
Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet

Z26 24

Aways/20246AAA
A6 40470s, CA/W

cow/24 cowzzas, 724A/A,
Apocamfi waaaazas, za

122 aws/Ws Zazza
- m - - - - plans as as as an T w w a sm

Maz/7 woAA OM/aw 226 4% ; 42% %

24 122 112 1/1 2

ASA-Z
M777/7 2MVa/Y AASAay

- T -- oup oupus up pus u -- up un sus una sus -- gma --- sus s wns -

Azz Z. Aartin Aioli
BY 2

M ATTORNEYS.

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 58. Sheets-Sheet 2

N S
Y
NS
N N
S S-(S) S S S N

(SS
R INVENTOR.

M N A4774 aeff R BY

ATTORNEYS. a2-e-A

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet S

Azz.f 2
DISTINGUISH LOGIC OPERATIONS

PHASE I . ESTABLISH LOGIC CHANS
PUT CREATE CHAN TABLE

INPUT, EDT . FORM EDITED RECORDS
. CREATE TAG TABLE

2

COMPLETE TAG TABLE

ALLOCATE MAN FLOW CHANS
DETERMINE SUTABILITY OF

PHASE I BRANCH CHANS AND ALLOCATE
ALLOCATION AFTER MAIN FLOW

- DEC SIONS

. ESTABLISH CONNECTORS

26

. PRINT TABLE OF CONTENTS

. LAYOUT MAIN FLOW SYMBOLS
PHASE LAYOUT BRANCH CHAIN SYMBOLS
LAYOUT AFTER MAIN FLOW DECISIONS

ESTABLISH CONNECTION LINES PRINT CHART SYMos AND cross REFERENCES
PRINT PAGE

120

PHASE v. ... SORT TAG NAMES IN TAG TABLE
CROSS-REFERENCE ... APPEND REFERENCES TO TAGS

LIST PRINT LIST

INVENTOR.

A6 rzin 4 Aoeziy
BY

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 4

162

a Az75.
INVENTOR.

44r/i744ae.
A4. ATTORNEYS.

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Fied Dec. 24, 1968 38 Sheets-Sheet 5

777. 64.

22
227 222 O

227

Az7. /5/.
274 271

206

274 Azy 64
221

Aarza Ziety
BY

ATTORNEYS.

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 6

ACA
40

22

24 wo. Os777
ZZ as

Y2S

Z26 aa’ 12?

af O
41a

AFC
276

ass
S777

S7a 21 26 af

390 MW2

22 y2S A77

(wszX, ae?ar
A. Olea O

af
4a

22
Oaca
INVENTOR.

Aržin 46oe/y
ATTORNEYS.

Oct. 6, 1970 M. A. GOEZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 7

27. ZZ.
yaf 766

ZA/
f6

aa26
ya? a/

32
ato 32?

M/4/MM

staf

(3) 72
any12S Zoe a

Ca2a 2?
AM2

32%f < .

<

g

> Y2S ZOO CA/
YAS <) 12a26 > t 22 2

3229

222 2% (

24 Ma 760 (6) (6)
MM2 2 (6) < 264

O ano

(6) 4A/SAt -22 |

(6) (6)

INVENTOR.

Aar/in 46oe73

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 58. Sheets-Sheet 8

OMYSA.

Az7. ZZ
af2 y2S

3>
MMO

ata
a2

NVENTOR.
s

44rfin 4. (e.g.
44%- ATTORNEYS.

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DSPLAY CHARTS
Fied Dec. 24, 1968

Aig.6//
38 Sheets-Sheet, 9

PROGRAM AUTOFLOW PAGE
CHART PASS ONE - NPUT EDT

NOTE 06
.
NPUT AREA NOWa.

- AS RCD TO BE

FUNCT ONS OF PASS ONE ARE TO
EDT SOURCE INFORMATION AND
CONSTRUCT TAG AND CHAN
TABLES PROCESSED

.

O (O& O7) or e-- so
in as a as a is A 3 C7

SET SEQUENCE NUMBER - - - - - - - - - - was
MOVE AL FELDS OF
THIS RCD TO WORK

AREAS

COUNTER TO ZERO

O2
ea as set (t) - a 0 a is so see

READ FRST SOURCE |
RECOR

to a spire is qual as a sets as a

A 5 08
to as as is is as a sep a saga is

READ SOURCE RECORD

A

a sess as set up as a as a set

STORE TITLE OF as OS
PROGRAM PROM FRS th

RECORD
a as is a a was a END as YES

FILE is an
as a 8 ses a DENT FER

A AO O4.
as a .gap as a is p a

READ SOURCE RECORD O. O.
to see as qua as is a as see NO

ASO

O5 a O

NO WA. D. NO WA. D
as CODE OTHER

TAN C
as as a sense FLOW CHART

CODE
s t

YES YES

a 0 (06 a O2 O

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 58 Sheets-Sheet lO

Afg. 6/2
PROGRAM AUTOFLOW PAGE 2

CART PASS ONE - INPUT EDT

O
s

YES
S CODE C as a is e a se a we is

-

A 20 C2
st see is a sea as a ses a as

APPEND THIS COMMENT
NO TO PREVIOUS COMMENT

N WORK AREA
s a ris an - - - as a on as as as a a

his E O4
a

a RECfRD IN WORK wa
at AREA S READY O3

TO PROCESS
NPUT AREA NOW O. O.

HAS NEXT RECORD
a a A 15

(0.409) anara --
A 7 O5
sus a on a a as a

ADD TO SEQUENCE
NUMBER AND PACE NI

OUTPUT AREA

O6

MOVE CODE AND TAG
FELDS TO OUTPUT
NT AL 2 VARIOUS
CONTROL FELDS

obs a 4s is a s as at a us see

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Aige/3
58 Sheets-Sheet ll

PROGRAM AUTOFOW PAGE 3

CHART PASS ONE - INPUT EDT

a C

as YES
CODE seasoodore iro -

A60 O2
as grass an as a poss a

CREATE SPECIAL TAG
NO TABLE ENTRY FOR

TABLE OF CONTENTS
CART TTLE

a systs opes uses e a sea

OA

e
RECORD YES O3

a HAVE A AG aper
O3. On

d
A2O

O90 a
NO

A70
(O3O3) as a use

A2O O9.
gases as a vasa as

EDT COMMENTS INTO
LOGICAL NES AND

MOVE TO UTPUT
AREA A SPARATE
PATH S USED FOR
EACH TYPE OF CODE |

sesses as agains as so is to be

w

0.

COMPUTE NUMBER Ops
NES OF FLOW CART
REGURED ey. THS

SYMBO
a sea of son as up to as of Per

OO

AUTOIATIC SYSTER FOR CONSTRUCTING
AND RECORDING DISPLAY CHARTS

Filed Dec. 24, 1968 38 Sheets-Sheet 2.

Aig.6/4

Oct. 6, 1970 M. A. GOETZ 3,533,086

PROGRAM AUTOFOW PAGE - 4

CHART PASS ONE - NPUT ED

O
is a years is a a ps A45 O6

AOD NUMBER OF LINES
TO, RUNNING TOTA

FOR THS CHAIN OF a resees as as oss END
FLOW SWITCH sou

to as us is us as sea as as a as an as is to a sess on as

O607
O2

A 30

D. J. a YES
W OR S st O7

{ CODE
s O O7

OsO4 A 13
NO

AO a
(0.07) -an-a- -

A30 O3
END OF INPUT DATA

it. YES O O9)
J OR E CODE is a A50 O3

sees says as a as a as

SET END OF PASS
a SWITCH
Os O 4 a. as up as as a as

NO
- A 10 to

(O&O) on as a
AO O 09
4s is as is is is as as a as sees

WRITE RECORD TO O2 Oss
OUTPUT TAPE

sey is as a as are a ser A 7

NOTE 05
.

END PASS SWTCH
it

Otis O 6

Oct. 6, 1970 M. A. GOTZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

Filed Dec. 24, 1968

Afg,6/5
PROGRAM AUTOFLOW

CHART PASS ONE -

NPUT RECORD HAS A TAG

(304)
A 70 O

CREATE TAG TABLE
ENTRY CONANING
TAG, SEQUENCE
NUAER AND
ASSEMBLY LINE
NUMBER OF THIS

RECORD

O2

McWE TAG TO AG
FELD OF OUTPU

RECORD
is p as a as a sea is see is a

AND RECORDING DSPLAY CHARTS

NPUT O

Do J W OR S CODE

Of O2)

OCES as
COAMENTS
CONAN
ASTER Sk

a ED as

YES

3,533,086

38 Sheets-Sheet 3

PAGE 3

NO
as as

a 06 0Y

A90 e o a

(5
is us as use is a pse as s is is a

EXTRACT
DEST NATONS
LABELS FROM

AND

ASTERSK F ELO

O603 as - - - - -
A OO
be a is as as is is a as as a to a

MOVE LABELS AND
DEST NATIONS TO

OUTPUT
is ess the as is ap we age as as a is as

07

A30

Oct. 6, 1970

Filed Dec. 24,

M. A. GOETZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
1968

Aig 8/6
PROGRAM AUTOFOW

CHAR PASS ONE a

(0.304)
A90 O

PCK UP
DEST NATIONS FROM

| SOURCE OPERANDS
& et a on as go uses is lies"

PCK UP LABELS FROM
STORED TABLE BASED

ON LAGEL CODE

A O Ol

CREATE NEW ENTRY NI
CHAN TABLE FOR
CHAN END ING WITH

CURRENT RECORD

PLACE IN CHA N
TABLE ENTRY THE I

SEQUENCE NUMBER OF
THE CURRENT RECORD
AND NUMBER OF NES
REQUIRED ON CHART

to O6

a 64 Ole
s

58. Sheets-Sheet 4

PAGE 6

NPUT EDT

O&O)
A 3O 7

REWIND TAPES CALL
N PASS 2 SEGMENT

Os

O70 e.

BOO

3,533,086

Oct. 6, 1970 M. A. GOETZ. 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Fied Dec. 24, 1968

Aig.6/7
PROGRAM AUTOFLOW

CHARY

FUNCTION OF THIS PASS IS TO
CowPLETE CONSTRUCTION OF TAG
TABLE AND Ass GN FLOW CHART
POST ONS TO ALL SYABOLS

(OO)
OO O

SET LOCATOR TO
PONT TO FIRST
ENTRY N CHAN

TABLE

o

SET PAGE AND COLUMN
NUMBER TO ONE BOX
NUMBER TO ZERO
NE COUNTER TO ONE

(OO7) in sea as
80 O3

READ INPUT RECORD
FROM PASS 1 OUTPUT

FLE

O.

END & YES
FE a is

as ND CATOR -
e

O906 a
NC

BO a

Oso

58 Sheets-Sheet 5

PAGE 7

PASS TWO ALLOCAT ON

YES
is is

209
NO p

67
(202 pass--apal

2O O

SETINE Nurser of
THIS RECORD EQUAL

TO CURRENT VALUE OF
NE COUNTER

seats an an ergs up is as nea as

NOTE 07
as a

LNE NUMBER OF
A SYMBO. F. XES

4 TS POST ON N.
A COUAN
a a

Oa.

ADD NUMBER OF LINES
REGURED BY THIS
SYMBO TO LINE

COUNTER
do a us is a to a

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Afg,6/6
58. Sheets-Sheet 6

PROGRAM AUTOFLOW PAGE 8

CHART PASS TWO - ALLOCATION

(OO2)

O BSO is 0.5

t

a REACHED YES YES
END OF in a D CODE up a m
COLUMN

d

o A.

s O a 13 O
NO NO

Bl2O Bll 70
(. 10) -- a---- (20) - - - - - -

BO O2 C6

ADO TO BOX

360
an is a no map was a us up as us up un

WRITE RECORD TO
NUMBER. MOVE PAGE OUTPUT FILE
BOX AND COLUMN up to pep sep up up to an up

TO OUTPUT AREA

O7

O3 4.
a NO

J OR E CODE ---
THS A. YES

RECORD HAVE so- d a
A AG

s 9 t 0703

s YES
OPO 8 a BO

NO
B90 NOTE O8

(O90) - near-e-
END OF CURRENT

B40 Ol a CHAN-LOCATE -
4 NEXT CHAN TO

d a BE PROCESSED a
YES to

D OR J CODE as

0

OO
NO 090

800

o68 a 0.5e

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 7

Aig.6/9
PROGRAAA AUTOFOW PAGE 9

CHART PASS Two - ALLOCATION
(0704)

B80 O
O1 a sess as a vers is as a a e g ap st

REWIND TAPES AND
CURRENT BRNG N CODNG FOR

4-COLUMN MAN SEC a PASS THREE
OR is a so as we a

at SECONDARY

SO O7
MAN

B225 a 9 O
(as a set as a raise a
A B7O O2 COO

as a a s seas as ester

ADVANCE POINTER TO
NEXT ENTRY IN CAN 1

TABLE (O8 O3)
as it as ea is B90 Os

as a as a as a esta

OCATE ENTRY IN TAG
TABLE FOR THS TAG

O3 a as a is as a a a et

t AS
YES THS CHAN Og

pass a spp. BEEN as is a as as a sea is a st

a PROCESSED PLACE PAGE BOX
LINE AND COLUMN

NUMBER OF CURRENT
RECORD IN TAG TABLE

NO ENTRY FOR THS TAG
-------------- as use u q

O4
ago as a psage or

SKP PROPER NUMBER O
OF RECORDS ON INPUT

TAPE SO AS TO e Os Ols
POST ON INPUT IN
FRONT OF THS CHAN B40

:.
: 7 :

g o Os
- T

O7 O3 -
. . ."

BO

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 8

Aig.6//O

PROGRAM AUTOFLOW PAGE O
CAR PASS TWO - ALLOCATION

CHECK FOR "FROA' CONNECTOR

(OO4)
BOO O

lookusstron
TAGS IN TAG TABLE
to says a sess as ess as up is is uses

O2
t

TAG as NO
FOUND IN is so

s TABLE
s

08 Ole
YES

BSO

O3

s

PRST NO
REFERENCE ---------- is as a sess is

TO THIS TAG
O O

- t as a de is as as as ess

} SET SIGNAL IN TAG
YES TABLE ENTRY TO

NDICATE THAT AORE
THAN ONE REFERENCE

O6 Ex STS

PUT PAGE AND Ox
NUMBER OF CURRENT
RECORD - N CROSS

I REFERENCE FELD OF O5
TAG TABLE ENTRY

is a tie is sess as sees OC5

so

O7

a 0805
f

. . . R50

M. A., GOTZ 3,533,086
AUTOMATIC SYSTER FOR CONSTRUCTING

AND RECORDEN DISAY CHARTS
38 Sheets-Sheet is

Oct. 6, 1970

Fied Dec. 24, 1968

Aig.6///
PROGRAMI AUTOFOW PAGE

CHART pass Two - ALLOCATION

(102)
ENTER HERE AT END OF COLUMN O Ol

(OO }
LAST YES

B120 a o COLUMN ON ope
PAGE

S.
a. CURRENT as YES

a RECORD A assas to OS
OR COD NO

160
sooose

No. OS
O a

20) is passel a WR 1.
- at ANY BOYS YES

is 25 at O2 to ASS GNED TO bass
ADJACENT

as DO
PREvious YES

a RECORD HAVE asps
J. H. OR E.

COO a
; :

O
. . . N. .

O
y

S 30 03
rupaten yeague was seen

GENERATE PSEUOO
CONNECTOR RECORD
PONTING TO TOP OF

OF NEXT column
orgessure as no supeau poor

(1206) ups soma

COLUMN ee e

a 2007.
NO *

969, a
..

... Od
sweeps pegg pupae pop googos

ADD TO COLUMN
NUMBER

normosage roadcasso apopods

is so of
st Nicos

.. To ON ... I
'vernoonoonoonooooooooo

Oct. 6, 1970 M. A. GOZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

Filed Dec. 24, 1968

Aig.6/12

AND RECORDING DISPLAY CHARTS
58 Sheets-Sheet 20

PROGRAM AUTOFLOW PAGE 2

CHART PASS TWO - ALLOCAT ON
0.9)

By 65 O7
Ot sess in s is as was s at

ADD 2 TO COUM
NUMBER

YES -- as a - is is as a a se so e

B CODE du is

O
O806 a

NO O7
960 a

350

O2

O706 a 0705)
s 67 O9

2O wise as is a sa is as is a to a

SET COLUMN TO 4
To Force END OF

PAGE
O) p a a use air is as a so s vs

B 60 O3 |
proce

NUMBER O
4 as is a sas a sea as was {

a O2

Ot B25

SET COLUMN NUMBER
TO ONE BOX NUMBER

TO ZERO

05

WRTE END-PAGE I
RECORD TO OUTPUT

TAPE

d --

06

1 O7

Oct. 6, 1970 3,533,086 M. A. GOETZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Aig.6//5
38 Sheets-Sheet 2.

PROGRAM AUTOFLOW PAGE 13
CHAR PASS TWO as ALLOCATION

Ot

ANAYZE DEC S ON RECORD TO q is is is a a s
DETERAINE HOW TO SHOW TS it
RANCHES ON THE CHART. A (B230)
STATUS IND CATOR." FOR EACH a ANALY2
RANCH S SET TO ETHER O SECOND BRANCH

"SECONDARY COLUMN." a 7
"CONNECTOR." OR "UNKNOWN,"
F "UNKNOWN," PASS 3 WILL
OECDE ON A LINE OR
CONNECTOR

Os
(On O5)

CAN 2 N.
B 70 - O a BP ANCH E NO

at ASSIGNED TO Base--
CURRENT SFCONDARY

(COLUMN A N SEC COLUMNI
OR a s

SECONDARY - O
YES

880
08 . Oes a

MAN
60 O.

O2 a CODNG
as as a I FOR WHICH 2ND

aRANCH S as
6 (B230) CLOSER is

ANALYE
O FRST BRANCH
7 { 0&
a as a was a ST

B2O

7
O3 as a ess as a as as as as a sa e g is

SET STATUS
CAN Sai IND CATOR FOR 210
BRANCH AE - NO BRANCH TO

as ASSIGNED TO --
SECONDARY

"CONNECTOR."

a COURAN

5 O a
YES

B200
O a

ra

a 13 004 a

M. A. GOETZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS

Oct. 6, 1970 3,533,086

Filed Dec. 24, 1968 38 Sheets-Sheet 22

Aig.6//4
PROGRAM AUTOFOW PAGE 4

CHART PASS TWO - AOCATION

(305)
B PO O

SET STATUS
ND CATOR FOR ST

BRANCH TO
"SECONDARY COL"

(506) o-sea --
B. 90 O2

write DEC SION
RECORD TO OUTPUT

FE

O3

POST ON INPUT TAPE
N FRONT OF FIRST
RECORD OF CHAN
WHICH IS TO BE
ASS GNED TO THE
SECONDARY COLUMN

to as a Pu

SET SIGNAL N CHAN
TABLE ENTRY THAT

ThS CHAN HAS BEEN
PROCESSED

05

ADD ONE TO COUMN
NUMBER

as an an a paeus is up a

Os

SECONDARY COLUMN IS
BEING FILE

7

STORE CURRENT VALUE
OF LINE COUNTER

e qa a pass as we an as a in a up a

Os

REDUCE NE COUNTER
BY 6 TO GET NE e.
OF FIRST SYMSOL

GOING INTO
SECONOARY COLUMN

SHOW THAT A

NOT 09
d as a

GO PROCESS a
COD ING FOR a
SECONDARY

COLUMN FRST
J OR E CODE a
ENDS CHA N AND

PROGRAM RETURNS
TO TAG 8225 a.

4 a

O

OO3
s

9 BO

Oct. 6, 1970 M. A. GOETZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Aig.6//5

3,533,086

58 Sheets-Sheet 25

PROGRAM AUTOFLOW PAGE 1.5

CHART PASS TWO - ALLOCATION

3 O soo''' on 39 O
as SET STATUS
6 (9230) ND CATOR FOR ST

ANALYZE BRANCH TO
O SECOND BRANCH a "CONNECTOR."
7 tugs s a as a as

(. as as d

(se O2 is -----a
B220 es

is a a p

O2 SET STATUS
IND CATOR FOR 2ND

CAN 2ND BRANCH TO
BRANCH BE YES "SECONDARY COL"

ASSIGNED TO, iss- -------------- so es uses
as SECONDARY -

a COLUMNI

15 OS O
NO

B220 O2

B. 90
O3

O O8

BAO
RETURN AFTER PROCESS NG
CHA N FOR SECONDARY COLUMN

(090)
225 7

REWIND INPUT TAPE
TO THE RECORD

FOLLOWING DEC SON

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Aig.6//6

38 Sheets-Sheet 24

PROGRAM AUTOFLOW PAGE 6

CHAR PASS TWO - ALLOCATION

NOTE O
is a SUBROUT NE TO ANAYZE A

a RETURN FROM CHAN OF CODE BRANCHING FROM
PROCESSING A DEC SON SYMO PURPOSE
CHAIN IN OF THE ANALY S S S TO

SECONDARY DETERM NE IF T S POSSIBLE
COLUMN RECORD TO ASSIGN THE CHAN TO A

So AS TO SECONOARY COLUMN
CONT NUE
PROCESS ING (13 O28)

CODNG FOR MAN B23O 07
COLUMN ge as so is an a p is a

SET Ex T FROM
SUBROUT NE
is a is is

O2

RESTORE LINE
COUNTER TO TS
v ALUE PROR TO

PROCESS NG
SECONDARY COOING

I RESET INDICATOR TO
| SHOW THAT A MAN
| COLUMN IS AGA N

BE ING FILLED
as as up as as a sees as

OA

REDUCE COUMN
NUMBER BY ONE

NOTE O5
a
RETURN TO MAN

COLUMN
PROCESS ING

O

LOOK UP DESTNATON
TAG IN TAG TABLE

09

AG a NO
FOUND IN a
YABLE

s

7 O2
YES

250

a 7 O

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DSPLAY CHARTS
Filed Dec. 24, 1968

Aig.6//7

38 Sheets-Sheet 25

PROGRAM AUTOFLOW PAGE 7

CHART PASS Two - ALLOCATION

O1

S
CHAN YES

ALREADY is a a prise a 4 sons as as a see

ASSIGNED (e 09:) -a- - - -
B250 O2

NO

OA

DEST INATION TAG
FROM TAG TABLE

OS

S
DESTNATION YES
AG PART OF are
CURRENT
CHA N
a d

702
NO

B250 a

O

ocATECHANTABLE
ENTRY FOR CHA 1 N

CON A N NG
DEST NAT ON TAG

ND CATE THS CHAN
MAY NOT BE ASSIGNED

TO THE SECONOARY |
COLUMN

Oct. 6, 1970 M. A. GOEZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Aig.6//8
58 Sheets-Sheet 26

PROGRAM AUTOFOW PAGE 8

CHAR PASS TWO - A LOCATION

see to as a is us is so quare a Oc

PCK UP FROM CHAN
TABLE THE SEGUENCE ENOUGH

OF ST LINE OF ROOM N SEC NO
THE CHAN AND THE COLUMN FOR -a-

OF NES ON FLOW ENT RE as
CHART OCCUPED BY CHAN

THE CHAN s
gs are goes usage is seas ve 17 O2

YES
2O

O2 Os
was a as ea as go as a a

DOES COMPUTE AND STORE I
a BRANCH GO is NO THE NUMBER OF
TO START OF -a- RECORDS TO e

A CHA N SK PPED TO REACH
| THIS CHAN ON THE

NPUT TAPE
702 a as as a suit a as a a

YES
B250

O6
O3

a S OE
S is a RECORDS TO YES

SECONDARY NO ef SK PPEO as
as COLUMN FREE apa at ExCESS VE

as AT THS as
a POINT a 8

o 702
702 NO

YES s 250
B250

O7
9 us an up us as a a so as

SET S GNAL TO
ND CATE THS CHAN

18 04 MAY BE ASS GNED TO
A SECONDARY COLUMN

• a is is a suspeed

(703 passa

240 O

EXT
d

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 27

Aig.6/79
PROGRAM AUTOFLOW PAGE 1.9

CHART PASS THREE - LAYOUT

THE FUNCTION OF THIS PASS S O.
TO PRODUCE THE ACTUAL FLOW
CHARTS US NG INFORMATION
DEVELOPED BY THE EAR ER END YES
PASSES A PAGE OF CHART S PAGE a una
DEVELOPED AT A T ME WITH a ND CATOR I.
THE ENTRE PAGE BENG STORED
N MEMORY a 2 O5.

(0907) NO
COO O CO

up use an ups a aque as a so as son as s

PRINT TABLE OF
CONTENTS FROA OS

NFORMATION
CONTA NED IN THE a.

