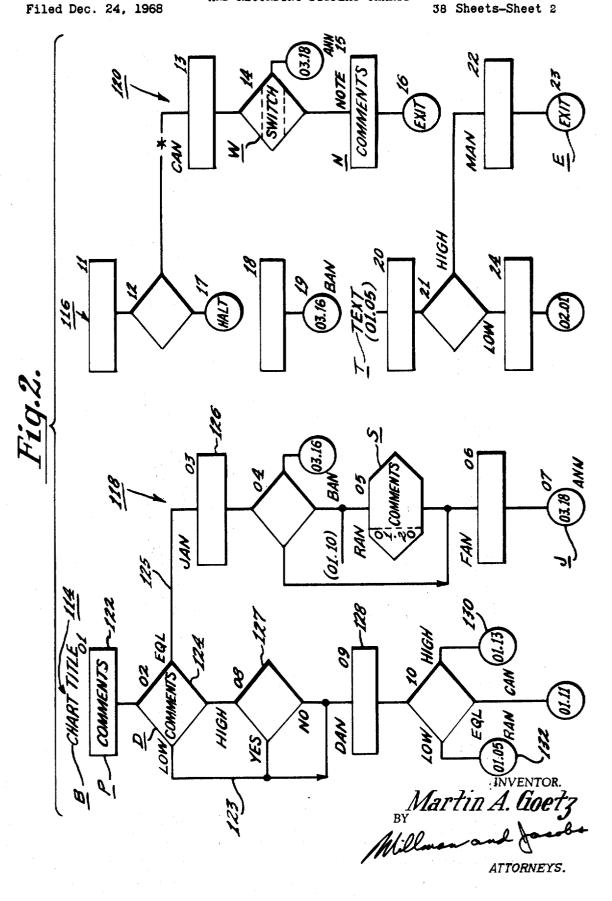

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS


38 Sheets-Sheet 1

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

38 Sheets-Sheet 2

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

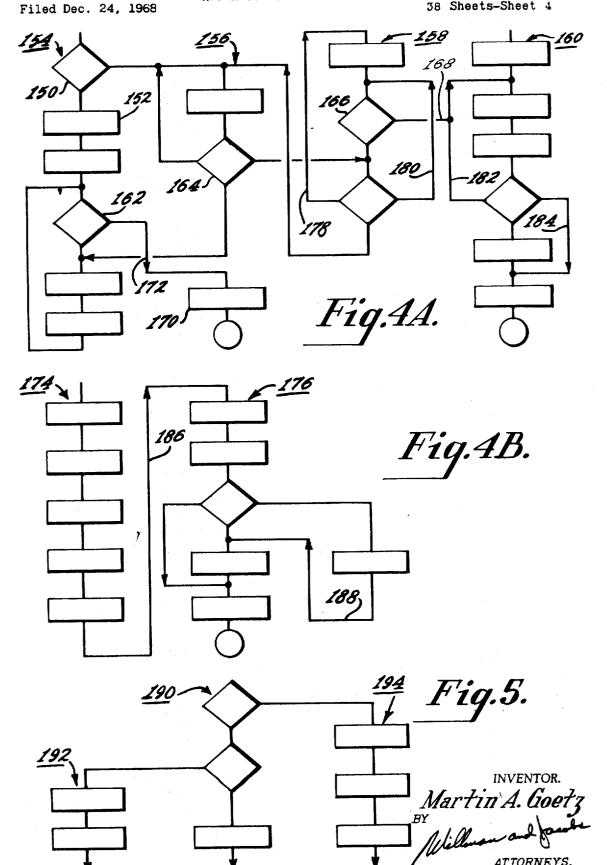
140,

38 Sheets-Sheet 3

Filed Dec. 24, 1968

Fig.3.

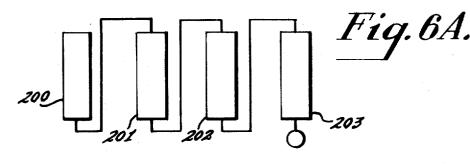
PHASE I INPUT, EDIT	 a. DISTINGUISH LOGIC OPERATIONS b. ESTABLISH LOGIC CHAINS c. CREATE CHAIN TABLE d. FORM EDITED RECORDS e. CREATE TAG TABLE
	142
PHASE II ALLOCATION	 c. COMPLETE TAG TABLE b. ALLOCATE MAIN FLOW CHAINS c. DETERMINE SUITABILITY OF BRANCH CHAINS AND ALLOCATE AFTER MAIN FLOW DECISIONS e. ESTABLISH CONNECTORS
144	
PHASE III LAYOUT PRINT CHART	 d. PRINT TABLE OF CONTENTS b. LAYOUT MAIN FLOW SYMBOLS c. LAYOUT BRANCH CHAIN SYMBOLS AFTER MAIN FLOW DECISIONS d. ESTABLISH CONNECTION LINES, SYMBOLS AND CROSS-REFERENCES e. PRINT PAGE
146	
PHASE IV CROSS-REFERENCE LIST	 a. SORT TAG NAMES IN TAG TABLE b. APPEND REFERENCES TO TAGS c. PRINT LIST

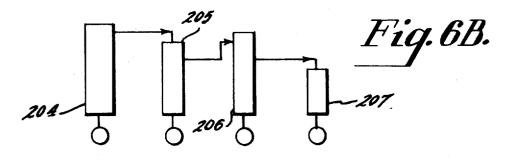

INVENTOR. Martin A. Gootz By Million and

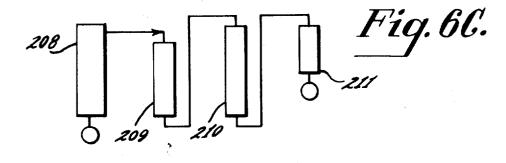
M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

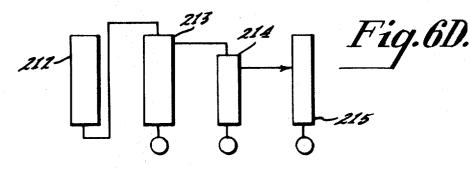
3,533,086

ATTORNEYS.


38 Sheets-Sheet 4




M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 5


3,533,086

Filed Dec. 24, 1968

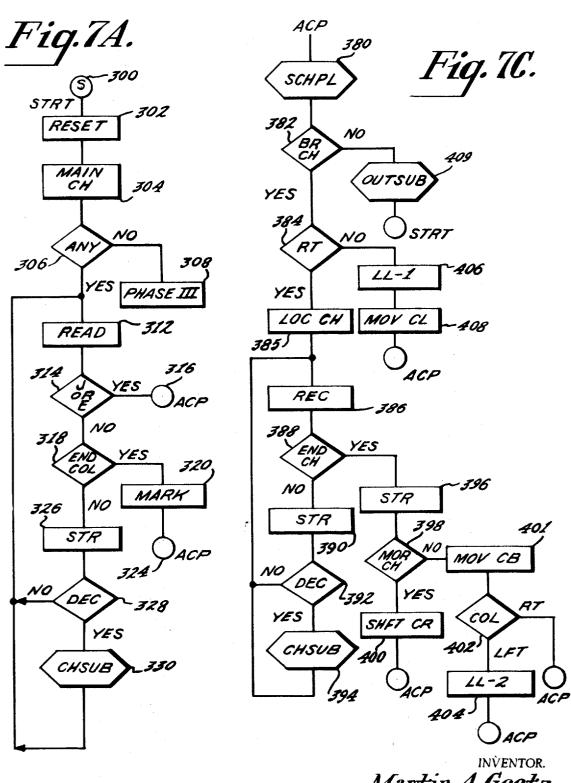
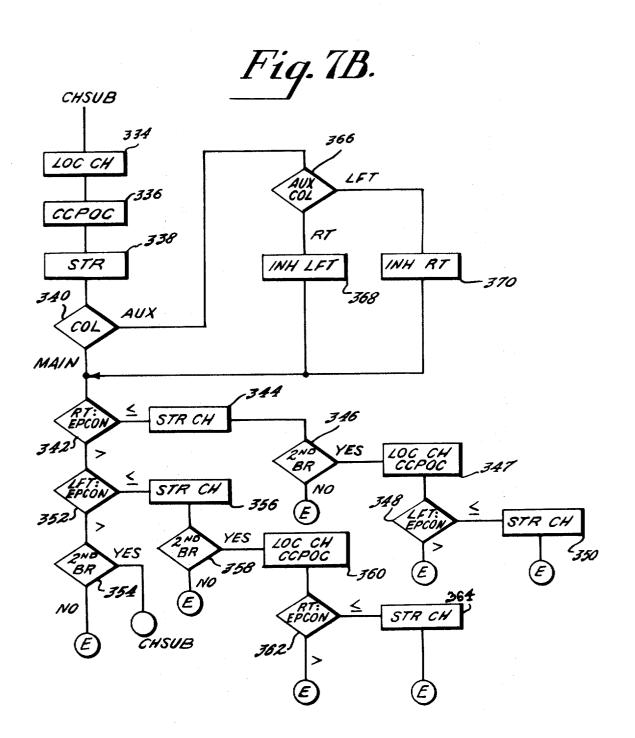

211 216 219

Fig.6E. INVENTOR. Martin A. Goetz By Milloum and Jacobs ATTORNEYS.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

38 Sheets-Sheet 6

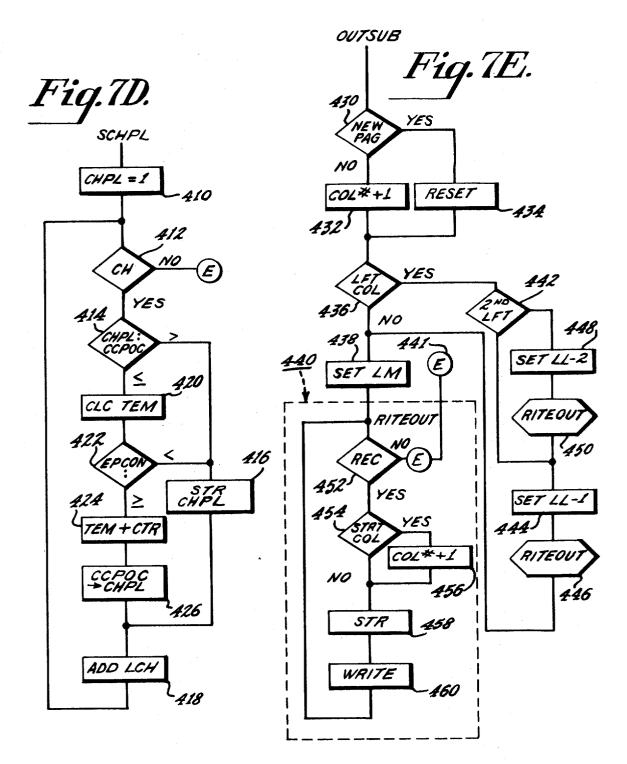


INVENTOR. Martin A. Goet 3 By Million and Josef ATTORNEYS.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

38 Sheets-Sheet 7



INVENTOR. Martin A. Goetz By Millman and - " ATTORNEYS.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

38 Sheets-Sheet 8

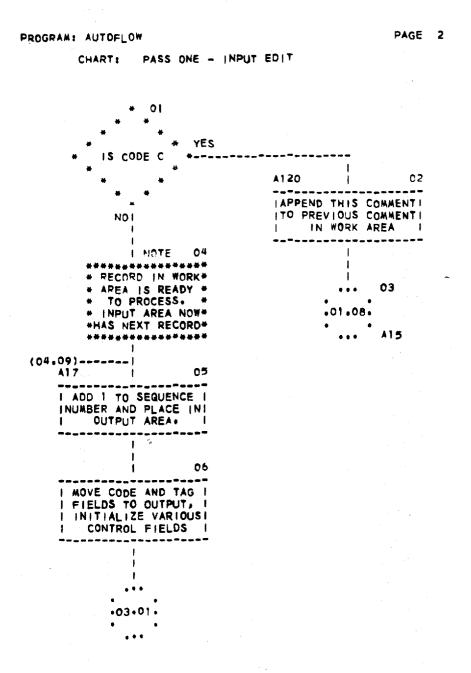
Martin A. Goetz By Millmon and Jacks ATTOENEYS.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

38 Sheets-Sheet 9

Filed Dec. 24, 1968

Fig.8/1


PAGE 1 PROGRAMI AUTOFLOW CHART: PASS ONE - INPUT EDIT 06 NOTE FUNCTIONS OF PASS ONE ARE TO **** * INPUT AREA NOW* EDIT SOURCE INFORMATION AND HAS RCD TO BE # CONSTRUCT TAG AND CHAIN * PROCESSED # TABLES ********** (04+07)-----01 ---A13 07 1 _ ISET SEQUENCE NUMBERI ----I MOVE ALL FIELDS OFI I COUNTER TO ZERO I ------------AREAS I 1 ----F 02 Ł 1 ____(*)____; A15 I READ FIRST SOURCE I 08 ٨ - 1 RECORD 1 - 1 ----| READ SOURCE RECORDI ------_ --------------1 03 I. _____ STORE TITLE OF I PROGRAM FROM FIRSTI 09 RECORD 1 END YES FILE -IDENTIFIER# 1 04 A10 ... ۰ ----.04.06. I READ SOURCE RECORDI NOI A50 ... 10 05 NO NO VALID V & 1 1D CODE OTHER nw. CHA CODE THAN C YES YES 02.01.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

38 Sheets-Sheet 10

Filed Dec. 24, 1968

Fig.8/2

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

PASS ONE - INPUT EDIT

3,533,086

38 Sheets-Sheet 11

Filed Dec. 24, 1968

Fig.8/3

PROGRAMI AUTOFLOW

CHARTE

PAGE 3

C1 YES CODE A60 02 CREATE SPECIAL TAGE L. TABLE ENTRY FOR TABLE OF CONTENTS CHART TITLE NO 1 1 ł 04 03 RECORD YES TAG .03.05. 1 A20 .05.01 NÖ A70 ... (03.03+)---I 05 A20 I EDIT COMMENTS INTOI LOGICAL LINES AND I MOVE TO DUTPUT AREA. A SEPARATE 1 PATH IS USED FOR EACH TYPE OF CODE I ----05 1 COMPUTE NUMBER OF I ŧ . ILINES OF FLOW CHARTI REQUIRED BY THIS - 1 SYMBOL 04.0 ...

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

38 Sheets-Sheet 12

Filed Dec. 24, 1968

Fig.8/4

PAGE 4 PROGRAM: AUTOFLOW CHARTE PASS ONE - INPUT EDIT 01 A45 06 ADD NUMBER OF LINESI FOR THIS CHAIN OF I END SWITCH FLOW ---.06.07. 02 A130 ... YES OR 07 S CODE 1 .01.07. A13 .05.04. NO I A80 ... 1 (05.07) ----A30 03 END OF INPUT DATA YES (01.09) A50 08 OR E CODE *---1 1 -SET END OF PASS . . 1 SWITCH .06.04 . NOI A110 +++ (06.06) - 1 A40 04 09 1 WRITE RECORD TO OUTPUT TAPE .02.05. 1 1 A17 I NOTE 05 ****** +END PASS SWITCH+ ********** .04.06

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

38 Sheets-Sheet 13

PAGE 5

.06.01.

ł

.04.03.

07

A30

Filed Dec. 24, 1968

Fig.8/5

PROGRAMI AUTOPLOW

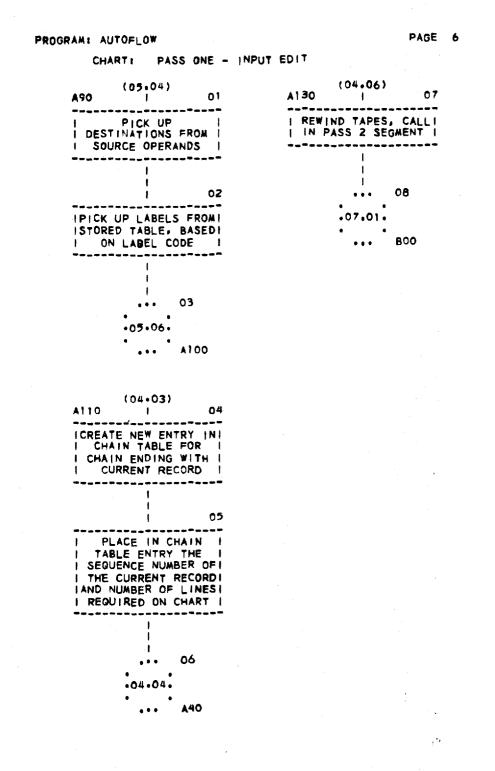
CHARTE PASS ONE - INPUT EDIT

INPUT RECORD HAS A TAG

)

(03.04) A70 I OI CREATE TAG TABLE I CREATE TAG TABLE I CREATE TAG TABLE I CREATE TAG TAG TAG, SEQUENCE I NUMBER, AND I ASSEMBLY LINE I NUMBER OF THIS I RECORD I MOVE TAG TO TAG I FIELD OF DUTPUT I RECORD I	(04.02) 1 A80 * 04 * DOES * * COMMENTS * NO * CONTAIN * * ASTERISK * 1 * FIELD *
03 .03.05. A20	(06.03) A100 06 I MOVE LABELS AND I I DESTINATIONS TO I I OUTPUT I
·	÷

D. J. W. OR S CODE NO *---÷


ц,

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

38 Sheets-Sheet 14

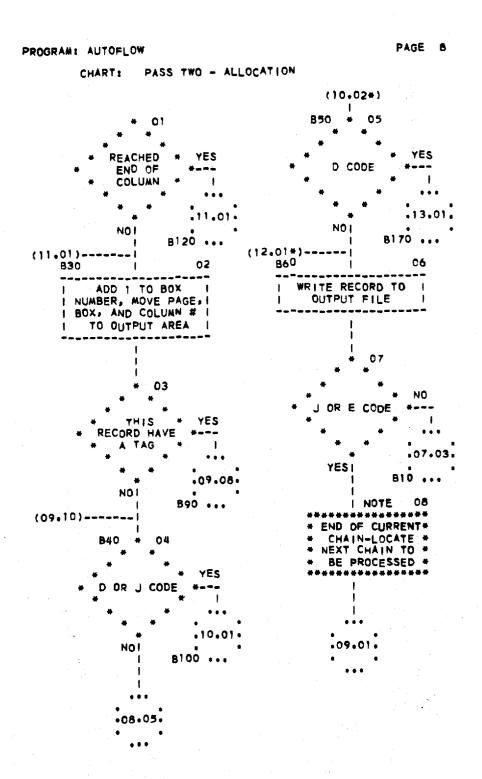
Fig.8/6

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 15

3,533,086

Filed Dec. 24, 1968

Fig.8/7


PAGE 7 PROGRAMI AUTOFLOW PASS THO - ALLOCATION CHART: 05 FUNCTION OF THIS PASS IS TO COMPLETE CONSTRUCTION OF TAG TABLE AND ASSIGN FLOW CHART YES POSITIONS TO ALL SYMBOLS B CODE ł (06+08) 01 800 1 -------.12.09. SET LOCATOR TO 1 Ł POINT TO FIRST NO 1 B167 ENTRY IN CHAIN ... 1 (12.02)-TABLE 1 06 B20 I ---I SET LINE NUMBER OFI I THIS RECORD EQUAL I ITO CURRENT VALUE OFI 02 LINE COUNTER ISET PAGE AND COLUMNI 1 I NUMBER TO ONE, BOXI I NUMBER TO ZERO, I ILINE COUNTER TO ONE! 07 I NOTE -****** 1 LINE NUMBER OF* A SYMBOL FIXES* * (05+07#) B10 03 # 1 +ITS POSITION IN+ --------A COLUMN . READ INPUT RECORD I FROM PASS 1 OUTPUTI **** 1 FILE 08 ADD NUMBER OF LINESI 04 4 SYMBOL TO LINE COUNTER 1 1 END YES FILE IND CATOR * Ł09.06. 46 .08.01. NO B8007.05.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 16

3,533,086

Filed Dec. 24, 1968

Fig.8/8

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 17

3,533,086

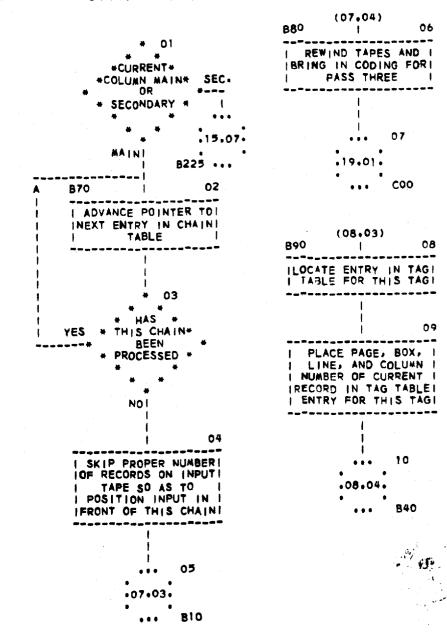

Filed Dec. 24, 1968

Fig.8/9

PROGRAM: AUTOFLOW

PAGE 9

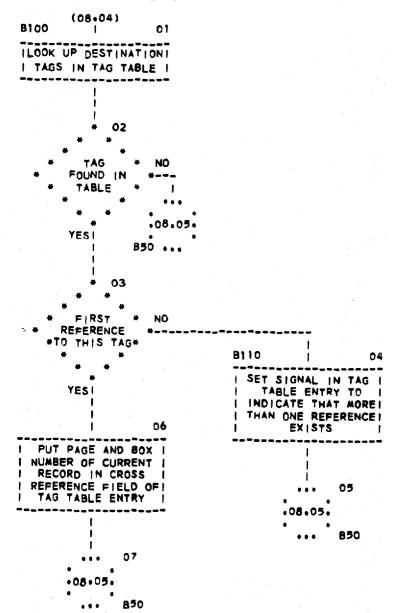
PASS TWO - ALLOCATION CHARTE

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

Filed Dec. 24, 1968

38 Sheets-Sheet 18

3,533,086

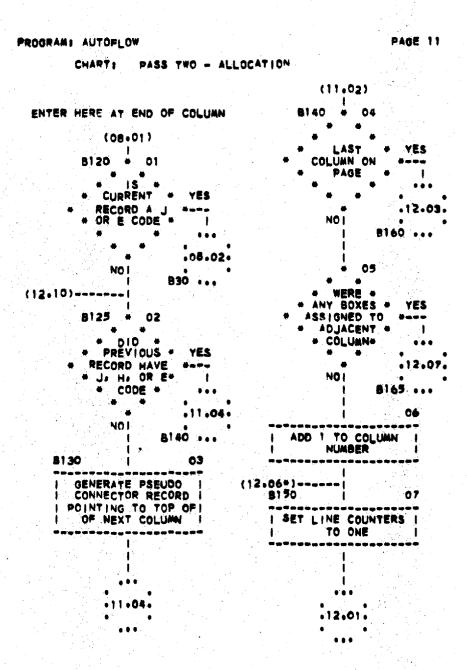

Fig.8/10

PROGRAMI AUTOFLOW

PAGE 10

CHARTI PASS TWO - ALLOCATION

CHECK FOR "FROM" CONNECTOR


M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

Filed Dec. 24, 1968

38 Sheets-Sheet 19

Fig.8/11

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

38 Sheets-Sheet 20

Filed Dec. 24, 1968

Fig.8/12

PROGRAM: AUTOFLOW

PAGE 12

07

-

I

I.

-

09

ł

t

CHART: PASS TWO - ALLOCATION (11.05) B165 1 01 ADD 2 TO COLUMN 1 NUMBER 1 YES B CODE -1 1 08 ... 08.06 .11.07. NO 860 . . . 8150 . . . 02 (07.05) .07.06. B167 1 **B20** -----I SET COLUMN # TO 4 I TO FORCE END OF ŧ PAGE ŧ (11.04) ----03 B160 ł 1 I ADD 1 TO PAGE 1 1 L 10 NUMBER I. I _____ .11.02. L I B125 04 . . . L ---------SET COLUMN NUMBER I I. TO ONE, BOX NUMBER I TO ZERO 1 ____ - ŧ 1 05 ŧ _ _ _ WRITE END-PAGE RECORD TO OUTPUT 1 I I ł TAPE I I ŧ ł 06 +11+07+

B150

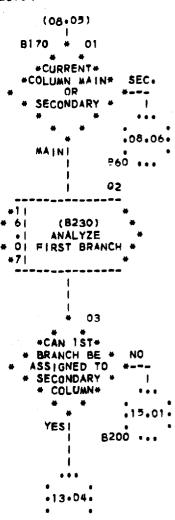
M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

PASS TWO - ALLOCATION

3,533,086

Filed Dec. 24, 1968

38 Sheets-Sheet 21


Fig.8/13

PROGRAM: AUTOFLOW

CHARTE

PAGE 13

ANALYZE DECISION RECORD TO DETERMINE HOW TO SHOW ITS BRANCHES ON THE CHART. A "STATUS INDICATOR" FOR EACH BRANCH IS SET TO EITHER "SECONDARY COLUMN," "CONNECTOR," OR "UNKNOWN." IF "UNKNOWN," PASS 3 WILL DECIDE ON A LINE OR CONNECTOR

04 *11 (B230) * 61 • 1 ANALYZE . OISECOND BRANCH ¥71 ----05 * +CAN 2ND+ BPANCH BE # NO ASSIGNED TO *---SECONDARY # -E COLUNN# ... * # .14.01. YESI 8180 ... 06 . * CODING* 2ND FOR WHICH BRANCH IS *---CLOSER 115.04. 1STI 8210 ... 07 ۰ SET STATUS BRANCH TO "CONNECTOR" .14.01. ...

