica
tion undergoing testing.
0039. In block 325, the proxy system analyzes the
received response. The proxy system can perform similar
analysis upon the response as is performed upon the request
received from the client system. For example, the proxy sys
tem can parse the intercepted response into constituent DOM
elements.

0040. In block 330, the proxy system correlates the
response with the list of selected elements. In one aspect, the
proxy system compares elements of the response with the list
of elements selected by the client system that is maintained in
the proxy system. From the comparison, the proxy system can
identify any elements of the response that match an element
on the list of selected elements and determine that the element
in the response was previously selected or visited. In this
manner, the proxy system can determine which portions of
the Web application have been visited and have not been
visited in a self-contained manner by analyzing the requests
and responses that are intercepted.
0041. In block 335, the proxy system optionally receives

test coverage data from the SUT. More particularly, the proxy
system can receive the test coverage data from the runtime
analysis module. In one example, the SUT provides test cov
erage data with the response. In another example, the SUT
provides the test coverage data separately from the response.
The SUT can provide the test coverage data from time to time,
periodically, or the like, e.g., without first being queried for
Such data by the proxy system. In another example, the proxy
system can query the SUT for updated test coverage data. In
still another example, the SUT can provide the test coverage

May 8, 2014

data with each response to a received request. In general, the
test coverage data is more expansive and detailed than the
elemental analysis performed by the proxy system. As such,
the proxy system can instrument the response with more
detailed test coverage data than is determined by the proxy
system alone.
0042. In block 340, the proxy system instruments the
response thereby generating a modified response. The proxy
system can instrument responses, e.g., HTTP responses, from
the SUT in real time or in substantially real time prior to such
response being sent to the client system. As part of the instru
mentation that is performed, the proxy system can manipulate
HTML and/or scripts within the response. In addition, the
proxy system can interact with the runtime analysis module
as described to receive the test coverage data and instrument
the response using Such data.
0043. In one aspect, the proxy system instruments the
response according to the correlation(s) determined in block
330. In illustration, the proxy system modifies an element of
the response that matches an element on the list of selected
elements. For example, the proxy system changes a visual
ization parameter, e.g., a color or other visual aspect of the
element thereby visually distinguishing the element from an
element that has not been selected. In another aspect, the
proxy system can modify the response to disable the element.
0044. In another aspect, the proxy system instruments the
response with respect to an element of the response that has
been determined to be associated with a script. In some cases,
a response includes an element that initiates a client-side
action that does not directly submit an HTTP request. The
element, for example, calls or invokes a client side Script that
performs, or causes the client system to perform, an opera
tion. In that case, the proxy system can detect an element, e.g.,
a button or the like, that is associated with, or bound to, the
client side Script. In one illustration, the element may be
bound to a first client side script through a DHTML (Dynamic
HTML) event. For example, responsive to a "click” event of
the element, the associated first client side script is executed.
0045. The proxy system instruments the response by
modifying the element to include or reference a second client
side script that is different form the first client side script. The
proxy system, for example, instruments the response so that
the second client side script is invoked by a click event for the
element instead of the first client side script. The second client
sidescript can perform one or more functions. In addition, the
second client side Script can execute or invoke the first client
side script so that the original functionality of the element
associated with the first client side script is maintained within
the instrumented response. When executed responsive to an
“onclick' event for the element, the second client side script
can perform various functions such as notifying the proxy
system that the element was selected, visually alter the asso
ciated element, disable the associated element from further
selections, or the like. The second client side script, as noted,
further invokes the first client side script.
0046. In illustration, consider the case in which an
“onclick' event of a button in the response is bound to a first
JavaScript. The original response includes HTML code such
as “Kinput type=submit onclick="original function(): ..
.D.'. The proxy system instruments the response to be “Kinput
type=submit onclick="coverage marker(); ' . . . d’. The
second JavaScript “coverage marker” is dynamically
changed when executed to include a call to "original func
tion() after the second JavaScript visually modifies the

US 2014/0129878 A1

button to mark the button as being selected or visited. The
button further can be disabled or the like.
0047. The second JavaScript “coverage marker” effec

tively marks the HTML for the button as being visited through
the modification of the element (change in visual appearance
and/or disabling). As such, the button is visually distin
guished from other buttons or elements not yet selected dur
ing testing. The second JavaScript further notifies the proxy
server of the button being selected. For example, the name/id
of the button (or other HTML element) that was selected and
caused execution of the second JavaScript can be sent to the
proxy system and stored therein on the list of selected ele
ments. As such, when a response including the button is
provided to the client system in the future, the button again
can be visually modified and/or disabled to indicate that the
button has already been selected.
0048. In still another illustration, the proxy system modi

fies the response according to any test coverage data that is
received from the SUT. For example, the proxy system can
receive test coverage data indicating that some percentage of
program code of the Web application that is associated with a
particular selectable element has not been executed. In that
case, the proxy system can insert an additional visual element
next to the visual element indicating the amount of program
code associated with the element that has not yet been
executed or that has been executed.
0049. For example, the test coverage data can indicate a
number of secondary selectable visual elements that have not
yet been selected in association with a first or primary visual
element. Consider the case in which a selection of a first link
within the response causes five additional selectable links to
be presented to a user in a Subsequent response or page from
the SUT. Further, of the five selectable links, three have
already been selected and visited during testing as indicated
by received test coverage data. In that case, the proxy system
can insert a visual element next to the first link indicating that
there are two untested and/or unvisited links beneath the first
link or two untested of five total links beneath the first link.