TAG TABLE . YES
m so a pop a pas us a was as up was a s B CODE a

s

(2 O2) was on- d 8
CO O2 s

as a wou as a us as a un mas use on 2 07

READ INPUT RECORD NO
FROM PASS 2 OUTPUT C50

F LE
Puss pu bour as as as a as a aposs a O6

up up up as use as up as a up as as

b FROM LINE AND
COLUMN COMPUTE

O 3 POST ON OF SYMBOL
ON PAGE LAYOUT AREA

- so in e to es up to sup a no see no up u de

END 4 YES
FLE 4 as as

IND CATOR a
d O7

O

21 O3 d
NO O a PSEUOO as YES

C30 e o CONNECTOR usuay
4. RECORD a

O a 22 O
a 9 Oc NO

C60 a

2OO 1 a

Oct. 6, 1970 M. A., GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968

Aig.6/2O
PROGRAAA AUTOFOW

CHART

a CROSS
REFERENCE -
FOR THIS
SYMBOL

s

NOI

2003I) seaso use
C2O O6

Move SYMBOL OUTLINE
to PAGE LAYOUT AREA

q is as a see is as a a

O7

AFF x BOX NUMBER
AND TAG TO SYMBOL

sess so a it sts as a

YES

OB

MOVE COMMENT LINES
F ANY FROM NPUT I
RECORD TO PAGE
LAYOUT AREA

C9
s

s

S OR J CODE
YES
as a

2203 a

CO

38 Sheets-Sheet 28

PAGE 20

PASS THREE - LAYOUT

is a pass super a sess see r

pACE "FROM" CONNECTOR ON
PAGE

CO 2

Ex TRACT PAGE AND
Box OF REFERENCE
FROM T AG TABLE AND

PLACE ON PAGE I

ORE NO
THAN ONE as a son
REFERENCE

20 g Obs
YES d

C2O

PLACE ASTERISK ON
PAGE TO IND CATE

ADT ONAL
REFERENCES

a a sess as a saga as as use a

O3

2006 a

Oct. 6, 1970

Filed Dec. 24,

M. A. GOETZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DSPLAY CHARTS
1968

Alig. 6/2/

38 Sheets-Sheet 29

PROGRAM AUTOFLOW PAGE

CHART PASS THREE a LAYOUT

(1904)
C40 Os

O so as a us up in an us as go up is a to a

OUTPUT ENTRE PAGE
TO PR NTER AND

a YES NIT AZE FOR NEW
D CODE a nea PAGE

to wip up w up a spa us a

s

22 Ose
NO) O s O

C90
902

9 O2 CO

a 1902
O

8 CO (1905)
CO O7

MOVE COMMENT FELDI
(1903) OF RECORD TO CHART

C30 O3 TITLE AREA OF
up ap on un as au as a sm in p q poss an impo

REWIND TAPES AND
BRING IN COOING FOR

I CROSS REFERENCE
STNG

Paup seep up on as as a u os up s is us app up

SUB-EAOER

8 Os
O O

9 O2
O

CO

3,533,086

2

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet SO

Afg. 6/22
PROGRAM AUTOFOW PAGE 22

CHAR PASS THREE - AYOUT

(1 g o O 7)
C&O O
a susta as so as q is PROCESS NG OF DEC t SON

PLACE PSEUDO RECORDS
CONNECTOR SYABOL ON
PAGE - PAGE AND BOX

OF DEST IN AT ON IS
CONTA NEO N INPUT EACH DEC SION RECORD HAS A

RECORD MAXIMUM OF TWO BRANCHES
ceae spa is a pass snapp as app a which AUST BE ANALY2ED FOR

SHOWNG CONNECTION

2 O)
O2 C9U Os

d e eason is is age ques are

e 9 O2 SET LEFT AND RIGHT
SOE SIGNALS TO

CO oFF

(2d Oslo as sease
2009 COO O

Cao O3 a passes as sees an as as ap us quess

to as a as so LOOK UP BRANCH TAG

EXTRACT PAGE AND IN TAG TABLE
Box OF e a as

DEST INATION FROM
TAG TABLE AND PLACE

INSIDE SYMBOL

TAG NO
OA FOUND N a tip as

TABLE a
a 9 O2 a -

O

CO 25 O1.
YES

C 30 as

23 Ole

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 51

Afgs/23
PROGRAM AUTOFLOW PAGE 23

CART PASS THREE AYOT

O
sia as sists is a as it as as sm use O5

EXTRACT FROM TAG
TABLE THE PAGE s
BOX NE AND LEFT as YES

COLUMN E OF BRANC 9 SE SIGNAL - - -
TAG 'ON'

as a sa es is as a sees - is is a rap as

Y

25 O2
NOTE O2 NO

a 44 it CSO
EACH BRANCH H AS:

A RELATED NOTE Os
s STATUS

as ND CATOR, SET a CONNECT NG -
BY PASS 2 st NES ARE OR AWN a

to THIS IND CATOR ON EFT S DE is
at AAY SAY TO USE ONLY s
: A CONNECTOR GO as a a
a TO A SECOND ARY

COLUAN, OR
"NKNOWN"

: - a C 7

s S as
DEST INAT ON NO

N SAME are are
COUMN

TESr a s
SEC a STATUS CONN

a use ND CATOR sap a2SO1
FOR THS be YES
BRANCH Cl30 a

s

24 O6 a 25 O.
UNKWN Oes

a C20 Cl 30 a
S a

NOTE O4. a THERE AN as YES
a a 4 INTERFERING -a-

a CHECK NE
a POSS is LTY OF
a DRAW NG A LINE

TO SHOW 260
CONNECT ON NO

is a a C&O

s
. ;

d 24 O
23 Oss

Oct. 6, 1970 M. A. GOET7. 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

Filed Dec. 24, 1968

Age/24

AND RECORDING DISPLAY CHARTS

PROGRAM AUTOFOW

58 Sheets-Sheet 32

PAGE 24

CHART

O

DRAW L NE BETWEEN
OECS ON AND

DEST INATION TO SHOW
CONNECTION

is is was a is a

2

SET LEFT S DE
SGNAL TO "ON"

as as is so as as so as as all as its

(2408) as --

C

BOTH a YES
BRANCHES as a

as PROCESSED a

1902 a
NO

CO

0.

SET TO PROCESS
SECON BRANCH

O5

o2206
d

COO

PASS THREE - A YOU

CODNG FOR THIS BRANCH IS N
A SECONOARY COLUMN

(233)
C2O O

DRAW NE FROM
DECS ON SYMBOL TO
SECONDARY COLUMN

7

sEReside
SIGNAL TO "ON"

as an as a posses app as a a

O

24 O3

C1 O

... ;- 3.

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 53

Alig. 6/25
PROGPAM AUTOFLOW PAGE 25

CHART PASS THREE as AYOUT

USE A CONNECTOR TO SHOW
CONNECTION

(22 O7)

C130 at 01

RGHT NO
S DE S. GNAL sus an to be

toN (2305) - a -a -a
c 150 O2
ses as a sa ss is as a a

DRAW CONNECTOR ON
YES RIGHT SOE

Puna sat in at a

5 ------------------ O3
DRAW CONNECTOR ON see as set up is a seas use

LEFT S DE SET RGHT SOE
so us as essay as a seas S GNA "ON"

age for a as was it is as are is a

O
eas a so is a pass page at note

SET LEFT SIDE O
SIGNA "ON"

4 as sess as as prese as as a a 24 O3 a

CO

s O7

a 24 O3

CYO

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 58 Sheets-Sheet 3i

Age/26

PROGRAM AUTOFOW PAE 2

CHART PASS THREE LAYOUT

NTERPERING NE

(230)

CO O.

S NE
as GONG TO NO

SAME
DESTNATON

(

250 o
YES

C30 a

O2
is seen use is as a ge's up

DRAW CONNECTION
BTWEN T S NE

AND DECS ON SYABOL

03

28 03

C 10

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 35

Age/27
PROGRAM AUTOFLOW PAGE 27

CHART CROSS-REFERENCE L S.

-- roomaeosa (270s
A D1 O 03

TWO INTERNAL TABLES ARE USED base ap as a pses pions is an is a see
N PRODUCING THE CROSS READ RECORD FROA
REFERENCE STING - THE TAG PASS 3 NPUT FILE
TABLE AND THE REFERENCE a a sea as a p as as a

TABLE A TAG WILL HAVE ONE
ENTRY IN THE REFERENCE TABLE
FOR EACH REFERENCE TO T.

OA

BOX NUMBER ONLY No Do J d

EACH REFERENCE ENTRY
CONTA NS THE TABLE LOCAT ON a
OF THE NEXT ENTRY TO THE
SAME TAGo The FINAL END as YES
REFERENCE TO A TAG AS AN FILE up a
APPROPRIATE IND CATOR. a ND CATOR is

(2 O4)
DOO O 28 07
to use is uses p us an esta as NO

CREATE AN ABRGED D30 e o
TAG TABLE FROM THE
MAN TAG TABLE

EACH ENTRY CONT ANSI Os
THE TAG AND TS
ASSIGNED PAGE AND t

TAGS WHICH ARE -e- raceae OR S CODE
REFERENCED ARE

PLACED IN Asr DGED
TABLE - EACH MAN
TABLE ENTRY HAS AN
ND CATOR TO SHOW YES

THIS
a sea as 'uses sis a as a as a (28 O6 sease-ea

O2U O
st as a seas as up us a a

O2 LOOK UP DEST INATION
a use in ques area as a seas in a ser TAG IN ARDGEO TAG
SORT ABRIDGED TABLE TALE

NTO PAGE AND BOX sque ape as as p a ps
NUMBER SEQUENCE .

as a as a as a seas

290

is 2703

Oct. 6, 1970 3,533,086 M. A. GOETZ
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DISPLAY CHARTS
Filed DeC. 38 Sheets-Sheet 56

Age/28
24, 1968

PROGRAM AUTOFOW PAGE 2

CMART CROSS-REFERENCE ST

NOTE 05
O.

4. DEC SONS MAY -
HAVE TWO TAGS

TAG NO
FOUND IN ass
TABLE

O6
s 2703

YES O B 27 Oé
OO as a

D2O
(2

CREATE NEY ENTRY INI
REFERENCE TABLE

CONT ANNG THE PAGE
AND BOX OF

CURRENT RECORD
CONSTRUCT ON OF REFERENCE
TABLE IS P N SHED PRODUCE

an as amal m ms pagana spur ST ING FROM THE TABLES

(2704)

to asses upon apas up assau assasao a

CREATE NECESSARY

D30 O7

SET FOR FIRST ENTRY
NKAGE TO RELATE N TAG TALE

TH S REFERENCE To a up to app as us use on unusuage us oup up a

| PREV OUS REFERENCE
O THIS TAG (300) ou area aan

Pufut no assuous oal apao to as to D40 08
step up ue a son too uses area us ut

MOVE TAG AND TS
PAGE AND BOX FROM

OA TAG TABLE TO OUTPUT
NE

eu Pun o uses as so seppu uses as us a

S as NO
THERE A 2ND loos (29 O6 anoe pom
BRANCH TAG DSO 09

suppose soapu assign an a pop

O LOCATE NEXT ENTRY
27.03 N REFERENCE ABLE

YES FOR THIS TAG
dO 8 oup up us up an unu no use as a as up pu

O O Y

a 2.05 o
29 O

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

Filed Dec. 24, 1968
AND RECORDING DISPLAY CHARTS

58 Sheets-Sheet 57

Age/29
PROGRAMI AUTOFOW

CART

NOTE O
at

EACH ENTRY HAS a
ADDRESS OF NEXT as

a REFERENCE TO
a SAME TAG
to a a

2

ovEPAGEAD sox.
FROM REFERENCE
TABLE ENTRY TO
OUTPUT NE

O3

s OUTPUT as YES
i L NE FULL

a.

NO

(29 O5) -- a----.

MORE - YES
- REFERENCES as a -

a TO THIS TAG

4. 2309 a
NO

OO

30 e O

PAGE 29

CROSS-REFERENCE LIST

a sea s is - a - ea as us as as a

D70 O4
a as a e gue so says as a see

WRTE OUTPUT NE
a so as as a a sess sis a a

d Os
d

2906
d

Oct. 6, 1970 M. A. GOETZ 3,533,086
AUTOMATIC SYSTEM FOR CONSTRUCTING

AND RECORDING DSPLAY CHARTS
Filed Dec. 24, 1968 38 Sheets-Sheet 38

Aig.6/3O
PROGRAA AUTOPLOW PAG 30

CHART CROSS-REFERENCE ST
(SOO2)

O O80 Os

writicut END OF RUNWRAPUP
OUTPUT NE ----------------

t O6
re.

O2 HALT)
peel

AORE as NO
a TAGS IN TAG alous

TABLE
s O

300-se
YES

OBO

O3

ADVANCE To NEXT
SEGUENTIAL ENTRY IN

TAG TABLE

O O4
O O

28 08

United States Patent Office 3,533,086
Patented Oct. 6, 1970

1.

3,533,086
AUTOMATC SYSTEM FOR CONSTRUCTING AND

RECORONG DSPLAY CHARTS
Martin A. Goetz, Princeton, N.J., assignor to Applied

Data Research, Inc., a corporation of New Jersey
Continuation-in-part of application Ser. No. 512,113,

Dec. 7, 1965. This application Dec. 24, 1968, Ser.
No. 786,782

Int, C. G06f 9/06
U.S. C. 340-172.5 45 Clainas

ABSTRACT OF THE DISCLOSURE
A data processor system for automatically making two

dimensional flow charts forms chain sequences of the
flow chart symbols and allocates the symbol chains in
parent and branch and sub-branch sequences as clusters to
successive flow chart pages.

BACKGROUND OF THE INVENTION
This invention relates to a system for automatically

constructing and recording display charts and particularly
flow charts representative of control systems for digital
computers.

This application is a continuation-in-part of copending
application Ser, No. 512,113, filed Dec. 7, 1965, now
abandoned.
Computer programs that are used to control the se

quential operations of digital computers are made up of
sequences of hundreds or thousands of computer instruc
tions or commands which have complex interrelationships,
The relationships of these instruction sequences, whether
presented in machine coding or in machine dependent or
independent languages, are difficult to interpret, even when
they are read by skilled programmers. For that reason the
program is generally presented in the form of a flow
chart, which graphically presents the logic flow of ma
chine operation and enables the programmer and users of
the program to more readily interpret and understand
the program. When a programmer constructs a new pro
gram he may develop rough sketches of a flow chart prior
to implementation of the program, but commonly, such
sketches are an inadequate description of the final program
that is implemented, which may incorporate numerous
changes and revisions. Moreover, a draftsman is needed
to convert the sketches to suitable drawings, and the
drawings, in turn, should be checked to ensure that no
errors have been made in the transcription. Due to the
tediousness of making a good flow chart, the pressure of
other duties, and changes in personnel, the flow chart
documentation of a program by the programmer is often
incomplete and inaccurate. Yet, without reliable flow chart
documentation, skilled personnel who were not involved
in the original design of the program have great difficulty
in learning and understanding its construction and opera
tion, and in developing modifications and variations of the
program, as circumstances often require. In addition, as
a program is updated or revised, procedures are needed for
readily updating the flow chart documentation.

SUMMARY OF THE INVENTION

Accordingly, it is among the objects of this invention
to provide a new and improved data processing system
for automatically producing flow chart documentation
of a computer program.

Another object is to provide a new and improved
automatic flow chart documentation system for computer
programs that automatically produces from a computer
program a flow chart which is an accurate and informative
graphical representation of the program.

10

5

20

25

30

35

40

50

5 5

60

2
Another object is to provide a new and improved

automatic flow chart documentation system for computer
programs that relieves the programmer of documentation
chores and makes it possible to obtain documentation im
mediately upon the program being constructed.

Another object is to provide a new and improved auto
matic flow chart documentation system for computer pro
grams which assists a programmer in debugging the pro
grams that he constructs and in revising the program as
may be required.
Another object is to provide a new and improved flow

chart documentation system for computer programs by
means of generally available digital computers.
Another object is to provide a new and improved

method of operating digital computers to produce flow
chart documentation of computer programs.
Another object is to provide a new and improved com

puter programming system for operating stored program
computers to produce automatically flow chart documenta
tion of other computer programs.

In accordance with an embodiment of this invention
a computer program is provided for operating a stored
program digital computer to perform the flow chart docu
mentation of other computer programs. The computer
program to be documented is in the form of groups or
combinations of digital signals that are treated as data
by the digital computer when it is operated in accordance
with this invention. The digital computer operates on
each of the successive groups of data signals represent
ing the sequences of instructions or instruction groups of
the program to be documented, and determines therefrom
what type of instruction is represented and the length
of the column display required for presenting each in
struction as a diagrammatic block along a column of a
flow chart. Chains of such blocks between successive trans
fer types of instructions are established and the length
of the chain for display on the flow chart page is deter
mined. Destination tags in the data blocks are identified,
and a tag table is developed of those tags and their rela
tions to the associated blocks. The locations of successive
chains in a main path of the program are allocated to
successive columns of the display pages. Branch instruc
tions of those chains are handled specially by identifying
the destination (or tagged) chain to which the program
branches and, where adequate space is available for the
tagged chain in a column adjacent to the column of the
main path, allocating the tagged chain to the adjacent
column. Chains are allocated in sequential order to the
main flow except where branch instructions are encoun
tered; for the latter, the main path allocation is inter
rupted to allocate the branch chains. The locations of
the connecting paths between blocks in the same and
adjacent columns and of connectors to blocks in non
adjacent columns of the same or different pages are es
tablished. A display is provided of the interconnected
chains with connecting paths where possible to represent
paths between blocks in the same and adjacent columns
and connector symbols are drawn where such paths can
not be drawn.

In other embodiments, modified forms of the invention
are used.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing and other objects of this invention, the
various features thereof, as well as the invention itself
may be more fully understood from the following de
scription when read together with the accompanying
drawing, in which:

FIG. 1 is a schematic block diagram of a data process
ing system incorporating a control program for flow chart
documentation in accordance with this invention;

3,533,086
3

FIG. 2 is a schematic block diagram of a fragment in
putline form of the type of chart that is produced by
means of this invention;
FIG. 3 is a general schematic block diagram of a com

puter program embodying this invention and used in the
ystem of FIG. 1;
FIG. 4A and B are schematic block diagrams of out

ine fragments of a form of computer program flow chart
produced in accordance with modifications of this in
vention;
FIG. 5 is a schematic block diagram of an outline

fragment of another form of computer program flow
chart produced in accordance with modifications of this
nvention;
FIGS. 6A, B, C, D and E are schematic graphical dia

grams of flow chart patterns produced in accordance with
another modification of this invention;
FIGS. 7A, B, C, D and E are a series of schematic

flow chart diagrams that together illustrate graphically
details of a modified form of computer program embody
ing this invention and used in the system of FIG. l; and
FIGS. 8/1 to 8/30 are a series of schematic flow chart

diagrams that together illustrate graphically details of a
computer program shown in FIG. 3.

In the accompanying drawing, corresponding parts are
identified by similar reference characters throughout.

TABLE OF CONTENTS
or Column

GENERAL SYSTEM (Fig. 1).--------...- - - - - -
FLOWCART SYMB (LS ANTD FORMATS (Fig. 5
PASES OF FLOWCHARTING SYSTEM (Fig. 3) 7
INPUT IDATA-...----------- S

Program Logic (Fig. 8).----- 8
PASS-I (Figs. S1-S6).----- - - - - - - - 9
TABLE I-OUTPUT RECORL) ----------. 11
TAIBLE II-TAG TABLE -----------. ------------ - 2
TABLE II-CFIAIN TABLE - - - - - - - - - - - - -------- 13

Processing of Individual Cocles-Pass I. --------...--------- 4.
J-Code.--------------------------- - 14
H-Code.--------- - - - - 14

E-Cotle.----------------------- 15
-Oxie 5

N-Codes 5
3-Ceda 15
S-(Oce 16
T)-Code 6
W-Code 7
T-Code.----------- 18
Sunnmary of Pass-I. 18

PASS. I.------------...-- -
EN)(OL Subroutine -------------- - - - - - - - - - - 2.

TABLE IV, PSEU lo-CONNECTOR RECORD. 22
B-Code Processing---- 23
DECISION Branch Processing-----...----- 23
SCOL Suibroutine. ------------- 24
DECISION-branch logic contin 26
Secondary-column Processing 27
Summary of l'ass II 2S
PASS-II------ 2)
Page Layout.------------------------------ - - - - - - - - - - - - - - - - 29

General Tescription of l’rocessing. 30
l)etailed Processing------------ 3.

B-Code....... 3.
J-Code.--------------------- 31
E-Code.---------------------- 31
H-Code---------------------- 31
P-Code.-------------- 31
N-Code.------- 32
S-Code.------- 32
T-Code.--------- 32
Pseudo-Collect
ECISION Record

Rules Regarding Connection of Branches ---------
Tetailed 1) escription of DECISION Processing---
Cross-References. -----------------------------------
l'ass-IV----------- - - - -

Tag Table------
Reference Talle---
Setting up References in the Tables- - - - Output-----------------------------

MODIFICATIONS OF TE INVENTION
Pass-I------------------------- -
Pass-lI, Main Chain Processing
ACP-

ASSEMBLY LANGAGE AND 1.
PROGRAM-RCA 501 - 5

GENERAL SYSTEM
In the embodiment of the invention in FIG. 1, a data

processing system constructed in accordance with this
invention is shown, and it includes a memory 102, an
arithmetic unit 104, and a set of controls 106. This sys
tem may be a suitable form of digital computer in which

O

30

35

5 5

60

5

4.
data stored in the memory 102 is supplied under the di
rection of the controls 106 to the arithmetic unit 104
for processing and then returned to the memory to be
stored at appropriate locations. The controls 106 deter
mine the memory locations from which information is
taken to be processed in the arithmetic unit 104 as well as
the memory locations to which it is returned after process
ing, and also determine the timing of the flow of electri
cal signals representing the information. The controls 106
also determine the particular operations performed by
the arithmetic unit as well as the time interrelations
thereof. The flow of signals to and from the memory is
indicated by solid lines, while the flow of control signals
from the controls 106 to operate the memory 102 and
the arithmetic unit 104 is shown by broken lines. In
practice, various kinds of such control lines are required,
and the details are omitted here since appropriate ar
rangements are well known in the art and they are un
necessary to an understanding of the invention.
The data processing System of FIG. 1 may be any of

various well-known types of systems such as that em
ploying a stored program in the form of signals stored
in the memory and representing sequences of control in
structions or commands which select the operations to be
produced by the controls 106 as they are needed to per
form the desired operations. Such a stored program is
effectively a part or extension of the controls 106 and is
commonly stored in the memory in a section set apart
for that purpose. A section 102a of the memory 102 is
labeled to indicate that the control program for the
documentation of a flow chart (F/C) is shown as part
of that memory. Alternatively, the controls 106 may
have a fixed program wired and/or built-in which may
take the form of logic combinations of gates and other
circuits to perform the proper sequence of operations
that make up the logic of the program, all in accordance
with techniques that are well-known in the art. The
operations required of the flow chart documentation
system of this invention are generally large in number
and have complex interrelationships. Therefore, a stored
program is the preferred form of control system for
presently available computers, and an embodiment of
such a program is described below.
The input portion of the data processing system is

represented as a magnetic tape unit 108 operated by ap
propriate signals from the controls 106 to supply groups
of combinatorial signals to the input area 102b of the
memory 102, which input signals represent the program
which is to be documented. That is, the data inputs of
the system are themselves successive sections of another
computer program, which are processed as data to pro
vide a flow chart representation of the logic of the input
program. Another magnetic tape unit 109, operated by
the controls, carries the signals that form the flow chart
control program, and this program is read into the mem
ory section 102a when the computer is to be operated
in accordance therewith. The entire F/C program may
be read into memory section 102a at the beginning; or,
since the program is formed as a sequence of subdivisions
or passes, the subdivisions may be separately read into
memory as required by the program. Other magnetic
tape units 110 and 111, operated by the controls 106,
receive records from the memory output area 102c and
Supply these records back to the input area 102h thereof
during different stages of operation of the system. In
use, the tape units operate effectively as portions of the
computer memory system. An output display device 112
is also operated by the controls 106 to produce a graphi
cal display of the final flow chart produced by the sys
tem. This display device 112 may be a high speed printer
(e.g. a line-at-a-time printer), a digital plotter recorder,
a cathode ray tube display or recording System, or any
other appropriate form of display or recording system.
The display device may be operated on-line directly from
the memory 102, or the output from the memory may be

3,533,086
5

written on to an appropriate tape and used to operate
the display device off-line in any suitable manner.

FLOWCHART SYMBOLS AND FORMATS
FIG. 2 illustrates an outline of a flow chart that is

produced in accordance with the system of this inven
tion. The flow chart documentation program of this in
vention examines specific fields of each instruction line
and other data sections of the program to be documented
and produces a standardized flow chart by means of the
display device 112. In accordance with one form of the
invention, the input program is in an assembly language
and the flow chart that is produced is divided into four
columns (the invention may be used to supply flow charts
of any desired size having one or more columns). The
first and third columns 114 and 116 may be used for
depicting the main flow of the program and the other
two columns 118 and 120 would then be reserved for
branches from the main flow columns. However, as de
scribed below, it is preferred to have all four columns
available for display of the main flow logic of the pro
gram and to use the next adjacent column for display of
the logic that branches from a main flow column. Var
ious types of graphical symbols are used to represent the
different types of instruction or instruction groups of the
program that are being documented. One such symbol is
a rectangular box 122 representing a PROCESS; another
symbol is a diamond-shaped box 124 that represents a
DECISION or branch (that is, conditional transfer) in
struction. Seven other different symbols are utilized and
illustrated in FIG. 2 as is described hereinafter. Symbols
are assigned numbers sequentially beginning with "01" on
each page, and all cross-referencing to other symbols is
in the form “XX.YY," where XX is the page number
and YY the number of the symbol on that page, which
provides for 99 symbols for each of 99 pages, and which
can be readily modified for larger numbers if needed.
Symbol sequence numbers are printed above and to the
right of all symbols on the chart, as shown in FIG. 2,
where box 122 carries the symbol sequence number “01.”
The symbols are numbered in sequence from top to bot
tom of a column, and, in the main flow columns, from the
bottom (or exit) of one column to the top (or entry) of
the next reading from left to right. Branches from a
DECISION symbol are from the side corners of the dia
mond, and these branches may be connected to the entry
point of another symbol in the same column (see line
123) or to the entry of a symbol in the adjacent column
(see line 125). The symbols in a branch column are
sequentially numbered (in one embodiment) starting
from the number of the DECISION symbol from which
it branches; and the symbols below that DECISION in
the main flow column have numbers that continue after
those of the branch column. Thus, the number of branch
block 126 is "03" following that of DECISION 124, and
the number of block 127 is "08" following that of the last
symbol in branch column 118.
The documentation program in one embodiment, ex

amines four fields of an input program presented in a
fixed formal assembly language and produces the flow
charts therefrom; these fields are the symbolic tag, the
comments of the programmer interpreting each instruc
tion or group of instructions, a special flow chart code
located in a predeterminted part of the Comments field,
and operands (such as the operation code and certain ad
dresses) that supply the destination tags or addresses of
transfer and branch instructions. The following eleven
flow chart codes are utilized in such an assembly language
format for the system of FIG. 2:
“P'-PROCESS 'H'-HALT
“C'-CONTINUATION 'N'-NOTE
'S'-SUBROUTINE 'B'-CHART TITLE
“J”-JUMP “D'-DECISION
“E'-EXIT “W-SWITCH

“T'-TEXT

O

20

2 5

30

40

5

60

6
Eight different chart symbols are used to represent the

eight different classes of data processing, and "B' and
"T" identify TITLE and TEXT that are to be printed
on the chart. "C' is used to identify a continuation of a
comment that started in a preceding record of the pro
gram. It has been found convenient to insert the F/C
code after the Comments field separated therefrom by
spaces. Due to the records being fixed in size, the number
of characters usually being that of a punch card, suc
cessive records are used to carry extensive comments.