1.4

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 22

3,533,086

Filed Dec. 24, 1968

Fig.8/14

PROGRAM: AUTOFLOW

PAGE 14

۲

CHARTI PASS TWO - ALLOCATION

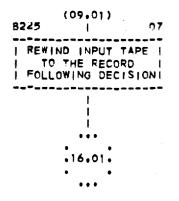
(13+05)	24
B180 I 01	05
I SET STATUS I	SET INDICATOR TO I
I INDICATOR FOR 1ST I	I SHOW THAT A I
I BRANCH TO I I "SECONDARY COL" I	ISECONDARY COLUMN ISI I BEING FILLED I
1	!
(15.06)1 B190 I 02	07
I WRITE DECISION I	ISTORE CURRENT VALUE
I RECORD TO OUTPUT I I FILE I	I OF LINE COUNTER I
	1
	1 03
03	
	IREDUCE LINE COUNTERI
IPOSITION INPUT TAPE! I in front of first i	BY 6 TO GET LINE #1 OF FIRST SYMBOL
RECORD OF CHAIN	I GOING INTO I
WHICH IS TO BE	SECONDARY COLUMN I
I ASSIGNED TO THE I I SECONDARY COLUMN I	₩ <u>₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
i Secundary Culumn i Perperanalari	
!	I NOTE 09
1 04	* GO PROCESS *
***************	* CODING FOR *
ISET SIGNAL IN CHAINI	* SECONDARY *
I TABLE ENTRY THAT I Ithis chain has been i	* COLUMN. FIRST* * J OR E CODE *
I PROCESSED I	* ENDS CHAIN AND*
	PROGRAM RETURNS
	* TO TAG 8225 *
05	1
	1
I ADD ONE TO COLUMN I I Number I	
***	• •
	.07.03.
i	••• B10
• • •	
.14.06.	
al zame	

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

Fig.8/15

PROGRAM: AUTOFLOW


PAGE 15

38 Sheets-Sheet 23

CHARTE PASS TWO - ALLOCATION

B200 1 01	(13+06) B210 04
*11 * *61 (8230) * * 1 ANALYZE * * 01SECOND BRANCH * *71 *	I SET STATUS I I INDICATOR FOR IST I BRANCH TO I I "CONNECTOR" I
	(15.02) B220 05
# 02 # # *CAN 2ND# * BRANCH BE * YES * ASSIGNED TO * * SECONDARY * 1 * COLUMN* * * * 15.05 NO1 B220 *	I SET STATUS I I INDICATOR FOR 2ND I BRANCH TO I I "SECONDARY COL" I I 06 .14.02.
03 • 08 • 06 •	•••• B190
, 860	RETURN AFTER PROCESSING

CHAIN FOR SECONDARY COLUMN

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 24

.

3,533,086

Filed Dec. 24, 1968

Fig.8/16

PROGRAM: AUTOFLOW

PAGE 16

CHARTE PASS TWO - ALLOCATION

NOTE 01 ******************* * RETURN FROM * * PROCESSING * * CHAIN IN * * SECONDARY * * COLUMN RECORD,* * COLUMN RECORD,* * CONTINUE * * PROCESSING * *CODING FOR MAIN* * COLUMN *	SUBROUTINE TO ANALYZE A CHAIN OF CODE BRANCHING FROM A DECISION SYMBOL. PURPOSE OF THE ANALYSIS IS TO DETERMINE IF IT IS POSSIBLE TO ASSIGN THE CHAIN TO A SECONDARY COLUMN. (13.02+) B230 07 I SET EXIT FROM I I SUBROUTINE
02	
I RESTORE LINE I I COUNTER TO ITS I I VALUE PRIOR TO I I PROCESSING I I SECONDARY CODING I	ILOOK UP DESTINATIONI TAG IN TAG TABLE I
I O3 I RESET INDICATOR TOI I SHOW THAT A MAIN I I COLUMN IS AGAIN I I BEING FILLED I	* 09 * * * TAG * NO * FOUND IN * * TABLE * I * *
04	* •17•02• YESI •
I REDUCE COLUMN I I NUMBER BY GNE I	8250 ••• •••
 NOTE 05 **************** * RETURN TO AAIN* * COLUMN * * PROCESSING * ************	•17•01• • • •
••• 06	
••• B10	

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 25

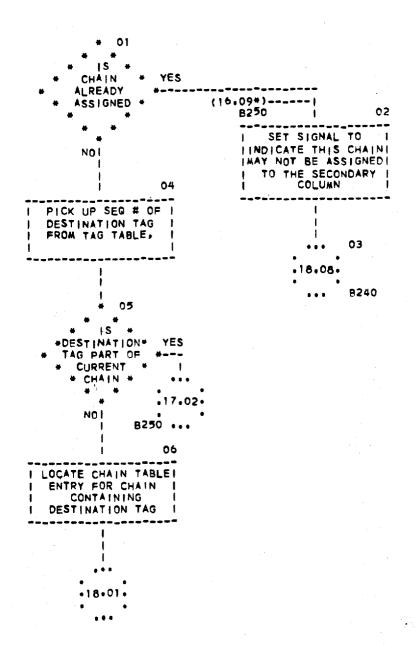

Filed Dec. 24, 1968

Fig.8/17

PROGRAM: AUTOFLOW

PAGE 17

PASS TWO - ALLOCATION CHARTE

3,533,086

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 26

3,533,086

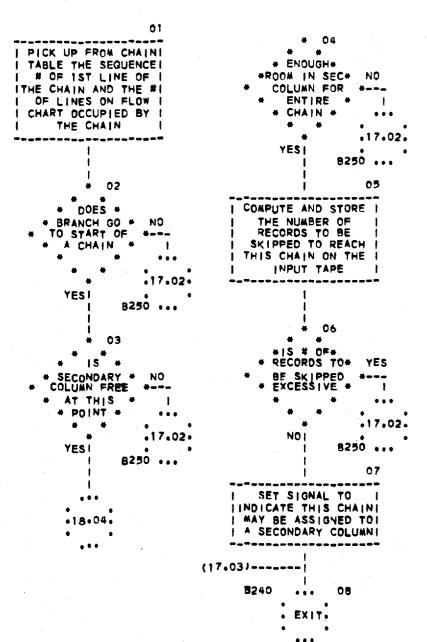

Filed Dec. 24, 1968

Fig.8/18

PROGRAM: AUTOFLOW

PAGE 18

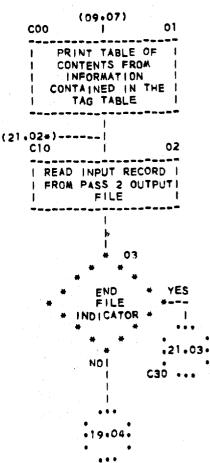
CHARTE PASS TWO - ALLOCATION

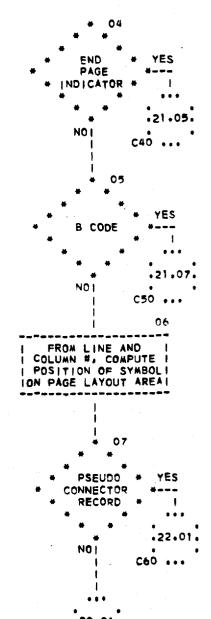
M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 27

PASS THREE - LAYOUT

3,533,086

Filed Dec. 24, 1968


Fig.8/19


PROGRAM: AUTOFLOW

CHARTE

PAGE 19

THE FUNCTION OF THIS PASS IS TO PRODUCE THE ACTUAL FLOW CHARTS, USING INFORMATION DEVELOPED BY THE EARLIER PASSES. A PAGE OF CHART IS DEVELOPED AT A TIME, WITH THE ENTIRE PAGE BEING STORED IN MEMORY.

20

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

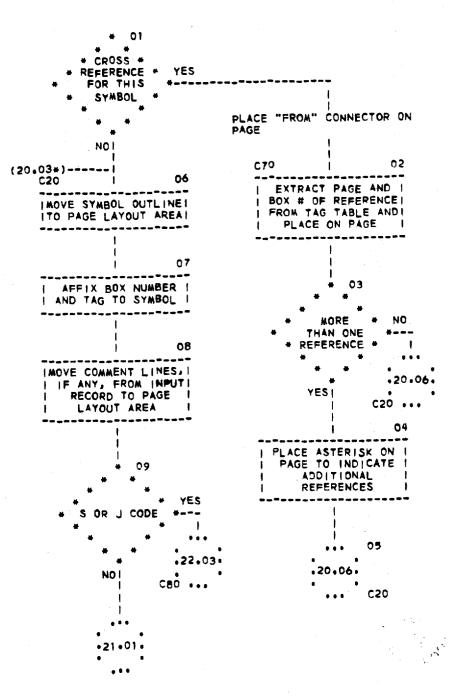

38 Sheets-Sheet 28

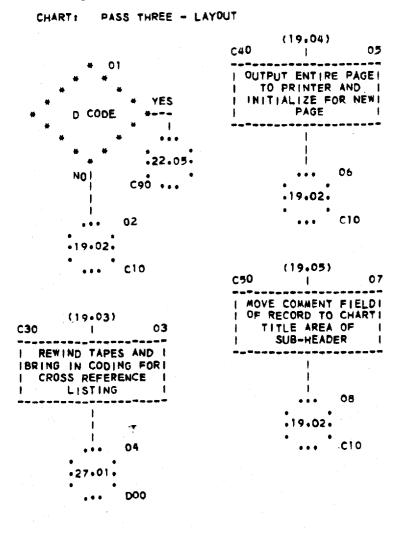
Fig.8/20

PROGRAM: AUTOFLOW

PAGE 20

CHART: PASS THREE - LAYOUT

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 29


3,533,086

Filed Dec. 24, 1968

Fig.8/21

PROGRAMI AUTOFLOW

PAGE 21

1498

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

38 Sheets-Sheet 30

PAGE 22

Filed Dec. 24, 1968

Fig.8/22

PROGRAM: AUTOFLOW

CHART: PASS THREE - LAYOUT

	(19	•07)		
C60		I		01
	PLACE			1
	ECTOR			
	DEST			
	TAINE			
1		CORD		ī.
		ł		
		1	02	
	•	••		
	•19	.02.		
	•	•••	C10	

(20.09)

I.

TAG TABLE AND PLACEI I INSIDE SYMBOL I

...

.19.02.

EXTRACT PAGE AND I BOX # OF I DESTINATION FROM I

04

C10

03

C80

PROCESSING OF DECISION RECORUS

EACH DECISION RECORD HAS A MAXIMUM OF TWO BRANCHES WHICH MUST BE ANALYZED FOR SHOWING CONNECTION.

	(21.01)	
C90	1	05
I SE.	I LEFT AND RI	GHTI
1 5	IDE SIGNALS T	0
1	"OFF"	1 I.

.23.01.

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086

Filed Dec. 24, 1968

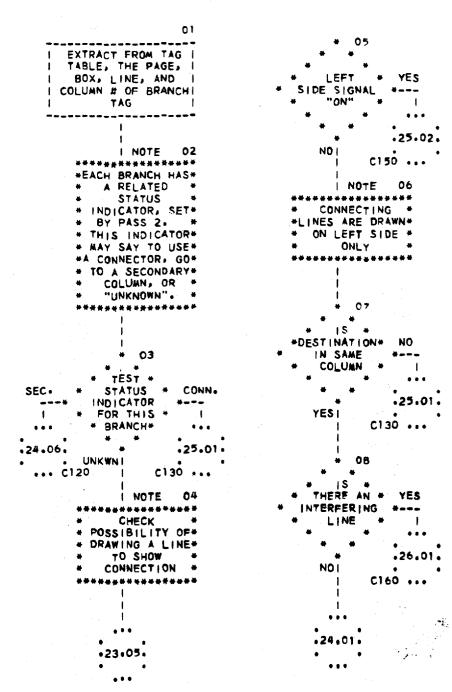

38 Sheets-Sheet 31

Fig.8/23

PROGRAM: AUTOFLOW

PAGE 23

CHART: PASS THREE - LAYOUT

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 32

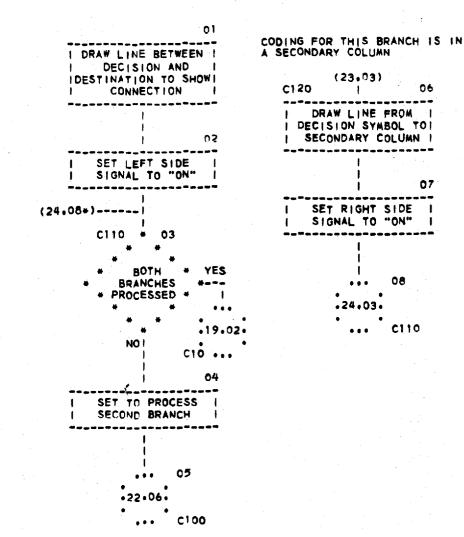

Filed Dec. 24, 1968

Fig.8/24

PROGRAM: AUTOFLOW

PAGE 24

CHART: PASS THREE - LAYOUT

3,533,086

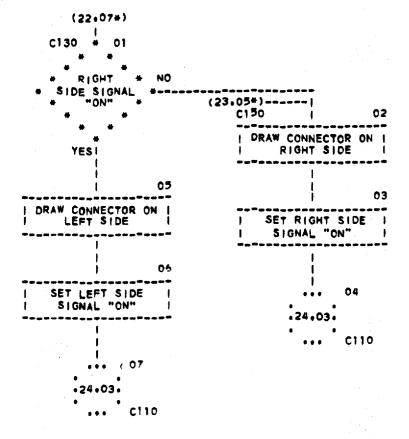
M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

38 Sheets-Sheet 33

Filed Dec. 24, 1968

Fig.8/25


PROGPAME AUTOFLOW

PAGE 25

ر آن ایسی میکند

CHARTI PASS THREE - LAYOUT

USE A CONNECTOR TO SHOW CONNECTION

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 38 Sheets-Sheet 34

3,533,086

Filed Dec. 24, 1968

Fig.8/26

PROGRAM: AUTOFLOW

PAGE 26

CHART: PASS THREE - LAYOUT

INTERFERING LINE

(23+08)	
C160 + 01	
* *	
+IS LINE+	
+ GOING TO + SAME	* NO
+DESTINATION	* 1
• •	
	.25.01
YESI	• •
i c	130 •••
	02
******	****
I DRAW CONNECTI	
I BETWEEN THIS L IAND DECISION SY	
************	****
0	3
• • • • • • • • • • • • • • • • • • • •	
• • •/ C	110

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

38 Sheets-Sheet 35

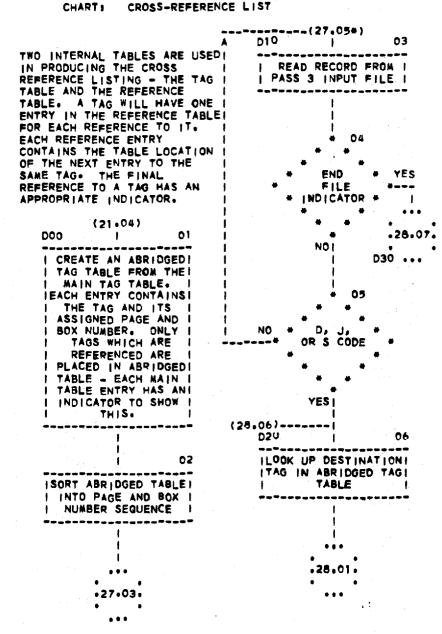

Filed Dec. 24, 1968

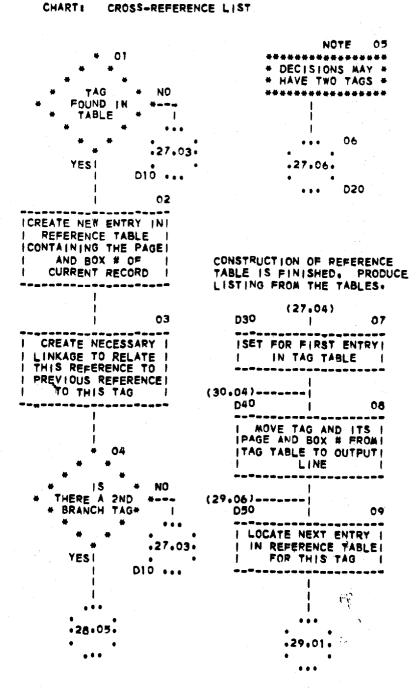
Fig.8/27

PROGRAMI AUTOFLOW

CROSS-REFERENCE LIST

PAGE 27

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS 3,533,086


Filed Dec. 24, 1968

38 Sheets-Sheet 36

PAGE 28

Fig.8/28

PROGRAM: AUTOFLOW

Oct. 6, 1970

Filed Dec. 24, 1968

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

38 Sheets-Sheet 37

PAGE 29

Fig.8/29

PROGRAMI AUTOFLOW

CHARTI

. .

CROSS-REFERENCE LIST

NOTE 01 ************ ٠ * EACH ENTRY HAS* *ADDRESS OF NEXT* REFERENCE TO * SAME TAG * 4 02 IMOVE PAGE AND BOX #1 FROM REFERENCE TABLE ENTRY TO OUTPUT LINE 1 03 OUTPUT YES FULL NF 4 D70 04 I WRITE OUTPUT LINE I NOT 1 (29+05) ----D60 06 05 .29.06. MORE YE\$ REFERENCES D60 #_---THIS TAG* 0 ł .28.09. NOI D5030.01.

Oct. 6, 1970

M. A. GOETZ AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS

3,533,086

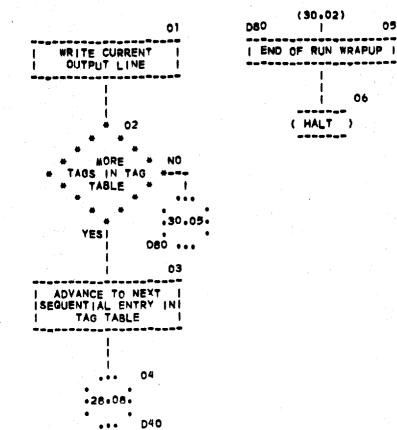
Filed Dec. 24, 1968

38 Sheets-Sheet 38

Fig.8/30

PROGRAM: AUTOFLOW

PAGE 30


05

06

>

, P

CROSS-REFERENCE LIST CHART:

United States Patent Office

1

3,533,086 AUTOMATIC SYSTEM FOR CONSTRUCTING AND RECORDING DISPLAY CHARTS Martin A. Goetz, Princeton, N.J., assignor to Applied Data Research, Inc., a corporation of New Jersey Continuation-in-part of application Ser. No. 512,113,

Dec. 7, 1965. This application Dec. 24, 1968, Ser. No. 786,782 Int. Cl. G06f 9/06

U.S. Cl. 340-172.5

5

ABSTRACT OF THE DISCLOSURE

A data processor system for automatically making twodimensional flow charts forms chain sequences of the 15 flow chart symbols and allocates the symbol chains in parent and branch and sub-branch sequences as clusters to successive flow chart pages.

BACKGROUND OF THE INVENTION

This invention relates to a system for automatically constructing and recording display charts and particularly flow charts representative of control systems for digital computers.

This application is a continuation-in-part of copending application Ser. No. 512,113, filed Dec. 7, 1965, now abandoned.

Computer programs that are used to control the sequential operations of digital computers are made up of sequences of hundreds or thousands of computer instructions or commands which have complex interrelationships. The relationships of these instruction sequences, whether presented in machine coding or in machine dependent or independent languages, are difficult to interpret, even when they are read by skilled programmers. For that reason the program is generally presented in the form of a flow chart, which graphically presents the logic flow of machine operation and enables the programmer and users of the program to more readily interpret and understand the program. When a programmer constructs a new program he may develop rough sketches of a flow chart prior to implementation of the program, but commonly, such sketches are an inadequate description of the final program that is implemented, which may incorporate numerous changes and revisions. Moreover, a draftsman is needed to convert the sketches to suitable drawings, and the drawings, in turn, should be checked to ensure that no errors have been made in the transcription. Due to the tediousness of making a good flow chart, the pressure of other duties, and changes in personnel, the flow chart documentation of a program by the programmer is often incomplete and inaccurate. Yet, without reliable flow chart documentation, skilled personnel who were not involved 55 in the original design of the program have great difficulty in learning and understanding its construction and operation, and in developing modifications and variations of the program, as circumstances often require. In addition, as a program is updated or revised, procedures are needed for 60 readily updating the flow chart documentation.

SUMMARY OF THE INVENTION

Accordingly, it is among the objects of this invention to provide a new and improved data processing system 65 for automatically producing flow chart documentation of a computer program.

Another object is to provide a new and improved automatic flow chart documentation system for computer programs that automatically produces from a computer 70 program a flow chart which is an accurate and informative graphical representation of the program.

Another object is to provide a new and improved automatic flow chart documentation system for computer programs that relieves the programmer of documentation chores and makes it possible to obtain documentation immediately upon the program being constructed.

Another object is to provide a new and improved automatic flow chart documentation system for computer programs which assists a programmer in debugging the programs that he constructs and in revising the program as 45 Claims 10 may be required.

Another object is to provide a new and improved flow chart documentation system for computer programs by means of generally available digital computers.

Another object is to provide a new and improved method of operating digital computers to produce flow chart documentation of computer programs.

Another object is to provide a new and improved computer programming system for operating stored program computers to produce automatically flow chart documenta-20 tion of other computer programs.

In accordance with an embodiment of this invention a computer program is provided for operating a stored program digital computer to perform the flow chart documentation of other computer programs. The computer program to be documented is in the form of groups or 25 combinations of digital signals that are treated as data by the digital computer when it is operated in accordance with this invention. The digital computer operates on each of the successive groups of data signals represent-30 ing the sequences of instructions or instruction groups of the program to be documented, and determines therefrom what type of instruction is represented and the length of the column display required for presenting each instruction as a diagrammatic block along a column of a 35flow chart. Chains of such blocks between successive transfer types of instructions are established and the length of the chain for display on the flow chart page is determined. Destination tags in the data blocks are identified. and a tag table is developed of those tags and their rela-40 tions to the associated blocks. The locations of successive chains in a main path of the program are allocated to successive columns of the display pages. Branch instructions of those chains are handled specially by identifying the destination (or tagged) chain to which the program branches and, where adequate space is available for the tagged chain in a column adjacent to the column of the main path, allocating the tagged chain to the adjacent column. Chains are allocated in sequential order to the main flow except where branch instructions are encoun-50tered; for the latter, the main path allocation is interrupted to allocate the branch chains. The locations of the connecting paths between blocks in the same and adjacent columns and of connectors to blocks in nonadjacent columns of the same or different pages are established. A display is provided of the interconnected chains with connecting paths where possible to represent paths between blocks in the same and adjacent columns and connector symbols are drawn where such paths cannot be drawn.

In other embodiments, modified forms of the invention are used.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing and other objects of this invention, the various features thereof, as well as the invention itself may be more fully understood from the following description when read together with the accompanying drawing, in which:

FIG. 1 is a schematic block diagram of a data processing system incorporating a control program for flow chart documentation in accordance with this invention;

FIG. 2 is a schematic block diagram of a fragment in putline form of the type of chart that is produced by neans of this invention;

FIG. 3 is a general schematic block diagram of a comuter program embodying this invention and used in the system of FIG. 1;

FIG. 4A and B are schematic block diagrams of outine fragments of a form of computer program flow chart produced in accordance with modifications of this inrention:

FIG. 5 is a schematic block diagram of an outline 'ragment of another form of computer program flow thart produced in accordance with modifications of this nvention;

FIGS. 6A, B, C, D and E are schematic graphical diagrams of flow chart patterns produced in accordance with another modification of this invention;

FIGS. 7A, B, C, D and E are a series of schematic flow chart diagrams that together illustrate graphically details of a modified form of computer program embodying this invention and used in the system of FIG. 1; and

FIGS. 8/1 to 8/30 are a series of schematic flow chart diagrams that together illustrate graphically details of a computer program shown in FIG. 3.

In the accompanying drawing, corresponding parts are 25 identified by similar reference characters throughout.

TABLE OF CONTENTS

	umn	
GENERAL SYSTEM (Fig. 1) FLOWCHART SYMBOLS AND FORMATS (Fig. 2)	- 3	30
FLOWCHART SYMBOLS AND FORMATS (Fig. 2)	- 5	90
PHASES OF FLOWCHARTING SYSTEM (Fig. 3)	1 8	
INPUT DATA Program Logic (Fig. 8)	8	
Program Logic (Fig. 8) PASS-1 (Figs. 8)	9	
TABLE I-OUTPUT RECORD	_ 11	
me or the tree court of the test of test o	1.0	35
Decentry of Individual Codes-Pass I		
H-Code E-Code	15	
N Codo	. 10	
P. Code	. 10	40
6 Codo	. 10	40
T) Clada	. 10	
W Code		
/P Codo	<u>10</u>	
Summary of Pass-I		
PASS II	22	
ENDCOL Subroutine	22	
TABLE IV, PSEUDO-CONNECTOR RECORD	23	45
PASS II ENDCOL Subroutine TABLE IV, PSEUDO-CONNECTOR RECORD B-Code Processing DECISION Branch Processing	_ 23	
DECISION—branch logic continued	- 40	
Secondary-column Processing	- 41	
DACCIT	- 40	
Page Loyout	<u>A</u> a	50
Detailed Processing. B-Code.	31	
J-Code	31	
F Code	<u>9</u> 1	
U Codo	91	
P Code	. <u>~</u> 91	~ ~
N Code	شلك	
S Code	32	
T-Code	04	
Pseudo-Connectors DEC1SION Records	32	
Rules Regarding Connection of Branches		
Detailed Description of DECISION Processing	. 33	
Cross Deferences	30	60
Page IV	07	
Tag Table	37	
Reference Table	38	
Setting up References in the Tables	38	
Output.	39 40	
MODIFICATIONS OF THE INVENTION	40 42	
Pass-1	11 4 2	
Tag Table Reference Table Setting up References in the Tables Output MODIFICATIONS OF THE INVENTION Pass-I Pass-II, Main Chain Processing A CP	45	
ACCEMPTY LANGUAGE AND MACHINE LANGUAG	E	
PROGRAM-RCA 501	. 57	

GENERAL SYSTEM

In the embodiment of the invention in FIG. 1, a data processing system constructed in accordance with this invention is shown, and it includes a memory 102, an arithmetic unit 104, and a set of controls 106. This system may be a suitable form of digital computer in which 75

data stored in the memory 102 is supplied under the direction of the controls 106 to the arithmetic unit 104 for processing and then returned to the memory to be stored at appropriate locations. The controls 106 determine the memory locations from which information is taken to be processed in the arithmetic unit 104 as well as the memory locations to which it is returned after processing, and also determine the timing of the flow of electrical signals representing the information. The controls 106 also determine the particular operations performed by the arithmetic unit as well as the time interrelations thereof. The flow of signals to and from the memory is indicated by solid lines, while the flow of control signals

from the controls 106 to operate the memory 102 and the arithmetic unit 104 is shown by broken lines. In practice, various kinds of such control lines are required, and the details are omitted here since appropriate arrangements are well known in the art and they are unnecessary to an understanding of the invention.