0050. In block 350, the proxy sends the instrumented, or
modified, response to the client system. The modified
response is sent to the client system in real time or in Substan
tially real time as the instrumentation is performed efficiently
and quickly. The client system, having received the instru
mented response, displays a graphical user interface that is
modified to reflect which portions of the Web application
have been tested and which have not. The visualization of the
coverage data is implemented within the actual graphical user
interface (GUI) of the Web application that is being tested.
The GUI will change over time in accordance with the par
ticular elements that are selected and executed.

0051. In another aspect, the SUT can be configured to
identify an HTTP parameter of a form submitted from the
client system that is lacking a value. The SUT, being instru
mented to track executed code and work in cooperation with
the runtime analysis module, determines one or more portions
of the Web application that were not executed in consequence
of the missing value for the parameter. In that case, the SUT
can send test coverage data to the proxy system indicating the
unused parameter of the prior submitted form. The proxy
system can receive the test coverage data and modify a
response to the client system to add or include a new data
entry element configured to receive a value for the unused
parameter. In a further example, the proxy system prepopu
lates the new data entry element with a value specified by the

May 8, 2014

test coverage data from the SUT prior to sending the modified
response. The runtime analysis module, for example, can
determine the particular value necessary for the parameter in
order to execute one or more additional portions of unex
ecuted (or unvisited) program code of the Web application.
That value can be provided to the client system by prepopu
lating the value in the added field as described.
0.052 FIG. 4 is a block diagram illustrating an exemplary
GUI 400 for a Web application undergoing testing. FIG. 4
illustrates a response provided from the SUT to a client sys
tem. The response is a Web page that is rendered within a
browser executing within the client system. Accordingly,
GUI 400 includes a plurality of visual elements such as but
tons 405, 410, and 415. Each of buttons 405, 410, and 415,
when selected, submits an HTTP request to the SUT GUI 400
is an example of an instrumented response (or page) from the
Web application as performed by the proxy system.
0053 Aspictured, button 405 has not been modified by the
proxy system in any way thereby indicating that button 405
has not been selected during the testing of the Web applica
tion. The proxy system has modified button 415 by adding
shading which represents either a change in a visualization of
the element or a disablement of the element altogether by the
proxy system. In either case, the shading indicates that button
415 was previously selected and is thereby visually distin
guished from button 405.
0054 The proxy system has modified button 410 to indi
cate that button 410 has been selected at least one time pre
viously. In addition, coverage data relating to button 410 has
been received and added to the page by the proxy system as
visual element 420. Visual element 420 indicates that selec
tion ofbutton 410 results in the retrieval of a further page from
the Web application that includes five selectable links or
visual elements. The coverage data indicates that of the five
links that are displayed responsive to selecting button 410.
three of the links have been visited, leaving two of the links
untested. As shown, the visualization of button 410 distin
guishes button 410 from button 405 and button 415. Button
410, for example, has been visited, but one or more links
accessible through button 410 require testing.
0055. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0056. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a,” “an and “the are intended to include the plural

US 2014/0129878 A1

forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “includes.”
“including.” “comprises, and/or “comprising.” when used in
this specification, specify the presence of Stated features,
integers, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.
0057 Reference throughout this specification to “one
embodiment,” “an embodiment, or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least one
embodiment disclosed within this specification. Thus,
appearances of the phrases "in one embodiment,” “in an
embodiment, and similar language throughout this specifi
cation may, but do not necessarily, all refer to the same
embodiment.
0058. The term “plurality,” as used herein, is defined as
two or more than two. The term “another, as used herein, is
defined as at least a second or more. The term “coupled, as
used herein, is defined as connected, whether directly without
any intervening elements or indirectly with one or more inter
vening elements, unless otherwise indicated. Two elements
also can be coupled mechanically, electrically, or communi
catively linked through a communication channel, pathway,
network, or system. The term “and/or as used herein refers to
and encompasses any and all possible combinations of one or
more of the associated listed items. It will also be understood
that, although the terms first, second, etc. may be used herein
to describe various elements, these elements should not be
limited by these terms, as these terms are only used to distin
guish one element from another unless stated otherwise or the
context indicates otherwise.
0059. The term “if” may be construed to mean “when” or
“upon” or “in response to determining or “in response to
detecting.” depending on the context. Similarly, the phrase “if
it is determined’ or “if a stated condition or event is
detected may be construed to mean “upon determining or
“in response to determining or “upon detecting the stated
condition or event' or “in response to detecting the stated
condition or event.” depending on the context.
0060. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the embodiments disclosed within this specification have
been presented for purposes of illustration and description,
but are not intended to be exhaustive or limited to the form
disclosed. Many modifications and variations will be appar
ent to those of ordinary skill in the art without departing from
the scope and spirit of the embodiments of the invention. The
embodiments were chosen and described in order to best
explain the principles of the invention and the practical appli
cation, and to enable others of ordinary skill in the art to
understand the inventive arrangements for various embodi
ments with various modifications as are Suited to the particu
lar use contemplated.