In FIG. 2 the PROCESS (or P-code) symbol is shown
as a rectangular block, such as the block 122, and the
Comments portion of the corresponding instruction is in
serted in the symbol in the manner illustrated in FIG. 2
and as shown in greater detail in FIG. 8 (the latter may
be referred to as an illustration of a flow chart, in two
column form, produced by this invention). This PROC
ESS symbol is variable in column length depending on
the length of comments. The TITLE represented by code
code-B is placed on the top of each page of the flow
chart, as indicated at the top of column 114 of FIG. 2.
The T-code for TEXT indicates that the textual mate
rial supplied in the assembly language is to be printed
out without a special chart symbol (see column 116).
In column 114, diamond-shaped symbol 124 represents a
DECISION, and the accompanying comments are edited
and inserted in that symbol as indicated. Either one or
two branches of coding may be shown as coming from
the side corners of the DECISION symbol. Labels are
supplied to the branch paths from the DECISION sym
bol in accordance with a special code or in accordance
with the Comments field of the input instruction. The
documentation program of this invention determines how
the lateral branches are to be depicted on the chart;
they may be shown by a horizontal line 125 connecting
to an adjacent column as indicated by the branch EQL
from the box 124 to process box 126 in column 118:
or by a connecting line 123 from the LOW branch of
box 124 down to the input of block 128 in column 114;
a third method (where such connecting lines cannot be
drawn) is by means of a connector symbol in the form
of a circle 130 connected to the DECISION branch and
containing the cross-reference identification XX.YY of
the flow chart symbol to the input of which it connects.
Thus, in the case of connector 130, the HIGH branch
from the DECISION block-10 goes to block-13 on page
1, which is shown in column 120.
Another symbol is that for SUBROUTINES (S) such

as that shown by block-05 in column 118. This is a
hexagon-shaped box in which the Comments field is writ
ten, and in a separate section in the left of the box in
the cross-reference is given to the location of the details
of the subroutine. As illustrated. SUBROUTINE-05 is
cross-referenced to 01.20, which one can readily locate
in column 116 on the same page. The cross-reference
back to SUBROUTINE block 01.05 is shown at the in
put to box 01.20 so that the reader of the flow chart may
readily determine the entry into that section of the pro
gram and interrelate the different positions thereof.
The JUMP code (J) is represented by a circle as indi

cated by block-07 at the bottom of column 118. The
circle has at the lower right the tagged destination to
which the program jumps, and contains within it the page
and box number of that destination in the flow chart so
that it can be readily located. The tag of the entry point
of a block is at the upper-left of a block, as the tag,
“JAN' for block 126.
The E-code representing EXIT is illustrated by a circle

that terminates a chain of blocks and contains the word
“exit," as shown by circle-23 in column 120. Similarly,
the H-code for HALT terminates a chain of coding as
shown by circle-17 in column 116. The N-code, used for
NOTES, is represented by a rectangular block (see block
5) which can be varied in column length to contain the
associated comments, and which is offset with its left

3,533,086
7

side indented to distinguish it from a PROCESS rectangle.
The W-code is a diamond-shaped symbol similar to a

DECISION and it contains the word "switch.' Its
branches are handled in a similar fashion to the DECI
SION box as illustrated by the example of block-14 in
column 120.
The destination tags where they are provided in the

comments field of the input program (or otherwise in
the operand codes of that program) are picked up and
supplied to the transferring symbol, where it is not di
rectly connected to the destination symbol. For example,
block 130 is a connector symbol that has the destination
tag "CAN' printed next to it, for that tag is the input
of block-13 in column 120. "CAN' is also printed at the
input of block-13 and if the other blocks have input tags
they are similarly printed. Cross-references to show the
originating points for entries to blocks of the flow chart
are by way of the page and block number of each symbol.
An example is the cross-reference back to block 01.05
that is set forth in parentheses at the input to block-20
in column 116; another example is the tagged entry
"RAN' to block-05 that is shown in parentheses (name
ly, 01.10), which cross-references back to the branch from
connector 132 in column 114. In addition where more
than one cross-reference entry exists, rather than indi
cating all of the symbol locations, an asterisk is provided,
as at the entry of block-13 in column 120, and a separate
cross-reference table lists all such entries, as is discussed
in further detail herein below.

In accordance with the documentation program of this
invention, each chain of symbols is terminated by a
JUMP or EXIT symbol. In addition, where space limita
tions do not permit the printing of a long chain of sym
bols until it terminates in that fashion, a special connec
tor symbol is generated by the F/C program to set forth
the continuity of the main flow of the program. Thus at
the bottom of the column 114, such a pseudo-connector
symbol is shown as a circle containing the location
(01.11) of the next instruction in the main path, which
in the case illustrated is to block-11 on the same page,
namely, the first block in column 116. Also at the bottom
of column 116 a pseudo-connector circle is generated
containing a cross-reference to the first block of page 2,
for the next symbol of the main flow of the program.

PHASES OF FLOWCHARTING SYSTEM
FIG. 2 is referred to hereinafter to illustrate the devel

opment of the flow chart as the operations called for
by the documentation program are sequentially per
formed. FIG. 3 is a block diagram of the four main
phases of the FAC program. In the specific embodiment
of the invention described hereinafter, these four phases
correspond to four separate sections of the program and
four passes of data. During Pass I, block 140, the edit
ing phase is performed in which the input data is accepted
and edited, the column lengths of individual symbols are
fixed, individual chains of logic are established and their
lengths determined, and a Chain Table and the skeleton
of a Tag Table are constructed. During Pass II, block 142
output records of Pass I are processed to complete the
Tag Table; individual symbols are assigned locations on
successive pages of the flow chart, and assigned to a
specific part of a column within the page. Successive main
flow chains are processed along with the branch chains.
During Pass III, block 144, the Tag Table is used to print
a table of contents, the successive pages of the flow chart
are laid out, connecting lines and symbols set out, and
each page is printed. During an additional pass, Pass IV,
block 146, a table of cross-references is developed and
printed out. The program of this invention is not limited
in its form to any particular number of passes of the
data; the particular number varies with the computer that
is used and with the availability and division of memory
space (say, in the random-access section of the memory
as against drum or tape memory storage) in the computer

5

10

20

2 5

30

3 5

4)

5 3.

60

()

8
as well as with the complexity of the processing opera
tions that can be performed by the computer and of the
flow chart that is desired.

INPUT DATA
The input data for the assembly language program gen

erally takes the form of successive records corresponding
to the quantity of information that can be developed on
an individual punch card. This record may have the in
formation arranged in any prescribed order, and for one
assembly language, it contains the following ordered fields
of information:
Assembly line it; tag, if any, of current record; opera

tion code; A-Address; index instruction code; B-Address;
Comments.
The Comments field carries the programmer's inter

pretation of the data processing operation, so that the
operation code is not needed and is not used for that pur
pose in the present embodiment; nor is the index instruc
tion code and B-Address. However, for the purpose of
picking up destination tags, if they are not carried by the
Comments, the operation code and A and B-Addresses
are examined. That is, the operation code is examined to
determine if it is a conditional branch instruction, and
if so, the A-Address is used for one branch destination
and the B-Address for any second branch destination that
may be involved. The Comments field may be used to
carry any desired destination tags to which the current
record transfers, which destinations are set off parenthet
ically at the beginning of that field by asterisks, e.g. as
follows: TAG*. In addition, the labels for the branches
of DECISION symbols may be supplied with those desti
nation tags in a special format described below. In addi
tion, in accordance with the present embodiment of the
documentation system, an additional field of flow chart
code is provided; that is, one of the aforementioned eleven
flow chart code characters; and, in the case of DECISION
OF D-codes, an additional optional code character may
be provided representing the different classes of labels
for common DECISION branches, as follows:

“Y”- YES; NO
"Z'-NO; YES
“I'-HIGH; LOW
"L'-LOW; HIGH
"Q"-EQUAL; UNEQUAL
“U”-UNEQUAL, EQUAL
"it"-PLUS; MINUS
"-"-MINUS; PLUS
"3'-EQUAL HIGH; LOW

Program Logic
FIG. 8 is a schematic flow chart diagram of the gen

eral logic of the documentation program; it consists of 30
Sections or pages of flow chart, and FIG. 8 is numbered
as FIG.8/1 to FIG. 8/30 to identify those 30 flow chart
pages. Each of these pages of FIG. 8 is presented in the
form of flow chart that would be produced under the
automatic control of the documentation program itself;
and, in fact, that program was used to develop the flow
chart of FIG. 8. Due to the size limitations of the patent
drawings, only a quarter page of the high-speed-printer
page was utilized, which afforded room only for two (of
the available four) columns in width and a half-column
in length. Thus, FIG. 8 illustrates an actual flow chart
developed by the documentation program, but is much
simplified in that less information is provided on a single
page. Reference is made to FIG. 2 for a representation
of the four-column format that is produced by a preferred
embodiment of the documentation program; and FIG. 8
illustrates that a two-column format may also be pro
duced with minor modifications of this program. Each of
the pages of FIG. 8 has a program title and chart title
together with a page number in the same fashion as is
developed by the documentation program itself. As ex

75 plained above, each of the blocks is referenced as XX.YY,

3,533,086
where XX is the page number and YY is the block num
ber thereon.

PASSI

In FIG. 8/1, following the program and chart titles
and page number at the top, a body of text material sets
forth the functions of Pass I as that of editing the source
information and constructing Tag and Chain Tables.
Block 01.01 is a PROCESS symbol whose Comment field
indicates that its function is that of setting the record
sequence number counter to zero. For simplicity of illus
tration, the flow diagram of FIG. 8 omits certain other
preliminary operations such as those known as "house
keeping" operations, and those of calling in Pass I of
the F/C program, clearance of memory areas where re
quired, and entry of constants, and the like, which are
routine in nature, and which would be readily apparent
to those skilled in the art and are not needed for an under
standing of the invention.
The main flow continues with the second block 01.02,

and the process of reading the first source record is per
formed. This operation of the computer may call for a
Series of detailed instructions, depending on the computer
construction, by which the input tape 108 is controlled
to operate momentarily, and the first available record of
the input program is read and stored in a predetermined
order so that its fields in a fixed format are placed in
prescribed sections of the input area 102b of the memory
102. The first record that is read in may be assumed to
be a special control record, which may be marked with
a special code identification if desired, and which should
contain the name of the program. This program title is
stored, under the operation of block 01.03, in a prescribed
primary storage area of the memory for use by Pass III
in composing and printing out each page of the program;
then this first card is dropped.
The next available source record is read, block 01.04,

from the input tape 108 into the input area 102b; and the
field for the F/C code is checked, block 01.05, to deter
mine if it is a valid F/C code other than “C.” If the check
indicates that the answer is NO, the program branches
in a loop back to block 01.04 to read the next available
input record into the input area 102b, and DECISION
01.05 checks the F/C code of that record in the same
way. This loop is repeated until the answer to the check
is YES, and the program then continues on the block
01.06 (as indicated by the reference in the pseudo-con
nector symbol at the end of the first column of FIG. 8/1).
As indicated by NOTE 01.06, the input memory area
01.06 now contains a source record that is to be processed,
since it contains a valid F/C code other than “C.” A C
code is not processed, where it does not follow another
code type.
The main-flow logic of Pass I then begins with block

01.07, and all of the fields of the first record to be proc
essed are moved from the input area 102b to correspond
ing sections of the work area 102d. That is, the following
fields of that record from the memory input area 102b
are moved to individual memory work areas 102d to
which these fields are assigned: assembly-line it; tag;
Comments field; F/C code; and, if a transfer instruction,
the operand that contains the destination tag. Prior to mov
ing the F/C code to its work area, the previous contents
of that F/C code work area are transferred to a field of
the primary storage area 102e in memory, identified by
the mnemonic LSTCD; this previous F/C code is used
under a certain condition, as is explanied hereinafter. The
next block 01.08 controls the reading of the next available
source record into the input area 102h, which is now free
to receive it since the previous record was moved to the
work area 102d. The two memory areas 102b and d each
contains a record, which records are processed in the order
they were received.
The next block, DECISION 01.08, checks to see if the

5

0.

15

20

2 5

30

40

50

5 5

60

10
EF indicating the end-of-a-file, which is commonly pro
vided in all magnetic tape systems in one form or another.
lf the result of this test is that such an end-of-file identifier
is in the record, the program branches to PROCESS block
04.08 (the last block of FIG. 8/4) which calls for the
setting of an end-of-pass switch. After completion of the
processing of the record that lies in the work area 102d,
that switch is tested (block 04.07) and if it is set, opera
tions of block 06.07 are initiated for rewinding the input
and output tapes 198 and 110 and calling in Pass II of the
program; thereafter, by means of the JUMP instruction
06.08, the main flow of the program is transferred to
block 07.01, the first block on FIG. 8/7, at the Pass II
starts. However, if DECISION test 01.09 indicates that
there is no end-of-file identifier in the record in input area
102b, the program steps to DECISION 01.10 to test if
there is a valid F/C code in that field of the input record
that sits in the input area 102b of memory. If the answer
is NO (that is, if it is an invalid character or a space),
the program ignores that record and returns as a loop to
PROCESS block 01.08, and the next source record is read.
This loop is repeated until the next record is found that
contains a valid F/C code in the proper field of the input
record. When it is found, the main flow of the program
continues with DECISION 02.01 (FIG. 8/2) which deter
mines if the F/C code of the record in the input area is a
"C," which identifies a CONTINUATION record. If in
put area is a "C," the program branches to block (02.02
where the process is performed of appending the Com
ments field of that CONTINUATION record to the Com
ments field of the previous record lying in the memory
work area. A CONTINUATION record serves only to
carry continued lines of Comments of a previous record;
it is not otherwise processed, and except for the Com
ments, it is not moved to the work area 102d. Thereafter,
as indicated by JUMP (02.02, the program then loops back
again to block 01.08, and the same process is performed
on the next record. If it is another C-code, the Comments
field of that input record is again appended to the Com
ments field of the previous record lying in memory work
area 102d. This loop is repeated until another record is
established in the memory input area which contains an
F/C code other than "C" or space. At that it me, as in
dicated by NOTE 02.04, memory work area 102d contains
all of the necessary information for processing the code
record therein. The record in the input area 102b is left
there and it is processed after the record developed in the
working area has been processed. A locator RHECOM
is used to maintain the memory location of the right-hand
end (RHE) of the Comments work area, since this work
area increases as additional CONTINUATION records
are read and appended. This locator is a field of the pri
mary storage area 102e which contains the address in the
work area of the RHE of the Comments. When the rec
ord in the work area is complete and ready to process,
a control symbol is inserted into the memory location at
the RHE of the Comments to mark the end of that
record.

Blocks 02.05 and 02.06 begin the processing and they
represent a number of processing operations that are per
formed to prepare for the output area 102c to receive the
record from the work area. The output record of Pass I
has a certain format, which is set forth in Table I below.
The same format is used for the output record of Pass
II, and Table I indicates which Pass is used to fill each
field. The beginning and end of each "line' of the Com
ments field is denoted by control symbols since the "lines'
are of variable length, as explained below. A maximum
size of the Comments field is arbitrarily set at about 15
lines of TEXT. The output memory area includes the
following prescribed memory fields for receiving the char
acters that compose each record. The number of char
acters specified in the following table are those found suit
able for particular embodiments; the number of charac record in input area 102b contains an identifier character 75 ters may vary for other embodiments. Each output record

3,533,086
11

assembled in the output area is written successively on
work tape 110, so that the latter contains all of the rec
ords in order at the end of Pass I; in turn, work tape
110 becomes the input to Pass II. Each output record is
processed successively and completed during Pass II and
then written out to the output file on tape 111.

TABLE I OUTl' T REC) ll)
Filed ill

Fiel No. (IAR by- Remarks
1 - ... Control Symbol.

No. Liles - - - - - - 3 l'ass I.---- No. lines required on a FC
page to contail this record.

Coluim No - - - - Pass I Collinn No. oil FC page assigned to this synol.
Line No.-------- 3 ----- do----- Li (No. oti Fi (page at which symbol begills.
Page NO.------- 2 ----- do----- F.C page No. assigned to this

sy rol.
lBox No.--------- 2 - - - - - clo----- Box No. assigned to this sy1)0.
Code.-- Iass ----- Type of symbol
Tag - - - - - - - - - - - - - - - - - do----- Blaik if record has notag.
"Il TC'------- 1. Pass I.--- Cq. pen indicator for field
“LT ... 6. Pass I. Contails destillation tag on

I). J. S codes-blank for
otel codes.

RTC'. 1 Pass II---. Connection indicator for field
“RT''.

''R''. Pass I. Second destination tag Oll I} ECISIONS (Inay be
Artil Se(N SEQ No.------ 4 - - - - - do----- scending Sec No.

EN - - - - - - - 4 - - - - - do----- Length-lines of this record.
Collihellts----. Varial le... - ... (lo.---- Max. of 456 char.). Coltrol Symbol.

As indicated by block 02:05, the record-Sequence-num
ber counter is incremented by “1,” and its new number
is moved to the prescribed field of output area 102c. The
processing continues with block 02.06, and the F/C code
is moved from the work area to the corresponding field
of the output area. Also several memory fields are set
to initial conditions by block 02.06: Line Counter-A in
primary storage 102e is set to 0; Comments Locator is
set to the initial address (which is a constant) of the left
hand-end (LHE) of the Comments portion of the work
area 102d, and Output Area Locator is set to the initial
address of the LHE of the Comments portion of the output
area 102c. All other output fields, other than the Com
ments field, are fixed and have predetermined addresses,
and therefore, require no locators.
The main flow of the program steps to block 03.01 (as

indicated by the pseudo-connector at the bottom of FIG.
8/2) where a test is made on the F/C code. If it is a
B-code, the program branches to block 03.02 where con
struction of the Tag Table in primary storage is initiated
for the first such B-code; and each succeeding B-code
initiates a new section of the table for all tags following
it. The entry in the Tag Table consists of insertion of
the title of the chart, and upon printing out of the table
of contents during Pass III this chart title is printed out
as a heading for the tags associated with that chart. There
after, as indicated by JUMP 03.03, the program jumps to
block 03.05 where the editing operations are initiated.

If the test 03.01 determines that the F/C code is not a
“B,” the program steps along the main flow to DECISION
03.04 where a test is made for a tag in the record, which
identifies the entry point of that record. If it does not
have a tag the program steps to block 03.05 for the
editing operations; if it does have a tag the program
branches to block 05.01, which controls the creation of
a Tag Table entry. The Tag Table is begun by Pass I and
completed by Pass l (; it is used by Pass II and this
remains as part of the primary storage area 102e of the

O

20

2 5

30

5 s

60

5

12
memory throughout the program. Each entry in the table
consists of the following items:

TABLE II, TAG TABLE
(a) Tag
(b) Assembly line it of tag
(c) Sequence it of output record (from Pass I) contain

ing this tag
(d) Page and box number assigned to tag
(e) Column and flow chart line number of tag
(f) Indicator to show cross-reference by other symbols,
and page and box number of the first cross-reference
symbol.
Item (b) of the Tag Table is used for information

purposes in composing the table of contents during Pass
II. Item (c) is used by Pass II in determining whether
a DECSION branch can be processed and allocated to
a secondary column (which is an adjacent column in the
present embodiment). Item (d) is used for cross-reference
connectors in Pass III. Item (e) is used by Pass III for
drawing connecting lines on DECISION symbols. Item
(f) is used by Pass III in placing "from-connectors' or
cross-references on the charts. The entry of items (a), (b)
and (c) is performed during Pass I; items (d), (e) and
(f) are entered during Pass II.

Block 05.01 creates the Tag Table entry by inserting
items (a), (b), and (c) of the record currently being
processed. That is, it determines whether the record has
a tag, and enters that tag as item (a), enters the as
sembly line it from the record in working storage as
item (b); and enters the current reading of the sequence
number counter as item (c). The sequence number coun
ter was stepped forward by block 02.05 to establish the
sequence number of the current record. Space is left
for the additional items (d), (e) and (f) of the Tag
Table to be added during Pass If, and a locator (TTLOC)
of the RH E of the Tag Table is incremented appropri
ately so that the next Tag Table entry may be made at
the proper location. In addition, a control field NUMTAG
containing the number of items in the Tag Table is also
incremented. The tags associated with C-codes do not have
to be placed in the Tag Table and in fact it is not neces
sary to pick them up from the input area except where
the preceding input record has a blank tag area. The oper
ation of block 05.02 moves the tag field of the record in
the work area also to the tag field of the output record.
Thereafter, JUMP 05.03 transfers the program to block
03.05 for the editing process. It is seen from the logic
flow after the test 03.01 for the B-code that this tag
routine is bypassed for such B-code records, so that their
tag fields are not examined either for the purpose of
entry in the Tag Table or for transfer to the output
record. The T-code records are similarly tested, and the
logic flow therefrom also bypasses the Tag Table routine.
Since B- and T-codes do not generate a flow chart symbol,
any tags that they may have are not referenced on the
flow chart.

After the tag processing has been completed or by
passed as required, three subroutines (EDLIN, PAREN,
CHENT) are performed on the different types of records
in the various ways described in detail below. These sub
routines are represented in simplified form in FIG. 8.
At block 03.05 the editing routine (EDLIN) of editing
successive lines of the Comment field of the current
record is entered. The operations that are performed are
those of editing the Comments field into intelligible lines
and moving them into the output field as summarized
generally by the comment of block 03.05. This operation
varies with each of the code symbols and is described in
detail below. As the editing is performed, the number of
lines of flow chart required by each symbol is measured by
block 03.06; this number is fixed for the fixed format
symbols such as D, S, W. E., H and J; the number
varies for the P and N symbols as well as for the lines
of text identified by the T-code.

8,533,086
13

The number of lines for the current symbol (from
Line Counter A) is added to the running total (in Line
Counter B) for the current chain of logic flow by block
04.01. A chain is defined as all coding between successive
J- or E-codes, and includes the first group of coding so
terminated. Examples of chains are marked off by slant
bars in the following sequences of codes; / BTCPCCNJ /
PSCPHPDCJ/PPCDEA.
Thus, block 04.01 produces a running total of the

lines within any chain by means of Line Counter -B,
which is cleared at the end of the chain, as noted below.
The details of the EDLIN subroutine for the individual
codes are discussed below.
A test is made for D-, W-, S- and J-codes by block

04.02; and, if the current record contains such a code,
a branch from the main flow is taken to a subroutine
PAREN starting at block 05.04 and continuing through
06.02. This subroutine is used to identify and extract
from the Comments field, the destination tags and labels,
if any, that are parenthetically included therein by as
terisks, or to extract the destination tags from the input
operands, which operations are described below for in
dividual codes. After the PAREN routine or if the test
of block 04.02 is negative, the program jumps to text
04.03, which determines whether the current record con
tains a J- or E-code. If the answer to the test is "YES,'
the program branches to a subroutine CHENT of blocks
06.04 and 06.05, which controls the construction of the
Chain Table and the entry of new items in that table.
The chain table contains the following three items:

TABLE III, CHAIN TABLE
(a) Sequence number of the Pass I output record at
which the chain ends.

(b) Number of lines on a flow chart page required for
the chain.

(c) Field for an indicator character to show that the
chain has been processed during Pass II.
From the definition of a chain, every record in the

output record file is necessarily part of some chain, which
is identified in the Chain Table by the sequence number
of the last record in that chain. The Chain Table entries
have sequence numbers in ascending order, since they
are created sequentially in Pass I as the records them
selves are processed, and the records are numbered in
ascending order. Block 06.05 transfers the current value
of the record sequence counter to the Chain Table to
establish the Chain Table identification of the current
chain then ending, and also transfer the current value
of Line Counter B, which is a direct measure of the
number of lines in a column required of the flow chart
page for the chain. Line Counter-B is cleared to "0,'
so that it is in condition to accumulate the lines for the
next chain. This completes the operation of subroutine
CHENT, and it exits back to block 04.04. The record
in the output memory area is not complete and a record
terminating symbol is added to the RHE of the record,
which is then written to the output file of work tape 110.
At this point, the aforementioned end-pass switch is

tested (NOTE 04.05 and DECISION 04.06) to determine
whether it is the end of a pass. As explained above, this
switch would have been set by block 04.08 if the fol
lowing record (now in the input area) contained an
end-of-file (EF) identifier indicating that the input tape
had been completely processed. By testing the switch at
the end of each cycle, it is determined whether there are
no further records in the input area to be processed, and
whether the input tape and output work tape are to be
rewound and Pass II called in. When an input record
in the input area contains an EF identifier, the switch is
set, the last record lying in the work area is processed,
and then the switch is tested, which leads to the termina
tion of Pass I. If the end-pass switch is not set, the pro
gram jumps, via block 04.07 to block 01.07 to move the
fields of the record that is then in the input area 102b

10

20

30

40

5 5

60

70

5

14
to the work area 192d, which starts another cycle of
processing. Block 01.08 reads the next source record into
the input area, and it is tested for an end-of-file identi
fier (block 01.09), a valid F/C code (block 01.10) and
a C-code (block (02.01), all in the manner described
above. If the new input record has a C-code, its Com
ment field is appended (block 02.02) to that of the
record in the work area, and the loop repeated until a
record with a F/C code that is not a “C” is in the input
area. Thereafter, the record in the work area is processed
in the manner described, starting with block (02.05 and
as indicated by NOTE 02.04.

Processing of Individual Codes-Pass-I
The flow chart of FIG. 8 has been simplified and omits

a number of detailed tests and paths of coding that are
sufficiently outlined hereinafter for an understanding of
the invention. Many of the codes do not enter the EDLIN
subroutine (block 03.05) since the Comments fields of
such codes are not displayed (e.g. J- and E-codes). In
addition, the PAREN subroutine is different for D- and
J-codes, which differences are noted below in the detailed
discussion thereof.
As noted above, each code is processed in detail by an

individual set of instructions to perform functions pecu
liar to that code; two functions that all codes require are:
(1) determine the setting of Line Counter A (the number
of lines required by that particular symbol on a flow
chart), which is inserted in the output record as “it
lines' (see Table I), and (2) adding that number to the
running total of Line Counter B to get the total number
of lines required for the current chain, which is entered
in the Chain Table. For the purpose of processing the
individual codes, separate legs or paths of coding are pro
vided, with each leg being a branch from an individual
comparison test of the current code against one of a set
of constants that respectively represent the codes that
are employed.

J-code

The test 04.02 initiates the PAREN subroutine 05.04,
which is used to extract the destination tag from the as
terisk field of the Comments. Block 05.04 determines
whether the Comments field contains an asterisk field
(located at the beginning of the Comments field) and if
it does not, the program branches to block 06.01. The
later controls the picking up of the destination tag from
the operand field of the input record which currently sits
in the work area; the operation code of the input record
is examined and the appropriate operand address is picked
up. If the Comments do contain an asterisk field, block
05.05 develops a subroutine for extracting the destination
tag from that field. If there is a label associated with that
tag, it is ignored in the processing of J-codes, since labels
are handled only in connection with D-codes. From
whichever source the destination tag is obtained, block
05.06 moves it to field LHT of the output memory area,
and the program jumps to a test 04.03 for the J-code,
which leads to a branch to the CHENT subroutine 06.04
to create the Chain Table entry. The editing operation of
block 03.05 is bypassed for J-codes (the Comments field
is ignored completely for the processing of J-codes except
for the asterisk-field search). Block 03.06 sets Line
Counter-A to 10 lines (which is suitable for the fixed
format symbol plus an extra space left between the Jump
Symbol and the next chain in the column); block 04.01
similarly increments Line Counter-B, which provides the
information needed for the Chain Table entry to be made
at blocks 06.04 and 06.05. The record is then complete
and can be written to the output tape 110 via block 04.04.

H-code

Line Counter A is set to 10 lines covering the fixed
format of this symbol, and Line Counter B is incremented
by the value of Line Counter A; the editing subroutine

3,533,086
15

is bypassed. Thereafter, block 04.04 writes the record to
che output tape. The H-code may be considered to be the
end of a chain, if desired; and the Chain Table subroutine
CHENT would be entered accordingly. However, pref
erably it is not so considered, since the computer operator
may thereafter push a start button and the program
would pick up the next line in the flow of coding. Ac
cordingly, by not treating the H-code as the end of a
chain, the next intended line of coding is naturally foll
lowed in the flow chart. The record is written to the out
put tape without the Comments field.

E-code
This code is processed in the same fashion as the H

code, except that it is considered the end of a chain and
the Chain Table subroutine CHENT is entered and fol
lowed in the manner described above for J-codes.