The data processing system of FIG. 1 may be any of various well-known types of systems such as that employing a stored program in the form of signals stored in the memory and representing sequences of control instructions or commands which select the operations to be produced by the controls 106 as they are needed to perform the desired operations. Such a stored program is effectively a part or extension of the controls 106 and is commonly stored in the memory in a section set apart for that purpose. A section 102a of the memory 102 is labeled to indicate that the control program for the documentation of a flow chart (F/C) is shown as part of that memory. Alternatively, the controls 106 may have a fixed program wired and/or built-in which may take the form of logic combinations of gates and other circuits to perform the proper sequence of operations that make up the logic of the program, all in accordance with techniques that are well-known in the art. The operations required of the flow chart documentation system of this invention are generally large in number and have complex interrelationships. Therefore, a stored program is the preferred form of control system for presently available computers, and an embodiment of such a program is described below.

The input portion of the data processing system is represented as a magnetic tape unit 108 operated by appropriate signals from the controls 106 to supply groups of combinatorial signals to the input area 102b of the memory 102, which input signals represent the program which is to be documented. That is, the data inputs of the system are themselves successive sections of another computer program, which are processed as data to provide a flow chart representation of the logic of the input program. Another magnetic tape unit 109, operated by the controls, carries the signals that form the flow chart 5 control program, and this program is read into the memory section 102a when the computer is to be operated in accordance therewith. The entire F/C program may be read into memory section 102a at the beginning; or, since the program is formed as a sequence of subdivisions 0 or passes, the subdivisions may be separately read into memory as required by the program. Other magnetic tape units 110 and 111, operated by the controls 106, receive records from the memory output area 102c and supply these records back to the input area 102b thereof 5 during different stages of operation of the system. In use, the tape units operate effectively as portions of the computer memory system. An output display device 112 is also operated by the controls 106 to produce a graphical display of the final flow chart produced by the system. This display device 112 may be a high speed printer 70(e.g. a line-at-a-time printer), a digital plotter recorder, a cathode ray tube display or recording system, or any other appropriate form of display or recording system. The display device may be operated on-line directly from written on to an appropriate tape and used to operate the display device off-line in any suitable manner.

FLOWCHART SYMBOLS AND FORMATS

FIG. 2 illustrates an outline of a flow chart that is produced in accordance with the system of this invention. The flow chart documentation program of this invention examines specific fields of each instruction line and other data sections of the program to be documented and produces a standardized flow chart by means of the display device 112. In accordance with one form of the invention, the input program is in an assembly language and the flow chart that is produced is divided into four columns (the invention may be used to supply flow charts of any desired size having one or more columns). The first and third columns 114 and 116 may be used for depicting the main flow of the program and the other two columns 118 and 120 would then be reserved for branches from the main flow columns. However, as described below, it is preferred to have all four columns 20 available for display of the main flow logic of the program and to use the next adjacent column for display of the logic that branches from a main flow column. Various types of graphical symbols are used to represent the different types of instruction or instruction groups of the 25 program that are being documented. One such symbol is a rectangular box 122 representing a PROCESS; another symbol is a diamond-shaped box 124 that represents a DECISION or branch (that is, conditional transfer) instruction. Seven other different symbols are utilized and 30 illustrated in FIG. 2 as is described hereinafter. Symbols are assigned numbers sequentially beginning with "01" on each page, and all cross-referencing to other symbols is in the form "XX.YY," where XX is the page number and YY the number of the symbol on that page, which $_{35}$ provides for 99 symbols for each of 99 pages, and which can be readily modified for larger numbers if needed. Symbol sequence numbers are printed above and to the right of all symbols on the chart, as shown in FIG. 2, where box 122 carries the symbol sequence number "01." 40 The symbols are numbered in sequence from top to bottom of a column, and, in the main flow columns, from the bottom (or exit) of one column to the top (or entry) of the next reading from left to right. Branches from a DECISION symbol are from the side corners of the diamond, and these branches may be connected to the entry 45 point of another symbol in the same column (see line 123) or to the entry of a symbol in the adjacent column (see line 125). The symbols in a branch column are sequentially numbered (in one embodiment) starting from the number of the DECISION symbol from which 50 it branches; and the symbols below that DECISION in the main flow column have numbers that continue after those of the branch column. Thus, the number of branch block 126 is "03" following that of DECISION 124, and the number of block 127 is "08" following that of the last 55 symbol in branch column 118.

The documentation program in one embodiment, examines four fields of an input program presented in a fixed formal assembly language and produces the flow charts therefrom; these fields are the symbolic tag, the 60 comments of the programmer interpreting each instruction or group of instructions, a special flow chart code located in a predeterminted part of the Comments field, and operands (such as the operation code and certain addresses) that supply the destination tags or addresses of 65 transfer and branch instructions. The following eleven flow chart codes are utilized in such an assembly language format for the system of FIG. 2:

"P"—PROCESS	"H"—HALT
"C"—CONTINUATION	"N"—NOTE
"S"—SUBROUTINE	"B"—CHART TITLE
"J"—JUMP	"D"—DECISION
"E"—EXIT	"W"—SWITCH
"T"-	-TEXT

Eight different chart symbols are used to represent the eight different classes of data processing, and "B" and "T" identify TITLE and TEXT that are to be printed on the chart. "C" is used to identify a continuation of a comment that started in a preceding record of the program. It has been found convenient to insert the F/C code after the Comments field separated therefrom by spaces. Due to the records being fixed in size, the number of characters usually being that of a punch card, successive records are used to carry extensive comments.

10 In FIG. 2 the PROCESS (or P-code) symbol is shown as a rectangular block, such as the block 122, and the Comments portion of the corresponding instruction is inserted in the symbol in the manner illustrated in FIG. 2 and as shown in greater detail in FIG. 8 (the latter may be referred to as an illustration of a flow chart, in twocolumn form, produced by this invention). This PROC-ESS symbol is variable in column length depending on the length of comments. The TITLE represented by codecode-B is placed on the top of each page of the flow chart, as indicated at the top of column 114 of FIG. 2. The T-code for TEXT indicates that the textual material supplied in the assembly language is to be printed out without a special chart symbol (see column 116). In column 114, diamond-shaped symbol 124 represents a DECISION, and the accompanying comments are edited and inserted in that symbol as indicated. Either one or two branches of coding may be shown as coming from the side corners of the DECISION symbol. Labels are supplied to the branch paths from the DECISION symbol in accordance with a special code or in accordance with the Comments field of the input instruction. The documentation program of this invention determines how the lateral branches are to be depicted on the chart; they may be shown by a horizontal line 125 connecting to an adjacent column as indicated by the branch EQL from the box 124 to process box 126 in column 118; or by a connecting line 123 from the LOW branch of box 124 down to the input of block 128 in column 114; a third method (where such connecting lines cannot be drawn) is by means of a connector symbol in the form of a circle 130 connected to the DECISION branch and containing the cross-reference identification XX.YY of the flow chart symbol to the input of which it connects. Thus, in the case of connector 130, the HIGH branch from the DECISION block-10 goes to block-13 on page

1, which is shown in column 120.

Another symbol is that for SUBROUTINES (S) such as that shown by block-05 in column 118. This is a hexagon-shaped box in which the Comments field is written, and in a separate section in the left of the box in the cross-reference is given to the location of the details of the subroutine. As illustrated. SUBROUTINE-05 is cross-referenced to 01.20, which one can readily locate in column 116 on the same page. The cross-reference back to SUBROUTINE block 01.05 is shown at the input to box 01.20 so that the reader of the flow chart may readily determine the entry into that section of the program and interrelate the different positions thereof.

The JUMP code (J) is represented by a circle as indicated by block-07 at the bottom of column 118. The circle has at the lower right the tagged destination to which the program jumps, and contains within it the page and box number of that destination in the flow chart so that it can be readily located. The tag of the entry point of a block is at the upper-left of a block, as the tag, "JAN" for block 126.

The E-code representing EXIT is illustrated by a circle that terminates a chain of blocks and contains the word "exit," as shown by circle-23 in column 120. Similarly, the H-code for HALT terminates a chain of coding as shown by circle-17 in column 116. The N-code, used for NOTES, is represented by a rectangular block (see block-5) which can be varied in column length to contain the 75 associated comments, and which is offset with its left side indented to distinguish it from a PROCESS rectangle.

The W-code is a diamond-shaped symbol similar to a DECISION and it contains the word "switch." Tts branches are handled in a similar fashion to the DECI-SION box as illustrated by the example of block-14 in 5 column 120.

The destination tags where they are provided in the comments field of the input program (or otherwise in the operand codes of that program) are picked up and supplied to the transferring symbol, where it is not di-10 rectly connected to the destination symbol. For example, block 130 is a connector symbol that has the destination tag "CAN" printed next to it, for that tag is the input of block-13 in column 120. "CAN" is also printed at the input of block-13 and if the other blocks have input tags 15 they are similarly printed. Cross-references to show the originating points for entries to blocks of the flow chart are by way of the page and block number of each symbol. An example is the cross-reference back to block 01.05 that is set forth in parentheses at the input to block-20 20 in column 116; another example is the tagged entry "RAN" to block-05 that is shown in parentheses (namely, 01.10), which cross-references back to the branch from connector 132 in column 114. In addition where more than one cross-reference entry exists, rather than indi- 25 cating all of the symbol locations, an asterisk is provided, as at the entry of block-13 in column 120, and a separate cross-reference table lists all such entries, as is discussed in further detail herein below.

In accordance with the documentation program of this 30 invention, each chain of symbols is terminated by a JUMP or EXIT symbol. In addition, where space limitations do not permit the printing of a long chain of symbols until it terminates in that fashion, a special connector symbol is generated by the F/C program to set forth 35 the continuity of the main flow of the program. Thus at the bottom of the column 114, such a pseudo-connector symbol is shown as a circle containing the location (01.11) of the next instruction in the main path, which in the case illustrated is to block-11 on the same page, 40 namely, the first block in column 116. Also at the bottom of column 116 a pseudo-connector circle is generated containing a cross-reference to the first block of page 2, for the next symbol of the main flow of the program.

PHASES OF FLOWCHARTING SYSTEM

FIG. 2 is referred to hereinafter to illustrate the development of the flow chart as the operations called for by the documentation program are sequentially per-formed. FIG. 3 is a block diagram of the four main 50phases of the F/C program. In the specific embodiment of the invention described hereinafter, these four phases correspond to four separate sections of the program and four passes of data. During Pass I, block 140, the editing phase is performed in which the input data is accepted 55 as FIG. 8/1 to FIG. 8/30 to identify those 30 flow chart and edited, the column lengths of individual symbols are fixed, individual chains of logic are established and their lengths determined, and a Chain Table and the skeleton of a Tag Table are constructed. During Pass II, block 142 output records of Pass I are processed to complete the 60 Tag Table; individual symbols are assigned locations on successive pages of the flow chart, and assigned to a specific part of a column within the page. Successive main flow chains are processed along with the branch chains. During Pass III, block 144, the Tag Table is used to print $_{65}$ a table of contents, the successive pages of the flow chart are laid out, connecting lines and symbols set out, and each page is printed. During an additional pass, Pass IV, block 146, a table of cross-references is developed and printed out. The program of this invention is not limited 70 in its form to any particular number of passes of the data; the particular number varies with the computer that is used and with the availability and division of memory space (say, in the random-access section of the memory as against drum or tape memory storage) in the computer 75 plained above, each of the blocks is referenced as XX.YY,

as well as with the complexity of the processing operations that can be performed by the computer and of the flow chart that is desired.

INPUT DATA

The input data for the assembly language program generally takes the form of successive records corresponding to the quantity of information that can be developed on an individual punch card. This record may have the information arranged in any prescribed order, and for one assembly language, it contains the following ordered fields of information:

Assembly line #; tag, if any, of current record; operation code; A-Address; index instruction code; B-Address; Comments.

The Comments field carries the programmer's interpretation of the data processing operation, so that the operation code is not needed and is not used for that purpose in the present embodiment; nor is the index instruction code and B-Address. However, for the purpose of picking up destination tags, if they are not carried by the Comments, the operation code and A and B-Addresses are examined. That is, the operation code is examined to determine if it is a conditional branch instruction, and if so, the A-Address is used for one branch destination and the B-Address for any second branch destination that may be involved. The Comments field may be used to carry any desired destination tags to which the current record transfers, which destinations are set off parenthetically at the beginning of that field by asterisks, e.g. as follows: *TAG*. In addition, the labels for the branches of DECISION symbols may be supplied with those destination tags in a special format described below. In addition, in accordance with the present embodiment of the documentation system, an additional field of flow chart code is provided; that is, one of the aforementioned eleven flow chart code characters; and, in the case of DECISION OF D-codes, an additional optional code character may be provided representing the different classes of labels for common DECISION branches, as follows:

"Y"-YES; NO "Z"-NO; YES "T"—HIGH; LOW "L"-LOW; HIGH "O"-EOUAL: UNEQUAL "#"-PLUS; MINUS "3"-EQUAL; HIGH; LOW

45

Program Logic

FIG. 8 is a schematic flow chart diagram of the general logic of the documentation program; it consists of 30 sections or pages of flow chart, and FIG. 8 is numbered pages. Each of these pages of FIG. 8 is presented in the form of flow chart that would be produced under the automatic control of the documentation program itself; and, in fact, that program was used to develop the flow chart of FIG. 8. Due to the size limitations of the patent drawings, only a quarter page of the high-speed-printer page was utilized, which afforded room only for two (of the available four) columns in width and a half-column in length. Thus, FIG. 8 illustrates an actual flow chart developed by the documentation program, but is much simplified in that less information is provided on a single page. Reference is made to FIG. 2 for a representation of the four-column format that is produced by a preferred embodiment of the documentation program; and FIG. 8 illustrates that a two-column format may also be produced with minor modifications of this program. Each of the pages of FIG. 8 has a program title and chart title together with a page number in the same fashion as is developed by the documentation program itself. As ex-

where XX is the page number and YY is the block number thereon.

PASS I

In FIG. 8/1, following the program and chart titles and page number at the top, a body of text material sets forth the functions of Pass I as that of editing the source information and constructing Tag and Chain Tables. Block 01.01 is a PROCESS symbol whose Comment field indicates that its function is that of setting the record sequence number counter to zero. For simplicity of illustration, the flow diagram of FIG. 8 omits certain other preliminary operations such as those known as "housekeeping" operations, and those of calling in Pass I of the F/C program, clearance of memory areas where required, and entry of constants, and the like, which are 15 routine in nature, and which would be readily apparent to those skilled in the art and are not needed for an understanding of the invention.

The main flow continues with the second block 01.02, $_{20}$ and the process of reading the first source record is performed. This operation of the computer may call for a series of detailed instructions, depending on the computer construction, by which the input tape 108 is controlled to operate momentarily, and the first available record of the input program is read and stored in a predetermined order so that its fields in a fixed format are placed in prescribed sections of the input area 102b of the memory 102. The first record that is read in may be assumed to be a special control record, which may be marked with 30 a special code identification if desired, and which should contain the name of the program. This program title is stored, under the operation of block 01.03, in a prescribed primary storage area of the memory for use by Pass III in composing and printing out each page of the program; 35 then this first card is dropped.

The next available source record is read, block 01.04, from the input tape 108 into the input area 102b; and the field for the F/C code is checked, block 01.05, to determine if it is a valid F/C code other than "C." If the check 40indicates that the answer is NO, the program branches in a loop back to block 01.04 to read the next available input record into the input area 102b, and DECISION 01.05 checks the F/C code of that record in the same way. This loop is repeated until the answer to the check is YES, and the program then continues on the block 4501.06 (as indicated by the reference in the pseudo-connector symbol at the end of the first column of FIG. 8/1). As indicated by NOTE 01.06, the input memory area 01.06 now contains a source record that is to be processed, since it contains a valid F/C code other than "C." A C-50code is not processed, where it does not follow another code type.

The main-flow logic of Pass I then begins with block 01.07, and all of the fields of the first record to be proc-55essed are moved from the input area 102b to corresponding sections of the work area 102d. That is, the following fields of that record from the memory input area 102bare moved to individual memory work areas 102d to which these fields are assigned: assembly-line #; tag; Comments field; F/C code; and, if a transfer instruction, the operand that contains the destination tag. Prior to moving the F/C code to its work area, the previous contents of that F/C code work area are transferred to a field of the primary storage area 102e in memory, identified by the mnemonic LSTCD; this previous F/C code is used under a certain condition, as is explanied hereinafter. The next block 01.08 controls the reading of the next available source record into the input area 102b, which is now free to receive it since the previous record was moved to the $_{70}$ work area 102d. The two memory areas 102b and d each contains a record, which records are processed in the order they were received.

The next block, DECISION 01.08, checks to see if the

EF indicating the end-of-a-file, which is commonly provided in all magnetic tape systems in one form or another. If the result of this test is that such an end-of-file identifier is in the record, the program branches to PROCESS block 04.08 (the last block of FIG. 8/4) which calls for the setting of an end-of-pass switch. After completion of the processing of the record that lies in the work area 102d, that switch is tested (block 04.07) and if it is set, operations of block 06.07 are initiated for rewinding the input and output tapes 198 and 110 and calling in Pass II of the 10 program; thereafter, by means of the JUMP instruction 06.08, the main flow of the program is transferred to block 07.01, the first block on FIG. 8/7, at the Pass II starts. However, if DECISION test 01.09 indicates that there is no end-of-file identifier in the record in input area 102b, the program steps to DECISION 01.10 to test if there is a valid F/C code in that field of the input record that sits in the input area 102b of memory. If the answer is NO (that is, if it is an invalid character or a space), the program ignores that record and returns as a loop to PROCESS block 01.08, and the next source record is read. This loop is repeated until the next record is found that contains a valid F/C code in the proper field of the input record. When it is found, the main flow of the program continues with DECISION 02.01 (FIG. 8/2) which deter-25mines if the F/C code of the record in the input area is a "C," which identifies a CONTINUATION record. If input area is a "C," the program branches to block 02.02 where the process is performed of appending the Comments field of that CONTINUATION record to the Comments field of the previous record lying in the memory work area. A CONTINUATION record serves only to carry continued lines of Comments of a previous record; it is not otherwise processed, and except for the Comments, it is not moved to the work area 102d. Thereafter, as indicated by JUMP 02.02, the program then loops back again to block 01.08, and the same process is performed on the next record. If it is another C-code, the Comments field of that input record is again appended to the Comments field of the previous record lying in memory work area 102d. This loop is repeated until another record is established in the memory input area which contains an F/C code other than "C" or space. At that itme, as indicated by NOTE 02.04, memory work area 102d contains all of the necessary information for processing the code record therein. The record in the input area 102b is left there and it is processed after the record developed in the working area has been processed. A locator RHECOM is used to maintain the memory location of the right-handend (RHE) of the Comments work area, since this work area increases as additional CONTINUATION records are read and appended. This locator is a field of the primary storage area 102e which contains the address in the work area of the RHE of the Comments. When the record in the work area is complete and ready to process, a control symbol is inserted into the memory location at the RHE of the Comments to mark the end of that record.

Blocks 02.05 and 02.06 begin the processing and they 60 represent a number of processing operations that are performed to prepare for the output area 102c to receive the record from the work area. The output record of Pass I has a certain format, which is set forth in Table I below. The same format is used for the output record of Pass 65 II, and Table I indicates which Pass is used to fill each field. The beginning and end of each "line" of the Comments field is denoted by control symbols since the "lines" are of variable length, as explained below. A maximum size of the Comments field is arbitrarily set at about 15 lines of TEXT. The output memory area includes the following prescribed memory fields for receiving the characters that compose each record. The number of characters specified in the following table are those found suitable for particular embodiments; the number of characrecord in input area 102b contains an identifier character 75 ters may vary for other embodiments. Each output record

assembled in the output area is written successively on work tape 110, so that the latter contains all of the records in order at the end of Pass I; in turn, work tape 110 becomes the input to Pass II. Each output record is processed successively and completed during Pass II and then written out to the output file on tape 111.

TABLE L-OUTPUT RECORD

Field	No. CHAR	Filled in by—	Remarks
No. Lines	. 3	Pass I	Control Symbol. No. lines required on a F/C page to contain this record.
Column No			Column No. on F/C page assigned to this symbol.
Line No			Line No. on F/C page at which symbol begins.
Page No			F/C page No. assigned to this symbol.
Box No			Box No. assigned to this symbol.
Code		do	Type of symbol. Blank if record has no tag.
Tag "LIITC"	1	Pass II	"LHT".
"LHT"	6		Contains destination tag on D, J, S codes—blank for other codes.
"RHTC"			Connection indicator for field "RHT".
"RHT"	6	Pass I	Second destination tag on DECISIONS (may be blank).
SEQ No Length	4 Uosioblo	do	Ascending Seq No. Length—lines of this record. (Max. of 456 char.). Control Symbol.

As indicated by block **02.05**, the record-sequence-number counter is incremented by "1," and its new number is moved to the prescribed field of output area **102***c*. The 40 processing continues with block **02.06**, and the F/C code is moved from the work area to the corresponding field of the output area. Also several memory fields are set to initial conditions by block **02.06**: Line Counter-A in primary storage **102***e* is set to 0; Comments Locator is set to the initial address (which is a constant) of the lefthand-end (LHE) of the Comments portion of the work area **102***d*, and Output Area Locator is set to the initial address of the LHE of the Comments portion of the output area **102***c*. All other output fields, other than the Comments field, are fixed and have predetermined addresses, and therefore, require no locators.

The main flow of the program steps to block **03.01** (as indicated by the pseudo-connector at the bottom of FIG. **8**/2) where a test is made on the F/C code. If it is a B-code, the program branches to block **03.02** where construction of the Tag Table in primary storage is initiated for the first such B-code; and each succeeding B-code initiates a new section of the table for all tags following it. The entry in the Tag Table consists of insertion of the title of the chart, and upon printing out of the table of contents during Pass III this chart title is printed out as a heading for the tags associated with that chart. Thereafter, as indicated by JUMP **03.03**, the program jumps to block **03.05** where the editing operations are initiated. 65

If the test 03.01 determines that the F/C code is not a "B," the program steps along the main flow to DECISION 03.04 where a test is made for a tag in the record, which identifies the entry point of that record. If it does not have a tag the program steps to block 03.05 for the editing operations; if it does have a tag the program branches to block 05.01, which controls the creation of a Tag Table entry. The Tag Table is begun by Pass I and completed by Pass II; it is used by Pass III and this remains as part of the primary storage area 102e of the 75 of text identified by the T-code.

memory throughout the program. Each entry in the table consists of the following items:

TABLE II, TAG TABLE

(a) Tag

- (b) Assembly line # of tag
- (c) Sequence # of output record (from Pass I) containing this tag
- (d) Page and box number assigned to tag
- (e) Column and flow chart line number of tag
- (c) Column and now chart fine number of any other symbols,
 (f) Indicator to show cross-reference by other symbols, and page and box number of the first cross-reference symbol.

Item (b) of the Tag Table is used for information purposes in composing the table of contents during Pass III. Item (c) is used by Pass II in determining whether a DECSION branch can be processed and allocated to a secondary column (which is an adjacent column in the present embodiment). Item (d) is used for cross-reference 0 connectors in Pass III. Item (e) is used by Pass III for drawing connecting lines on DECISION symbols. Item (f) is used by Pass III in placing "from-connectors" or cross-references on the charts. The entry of items (a), (b) and (c) is performed during Pass I; items (d), (e) and 5 (f) are entered during Pass II.

Block 05.01 creates the Tag Table entry by inserting items (a), (b), and (c) of the record currently being processed. That is, it determines whether the record has a tag, and enters that tag as item (a), enters the as-0 sembly line # from the record in working storage as item (b); and enters the current reading of the sequence number counter as item (c). The sequence number counter was stepped forward by block 02.05 to establish the sequence number of the current record. Space is left 35 for the additional items (d), (e) and (f) of the Tag Table to be added during Pass II, and a locator (TTLOC) of the RHE of the Tag Table is incremented appropriately so that the next Tag Table entry may be made at the proper location. In addition, a control field NUMTAG containing the number of items in the Tag Table is also incremented. The tags associated with C-codes do not have to be placed in the Tag Table and in fact it is not necessary to pick them up from the input area except where the preceding input record has a blank tag area. The operation of block 05.02 moves the tag field of the record in the work area also to the tag field of the output record. Thereafter, JUMP 05.03 transfers the program to block 03.05 for the editing process. It is seen from the logic flow after the test 03.01 for the B-code that this tag routine is bypassed for such B-code records, so that their tag fields are not examined either for the purpose of entry in the Tag Table or for transfer to the output record. The T-code records are similarly tested, and the logic flow therefrom also bypasses the Tag Table routine. Since B- and T-codes do not generate a flow chart symbol, any tags that they may have are not referenced on the flow chart.