1-10. (canceled)
11. A system comprising:
a processor programmed to initiate executable operations

comprising:
intercepting, within a proxy system, a request from a client

system sent to a system under test;

May 8, 2014

analyzing the request within the proxy system and sending
the request to the system under test;

intercepting, within the proxy system, a response from the
system under test sent to the client system;

instrumenting the response within the proxy system creat
ing a modified response indicating test coverage accord
ing to the request; and

sending the modified response to the client system.
12. The system of claim 11, wherein instrumenting com

prises:
changing a visualization parameter of an element of the

response indicating a prior selection of the element.
13. The system of claim 11, wherein analyzing comprises:
determining an element of a page from the system under

test selected from the client system that initiates the
request; and

storing the element within a list of elements selected from
the client system.

14. The system of claim 13, wherein instrumenting com
prises:

comparing elements of the response with the list of ele
ments selected from the client system; and

modifying an element of the response matching an element
from the list.

15. The system of claim 11, wherein instrumenting com
prises:

detecting an element of the response associated with a first
client side Script; and

associating a second client side script with the element that
is different from the first client side script, wherein the
second client side script is configured to send a notifica
tion to the proxy system responsive to selection of the
element within the client system.

16. The system of claim 15, wherein the second client side
script further invokes the first client side script.

17. The system of claim 11, wherein the processor is fur
ther programmed to initiate executable operations compris
ing:

receiving test coverage data from the system under test;
and

modifying an element of the response according to the test
coverage data.

18. The system of claim 11, wherein the processor is fur
ther programmed to initiate executable operations compris
ing:

receiving test coverage data from the system under test;
and

adding at least one additional element to the modified
response according to the test coverage data.

19. The system of claim 11, wherein the processor is fur
ther programmed to initiate an executable operation compris
ing:

receiving test coverage data from the system under test
indicating an unused parameter of a form;

wherein instrumenting the response comprises adding a
new data entry element configured to receive a value for
the unused parameter.

20. The system of claim 19, wherein the processor is fur
ther programmed to initiate an executable operation compris
ing:

within the proxy system, prepopulating the new data entry
element with a value specified by the test coverage data
from the system under test prior to sending the modified
response.

US 2014/0129878 A1

21. A computer program product for testing a system under
test, the computer program product comprising a computer
readable storage medium having program code embodied
therewith, the program code executable by a processor to
perform a method comprising:

intercepting, within a proxy system using the processor, a
request from a client system sent to a system under test;

analyzing the request within the proxy system and sending
the request to the system under test using the processor,

intercepting, within the proxy system using the processor,
a response from the system under test sent to the client
system;

instrumenting the response, using the processor, creating a
modified response indicating test coverage according to
the request; and

sending the modified response to the client system time
using the processor.

22. The computer program product of claim 21, wherein
instrumenting comprises:

changing a visualization parameter of an element of the
response indicating a prior selection of the element.

23. The computer program product of claim 21, wherein
analyzing comprises:

determining an element of a page from the system under
test selected from the client system that initiates the
request; and

storing the element within a list of elements selected from
the client system.

24. The computer program product of claim 21, wherein
instrumenting comprises:

comparing elements of the response with the list of ele
ments selected from the client system; and

modifying an element of the response matching an element
from the list.

25. The computer program product of claim 21, wherein
instrumenting comprises:

May 8, 2014

detecting an element of the response associated with a first
client side Script; and

associating a second client side script with the element that
is different from the first client side script, wherein the
second client side script is configured to send a notifica
tion to the proxy system responsive to selection of the
element within the client system and invoke the first
client side Script.

26. The computer program product of claim 25, wherein
the second client side script further invokes the first client side
Script.

27. The computer program product of claim 21, wherein
the method further comprises:

receiving test coverage data from the system under test;
and

modifying an element of the response according to the test
coverage data.

28. The computer program product of claim 21, wherein
the method further comprises:

receiving test coverage data from the system under test;
and

adding at least one additional element to the modified
response according to the test coverage data.

29. The computer program product of claim 21, wherein
the method further comprises:

receiving test coverage data from the system under test
indicating an unused parameter of a form;

wherein instrumenting the response comprises adding a
new data entry element configured to receive a value for
the unused parameter.

30. The computer program product of claim 29, wherein
the method further comprises:

within the proxy system, prepopulating the new data entry
element with a value specified by the test coverage data
from the system under test prior to sending the modified
response.