P-code
Initially, the editing subroutine EDLIN represented by

block 03.01 is entered to cary out the P-code editing. The
coding supplies a constant for the length of line that is to
be moved from the Comments field; for the P-code, this
length is arbitrarily set for 19 characters as a maximum.
An "intelligible' line is one that does not exceed the
maximum and does not break up a word; hence, it may
and usually will be somewhat smaller than the maximum
length. EDLIN operates by finding the start of the Com
ments field which is supplied by the Comments Locator
and then counting successive characters of the Comments
field until that character is located which would mark
the last character for the maximum length of the pre
Scribed line. If this marked character is a space, then the
intelligible line is exactly the length desired. If this char
acter is not a space the subroutine steps back to the left
until it does find a space, which signifies a word break;
thus, the character immediately to the left of the space
is the RHE of the line to be moved to the output Com
ments area. After the line is moved to the output area
a control symbol is placed to its right as a line delimiter.
The Output Area Locator is adjusted to the new RHE of
the Comments field in the output area, and the Comments
Locator for the work area is advanced to the first char
acter of the next line to be moved out. A test is made
before each line operation is performed to determine if
there is an indicator for the end of the Comments field,
which was placed there when the Comments were moved
into the work area. If it is not, the logic recycles back to
pick up a new line until eventually the end of the Com
ments area is found and the editing operation terminates.
Line Counter A is stepped for each edited line of Com
ments that is moved to the output area; in addition, a
count of 5 lines is added to allow for the fixed format of
top and bottom symbol lines and a 3-line vertical con
nection to the next box. Line Counter B is similarly ad
vanced.
A special case arises where the line length that is de

sired is too small to pick up even a single word; for ex
ample, where the word in the work area is 20 characters,
and for a P-code the line length desired is only 19 char
acters. If this occurs, an artificial "word' is made by
forcing a space into the twentieth character which results
in a 19 character word and line, and permits the EDLIN
loop to operate.
The P-code does not enter the PAREN subroutine; after

the editing operation is complete the record is written to
the output tape.

N-code
This code is handled in the same fashion as the P-code,

except that each intelligible line is 15 characters long.
Pass III arranges for the offset position of this symbol.

B-code
This code is handled without editing by EDLIN, and

the Comments field is picked up in its entirety and moved

5

O

5

20

2 5

30

40

55

60

65

70

75

16
to the corresponding output record area. The Line Counter
A is set to zero, since the space for the chart title is allo
cated for each page, and it does not vary from page to
page.

S-code

The PAREN subroutine 05.04 is entered from test 04.02
to place the destination tag in the output field LHT. If
there is no asterisk field, the A-Address in the operand
work area is used instead via block 06.01. If asterisks were
present, after the contents were moved via blocks 05.05
and 05.06, the Comments Locator ends up pointing to the
first character after the right-hand asterisk. If this char
acter is a space, it is deleted by advancing the Locator to
the right; and the Locator is so advanced until the first
non-Space character is found. A subroutine to perform this
operation is also used for the D-code editing. Thereafter,
the subroutine EDLIN (as described above for the P
code) is entered 5 separate times to move the Comments
to the output area; the fixed odd-shaped format of the
SUBROUTINE symbol (see, for example, block 13.02)
allows for 5 lines that are respectively 14, 15, 15, 15 and 14
characters long. After each call for a line, a test is made of
an indicator (set by the subroutine itself) to see if all the
Comments have been processed, and when the indicator
is set the remaining calls are by-passed. No calls are made
after the fifth one, so that any remaining Comments are
dropped.

In processing S-codes, supplementary editing operations
take place when there are only one or two lines to go in
the symbol. Since the block is of a fixed column length
and line processing is from top to bottom, Comments of
one or two lines are moved down in order to center them
within the box. Thus, if an end-of-Comments-area indica
tor is set after the first call on EDLIN (which indicates
a single line), a subroutine arranges to shift this single
line two positions to the right in the output Comments
area, and each of the vacated spaces has an end-of-line
symbol place therein. This anticipates the printing-layout
operations of Pass III, which automatically moves the sin
gle line to be printed to the middle line of the box, so that
it is centered in the block without additional coding. If
the second EDLIN call produces an end-of-area indicator,
the second line is shifted two lines to the right, the first line
is shifted one line to the right, and end-of-line symbols are
inserted between the two lines and in front of the first line,
which have the effect in Pass III of moving the two de
sired lines into the second and fourth lines of the symbol
to provide neat centering.

in the S-code processing, the Line Counter A is ad
vanced 10 lines because of the fixed symbol format, Line
Counter-B is correspondingly advanced and the record
is written to the output tape.

D-code

The PAREN subroutine is entered via asterisk field test
05.04. If there is an asterisk field, the subroutine is per
formed twice for the D-code, since two asterisk fields may
be provided for the two lateral branches from a DECI
SION symbol. If only one asterisk field is present, the sec
ond entry to the subroutine has no effect. The destination
tag extracted by the first call on PAREN is put in field
LHT in the output area; and the destination tag ex
tracted by the second call is placed in field RHT. If the
second call produces no tag, the field RHT is cleared. If
the first call on this subroutine produces no tag, then there
is an input error, both LHT and RHT are cleared, and
the DECISION symbol is printed out on the flow chart
during Pass III with no lateral branches being indicated.
The labels for the main flow branch and a single lateral
branch from a DECISION symbol may be supplied by a
special code that supplements the flow chart code, as noted
above. Alternatively, these labels may be provided by

3,533,086
17

means of the asterisk field in accordance with the follow
ing format:

LABEL*TAG, LABEL*TAG, LABEL*
The first label is the main-flow branch, the second label

corresponds to the associated tag placed in LHT, and the
third label corresponds to the associated tag placed in
RHT. These three labels are extracted via block 05.05 and
stored via block 05.06 in the first 15 characters of the out
put Comments area in the order given. Labels of more
than 5 characters are truncated by the subroutine, and if
a label is missing its corresponding output field is cleared
to spaces. If there is no asterisk field, the destination tags
are picked up via block 06.01 from the A- and B-Ad
dresses of the input operands, and the labels are picked up
via block 06.02 from a stored table of contents as deter
mined by the special label code.
A subroutine is used which shifts the Comments Loca

tor to the right, if necessary, to bypass any spaces between
the end of the asterisk field and the first non-space char
acter of the actual comment, in a manner similar to that
described above for the S-code operation. The Output
Area Locator is advanced 15 characters so that the first
actual Comments line is laid down after the labels. Thus,
on a DECISION symbol, the actual start of the Com
ments in the output area is the sixteenth character of the
field.
A test is then made to see if the total number of char

acters in the Comments work area is 13 or less; 13 cor
responds to the room available along the middle line of the
DECISION box, whose size is arbitrarily set to permit six
Comment lines of 7, 11, 13, 11, 7 and 3 characters, re
spectively. If the total number of Comments characters is
13 or less, two end-of-line symbols are inserted into the
output area (representing blanks for the first two lines),
an EDLIN call of 13 characters is made and all remain
ing calls on this subroutine are bypassed. If the Comments
work area contains more than 13 characters, then suc
cessive EDLIN calls of 7, 11, 13, 11, 7 and 3 characters,
respectively, are made. The logic operation is similar to
that described above for the S-code. After each call, the
end-of-area indicator is tested, and if set, all remaining
calls are bypassed. If EDLIN indicates an intelligible line
is impossible, a word is forced, as explained above, by in
serting a space in the last character that fits. Due to the
earlier test for a total of 13 characters, it is not possible
for the first call of 7 characters to produce an end-of-area
setting; however, if the second call produces such a setting,
both lines are shifted on to the right in the output area,
and an end-of-line symbol is inserted in front of the first
line to produce a more attractive line spacing, as ex
plained above in connection with the S-code. If the third
call of 13 characters produces an end-of-area setting, no
shifting is performed since otherwise the 13-character line
that has already been moved might not fit into the smaller
available space in a line below it. If the end-of-area set
ting is not reached after the final, sixth call, the Comments
work area is simply truncated; if a large Comment is de
sired by the programmer, a NOTE can be used for that
purpose.

After the EDLIN subroutine is complete, Line Counter
A is advanced 13 lines corresponding to the fixed format
used for the DECISION symbol. Line Counter B is simi
larly advanced, and the output area is written onto the
output tape.

W-code

This code is initially routed down the path followed for
the D-code to process the asterisks field in the associated
PAREN subroutine. Immediately thereafter, a test is made
to determine if it is a W or D-code, and if the former, it
is processed down its own branch leg of logic. The re
mainder of the Comments field of the W-code is ignored,
and instead, a constant is moved into th output Com
ments area beginning with the sixteenth character, and the

O

20

30

40

50

5 5

60

65

70

75

18
code of the output record is changed to a D-code, so that
it may be processed in that fashion from then on. The
constant which is moved into the Comments area consists
of the following: an end-of-line symbol, 11 minus signs,
another end-of-line symbol, the word "SWITCH,' an
other end-of-line symbol, 11 more minus signs, and two
more end-of-line symbols to form the fixed format sym
bol shown as block 04.06. Since the code is now changed
to D, Passes II and III treat it as a D-code and the constant
in the Comments field is so arranged that it is printed out
as the desired SWITCH symbol. The Line Counters A and
B are handled in the same fashion as in the D-code de
scribed above, and the output area is written out to the
work tape.

T-code
In order to avoid ambiguity in the flow chart, the TEXT

of T-codes is printed out without a special symbol only
at the start of a chain of flow, for otherwise the T format
would interfere with the appearance of the chart. Thus, if
the T-code occurs other than at the start of a chain, it is
converted to an N-code and processed as such in the
manner described above to be printed out in a NOTE
symbol. This is done by an initial test to see if the code of
the previous record is a J, E, or B; this previous record
code was saved by moving it into the memory filled area
field LSTCD prior to transferring the current record from
input to work area. If the T-code does come in at the
start of the chain, it is processed by making successive
calls on EDLIN until the end-of-area indicvator is set;
the line requested is 30 characters long. Line Counter A
is incremented for each such line, and after the last line,
it is incremented by "3" to provide a space between the
final line and the first part of the next F/C symbol to be
printed in the column.

Summary of Pass-I
This first Pass examines successive records of the input

program to be documented and extracts all the informa
tion needed to produce an F/C symbol from each record
that contains an F/C code. Where the Comments field for
an F/C Symbol is greater than that carried by one record,
the Comments fields of succeeding records (denoted by
C-codes) are tacked to the previous record. A sequence
number counter is incremented for each record and used
to identify that record in the subsequent processing. Any
tag that identifies the entry point of each input record
is extracted and used to construct the skeleton of the
Tag Table. The destination tages carried by records for
the JUMP, SUBROUTINE, DECISION and SWITCH
records are extracted as well as branching labels for the
latter two symbols. Editing operations of the Comments
fields of P-, N-, S-, D-, and T-codes are performed, and
the number of lines along a column is determined for each
symbol. In some cases, the symbols are a fixed format,
and in other cases they are variable in foramt and their
column length is determined by the number of Comment
lines that have to be printed out.

Each unconditional transfer, i.e. - and E-code, defines
the end of a "chain' of coding, and a Chain Table is con
structed that has an entry for each chain; each chain is
formed as a sequence of symbols terminating with a JUMP
or EXIT symbol and represents a section of program
logic that is referenced on the flow chart to one or more
other sections and that can be treated as a separable
entity of logic for display on the flow chart. The Chain
Table entries are identifiable by the sequence number of
the last symbol of each chain and include the column
length required for recording each chain on a page of the
flow chart. The flow chart codes for HALT, SUBROU
TINE, DECISION and SWITCH are not treated as chain
terminating symbols, but rather as parts of a chain. The
HALT symbol in some respects is like an unconditional
transfer symbol in terminating a section of logic flow;
however, it may be followed, as the program is performed,
by the operator of the computer restarting the program,

3,533,086
19

which would lead to the next record of the original pro
gram sequence being the one to be processed. Consequent
y, the logic flow from the HALT symbol, in effect, is an
intry to the next symbol in the original sequence, and
hese symbols are preferably considered as part of the
same section of logic and not separated on the flow chart.
Ihe SUBROUTINE symbol refers to a sub-section of
ogic which continues the main flow processing and does
not terminate it, though the details of it are ordinarily
separately reviewed and are therefore best left to a sepa
SWITCH symbols, each also have a branch that con
tinues the main flow processing and are therefore in
corporated as parts of the chain and not as branches from
it.

PASS II

The flow chart for Pass II is shown in summary in
FIGS. 8/7 to 8/18. As indicated in the text at the be
ginning of FIG. 8/7, the function of this pass is to con
plete the construction of the Tag Table and to assign all
flow chart symbols to certain positions on the F/C pages.
The input records for Pass II are supplied by the Pass
output work tape 110 and the output of Pass II is written
on the second work tape 111.
The sequential operation of Pass II is determined over

all by the sequence of chains in the Chain Table, and
certain chains are processed out of that sequence. Within
any chain, successive records are generally processed in
sequence as received, except when DECISION records are
encountered; at that point the processing of the chain
containing that DECISION is interrupted and the branch
chains are investigated and (in the present embodiment)
processed. As indicated in block 07.01, a Chain Table Lo
cator in the primary storage area is employed, which
always points to (carries the address of) the Chain Table
entry which is currently being processed along a main
flow column. As the processing of each chain is com
pleted, this Locator is advanced to the next chain in
sequence.

Other initial operations performed in Pass II, block
07.02, include that of setting a page-number (Page if)
counter and a column (Col it) counter to “1,” a box
number (Box it) counter to "0." and a Line Counter 1
(LNC-1) to “1,”
The main loop of Pass-II then begins at block 07.03

with the first input record from work tape 110 being
read into the memory area 102h (an additional memory
work area is not required in this pass). A test is made,
block 07.04, for an end-of-file indicator, and if it is found,
the program branches to 09.06 which controls the re
winding of the tapes 110 and 111 and the initiation of
Pass-III. If it is not the end of the file, the sequence
number of the current record is stored in field TPOS
for later use; the program steps to a test 07.05 for a
B-code, and if it is found, the program branches to block
12.09 where the end of a page is forced by setting Col it
to '4' (assuming a 4-column page). Then the program
transfers to an end-of-column subroutine ENDCOL, where
a pseudo-connector record is developed. Since a B-code in
volves the development of a new chart title, a new page
is normally started, which is the function of the END
COL subroutine. However, as explained below, in certain
situations (as where it is the first B record of the chart)
is is not necessary to start a new page and thereby
needlessly skip a page; and the ENDCOL subroutine is
essentially bypassed to block 08.06, which writes the first
B-code record to the output file. The program is then
recycled via the test 08.07 back to block 07.03 to read
the next input record from work tape 110.
The next record which is not a B-code is processed via

block 07.06 where the current value of LNC-1 (which is
“1,” for the first record of a page) is established as the
Line it of the record being processed by moving it to
LNC-3. As indicated in NOTE 07.07, the Line it of a
record is allocated as the Line it of the corresponding

5

O

2 5

30

35

5 5

60

70

3.

20
symbol to be printed on the F/C page and thereby fixes
the position of the symbol in a column. Thus, in the
example of the first record after the chart title, which may
be text or some symbol, the Line it is set at 1. Block
07.08 extracts "it Lines' (i.e., the length) of the current
record therefrom (see Table 1) and adds it to LNC-1.
Thus, the previous LNC-1 represents the ending line
number-plus-one of the previous symbol, and the new
LNC-1 becomes the starting line number of the following
symbol; the current LNC-3 is the beginning line number
of the current symbol and is used as a temporary store
of that number before it is moved to the output record.
The program steps to block 08.01 to compare the new

value of LNC-1 to an end-of-page constant EPCON,
where EPCON is the total number of lines allowed in a
column, that is the address of the last line (which is
set to 106 for the high-speed printer page, and would
vary for different types of recorder and display devices).
If the end of a column has been reached, the program
branches to block 11.01 for the ENDCOL subroutine;
but if the new LNC-1 is less than EPCON, there is room
in the current column for the current symbol and the
program steps to block 08.02. Box it is incremented by
1, and the Page it, Box it and Col it are moved to the
output record in the output memory area.

Thereafter, test 08.03 determines if the input tag field
of the current record contains a tag or is blank. If it
contains a tag, the program branches to a block 09.08 to
locate a Tag Table entry for that tag. The input param
eter for this operation is a locator which points to the
left-hand character of the tag field for which a search is
desired. If this field contains a tag, the Tag Table is then
searched by a straight series of compares beginning at
the start of the table and running down until the tag
entry is found. The starting address TBIN of the Tag
Table was set during Pass I, and a counter NUMTAG
was established during Pass I containing the number of
entries in the Tag Table. Thus, NUMTAG tells the routine
when it has exhausted the table as it makes its series of
compares; upon exhaustion of the table if the Tag Table
does not contain the desired tag an indicator is set to
show this. The main output of this operation is the set
ting of a locator to the address of the left-hand charac
ter of the proper entry in the Tag Table; a subsidiary
output is the setting of indicators to reflect "tag found,'
“no tag in field,” or "Tag-Table entry missing.' Block
09.09 places the page location data (Page it, Box it, Line
it and Col it) of the current record in the Tag Table
entry for the associated tag; this completes the basic struc
ture of the Tag Table entry, and the supplementary data
of cross-references to "from connectors' is subsequently
added as explained below.

Modified logic is employed for T-code records; that is,
Box it is not incremented and the Tag Table search is
bypassed, because T-codes do not produce a symbol on
the F/C page and, thus, do not carry box numbers or
tags.
The Tag Table receives any "from connector' informa

tion in the current record; and this operation starts with
a transfer back to a test 08.04 for a D- or J-code. If it is
found, the program branches to block 10.01 where a cross
reference subroutine is performed in order to place Box it
of the current record as a cross-reference in the Tag Table
to any destination tags contained by the current record.
Thus, block 10.01 obtains the destination tags (LHT and
RHT) from the current record and looks those tags up in
the Tag Table (in a manner similar to the above described
Subroutine of block 09.08). A test 10.02 determines the
results of the search; if no tags are found in the table the
program returns to the next operation 08.05 of the main
flow; but if the tags are found a test 10.03 determines
whether this is the first reference to the tag. If it is, block
10.06 puts Page it and Box fit of the current record in
the cross-reference field of that Tag Table entry, and the
program returns to the next main flow block 08.05. If it is

3,533,086
21

not the first reference, the program branches to block
10.04 which sets a signal in the Tag Table entry to indi
cate that there is more than one such cross-reference
(which signal determines that an asterisk is to be printed
at that entry point; see for example, the branch input to
block 07.03); the program returns to the next main path
block 08.05, to which it would pass if test 08.04 had
proved negative. The cross-reference subroutine of 10.01
is entered twice for D-codes, since two such tags may be
carried by such a record.
Upon return to the main logic path of the program the

test 08.05 determines if the current record is a D-code. If
so, the logic branches to block 13.01 for processing the
DECISION record; if it is not a D-code, block 08.06
writes the record in the output memory area to the output
tape 111.

Thereafter, block 08.07 tests to determine if there is a
J- or E-code in the current record, which codes indicate
the end of a chain. If it is not the end of a chain, the pro
gram recycles back to block 07.03 to read in the next in
put record and repeat the processing loop described above.
If it is the end of a chain, as indicated by NOTE 08.08,
the program proceeds to locate the next chain to be proc
essed via test 09.01, which determines whether the cur
rent record is being allocated to a main column or to a
branch or secondary column. If the latter, the program
branches to block 15.07, which is described below; if the
former, block 09.02 advances the Chain Table Locator
to the next table entry, and test 09.03 determines from the
indicator of that entry whether this chain has yet been
processed. If so, the program loop continues until the test
09.03 finds an unprocessed chain. This loop is an im
portant part of the processing system since by the very
nature of the processing of DECISION branches, as ex
plained below, it is possible that the next chain in sequence
may have already been processed and assigned to a sec
ondary column by the DECISION branch logic.
When the next unprocessed chain is found, its sequence

number is used to locate the corresponding data record
on the input work tape 110 via block 09:04. It should be
noted that the Chain Table entry for any chain contains
the final sequence number of that chain. Thus, if the
Chain Table Locator points to the chain that it is desired
to process, the sequence number of the first record of that
chain corresponds to the final sequence number of the
previous chain plus 1. The tape position sequence field
TPOS contains the sequence number of the last record
that has been read; therefore by subtracting TPOS from
the Chain Table entry sequence number, the difference
corresponds to the number of input records that have to
be skipped to get the desired record. Ordinarily, the next
chain to be processed is the next physical chain on the
tape; which is indicated if the sequence number of the
Chain Table entry is the same as TPOS, and no further
records have to be skipped. Thus, block 09.04 computes
the difference between TPOS and the sequence number of
the first record of the desired chain; it then proceeds to
skip that number of records on the input tape 110 so as to
position the tape at the first record of the desired chain.
After the input tape 110 is so positioned a test is made
to determine if there are 20 or more lines left in the cur
rent column being allocated. This determination is made
by subtracting LNC-1 from EPCON (the total column
length) and comparing the result with the constant 20.
This test is of assistance in insuring good page format in
that a new chain is not initiated near the bottom of the
page instead the remainder of the column is left blank and
the new chain is started at the top of the next column.
If this test shows that there are less than 20 lines left in
the column, then an end-of-a-column subroutine similar
to ENDCOL is entered to determine which column is
currently being processed and thereby begin a new col
umn, before reading the first record of the new chain.
Whichever direction is taken by the last mentioned test,
the program recycles back to the start of the main proc

O

20

30

40

5

60

5

22
essing path at 07.03 to read in the first record of the new
chain and perform its processing.

ENDCOL Subroutine
If the aforementioned test 08.01 indicates that the end

of a column has been reached, the program branches to
perform a further test 11.01 to determine whether the
current record is a J- or E-code. If it is such a code it can
nevertheless be allocated to the current column since
EPCON has its value chosen so that there is enough room
at the end of every column to contain an additional 10
lines required for a J- or E-connector (or for a pseudo
connector). Consequently, if the test shows a J- or E-code,
the logic is routed directly back to the main processing
path at block 08.02 as if the test 08.01 against EPCON
had gone the other way, since the rest of the processing
beginning with block 08.02 can be properly performed
on the current J- or E-record. The next record will then
be directed by the test 08.01 into the ENDCOL subroutine
to start a new column.
When the code is not a J- or E-, then the ENDCOL sub

routine is entered at block 11.03 to arrange for the proper
termination of the current column by the generation of a
pseudo-connector record in the output file, and by the
proper initiation of the new column which involves re
setting the various indicators and locators. A pseudo-con
nector record is a short record, 13 characters in length,
which goes to the output file and is used by Pass III to
create a connector symbol at the bottom of each column
that is not terminated by a JUMP or EXIT symbol.

TABLE IV-PSEUDO-CONNECTOR RECOR)
i

Field CTTAR Filt CIAR

Control symbol--------- 1 Line .---------------- 3
Letter 'X----- - I l'age f---------------- 2
Sr*aceS.------------ - - - 2 Box #----------------- 2
Collinn F-------------- Control swinhol-...-- 1.

The letter "X" identifies the record as a pseudo-con
nector. Column it and Line it (LNC-3) fix the location
of the symbol on the page. Box it and Page it are those
of the currently-processed record and are printed inside
the connector symbol to indicate the next symbol in the
path of flow. If it is a connector for the bottom of a main
column (other than the last) of a page, the connector
Symbol contains the current Page it and current Box i
plus 1; if it is a connector for the bottom of the last main
column on a page, it contains the current Page it plus 1
and a Box it of "01."
A pseudo-connector is not needed when the previous

record was a J-, H- or E-code record terminating a chain,
since the J-, H- or E-symbol satisfactorily terminates the
column. A test 1 1.02 for this condition is made by exam
ining the contents of LFTCD, where the previous record's
F/C code was saved. If the test is negative, block 11.03
proceeds to generate the desired pseudo-connector record
in the fashion explained above and write it to the output
tape. The program continues with block 11.04; if the test
11.02 indicates that the previous record was a J-, H- or E
code, this pseudo-connector operation 11.03 is bypassed
and the program proceeds directly with the test 11.04. The
latter tests the Col it counter to determine whether it is set
to a value of "4,' if so, the current column is the last
column on a page, and the program branches to block
12.03, where the Page it is increased by 1; then to block
12,04, where the Col it counter is set to '1' and the Box
it to "0." Then block 12.05 writes an end-page record to
the output tape 111, which record comprises a control
symbol that Pass III uses to determine when it has read
in all of the records needed to create a page. With the
end-page symbol a complete page of records has been
written to tape 111, and the program then jumps to block
11.07 where the line counters are set to "1.' Thereafter, a
test 12.01 determines whether the currently processed
record is a B-code, and if it is the program branches to

3,533,086
23

8.06 where the record is written to the output file, and
he program proceeds to process the next record via blocks
8.07 and 07.03. If it is not a B-code, the program jumps
o 07.06. Jump 12.02 transfers the program to block 07.06
o repeat the initial processing of the line number of the
current input record in view of the resetting of the line
counters at the start of this new column. Thereafter, the
program proceeds in the manner described above.

If the test 11.04 indicates that the current column being
allocated is not the last one on the page, the next test
11.05 determines if any symbols have been allocated to the
next adjacent column, which condition can occur upon
processing of branch chains from DECISION symbols,
as explained below. Thus, if the adjacent column has been
already allocated, the program branches to block 12.07,
where '2' is added to the Col it counter. This has the
effect of skipping the adjacent column to obtain the next
column thereafter for the current allocation. If this new
column number is greater than '4,' the program opera
tion is via blocks 12.03 to 12.05 to start a new page as
described above. In any case, the program transfers back
to block 11.07 to reset the line counters and start the
processing at the top of a new column.

If the test 11,05 determines that the adjacent column
has not yet been allocated, block 11.06 adds '1' to the
Col it counter. Block 11.07 resets the line counters, and
the processing continues at the top of a new column, in
the manner described above.

B-code Processing
As previously described a test 07.05 for the B-code is

made shortly after each record is read. When such a code
is found, a new page is started by setting the Col if field
to “4” and then entering subsolutine ENDCOL at block
12.09. This subroutine, via test 11,02, blocks 11.04, 12.03
to 12.05, 12.01 and 08.06, sets up a new page and returns
control directly to the main path at the point of writing
the record to the output.

There are two special cases where the ENDCOL sub
routine is preferably not entered. The first is where this
is the first record on the input file, which is normally a B
record. To avoid skipping a blank page, a test is made
of the sequence number of the B record, and ENDCOL is
bypassed if it is “1.' The second case is where B-symbol
by chance is the start of a new page; that is, where the
current symbol location is at the start of a new page,
and the previous page was already properly terminated.
This condition can be tested for by testing Box it for
'00"; which number indicates that the current operation
is at the top of a new page and that ENDCOL can be by
passed. Normally, a B-code should be preceded by a J
or E-code, which would properly terminate the previous
page. If by error that should not occur the B-code will
nevertheless start a new page, and a pseudo-connector for
the previous page is generated in block 11.03.

DECISION Branch Processing
The aforementioned test 08.05 for a D-code, if affirma

tive, directs an immediate branch to the associated proc
essing logic at block 12.01, and there-preceding is TEXT
that sets forth the function of this processing. The DE
CISION record and associated data, are analyzed to
determine how best to illustrate its branches on the flow
chart. The processing includes the secondary-column sub
routine SCOL, block 16.07, which, as the TEXT there
preceding indicates, analyzes a chain of code branching
from a DECISION symbol in order to determine if it is
possible to assign that chain to a secondary-column. When
it is determined that such an assignment to the secondary
column should be made, the DECISION-branch logic
functions (in this embodiment) as a control routine for
processing directly to process that chain in the secondary
column.