After the tag processing has been completed or bypassed as required, three subroutines (EDLIN, PAREN, CHENT) are performed on the different types of records in the various ways described in detail below. These subroutines are represented in simplified form in FIG. 8. At block 03.05 the editing routine (EDLIN) of editing successive lines of the Comment field of the current record is entered. The operations that are performed are those of editing the Comments field into intelligible lines and moving them into the output field as summarized generally by the comment of block 03.05. This operation varies with each of the code symbols and is described in detail below. As the editing is performed, the number of lines of flow chart required by each symbol is measured by block 03.06; this number is fixed for the fixed format symbols such as D, S, W, E, H and J; the number varies for the P and N symbols as well as for the lines The number of lines for the current symbol (from Line Counter A) is added to the running total (in Line Counter B) for the current chain of logic flow by block 04.01. A chain is defined as all coding between successive J- or E-codes, and includes the first group of coding so terminated. Examples of chains are marked off by slant bars in the following sequences of codes; /BTCPCCNJ/ PSCPHPDCJ/PPCDE/.

Thus, block **04.01** produces a running total of the lines within any chain by means of Line Counter -B, 10 which is cleared at the end of the chain, as noted below. The details of the EDLIN subroutine for the individual codes are discussed below.

A test is made for D-, W-, S- and J-codes by block 04.02; and, if the current record contains such a code, a branch from the main flow is taken to a subroutine PAREN starting at block 05.04 and continuing through 06.02. This subroutine is used to identify and extract from the Comments field, the destination tags and labels, if any, that are parenthetically included therein by asterisks, or to extract the destination tags from the input operands, which operations are described below for individual codes. After the PAREN routine or if the test of block 04.02 is negative, the program jumps to text 04.03, which determines whether the current record contains a J- or E-code. If the answer to the test is "YES," the program branches to a subroutine CHENT of blocks 06.04 and 06.05, which controls the construction of the Chain Table and the entry of new items in that table. The chain table contains the following three items:

TABLE III, CHAIN TABLE

(a) Sequence number of the Pass I output record at which the chain ends.

(b) Number of lines on a flow chart page required for 35 the chain.

(c) Field for an indicator character to show that the chain has been processed during Pass II.

From the definition of a chain, every record in the $_{40}$ output record file is necessarily part of some chain, which is identified in the Chain Table by the sequence number of the last record in that chain. The Chain Table entries have sequence numbers in ascending order, since they are created sequentially in Pass I as the records themselves are processed, and the records are numbered in 45 ascending order. Block 06.05 transfers the current value of the record sequence counter to the Chain Table to establish the Chain Table identification of the current chain then ending, and also transfer the current value of Line Counter B, which is a direct measure of the 50 number of lines in a column required on the flow chart page for the chain. Line Counter-B is cleared to "0," so that it is in condition to accumulate the lines for the next chain. This completes the operation of subroutine CHENT, and it exits back to block 04.04. The record 55 in the output memory area is not complete and a record terminating symbol is added to the RHE of the record, which is then written to the output file of work tape 110,

At this point, the aforementioned end-pass switch is tested (NOTE 04.05 and DECISION 04.06) to determine 60 whether it is the end of a pass. As explained above, this switch would have been set by block 04.08 if the following record (now in the input area) contained an end-of-file (EF) identifier indicating that the input tape had been completely processed. By testing the switch at 65 the end of each cycle, it is determined whether there are no further records in the input area to be processed, and whether the input tape and output work tape are to be rewound and Pass II called in. When an input record in the input area contains an EF identifier, the switch is 70 set, the last record lying in the work area is processed, and then the switch is tested, which leads to the termination of Pass I. If the end-pass switch is not set, the program jumps, via block 04.07 to block 01.07 to move the

to the work area 192d, which starts another cycle of processing. Block 01.08 reads the next source record into the input area, and it is tested for an end-of-file identifier (block 01.09), a valid F/C code (block 01.10) and a C-code (block 02.01), all in the manner described above. If the new input record has a C-code, its Comment field is appended (block 02.02) to that of the record in the work area, and the loop repeated until a record with a F/C code that is not a "C" is in the input area. Thereafter, the record in the work area is processed in the manner described, starting with block 02.05 and as indicated by NOTE 02.04.

Processing of Individual Codes-Pass-I

The flow chart of FIG. 8 has been simplified and omits a number of detailed tests and paths of coding that are sufficiently outlined hereinafter for an understanding of the invention. Many of the codes do not enter the EDLIN subroutine (block 03.05) since the Comments fields of 20 such codes are not displayed (e.g. J- and E-codes). In addition, the PAREN subroutine is different for D- and J-codes, which differences are noted below in the detailed discussion thereof.

As noted above, each code is processed in detail by an individual set of instructions to perform functions pecu-25liar to that code; two functions that all codes require are: (1) determine the setting of Line Counter A (the number of lines required by that particular symbol on a flow chart), which is inserted in the output record as "# lines" (see Table I), and (2) adding that number to the 30 running total of Line Counter B to get the total number of lines required for the current chain, which is entered in the Chain Table. For the purpose of processing the individual codes, separate legs or paths of coding are provided, with each leg being a branch from an individual comparison test of the current code against one of a set of constants that respectively represent the codes that are employed.

J-code

The test 04.02 initiates the PAREN subroutine 05.04. which is used to extract the destination tag from the asterisk field of the Comments. Block 05.04 determines whether the Comments field contains an asterisk field (located at the beginning of the Comments field) and if it does not, the program branches to block 06.01. The later controls the picking up of the destination tag from the operand field of the input record which currently sits in the work area; the operation code of the input record is examined and the appropriate operand address is picked up. If the Comments do contain an asterisk field, block 05.05 develops a subroutine for extracting the destination tag from that field. If there is a label associated with that tag, it is ignored in the processing of J-codes, since labels are handled only in connection with D-codes. From whichever source the destination tag is obtained, block 05.06 moves it to field LHT of the output memory area, and the program jumps to a test 04.03 for the J-code, which leads to a branch to the CHENT subroutine 06.04 to create the Chain Table entry. The editing operation of block 03.05 is bypassed for J-codes (the Comments field is ignored completely for the processing of J-codes except for the asterisk-field search). Block 03.06 sets Line Counter-A to 10 lines (which is suitable for the fixed format symbol plus an extra space left between the Jump symbol and the next chain in the column); block 04.01 similarly increments Line Counter-B, which provides the information needed for the Chain Table entry to be made at blocks 06.04 and 06.05. The record is then complete and can be written to the output tape 110 via block 04.04.

H-code

tion of Pass I. If the end-pass switch is not set, the program jumps, via block 04.07 to block 01.07 to move the fields of the record that is then in the input area 102b 75 by the value of Line Counter A; the editing subroutine

is bypassed. Thereafter, block 04.04 writes the record to the output tape. The H-code may be considered to be the end of a chain, if desired; and the Chain Table subroutine CHENT would be entered accordingly. However, preferably it is not so considered, since the computer operator 5 may thereafter push a start button and the program would pick up the next line in the flow of coding. Accordingly, by not treating the H-code as the end of a chain, the next intended line of coding is naturally followed in the flow chart. The record is written to the output tape without the Comments field.

E-code

This code is processed in the same fashion as the Hcode, except that it is considered the end of a chain and 15 the Chain Table subroutine CHENT is entered and followed in the manner described above for J-codes.

P-code

Initially, the editing subroutine EDLIN represented by 20 block 03.01 is entered to cary out the P-code editing. The coding supplies a constant for the length of line that is to be moved from the Comments field; for the P-code, this length is arbitrarily set for 19 characters as a maximum. An "intelligible" line is one that does not exceed the 25 maximum and does not break up a word; hence, it may and usually will be somewhat smaller than the maximum length. EDLIN operates by finding the start of the Comments field which is supplied by the Comments Locator and then counting successive characters of the Comments 30 field until that character is located which would mark the last character for the maximum length of the prescribed line. If this marked character is a space, then the intelligible line is exactly the length desired. If this character is not a space the subroutine steps back to the left 35 until it does find a space, which signifies a word break; thus, the character immediately to the left of the space is the RHE of the line to be moved to the output Comments area. After the line is moved to the output area a control symbol is placed to its right as a line delimiter. 40 The Output Area Locator is adjusted to the new RHE of the Comments field in the output area, and the Comments Locator for the work area is advanced to the first character of the next line to be moved out. A test is made before each line operation is performed to determine if 45there is an indicator for the end of the Comments field, which was placed there when the Comments were moved into the work area. If it is not, the logic recycles back to pick up a new line until eventually the end of the Comments area is found and the editing operation terminates. 50Line Counter A is stepped for each edited line of Comments that is moved to the output area; in addition, a count of 5 lines is added to allow for the fixed format of top and bottom symbol lines and a 3-line vertical connection to the next box. Line Counter B is similarly ad-55 vanced.

A special case arises where the line length that is desired is too small to pick up even a single word; for example, where the word in the work area is 20 characters, and for a P-code the line length desired is only 19 char-60 acters. If this occurs, an artificial "word" is made by forcing a space into the twentieth character which results in a 19 character word and line, and permits the EDLIN loop to operate.

The P-code does not enter the PAREN subroutine; after 65 the editing operation is complete the record is written to the output tape.

N-code

This code is handled in the same fashion as the P-code, except that each intelligible line is 15 characters long. 70 Pass III arranges for the offset position of this symbol.

B-code

This code is handled without editing by EDLIN, and the Comments field is picked up in its entirety and moved 75 above. Alternatively, these labels may be provided by

to the corresponding output record area. The Line Counter A is set to zero, since the space for the chart title is allocated for each page, and it does not vary from page to page.

S-code

The PAREN subroutine 05.04 is entered from test 04.02 to place the destination tag in the output field LHT. If there is no asterisk field, the A-Address in the operand work area is used instead via block 06.01. If asterisks were present, after the contents were moved via blocks 05.05 and 05.06, the Comments Locator ends up pointing to the first character after the right-hand asterisk. If this character is a space, it is deleted by advancing the Locator to the right; and the Locator is so advanced until the first non-space character is found. A subroutine to perform this operation is also used for the D-code editing. Thereafter, the subroutine EDLIN (as described above for the Pcode) is entered 5 separate times to move the Comments to the output area; the fixed odd-shaped format of the SUBROUTINE symbol (see, for example, block 13.02) allows for 5 lines that are respectively 14, 15, 15, 15 and 14 characters long. After each call for a line, a test is made of an indicator (set by the subroutine itself) to see if all the Comments have been processed, and when the indicator is set the remaining calls are by-passed. No calls are made after the fifth one, so that any remaining Comments are dropped.

In processing S-codes, supplementary editing operations take place when there are only one or two lines to go in the symbol. Since the block is of a fixed column length and line processing is from top to bottom, Comments of one or two lines are moved down in order to center them within the box. Thus, if an end-of-Comments-area indicator is set after the first call on EDLIN (which indicates a single line), a subroutine arranges to shift this single line two positions to the right in the output Comments area, and each of the vacated spaces has an end-of-line symbol place therein. This anticipates the printing-layout operations of Pass III, which automatically moves the single line to be printed to the middle line of the box, so that it is centered in the block without additional coding. If the second EDLIN call produces an end-of-area indicator, the second line is shifted two lines to the right, the first line is shifted one line to the right, and end-of-line symbols are inserted between the two lines and in front of the first line, which have the effect in Pass III of moving the two desired lines into the second and fourth lines of the symbol to provide neat centering.

In the S-code processing, the Line Counter A is advanced 10 lines because of the fixed symbol format, Line Counter-B is correspondingly advanced and the record is written to the output tape.

D-code

The PAREN subroutine is entered via asterisk field test 05.04. If there is an asterisk field, the subroutine is performed twice for the D-code, since two asterisk fields may be provided for the two lateral branches from a DECI-SION symbol. If only one asterisk field is present, the second entry to the subroutine has no effect. The destination tag extracted by the first call on PAREN is put in field LHT in the output area; and the destination tag extracted by the second call is placed in field RHT. If the second call produces no tag, the field RHT is cleared. If the first call on this subroutine produces no tag, then there is an input error, both LHT and RHT are cleared, and the DECISION symbol is printed out on the flow chart during Pass III with no lateral branches being indicated. The labels for the main flow branch and a single lateral branch from a DECISION symbol may be supplied by a special code that supplements the flow chart code, as noted

means of the asterisk field in accordance with the following format:

LABEL*TAG, LABEL*TAG, LABEL*

The first label is the main-flow branch, the second label 5 corresponds to the associated tag placed in LHT, and the third label corresponds to the associated tag placed in RHT. These three labels are extracted via block 05.05 and stored via block 05.06 in the first 15 characters of the output Comments area in the order given. Labels of more 10 than 5 characters are truncated by the subroutine, and if a label is missing its corresponding output field is cleared to spaces. If there is no asterisk field, the destination tags are picked up via block 06.01 from the A- and B-Addresses of the input operands, and the labels are picked up 15via block 06.02 from a stored table of contents as determined by the special label code.

A subroutine is used which shifts the Comments Locator to the right, if necessary, to bypass any spaces between the end of the asterisk field and the first non-space character of the actual comment, in a manner similar to that described above for the S-code operation. The Output Area Locator is advanced 15 characters so that the first actual Comments line is laid down after the labels. Thus, on a DECISION symbol, the actual start of the Comments in the output area is the sixteenth character of the field.

A test is then made to see if the total number of characters in the Comments work area is 13 or less; 13 corresponds to the room available along the middle line of the DECISION box, whose size is arbitrarily set to permit six Comment lines of 7, 11, 13, 11, 7 and 3 characters, re-spectively. If the total number of Comments characters is 13 or less, two end-of-line symbols are inserted into the output area (representing blanks for the first two lines), an EDLIN call of 13 characters is made and all remaining calls on this subroutine are bypassed. If the Comments work area contains more than 13 characters, then successive EDLIN calls of 7, 11, 13, 11, 7 and 3 characters, respectively, are made. The logic operation is similar to that described above for the S-code. After each call, the end-of-area indicator is tested, and if set, all remaining calls are bypassed. If EDLIN indicates an intelligible line is impossible, a word is forced, as explained above, by inserting a space in the last character that fits. Due to the earlier test for a total of 13 characters, it is not possible for the first call of 7 characters to produce an end-of-area setting; however, if the second call produces such a setting, both lines are shifted on to the right in the output area, and an end-of-line symbol is inserted in front of the first 50 line to produce a more attractive line spacing, as explained above in connection with the S-code. If the third call of 13 characters produces an end-of-area setting, no shifting is performed since otherwise the 13-character line that has already been moved might not fit into the smaller 55 available space in a line below it. If the end-of-area setting is not reached after the final, sixth call, the Commonts work area is simply truncated; if a large Comment is desired by the programmer, a NOTE can be used for that purpose.

After the EDLIN subroutine is complete, Line Counter A is advanced 13 lines corresponding to the fixed format used for the DECISION symbol. Line Counter B is similarly advanced, and the output area is written onto the output tape.

W-code

This code is initially routed down the path followed for the D-code to process the asterisks field in the associated PAREN subroutine. Immediately thereafter, a test is made 70to determine if it is a W or D-code, and if the former, it is processed down its own branch leg of logic. The remainder of the Comments field of the W-code is ignored, and instead, a constant is moved into th output Com-

code of the output record is changed to a D-code, so that it may be processed in that fashion from then on. The constant which is moved into the Comments area consists of the following: an end-of-line symbol, 11 minus signs, another end-of-line symbol, the word "SWITCH," another end-of-line symbol, 11 more minus signs, and two more end-of-line symbols to form the fixed format symbol shown as block 04.06. Since the code is now changed to D, Passes II and III treat it as a D-code and the constant in the Comments field is so arranged that it is printed out as the desired SWITCH symbol. The Line Counters A and B are handled in the same fashion as in the D-code described above, and the output area is written out to the work tape.

T-code

In order to avoid ambiguity in the flow chart, the TEXT of T-codes is printed out without a special symbol only at the start of a chain of flow, for otherwise the T format would interfere with the appearance of the chart. Thus, if the T-code occurs other than at the start of a chain, it is 20 converted to an N-code and processed as such in the manner described above to be printed out in a NOTE symbol. This is done by an initial test to see if the code of the previous record is a J, E, or B; this previous record code was saved by moving it into the memory filled area 25field LSTCD prior to transferring the current record from input to work area. If the T-code does come in at the start of the chain, it is processed by making successive calls on EDLIN until the end-of-area indicvator is set; 30 the line requested is 30 characters long. Line Counter A is incremented for each such line, and after the last line, it is incremented by "3" to provide a space between the final line and the first part of the next F/C symbol to be printed in the column.

Summary of Pass-I

This first Pass examines successive records of the input program to be documented and extracts all the information needed to produce an F/C symbol from each record 40 that contains an F/C code. Where the Comments field for an F/C symbol is greater than that carried by one record, the Comments fields of succeeding records (denoted by C-codes) are tacked to the previous record. A sequence number counter is incremented for each record and used to identify that record in the subsequent processing. Any 45 tag that identifies the entry point of each input record is extracted and used to construct the skeleton of the Tag Table. The destination tages carried by records for the JUMP, SUBROUTINE, DECISION and SWITCH records are extracted as well as branching labels for the latter two symbols. Editing operations of the Comments fields of P-, N-, S-, D-, and T-codes are performed, and the number of lines along a column is determined for each symbol. In some cases, the symbols are a fixed format, and in other cases they are variable in foramt and their column length is determined by the number of Comment lines that have to be printed out.

Each unconditional transfer, i.e. J- and E-code, defines the end of a "chain" of coding, and a Chain Table is con-60 structed that has an entry for each chain; each chain is formed as a sequence of symbols terminating with a JUMP or EXIT symbol and represents a section of program logic that is referenced on the flow chart to one or more other sections and that can be treated as a separable entity of logic for display on the flow chart. The Chain 65 Table entries are identifiable by the sequence number of the last symbol of each chain and include the column length required for recording each chain on a page of the flow chart. The flow chart codes for HALT, SUBROU-TINE, DECISION and SWITCH are not treated as chain terminating symbols, but rather as parts of a chain. The HALT symbol in some respects is like an unconditional transfer symbol in terminating a section of logic flow; however, it may be followed, as the program is performed, ments area beginning with the sixteenth character, and the 75 by the operator of the computer restarting the program,

which would lead to the next record of the original program sequence being the one to be processed. Consequenty, the logic flow from the HALT symbol, in effect, is an entry to the next symbol in the original sequence, and hese symbols are preferably considered as part of the same section of logic and not separated on the flow chart. The SUBROUTINE symbol refers to a sub-section of ogic which continues the main flow processing and does not terminate it, though the details of it are ordinarily separately reviewed and are therefore best left to a sepa-SWITCH symbols, each also have a branch that continues the main flow processing and are therefore incorporated as parts of the chain and not as branches from it.

PASS II

The flow chart for Pass II is shown in summary in FIGS. 8/7 to 8/18. As indicated in the text at the beginning of FIG. 8/7, the function of this pass is to complete the construction of the Tag Table and to assign all flow chart symbols to certain positions on the F/C pages. The input records for Pass II are supplied by the Pass I output work tape 110 and the output of Pass II is written on the second work tape 111.

The sequential operation of Pass II is determined over-25 all by the sequence of chains in the Chain Table, and certain chains are processed out of that sequence. Within any chain, successive records are generally processed in sequence as received, except when DECISION records are encountered; at that point the processing of the chain 30 containing that DECISION is interrupted and the branch chains are investigated and (in the present embodiment) processed. As indicated in block 07.01, a Chain Table Locator in the primary storage area is employed, which always points to (carries the address of) the Chain Table 35 entry which is currently being processed along a main flow column. As the processing of each chain is completed, this Locator is advanced to the next chain in sequence.

Other initial operations performed in Pass II, block 40 07.02, include that of setting a page-number (Page #) counter and a column (Col #) counter to "1," a boxnumber (Box #) counter to "0," and a Line Counter 1 (LNC-1) to "1."

The main loop of Pass-II then begins at block 07.03 with the first input record from work tape 110 being 45read into the memory area 102b (an additional memory work area is not required in this pass). A test is made, block 07.04, for an end-of-file indicator, and if it is found, the program branches to 09.06 which controls the rewinding of the tapes 110 and 111 and the initiation of 50 Pass-III. If it is not the end of the file, the sequence number of the current record is stored in field TPOS for later use; the program steps to a test 07.05 for a B-code, and if it is found, the program branches to block 55 12.09 where the end of a page is forced by setting Col #to "4" (assuming a 4-column page). Then the program transfers to an end-of-column subroutine ENDCOL, where a pseudo-connector record is developed. Since a B-code involves the development of a new chart title, a new page is normally started, which is the function of the END-COL subroutine. However, as explained below, in certain situations (as where it is the first B record of the chart) is is not necessary to start a new page and thereby needlessly skip a page; and the ENDCOL subroutine is 65 essentially bypassed to block 08.06, which writes the first B-code record to the output file. The program is then recycled via the test 08.07 back to block 07.03 to read the next input record from work tape 110.

The next record which is not a B-code is processed via $_{70}$ block 07.06 where the current value of LNC-1 (which is "1," for the first record of a page) is established as the Line # of the record being processed by moving it to LNC-3. As indicated in NOTE 07.07, the Line # of a record is allocated as the Line # of the corresponding 75

symbol to be printed on the F/C page and thereby fixes the position of the symbol in a column. Thus, in the example of the first record after the chart title, which may **be** text or some symbol, the Line # is set at 1. Block **07.08** extracts "# Lines" (i.e., the length) of the current record therefrom (see Table 1) and adds it to LNC-1. Thus, the previous LNC-1 represents the ending linenumber-plus-one of the previous symbol, and the new LNC-1 becomes the starting line number of the following symbol; the current LNC-3 is the beginning line number of the current symbol and is used as a temporary store of that number before it is moved to the output record. The program steps to block 08.01 to compare the new value of LNC-1 to an end-of-page constant EPCON, 15 where EPCON is the total number of lines allowed in a column, that is the address of the last line (which is set to 106 for the high-speed printer page, and would vary for different types of recorder and display devices). If the end of a column has been reached, the program branches to block 11.01 for the ENDCOL subroutine; but if the new LNC-1 is less than EPCON, there is room in the current column for the current symbol and the

program steps to block 08.02. Box # is incremented by

1, and the Page #, Box # and Col # are moved to the output record in the output memory area. Thereafter, test 08.03 determines if the input tag field of the current record contains a tag or is blank. If it contains a tag, the program branches to a block 09.08 to locate a Tag Table entry for that tag. The input parameter for this operation is a locator which points to the left-hand character of the tag field for which a search is desired. If this field contains a tag, the Tag Table is then searched by a straight series of compares beginning at the start of the table and running down until the tag entry is found. The starting address TBIN of the Tag Table was set during Pass \overline{I} , and a counter NUMTA \widetilde{G} was established during Pass I containing the number of entries in the Tag Table. Thus, NUMTAG tells the routine when it has exhausted the table as it makes its series of compares; upon exhaustion of the table if the Tag Table does not contain the desired tag an indicator is set to show this. The main output of this operation is the setting of a locator to the address of the left-hand character of the proper entry in the Tag Table; a subsidiary output is the setting of indicators to reflect "tag found, "no tag in field," or "Tag-Table entry missing." Block 09.09 places the page location data (Page #, Box #, Line # and Col #) of the current record in the Tag Table entry for the associated tag; this completes the basic structure of the Tag Table entry, and the supplementary data of cross-references to "from connectors" is subsequently added as explained below.

Modified logic is employed for T-code records; that is, Box # is not incremented and the Tag Table search is bypassed, because T-codes do not produce a symbol on the F/C page and, thus, do not carry box numbers or tags.

The Tag Table receives any "from connector" information in the current record; and this operation starts with a transfer back to a test 08.04 for a D- or J-code. If it is found, the program branches to block 10.01 where a crossreference subroutine is performed in order to place Box # of the current record as a cross-reference in the Tag Table to any destination tags contained by the current record. Thus, block 10.01 obtains the destination tags (LHT and RHT) from the current record and looks those tags up in the Tag Table (in a manner similar to the above described subroutine of block 09.08). A test 10.02 determines the results of the search; if no tags are found in the table the program returns to the next operation 08.05 of the main flow; but if the tags are found a test 10.03 determines whether this is the first reference to the tag. If it is, block 10.06 puts Page # and Box # of the current record in the cross-reference field of that Tag Table entry, and the program returns to the next main flow block 08.05. If it is

not the first reference, the program branches to block 10.04 which sets a signal in the Tag Table entry to indicate that there is more than one such cross-reference (which signal determines that an asterisk is to be printed at that entry point; see for example, the branch input to block 07.03); the program returns to the next main path block 08.05, to which it would pass if test 08.04 had proved negative. The cross-reference subroutine of 10.01 is entered twice for D-codes, since two such tags may be carried by such a record.

Upon return to the main logic path of the program the 10test 08.05 determines if the current record is a D-code. If so, the logic branches to block 13.01 for processing the DECISION record; if it is not a D-code, block 08.06 writes the record in the output memory area to the output tape 111.

Thereafter, block 08.07 tests to determine if there is a J- or E-code in the current record, which codes indicate the end of a chain. If it is not the end of a chain, the program recycles back to block 07.03 to read in the next input record and repeat the processing loop described above. If it is the end of a chain, as indicated by NOTE 08.08, the program proceeds to locate the next chain to be processed via test 09.01, which determines whether the current record is being allocated to a main column or to a branch or secondary column. If the latter, the program branches to block 15.07, which is described below; if the former, block 09.02 advances the Chain Table Locator to the next table entry, and test 09.03 determines from the indicator of that entry whether this chain has yet been processed. If so, the program loop continues until the test 09.03 finds an unprocessed chain. This loop is an important part of the processing system since by the very nature of the processing of DECISION branches, as explained below, it is possible that the next chain in sequence $_{35}$ may have already been processed and assigned to a secondary column by the DECISION branch logic.