There are two key indicators in the input records which
must be set for all DECISION records: These are in

s

10

20

30

40

50

60

5

24
dicators LHTC and RHTC, which are used by Pass-III
to determine how the page is to be laid out. LHTC refers
to the destination tag located in field LHT, and RHTC
performs a similar function for field RHT. Each of these
indicators can have three possible values that correspond
to the following courses of action, respectively: (a) This
branch requires a connector symbol; (b) The coding for
this branch is in the adjacent Secondary-column; (c) The
adjacent column is not being used for this branch; it is not
known whether a connector is to be used or a line can be
drawn to show the path of flow.
Of the above three possibilities, courses-a and b are

definite; course-c indicates that the final result is unknown
and is to be finally revolved by Pass III. Pass I, when it
sets up its output record, sets both LHTC and RHTC to
indicate course-c. Pass II may change them to course-a or
b, or leave them set at course-c. Under certain conditions,
Subroutine SCOL will set the two indicators; under other
conditions the DECISION-branch logic itself does the
Setting.

It should also be noted that subroutine SCOL deter
mines the Suitability of a chain for display in the adjacent
Secondary-column, and the final determination of so dis
playing that chain is made by the DECISION-branch
logic itself. For a single branch DECISION, field LHT
is used. For a two-branch DECISION, both LHT and
RHT are used. The subroutine SCOL generates a "no
good" signal if the testing field has no tag (thus, on a
one-branch DECISION, the field RHT has no tag, and
SCOL generates "no good').
The DECISION-branch logic is divided essentially into

two Sections. The first section starts at block 13.01 and
determines (by means of SCOL) if either branch chain
is suitable. The Second second section (beginning at block
14.03) is a control routine which sets up a branch chain
to be processed and starts the processing at block 07.03;
after the branch chain is processed, the program control
picks up processing of the main column of flow again
from the point it was temporarily halted to handle the
branch chain. In the event that no chain is allocated to
the Secondary-column, the second section of the DECI
SION-branch logic is not entered.
The first test 13.01 determines whether the current

processing is taking place in a secondary column by check
ing an indicator EVOD which assumes one value for
processing main columns of flow and another for sec
ondary or branch columns. If EVOD indicates "secondary
column,” no further branching to subordinate columns
takes place from the secondary-column (in this embodi
ment); LHTC and RHTC remain unchanged (Pass III
determines whether to draw a connecting line or a con
nector Symbol at the branch point), and the program
branches back to block 08.06 to continue with the proc
essing of the branch chain in that column. If EVOD in
dicates the current processing is in the main column, the
program steps to the SCOL subroutine 13.02, and the
latter symbol indicates that SCOL starts at block 16.07.

SCOL subroutine
The SCOL logic begins, block 16.07, with setting the

exit from the Subroutine back to the main-flow reentry
point. This subroutine is entered from block 13.02, 13.04
or 15.01, and the reentry point in each case is the main
flow block immediately thereafter; namely, block 13.03,
13.05 or 15.02, respectively. The input parameter for this
Subroutine consists of a locator pointing to the left-hand
character of the tag field in question (LHT for the first
branch analysis and RHT for the second). This locator
also fixes the location of LHTC or RHTC, as the case
may be, since the latter indicators are located one char
acter to the left of their associated tag fields. The output
of the Subroutine is a signal stating whether or not the
chain involved can be put in the adjacent secondary-col
umn, namely "ok" or "no good," respectively.

Block 16.08 looks up the destination tag of the first

3,533,086
25

branch. LHT for an entry in the Tag Table (in the man
ner similar to the operation of block 09.08 described
above). Test 16.09 checks if the record's tag field con
tained a tag, and if the tag could be found in the Tag
Table; if either condition is negative, block 17.02 sets the
indicator LHTC for a "connector' symbol, and the sub
routine jumps to EXIT 18.08.

If a tag and its corresponding Tag-Table entry are lo
cated, SCOL determines whether the chain identified by
the tag is suitable for assignment to the adjacent second
ary-column. All six of the following criteria must be sat
isfied or a "no good” signal is established, and LHTC is
set to “connector” by block 17.02.

(a) The record identified by the destination tag must
not have been assigned. Test 17.01 checks this criterion
by determining whether the Box it field in the current
Tag Table entry is a blank; if so then the associated rec
ord has not yet been processed and allocated (for block
09.09 makes the Tag Table entry upon such allocation).
If the Box it field is completed, then the destination has
been allocated a place on the chart (this of course is the
case for all DECISIONS which jump to an earlier sec
tion of the coding).

(b) The destination record must not be in the current
chain. To check this criterion, block 17.04 extracts from
the Tag Table (Table II) the Sequence it of the destina
tion tag and places it in field TSQ.. The Chain Table Lo
cator points to the Chain Table entry for the current main
column chain and thereby the final Sequence it of the cur
rent chain can be extracted and compared with the field
TSQ, the Sequence it of the destination tag. The TSQ
must be greater than the current-chain Sequence it or
else the destination tag is in the current chain (since it has
already been determined that it is not in a prior chain by
test 17.01). Thus, the result of this comparison supplies
the answer to the test 17.05 of this criterion,

(c) The destination record must be at the start of a
chain, rather than at some other point thereof (for this
embodiment of the invention). This operation is per
formed by locating (block 17.06) the chain that contains
TSQ; beginning at the start of the Chain Table (Table
III), the successive Sequence it fields thereof are com
pared with TSQ until the Chain Table entry is higher
than TSQ.. The chain of the tag is thereby located. To ob
tain the start of that chain, block 18.01 extracts the Se
quence it of the previous Chain Table entry (which is
that of the last record of the previous chain), and '1' is
added to it to obtain the Sequence it of the first record
of the chain containing the tag; the latter result is com
pared with TSQ (in block 18.2) to determine if they
are equal. If so, the destination record is the start of a
chain. Block 18.01 also picks up the length of the chain
containing the tag for subsequent use in this subroutine.
An extra test has been found desirable to determine if
the destination record is the second one of the chain;
and, if so, whether the first record is TEXT or NOTE.
If it is, the second record is then considered as satisfying
this criterion; and the chain can be printed in the sec
ondary-column with NOTE or TEXT at the beginning
thereof.

(d) The adjacent secondary-column must be free at
this branch point of the DECISION symbol (for this em
bodiment). This criterion determines that the adjacent col
umn at the branch point has not been previously as
signed to a chain coming down from another DECISION
symbol in the same main column, but located above the
current DECISION symbol. Block 18.03 determines this
condition by comparing LNC-3 against LNC-2. LNC-3
is the column Line it at which the current DECISION
symbol begins; and LNC-2 is a field completed by the
DECISION-branch logic when the secondary-column is
allocated and it represents the Line it at which the last
chain in the secondary-column ends. If LNC-2 is greater
than LNC-3, the adjacent column is occupied at the
branch point and therefore not free.

5

IO

15

20

25

30

40

5 5

60

26
(e) There must be enough room in the adjacent col

umn to contain the entire chain (for this embodiment).
The test 18.04 for this criterion is performed by taking
LNC-1 (the ending line for the current DECISION sym
bol), subtracting “6” to get the Line it of the branch
point of the DECISION symbol (which, by an arbitrary
rule, is where branch chains should start on the flow
chart), adding the number of lines in the destination chain
(obtained by block 18.01) and comparing the results
with the constant EPCON (the column line-length). If
the latter is smaller, there is insufficient room in the
secondary-column for the entire chain.

(f) The number of records to be skipped on the work
tape 110 to reach the desired chain must not be exces
sive. This criterion is checked via block 18.05 by taking
TSQ, subtracting “1,” and then subtracting the field TPOS
(the Sequence it of the record that was last read). The
result gives the number of records to be skipped to reach
the chain in question, and if test 18.06 determines that
this number is excessive then it would be too time-con
suming to pick up the chain. This number would vary
depending upon the apparatus and individual choice as
to efficiency. For example, a skip of 40 records or more
has been considered excessive for some purposes.

If all of the above criteria (a) to (f) are satisfied, the
'ok' indicator is set by block 18.07. If the chain is "ok,"
no further action is taken by SCOL. The subroutine exits
via block 18.08 and returns to the main flow reentry point
of the DECISION-branch logic (e.g. to block 13.03 after
analysis of the first branch chain). Failure of any of the
above six criteria results in the "no good' signal being
set by block 17.02.

If a chain is found to be "ok" then the number of
records to be bypassed (as computed by block 18.05) to
reach the desired chain is preserved in an appropriate
memory field, since it will be used by the succeeding
DECISION-branch logic.

DECISION-branch logic continued
The “ok' and "no good” signals from SCOL are used

in the test 13.03; and if "ok" the program steps to sub
routine 13.04, which directs another entry into the SCOL
subroutine for the second branch tag RHT. Upon com
pletion of the second tag analysis by SCOL, the sub
routine exits back to 13.05 to test if the second tag can
be assigned to the secondary-column. The different possi
ble combinations are handled as follows: If the first branch
could not be assigned, as tested at block 13.03, the pro
gram branches to 15.01 for the second-branch operation
of SCOL. If that second branch likewise could not be
assigned (test 15,02), then the DECISION-branch logic
exits by pumping back to the main flow at block 08.06,
the current DECISION record is written to the output tape
111, and main-column processing continues. However, if
the second branch is tested to be 'ok' in block 15.02,
the program branches to block 15.05 to set the status
indicator for the second branch to the secondary-column.
The program then jumps to block 14.02, which writes the
current DECISION record to the output file and steps to
block 14.03 for processing the second-branch chain. How
ever, if the first branch tests 'ok' in block 13.03, while
the second branch tests “no good' in block 13.05, the
program jumps to block 14.01 to set the status indicator
for the first branch to the secondary-column. Thereafter,
block 14.02 writes the current DECISION to the output
file, and block 14.03 initiates the processing of the first
branch.
Where both the first and second branches test 'ok' a

decision is made (in this embodiment) to process one of
the branches and mark the other one for a "connector';
a criterion found to be suitable is that of determining
which branch is the closer one, as shown by test 13.06.
The relative closeness is readily determined from the num
ber of records that have to be skipped to reach each chain,

75 as computed in block 18.05 of the SCOL subroutine. If

3,533,086
27

he first branch is closer, the status indicator for the sec
Dnd branch is set to 'connector' in block 13.07 and the
status indicator for the first branch to the Secondary
:olumn by block 14.01. If the second branch is the closer
one, the program branches to block 15.04 which sets the
status indicator for the first branch to "connector,' and
block 15.05 sets that of the second branch to the second
ary-column, and the program jumps to 14.02 for writing
the current DECISION to output. Appropriate coding is
provided to preserve the information derived during the
SCOL analyses for LHT, so that it is not lost when SCOL
is repeated for RHT.
When a chain is finally chosen for the adjacent second

ary-column, its corresponding indicator LHTC or RHTC
is set to indicate this; this indicator for the other chain
is said to use a "connector. This is done even though
there may be only one branch in the DECISION, since
the setting of RHTC for a nonexistent tag in RHT is
ignored by Pass III.

Secondary-column processing
When block 14.02 writes the current DECISION to

the output file, the current value of TPOS (the Sequence
it of that DECISION record) is stored for later reference
and reentry to the main column. Block 14.03 starts the
second section of the DECISION-branch logic and uses
the calculation (block 18.05) of the number of records
to be skipped on the input tape to position the tape in
front of the first record of the branch chain which is to be
assigned to the secondary column. An indicator is then
set (14.04) in the Chain-Table entry for that branch chain
that the latter has been processed; this prevents further
processing of that chain later on in the operation of
Pass-II when it would normally be picked up in turn.
The column number is advanced (14.05) by "1,' so

that it points to the adjacent column next in order. The
indicator EVOD is set (14.06) to indicate that a second
ary-column is being filled; this indicator is needed, be
cause the processing of the secondary-column chain is
via the main processing logic; and it is tested upon con
pletion thereof for return to the DECISION-branch logic.
LNC-1 (which indicates the bottom line number of the

DECISION symbol from which the branch occurs) is
stored (14.07) so that it may be subsequently picked up
upon return from the secondary-column processing. The
new LNC-1 for the secondary chain is obtained (14.08)
by subtracting “6” from the previous LNC-1, which has
the effect of starting that secondary chain 6 lines above
the bottom of the DECISION symbol from which it
branches, which is at the branch point of the diamond
shaped symbol. Control is then transferred (14.10) to the
main processing path at the point 07.03 where it starts
processing a new record, the first in the branch chain. As
indicated by NOTE 14.09 the main processing path allo
cates assignments for the secondary-column in its normal
fashion, since LNC-1 and Col it have been appropri
ately set. DECISION symbols that are encountered in the
secondary chain tend to move the logic into the DE
CISION-branch coding via the test at 08.05, but the pro
gram is immediately returned to the main processing path
by the test at 13.01 which initiates the branch logic,
Bventually, a J- or E-code is found by the main processing
path via the test 08.07; the next test 09.01 finds the EVOD
indicator set to "secondary,' and the program branches
to block 15.07, which is effective to rewind the input tape
to the record following the DECISION symbol from
which the secondary-column chain branched. Since the
SCOL subroutine measured the secondary chain and
found that it would fit in the adjacent column, when the
first J- or E-code is reached, the secondary-column chain
terminates and it is proper to return to the main-column
processing as indicated in NOTE 16.01. Block 16.02 trans
fers the then current value of LNC-1 to INC-2, so that
the latter represents the last line assigned to the secondary
column. LNC-2 may be required by SCOL in the event

5

0.

20

2. 5.

30

s

4)

s 5

6)

(i.

5

28
that another OECISION occurs further down in the main
column. The value of LNC-1 of the main column DE
CSION symbol, which was stored (at block 14.07) upon
entry into the secondary-column processing, is returned
to LNC-1 so that the main column processing begins
where it left off prior to processing the branch. Block
16.03 resets EVOD to “main,' and block 16.04 reduces
the column number to restore it to its original main-col
umn value. The indicators are all restored and the input
tape is then at its proper place to continue the processing
(NOTE 16.05) of the main-column chain that was inter
rupted for the secondary-column branch. The main-col
umn DECISION record that initiated the branch opera
tion has been completely processed so that the input tape
is positioned to the succeeding record by block 15.07. For
this purpose the TPOS of the DECISION record, which
was stored is now subtracted from the current value of
TPOS, which is the sequence number of the last record
of the secondary-column chain. The result is the number
of records that the input tape 110 must be backspaced for
proper repositioning. After repositioning of the input tape,
control goes back to 07.03 to read the next input record
of the main column and continue the processing of the
chain that was interrupted.
The foregoing operations of Pass II are performed iter

atively on all of the records of each chain in the manner
described. Successive chains are processed in order until
a DECISION record calls for a branch chain from the
main flow. At that time, the branch chain is analyzed to
determine if it is suitable for allocation adjacent to the
main flow chain, and if so, it is processed. After the last
record of the input file is processed, the end-file indicator
is detected (0.7.04) the output tape 111 is rewound
(09.06) and Pass III is called in for operation.

Summary of Pass II
The primary function of Pass II is the allocation of

flow chart locations to the symbols. The input is the out
put from Pass I. As each record is read, it is assigned a
Box it and a Line it in the current column (the associ
ated portions of the Tag Table are thereby completed).
When the column is filled, a new column is started, until
the rightmost column is reached. After this column is
filled, a new page is started. DECISION records involve
considerably more complicated processing than other
types of records. Whenever possible, the F/C program
attempts to place the coding that branches off from a
DECISION in the column immediately to the right of the
DECISION symbol, which is termed an adjacent or sec
ondary column. However, before this can be done, a num
ber of conditions must be satisfied by the branch chain,
including the following:

(1) The section of coding that branches from the DE
CISION must be further down the input tape; otherwise
it would have been allocated at an earlier point.

(2) The entire chain must fit in the adjacent column
without overflowing the bottom of the column, to avoid
breaking up a chain. (In other embodiments, branch
chains that fit in larger page sections than a column may
be used.)
When all of the above conditions have been satisfied, a

chain branching from a DECISION symbol is considered
eligible for assignment to an adjacent column. All of the
information necessary to test the above conditions is con
tained in the Tag and Chain Tables and the record itself.
In the event of a three-way DECISION, where there are
two branches to be considered, it is possible that both
branches will be eligible for the adjacent column; in this
case, the chain closer to the current record is chosen.
Each of the two destination tags in the record has an asso
ciated indicator which is set by Pass II to one of the
three possible values-"adjacent column,” “connector."
or "unknown." If a chain is selected for the adjacent col
umn, its corresponding indicator is so marked in the DE
CISION record. Chains not eligible for the adjacent col

3,533,086
29

umn may be designated either "unknown" or "connector,'
depending on which of several conditions was not met.
With a destination indicator of "unknown,' Pass III at
tempts to draw a connecting line to show the path of flow
instead of using a connector.

After a branch chain has been selected for assignment
to the adjacent column, the input tape is advanced to the
first record of this chain. An indicator is then set in the
Chain-Table entry for this chain to show it has been
processed; this is necessary to avoid reprocessing this same
chain at a later time in a main column. The column num
ber is advanced by “1,” appropriate indicators and
counters are set, and the program logic is then routed
back to the same coding that processes records for the
main columns; thereby common coding is used for proc
essing chains in both main and adjacent columns. The
first J- or E-code encountered while in the adjacent-col
umn mode indicates the end of the branch chain; at this
point the input tape is rewound back to the original
DECISION record, and main-column processing contin
ues where it left off.

Pass II also makes the necessary “from" connector en
tries in the Tag-Table to allow handling of cross-refer
ences by Pass III. Only the first such reference to any
tag is noted, along with a signal if there is more than one.

PASS III

The function of Pass III is to form an entire flow chart
page in memory, draw the necessary connecting lines from
DECISION symbols, and produce a finished flow chart.
The input consists of the output from Pass II on tape 111
and the Tag-Table located in memory. The output either
goes to an on-line printer or to a tape for off-line printing.
Pass III also produces the Table of Contents at the begin
ning of the flow chart.

Page layout
Throughout Pass III, a section (e.g. 15,000 locations)

of memory is reserved (in this embodiment) for holding
an entire F/C page internally; for computers having
limited memory capacity, storage tapes or drum may be
used to supplement the memory. This page-layout memory
area is structured as contiguous "lines' of 120 characters
each. The first line of each chart is represented by the
first 120 characters of this area, the second line by the
next 120 characters, etc. The location of any symbol on
a page is given by its Column if and Line it. A sub
routine 19.06 is used to convert these two factors into a
memory address that represents the centerpoint of the
first line of that symbol; it operates by multiplying the
Line it by 120 and adding to the result one of four fac
tors depending on the Column it. An index register is
reserved for use as a locator; this index register always
contains this base location on the page that the program
is currently concerned with, and hereinafter it is referred
to as the “Page Locator."
To “move' this Locator around on the page, "120' is

added to the Page Locator, which moves it to the same
position on the next lower line; subtracting 120 moves
it to the same position on the line above. Moving to the
right or left on the same line is accomplished by adding
or subtracting the appropriate number of positions from
the Page Locator. Since the Page Locator is an index reg
ister, indexing techniques may be used in place of actu
ally modifying the Locator.

Every symbol has fixed dimensions for which constants
are stored; that is, the horizontal dimensions are fixed for
all symbols, and the vertical dimensions are fixed for some
and variable for others (e.g. P- and N-codes). For all
symbols, the location of the Box it, tag, and other related
information is always located in a fixed position relative
to the center-line of the column. Detailed specifications of
these dimensions will be apparent from the flow chart of
FIG. 8, which illustrates suitable values and conventions
that are followed in printing the flow chart.

5

10

20

2 5

30

40

50

5 5

60

O

30
GENERAL DESCRIPTION OF PROCESSING
The first function performed by Pass III is to print

out the Table of Contents (block 19.01). All information
present in this table is obtained from the Tag Table, which
is in memory throughout the entire program. Printing of
the Table of Contents involves moving the necessary in
formation from the table to the page-layout memory
area; that is, for each chart a list of the tags and the
page and box numbers therefor. A tally NUMTAG set
by Pass I determines when processing of the Tag Table
to Table of Contents is completed. An entire page is con
structed prior to writing anything out and as many pages
as needed to contain all the tags are produced. It has been
found suitable to list the information in two columns or
sections on a page, with the entire left column of the out
put memory area being filled before any entries are made
in the right column thereof.

After the Table of Contents is completed, production
of the flow chart pages begins. A full page is processed at
a time; nothing is printed until the entire page has been
formed in the page layout area, at which time the entire
page is printed. A control symbol on the input tape 111
designates the end of a page; this control symbol is de
veloped in Pass II. Each input record is processed Sepa
rately, and a new record is not read until all processing
for the previous record is completed.

Immediately upon reading a record by block 19.02,
tests 19.03, 19.04 and 19.05 are made respectively for
end-file and end-page indicators and B-code, as discussed
below. Thereafter in the program, a subroutine 19.06
computes the chart location of the F/C symbol for the
current record. This chart location is stored in the Page
Locator and is obtained from the Col it and Line it of
the symbol in the input record. After determining the
location of the symbol, a check 20.01 is made for a CIOSS
reference and the proper "from connector" is generated
(block 2002) if required. The record is then routed down
a particular path, depending upon its F/C code. There
is a separate page for each code. Each path performs the
necessary layout for the particular symbol involved, puts
in any connecting lines, box numbers, and tags necessary,
and upon completion returns back to read and process the
next record.
Any Comments text associated with a symbol is moved

from the input record to the page layout area by means
of a Move-Line subroutine 20.08. In an input record, each
Comments line is delinited by a control symbol, and a
second control symbol is used to indicated the last Com
ments line within the record. Each individual code path
calls upon this subroutine when necessary in order to
move the text from the record to the page area. The
Move-Line subroutine picks up the next line of text from
the input record and places it on the page centered about
the memory position given by the Page Locator. Upon
entry to the subroutine, therefore, the Page Locator must
point to the center of the field where the line is to be
placed. It should be noted that Comment lines, as they
exist in the input record, are usually less than the hori
zontal dimensions of the symbol, and this subroutine cen
ters them so that there are equal margins on the right and
the left.
The Move line subroutine 20.08 also performs addi

tional functions:
(1) After moving each line, it increases the Page

Locator by 120 characters, thereby automatically setting
the Locator in proper position for the next line within
the symbol.

(2) Adjusts an input record pointer so that the next
call on the subroutine will move the next sequential Com
ment line of the record.

(3) Tests to see when it has moved the last line of an
input record to the page area, and sets a signal when
this condition is encountered.
When an End-of-Page symbol is located in an input

record, block 19.04, the entire page is written to a print

3,533,086
31

ape, block 21.05, or printed directly to the on-line printer
112. The page layout area is then cleared to spaces and
formation of the next page begins with the reading of the
next input record.
An End-of-file symbol on the input file signifies that

all input data for this program has been processed
(blocks 19.03, 21.03; at this point Pass IV is called in.

Detailed Processing
As outlined above, every record (except B-codes)

has the location of its symbol computed by means of a
subroutine 19.06, which location is stored in the Page
Locator. Separate paths are then taken for each F/C
code:

B-code

A B-code is the only F/C code which is not allocated
to a column; its sole function is to supply a chart title.
When a B-code is encountered (blocks 19.05, 21.07), its
Comments field is stored in the sub-header area of the
page memory area, where it remains until overlaid by the
next B-code. No further processing is needed for B-codes.

J-code

A subroutine 20.06 is used to create an octagon of dots
on the page, with the vertical connecting line pointing
to the midpoint of the top line thereof. The Box it and
tag (if any) of the record are placed outside the symbol
in the proper memory locations (block 20.07). The
Move-Line subroutine 20.08 is bypassed for there are no
Comments in J-records, and a test 20,09 leads to a branch
22.03 that locates in the Tag Table the destination of the
JUMP record. The Page it and Box it of this destina
tion are taken from the table and placed inside the sym
bol. If the destination tag is not found in the Tag Table,
indicating an undefined tag, the center of the symbol is
left blank. This completes the processing, and the next
record is brought in (19.02).

E-code

The subroutine 20.06 creates the symbol in the page
area. The word "EXIT' is then placed within the symbol
and the Box it of the symbol and tag (if any) placed
alongside the symbol (block 20.07).

H-code

A HALT symbol is generated (20.06) with the word
"HALT" inside of it. Tag, if any, and Box it are then
placed on the page (20.07).

P-code

The Page Locator is first backed up one line (120 char
acters) and the tag (if any) and Box it placed on the
page (20.07). The Locator is then advanced back to the top
line of the symbol, and the top symbol line, consisting of
a field of minus signs, is placed (20.06) on the page. The
Locator is then advanced to the next line, the letter "I'
is generated, one on the extreme left and one on the ex
trem right, to form a part of the vertical boundary lines
of the symbol, and a call is made on the Move-Line sub
routine 20.08 to move the first line of Comments text
to the page. On return from the subroutine, a test is made
to see if this was the last line. If not the last line, the
logic is recycled back to where the vertical boundary
line segments "I' are inserted, and the next parts thereof
are inserted, and another call is made on the Move-Line
subroutine. This cycle continues until the signal indicat
ing "last line' is set, when the vertical boundaries are com
plete, as is the Comments area. Then, the bottom line of
the symbol, consisting of a field of minus signs, is placed
on the page. It should be noted that it is not necessary to
adjust the Locator to the next line, since this is a function
performed by the Move-Line subroutine.

5

O

5 5

60

O

5

32
N-code

This code is processed identically to the P-code, with
the following exceptions:

(a) Asterisks are used for both horizontal and verti
cal boundaries.

(b) Since a NOTE symbol has its left side offset by
two positions to the right, the Locator is incremented by
two, prior to doing any processing. (Incrementing the
Locator by two positions sets it to the horizontal center
of the offset NOTE symbol.)

S-code

The Page Locator is backed up to the previous line,
and tag and Box it placed on the page. The entire SUB
ROUTINE symbol is then moved to the page layout area;
this symbol is stored in memory as a constant and is
moved to the page area from the constant area in a Se
ries of moves controlled by a tally (20.06). After each
line of the constant is moved, the Locator is incremented
by 120 positions to bring it to the next line. After the
entire symbol is on the page, a subroutine is used to put
in the three "I' symbols forming the connecting line
leading down to the next box. The Locator is then ad
justed back to the second line of the symbol, which is
the first line to receive any Comments text (the line di
rectly underneath the upper horizontal boundary). Suc
cessive calls are made on the Move-Line Subroutine
(20.08), until the last-line indicator is found to have been
set. Test 20.09 leads to extracting (22.03) the destina
tion tag of the SUBROUTINE (identified in field LHT)
from the Tag Table, and its corresponding Page it and
Box it (from the Tag Table) are placed within the sym
bol. If the tag is undefined, its Page it and Box it are
omitted from the symbol. It should be noted that printing
of the destination tag in parentheses within the Subroutine
symbol is not handled by Pass III; this field is inserted
as a regular Comments line by Pass I, and Pass III handles
it merely as another line of Comments. Also, any vertical
editing of lines, for better spacing, is controlled by Pass
I through the insertion of dummy control symbols rep
resenting blank lines, thereby effectively spacing the
lines properly within the symbol.

T-code

A T-code generates no symbol, but merely results in
the placing of text on a page. Successive calls are made
on the Move-Line subroutine (20.08) until the last-line
indicator is set.

Pseudo-Connectors
Pseudo-connectors are short records generated by Pass

II to indicate a connection from the bottom of one col
umn to the top of the next column. These records (Table
IV) are of a different format from the other input
records, and are identified by the letter 'X' in a fixed
position of the record. The only information contained
within this record, in addition to its Column and Line it,
are the Page it and Box it to which the connector is
jumping. Pseudo-connectors cannot have tags, since they
are generated internally, nor are they assigned box num
bers. After the address is computed (19.06) and the sym
bol is generated on the page area, test 19.07 leads to
block 22.01, where the destination Page it and Box it
from the pseudo-connector record are placed within the
symbol. It is always necessary to add "1' to the Box i
before placing it inside the symbol. This is because Pass
II, when setting up the pseudo-connector record, uses a
Box it which is one too low. There is no logical basis for
this; it is purely a matter of convenience in the imple
mentation of Pass II.

DECISION Records
The handling of DECISION records presents a far

more difficult problem than other codes, primarily be
cause of the many courses of action available on the

3,533,086
33

branches from a DECISION. Each DECISION record
has two fields, LHT and RHT, in which destination tags
are stored, and two indicators LHTC and RHTC that
indicate one of the following courses of action:

(a) This branch requires a connector.
(b) The coding from this branch is located in the ad

jacent column.
(c) Use a line to indicate connection, if possible; if

this is impossible then use a connector.
It should be noted here that the mnemonics LHT and

RHT do not refer to “left' or "right" side; one of the
decisions to be made by Pass III is which side of the
DECISION symbol will indicate a particular branch.

Rules Regarding Connection of Branches
In laying out lines from DECISION symbols, the pro

gram follows certain pre-defined rules. These are:
(a) Wherever possible, connection lines are used in

place of connectors.
(b) Where a connector must be used, the connector is

always placed on the right side of the DECISION symbol
unless this side is already in use (either by another con
nector or by a line to an adjacent column) in which case
it is placed on the left.

(c) Connection lines may only appear (in this embodi
ment) in a lane on the left side of the DECISION symbol
(23.04 et seq.).

(d) Connection lines in the same lane are allowed to go
to different destination symbols so long at they do not
overlap (23.08).

(e) Connection lines are drawn (in this embodiment)
only if the destination is in the same column as the
DECISION symbol (23.07).

Detailed Description of DECISION Processing
The outline of the DECISION diamond is first moved

to the page. This outline is carried as a constant within
the program and is moved (20.06) to the page area by a
series of moves controlled by a tally. The main-flow
branch label is then moved from the Comments field to
its position on the page and a subroutine is used to drop
a vertical connection line to where the next symbol will
be. It should be noted that a DECISION symbol has a
vertical connect line consisting of four elements, while
other symbols use three elements; this is necessary in
order to guarantee proper clearance between any connec
tors and following F/C symbols. The Page Locator is
then moved back up to the top of the symbol and the tag
and Box it placed on the page alongside the symbol. The
Locator is then moved down two lines in place to receive
the first line of text. Successive calls are made on the
Move-Line subroutine 20.06 until an indicator shows that
all lines have been moved. Overflow of the DECISION
diamond is not possible at this point; if overflow did
occur, the excess Comment was truncated by the Pass-I editing logic.

After the DECISION symbol is completely laid out on
the page, with its related tag and Box it, the logic to
examine the branches begins (21.01, 22.05). In process
ing the branches, the same physical coding is used for
processing both fields LHT and RHT. The branch tag
currently being processed is always located in field RHT.
When the tag originally located in RHT is finished, LHT
is moved into RHT for its processing. An indicator is used
so that the logic knows when it has completed processing
the second tag and can go fetch a new record.

It is possible for either or both of the tag fields, LHT
and RHT, to be blank; for a two-way decision, field RHT
is blank. Both tags may be blank due to an error condi
tion in the source program; in this case a DECISION
diamond is printed with no branches. If a field is found to
be blank, it is bypassed: thus, the program does not have
to formally distinguish between a two- and three-way de
cision since bypassing blank tag fields automatically

5

()

20

2 5

30

40

60

75

34
handles the problem. The following indicators are used
throughout the DECISION-branch logic:

(a) Two signals LSS and RSS tell the logic whether the
left side and right side respectively of the DECISION
symbol have been utilized.

(b) An undefined symbol indicator UNDS is set by
the subroutine which searches the Tag Table. This indi
cates that a tag has not been found in the table.

(c) An indicator TAGTA tells the logic whether it is
processing the first or second branch tag.
At the start 22.05 of branch processing, indicators LSS

and RSS are set to OFF, indicating that both sides of the
DECISION symbol may be available. Indicator TAGTA
is set to indicate that the first branch is being processed.
A check is then made to see if the indicator RHTC says
to go to the adjacent column, and if so, the fields LHT
and RHT are reversed, along with their related indicators
and labels. This is necessary in order to insure that the
RHT branch is always processed first (an arbitrary con
vention), and consequently the right side of the DECI
SION symbol (which leads to the adjacent column) is
initially made available for it. At this point, branch proc
essing begins. A test is first made for the presence of a
tag in this field. If the tag field is blank, the logic is routed
to a test 25.01 of indicator TAGTA, which is described
below. A subroutine 22.06 locates the branch tag in the
Tag Table; and if found (22.07) the location data for this
tag is extracted and stored (23.01) in an index register.
If the tag in question is not found, indicator UNDS is set
to ON for later use and test 22.07 routes the program to
the branch 25.01 for drawing a connector symbol.
When the tag data is obtained, one of three courses

of action is taken depending on the status of the tag
indicator (NOTE. 23.02), which is then tested (23.03).
If RHTC indicates a connection to the secondary (ad
jacent) column, a horizontal line is extended (24.06) to
the right an appropriate number of positions. A vertical
connecting line at the right-hand end of the horizontal
line is then dropped (two elements in length) to connect
with the top symbol of the adjacent column. The label
is then placed just above the horizontal line, and RSS
is set (24.07) to ON, indicating that the right side of the
DECISION has been utilized.

If RHTC indicates (23.03) that a connector is to be
used, a test 25.01 is made to see if RSS is ON, if it is
ON, then the connector must be drawn (25.05) on the
left side of the DECISION symbol. If RSS if OFF, then
the right side of the symbol is used (25.02). Depending
on the status of RSS, the Locator is either advanced or
retarded to the left or right side of the DECISION sym
bol. The label is put on the page and the connecting lines
between the DECISION symbol and the connector are
drawn in, as is the symbol itself. After the symbol is
drawn, the undefined tag indicator UNDS is tested. If
the tag data is undefined, then the tag itself is placed
within the generated symbol. Otherwise, the Page it and
Box it of the destination are picked up from the Tag
Table and placed within the symbol. Either LSS or RSS is
then set (25.06 or 25.03) to ON, depending on which
side of the symbol the connector was drawn.
The third course of action to be taken is when field

RHTC indicates (23.03) that a line should be used if
possible (NOTE 23.04). The program determines
whether it is feasible to draw a line; if not feasible, then
a Connector is used. First LSS is tested (23.05); if it is
ON, then the left side of the DECISION symbol is all
ready in use. Since connection lines may only be drawn
to the left (NOTE 23.06), a Connector must be used on
the right side, and the program is routed down that logic
path 25.02. If LSS is OFF (test 23.05), then a test is
made of UNDS; if this indicator is ON, then a Con
nector is used and the logic is routed down the path
25.05 for left-side Connectors. However, if the tag data
is available, a test 23.07 determines if the tag symbol is in

3,533,086
s

he same column. That is, the Page it and Col if of the
Iranch tag (obtained from the Tag Table) are com
ared with the Page it and Col it of the DECISION
ymbol. If they are not the same, then the program is
outed through the Connector logic 25.01. If the Page it
ind Col it of the branch tag match that of the DECI
SION symbol, then the branch is in the same column
is the DECISION and a line may be feasible. A check
s then made to see if the destination of the branch is
bove or below the DECISION symbol. This is done by
‘omparing the Line it of the DECISION symbol with
he Line if of the branch tag. If the destination is below
he DECISION symbol, then a "down" line must be
used. A check 23.08 is made of the left lane reserved for
:onnecting lines; if it contains an "I" then there is al
eady a line in that column. This line is then traced 26.01
back to its destination, to see if its destination is the
same as the destination of the current DECISION. If so,
hen a simple horizontal connection is made 26.02 to
he line that already exists. If the destination of the exist
ng line is not the same, then a Connector must be used
or current branch tag and the program is routed to that
ogic 25.01. If the test 23.08 determines that the column
reserved for vertical lines is unoccupied, a down-line is
irawn in (24.01). The ending point of the down-line is
known from the Line if of the destination tag (obtained
from the Tag Table). Appropriate horizontal connecting
ines are drawn on the page, the label is placed in its
broper position, and LSS is set (24.02) to ON.
If the destination tag is above the DECISION symbol,

a similar type of logic is followed, with the following
2xception: in testing for the presence of an existing ver
ical line, the down-line logic had only to test one loca
ion-that element of the vertical-line lane immediately
below the DECISION branch point. For an up-line, how
ver, every element of the lane between the DECISION
symbol and the destination must be tested. Otherwise, an
up-line might interfere with an earlier up-line placed
further up towards the top of the page. An additional
complication may also arise whereby an up-line may in
terfere with a "from' connector, which is discussed
below.
As explained above, one of several courses of action

will be taken for each branch, depending on the setting
of RHTC and the feasibility of drawing a line. At the end
of each path, return is made to a common point 24.03,
where the indicator TAGTA is tested to see if this is the
second or first branch just completed. If the indicator
shows that the second branch has been processed, then
processing for the entire record is not complete and con
trol is returned back to block 19.02 to fetch a new
record. If only the first branch has been processed, then
fields LHT and LHTC are moved (24.04) into fields
RHT and RHTC, respectively. The label for LHT (first
five positions of Comments field) is moved into the label
area for RHT (second five positions of Comment field),
UNDS is set to OFF, and the logic recycled (24.05) to
begin the process 22.06 for field LHT, now located in
the area previously reserved for RHT.

Cross-References
The information for inserting cross-references ("from

Connectors) is contained in the Tag Table, where it was
placed by Pass II. For each tag entry in the Tag Table,
five characters are reserved for dealing with cross-refer
ences. The first four characters contain the Page it and
Box it of the first reference to that tag. The fifth char
acter is a counter of the total number of references to
that tag. After a record is read from the input file, a test
20.01 is performed for the presence of cross-reference
(this test is made prior to splitting each code down its
own branch). This test examines the tag field for presence
of a tag, since the absence of a tag indicates that there
is no cross-reference. If a tag is present, the tag is looked
up in the Tag Table. If the tag is not found in the Table,

()

2 5

3

e1)

36
then it is undefined and cross-references are not possible.
If the tag is found in the Tag Table, a check is made for
the presence of a cross-reference by testing the Tag Table
field for the first cross-reference; if that field contains
spaces, no cross-reference exists.

If a cross-reference does exist, then it is necessary to
determine (20.02) the relative position of the current
symbol on the page. There are three possibilities:

(a) Middle of a chain.
(b) Top of a chain in a main column.
(c) Top of a chain in a secondary column.
How a cross-reference is shown on the page depends

on where the current symbol is located on the page. At
this time, the Page Locator is pointing to the center of
the top line of the current symbol. This Locator is now
backed off to three lines above the top line of the current
symbol and a test is made for the character present in
this location. From the page design used, it follows that
if this character is the letter "I,” then the current symbol
is in the middle of a chain; if a minus sign, it is at the
top of a chain in a secondary column. If the character
is a space, the current symbol is at the top of a chain
in a main column.

If the current symbol is at the top of the chain in a
main column, the cross-reference is placed on the page
centered about the column's centerline. The reference
placed on the page is extracted from the Tag-Table
entry, and an asterisk is inserted if the Tag-Table indi
cator is set to show more than one cross-reference (20.03,
20.04). If the current symbol is at the top of a chain in
a secondary column, then it is not desirable to show the
Page it and Box it of the first reference, since this is
the DECISION symbol connected by a line to this point,
and showing the Page it and Box if here would be
redundant and possibly confusing. However, a check
20.03 is made for more than one reference and if there
is more than one reference, an asterisk in parenthesis is
placed to the left of the centerline. If there is only one
reference, then nothing is placed on the second column
of the page.

If the current symbol is located in the middle of a
chain (either main or secondary column), a check is
made to see if there is interference with an existing line.
Cross-references for this case are always inserted to the
left of the column centerline and are two lines above
the first line of the symbol. If there is a vertical down
line coming into this point from a DECISION symbol
above, then this horizontal line is already occupied. The
check is made by positioning the Page Locator to two
lines above and one space to the left and checking the
resultant location for a minus sign. If there is no minus
sign, then the line is free; the first cross-reference is
placed on the page, along with an asterisk if the indicator
in the Tag-Table entry is set for more than one. If there
is a minus sign in that location, a connecting line is being
drawn and there is no need to place the Page it and
Box it on the line, since this usually is the same as the
symbol from which the line is drawn. In this case, a test
is made for more than one reference and, if found, an
asterisk in parenthesis is placed on the line, if there is
only one reference, then no action is taken. The asterisk
which may be placed on this line becomes part of the
horizontal line coming into the centerline and thus pro
vides notice to the user that there is at least one more
reference besides the one shown via the connecting line.

If a cross-reference is placed to the left of the center
line, in the situation where the symbol is the middle of
a chain, it is still possible that the subsequent drawing
of an 'up' connecting line will erase it. This can happen
because up-lines come from symbols which are further
down in the column and have not yet been processed.
It cannot happen with down-lines, since they must come
from symbols above the current one and hence will have
already been drawn. That part of the DECISION branch
logic which places up-lines on the page tests for the pres

3,533,086
37

ence of an asterisk prior to drawing the horizontal con
nection back to the centerline of the column. If an aster
isk is present, its position is moved up over the con
necting line. If an asterisk is not present, then the line is
either free of interference or there is but a single ref
erence, which must be the one for which the line is
presently being drawn. In either case, the horizontal con
nection line back to the centerline can be put in without any complication.
When the end-of-page indicator is detected (19.04) in

the last input data block, the FAC page is complete in
the memory layout. Thereafter, the entire page is put
out to the printer (21.05), and the next page is started in
the same fashion as described above. When the last page
has been printed out, test 19.03 detects an end-of-file
indicator to initiate (21.03) the rewinding of the tapes
and calling in of Pass IV.

PASS IV

Production of the Cross-Reference List is accom
plished by a separate pass, following the completion of
the last page of flow chart. Input to the Cross-Reference
pass is the same tape 111 that served as input to Pass III;
output consists of the Cross-Reference List, either to an
on-line printer 112 or to a magnetic tape for off-line
purposes.
Two tables, both kept entirely in memory, serve as the

basis for producing the listing. These tables are desig
nated:

(1) Abridged Tag Table
(2) Reference Table

Tag Table

The Tag Table used by this pass is an abridged version
of the main Tag Table (Table II) used by the first three
passes. Each entry of the Abridged Table consists of the
following items:

(1) Name of Tag
(2) Page it and Box i assigned to this tag
(3) First reference (Page it and Box it) to this tag
(4) An indicator which tells whether there are more

references to this tag
(5) Memory address of the Reference Table entry con

taining the next reference (if there are any more ref
erences).

At the start of the Cross-Reference pass, the main Tag
Table is still in memory from the previous pass. The first
job. 27.01 is to set up the Abridged Tag Table from the
main table. Since each entry of the Abridged Table is
shorter than its corresponding entry in the main table, the
same physical memory area may be used for the
Abridged Table. Every tag in the main table has a nota
tion as to whether that tag is referenced by another sym
bol (created by Pass II for the flow chart layout). Only
those tags which have references to them are moved to
the Abridged Table; all others are dropped.
Each entry of the Abridged Table has four characters

reserved for the first reference to this entry. This in
formation is already available from the main Tag Table.
However, for ease of implementation, this information
is not transferred between tables, but is dropped. The only
information transferred between the two tables, there
fore, is the name of the tag and the Page if and Box it
of that tag. Room is reserved in each entry for the re
maining three items, which are filled in later on in the
pass.

After all appropriate entries from the main Tag Table
have been transferred to the Abridged Table, the latter
is internally sorted 27.02 into a Page it and Box sequence.
Any one of several known sorting techniques may be
used for this purpose.

5

O

25

30

40

38
Reference Table

Each entry in the Reference Table consists of three
items:

(1) Identification of this reference (Page if and Box it).
(2) An indicator telling whether this is the final reference

or whether there are additional reference.
(3) Memory address of the entry in the reference table

containing the next reference for this tag (if another
reference exists).
The three fields of each reference entry are identical

in format to the final three items of each Abridged Tag
Table entry. One entry is created in the Reference Table
for each reference (after the first one) for any given tag.
A chaining technique is used to connect these references
back to the Abridged Table entry to which they refer.
Thus for any given tag, the first reference is in the
Abridged Table entry, and succeeding references are
spread out throughout the Reference Table, with each
reference giving the location of the next reference in the
chain. The chain is ended when the indicator in a partic
ular entry says that is the last reference.

It should be noted here that each Abridged Table entry
contains the first reference to that tag. Consequently a
tag has entries in the Reference Table only if there is
more than one reference. This choice of format was made
for reasons of efficiency; that is, for most flow charts,
the great majority of tags have only one reference, and
for these, the Cross-Referencing can be handled entirely
within the Abridged Table itself eliminating the need for
access to the Reference Table. Other techniques may be
used to collect the cross-reference data which has been
developed by the F/C program and to present it in a
simple table.

Setting up Reference in the Tables
The input file 111 to Pass-III also serves as the input

file to this pass. Only the records which represent J-, D
or S-codes need be processed, since they are the only
codes which involve "jumps' to other locations; conse
quently all other records may be bypassed without any
processing.

Each D-, J- or S-record contains three fields that are
of interest to this pass. The first field is the Page it and
Box it assigned to the symbol on the flow chart. The
second and third fields are the destination tags to which
a transfer is called for by these records. In the case of
J- and S-codes, only one of the latter fields contains a
tag; for a D-code, either one or both of the fields con
tains tags, depending on whether the decision has one
or two branches. It should be noted that the input records
do not contain the Page it and Box it of the destina
tions, but only the tags of the destinations.

Prior to reading any input records, a locator must be
set up for the Reference Table. This locator always con
tains the current RHE-plus-1 of the Reference Table.
Since successive Reference Table entries are constructed
extending to the right in memory, the locator always con
tains the memory locations at which the next entry is to
be created. The Reference Table immediately follows the
Abridged Table in memory, and is placed in its initial
condition prior to starting the input file. Therefore, as
each new entry in the Reference Table is created, the
locator is incremented by a fixed constant.
When a D-, J- or S-record is read via blocks 27.03,

27.04, 27.05, the first destination tag is extracted 27.06
from the record. A search 28.01 is then made of the
Abridged Tag Table to locate the tag entry; if an entry
is not found for that tag, the destination is undefined and
no cross-reference is made. Upon locating the Table
entry for that tag, the first-reference field is examined;
if it only contains spaces, the current record is the first
reference to this tag. The Page it and Box i of the
input record (i.e. of the D-, J- or S-symbol) is then
placed in the "first reference' field and the indicator in

3,533,086
39

he entry is set to "last reference" status, which only indi
cates that the reference just inserted is thus far the final
ink of the chain for this entry.
However, if the first-reference field of the entry is al

eady filled, then an entry in the Reference Table is
reated 28.02 for the reference from the current record.
To create a linkage to previous reference (28.02), the
2xisting chain of references for this tag is traced down
o its end via a simple loop. The indicator in the Abridged
Table entry is tested; if set to "last reference' a new entry
in the Reference Table is created at the next available
address set up by its locator by extending the Table to the
right by the length of the new entry. This address of the
new Reference Table entry is placed 26.03 in the Abridged
Table entry of the tag and its indicator is set to "not
last reference' status. The Page it and Box it of the
D-, J-, or S-symbol are extracted from the input record
and placed in the newly created entry, and the indicator
of the new entry is set to "last reference" status. The
Reference-Table locator is incremented so that it again
contains the RHE of the table. On the other hand, if the
Abridged Table entry is set to "not last reference," the
address of the Reference Table entry containing the next
reference is picked up from the Abridged Table entry, and
the indicator of that Reference Table entry is tested. The
latter entry is either the "last reference' or it in turn
leads to the next reference. Eventually the "last reference'
entry in the Reference Table is located, and a new Refer
ence Table entry is created, and filled in at the next
available address set up by the locator. This address is :
placed in the previous Reference-Table entry for this
tag, and the indicator therefore is reset to "not last refer
ence.' The Reference-Table locator is incremented to
supply the next available address for any new entry to be
created.
The above process is repeated if the input record is

for a D-code and contains a second destination tag (via
test 28.04, NOTE 28.05, and blocks 28.06, 27.06). After
processing the second tag, or after the first tag processing
if the second tag is not present, a new input record is
read 27.03 and the entire process recycled. This process
continues until an end-file indicator is found 27.04 in
the input; construction of the Tables is then complete, and
all the information needed for the listing is now con
tained within the Tables. Accordingly, the program trans
fers to the output section 28.07 of this pass.

Output

Production of the Cross Reference List consists of
combining and printing out the contents of the two in
ternal tables. Each entry in the Abridged Tag Table pro
duces at least one line on the listing. Additional lines
are used if the number of references to a particular tag
overflows the amount of room available on the first
line. The Abridged Table entries are handled Sucessively
with a locator being set 28.07 to the initial entry. The
tag name and its Pages if and Box it is moved 28.08
from the Abridged Table to the output area; the first
reference field of this Table entry is also moved to the
output area. The indicator of the entry is then tested for
"last reference"; if not the last reference, the address of
the next reference in the Reference Table is picked up
28.09, 29.01 from that entry. The Page it and Box it of
the next-reference entry is moved 29.02 to the output, the
indicator of the new reference entry is tested 29.06, and
the logic recycled to block 28.09 if "last reference' is
not found. The process is then repeated to locate the
next entry and extract the desired data therefrom. When
the indicator of any link specifies "last reference' (test
29.06), the cycle ends and the current output line is
printed 30.01 or written to the listing tape. Appropriate
locators and counters are maintained for controlling
placement of the references in the output line. When a
counter indicates 29.03 that the output line is filled, the

()

2)

2 5

3 5

5

50

-

40
line is printed 29.04 or written to tape and a new line
begun by checking 29.06 for further references.
The above processing is repeated by checking 30.02 for

more tags in the Abridged Table, advancing a locator
(30.03) to the next entry thereof, and recycling via block
30.04 and 28.08 to repeat the process until all entries in
the Abridged Tag Table have been processed. After proc
essing the final Abridged Table entry, test 30.02 deter
mines that the listing is complete, and the program trans
fers to block 30.05 to "wrapup” any housekeeping de
tails, such as rewinding the tapes, and the operation
terminates (30.06).
The Cross-Reference List affords a valuable body of

information that assists in reading and studying the flow
chart. That is, each entry point marked with a cross
reference is known to have but a single transfer into that
point, except where it is marked with an asterisk. In the
latter case, the Cross-Reference List provides, under the
tag of the entry point, a complete list of all other such
transfers, which makes it possible to determine various
interrelationships of the documented program.

MODIFICATIONS OF THE INVENTION
By modifications of the flow chart documentation sys

tem of this invention other forms of flow charts may be
produced, Such as those having characteristics illustrated
in the fragmentary charts of FIGS. 4A and B, 5 and 6.
FIGS. 4A and B and 5 present diagrammatically the in
terrelationships of D-symbols, each represented by a dia
mond 150, and the other types of symbols all represented,
for simplicity, by a rectangle 152, except for J-, E-, H
Symbols and connectors which are represented by circles.
A four-column chart is assumed by way of example.

These flow charts may have one or more of the fol
lowing features:

(1) A branch chain from a main flow column may be
presented in an adjacent secondary-column as described
above, and in addition the branch chains from the sec
ondary-column may also be illustrated in the next ad
jacent column. See FIG. 4A where column 154 contains
the main flow, column 156 contains branch chains from
DECISIONS 150 and 162, column 158 contains a branch
chain from DECISION 164 in column 156, and column
160 contains a branch from DECISION 166 in column
58.
(2) A branch chain may be entered at an intermediate

point of that chain as well as from the first block of the
branch chain and branch chains may be shifted up or
down. So that they fit in the available space. See FIG. 4A
where branch chains 158 and 160 are entered at inter
mediate points, chain 160 is shifted up and chain 170 is
shifted down.

(3) A branch chain need not be entered directly op
posite the branch output of the DECISION in the main
column; the branch connecting line may be formed as
a combination of horizontal and vertical line segments
so that the branch chain may be positioned in any suitable
place within the adjacent column. See FIG. 4A, branch
chain 160 and connecting line 168, and branch column
chain 170 and line 172.

(4) If a branch chain is not provided in a column
adjacent to the main column, that adjacent column may
be used for the continuation of the main flow, and all
four columns of a page may be used for the main flow
where appropriate and where branch chains are not or
cannot be illustrated. See FIG. 4B, columns 174 and 176.
Each column has two possible vertical-line lanes, one on
each side of the symbol, to permit connection in the
same or adjacent columns (e.g., the lanes for lines 178
and 180 of column 158, and the lanes for lines 182 and
184 of column 160). The vertical lines can be connected
up or down in each path. Thereby, in a four-column
chart, eight vertical-line lanes are available for appro
priate interconnections (and the use of all eight is illus
tiated in FIG, 4A).

3,533,086
41

(5) Vertical and horizontal lines may cross, (e.g.,
lines 168 and 180 in FIG. 4A) but provision is made to
try alternative non-crossing paths.

(6) Connecting lines may be drawn between any two
of the four columns, and these connecting lines may be di
rected either from left to right or from right to left, and
may be a combination of vertical and horizontal line seg
ments (e.g., line 168 of FIG. 4A, and lines 186 and 188
of FIG. 4B).

(7) Unconditional transfers (jumps or exit instructions)
are represented by a line being drawn wherever possible,
either to the same or to another column on the page (e.g.,
lines 186 and 188 of FIG. 4B). Similarly, pseudo-connec
tors are avoided where connecting lines can be drawn to
the same page.

(8) Branch chains are connected either to the left or to
the right, or both, of the main column containing the
DECISION symbol from which the branch or branches
occur (e.g., in FIG. 5 the DECISIONS in main-flow col
umn 190 have respective branch chains 192 and 194 that
are presented in columns on opposite sides of main col
umn). Thereby, any column may be used for the main
flow or for branch chains.

(9) A branch chain is picked up and printed if it fits in
the space remaining on a page, be it one or more columns.

(10) Each flow chart page may be developed as a clus
ter of chains, with any one column or columns containing
the main-flow logic and the remaining column or columns
containing the chains branching from the main-flow.
A form of flow chart incorporating the last two features

is shown diagrammatically in FIG. 6, in which the main
flow column of logic is illustrated in a simplified fashion
by a relatively wide strip, and branch chains by a narrower
strip (so that they can be readily distinguished) and
JUMPS and pseudo-connectors at the ends of columns
by circles. The simplified diagrams of FIG. 6 indicate the
branching of chains from DECISIONS of the main-flow
logic and from DECISIONS of the branch chains; the
various F/C symbols are omitted to illustrate the general
nature of the flow chart configurations that are handled.
The aforementioned features of FIGS 4 and 5 are applied
in illustrating the "cluster” feature.