When the next unprocessed chain is found, its sequence number is used to locate the corresponding data record on the input work tape 110 via block 09.04. It should be 40 noted that the Chain Table entry for any chain contains the final sequence number of that chain. Thus, if the Chain Table Locator points to the chain that it is desired to process, the sequence number of the first record of that chain corresponds to the final sequence number of the previous chain plus 1. The tape position sequence field TPOS contains the sequence number of the last record that has been read; therefore by subtracting TPOS from the Chain Table entry sequence number, the difference corresponds to the number of input records that have to be skipped to get the desired record. Ordinarily, the next 50chain to be processed is the next physical chain on the tape; which is indicated if the sequence number of the Chain Table entry is the same as TPOS, and no further records have to be skipped. Thus, block 09.04 computes the difference between TPOS and the sequence number of the first record of the desired chain; it then proceeds to skip that number of records on the input tape 110 so as to position the tape at the first record of the desired chain. After the input tape 110 is so positioned a test is made to determine if there are 20 or more lines left in the current column being allocated. This determination is made by subtracting LNC-1 from EPCON (the total column length) and comparing the result with the constant 20. This test is of assistance in insuring good page format in that a new chain is not initiated near the bottom of the page instead the remainder of the column is left blank and the new chain is started at the top of the next column. If this test shows that there are less than 20 lines left in the column, then an end-of-a-column subroutine similar 70to ENDCOL is entered to determine which column is currently being processed and thereby begin a new column, before reading the first record of the new chain. Whichever direction is taken by the last mentioned test,

essing path at 07.03 to read in the first record of the new chain and perform its processing.

ENDCOL Subroutine

If the aforementioned test 08.01 indicates that the end of a column has been reached, the program branches to perform a further test 11.01 to determine whether the current record is a J- or E-code. If it is such a code it can nevertheless be allocated to the current column since EPCON has its value chosen so that there is enough room at the end of every column to contain an additional 10 lines required for a J- or E-connector (or for a pseudoconnector). Consequently, if the test shows a J- or E-code, the logic is routed directly back to the main processing path at block 08.02 as if the test 08.01 against EPCON 15 had gone the other way, since the rest of the processing beginning with block 08.02 can be properly performed on the current J- or E-record. The next record will then be directed by the test 08.01 into the ENDCOL subroutine to start a new column. 20

When the code is not a J- or E-, then the ENDCOL subroutine is entered at block 11.03 to arrange for the proper termination of the current column by the generation of a pseudo-connector record in the output file, and by the proper initiation of the new column which involves re-25setting the various indicators and locators. A pseudo-connector record is a short record, 13 characters in length, which goes to the output file and is used by Pass III to create a connector symbol at the bottom of each column 30 that is not terminated by a JUMP or EXIT symbol.

TABLE IV.-PSEUDO-CONNECTOR RECORD

Field	CHAR [#]	Field	CHAR
Control symbol. Letter "X" Spaces. Column #	1 1 2 1	Line # Page # Box # Control symbol	

The letter "X" identifies the record as a pseudo-connector. Column # and Line # (LNC-3) fix the location of the symbol on the page. Box # and Page # are those of the currently-processed record and are printed inside the connector symbol to indicate the next symbol in the path of flow. If it is a connector for the bottom of a main column (other than the last) of a page, the connector 45symbol contains the current Page # and current Box # plus 1; if it is a connector for the bottom of the last main column on a page, it contains the current Page # plus 1 and a Box # of "01."

A pseudo-connector is not needed when the previous record was a J-, H- or E-code record terminating a chain, since the J-, H- or E-symbol satisfactorily terminates the column. A test 11.02 for this condition is made by examining the contents of LFTCD, where the previous record's F/C code was saved. If the test is negative, block 11.03 55proceeds to generate the desired pseudo-connector record in the fashion explained above and write it to the output tape. The program continues with block 11.04; if the test 11.02 indicates that the previous record was a J-, H- or Ecode, this pseudo-connector operation 11.03 is bypassed and the program proceeds directly with the test 11.04. The latter tests the Col # counter to determine whether it is set to a value of "4," if so, the current column is the last column on a page, and the program branches to block 12.03, where the Page # is increased by 1; then to block 12.04, where the Col # counter is set to "1" and the Box # to "0." Then block 12.05 writes an end-page record to the output tape 111, which record comprises a control symbol that Pass III uses to determine when it has read in all of the records needed to create a page. With the end-page symbol a complete page of records has been written to tape 111, and the program then jumps to block 11.07 where the line counters are set to "1." Thereafter, a test 12.01 determines whether the currently processed the program recycles back to the start of the main proc- 75 record is a B-code, and if it is the program branches to

18.06 where the record is written to the output file, and he program proceeds to process the next record via blocks **18.07** and **07.03**. If it is not a B-code, the program jumps o **07.06**. Jump **12.02** transfers the program to block **07.06** to repeat the initial processing of the line number of the current input record in view of the resetting of the line counters at the start of this new column. Thereafter, the program proceeds in the manner described above.

If the test 11.04 indicates that the current column being allocated is not the last one on the page, the next test 10 11.05 determines if any symbols have been allocated to the next adjacent column, which condition can occur upon processing of branch chains from DECISION symbols, as explained below. Thus, if the adjacent column has been already allocated, the program branches to block 12.07, 15 where "2" is added to the Col # counter. This has the effect of skipping the adjacent column to obtain the next column thereafter for the current allocation. If this new column number is greater than "4," the program operation is via blocks 12.03 to 12.05 to start a new page as described above. In any case, the program transfers back to block 11.07 to reset the line counters and start the processing at the top of a new column.

If the test 11.05 determines that the adjacent column has not yet been allocated, block 11.06 adds "1" to the 25Col # counter. Block 11.07 resets the line counters, and the processing continues at the top of a new column, in the manner described above.

B-code Processing

As previously described a test **07.05** for the B-code is made shortly after each record is read. When such a code is found, a new page is started by setting the Col # field to "4" and then entering subsoutine ENDCOL at block **12.09**. This subroutine, via test **11.02**, blocks **11.04**, **12.03** 35 to **12.05**, **12.01** and **08.06**, sets up a new page and returns control directly to the main path at the point of writing the record to the output.

There are two special cases where the ENDCOL sub-40 routine is preferably not entered. The first is where this is the first record on the input file, which is normally a B record. To avoid skipping a blank page, a test is made of the sequence number of the B record, and ENDCOL is bypassed if it is "1." The second case is where B-symbol by chance is the start of a new page; that is, where the 45 current symbol location is at the start of a new page, and the previous page was already properly terminated. This condition can be tested for by testing Box # for "00"; which number indicates that the current operation is at the top of a new page and that ENDCOL can be bypassed. Normally, a B-code should be preceded by a Jor E-code, which would properly terminate the previous page. If by error that should not occur the B-code will nevertheless start a new page, and a pseudo-connector for the previous page is generated in block 11.03. 55

DECISION Branch Processing

The aforementioned test 08.05 for a D-code, if affirmative, directs an immediate branch to the associated processing logic at block 12.01, and there-preceding is TEXT 60 that sets forth the function of this processing. The DE-CISION record and associated data, are analyzed to determine how best to illustrate its branches on the flow chart. The processing includes the secondary-column subroutine SCOL, block 16.07, which, as the TEXT there-65 preceding indicates, analyzes a chain of code branching from a DECISION symbol in order to determine if it is possible to assign that chain to a secondary-column. When it is determined that such an assignment to the secondarycolumn should be made, the DECISION-branch logic 70 functions (in this embodiment) as a control routine for processing directly to process that chain in the secondarycolumn.

There are two key indicators in the input records which must be set for all DECISION records: These are in- 75

dicators LHTC and RHTC, which are used by Pass-III to determine how the page is to be laid out. LHTC refers to the destination tag located in field LHT, and RHTC performs a similar function for field RHT. Each of these indicators can have three possible values that correspond to the following courses of action, respectively: (a) This branch requires a connector symbol; (b) The coding for this branch is in the adjacent secondary-column; (c) The adjacent column is not being used for this branch; it is not known whether a connector is to be used or a line can be drawn to show the path of flow.

Of the above three possibilities, courses-a and b are definite; course-c indicates that the final result is unknown and is to be finally revolved by Pass III. Pass I, when it 15 sets up its output record, sets both LHTC and RHTC to indicate course-c. Pass II may change them to course-a or b, or leave them set at course-c. Under certain conditions, subroutine SCOL will set the two indicators; under other conditions the DECISION-branch logic itself does the 20 setting.

It should also be noted that subroutine SCOL determines the suitability of a chain for display in the adjacent secondary-column, and the final determination of so displaying that chain is made by the DECISION-branch logic itself. For a single branch DECISION, field LHT is used. For a two-branch DECISION, both LHT and RHT are used. The subroutine SCOL generates a "no good" signal if the testing field has no tag (thus, on a one-branch DECISION, the field RHT has no tag, and 30 SCOL generates "no good").

The DECISION-branch logic is divided essentially into two sections. The first section starts at block 13.01 and determines (by means of SCOL) if either branch chain is suitable. The second second section (beginning at block 14.03) is a control routine which sets up a branch chain to be processed and starts the processing at block 07.03; after the branch chain is processed, the program control picks up processing of the main column of flow again from the point it was temporarily halted to handle the branch chain. In the event that no chain is allocated to the secondary-column, the second section of the DECI-SION-branch logic is not entered.

The first test 13.01 determines whether the current processing is taking place in a secondary column by checking an indicator EVOD which assumes one value for processing main columns of flow and another for secondary or branch columns. If EVOD indicates "secondary column," no further branching to subordinate columns takes place from the secondary-column (in this embodiment); LHTC and RHTC remain unchanged (Pass III determines whether to draw a connecting line or a connector symbol at the branch point), and the program branches back to block 08.06 to continue with the processing of the branch chain in that column. If EVOD indicates the current processing is in the main column, the program steps to the SCOL subroutine 13.02, and the latter symbol indicates that SCOL starts at block 16.07.

SCOL subroutine

The SCOL logic begins, block 16.07, with setting the exit from the subroutine back to the main-flow reentry point. This subroutine is entered from block 13.02, 13.04 or 15.01, and the reentry point in each case is the main-flow block immediately thereafter; namely, block 13.03, 13.05 or 15.02, respectively. The input parameter for this subroutine consists of a locator pointing to the left-hat character of the tag field in question (LHT for the first-branch analysis and RHT for the second). This locator also fixes the location of LHTC or RHTC, as the case may be, since the latter indicators are located one character to the left of their associated tag fields. The output of the subroutine is a signal stating whether or not the chain involved can be put in the adjacent secondary-column, namely "ok" or "no good," respectively.

Block 16.08 looks up the destination tag of the first

10

branch LHT for an entry in the Tag Table (in the manner similar to the operation of block 09.08 described above). Test 16.09 checks if the record's tag field contained a tag, and if the tag could be found in the Tag Table; if either condition is negative, block 17.02 sets the indicator LHTC for a "connector" symbol, and the subroutine jumps to EXIT 18.08.

If a tag and its corresponding Tag-Table entry are located, SCOL determines whether the chain identified by the tag is suitable for assignment to the adjacent secondary-column. All six of the following criteria must be satisfied or a "no good" signal is established, and LHTC is set to "connector" by block 17.02.

(a) The record identified by the destination tag must not have been assigned. Test 17.01 checks this criterion by determining whether the Box # field in the current Tag Table entry is a blank; if so then the associated record has not yet been processed and allocated (for block 09.09 makes the Tag Table entry upon such allocation). If the Box # field is completed, then the destination has 20 been allocated a place on the chart (this of course is the case for all DECISIONS which jump to an earlier section of the coding).

(b) The destination record must not be in the current chain. To check this criterion, block 17.04 extracts from the Tag Table (Table II) the Sequence # of the destination tag and places it in field TSQ. The Chain Table Locator points to the Chain Table entry for the current maincolumn chain and thereby the final Sequence # of the current chain can be extracted and compared wth the field 30 TSQ, the Sequence # of the destination tag. The TSQ must be greater than the current-chain Sequence # or else the destination tag is in the current chain (since it has already been determined that it is not in a prior chain by test 17.01). Thus, the result of this comparison supplies 35 the answer to the test 17.05 of this criterion.

(c) The destination record must be at the start of a chain, rather than at some other point thereof (for this embodiment of the invention). This operation is per-formed by locating (block 17.06) the chain that contains 40 TSQ; beginning at the start of the Chain Table (Table III), the successive Sequence # fields thereof are compared with TSQ until the Chain Table entry is higher than TSQ. The chain of the tag is thereby located. To obtain the start of that chain, block 18.01 extracts the Se- 45quence # of the previous Chain Table entry (which is that of the last record of the previous chain), and "1" is added to it to obtain the Sequence # of the first record of the chain containing the tag; the latter result is compared with TSQ (in block 18.2) to determine if they 50 are equal. If so, the destination record is the start of a chain. Block 18.01 also picks up the length of the chain containing the tag for subsequent use in this subroutine. An extra test has been found desirable to determine if the destination record is the second one of the chain; and, if so, whether the first record is TEXT or NOTE. If it is, the second record is then considered as satisfying this criterion; and the chain can be printed in the secondary-column with NOTE or TEXT at the beginning thereof.

(d) The adjacent secondary-column must be free at this branch point of the DECISION symbol (for this embodiment). This criterion determines that the adjacent column at the branch point has not been previously assigned to a chain coming down from another DECISION symbol in the same main column, but located above the current DECISION symbol. Block 18.03 determines this condition by comparing LNC-3 against LNC-2. LNC-3 is the column Line # at which the current DECISION symbol begins; and LNC-2 is a field completed by the 70 DECISION-branch logic when the secondary-column is allocated and it represents the Line # at which the last chain in the secondary-column ends. If LNC-2 is greater than LNC-3, the adjacent column is occupied at the branch point and therefore not free.

(e) There must be enough room in the adjacent column to contain the entire chain (for this embodiment). The test 18.04 for this criterion is performed by taking LNC-1 (the ending line for the current DECISION symbol), subtracting "6" to get the Line # of the branch point of the DECISION symbol (which, by an arbitrary rule, is where branch chains should start on the flow chart), adding the number of lines in the destination chain (obtained by block 18.01) and comparing the results with the constant EPCON (the column line-length). If the latter is smaller, there is insufficient room in the secondary-column for the entire chain.

(f) The number of records to be skipped on the work tape 110 to reach the desired chain must not be excessive. This criterion is checked via block 18.05 by taking TSQ, subtracting "1," and then subtracting the field TPOS 15 (the Sequence # of the record that was last read). The result gives the number of records to be skipped to reach the chain in question, and if test 18.06 determines that this number is excessive then it would be too time-consuming to pick up the chain. This number would vary depending upon the apparatus and individual choice as to efficiency. For example, a skip of 40 records or more has been considered excessive for some purposes.

If all of the above criteria (a) to (f) are satisfied, the 25"ok" indicator is set by block 18.07. If the chain is "ok," no further action is taken by SCOL. The subroutine exits via block 18.08 and returns to the main flow reentry point of the DECISION-branch logic (e.g. to block 13.03 after analysis of the first branch chain). Failure of any of the above six criteria results in the "no good" signal being set by block 17.02.

If a chain is found to be "ok" then the number of records to be bypassed (as computed by block 18.05) to reach the desired chain is preserved in an appropriate memory field, since it will be used by the succeeding DECISION-branch logic.

DECISION-branch logic continued

The "ok" and "no good" signals from SCOL are used in the test 13.03; and if "ok" the program steps to subroutine 13.04, which directs another entry into the SCOL subroutine for the second branch tag RHT. Upon completion of the second tag analysis by SCOL, the subroutine exits back to 13.05 to test if the second tag can be assigned to the secondary-column. The different possible combinations are handled as follows: If the first branch could not be assigned, as tested at block 13.03, the program branches to 15.01 for the second-branch operation of SCOL. If that second branch likewise could not be assigned (test 15.02), then the DECISION-branch logic exits by pumping back to the main flow at block 08.06, the current DECISION record is written to the output tape 111, and main-column processing continues. However, if the second branch is tested to be "ok" in block 15.02, 55the program branches to block 15.05 to set the status indicator for the second branch to the secondary-column. The program then jumps to block 14.02, which writes the current DECISION record to the output file and steps to block 14.03 for processing the second-branch chain. How-60 ever, if the first branch tests "ok" in block 13.03, while the second branch tests "no good" in block 13.05, the program jumps to block 14.01 to set the status indicator

for the first branch to the secondary-column. Thereafter, block 14.02 writes the current DECISION to the output 65file, and block 14.03 initiates the processing of the first branch.

Where both the first and second branches test "ok," a decision is made (in this embodiment) to process one of the branches and mark the other one for a "connector": a criterion found to be suitable is that of determining which branch is the closer one, as shown by test 13.06. The relative closeness is readily determined from the number of records that have to be skipped to reach each chain, 75 as computed in block 18.05 of the SCOL subroutine. If

the first branch is closer, the status indicator for the secand branch is set to "connector" in block 13.07 and the status indicator for the first branch to the secondarycolumn by block 14.01. If the second branch is the closer one, the program branches to block 15.04 which sets the status indicator for the first branch to "connector," and block 15.05 sets that of the second branch to the secondary-column, and the program jumps to 14.02 for writing the current DECISION to output. Appropriate coding is provided to preserve the information derived during the 10 SCOL analyses for LHT, so that it is not lost when SCOL is repeated for RHT.

When a chain is finally chosen for the adjacent secondary-column, its corresponding indicator LHTC or RHTC is set to indicate this; this indicator for the other chain 15 is said to use a "connector." This is done even though there may be only one branch in the DECISION, since the setting of RHTC for a nonexistent tag in RHT is ignored by Pass III.

Secondary-column processing

When block 14.02 writes the current DECISION to the output file, the current value of TPOS (the Sequence # of that DECISION record) is stored for later reference and reentry to the main column. Block 14.03 starts the 25 second section of the DECISION-branch logic and uses the calculation (block 18.05) of the number of records to be skipped on the input tape to position the tape in front of the first record of the branch chain which is to be assigned to the secondary column. An indicator is then 30 set (14.04) in the Chain-Table entry for that branch chain that the latter has been processed; this prevents further processing of that chain later on in the operation of Pass-II when it would normally be picked up in turn.

The column number is advanced (14.05) by "1," so 35 that it points to the adjacent column next in order. The indicator EVOD is set (14.06) to indicate that a secondary-column is being filled; this indicator is needed, because the processing of the secondary-column chain is 40 via the main processing logic; and it is tested upon completion thereof for return to the DECISION-branch logic.

LNC-1 (which indicates the bottom line number of the DECISION symbol from which the branch occurs) is stored (14.07) so that it may be subsequently picked up upon return from the secondary-column processing. The new LNC-1 for the secondary chain is obtained (14.08) by subtracting "6" from the previous LNC-1, which has the effect of starting that secondary chain 6 lines above the bottom of the DECISION symbol from which it branches, which is at the branch point of the diamond-50shaped symbol. Control is then transferred (14.10) to the main processing path at the point 07.03 where it starts processing a new record, the first in the branch chain. As indicated by NOTE 14.09 the main processing path allocates assignments for the secondary-column in its normal 55 fashion, since LNC-1 and Col # have been appropriately set. DECISION symbols that are encountered in the secondary chain tend to move the logic into the DE-CISION-branch coding via the test at 08.05, but the program is immediately returned to the main processing path 60 by the test at 13.01 which initiates the branch logic. Eventually, a J- or E-code is found by the main processing path via the test **08.07**; the next test **09.01** finds the EVOD indicator set to "secondary," and the program branches to block 15.07, which is effective to rewind the input tape 65 to the record following the DECISION symbol from which the secondary-column chain branched. Since the SCOL subroutine measured the secondary chain and found that it would fit in the adjacent column, when the first J- or E-code is reached, the secondary-column chain 70 terminates and it is proper to return to the main-column processing as indicated in NOTE 16.01. Block 16.02 transfers the then current value of LNC-1 to LNC-2, so that the latter represents the last line assigned to the secondarycolumn. LNC-2 may be required by SCOL in the event 75 CISION record. Chains not eligible for the adjacent col-

28

that another DECISION occurs further down in the main column. The value of LNC-1 of the main column DE-CISION symbol, which was stored (at block 14.07) upon entry into the secondary-column processing, is returned to LNC-1 so that the main column processing begins where it left off prior to processing the branch. Block 16.03 resets EVOD to "main," and block 16.04 reduces the column number to restore it to its original main-column value. The indicators are all restored and the input tape is then at its proper place to continue the processing (NOTE 16.05) of the main-column chain that was interrupted for the secondary-column branch. The main-column DECISION record that initiated the branch operation has been completely processed so that the input tape is positioned to the succeeding record by block 15.07. For this purpose the TPOS of the DECISION record, which was stored is now subtracted from the current value of TPOS, which is the sequence number of the last record of the secondary-column chain. The result is the number of records that the input tape 110 must be backspaced for proper repositioning. After repositioning of the input tape, control goes back to 07.03 to read the next input record of the main column and continue the processing of the chain that was interrupted.

The foregoing operations of Pass II are performed iteratively on all of the records of each chain in the manner described. Successive chains are processed in order until a DECISION record calls for a branch chain from the main flow. At that time, the branch chain is analyzed to determine if it is suitable for allocation adjacent to the main flow chain, and if so, it is processed. After the last record of the input file is processed, the end-file indicator is detected (07.04) the output tape 111 is rewound (09.06) and Pass III is called in for operation.

Summary of Pass II

The primary function of Pass II is the allocation of flow chart locations to the symbols. The input is the output from Pass I. As each record is read, it is assigned a Box # and a Line # in the current column (the associated portions of the Tag Table are thereby completed). When the column is filled, a new column is started, until the rightmost column is reached. After this column is filled, a new page is started. DECISION records involve considerably more complicated processing than other types of records. Whenever possible, the F/C program attempts to place the coding that branches off from a DECISION in the column immediately to the right of the DECISION symbol, which is termed an adjacent or secondary column. However, before this can be done, a number of conditions must be satisfied by the branch chain, including the following:

(1) The section of coding that branches from the DE-CISION must be further down the input tape; otherwise it would have been allocated at an earlier point.

(2) The entire chain must fit in the adjacent column without overflowing the bottom of the column, to avoid breaking up a chain. (In other embodiments, branch chains that fit in larger page sections than a column may be used.)

When all of the above conditions have been satisfied, a chain branching from a DECISION symbol is considered eligible for assignment to an adjacent column. All of the information necessary to test the above conditions is contained in the Tag and Chain Tables and the record itself. In the event of a three-way DECISION, where there are two branches to be considered, it is possible that both branches will be eligible for the adjacent column; in this case, the chain closer to the current record is chosen. Each of the two destination tags in the record has an associated indicator which is set by Pass II to one of the three possible values-"adjacent column," "connector," or "unknown." If a chain is selected for the adjacent column, its corresponding indicator is so marked in the DE- umn may be designated either "unknown" or "connector," depending on which of several conditions was not met. With a destination indicator of "unknown," Pass III attempts to draw a connecting line to show the path of flow instead of using a connector.

After a branch chain has been selected for assignment to the adjacent column, the input tape is advanced to the first record of this chain. An indicator is then set in the Chain-Table entry for this chain to show it has been processed; this is necessary to avoid reprocessing this same 10chain at a later time in a main column. The column number is advanced by "1," appropriate indicators and counters are set, and the program logic is then routed back to the same coding that processes records for the main columns; thereby common coding is used for proc-15essing chains in both main and adjacent columns. The first J- or E-code encountered while in the adjacent-column mode indicates the end of the branch chain; at this point the input tape is rewound back to the original DECISION record, and main-column processing contin- 20 ues where it left off.

Pass II also makes the necessary "from" connector entries in the Tag-Table to allow handling of cross-references by Pass III. Only the first such reference to any tag is noted, along with a signal if there is more than one. 25

PASS III

The function of Pass III is to form an entire flow chart page in memory, draw the necessary connecting lines from DECISION symbols, and produce a finished flow chart. 30 The input consists of the output from Pass II on tape 111 and the Tag-Table located in memory. The output either goes to an on-line printer or to a tape for off-line printing. Pass III also produces the Table of Contents at the beginning of the flow chart. 35

Page layout

Throughout Pass III, a section (e.g. 15,000 locations) of memory is reserved (in this embodiment) for holding 40 an entire F/C page internally; for computers having limited memory capacity, storage tapes or drum may be used to supplement the memory. This page-layout memory area is structured as contiguous "lines" of 120 characters each. The first line of each chart is represented by the first 120 characters of this area, the second line by the 45 next 120 characters, etc. The location of any symbol on a page is given by its Column # and Line #. A subroutine 19.06 is used to convert these two factors into a memory address that represents the centerpoint of the first line of that symbol; it operates by multiplying the 50 Line # by 120 and adding to the result one of four factors depending on the Column #. An index register is reserved for use as a locator; this index register always contains this base location on the page that the program is currently concerned with, and hereinafter it is referred 55 to as the "Page Locator."

To "move" this Locator around on the page, "120" is added to the Page Locator, which moves it to the same position on the next lower line; subtracting 120 moves it to the same position on the line above. Moving to the 60 right or left on the same line is accomplished by adding or subtracting the appropriate number of positions from the Page Locator. Since the Page Locator is an index register, indexing techniques may be used in place of actually modifying the Locator. 65

Every symbol has fixed dimensions for which constants are stored; that is, the horizontal dimensions are fixed for all symbols, and the vertical dimensions are fixed for some and variable for others (e.g. P- and N-codes). For all symbols, the location of the Box #, tag, and other related information is always located in a fixed position relative to the center-line of the column. Detailed specifications of these dimensions will be apparent from the flow chart of FIG. 8, which illustrates suitable values and conventions that are followed in printing the flow chart. the Locator in proper the subroutine value (2) Adjusts an input call on the subroutine value (3) Tests to see whe input record to the path this condition is encount When an End-of-Pa

GENERAL DESCRIPTION OF PROCESSING

The first function performed by Pass III is to print out the Table of Contents (block 19.01). All information present in this table is obtained from the Tag Table, which is in memory throughout the entire program. Printing of the Table of Contents involves moving the necessary information from the table to the page-layout memory area; that is, for each chart a list of the tags and the page and box numbers therefor. A tally NUMTAG set by Pass I determines when processing of the Tag Table to Table of Contents is completed. An entire page is constructed prior to writing anything out and as many pages as needed to contain all the tags are produced. It has been found suitable to list the information in two columns or sections on a page, with the entire left column of the output memory area being filled before any entries are made in the right column thereof.