FIG. 6A illustrates the four columns 200, 201, 202, 203
used for the main-flow logic (where no branches from
DECISIONS occur that would fit in the remaining space
on the page). The successive columns are connected by
lines; alternatively pseudo-connectors may be used to ter
minate each column. FIG. 6B illustrates a column 204 of
main-flow logic, from a DECISION of which a branch
chain 205 is connected; and from a DECISION of the
latter a sub-branch chain 206 is connected; and another
Sub-branch chain 207 connects from a DECISION in
branch chain 207. Where only a single branch chain (e.g.,
chain 205) develops from the main-flow logic 204 and
does not itself develop additional branch chains, only the
main-flow logic 204 and branch chain 205 are printed
on the page. Thereafter, the next page continues initially
with the development of the main-flow logic and with the
processing of branch chains as DECISIONS arise (and
in the manner described with respect to FIG. 8). FIG. 6B
illustrates the facility of displaying sub-branch chains to
the right of the main chain.
FIG. 6C illustrates in the first column the main-flow

logic 208, from a DECISION of which there is a branch
chain that is a long one and has sections 209, 210, 211 in
three remaining columns of the page. The single column
of main-flow logic and the single branch chain make up
the page. If the branch chain terminates in the second
or third column, the page likewise terminates.

FIG. 6D shows two columns 212 and 213 of main-flow
logic and a branch chain 214 from a DECISION in the
second column 213, as well as a second branch chain
215 from a DECISION of the first branch 214. Where
the second branch chain 215 is not suitable for presenta

O

30

5 5

60

tion in the fourth column, the page terminates with branch 75

42
chain 214 and presents a cluster of the three columns 212,
213, and 214. This cluster feature of the F/C program
does not attempt to use all of the available page space,
but rather it is constructed to display as much of the
branch interrelationships of the program being document
ed as the page size limitations permit. For practical rea
Sons, the page size limits the amount of information that
is presented as a unit.

FIG. 6E shows a column 216 of main-flow logic with a
branch chain 217 connected from the right side of a
DECISION thereof, another branch chain 218 connected
from the left side of a DECISION thereof, and a sub
branch chain 219 connected from the left side of a DE
CISION of the left branch chain 218. FIG. 6E illustrates
the cluster feature of presenting branch chains on either
side, or both sides of the column containing the main
flow logic, and the feature of sub-branch chains being al
located to the left for versatility in the display of branch
information in each cluster.

In implementing the feature of forming successive pages
as "chain clusters,” the F/C Control Program is con
structed to start each page with a column of main-flow
logic. Upon reaching a DECISION record, the F/C pro
gram branches in the manner described above for the first
embodiment, and processes a branch chain from that
DECISION. In the course of processing that chain (or a
second chain from the same DECISION), further branches
may be developed from DECISIONS within the branch
chain. If these sub-branches can be presented on the same
page, they are developed in the same fashion. The in
formation regarding the space required for the first branch
is already known before the second or succeeding sub
branches are processed; therefore, the available space for
the second branch or for sub-branches is then known, and
the F/C can determine whether the sub-branches are
suitable to be placed on the same page or not.
The implementation of an automatic system for pro

ducing a flow-chart formed from clusters of chains may
assume different forms including that of a three-phase
program of the same general type as shown in FIG. 3
(the fourth, cross-reference phase is optional). The de
tailed program logic may be similar to that described
above in connection with FIG. 8, with certain modifica
tions of Pass I and II, as described hereinafter.

Pass I

This logic is the same as described above for FIGS.
8/1 to 8/6, with the following additions. Each chain is
given a separate identifier (e.g., a sequence number) in
addition to the one already provided in the chain table,
and this chain identifier is used in the Tag Table to asso
ciate all Tags that are part of a particular chain. Thus,
the first chain is so identified and set forth in the Tag
Table, and all Tags occurring in the first chain are listed
in the Tag Table under (or in association with) the first
chain. Thereafter, each time a new entry is created in
the Chain Table for a chain ten ending (block 06:04,
FIG. 8) a corresponding new entry is likewise created for
the Tag Table for the following chain, under which all
associated tags are listed. An additional field is also pro
vided in the Tag Table, which is used to furnish the rela
tive line position of a particular tag within its associated
chain. This information is available from the cumulative
count in Line Counter B (block 04.01) and inserted in
the field upon the creation of each Tag Table entry
(block 05.01). Thereafter, a search for aparticular tag
in the Tag Table supplies the identifier of the chain in
which the tag lies together with its line position within
that chain.

Pass II.-Main Chain Processing
The general logic for this portion of the processing is

shown in FIGS. 7A to E; details will be apparent from
the following description and from the foregoing of FIG.
8. Upon the start 300 of the program, block 302 operates

3,533,086
43

o reset counters and work storage areas to their proper
onditions. The input data is the output tape from Pass I,
In the manner described above. Thereafter, block 304
ocates the next main chain via a pointer in the Chain
able; the first chain is assumed to be a main chain, and
ucceeding chains are also assumed to be main chains
intil they are assigned as auxiliary chains. Test 306 de
ermines if there are any more main chains; and if not,
he program branches to block 308, which operates to
ewind the tapes and bring in Pass III. If there is an
ther main chain, the program proceeds with block 312
o read the next symbol record from the located chain.
Fest 314 determines whether the symbol is a J or an E,
ind if so, the program branches to a connector 316 lead
ng to the auxiliary chain processing, ACP, described
below with respect to FIG. 7B. If the current record is
lot the end of a chain, test 318 determines if the current
ecord is at the end of a main column (i.e., if EPCON
s exceeded, see block 08.01 of FIG. 8); if so, the pro
ram branches via block 320 to ACP as indicated by
'onnector 324. Block 320 creates the appropriate pseudo
:onnector symbol used to identify the end of the column
und the page block number to which the program con
lects from that point, and it provides a supplementary
record in the Chain Table. Each chain when processed,
be it a main chain or an auxiliary chain, is marked in the
Chain Table as processed. Under the circumstances of
block 320, a main chain cannot be so marked; however,
he main chain can be marked as partially processed, with
store of the return record number to which the pro

gram will go to continue the processing after the remain
ier of the current cluster is completed.

If the current record is not at the end of the main
olumn, the program continues with block 326, which
stores the record in a storage in memory that receives 3.
in order all the records making up a page and which starts
with address LM, and also steps a counter LC to provide
Ehe next address in the record storage area for receiving
he succeeding record; it also steps Line Counter-I an
amount corresponding to the number of lines in the cur
rent record to obtain the line number in the main-chain
column of the succeeding record. Thereafter, test 328
determines if the current record is a DECISION, and if
it is, the program steps to subroutine CHSUB 330, which
determines if the branch chains from that DECISION
can be pulled and inserted in auxiliary (adjacent)
column. An indicator is set to identify for CHSUB that
branch chain is a transfer from a main chain to distin
guish from transfers from another branch chain. After
subroutine CHSUB, the program returns to the main
chain processing at block 312. If the current record is
not a DECISION, the branch from test 328 is also back to
block 312 to read the next symbol record from the main
chain and repeat the above-described process.

Successive records of the main chain are processed in
this manner until test 314 finds an end-of-chain record
or test 318 finds an end-of-column record. In either case
the program branches to ACP. The main chain processing
is not interrupted for auxiliary chain processing, though
it is interrupted for CHSUB to determine whether an aux
iliary chain is appropriate to be pulled; all branch chains
are examined to determine their suitability for display
as an auxiliary chain. The actual processing of such aux
iliary chains that are found follows the completion of the
main chain processing. The actual assignment of page
and block numbers to the main and auxiliary chain re
cords is performed after the branch chains have all been
identified and pulled and their records stored in memory.

FIG. 7B illustrates the logic flow for the subroutine
CHSUB, which determines whether a branch chain can
be pulled and utilized in an auxiliary column. Initial
block 334 operates to locate the chain name for the tag
to which the program branched from a DECISION re
cord. The tag may be at the start of a chain or anywhere
within a chain, and a search is made of the Tag Table

O

2 5

3.

()

5

44
to locate the associated chain name which was stored dur
ing Pass I. The line position of the tag within the chain
is also extracted from the Tag Table. Thereafter, block
336 performs a calculation to determine CPPOC, the pre
ferred position of the chain in the auxiliary column.
CPPOC is calculated by subtracting the line position of
the tag in the chain from the line position of the DECI
SION record from which the branch takes place. If
CPPOC is a negative value, it is reset to Zero; this rep
resents a condition of the tag having a line position lower
down on the page than the branch-point of the DECI
SION and CPPOC cannot be assigned a useable line
number. Thereafter, block 338 stores CPPOC in a tem
porary storage field until it is determined whether that
chain can be pulled for an auxiliary column. In addition,
three sets of stores in memory are provided to hold the
names of branch chains that may be pulled for auxiliary
columns together with other chain-locating information
such as CPPOC; these temporary stores are identified as
CR, CL, and CB, representing respectively branch chains
to the right, those to the left, and sub-branch chains that
branch from the left or right auxiliary chains currently
being processed. Thus, the CB stores contain a buffer
storage of sub-branch chains, which branch to the right
of right auxiliary chains or to the left of left auxiliary
chains, whichever is currently being processed, and which
sub-branches are to be processed thereafter. Each set of
these chain-locating records may contain an arbitrary
maximum number, say 10, which indicates the maximum
number of branch chains that may be actually utilized
in a particular auxiliary column.

Thereafter, test 340 determines whether the branch
chain being investigated is a branch from a main-column
chain or from another auxiliary-column chain. If it is
from a main column, test 342 then determines whether
the length of the current branch chain plus the length of
the other branch chains already assigned to CR-1 to 10
would be greater than the column length EPCON. If
not greater, there is still room in the right auxiliary
column for the current branch chain, and block 344 Sets
up the next chain-locating record CR and stores the name
of the current chain, its length, sequence number, and
CPPOC in the appropriate fields thereof. Thereafter, test
346 determines whether there is a second, unprocessed
branch in the current DECISION record being processed;
if not, processing exits from CHSUB. If there is a second
branch, block 347 locates the chain and calculates CPPOC
for the Second branch and test 348 determines whether
the length of this branch chain together with the com
bined lengths of the other left auxiliary chains already
assigned are greater than EPCON. If EPCON is exceeded,
the program exits from the subroutine; if it is not, then
block 350 stores the chain information in the appropriate
fields of the next one of the chain-locating records CL-1
to 10 for the left auxiliary column, and the program
exits.

If test 342 indicates that the branch chain is too large
for the right hand column, test 352 determines whether
the branch chain is suitable to fit in the first auxiliary
left hand column. If it does not fit, test 354 determines
if there is a second, unprocessed branch chain from the
current DECISION record, and if not, the program exits
from the subroutine; however, if there is a second branch,
an indicator is set for processing the second branch and
the program recycles back to the start of CHSUB to
process it in the same fashion as the first branch chain
was processed (and the latter is identified as processed).

If test 352 indicates that the branch chain will fit in
the left auxiliary column the program branches to block
358, and the chain information is stored in the next left
chain-locating record CL-1 to 10. Thereafter, test 360
checks to see if there is a second branch chain from the
DECISION record, and if not, the program exits from the
subroutine. If there is a second branch, block 360 lo
cates the chain and CPPOC is computed and stored in

3,533,086
45

the manner described above, and test 362 determines
whether it will fit in the right auxiliary column (the left
having already been preliminarily assigned); if not, the
program exits from the subroutine, if it will fit, block
364 stores the chain information in the next right chain
locating record CR-1 to 10, and the program exits.

If the test 340 indicates that the chain is being pulled
by an auxiliary column, test 366 determines whether it is
from the right or left auxiliary column from the setting
of an indicator. If from the right, block 368 inhibits the
pulling of any chains to the left and inhibits pulling more
than one branch chain from the current DECISION rec
ord; this inhibition of pulling to the left, once initiated,
continues for the remainder of the sub-branches pulled
from the current auxiliary column being processed. Block
368 also sets an indicator to store the information for
sub-branch chains from the current right auxiliary column
in buffer chain-locating records CB-1 to 10, and there
after the program continues with the processing from
test 342 in the manner described above. Similarly, if test
366 indicates that the chain is being pulled from the left
auxiliary column, block 370 inhibits the pulling of any
chains to the right column, inhibits the pulling of more
than one branch chain from the current DECISION rec
ord, and sets up CB-1 to 10 to receive the information
of sub-branch chains from the current left auxiliary col
umn. Thereafter, the program continues with the process
ing of the chain via test 342.

ACP

The processing of auxiliary chains, ACP (FIG. 7C),
begins with a subroutine SCHPL 380 (FIG. 7D) for cal
culating the exact starting line position SCHPL of each
branch chain from CPPOC (the preferred starting line
position of the chain with the tag opposite the DECISION
branch point as calculated by block 336, FIG. 7B) and
storing the new value in the field FCPPOC of the associ
ated one of the records CR, CL, CB, Each time the pro
gram passes through SCHPL and performs the calcula
tions, a counter is incremented so that its count represents
the number of auxiliary columns processed thus far.
Thereafter, test 382 determines whether any right or left
branch chains remain to be processed (by examining the
contents of CR-1 and CL-1, as explained below) and
whether any of the columns available on a page for a
cluster remain unassigned; and if so, test 384 determines
whether they are right auxiliary chains. If so, block 385
locates the chain specified in CR-1 on the input tape so
that it can be processed. In addition, an indicator is set
for the CHSUB subroutine to identify any sub-branch
chain as coming from a right auxiliary chain.

Thereafter, block 386 begins the processing of this auxi
liary chain by reading the first symbol record thereof from
the input tape. Test 388 determines if the current record
is an end-of-chain record (J or E). If not, block 390
stores the record in the next available location in memory
as indicated by the address LC (appropriate marker sig
nals are provided at the beginning of the records for each
auxiliary column), and thereafter LC is adjusted to indi
cate the next available memory location for the next
record to be stored.

Test 392 determines whether the current record is a
DECISION record, and if not, the program returns to
block 386 to read the next record and process it in the
manner described. If the current record is a DECISION
record, subroutine CHSUB is entered (with an indicator
set to identify that the branching is from an auxiliary
column) to determine whether the sub-branch chain from
the current auxiliary chain can be pulled. In the subroutine
CHSUB (FIG. 7B) test 340 steers the program down the
auxiliary processing section and test 366 determines wheth
er it is a right or left auxiliary currently being processed
to provide appropriate steering, in the manner described
above. When CHSUB is processing an auxiliary column,
the sub-branch chain information is stored in the records

5

O

20

40

60

46
CB. In addition, five counters CTR-1 to 5 are used by
CHSUB to maintain cumulative counts of the chain
lengths for the five possible auxiliary columns, the three
right and two left columns, in order. The right or left
column indicator identified which type of column and the
number of successive auxiliary column passes through
CHSUB determines which column in order is being pro
cessed. Upon existing from CHSUB, the program returns
to block 386 to process the next record in the branch
chain for the current auxiliary column.

This loop continues until test 388 indicates that an end
of-chain record has been reached and the program
branches to block 396, which proceeds to store the record
in memory and adjusts the setting of address LC. There
after, test 398 determines whether there are any more
chains in the current column; this test may be performed
by determining whether CR-2 contains any data. If there
are more chains, block 400 shifts the contents of CR-2
to 10 into CR-1 to 9, respectively, so that the previous
contents of CR-2 are stored in CR-1, CR-3 in CR-2,
and so on. Thereafter, this routine begins again at ACT
to process the chain now specified in CR-1 in the manner
described. If test 398 indicates that there are no more
CR chains to be processed, the program branches to block
401, which moves the contents of CB-2 to CB-10 into
CR-1 to 9, respectively; thereby, the chain-locating rec
ords for the sub-auxiliary column are moved into posi
tion to be processed. Test 402 then checks an indicator
to determine whether the auxiliary column just processed
was a left or a right auxiliary; if a right auxiliary, then
the new sub-auxiliary column is also a right auxiliary
column, and the program returns to ACP to start the
auxiliary chain processing for that sub-auxiliary column.
If the auxiliary column just processed was a left column,
the program branches to block 404, which sets a field
LL-2 to the current value of LC; LL-2 contains the mem
ory address of the first record of the second left auxiliary
column, and the program returns to ACP to begin the
processing of that second left auxiliary column. An in
dicator is set to inhibit entering the subroutine CHSUB
for any branches from this second left column, assuming
a maximum of two left auxiliary columns. Similarly, that
inhibit indicator is also set when test 402 steers the pro
gram down the "right' branch the second time, since the
program is then starting to process the third right auxili
ary, which is assumed to be the maximum; when a third
auxiliary is processed, there is room (in the assumed 4
column example of a page) only for the first left auxili
ary, and accordingly the processing of the second left is
inhibited.
The indicator for identifying whether the auxiliary

column being processed is a right or a left is set initially
during the first pass through test 384 of ACP, which de
termines first whether there are data in the contents in
CR-1. If there are, then it is known that it is a right auxili
ary; and it is processed first on a priority basis with the
right column indicator being set. If no data is in CR-1
it must be a left auxiliary (since test 382 had indicated
that there is an auxiliary), and the program branches to
block 406, which sets the left column indicator and sets
LL-1 (the address of the first record of the first left
auxiliary column) to the current value of LC. Thereafter
block 408 moves CL-2 to 10 into CR-1 to 9, respective
ly, so that the left auxiliary chain-locating records are in
condition to be processed in the same manner as the right
auxiliary chain-locating records, and the program returns
to the start of ACP for processing. After the first left auxi
liary is processed, test 402 steers the program via block
404 to process the record left auxiliary. After the left auxi
liary columns are processed, test 382 finds both CR-1 and
CL-1 empty of data, and steers the program to the out
put subroutine 409, OUTSUB, from which it returns to
the beginning of the pass at STRT, FIG. 7A, to process
the next main chain and from the cluster therefrom.

In operation, the first right auxiliary column chains are

3,533,086
47

rocessed initially by following the contents of the CR
ecords, and then the second right auxiliary column, if
iny, is processed with the sub-branch chains from the
irst right auxiliary column using the records in CB, which
are transferred to CR for the processing operations. There
after, the third right auxiliary column, if any, is processed
ising the sub-branch chains that were pulled from the
second right auxiliary column; the records for the third
ight auxiliary column are set up initially in CB as the
econd right auxiliary column is being processed. After
all of the right auxiliary columns are processed, if space
permits, test 384 steers the program to processing of the
eft auxiliary chains via blocks 406 and 408, with the
ichains for the first left auxiliary columns being located by
means of CL records, which are relocated into CR. After
the first left auxiliary column is completely processed, test
398 indicates that there are no more chains for that col
umn, and the program branches to block 401 to move
the chain records CB for the second left auxiliary column
into CR. Test 402 steers the program to block 404 to
set up the address of the first record of that second left
auxiliary column, and the program then proceeds to proc
ess those records.
When the records are written out to memory, the ad

dress of the first record of the main chain is LM, and
the address LC is then used for storage thereafter of the
successive records of the main chain, followed by those
of the first-right, the second-right, and the third-right
auxiliary columns in that order. Thereafter, the first-left
and second-left column records are stored in that order.
The records of the different columns are separated by
appropriate marker signals. LL-1 and LL-2 provide the
starting addresses of the records for the two left columns.
The subroutine SCHPL, shown in detail in FIG. 7D,

calculates for each chain in an auxiliary column, its ex- 3:
act starting line position and stores it in the field FCPPOC
of CR-1 to 10. It starts with CPPOC, the preferred line
position for the start of the chain, already stored in
FCPPOC (block 338), and the subroutine terminates
with the exact position determined. In addition, the sub
routine starts with the fields CTR-1. 2, 3, 4, 5 (developed
by SCHUB) which contain respectively the total number
of lines required by all of the chains in the first, second,
and third right auxiliary columns and the first and second
left auxiliary columns, in that order. The cumulative
counts in the CTR fields are based on the packed lengths
of the branch chains; i.e., it is assumed that the first
branch chain in each auxiliary column starts at the first
line and succeeding chains are positioned thereafter with
out extra spaces therebetween. This subroutine terminates :
with the CTR value adjusted to include any spaces in
serted by readjustment of chains downward within the
associated auxiliary column. Thus, SCHPL starts with
the branch chains fitting in a column at least if they are
moved up all the way, and proceeds to determine if they
also fit when moved down to prepared positions.

Initially at the start of each column, block 410 sets
CHPL equal to “1,” and thereafter, each chain in the
current auxiliary column is processed in order. Test 412
looks for the next branch chain in CR-1; if there is
none, the subroutine exits. If a next chain is set up in
CR-1, test 414 determines if the stored value of CHPL
in working storage is greater than the value of the field
FCPPOC of that branch chain; if it is, block 416 stores
the value CHPL in FCPPOC as the exact line position
for the chain. That is, if CHPL is the greater value, the
starting line position is already far down in the column,
and no further downward adjustment of the chain is
desired; and CHPL is therefore used as the starting line
position. Thereafter, block 418 adds the line length of
the current chain to CHPL to obtain a new value of the
latter, so that the initial CHPL value of “1” may be ap
plied only to the first chain in a column. Thereafter, the
subroutine returns to test 412 and exits. If test 414 indi
cates that CHPL is not greater than CPPOC, the pro

5

()

3. 5

-)

45

5 5

60

55

O

-

48
gram branches to determine if space is available in the
column to move the chain down so as to use CPPOC for
its starting line position. Only if the full space is avail
able, will the chain be moved down. Block 420 calculates
TEM, equal to the difference between CPPOC and
CHPL, and representing the desired downward displace
ment of the branch chain in number of lines. Thereafter
test 422 compares the constant EPCON (the column
length in lines) with the quantity of TEM plus CTR for
the current auxiliary column; if EPCON is the lesser,
there is no room in the column for downward adjust
ment of the chain, CPPOC cannot be used and the pro
gram branches to block 416 to store CHPL in FCPPOC
of the current chain and proceeded in the manner de
scribed above. If test 422 indicates that there is room in
the column for adjustment, CPPOC remains unchanged
in the CR record. The program continues with block 424,
and CTR for the current column is augmented by TEM
and the new value of CTR is stored in its own field.
Thereafter, block 426 moves the line number in FCPPOC
to working storage for a new value of CHPL; since the
field FCPPOC remains unchanged, the preferred start
ing line position is actually used for the chain. The pro
gram then continues with block 418, where the value of
CHPL in working storage is augmented by the current
chain length to obtain a new value of CHPL for the next
chain, and the program returns to test 412.
The output subroutine OUTSUB is shown in FIG. 7E;

it is entered after completion of the auxiliary chain
processing and processes each cluster of columns by deter
mining whether a new page is required and assigning the
page, box, column and line numbers in each flow chart
record in memory and writes the records to the output
tape. :

Initially, test 430 determines whether a new page is
required; this test involves checking the number of un
used columns, if any, on the current page (i.e., the
columns required by the previous cluster or clusters)
and comparing it with the number of columns required
by the current cluster. If a new page is not required,
block 432 adds '1' to the column number; if a new
page is required, block 434 operates to add "1" to the
page number and to set the column it to "0" and box
number to "1" (the box numbers on each page are as
signed sequentially in each column and in order from
column to column starting with the column on the left).
Thereafter, in either case, test 436 determines if there
are any left auxiliary columns in the current cluster by
checking the contents of LL-1 and 2; if not, the main
column is the first column of the cluster and is displayed
to the left on the page, with the other columns of the
cluster to the right in order. Block 438 sets a pair of out
put pointers to LM (which is the start of the record area
in the memory containing the first record of the main
column chain) and to LC (the end of the last right
auxiliary record) thereby bracketing the memory area of
records to be processed. Thereafter, these bracketed rec
ords are computed and written to the output tape by the
RITEOUT subroutine 440, and upon exiting therefrom,
the OUTSUB subroutine also exits as shown by con
nector 441.

If there are left auxiliary columns, test 442 determines
whether or not there is a second left auxiliary column;
if not, block 444 sets the output pointers to start with
LL-1 and to bracket the memory area of the records
for the first left auxiliary; thereafter, the RITEOUT sub
routine 446 processes those records, and upon exiting
goes to block 438 to set up RITEOUT for the records
of the remaining columns. If there is a second left aux
iliary column, block 448 sets the output pointers to
bracket the memory area for the corresponding records,
and the RITEOUT subroutine 450 processes those
records. Thereafter, the program passes to block 444 to
initiate processing the first left auxiliary records, and so
on. In this fashion the records are completed and written

3,533,086
49

out starting with the column which should appear on the
left on the flow chart,

In the RITEOUT subroutine (details are shown in
block 440), an initial test 452 determines if there are
any more records in the bracketed memory area to be
processed, and if not, the subroutine exits. If the bracketed
memory area contains additional records, a test 454
determines whether the curent record is at the start of a
column. If it is, block 456 adds “1” to the column num
ber. Thereafter (or if test 454 proves negative), block
458 adds "1' to the box number and calculates the line
number of each record by adding the line length of each
record to its line number to obtain the line number of the
Succeeding record; main chains start at the first line and
each branch chain starts at the line set in the field
FCPPOC for that chain. Block 458 also stores the page,
box, column and line numbers in the record. Block 460
thereafter writes the record to the output tape, and the
subroutine returns to test 452 to repeat the loop for each
succeeding record until all available records are processed.

After the OUTSUB subroutine is completed for all of
the records of the cluster, the program returns to the
beginning of the pass to process the next main chain and
start the development of the next cluster. When all of
the chains have been processed into clusters, Pass I is
completed and Pass-III is started, in the manner
described above. Various modifications may be made in
Pass III as indicated above and also as discussed below.
For example, a main chain may terminate before the end
of a column leaving room for a small main chain there
after; the documentation program is readily adapted to
recognize this condition and to utilize the space efficiently
by inserting the small main chain in the available main
column space.
The flow chart documentation of a computer program

in the form of clusters of chains (main and branch
chains in main and auxiliary columns) enhances the two
dimensional character of the chart, it tends to supply the
user with a greater amount of information about branches
from the main-flow, since only one of four columns on
a page is devoted to the main chain of a cluster, and the
remaining columns display any of the branch chains that
occur. Moreover, the sub-branching is also displayed, and
as much sub-branching can be displayed as space permits;
thereby, various loops and processing interrelationships
and complexities in the documented program tend to be
presented to the reader as he reviews each page of the
chart. The main chain continues from column to column
where branch chains do not occur or do not fit. The main
chain also continues from page to page where it is of
any substantial length, so that the main flow can be
followed by flipping successive pages of the chart. But
the intricacies of the documented program at any stage
thereof generally occur at conditional transfer operations
and they tend to be presented on a page displaying the
cluster of branches from the main flow,

Various modifications may be made in the control
system of this invention depending on the size and type
of memory facilities provided by the computer. For ex
ample, where the computer has a large random-access
memory (such as a core memory), the processing of the
data may be made more efficient in the operation that
requires searching for branch chains in the input tape
during Phase II. The control system, as described above,
only searches for those branch chains that do not exceed
a specified length, say, not greater than one column. This
search can be reduced by placing all potential branch
chains (those which are less than the maximum length)
on a separate magnetic tape during the Phase I opera
tion; since these short chains are the only ones that may
not be processed in their natural sequence on the input
tape. The chain length, of course, is a variable that
cannot be preset, and a special memory storage of the
records making up a chain would be necessary in order
to determine whether it was small enough to be a poten

5

O

20

2 5

40

45

50

5 5

60

50
tial branch chain or not. Such a memory storage of
records that would form one page column is provided and
serves as a standard measuring unit for all chains that
are developed. Those that fit within this memory area of
a column length are placed in sequence on a separate
output tape and serve as a search tape for potential branch
chains. All other chains go on to another output tape
in the usual fashion described above, and they are treated
as main chains in the operation of the program. Such an
arrangement would not result in any loss of processing
time during Pass I, but would result in a substantial
saving of time during Pass l, since the potential branch
chains would be segregated and more readily searched,
and the searching would not run through those chains that
could not be branch chains. The order of chain pro
cessing is maintained and set forth in the chain table,
which would indicate the tape that a particular chain
was on. Thus, in picking up successive chains to be
treated as main chains, either of the two tapes would
function as a source, with the location of a particular
chain on one of the two tapes being set forth in a chain
table.
The searching of chains can also be reduced by filling

the memory area that is available with as many potential
branch chains as possible to eliminate the serial searching
of these chains on the input tape, Another technique to
reduce search time is to search for several chains at one
time on the input tape with the search performed in the
sequence of appearance of the chains. For example, the
branch chains for the right auxiliary column can all be
pulled out in one search when that auxiliary column is
to be processed; thereby rewinding of the main tape
separately for each branch chain would be avoided.
For computers having random-access disc or drum Stor

age devices, the searching may be eliminated since the
branch chain can be identified by its address on the disc
or drum and retrieved directly in accordance with that
address, which would be stored in the chain table instead
of the sequence number.
Where all of the branch chains are separated initially,

these chains may be preliminarily analyzed to determine
whether a DECISION in a subsequent main chain (or
auxiliary chain) refers to a tag in the branch chain. There
by, it would be possible to pull such branch chains
and allocate them to the subsequent DECISIONS as well
as to preceding ones.