After the Table of Contents is completed, production of the flow chart pages begins. A full page is processed at a time; nothing is printed until the entire page has been formed in the page layout area, at which time the entire page is printed. A control symbol on the input tape 111 designates the end of a page; this control symbol is developed in Pass II. Each input record is processed separately, and a new record is not read until all processing for the previous record is completed.

Immediately upon reading a record by block 19.02, tests 19.03, 19.04 and 19.05 are made respectively for end-file and end-page indicators and B-code, as discussed below. Thereafter in the program, a subroutine 19.06 computes the chart location of the F/C symbol for the current record. This chart location is stored in the Page Locator and is obtained from the Col # and Line # of the symbol in the input record. After determining the 35 location of the symbol, a check 20.01 is made for a crossreference and the proper "from connector" is generated (block 20.02) if required. The record is then routed down a particular path, depending upon its F/C code. There is a separate page for each code. Each path performs the necessary layout for the particular symbol involved, puts in any connecting lines, box numbers, and tags necessary, and upon completion returns back to read and process the next record.

Any Comments text associated with a symbol is moved from the input record to the page layout area by means of a Move-Line subroutine 20.08. In an input record, each Comments line is delimited by a control symbol, and a second control symbol is used to indicated the last Comments line within the record. Each individual code path calls upon this subroutine when necessary in order to move the text from the record to the page area. The Move-Line subroutine picks up the next line of text from the input record and places it on the page centered about the memory position given by the Page Locator. Upon entry to the subroutine, therefore, the Page Locator must point to the center of the field where the line is to be placed. It should be noted that Comment lines, as they exist in the input record, are usually less than the horizontal dimensions of the symbol, and this subroutine centers them so that there are equal margins on the right and the left.

The Move line subroutine **20.08** also performs additional functions:

(1) After moving each line, it increases the Page 65 Locator by 120 characters, thereby automatically setting the Locator in proper position for the next line within the symbol.

(2) Adjusts an input record pointer so that the next call on the subroutine will move the next sequential Comment line of the record.

(3) Tests to see when it has moved the last line of an input record to the page area, and sets a signal when this condition is encountered.

When an End-of-Page symbol is located in an input 75 record, block **19.04**, the entire page is written to a print

50

ape, block 21.05, or printed directly to the on-line printer 112. The page layout area is then cleared to spaces and formation of the next page begins with the reading of the next input record.

An End-of-file symbol on the input file signifies that all input data for this program has been processed (blocks 19.03, 21.03; at this point Pass IV is called in.

Detailed Processing

As outlined above, every record (except B-codes) 10 of the offset NOTE symbol.) has the location of its symbol computed by means of a subroutine 19.06, which location is stored in the Page Locator. Separate paths are then taken for each F/C code:

B-code

A B-code is the only F/C code which is not allocated to a column; its sole function is to supply a chart title. When a B-code is encountered (blocks 19.05, 21.07), its Comments field is stored in the sub-header area of the 20 page memory area, where it remains until overlaid by the next B-code. No further processing is needed for B-codes.

I-code

25A subroutine 20.06 is used to create an octagon of dots on the page, with the vertical connecting line pointing to the midpoint of the top line thereof. The Box # and tag (if any) of the record are placed outside the symbol in the proper memory locations (block 20.07). The $_{30}$ Move-Line subroutine 20.08 is bypassed for there are no Comments in J-records, and a test 20.09 leads to a branch 22.03 that locates in the Tag Table the destination of the JUMP record. The Page # and Box # of this destination are taken from the table and placed inside the sym- 35 bol. If the destination tag is not found in the Tag Table, indicating an undefined tag, the center of the symbol is left blank. This completes the processing, and the next record is brought in (19.02).

E-code

The subroutine 20.06 creates the symbol in the page area. The word "EXIT" is then placed within the symbol and the Box # of the symbol and tag (if any) placed alongside the symbol (block 20.07).

H-code

A HALT symbol is generated (20.06) with the word "HALT" inside of it. Tag, if any, and Box # are then placed on the page (20.07).

P-code

The Page Locator is first backed up one line (120 characters) and the tag (if any) and Box # placed on the page (20.07). The Locator is then advanced back to the top 55line of the symbol, and the top symbol line, consisting of a field of minus signs, is placed (20.06) on the page. The Locator is then advanced to the next line, the letter "I" trem right, to form a part of the vertical boundary lines 60 are generated internally, nor are they assigned box numof the symbol, and a call is made on the Move-Line subroutine 20.08 to move the first line of Comments text to the page. On return from the subroutine, a test is made to see if this was the last line. If not the last line, the logic is recycled back to where the vertical boundary line segments "I" are inserted, and the next parts thereof are inserted, and another call is made on the Move-Line subroutine. This cycle continues until the signal indicating "last line" is set, when the vertical boundaries are com- 70 mentation of Pass II. plete, as is the Comments area. Then, the bottom line of the symbol, consisting of a field of minus signs, is placed on the page. It should be noted that it is not necessary to adjust the Locator to the next line, since this is a function performed by the Move-Line subroutine.

This code is processed identically to the P-code, with the following exceptions:

(a) Asterisks are used for both horizontal and verti-5 cal boundaries.

(b) Since a NOTE symbol has its left side offset by two positions to the right, the Locator is incremented by two, prior to doing any processing. (Incrementing the Locator by two positions sets it to the horizontal center

S-code

The Page Locator is backed up to the previous line, and tag and Box # placed on the page. The entire SUB-15 ROUTINE symbol is then moved to the page layout area; this symbol is stored in memory as a constant and is moved to the page area from the constant area in a series of moves controlled by a tally (20.06). After each line of the constant is moved, the Locator is incremented by 120 positions to bring it to the next line. After the entire symbol is on the page, a subroutine is used to put in the three "I" symbols forming the connecting line leading down to the next box. The Locator is then adjusted back to the second line of the symbol, which is the first line to receive any Comments text (the line directly underneath the upper horizontal boundary). Successive calls are made on the Move-Line subroutine (20.08), until the last-line indicator is found to have been set. Test 20.09 leads to extracting (22.03) the destination tag of the SUBROUTINE (identified in field LHT) from the Tag Table, and its corresponding Page # and Box # (from the Tag Table) are placed within the symbol. If the tag is undefined, its Page # and Box # are omitted from the symbol. It should be noted that printing of the destination tag in parentheses within the subroutine symbol is not handled by Pass III; this field is inserted as a regular Comments line by Pass I, and Pass III handles it merely as another line of Comments. Also, any vertical editing of lines, for better spacing, is controlled by Pass-40I through the insertion of dummy control symbols representing blank lines, thereby effectively spacing the lines properly within the symbol.

T-code

A T-code generates no symbol, but merely results in the placing of text on a page. Successive calls are made on the Move-Line subroutine (20.08) until the last-line indicator is set.

Pseudo-Connectors

Pseudo-connectors are short records generated by Pass II to indicate a connection from the bottom of one column to the top of the next column. These records (Table IV) are of a different format from the other input records, and are identified by the letter "X" in a fixed position of the record. The only information contained within this record, in addition to its Column and Line #, are the Page # and Box # to which the connector is jumping. Pseudo-connectors cannot have tags, since they bers. After the address is computed (19.06) and the symbol is generated on the page area, test 19.07 leads to block 22.01, where the destination Page # and Box # from the pseudo-connector record are placed within the 65 symbol. It is always necessary to add "1" to the Box # before placing it inside the symbol. This is because Pass-II, when setting up the pseudo-connector record, uses a Box # which is one too low. There is no logical basis for this; it is purely a matter of convenience in the imple-

DECISION Records

The handling of DECISION records presents a far more difficult problem than other codes, primarily be-75 cause of the many courses of action available on the

 $\mathbf{5}$

branches from a DECISION. Each DECISION record has two fields, LHT and RHT, in which destination tags are stored, and two indicators LHTC and RHTC that indicate one of the following courses of action:

(a) This branch requires a connector.

(b) The coding from this branch is located in the adjacent column. (c) Use a line to indicate connection, if possible; if

this is impossible then use a connector.

It should be noted here that the mnemonics LHT and 10 RHT do not refer to "left" or "right" side; one of the decisions to be made by Pass III is which side of the DECISION symbol will indicate a particular branch.

Rules Regarding Connection of Branches

In laying out lines from DECISION symbols, the program follows certain pre-defined rules. These are:

(a) Wherever possible, connection lines are used in place of connectors.

(b) Where a connector must be used, the connector is 20always placed on the right side of the DECISION symbol unless this side is already in use (either by another connector or by a line to an adjacent column) in which case it is placed on the left.

(c) Connection lines may only appear (in this embodi- 25 ment) in a lane on the left side of the DECISION symbol (23.04 et seq.).

(d) Connection lines in the same lane are allowed to go to different destination symbols so long at they do not $_{30}$ overlap (23.08).

(e) Connection lines are drawn (in this embodiment) only if the destination is in the same column as the DECISION symbol (23.07).

Detailed Description of DECISION Processing

The outline of the DECISION diamond is first moved to the page. This outline is carried as a constant within the program and is moved (20.06) to the page area by a series of moves controlled by a tally. The main-flow 40 branch label is then moved from the Comments field to its position on the page and a subroutine is used to drop a vertical connection line to where the next symbol will be. It should be noted that a DECISION symbol has a vertical connect line consisting of four elements, while 45other symbols use three elements; this is necessary in order to guarantee proper clearance between any connectors and following F/C symbols. The Page Locator is then moved back up to the top of the symbol and the tag and Box # placed on the page alongside the symbol. The 50 Locator is then moved down two lines in place to receive the first line of text. Successive calls are made on the Move-Line subroutine 20.06 until an indicator shows that all lines have been moved. Overflow of the DECISION diamond is not possible at this point; if overflow did 55 occur, the excess Comment was truncated by the Pass-I editing logic.

After the DECISION symbol is completely laid out on the page, with its related tag and Box #, the logic to examine the branches begins (21.01, 22.05). In process-60 ing the branches, the same physical coding is used for processing both fields LHT and RHT. The branch tag currently being processed is always located in field RHT. When the tag originally located in RHT is finished, LHT is moved into RHT for its processing. An indicator is used 65 so that the logic knows when it has completed processing the second tag and can go fetch a new record.

It is possible for either or both of the tag fields, LHT and RHT, to be blank; for a two-way decision, field RHT is blank. Both tags may be blank due to an error condi- 70 tion in the source program; in this case a DECISION diamond is printed with no branches. If a field is found to be blank, it is bypassed: thus, the program does not have to formally distinguish between a two- and three-way dehandles the problem. The following indicators are used throughout the DECISION-branch logic:

(a) Two signals LSS and RSS tell the logic whether the left side and right side respectively of the DECISION symbol have been utilized.

(b) An undefined symbol indicator UNDS is set by the subroutine which searches the Tag Table. This indicates that a tag has not been found in the table.

(c) An indicator TAGTA tells the logic whether it is processing the first or second branch tag.

At the start 22.05 of branch processing, indicators LSS and RSS are set to OFF, indicating that both sides of the DECISION symbol may be available. Indicator TAGTA is set to indicate that the first branch is being processed.

15 A check is then made to see if the indicator RHTC says to go to the adjacent column, and if so, the fields LHT and RHT are reversed, along with their related indicators and labels. This is necessary in order to insure that the RHT branch is always processed first (an arbitrary convention), and consequently the right side of the DECI-SION symbol (which leads to the adjacent column) is initially made available for it. At this point, branch processing begins. A test is first made for the presence of a tag in this field. If the tag field is blank, the logic is routed to a test 25.01 of indicator TAGTA, which is described below. A subroutine 22.06 locates the branch tag in the Tag Table; and if found (22.07) the location data for this tag is extracted and stored (23.01) in an index register. If the tag in question is not found, indicator UNDS is set to ON for later use and test 22.07 routes the program to the branch 25.01 for drawing a connector symbol.

When the tag data is obtained, one of three courses of action is taken depending on the status of the tag indicator (NOTE 23.02), which is then tested (23.03). If RHTC indicates a connection to the secondary (ad-35jacent) column, a horizontal line is extended (24.06) to the right an appropriate number of positions. A vertical connecting line at the right-hand end of the horizontal line is then dropped (two elements in length) to connect with the top symbol of the adjacent column. The label is then placed just above the horizontal line, and RSS is set (24.07) to ON, indicating that the right side of the DECISION has been utilized.

If RHTC indicates (23.03) that a connector is to be used, a test 25.01 is made to see if RSS is ON, if it is ON, then the connector must be drawn (25.05) on the left side of the DECISION symbol. If RSS if OFF, then the right side of the symbol is used (25.02). Depending on the status of RSS, the Locator is either advanced or retarded to the left or right side of the DECISION symbol. The label is put on the page and the connecting lines between the DECISION symbol and the connector are drawn in, as is the symbol itself. After the symbol is drawn, the undefined tag indicator UNDS is tested. If the tag data is undefined, then the tag itself is placed within the generated symbol. Otherwise, the Page # and Box # of the destination are picked up from the Tag Table and placed within the symbol. Either LSS or RSS is then set (25.06 or 25.03) to ON, depending on which side of the symbol the connector was drawn.

The third course of action to be taken is when field RHTC indicates (23.03) that a line should be used if possible (NOTE 23.04). The program determines whether it is feasible to draw a line; if not feasible, then a Connector is used. First LSS is tested (23.05); if it is ON, then the left side of the DECISION symbol is all ready in use. Since connection lines may only be drawn to the left (NOTE 23.06), a Connector must be used on the right side, and the program is routed down that logic path 25.02. If LSS is OFF (test 23.05), then a test is made of UNDS; if this indicator is ON, then a Connector is used and the logic is routed down the path 25.05 for left-side Connectors. However, if the tag data cision since bypassing blank tag fields automatically 75 is available, a test 23.07 determines if the tag symbol is in

3,533,086

he same column. That is, the Page # and Col # of the ranch tag (obtained from the Tag Table) are comared with the Page # and Col # of the DECISION ymbol. If they are not the same, then the program is outed through the Connector logic 25.01. If the Page # 5 nd Col # of the branch tag match that of the DECI-JION symbol, then the branch is in the same column is the DECISION and a line may be feasible. A check s then made to see if the destination of the branch is bove or below the DECISION symbol. This is done by 30 comparing the Line # of the DECISION symbol with he Line # of the branch tag. If the destination is below he DECISION symbol, then a "down" line must be used. A check 23.08 is made of the left lane reserved for connecting lines; if it contains an "I" then there is al-15 eady a line in that column. This line is then traced 26.01 back to its destination, to see if its destination is the same as the destination of the current DECISION. If so, hen a simple horizontal connection is made 26.02 to he line that already exists. If the destination of the existng line is not the same, then a Connector must be used or current branch tag and the program is routed to that ogic 25.01. If the test 23.08 determines that the column eserved for vertical lines is unoccupied, a down-line is Irawn in (24.01). The ending point of the down-line is (nown from the Line # of the destination tag (obtained irom the Tag Table). Appropriate horizontal connecting ines are drawn on the page, the label is placed in its proper position, and LSS is set (24.02) to ON.

If the destination tag is above the DECISION symbol, 30 a similar type of logic is followed, with the following exception: in testing for the presence of an existing verical line, the down-line logic had only to test one locaion-that element of the vertical-line lane immediately 35 below the DECISION branch point. For an up-line, however, every element of the lane between the DECISION symbol and the destination must be tested. Otherwise, an up-line might interfere with an earlier up-line placed further up towards the top of the page. An additional 40 complication may also arise whereby an up-line may interfere with a "from" connector, which is discussed below.

As explained above, one of several courses of action will be taken for each branch, depending on the setting of RHTC and the feasibility of drawing a line. At the end 45 of each path, return is made to a common point 24.03, where the indicator TAGTA is tested to see if this is the second or first branch just completed. If the indicator shows that the second branch has been processed, then processing for the entire record is not complete and con--50 trol is returned back to block 19.02 to fetch a new record. If only the first branch has been processed, then fields LHT and LHTC are moved (24.04) into fields RHT and RHTC, respectively. The label for LHT (first five positions of Comments field) is moved into the label 55 area for RHT (second five positions of Comment field), UNDS is set to OFF, and the logic recycled (24.05) to begin the process 22.06 for field LHT, now located in the area previously reserved for RHT.

Cross-References

60

The information for inserting cross-references ("from" Connectors) is contained in the Tag Table, where it was placed by Pass II. For each tag entry in the Tag Table, five characters are reserved for dealing with cross-refer-65 ences. The first four characters contain the Page # and Box # of the first reference to that tag. The fifth character is a counter of the total number of references to that tag. After a record is read from the input file, a test 20.01 is performed for the presence of cross-reference 70 (this test is made prior to splitting each code down its own branch). This test examines the tag field for presence of a tag, since the absence of a tag indicates that there is no cross-reference. If a tag is present, the tag is looked up in the Tag Table. If the tag is not found in the Table, 75 logic which places up-lines on the page tests for the pres-

then it is undefined and cross-references are not possible. If the tag is found in the Tag Table, a check is made for the presence of a cross-reference by testing the Tag Table field for the first cross-reference; if that field contains spaces, no cross-reference exists.

If a cross-reference does exist, then it is necessary to determine (20.02) the relative position of the current symbol on the page. There are three possibilities:

(a) Middle of a chain.

(b) Top of a chain in a main column.

(c) Top of a chain in a secondary column.

How a cross-reference is shown on the page depends on where the current symbol is located on the page. At this time, the Page Locator is pointing to the center of the top line of the current symbol. This Locator is now backed off to three lines above the top line of the current symbol and a test is made for the character present in this location. From the page design used, it follows that if this character is the letter "I," then the current symbol is in the middle of a chain; if a minus sign, it is at the top of a chain in a secondary column. If the character is a space, the current symbol is at the top of a chain in a main column.

If the current symbol is at the top of the chain in a main column, the cross-reference is placed on the page centered about the column's centerline. The reference placed on the page is extracted from the Tag-Table entry, and an asterisk is inserted if the Tag-Table indicator is set to show more than one cross-reference (20.03, 20.04). If the current symbol is at the top of a chain in a secondary column, then it is not desirable to show the Page # and Box # of the first reference, since this is the DECISION symbol connected by a line to this point, and showing the Page # and Box # here would be redundant and possibly confusing. However, a check 20.03 is made for more than one reference and if there is more than one reference, an asterisk in parenthesis is placed to the left of the centerline. If there is only one reference, then nothing is placed on the second column of the page.

If the current symbol is located in the middle of a chain (either main or secondary column), a check is made to see if there is interference with an existing line. Cross-references for this case are always inserted to the left of the column centerline and are two lines above the first line of the symbol. If there is a vertical downline coming into this point from a DECISION symbol above, then this horizontal line is already occupied. The check is made by positioning the Page Locator to two lines above and one space to the left and checking the resultant location for a minus sign. If there is no minus sign, then the line is free; the first cross-reference is placed on the page, along with an asterisk if the indicator in the Tag-Table entry is set for more than one. If there is a minus sign in that location, a connecting line is being drawn and there is no need to place the Page # and Box # on the line, since this usually is the same as the symbol from which the line is drawn. In this case, a test is made for more than one reference and, if found, an asterisk in parenthesis is placed on the line, if there is only one reference, then no action is taken. The asterisk which may be placed on this line becomes part of the horizontal line coming into the centerline and thus provides notice to the user that there is at least one more reference besides the one shown via the connecting line.

If a cross-reference is placed to the left of the centerline, in the situation where the symbol is the middle of a chain, it is still possible that the subsequent drawing of an "up" connecting line will erase it. This can happen because up-lines come from symbols which are further down in the column and have not yet been processed. It cannot happen with down-lines, since they must come from symbols above the current one and hence will have already been drawn. That part of the DECISION branch

ence of an asterisk prior to drawing the horizontal connection back to the centerline of the column. If an asterisk is present, its position is moved up over the connecting line. If an asterisk is not present, then the line is either free of interference or there is but a single reference, which must be the one for which the line is presently being drawn. In either case, the horizontal connection line back to the centerline can be put in without any complication.

When the end-of-page indicator is detected (19.04) in 10the last input data block, the F/C page is complete in the memory layout. Thereafter, the entire page is put out to the printer (21.05), and the next page is started in the same fashion as described above. When the last page has been printed out, test 19.03 detects an end-of-file 15 indicator to initiate (21.03) the rewinding of the tapes and calling in of Pass IV.

PASS IV

Production of the Cross-Reference List is accomplished by a separate pass, following the completion of the last page of flow chart. Input to the Cross-Reference pass is the same tape 111 that served as input to Pass III; output consists of the Cross-Reference List, either to an on-line printer 112 or to a magnetic tape for off-line purposes.

Two tables, both kept entirely in memory, serve as the basis for producing the listing. These tables are designated:

(1) Abridged Tag Table

(2) Reference Table

Tag Table

The Tag Table used by this pass is an abridged version of the main Tag Table (Table II) used by the first three passes. Each entry of the Abridged Table consists of the following items:

- (1) Name of Tag
- (2) Page # and Box # assigned to this tag
- (3) First reference (Page # and Box #) to this tag
- (4) An indicator which tells whether there are more references to this tag (5) Memory address of the Reference Table entry con- 45
- taining the next reference (if there are any more references).

At the start of the Cross-Reference pass, the main Tag Table is still in memory from the previous pass. The first 50job 27.01 is to set up the Abridged Tag Table from the main table. Since each entry of the Abridged Table is shorter than its corresponding entry in the main table, the same physical memory area may be used for the Abridged Table. Every tag in the main table has a nota- 55 tion as to whether that tag is referenced by another symbol (created by Pass II for the flow chart layout). Only those tags which have references to them are moved to the Abridged Table; all others are dropped.

Each entry of the Abridged Table has four characters 60 reserved for the first reference to this entry. This information is already available from the main Tag Table. However, for ease of implementation, this information is not transferred between tables, but is dropped. The only 65 information transferred between the two tables, therefore, is the name of the tag and the Page # and Box #of that tag. Room is reserved in each entry for the remaining three items, which are filled in later on in the pass.

After all appropriate entries from the main Tag Table have been transferred to the Abridged Table, the latter is internally sorted 27.02 into a Page # and Box sequence. Any one of several known sorting techniques may be used for this purpose.

38

Reference Table

Each entry in the Reference Table consists of three items:

- (1) Identification of this reference (Page # and Box #). $\mathbf{5}$ (2) An indicator telling whether this is the final reference or whether there are additional reference.
 - (3) Memory address of the entry in the reference table containing the next reference for this tag (if another reference exists).

The three fields of each reference entry are identical in format to the final three items of each Abridged Tag Table entry. One entry is created in the Reference Table for each reference (after the first one) for any given tag. A chaining technique is used to connect these references back to the Abridged Table entry to which they refer. Thus for any given tag, the first reference is in the Abridged Table entry, and succeeding references are spread out throughout the Reference Table, with each 20reference giving the location of the next reference in the chain. The chain is ended when the indicator in a particular entry says that is the last reference.

It should be noted here that each Abridged Table entry contains the first reference to that tag. Consequently a 25tag has entries in the Reference Table only if there is more than one reference. This choice of format was made for reasons of efficiency; that is, for most flow charts, the great majority of tags have only one reference, and for these, the Cross-Referencing can be handled entirely 30 within the Abridged Table itself eliminating the need for access to the Reference Table. Other techniques may be used to collect the cross-reference data which has been developed by the F/C program and to present it in a simple table. 35

Setting up Reference in the Tables

The input file 111 to Pass-III also serves as the input file to this pass. Only the records which represent J-, Dor S-codes need be processed, since they are the only codes which involve "jumps" to other locations; conse-40 quently all other records may be bypassed without any processing.

Each D-, J- or S-record contains three fields that are of interest to this pass. The first field is the Page # and Box # assigned to the symbol on the flow chart. The second and third fields are the destination tags to which a transfer is called for by these records. In the case of J- and S-codes, only one of the latter fields contains a tag; for a D-code, either one or both of the fields contains tags, depending on whether the decision has one or two branches. It should be noted that the input records do not contain the Page # and Box # of the destinations, but only the tags of the destinations.

Prior to reading any input records, a locator must be set up for the Reference Table. This locator always contains the current RHE-plus-1 of the Reference Table, Since successive Reference Table entries are constructed extending to the right in memory, the locator always contains the memory locations at which the next entry is to be created. The Reference Table immediately follows the Abridged Table in memory, and is placed in its initial condition prior to starting the input file. Therefore, as each new entry in the Reference Table is created, the locator is incremented by a fixed constant.

When a D-, J- or S-record is read via blocks 27.03, 27.04, 27.05, the first destination tag is extracted 27.06 from the record. A search 28.01 is then made of the Abridged Tag Table to locate the tag entry; if an entry is not found for that tag, the destination is undefined and no cross-reference is made. Upon locating the Table entry for that tag, the first-reference field is examined; if it only contains spaces, the current record is the first reference to this tag. The Page # and Box # of the input record (i.e. of the D-, J- or S-symbol) is then 75 placed in the "first reference" field and the indicator in

he entry is set to "last reference" status, which only indiates that the reference just inserted is thus far the final ink of the chain for this entry.

However, if the first-reference field of the entry is aleady filled, then an entry in the Reference Table is created 28.02 for the reference from the current record. To create a linkage to previous reference (28.02), the existing chain of references for this tag is traced down o its end via a simple loop. The indicator in the Abridged-Table entry is tested; if set to "last reference" a new entry 10 in the Reference Table is created at the next available address set up by its locator by extending the Table to the right by the length of the new entry. This address of the new Reference Table entry is placed 26.03 in the Abridged Table entry of the tag and its indicator is set to "not 15 last reference" status. The Page # and Box # of the D-, J-, or S-symbol are extracted from the input record and placed in the newly created entry, and the indicator of the new entry is set to "last reference" status. The Reference-Table locator is incremented so that it again 20 contains the RHE of the table. On the other hand, if the Abridged Table entry is set to "not last reference," the address of the Reference Table entry containing the next reference is picked up from the Abridged Table entry, and the indicator of that Reference Table entry is tested. The 25 latter entry is either the "last reference" or it in turn leads to the next reference. Eventually the "last reference" entry in the Reference Table is located, and a new Reference Table entry is created, and filled in at the next available address set up by the locator. This address is 30 placed in the previous Reference-Table entry for this tag, and the indicator therefore is reset to "not last reference." The Reference-Table locator is incremented to supply the next available address for any new entry to be 35 created.

The above process is repeated if the input record is for a D-code and contains a second destination tag (via test **28.04**, NOTE **28.05**, and blocks **28.06**, **27.06**). After processing the second tag, or after the first tag processing if the second tag is not present, a new input record is 40 read **27.03** and the entire process recycled. This process continues until an end-file indicator is found **27.04** in the input; construction of the Tables is then complete, and all the information needed for the listing is now contained within the Tables. Accordingly, the program transfers to the output section **28.07** of this pass.

Output

Production of the Cross Reference List consists of 50combining and printing out the contents of the two internal tables. Each entry in the Abridged Tag Table produces at least one line on the listing. Additional lines are used if the number of references to a particular tag overflows the amount of room available on the first 55 line. The Abridged Table entries are handled sucessively with a locator being set 28.07 to the initial entry. The tag name and its Pages # and Box # is moved 28.08 from the Abridged Table to the output area; the firstreference field of this Table entry is also moved to the 60 output area. The indicator of the entry is then tested for "last reference"; if not the last reference, the address of the next reference in the Reference Table is picked up 28.09, 29.01 from that entry. The Page # and Box # of the next-reference entry is moved 29.02 to the output, the indicator of the new reference entry is tested 29.06, and the logic recycled to block 28.09 if "last reference" is not found. The process is then repeated to locate the next entry and extract the desired data therefrom. When the indicator of any link specifies "last reference" (test 70 29.06), the cycle ends and the current output line is printed 30.01 or written to the listing tape. Appropriate locators and counters are maintained for controlling placement of the references in the output line. When a counter indicates 29.63 that the output line is filled, the 75 trated in FIG. 4A).

line is printed **29.04** or written to tape and a new line begun by checking **29.06** for further references.

The above processing is repeated by checking 30.02 for more tags in the Abridged Table, advancing a locator (30.03) to the next entry thereof, and recycling via block 30.04 and 28.08 to repeat the process until all entries in the Abridged Tag Table have been processed. After processing the final Abridged Table entry, test 30.02 determines that the listing is complete, and the program transfers to block 30.05 to "wrapup" any housekeeping details, such as rewinding the tapes, and the operation terminates (30.06).

The Cross-Reference List affords a valuable body of information that assists in reading and studying the flow chart. That is, each entry point marked with a crossreference is known to have but a single transfer into that point, except where it is marked with an asterisk. In the latter case, the Cross-Reference List provides, under the tag of the entry point, a complete list of all other such transfers, which makes it possible to determine various interrelationships of the documented program.

MODIFICATIONS OF THE INVENTION

By modifications of the flow chart documentation system of this invention other forms of flow charts may be produced, such as those having characteristics illustrated in the fragmentary charts of FIGS. 4A and B, 5 and 6. FIGS. 4A and B and 5 present diagrammatically the interrelationships of D-symbols, each represented by a diamond 150, and the other types of symbols all represented, for simplicity, by a rectangle 152, except for J-, E-, Hsymbols and connectors which are represented by circles. A four-column chart is assumed by way of example.

These flow charts may have one or more of the following features:

(1) A branch chain from a main flow column may be presented in an adjacent secondary-column as described above, and in addition the branch chains from the secondary-column may also be illustrated in the next adjacent column. See FIG. 4A where column 154 contains the main flow, column 156 contains branch chains from DECISIONS 150 and 162, column 158 contains a branch chain from DECISION 164 in column 156, and column 160 contains a branch from DECISION 166 in column 158.

(2) A branch chain may be entered at an intermediate point of that chain as well as from the first block of the branch chain and branch chains may be shifted up or down so that they fit in the available space. See FIG. 4A where branch chains 158 and 160 are entered at intermediate points, chain 160 is shifted up and chain 170 is shifted down.

(3) A branch chain need not be entered directly opposite the branch output of the DECISION in the main column; the branch connecting line may be formed as a combination of horizontal and vertical line segments so that the branch chain may be positioned in any suitable place within the adjacent column. See FIG. 4A, branch chain 160 and connecting line 168, and branch column chain 170 and line 172.

(4) If a branch chain is not provided in a column adjacent to the main column, that adjacent column may be used for the continuation of the main flow, and all four columns of a page may be used for the main flow where appropriate and where branch chains are not or cannot be illustrated. See FIG. 4B, columns 174 and 176. Each column has two possible vertical-line lanes, one on each side of the symbol, to permit connection in the same or adjacent columns (e.g., the lanes for lines 178 and 180 of column 158, and the lanes for lines 182 and 184 of column 160). The vertical lines can be connected up or down in each path. Thereby, in a four-column chart, eight vertical-line lanes are available for appropriate interconnections (and the use of all eight is illustude in FIG. 4A).

(5) Vertical and horizontal lines may cross, (e.g., lines 168 and 180 in FIG. 4A) but provision is made to try alternative non-crossing paths.

(6) Connecting lines may be drawn between any two of the four columns, and these connecting lines may be directed either from left to right or from right to left, and may be a combination of vertical and horizontal line segments (e.g., line 168 of FIG. 4A, and lines 186 and 188 of FIG. 4B).

(7) Unconditional transfers (jumps or exit instructions) 10are represented by a line being drawn wherever possible, either to the same or to another column on the page (e.g., lines 186 and 188 of FIG. 4B). Similarly, pseudo-connectors are avoided where connecting lines can be drawn to the same page.

(8) Branch chains are connected either to the left or to the right, or both, of the main column containing the DECISION symbol from which the branch or branches occur (e.g., in FIG. 5 the DECISIONS in main-flow column 190 have respective branch chains 192 and 194 that 20 are presented in columns on opposite sides of main column). Thereby, any column may be used for the main flow or for branch chains.

(9) A branch chain is picked up and printed if it fits in the space remaining on a page, be it one or more columns. 25

(10) Each flow chart page may be developed as a cluster of chains, with any one column or columns containing the main-flow logic and the remaining column or columns containing the chains branching from the main-flow.

A form of flow chart incorporating the last two features 30 is shown diagrammatically in FIG. 6, in which the mainflow column of logic is illustrated in a simplified fashion by a relatively wide strip, and branch chains by a narrower strip (so that they can be readily distinguished) and JUMPS and pseudo-connectors at the ends of columns 35 by circles. The simplified diagrams of FIG. 6 indicate the branching of chains from DECISIONS of the main-flow logic and from DECISIONS of the branch chains; the various F/C symbols are omitted to illustrate the general nature of the flow chart configurations that are handled. 40 The aforementioned features of FIGS 4 and 5 are applied in illustrating the "cluster" feature.

FIG. 6A illustrates the four columns 200, 201, 202, 203 used for the main-flow logic (where no branches from DECISIONS occur that would fit in the remaining space 45on the page). The successive columns are connected by lines; alternatively pseudo-connectors may be used to terminate each column. FIG. 6B illustrates a column 204 of main-flow logic, from a DECISION of which a branch chain 205 is connected; and from a DECISION of the latter a sub-branch chain 206 is connected; and another sub-branch chain 207 connects from a DECISION in branch chain 207. Where only a single branch chain (e.g., chain 205) develops from the main-flow logic 204 and does not itself develop additional branch chains, only the main-flow logic 204 and branch chain 205 are printed on the page. Thereafter, the next page continues initially with the development of the main-flow logic and with the processing of branch chains as DECISIONS arise (and in the manner described with respect to FIG. 8). FIG. 6B 60 illustrates the facility of displaying sub-branch chains to the right of the main chain.

FIG. 6C illustrates in the first column the main-flow logic 208, from a DECISION of which there is a branch chain that is a long one and has sections 209, 210, 211 in $_{65}$ three remaining columns of the page. The single column of main-flow logic and the single branch chain make up the page. If the branch chain terminates in the second or third column, the page likewise terminates.

FIG. 6D shows two columns 212 and 213 of main-flow $_{70}$ logic and a branch chain 214 from a DECISION in the second column 213, as well as a second branch chain 215 from a DECISION of the first branch 214. Where the second branch chain 215 is not suitable for presenta-

chain 214 and presents a cluster of the three columns 212, 213, and 214. This cluster feature of the F/C program does not attempt to use all of the available page space, but rather it is constructed to display as much of the branch interrelationships of the program being documented as the page size limitations permit. For practical reasons, the page size limits the amount of information that is presented as a unit.

FIG. 6E shows a column 216 of main-flow logic with a branch chain 217 connected from the right side of a DECISION thereof, another branch chain 218 connected from the left side of a DECISION thereof, and a subbranch chain 219 connected from the left side of a DE-CISION of the left branch chain 218. FIG. 6E illustrates 15 the cluster feature of presenting branch chains on either side, or both sides of the column containing the mainflow logic, and the feature of sub-branch chains being allocated to the left for versatility in the display of branch information in each cluster.

In implementing the feature of forming successive pages as "chain clusters," the F/C Control Program is constructed to start each page with a column of main-flow logic. Upon reaching a DECISION record, the F/C program branches in the manner described above for the first embodiment, and processes a branch chain from that DECISION. In the course of processing that chain (or a second chain from the same DECISION), further branches may be developed from DECISIONS within the branch chain. If these sub-branches can be presented on the same page, they are developed in the same fashion. The information regarding the space required for the first branch is already known before the second or succeeding subbranches are processed; therefore, the available space for the second branch or for sub-branches is then known, and the F/C can determine whether the sub-branches are suitable to be placed on the same page or not.

The implementation of an automatic system for producing a flow-chart formed from clusters of chains may assume different forms including that of a three-phase program of the same general type as shown in FIG. 3 (the fourth, cross-reference phase is optional). The detailed program logic may be similar to that described above in connection with FIG. 8, with certain modifications of Pass I and II, as described hereinafter.

Pass I

This logic is the same as described above for FIGS. 8/1 to 8/6, with the following additions. Each chain is given a separate identifier (e.g., a sequence number) in addition to the one already provided in the chain table, 50 and this chain identifier is used in the Tag Table to associate all Tags that are part of a particular chain. Thus, the first chain is so identified and set forth in the Tag Table, and all Tags occurring in the first chain are listed in the Tag Table under (or in association with) the first chain. Thereafter, each time a new entry is created in the Chain Table for a chain ten ending (block 06.04, FIG. 8) a corresponding new entry is likewise created for the Tag Table for the following chain, under which all associated tags are listed. An additional field is also provided in the Tag Table, which is used to furnish the relative line position of a particular tag within its associated chain. This information is available from the cumulative count in Line Counter B (block 04.01) and inserted in the field upon the creation of each Tag Table entry (block 05.01). Thereafter, a search for a particular tag in the Tag Table supplies the identifier of the chain in which the tag lies together with its line position within that chain.

Pass II .--- Main Chain Processing

The general logic for this portion of the processing is shown in FIGS. 7A to E; details will be apparent from the following description and from the foregoing of FIG. tion in the fourth column, the page terminates with branch 75 8. Upon the start 300 of the program, block 302 operates

o reset counters and work storage areas to their proper onditions. The input data is the output tape from Pass I, n the manner described above. Thereafter, block 304 ocates the next main chain via a pointer in the Chain Table; the first chain is assumed to be a main chain, and ucceeding chains are also assumed to be main chains intil they are assigned as auxiliary chains. Test 306 deermines if there are any more main chains; and if not, he program branches to block 308, which operates to ewind the tapes and bring in Pass III. If there is an-10 other main chain, the program proceeds with block 312 o read the next symbol record from the located chain. fest 314 determines whether the symbol is a J or an E, ind if so, the program branches to a connector 316 leadng to the auxiliary chain processing, ACP, described 15 below with respect to FIG. 7B. If the current record is not the end of a chain, test 318 determines if the current ecord is at the end of a main column (i.e., if EPCON s exceeded, see block 08.01 of FIG. 8); if so, the proram branches via block 320 to ACP as indicated by connector 324. Block 320 creates the appropriate pseudoconnector symbol used to identify the end of the column ind the page block number to which the program conlects from that point, and it provides a supplementary 25ecord in the Chain Table. Each chain when processed, be it a main chain or an auxiliary chain, is marked in the Chain Table as processed. Under the circumstances of block 320, a main chain cannot be so marked; however, he main chain can be marked as partially processed, with 30 a store of the return record number to which the program will go to continue the processing after the remainler of the current cluster is completed.

If the current record is not at the end of the main column, the program continues with block 326, which stores the record in a storage in memory that receives 35 in order all the records making up a page and which starts with address LM, and also steps a counter LC to provide the next address in the record storage area for receiving the succeeding record; it also steps Line Counter-I an amount corresponding to the number of lines in the current record to obtain the line number in the main-chain column of the succeeding record. Thereafter, test 328 determines if the current record is a DECISION, and if it is, the program steps to subroutine CHSUB 330, which determines if the branch chains from that DECISION can be pulled and inserted in auxiliary (adjacent) column. An indicator is set to identify for CHSUB that branch chain is a transfer from a main chain to distinguish from transfers from another branch chain. After subroutine CHSUB, the program returns to the main-50 chain processing at block 312. If the current record is not a DECISION, the branch from test 328 is also back to block 312 to read the next symbol record from the main chain and repeat the above-described process.

Successive records of the main chain are processed in 55this manner until test 314 finds an end-of-chain record or test 318 finds an end-of-column record. In either case the program branches to ACP. The main chain processing is not interrupted for auxiliary chain processing, though it is interrupted for CHSUB to determine whether an aux-60 iliary chain is appropriate to be pulled; all branch chains are examined to determine their suitability for display as an auxiliary chain. The actual processing of such auxiliary chains that are found follows the completion of the main chain processing. The actual assignment of page $_{65}$ and block numbers to the main and auxiliary chain records is performed after the branch chains have all been identified and pulled and their records stored in memory.

FIG. 7B illustrates the logic flow for the subroutine CHSUB, which determines whether a branch chain can 70be pulled and utilized in an auxiliary column. Initial block 334 operates to locate the chain name for the tag to which the program branched from a DECISION record. The tag may be at the start of a chain or anywhere

to locate the associated chain name which was stored during Pass I. The line position of the tag within the chain is also extracted from the Tag Table. Thereafter, block 336 performs a calculation to determine CPPOC, the preferred position of the chain in the auxiliary column. CPPOC is calculated by subtracting the line position of the tag in the chain from the line position of the DECI-SION record from which the branch takes place. If CPPOC is a negative value, it is reset to zero; this represents a condition of the tag having a line position lower down on the page than the branch-point of the DECI-SION and CPPOC cannot be assigned a useable line number. Thereafter, block 338 stores CPPOC in a temporary storage field until it is determined whether that chain can be pulled for an auxiliary column. In addition, three sets of stores in memory are provided to hold the names of branch chains that may be pulled for auxiliary columns together with other chain-locating information such as CPPOC; these temporary stores are identified as CR, CL, and CB, representing respectively branch chains to the right, those to the left, and sub-branch chains that branch from the left or right auxiliary chains currently being processed. Thus, the CB stores contain a buffer storage of sub-branch chains, which branch to the right of right auxiliary chains or to the left of left auxiliary chains, whichever is currently being processed, and which sub-branches are to be processed thereafter. Each set of these chain-locating records may contain an arbitrary maximum number, say 10, which indicates the maximum number of branch chains that may be actually utilized in a particular auxiliary column.

Thereafter, test 340 determines whether the branch chain being investigated is a branch from a main-column chain or from another auxiliary-column chain. If it is from a main column, test 342 then determines whether the length of the current branch chain plus the length of the other branch chains already assigned to CR-1 to 10 would be greater than the column length EPCON. If not greater, there is still room in the right auxiliary column for the current branch chain, and block 344 sets up the next chain-locating record CR and stores the name of the current chain, its length, sequence number, and CPPOC in the appropriate fields thereof. Thereafter, test 346 determines whether there is a second, unprocessed branch in the current DECISION record being processed; if not, processing exits from CHSUB. If there is a second branch, block 347 locates the chain and calculates CPPOC for the second branch and test 348 determines whether the length of this branch chain together with the combined lengths of the other left auxiliary chains already assigned are greater than EPCON. If EPCON is exceeded, the program exits from the subroutine; if it is not, then block 350 stores the chain information in the appropriate fields of the next one of the chain-locating records CL-1 to 10 for the left auxiliary column, and the program exits.

If test 342 indicates that the branch chain is too large for the right hand column, test 352 determines whether the branch chain is suitable to fit in the first auxiliary left hand column. If it does not fit, test 354 determines if there is a second, unprocessed branch chain from the current DECISION record, and if not, the program exits from the subroutine; however, if there is a second branch, an indicator is set for processing the second branch and the program recycles back to the start of CHSUB to process it in the same fashion as the first branch chain was processed (and the latter is identified as processed).

If test 352 indicates that the branch chain will fit in the left auxiliary column the program branches to block 358, and the chain information is stored in the next left chain-locating record CL-1 to 10. Thereafter, test 360 checks to see if there is a second branch chain from the DECISION record, and if not, the program exits from the subroutine. If there is a second branch, block 360 lowithin a chain, and a search is made of the Tag Table 75 cates the chain and CPPOC is computed and stored in

3,533,086

the manner described above, and test 362 determines whether it will fit in the right auxiliary column (the left having already been preliminarily assigned); if not, the program exits from the subroutine, if it will fit, block 364 stores the chain information in the next right chainlocating record CR-1 to 10, and the program exits.

45

If the test 340 indicates that the chain is being pulled by an auxiliary column, test 366 determines whether it is from the right or left auxiliary column from the setting of an indicator. If from the right, block 368 inhibits the 10 pulling of any chains to the left and inhibits pulling more than one branch chain from the current DECISION record; this inhibition of pulling to the left, once initiated, continues for the remainder of the sub-branches pulled from the current auxiliary column being processed. Block 15 368 also sets an indicator to store the information for sub-branch chains from the current right auxiliary column in buffer chain-locating records CB-1 to 10, and thereafter the program continues with the processing from test 342 in the manner described above. Similarly, if test 20 366 indicates that the chain is being pulled from the left auxiliary column, block 370 inhibits the pulling of any chains to the right column, inhibits the pulling of more than one branch chain from the current DECISION record, and sets up CB-1 to 10 to receive the information ${}_{25}$ of sub-branch chains from the current left auxiliary column. Thereafter, the program continues with the processing of the chain via test 342.

ACP

The processing of auxiliary chains, ACP (FIG. 7C), begins with a subroutine SCHPL 380 (FIG. 7D) for calculating the exact starting line position SCHPL of each branch chain from CPPOC (the preferred starting line position of the chain with the tag opposite the DECISION branch point as calculated by block 336, FIG. 7B) and storing the new value in the field FCPPOC of the associated one of the records CR, CL, CB. Each time the program pesses through SCHPL and performs the calculations, a counter is incremented so that its count represents 40 the number of auxiliary columns processed thus far. Thereafter, test 382 determines whether any right or left branch chains remain to be processed (by examining the contents of CR-1 and CL-1, as explained below) and whether any of the columns available on a page for a cluster remain unassigned; and if so, test 384 determines whether they are right auxiliary chains. If so, block 385 locates the chain specified in CR-1 on the input tape so that it can be processed. In addition, an indicator is set for the CHSUB subroutine to identify any sub-branch 50 chain as coming from a right auxiliary chain.

Thereafter, block **386** begins the processing of this auxiliary chain by reading the first symbol record thereof from the input tape. Test **388** determines if the current record is an end-of-chain record (J or E). If not, block **390** stores the record in the next available location in memory as indicated by the address LC (appropriate marker signals are provided at the beginning of the records for each auxiliary column), and thereafter LC is adjusted to indicate the next available memory location for the next ₆₀ record to be stored.

Test **392** determines whether the current record is a DECISION record, and if not, the program returns to block **386** to read the next record and process it in the manner described. If the current record is a DECISION 65 record, subroutine CHSUB is entered (with an indicator set to identify that the branching is from an auxiliary column) to determine whether the sub-branch chain from the current auxiliary chain can be pulled. In the subroutine CHSUB (FIG. 7B) test **340** steers the program down the 70 auxiliary processing section and test **366** determines whether it is a right or left auxiliary currently being processed to provide appropriate steering, in the manner described above. When CHSUB is processing an auxiliary column, the sub-branch chain information is stored in the records 75

CB. In addition, five counters CTR-1 to 5 are used by CHSUB to maintain cumulative counts of the chain lengths for the five possible auxiliary columns, the three right and two left columns, in order. The right or left column indicator identified which type of column and the number of successive auxiliary column passes through CHSUB determines which column in order is being processed. Upon existing from CHSUB, the program returns to block **386** to process the next record in the branch chain for the current auxiliary column.

This loop continues until test 388 indicates that an endof-chain record has been reached and the program branches to block 396, which proceeds to store the record in memory and adjusts the setting of address LC. Thereafter, test 398 determines whether there are any more chains in the current column; this test may be performed by determining whether CR-2 contains any data. If there are more chains, block 400 shifts the contents of CR-2 to 10 into CR-1 to 9, respectively, so that the previous contents of CR-2 are stored in CR-1, CR-3 in CR-2, and so on. Thereafter, this routine begins again at ACT to process the chain now specified in CR-1 in the manner described. If test 398 indicates that there are no more CR chains to be processed, the program branches to block 401, which moves the contents of CB-2 to CB-10 into CR-1 to 9, respectively; thereby, the chain-locating records for the sub-auxiliary column are moved into position to be processed. Test 402 then checks an indicator to determine whether the auxiliary column just processed 30was a left or a right auxiliary; if a right auxiliary, then the new sub-auxiliary column is also a right auxiliary column, and the program returns to ACP to start the auxiliary chain processing for that sub-auxiliary column. If the auxiliary column just processed was a left column, 35the program branches to block 404, which sets a field LL-2 to the current value of LC; LL-2 contains the memory address of the first record of the second left auxiliary column, and the program returns to ACP to begin the processing of that second left auxiliary column. An indicator is set to inhibit entering the subroutine CHSUB for any branches from this second left column, assuming a maximum of two left auxiliary columns. Similarly, that inhibit indicator is also set when test 402 steers the program down the "right" branch the second time, since the program is then starting to process the third right auxiliary, which is assumed to be the maximum; when a third auxiliary is processed, there is room (in the assumed 4column example of a page) only for the first left auxiliary, and accordingly the processing of the second left is inhibited.

The indicator for identifying whether the auxiliary column being processed is a right or a left is set initially during the first pass through test 384 of ACP, which determines first whether there are data in the contents in 55 CR-1. If there are, then it is known that it is a right auxiliary; and it is processed first on a priority basis with the right column indicator being set. If no data is in CR-1 it must be a left auxiliary (since test 382 had indicated that there is an auxiliary), and the program branches to block 406, which sets the left column indicator and sets LL-1 (the address of the first record of the first left auxiliary column) to the current value of LC. Thereafter block 408 moves CL-2 to 10 into CR-1 to 9, respectively, so that the left auxiliary chain-locating records are in condition to be processed in the same manner as the right auxiliary chain-locating records, and the program returns to the start of ACP for processing. After the first left auxiliary is processed, test 402 steers the program via block 404 to process the record left auxiliary. After the left auxiliary columns are processed, test 382 finds both CR-1 and CL-1 empty of data, and steers the program to the output subroutine 409, OUTSUB, from which it returns to the beginning of the pass at STRT, FIG. 7A, to process the next main chain and from the cluster therefrom, In operation, the first right auxiliary column chains are

processed initially by following the contents of the CR ecords, and then the second right auxiliary column, if iny, is processed with the sub-branch chains from the irst right auxiliary column using the records in CB, which are transferred to CR for the processing operations. Thereifter, the third right auxiliary column, if any, is processed ising the sub-branch chains that were pulled from the second right auxiliary column; the records for the third ight auxiliary column are set up initially in CB as the second right auxiliary column is being processed. After all of the right auxiliary columns are processed, if space permits, test 384 steers the program to processing of the eft auxiliary chains via blocks 406 and 408, with the chains for the first left auxiliary columns being located by means of CL records, which are relocated into CR. After 15 the first left auxiliary column is completely processed, test 398 indicates that there are no more chains for that column, and the program branches to block 401 to move the chain records CB for the second left auxiliary column into CR. Test 402 steers the program to block 404 to $_{20}$ set up the address of the first record of that second left auxiliary column, and the program then proceeds to process those records.

When the records are written out to memory, the address of the first record of the main chain is LM, and 25 the address LC is then used for storage thereafter of the successive records of the main chain, followed by those of the first-right, the second-right, and the third-right auxiliary columns in that order. Thereafter, the first-left and second-left column records are stored in that order. 30 The records of the different columns are separated by appropriate marker signals. LL-1 and LL-2 provide the starting addresses of the records for the two left columns.

The subroutine SCHPL, shown in detail in FIG. 7D, calculates for each chain in an auxiliary column, its ex- 35 act starting line position and stores it in the field FCPPOC of CR-1 to 10. It starts with CPPOC, the preferred line position for the start of the chain, already stored in FCPPOC (block 338), and the subroutine terminates with the exact position determined. In addition, the sub- 40 routine starts with the fields CTR-1, 2, 3, 4, 5 (developed by SCHUB) which contain respectively the total number of lines required by all of the chains in the first, second, and third right auxiliary columns and the first and second left auxiliary columns, in that order. The cumulative 45 counts in the CTR fields are based on the packed lengths of the branch chains; i.e., it is assumed that the first branch chain in each auxiliary column starts at the first line and succeeding chains are positioned thereafter without extra spaces therebetween. This subroutine terminates 50 with the CTR value adjusted to include any spaces inserted by readjustment of chains downward within the associated auxiliary column. Thus, SCHPL starts with the branch chains fitting in a column at least if they are moved up all the way, and proceeds to determine if they 55 also fit when moved down to prepared positions.