This invention is not restricted to the processing of
small branch chains that fit in the remaining space in a
column or on a flow chart page. The branch chains can
be broken by pseudo-connectors (similarly as the main
chains), and the Chain Table entry is used to identify the
portion of the chain that has been processed and the
portion that remains to be processed. Thereby, the re
mainder of the branch chain is picked up subsequently
in the processing operation and displayed on an appro
priate page of the chart identified in the pseudo-connector.
Such a procedure enhances the two-dimensional charac
ter of the flow chart that is produced, since a large num
ber of branch chains tends to be displayed on the same
page as the associated DECISIONS. Even though only
portions of the branch chains are shown on a page, the
reader of the flow chart is generally given sufficient in
formation to identify the type of operation performed in
the branch chain and thereby given in a single page a
greater amount of information about the interrelationships
of the program both in the main flow and the various
associated branches.
Where it is found desirable, the control system may be

arranged to duplicate any or all branch chains in subse
quent portions of the flow chart where the same branch
chain was developed as a transfer from a preceding DE
CISION. Thereby, the user's reading of the flow chart is
made more convenient, in that he does not have to move
to different pages of the chart to identify the branch
chains. In such a system, the second and subsequent dis

3,533,086
51

plays of a branch chain are identified as duplicates, and
ihe chain table maintains a record of first and subsequent
isplays of such branch chains. Such an arrangement may
be a selective one under the control of the programmer
in that a special code symbol may be provided to be in
serted at the discretion of the programmer where he feels
t desirable for branch chains to be duplicated. That is,
each DECISION which would carry branch chains of
special significance could be marked to present the branch
chain as a duplicate (and in as much detail as desired).
The program then operates with such a control signal
o display the branch chain even though it may other
wise not be displayed at that particular location on the
chart.
For small computers, those with memory sizes of ap

preciably less than 32,000 characters (e.g., 8,000) addi
ional tape units (or random-access disc or drum storage)
can be substituted to compensate for the Smaller core
memory. In Phase I, an additional tape is used to record
the Chain Table entries. The Tag Table need not be
developed during Phase I, but rather during Phase II; the
tag information is extracted from the symbol record tape
by means of an extra pass through all of the records (after
the page, box, column and line number assignments are
completed). In addition, the record for each symbol in
cludes additional information, such as whether the Sym
bol terminates a chain or not, and the format of the Sym
bol to be printed stores with all of the printed elements
at their various locations set forth in the record.

In Phase II, an additional tape is used to record the Tag
Table entries, as indicated above; a tape is used to record
the second-left auxiliary chains, if any, and a tape to record
the main and any right auxiliary chains. Additional infor
mation in the form of a control record is added to the
second-left auxiliary tape, which record sets forth the
information pertaining to the number of columns re
quired for each cluster and the distribution of the cluster
over the different columns. This control record precedes
each group of second-left auxiliary column records and de
fines the individual cluster. During Phase II, clusters are
stored on the tapes prior to being assigned page, box and
line numbers. The input to Phase II is the symbol record
tape and the Chain Table tape from Phase I. During Phase
II it has been found convenient to develop all cross-ref
erences in the form of a table which can be then utilized
in the final tape that is constructed representing successive
pageS.

In Phase III, four tapes are provided to record each
column of page on a separate tape, and a tape to describe
the actual vertical and horizontal lines that are to be
drawn on a page; the latter is placed on one of the column
tapes preceding the associated column data, or it may be
placed on a fifth tape. The small memory may only be
large enough to hold a single record for each of the four
columns and the matrix of required lines for the whole
page. The page image is segmented into columns, and the
columns and the matrix of line connections are merged
by page and line during the printing process. Several passes
of the data are required for drawing line connections
on a page and for printing the page. Each conditional
and unconditional branch is assigned page, box, column
and line numbers during the Phase I allocation, so that
all destination points are established for Phase III.
The first pass of Phase III reads the symbol record

tape for a page and writes out a "line coordinate matrix'
based on the destinations of symbol records for that page.
The size of the matrix in characters, is the column length
in lines multiplied by the number of vertical line lanes.
For instance, if a vertical lane can be drawn on the left
or right of a column and if each column is 150 lines long,
and if there are 4 columns to a page, then a 1200 char
acter matrix is required. A matrix character may repre
sent any one of several “horizontal" or "point" condi
tions. For instances: it may specify a blank, an up arrow,
a down arrow, a horizontal line pointing to the left, a

()

()

2 5

O

52
horizontal line pointing to the right, a vertical line and
others. This "matrix” describes line drawings on a page
and is formed by examining each decision or branch
record on the symbol record tape. Based on (1) the posi
tion of the decision or branch record and (2) its destina
tion point, then (3) the matrix can be examined and the
line drawings plotted within the matrix. For instance, if
a decision in column 1, line 25 of page 1 is to branch to
column 2, line 29 of page 1, the broken line to the right,
downward in the lane, and to the right may be drawn
and can be described by five characters stored for lane 2,
as follows: one character (say, coded "A") for the hor
izontal line between the DECISION branch-point and
the lane (formed of 3 dashes), three characters (each
coded "i") for the three vertical lines in the lane running
downward, and one character (coded "B") for the hor
izontal line from the lane to column 2 (formed of 5
dashes with an arrowhead). The number of combinations
possible for any point in the matrix can be represented
by one character (in different embodiments about 6 to
12 possibilities exist). In the above example, the char
acters A, 1, 1, 1, B would be stored in the matrix that
represents lines 25 to 29 of lane 2, of column 1, of page
1. As the records are read in page by page, they are
written out on 4 tapes; each tape containing one column.
The "line matrices' for all pages are written on a separate
tape or they can be placed on one of the column tapes,
with each page's matrix written before the column record
for that page. The next pass of Phase-III reads in the
matrix tape, reads in each column of the page, creates a
line for output based on the matrix and the column in
formation (as described above) and prints the output.
Another change resulting from the design of a system

for a small computer is that Phase IV (the development
of the cross-reference listing), is produced after Phase I
and prior to the Phase III printing of the flow chart page,
for convenience in developing cross-reference data for
display on the flow chart.
The particular embodiment of the invention described

above is directed to input data in the form of an assembly
language program, a form that is quite commonly used.
This invention is also applicable to programs written in
a “machine-independent' language, i.e., a language which
is not limited to a particular construction of a machine
nor to its particular body of instructions. The "instruc
tions' of a machine independent language are macro
instructions or statements that can be translated as a
group of machine instructions. Where a program consists
of Such macro-statements presented in accordance with a
consistent convention, they can be interpreted by a flow
chart control program constructed in accordance with this
invention to produce a two-dimensional flow chart that
is properly representative.
The documentation system of this invention can process

higher-level languages such as COBOL, FORTRAN,
JOVIAL and other languages by analyzing the source
statement input. The analysis may be performed prior to
Phase-I, say Phase-O, or performed concurrently with
Phase-I. The source statements are analyzed without the
programmer writing the special codes that are currently
required where the input is in an assembly language in
put (e.g., the embodiment of FIG. 8) or the special
codes may be used where desired as an alternative in
each case and also to delete or combine various state
ments of the program. The source statements are ana
lyzed to (1) determine the Special code (i.e., the F/C
Symbol; e.g., a Subroutine, a process, an unconditional
transfer, a conditional transfer), and (2) determine the
Comments to appear in the flow chart symbol. Depend
ing on the amount of analysis desired, the Comment pro
duced (1) may be dependent on the procedure statement
itself or, (2) may be dependent on the procedure state
ment plus an analysis of the nouns (e.g., data fields) and
their associated descriptors (e.g., file descriptions). In
any event, the flow charting of this system is independent

3,533,086
53

of the language used as input. For example, preprocessors
to Phase-I analyze the higher-level language and then
produce input to Phase-I of the system.
The source statements are analyzed to determine the

corresponding special code or the flow chart symbol or
symbols which are to be used to represent those state
ments (i.e., symbols such as subroutine, process, uncon
ditional transfer or conditional transfer, or suitable modi
fications of those basic forms. This statement analysis
may incorporate a well-developed technique used to trans
late higher level languages; that is, the translators for
these languages (e.g., compilers or interpreters) provide
well-known techniques for translating each language
statement (operation) or data field into a symbol which
would properly represent the operation and its relation
ship to other operations (e.g., tags) that may be in
Ivolved in transfer operations. Thus, the state of the art
is such as to permit the development of program process
ing for analyzing the statements of such languages into
a form suitable for this documentation system to operate.
The Comment field may vary depending on the amount
of analysis of the language that may be desired and the
amount of detail desired in the Comment field of the
F/C symbol; thus, the Comment produced may be sim
ply dependent on the procedure statement itself (e.g., a
simple repetition of the verbal or algebraic statement
making up the procedure statement) or it may be depend
ent upon the procedure statement together with an ana
lysis of the nouns (e.g., the data fields) and their asso
ciated descriptors (e.g., the file descriptions for those
fields). Suitable techniques for this purpose are likewise
well-developed, and appropriate forms exist for different
compilers.
Where the language statements involve complex logical

conditions, standard techniques may be used to present
the involved statement as the Comment itself. Alternative
ly, known compiler techniques may be used to break down
the involved logical statement into its simple components
so as to present each one as a conditional transfer
(DECISION), whereby a logical sequence of conditional
transfers is developed in the flow chart rather than the
single involved statement,
By means of this documentation system, a higher level

language program may be documented in a flow chart,
and various ones of the features described above may
be employed. That is, F/C symbols for the process blocks
may vary in size with the requirements of the Comment
field; chains of logical sequences may be developed in
the manner described above with each chain terminating
with an unconditional transfer; and conditional transfers
and associated branch logic may be analyzed to develop
a two-dimensional chart showing the branch chains from
the DECISION symbols. Employing the technique de
scribed above for presenting a sequence of symbols on a
flow chart as called for by the program to be documented,
and upon reaching a conditional transfer, the branch
chains are analyzed to determine the suitability of their
being displayed in adjacent columns. Likewise, the cluster
techniques would also be applicable so that Sub-branch
chains may be shown in two-dimensional configuration.

Thus, this invention provides mechanisms for auto
matically producing flow charts by means of a data proc
essor operating on coded signals representing the instruc
tions of a computer program to be documented. The
mechanism for developing a two-dimensional flow chart
pulls branch sequences of symbols for display on the same
page as the main flow sequence from which the branch
takes place. It processes the branch logic out of the order
in which the logic appears in the original program in
order to show the branch on the same page as the associ
ated main flow logic. This mechanism involves the devel
opment of symbols for individual instructions or groups
of instructions, and then the development of sequences
of symbols and chains from the individual symbols. The
mechanism further develops columns of symbols from

5

O

30

3 5

45

50

5 5

60

65

54
the main flow symbols and from the branch chains
and assembles the columns into flow chart pages of re
lated symbols, with the relationships being shown by
connecting lines or references to the page and box num
bers of the symbols. A mechanism also pulls sub-branch
chains that stem from branch chains, and displays them
on the same page. The cluster mechanism uses the above
mechanisms and, in addition, forms each page of flow
chart from one or more chain clusters, where a cluster
is developed as a column of main flow logic and as many
branch and sub-branch chains associated therewith as
may fit on the page. In one form of the invention, the
main flow symbols are successively allocated along the
column until a DECISION is processed, and then the
branch chain therefrom is processed by determining
whether it fits within the adjacent column. The allocation
of the branch chain may take place before the allocation
of the main column is completed, or it may take place
after the main column is allocated. The allocation of
symbols of a branch chain may similarly lead to a sub
branch chain upon reaching a DECISION in the branch
chain, and the suitability of fit of the Sub-branched chain
can be determined at that point.

This invention also furnishes mechanisms for editing
unnecessary details from the original program and to
combine a group of instructions into a single symbol.
Thereby, it permits a programmer to edit, simplify and
explain the program and the various portions and se
quences thereof by means of an informative flow chart
without the labor of drawing the chart or of laying out
the sections thereof. A mechanism scans the various parts
of the COMMENTS field of each input instruction and
extracts the pertinent parts as required: the explanatory
COMMENTS; the code, if any, for the type of symbol
to be displayed; the destination tags, if any, carried for
branch and transfer instructions; and the code for DE
CISION labels, or the labels themselves. By means of
the symbol codes, detailed program instructions that are
unnecessary for an understanding of the program may
be deleted (either by the absence of a code, or by applying
a delete code thereto), and several instructions may be
combined and displayed as a single symbol, which more
clearly sets forth the overall function of the detailed
instructions. For example, a group of 20 individual in
structions of the program to be documented may be dis
played by a single DECISION symbol fully representing
the overall function of those 20 instructions, though none
of them may be a DECISION instruction, or several of
them may be subsidiary DECISIONS. The essential func
tions of the program, by this mechanism, are set forth
in the flow chart with as much detail as the programmer
may desire to show. The significance of the processing
details may be incorporated in statements of COM
MENTS, which can be set forth in a NOTE or TEXT.
The COMMENTS field also permits the carrying of labels
for DECISION symbols, since the branch conditions may
not be readily apparent from the details of instructions
that are edited. Likewise, the COMMENTS field serves
as a vehicle for destination tags for branch and transfer
instructions, since these tags may not be always avail
able from the operands due to the editing process. The
COMMENTS of explanation of the program may be as
long as desired, and a mechanism appends continuation
COMMENTS to preceding records and edits these COM
MENTS so that variable size symbols for PROCESS,
NOTE and TEXT can be drawn and set forth in the flow
chart.

This invention may also be used to interpret assembly
language programs without the use of special codes for
the flow chart symbols. The instructions themselves may
be interpreted to develop process, unconditional transfer,
and branch instruction symbols. In addition, the com
mentary customarily provided in an assembly language
program may be extracted to present NOTES and the
contents of PROCESS symbols. Where the symbol codes

3,533,086
55

are not used, the resulting flow chart may contain a
good bit of detail that is not ordinarily required; how
ever, some editing of the program can be obtained. For
2xample, where a DECISION is formed by two or more
individual instructions such as "compare” and "condi
tional transfer,' appropriate techniques may be used for
combining those instructions as a single flow chart sym
bol. Similarly, where a long string of PROCESS instruc
tions occur, the individual instructions may be set forth
in one PROCESS box with suitable separations between
the individual instructions; thereby, a great deal of flow
chart space is not wasted on the separations and con
nectigg lines between PROCESS symbols. In addition,
a programmer versed in a particular assembly language
program may perform a small amount of editing by
marking certain instructions, or groups thereof, with a
"delete' code symbol to avoid unnecessary detail in
the final flow chart.
A mechanism is also provided to illustrate on the flow

chart the allocation data (page and box number) of all
branch and transfer instructions which are the origin sym
bols for a particular tagged symbol on the chart. There
by, the chart furnishes cross references to all of the origi
nating points from which a particular branch or other
chain stems. The cross reference list furnishes a full
listing of such originating points. Connecting lines can
be drawn between symbols on the same page if conflicts
do not exist; the program mechanisms attempt to draw
lines in the available lanes starting from one coordinate
point of a page and attempting to go to the other. If
such connecting lines cannot be drawn, then cross refer
ences are set forth on the chart.
Any of various types of output devices may be used to

develop a record of the flow chart. The record may be
a printed page made by a line-at-a-time printer or a ;
digital plotter printer, or a momentary display record or
a permanent photographic record made by a cathode ray
tube or similar display device. The record may also be a
magnetic tape recording of the corresponding page format.
The page format may take various forms: for example,

the arrays of main flow and branch chain symbols may
be set forth in parallel columns (or rows) interrelated
in a two-dimensional chart by means of connecting lines
or cross references; alternatively, main flow columns and
branch rows (and sub-branch columns) may be used
to develop the two-dimensional chart, as may any other
suitable arrangement of Symbol arrays. This invention
is not limited to a fixed format of a columnar page;
for example, with a cathode ray tube display, the magnifi
cation may be varied to permit different sizes of col
umns and individual symbols. The magnification for dif
ferent sections of a column or of a page can be varied
so that a low magnification can be used to fit a long
chain in a column, and the magnification can be varied
to determine the spacing between the symbols or columns
to achieve the most suitable presentation for an indi
vidual page.
As described above, this invention may be used to de

velop flow charts from input programs written in any
desired program language, including assembly and higher
order languages. The invention is also adaptable to vari
ous types of computers including those having large and
small memory capacities.
As previously noted, the stored-program embodiment

of this flowcharting invention described above is preferred
in that it is comparatively less expensive to construct
than a fixed-program or hardware embodiment in the
present state of the art. A stored-program processor such
as that of FIGS. 8/1-8/30, or the more specifically de
tailed RCA 501 program noted below, enables one to
modify, enlarge or simplify the system or any part there
of without rewiring the circuitry and changing any other
hardware portion of the system.
The flowcharting processor of FIGS. 8/1-8/30 is not

dependent on any particular form of computer. It may
be used as the basis for providing a stored program for

5

10

2 5

30

4)

5 5

50

()

56
any of a number of specific general-purpose computers
that are available, and the RCA 501 program set forth
below is one such example; other computers for which
such programs have been provided include the IBM 360,
1401 and 7090, Honeywell 200 and the RCA Spectra.
A general-purpose computer, as an elementary infor

mation-transformation machine or apparatus, has a built
in capability limited to the execution of basic instruc
tions such as add, subtract, compare, branch, etc. The
stored-program embodiment of this invention converts
the general-purpose computer into a special-purpose or
extended machine having a unique operation sequence or
process. Thereby, the programmed computer takes on the
character of the flowcharting processor (program) that
controls and directs the operation of the computer's hard
ware processor. For example, the flowcharting program
for the RCA 501 set forth below converts the RCA 501
computer into a flowcharting computer machine during
the time it is controlling and directing the computer. In
that general-purpose computer, and generally in others,
the logic and control circuits for performing the various
instructions of the machine are time shared. The control
signals of a stored program embodiment of this inven
tion specify the particular instruction or instruction com
bination to be carried out at each instant in a specific
and interrelated sequence. Thus the program's signal com
binations physically initiate the operation of various ones
of the computer's logic and control circuits, and direct the
activation and deactivation of the computer's circuits and
devices in certain sequences and relationships physically
determined by the signal combinations of the program.
The interrelations of the circuits, their operations, and

the control signals of the stored flowcharting program
retermine the unique character of the computer as a
flowcharting machine when it is so programmed. The
flowcharting program acts as a control mechanism for
the general-purpose computer to establish the configura
tion of machine operations that form the process of this
invention. The flowcharting program as a control mecha
nism also determines a particular machine configuration,
which is uniquely established while that program is in
control; that is, the aforementioned mechanisms for auto
matically producing flow charts are established by various
Sequencies of particular instructions and by various com
binations of those sequences. The machine system for
making two-dimensional flow charts incorporates, for ex
ample, the mechanism for pulling branch sequences of
Symbols for display on the same page as the main flow
Sequence; the mechanisms for developing symbols, and
the sequences of the symbols; the allocation mechanisms:
the mechanism for pulling the sub-branch chains; the
cluster mechanisms; the editing mechanisms; the layout
mechanisms. These mechanisms are combined to form
a special-purpose mechane, which in an illustrated em
bodiment is a stored-program controlled general-purpose
computer.
This invention may also be embodied in various forms

of fixed or wired program embodiments. For example,
a program form of this invention, similar to the RCA
501 program noted below, may be established in a read
only type of memory for use in those computers employ
ing Such memories for the control program. This “firm
Ware' embodiment of the invention is constructed and
operates in the same way, in all material respects, as
the Stored-program embodiment described above; the
term "firmware' indicates the relatively permanent char
acter of the sequence control formed by the program in
a read-only memory as contrasted to the "software' em
bodiment of the program temporarily written in a read
write memory.

Another form of construction of the invention may
employ a read-only memory to establish a macro-instruc
tion embodiment of the invention; the physical removal
of one read-only memory with its program and the re
placement by another changes the computer's control

3,533,086
57

mechanism. Each of the different blocks of FIGS. 8/1-
8/30 may be separately constructed and identified as
a macro-instruction. That is, each such block represents
a sequence of basic machine operations that are required
to carry out the overall opearition of each block as shown
in the drawing and as described in the specification. In
addition, each block represents the control mechanism
or macro-instruction for directing that operational se
quence. It will also be apparent from the detailed RCA
501 program, noted below, how the macro-instruction
for each such block may be constructed. The computer
so constructed has a macro-instruction set composed of
the different types of blocks of FIGS. 8/1-8/30; each
of these macro-instructions controls the computer to per
form the appropriate combination and sequence of basic
machine operations in accordance with the corresponding
sequence of basic instructions that make up the macro
instruction. The macro-instructions of the computer so
constructed with a read-only memory are specific to this
flowcharting invention, and the computer having such a
macro-instruction set has a unique flowcharting configura
tion. The control program for sequencing the macro
instructions calls for each of the individual macro-instruc
tions by an appropriate identification code using stand
ard computer techniques, and the corresponding sequence
of basic instructions is supplied from the read-only mem
ory. The macro-instruction sequence is shown in FIGS.
8/1-8/30 and set forth in the associated description.

In a fully wired embodiment of the invention, each
of the blocks of FIGS. 8/1-8/30 may be constructed as
a separate unit of logic circuitry, which unit includes
And/Or logic circuits, and flip-flop registers and switches
that are interconnected to perform the block's logic. For
example, each such block may be composed of those
portions of the arithmetic unit 104 and control unit 106
that are required to carry out the corresponding machine
operations in association with the common memory 102
to which all such units have access as required and with
the input-output devices. The machine operations corre
sponding to the instructions of the RCA 501 program
noted below may be used for the sequence of operations
composing each such block, and the corresponding RCA
501 logic circuits or any other suitable form may be used
therefor. Each such block has an input connection at
which it receives an activation signal from a preceding
block. Each block has at least one output connection, and
in the case of decision blocks, two or three outputs. These
output connections of each block are connected to the
input connections of other blocks in the manner shown
in FIGS. 8/1-8/30. The circuitry of each block is nor
mally quiescent, and upon receiving an input activation
signal, it proceeds to perform its sequence of basic
machine operations including memory fetches and stores.

5

10

20

30

58
Upon completing the sequence, each block generates an
output signal that is transferred to the succeeding block
as the latter's activation signal, and the latter block pro
ceeds to perform its operations. In the case of a deci
sion block, but a single one of its output connections
receives the signal for activating the next block depend
ing upon the results of the comparison or decision op
eration that is performed. Thereby, a single block is ac
tive at any instant, the sequence of active blocks is in
accordance with the description of FIGS. 8/1-8/30.

In this way, a hardware embodiment may be constructed
of a serially operating computer having the operational
and control relationships shown in FIGS. 8/1-8/30. The
latter are schematic block diagrams of different portions
of such a flow-charting computer with the inputs and out
puts interconnected in the manner illustrated. Other hard
ware embodiments may be constructed. For example, each
of the RCA 501 instructions may be provided by a sep
arate unit of logic; in addition, a wired sequence control
unit is connected to all of said logic units and establishes
their operating sequence in accordance with the RCA 501
program noted below. Such a sequence control unit is re
sponsive to the completion of the operation of each unit
for initiating the operation of the succeeding one, and
similarly responsive to the various alternative results of
the operation of a decision unit for initiating the operation
of the proper one of the associated succeeding units. Thus,
equivalent software, firmware and hardware embodiments
of this invention may be constructed in accordance with
its principles.

Various other modifications of this invention will be
apparent to those skilled in the art from the above de
scriptions of illustrative forms of this invention. The ap
pended claims are intended to cover such modifications as
are encompassed by the scope and spirit of this invention.
Appended hereto is a print-out of a complete program

of one form of this invention known as the "Autoflow"
Documentation System. This print-out is written in an
assembly language known as the "RCA 501 EZCODE
Assembly System, and also in machine language produced
by an assembly of the former. This program, when as
sembled into machine language for the RCA 501 Elec
tronic Data Processing System, directs the operation of
that computing machine in accordance with the invention
and particularly with the form of the invention described
above in connection with FIG. 8. A detailed flow chart
of that form of the invention, was produced automatically
by an RCA 501 computing machine using the appended
assembly language program as input data and using that
program in machine language form to direct the operation
of the machine. Copies of the appended program and of
the aforementioned flow chart have been deposited with
the U.S. Register of Copyrights.

ASSEMBLY LANGUAGE AND MACHINE LANGUAGE PROGRAM-RCA 501
NAME AUTOFO Ndx 4 door so DAYE 11 13 PAGE of

Pro GRAM lock 000 MSC 029 to Sc Q26 OT
PROGRAW lock ool sc oogood LSC 00s 457
PROGRAM Block 002 sc oo 470 sc 02O is 7
PROGRAM lock 003 his do a to sc or 777
PROGRAw allock of 4 MSc or a 43d Sc sy
PRn GRAM sock Oos MSc oof 450 SC 022
PRGRA''' Block does MSc oogooo Lsc oO 2017
PROGRA" lock 007 is do 470 Sc 0 1 1 047
PROGRAM lock ode MSC do 25) SC, OO2527

A F. Au Tr. FLO (x 400's (DATE 1865 PAE
PR GRA', slick OC ST : * T S AT f 25 ,
2s. 4f 4, 5 & 45 535 b & 6

0.252 r. r" in C.
or 23 l n n or 1.
c 254 on or Yi
on 25s r () o 0 if 1 r.
a 25 to ro 0.2s t t if cond (0.

257 r so on to C C r ? 11
oc 2 in to Do or r 72 c or (?o

NAME AUTFOw , DB X 400 Orso SEG D A E 1 & 5 PAGE do
HS OP A SEO N TAG OP A At RESS N" ACRESS cd MMENTS

99 Dr.G PD 4r OS 95Q. 0.03000 77777 Auf (Few

3,533,086
94 93

:) Q 1 0 1 0 til

s as a 3 r is ks

e

k

i £

t 0 0 0 0 0
4 4 1 0 1 0 ? 4:

z 0 0 0 0 0

44
! 09.000

! 0

R it is st

0000000000000 000 Qð Qoo@

NAF,