Initially at the start of each column, block 410 sets CHPL equal to "1," and thereafter, each chain in the current auxiliary column is processed in order. Test 412 looks for the next branch chain in CR-1; if there is 60 none, the subroutine exits. If a next chain is set up in CR-1, test 414 determines if the stored value of CHPL in working storage is greater than the value of the field FCPPOC of that branch chain; if it is, block 416 stores the value CHPL in FCPPOC as the exact line position 65 for the chain. That is, if CHPL is the greater value, the starting line position is already far down in the column, and no further downward adjustment of the chain is desired; and CHPL is therefore used as the starting line position. Thereafter, block 418 adds the line length of 70 the current chain to CHPL to obtain a new value of the latter, so that the initial CHPL value of "1" may be applied only to the first chain in a column. Thereafter, the subroutine returns to test 412 and exits. If test 414 indicates that CHPL is not greater than CPPOC, the pro- 75 on. In this fashion the records are completed and written

gram branches to determine if space is available in the column to move the chain down so as to use CPPOC for its starting line position. Only if the full space is available, will the chain be moved down. Block 420 calculates TEM, equal to the difference between CPPOC and CHPL, and representing the desired downward displacement of the branch chain in number of lines. Thereafter test 422 compares the constant EPCON (the column length in lines) with the quantity of TEM plus CTR for the current auxiliary column; if EPCON is the lesser, there is no room in the column for downward adjustment of the chain, CPPOC cannot be used and the program branches to block 416 to store CHPL in FCPPOC of the current chain and proceeded in the manner described above. If test 422 indicates that there is room in the column for adjustment, CPPOC remains unchanged in the CR record. The program continues with block 424, and CTR for the current column is augmented by TEM and the new value of CTR is stored in its own field. Thereafter, block 426 moves the line number in FCPPOC to working storage for a new value of CHPL; since the field FCPPOC remains unchanged, the preferred starting line position is actually used for the chain. The program then continues with block 418, where the value of CHPL in working storage is augmented by the current chain length to obtain a new value of CHPL for the next chain, and the program returns to test 412.

The output subroutine OUTSUB is shown in FIG. 7E; it is entered after completion of the auxiliary chain processing and processes each cluster of columns by determining whether a new page is required and assigning the page, box, column and line numbers in each flow chart record in memory and writes the records to the output tape.

Initially, test 430 determines whether a new page is required; this test involves checking the number of unused columns, if any, on the current page (i.e., the columns required by the previous cluster or clusters) and comparing it with the number of columns required by the current cluster. If a new page is not required, block 432 adds "1" to the column number; if a new page is required, block 434 operates to add "1" to the page number and to set the column # to "0" and box number to "1" (the box numbers on each page are assigned sequentially in each column and in order from column to column starting with the column on the left). Thereafter, in either case, test 436 determines if there are any left auxiliary columns in the current cluster by checking the contents of LL-1 and 2; if not, the main column is the first column of the cluster and is displayed to the left on the page, with the other columns of the cluster to the right in order. Block 438 sets a pair of output pointers to LM (which is the start of the record area in the memory containing the first record of the main column chain) and to LC (the end of the last right auxiliary record) thereby bracketing the memory area of records to be processed. Thereafter, these bracketed records are computed and written to the output tape by the RITEOUT subroutine 440, and upon exiting therefrom, the OUTSUB subroutine also exits as shown by connector 441.

If there are left auxiliary columns, test 442 determines whether or not there is a second left auxiliary column; if not, block 444 sets the output pointers to start with LL-1 and to bracket the memory area of the records for the first left auxiliary; thereafter, the RITEOUT subroutine 446 processes those records, and upon exiting goes to block 438 to set up RITEOUT for the records of the remaining columns. If there is a second left auxiliary column, block 448 sets the output pointers to bracket the memory area for the corresponding records, and the RITEOUT subroutine 450 processes those records. Thereafter, the program passes to block 444 to initiate processing the first left auxiliary records, and so

out starting with the column which should appear on the left on the flow chart.

In the RITEOUT subroutine (details are shown in block 440), an initial test 452 determines if there are any more records in the bracketed memory area to be processed, and if not, the subroutine exits. If the bracketed memory area contains additional records, a test 454 determines whether the curent record is at the start of a column. If it is, block 456 adds "1" to the column number. Thereafter (or if test 454 proves negative), block 458 adds "1" to the box number and calculates the line number of each record by adding the line length of each record to its line number to obtain the line number of the succeeding record; main chains start at the first line and each branch chain starts at the line set in the field FCPPOC for that chain. Block 458 also stores the page, box, column and line numbers in the record. Block 460 thereafter writes the record to the output tape, and the subroutine returns to test 452 to repeat the loop for each succeeding record until all available records are processed. 20

After the OUTSUB subroutine is completed for all of the records of the cluster, the program returns to the beginning of the pass to process the next main chain and start the development of the next cluster. When all of the chains have been processed into clusters, Pass II is 25completed and Pass-III is started, in the manner described above. Various modifications may be made in Pass III as indicated above and also as discussed below. For example, a main chain may terminate before the end of a column leaving room for a small main chain there-30 after; the documentation program is readily adapted to recognize this condition and to utilize the space efficiently by inserting the small main chain in the available main column space.

The flow chart documentation of a computer program $_{35}$ in the form of clusters of chains (main and branch chains in main and auxiliary columns) enhances the twodimensional character of the chart. It tends to supply the user with a greater amount of information about branches from the main-flow, since only one of four columns on 40 a page is devoted to the main chain of a cluster, and the remaining columns display any of the branch chains that occur. Moreover, the sub-branching is also displayed, and as much sub-branching can be displayed as space permits; thereby, various loops and processing interrelationships and complexities in the documented program tend to be 45presented to the reader as he reviews each page of the chart. The main chain continues from column to column where branch chains do not occur or do not fit. The main chain also continues from page to page where it is of 50any substantial length, so that the main flow can be followed by flipping successive pages of the chart. But the intricacies of the documented program at any stage thereof generally occur at conditional transfer operations and they tend to be presented on a page displaying the cluster of branches from the main flow.

Various modifications may be made in the control system of this invention depending on the size and type of memory facilities provided by the computer. For example, where the computer has a large random-access memory (such as a core memory), the processing of the data may be made more efficient in the operation that requires searching for branch chains in the input tape during Phase II. The control system, as described above, only searches for those branch chains that do not exceed a specified length, say, not greater than one column. This search can be reduced by placing all potential branch chains (those which are less than the maximum length) on a separate magnetic tape during the Phase I operation; since these short chains are the only ones that may 70not be processed in their natural sequence on the input tape. The chain length, of course, is a variable that cannot be preset, and a special memory storage of the records making up a chain would be necessary in order to determine whether it was small enough to be a poten- 75 chains. In such a system, the second and subsequent dis-

tial branch chain or not. Such a memory storage of records that would form one page column is provided and serves as a standard measuring unit for all chains that are developed. Those that fit within this memory area of a column length are placed in sequence on a separate output tape and serve as a search tape for potential branch chains. All other chains go on to another output tape in the usual fashion described above, and they are treated as main chains in the operation of the program. Such an arrangement would not result in any loss of processing time during Pass I, but would result in a substantial saving of time during Pass II, since the potential branch chains would be segregated and more readily searched, and the searching would not run through those chains that could not be branch chains. The order of chain processing is maintained and set forth in the chain table, which would indicate the tape that a particular chain was on. Thus, in picking up successive chains to be treated as main chains, either of the two tapes would function as a source, with the location of a particular chain on one of the two tapes being set forth in a chain table.

The searching of chains can also be reduced by filling the memory area that is available with as many potential branch chains as possible to eliminate the serial searching of these chains on the input tape. Another technique to reduce search time is to search for several chains at one time on the input tape with the search performed in the sequence of appearance of the chains. For example, the branch chains for the right auxiliary column can all be pulled out in one search when that auxiliary column is to be processed; thereby rewinding of the main tape separately for each branch chain would be avoided.

For computers having random-access disc or drum storage devices, the searching may be eliminated since the branch chain can be identified by its address on the disc or drum and retrieved directly in accordance with that address, which would be stored in the chain table instead of the sequence number.

Where all of the branch chains are separated initially, these chains may be preliminarily analyzed to determine whether a DECISION in a subsequent main chain (or auxiliary chain) refers to a tag in the branch chain. Thereby, it would be possible to pull such branch chains and allocate them to the subsequent DECISIONS as well as to preceding ones.

This invention is not restricted to the processing of small branch chains that fit in the remaining space in a column or on a flow chart page. The branch chains can be broken by pseudo-connectors (similarly as the main chains), and the Chain Table entry is used to identify the portion of the chain that has been processed and the portion that remains to be processed. Thereby, the remainder of the branch chain is picked up subsequently in the processing operation and displayed on an appropriate page of the chart identified in the pseudo-connector. Such a procedure enhances the two-dimensional character of the flow chart that is produced, since a large number of branch chains tends to be displayed on the same 60 page as the associated DECISIONS. Even though only portions of the branch chains are shown on a page, the reader of the flow chart is generally given sufficient information to identify the type of operation performed in the branch chain and thereby given in a single page a greater amount of information about the interrelationships of the program both in the main flow and the various associated branches.

Where it is found desirable, the control system may be arranged to duplicate any or all branch chains in subsequent portions of the flow chart where the same branch chain was developed as a transfer from a preceding DE-CISION. Thereby, the user's reading of the flow chart is made more convenient, in that he does not have to move to different pages of the chart to identify the branch

plays of a branch chain are identified as duplicates, and the chain table maintains a record of first and subsequent lisplays of such branch chains. Such an arrangement may be a selective one under the control of the programmer n that a special code symbol may be provided to be in- $\mathbf{5}$ serted at the discretion of the programmer where he feels t desirable for branch chains to be duplicated. That is, each DECISION which would carry branch chains of special significance could be marked to present the branch chain as a duplicate (and in as much detail as desired). 10 The program then operates with such a control signal to display the branch chain even though it may otherwise not be displayed at that particular location on the chart.

For small computers, those with memory sizes of ap- 15 preciably less than 32,000 characters (e.g., 8,000) addi-:ional tape units (or random-access disc or drum storage) can be substituted to compensate for the smaller core memory. In Phase I, an additional tape is used to record the Chain Table entries. The Tag Table need not be 20 developed during Phase I, but rather during Phase II; the tag information is extracted from the symbol record tape by means of an extra pass through all of the records (after the page, box, column and line number assignments are completed). In addition, the record for each symbol in-25cludes additional information, such as whether the symbol terminates a chain or not, and the format of the symbol to be printed stores with all of the printed elements at their various locations set forth in the record.

In Phase II, an additional tape is used to record the Tag Table entries, as indicated above; a tape is used to record the second-left auxiliary chains, if any, and a tape to record the main and any right auxiliary chains. Additional information in the form of a control record is added to the second-left auxiliary tape, which record sets forth the 35 information pertaining to the number of columns required for each cluster and the distribution of the cluster over the different columns. This control record precedes each group of second-left auxiliary column records and defines the individual cluster. During Phase II, clusters are 40 stored on the tapes prior to being assigned page, box and line numbers. The input to Phase II is the symbol record tape and the Chain Table tape from Phase I. During Phase II it has been found convenient to develop all cross-references in the form of a table which can be then utilized 45in the final tape that is constructed representing successive pages.

In Phase III, four tapes are provided to record each column of page on a separate tape, and a tape to describe the actual vertical and horizontal lines that are to be 50drawn on a page; the latter is placed on one of the column tapes preceding the associated column data, or it may be placed on a fifth tape. The small memory may only be large enough to hold a single record for each of the four columns and the matrix of required lines for the whole 55page. The page image is segmented into columns, and the columns and the matrix of line connections are merged by page and line during the printing process. Several passes of the data are required for drawing line connections on a page and for printing the page. Each conditional $_{60}$ and unconditional branch is assigned page, box, column and line numbers during the Phase II allocation, so that all destination points are established for Phase III.

The first pass of Phase III reads the symbol record tape for a page and writes out a "line coordinate matrix" based on the destinations of symbol records for that page. The size of the matrix in characters, is the column length in lines multiplied by the number of vertical line lanes. For instance, if a vertical lane can be drawn on the left or right of a column and if each column is 150 lines long, 70and if there are 4 columns to a page, then a 1200 character matrix is required. A matrix character may represent any one of several "horizontal" or "point" conditions. For instances: it may specify a blank, an up arrow,

52

horizontal line pointing to the right, a vertical line and others. This "matrix" describes line drawings on a page and is formed by examining each decision or branch record on the symbol record tape. Based on (1) the position of the decision or branch record and (2) its destination point, then (3) the matrix can be examined and the line drawings plotted within the matrix. For instance, if a decision in column 1, line 25 of page 1 is to branch to column 2, line 29 of page 1, the broken line to the right, downward in the lane, and to the right may be drawn and can be described by five characters stored for lane 2, as follows: one character (say, coded "A") for the horizontal line between the DECISION branch-point and the lane (formed of 3 dashes), three characters (each coded "1") for the three vertical lines in the lane running downward, and one character (coded "B") for the horizontal line from the lane to column 2 (formed of 5 dashes with an arrowhead). The number of combinations possible for any point in the matrix can be represented by one character (in different embodiments about 6 to 12 possibilities exist). In the above example, the characters A, 1, 1, 1, B would be stored in the matrix that represents lines 25 to 29 of lane 2, of column 1, of page 1. As the records are read in page by page, they are written out on 4 tapes; each tape containing one column. The "line matrices" for all pages are written on a separate tape or they can be placed on one of the column tapes, with each page's matrix written before the column record for that page. The next pass of Phase-III reads in the matrix tape, reads in each column of the page, creates a line for output based on the matrix and the column information (as described above) and prints the output.

Another change resulting from the design of a system for a small computer is that Phase IV (the development of the cross-reference listing), is produced after Phase II and prior to the Phase III printing of the flow chart page, for convenience in developing cross-reference data for display on the flow chart.

The particular embodiment of the invention described above is directed to input data in the form of an assembly language program, a form that is quite commonly used. This invention is also applicable to programs written in a "machine-independent" language, i.e., a language which is not limited to a particular construction of a machine nor to its particular body of instructions. The "instructions" of a machine independent language are macroinstructions or statements that can be translated as a group of machine instructions. Where a program consists of such macro-statements presented in accordance with a consistent convention, they can be interpreted by a flowchart control program constructed in accordance with this invention to produce a two-dimensional flow chart that is properly representative.

The documentation system of this invention can process higher-level languages such as COBOL, FORTRAN, JOVIAL and other languages by analyzing the source statement input. The analysis may be performed prior to Phase-I, say Phase-O, or performed concurrently with Phase-I. The source statements are analyzed without the programmer writing the special codes that are currently required where the input is in an assembly language input (e.g., the embodiment of FIG. 8) or the special codes may be used where desired as an alternative in each case and also to delete or combine various statements of the program. The source statements are analyzed to (1) determine the special code (i.e., the F/C symbol; e.g., a subroutine, a process, an unconditional transfer, a conditional transfer), and (2) determine the Comments to appear in the flow chart symbol. Depending on the amount of analysis desired, the Comment produced (1) may be dependent on the procedure statement itself or, (2) may be dependent on the procedure statement plus an analysis of the nouns (e.g., data fields) and their associated descriptors (e.g., file descriptions). In a down arrow, a horizontal line pointing to the left, a 75 any event, the flow charting of this system is independent of the language used as input. For example, preprocessors to Phase–I analyze the higher-level language and then produce input to Phase–I of the system.

The source statements are analyzed to determine the corresponding special code or the flow chart symbol or symbols which are to be used to represent those statements (i.e., symbols such as subroutine, process, unconditional transfer or conditional transfer, or suitable modifications of those basic forms. This statement analysis may incorporate a well-developed technique used to translate higher level languages; that is, the translators for these languages (e.g., compilers or interpreters) provide well-known techniques for translating each language statement (operation) or data field into a symbol which would properly represent the operation and its relation- 15ship to other operations (e.g., tags) that may be in-volved in transfer operations. Thus, the state of the art is such as to permit the development of program processing for analyzing the statements of such languages into a form suitable for this documentation system to operate. 20 The Comment field may vary depending on the amount of analysis of the language that may be desired and the amount of detail desired in the Comment field of the F/C symbol; thus, the Comment produced may be simply dependent on the procedure statement itself (e.g., a 25 simple repetition of the verbal or algebraic statement making up the procedure statement) or it may be dependent upon the procedure statement together with an analysis of the nouns (e.g., the data fields) and their associated descriptors (e.g., the file descriptions for those $_{30}$ fields). Suitable techniques for this purpose are likewise well-developed, and appropriate forms exist for different compilers.

Where the language statements involve complex logical conditions, standard techniques may be used to present 35 the involved statement as the Comment itself. Alternatively, known compiler techniques may be used to break down the involved logical statement into its simple components so as to present each one as a conditional transfer (DECISION), whereby a logical sequence of conditional 40 transfers is developed in the flow chart rather than the single involved statement.

By means of this documentation system, a higher level language program may be documented in a flow chart, and various ones of the features described above may be employed. That is, F/C symbols for the process blocks may vary in size with the requirements of the Comment field; chains of logical sequences may be developed in the manner described above with each chain terminating with an unconditional transfer; and conditional transfers and associated branch logic may be analyzed to develop a two-dimensional chart showing the branch chains from the DECISION symbols. Employing the technique described above for presenting a sequence of symbols on a flow chart as called for by the program to be documented, and upon reaching a conditional transfer, the branch chains are analyzed to determine the suitability of their being displayed in adjacent columns. Likewise, the cluster techniques would also be applicable so that sub-branch chains may be shown in two-dimensional configuration.

Thus, this invention provides mechanisms for automatically producing flow charts by means of a data processor operating on coded signals representing the instructions of a computer program to be documented. The mechanism for developing a two-dimensional flow chart 65 pulls branch sequences of symbols for display on the same page as the main flow sequence from which the branch takes place. It processes the branch logic out of the order in which the logic appears in the original program in order to show the branch on the same page as the associ-70ated main flow logic. This mechanism involves the development of symbols for individual instructions or groups of instructions, and then the development of sequences of symbols and chains from the individual symbols. The mechanism further develops columns of symbols from 75

the main flow symbols and from the branch chains and assembles the columns into flow chart pages of related symbols, with the relationships being shown by connecting lines or references to the page and box numbers of the symbols. A mechanism also pulls sub-branch chains that stem from branch chains, and displays them on the same page. The cluster mechanism uses the above mechanisms and, in addition, forms each page of flow chart from one or more chain clusters, where a cluster is developed as a column of main flow logic and as many branch and sub-branch chains associated therewith as may fit on the page. In one form of the invention, the main flow symbols are successively allocated along the column until a DECISION is processed, and then the branch chain therefrom is processed by determining whether it fits within the adjacent column. The allocation of the branch chain may take place before the allocation of the main column is completed, or it may take place after the main column is allocated. The allocation of symbols of a branch chain may similarly lead to a subbranch chain upon reaching a DECISION in the branch chain, and the suitability of fit of the sub-branched chain can be determined at that point.

This invention also furnishes mechanisms for editing unnecessary details from the original program and to combine a group of instructions into a single symbol. Thereby, it permits a programmer to edit, simplify and explain the program and the various portions and sequences thereof by means of an informative flow chart without the labor of drawing the chart or of laying out the sections thereof. A mechanism scans the various parts of the COMMENTS field of each input instruction and extracts the pertinent parts as required: the explanatory COMMENTS; the code, if any, for the type of symbol to be displayed; the destination tags, if any, carried for branch and transfer instructions; and the code for DE-CISION labels, or the labels themselves. By means of the symbol codes, detailed program instructions that are unnecessary for an understanding of the program may be deleted (either by the absence of a code, or by applying a delete code thereto), and several instructions may be combined and displayed as a single symbol, which more clearly sets forth the overall function of the detailed instructions. For example, a group of 20 individual instructions of the program to be documented may be dis-45 played by a single DECISION symbol fully representing the overall function of those 20 instructions, though none of them may be a DECISION instruction, or several of them may be subsidiary DECISIONS. The essential functions of the program, by this mechanism, are set forth 50 in the flow chart with as much detail as the programmer may desire to show. The significance of the processing details may be incorporated in statements of COM-MENTS, which can be set forth in a NOTE or TEXT. The COMMENTS field also permits the carrying of labels 55 for DECISION symbols, since the branch conditions may not be readily apparent from the details of instructions that are edited. Likewise, the COMMENTS field serves as a vehicle for destination tags for branch and transfer 60 instructions, since these tags may not be always available from the operands due to the editing process. The COMMENTS of explanation of the program may be as long as desired, and a mechanism appends continuation COMMENTS to preceding records and edits these COM-MENTS so that variable size symbols for PROCESS, NOTE and TEXT can be drawn and set forth in the flow chart.

This invention may also be used to interpret assembly language programs without the use of special codes for the flow chart symbols. The instructions themselves may be interpreted to develop process, unconditional transfer, and branch instruction symbols. In addition, the commentary customarily provided in an assembly language program may be extracted to present NOTES and the contents of PROCESS symbols. Where the symbol codes

are not used, the resulting flow chart may contain a good bit of detail that is not ordinarily required; however, some editing of the program can be obtained. For example, where a DECISION is formed by two or more individual instructions such as "compare" and "condi-5tional transfer," appropriate techniques may be used for combining those instructions as a single flow chart symbol. Similarly, where a long string of PROCESS instructions occur, the individual instructions may be set forth in one PROCESS box with suitable separations between 10 the individual instructions; thereby, a great deal of flow chart space is not wasted on the separations and connecting lines between PROCESS symbols. In addition, a programmer versed in a particular assembly language program may perform a small amount of editing by 15marking certain instructions, or groups thereof, with a "delete" code symbol to avoid unnecessary detail in the final flow chart.

A mechanism is also provided to illustrate on the flow chart the allocation data (page and box number) of all 20 branch and transfer instructions which are the origin symbols for a particular tagged symbol on the chart. Thereby, the chart furnishes cross references to all of the originating points from which a particular branch or other chain stems. The cross reference list furnishes a full 25 listing of such originating points. Connecting lines can be drawn between symbols on the same page if conflicts do not exist; the program mechanisms attempt to draw lines in the available lanes starting from one coordinate point of a page and attempting to go to the other. If 30 such connecting lines cannot be drawn, then cross references are set forth on the chart.

Any of various types of output devices may be used to develop a record of the flow chart. The record may be a printed page made by a line-at-a-time printer or a 35 digital plotter printer, or a momentary display record or a permanent photographic record made by a cathode ray tube or similar display device. The record may also be a magnetic tape recording of the corresponding page format.

The page format may take various forms: for example, 40 the arrays of main flow and branch chain symbols may be set forth in parallel columns (or rows) interrelated in a two-dimensional chart by means of connecting lines or cross references; alternatively, main flow columns and branch rows (and sub-branch columns) may be used to develop the two-dimensional chart, as may any other 45suitable arrangement of symbol arrays. This invention is not limited to a fixed format of a columnar page; for example, with a cathode ray tube display, the magnification may be varied to permit different sizes of columns and individual symbols. The magnification for dif- 50ferent sections of a column or of a page can be varied so that a low magnification can be used to fit a long chain in a column, and the magnification can be varied to determine the spacing between the symbols or columns to achieve the most suitable presentation for an indi- 55vidual page.

As described above, this invention may be used to develop flow charts from input programs written in any desired program language, including assembly and higher order languages. The invention is also adaptable to vari- 60 ous types of computers including those having large and small memory capacities.

As previously noted, the stored-program embodiment of this flowcharting invention described above is preferred in that it is comparatively less expensive to construct 65 than a fixed-program or hardware embodiment in the present state of the art. A stored-program processor such as that of FIGS. 8/1-8/30, or the more specifically detailed RCA 501 program noted below, enables one to modify, enlarge or simplify the system or any part there- 70of without rewiring the circuitry and changing any other hardware portion of the system.

The flowcharting processor of FIGS. 8/1-8/30 is not dependent on any particular form of computer. It may be used as the basis for providing a stored program for 75 placement by another changes the computer's control

any of a number of specific general-purpose computers that are available, and the RCA 501 program set forth below is one such example; other computers for which such programs have been provided include the IBM 360, 1401 and 7090, Honeywell 200 and the RCA Spectra.

A general-purpose computer, as an elementary information-transformation machine or apparatus, has a builtin capability limited to the execution of basic instructions such as add, subtract, compare, branch, etc. The stored-program embodiment of this invention converts the general-purpose computer into a special-purpose or extended machine having a unique operation sequence or process. Thereby, the programmed computer takes on the character of the flowcharting processor (program) that controls and directs the operation of the computer's hardware processor. For example, the flowcharting program for the RCA 501 set forth below converts the RCA 501 computer into a flowcharting computer machine during the time it is controlling and directing the computer. In that general-purpose computer, and generally in others, the logic and control circuits for performing the various instructions of the machine are time shared. The control signals of a stored program embodiment of this invention specify the particular instruction or instruction combination to be carried out at each instant in a specific and interrelated sequence. Thus the program's signal combinations physically initiate the operation of various ones of the computer's logic and control circuits, and direct the activation and deactivation of the computer's circuits and devices in certain sequences and relationships physically determined by the signal combinations of the program.

The interrelations of the circuits, their operations, and the control signals of the stored flowcharting program retermine the unique character of the computer as a flowcharting machine when it is so programmed. The flowcharting program acts as a control mechanism for the general-purpose computer to establish the configuration of machine operations that form the process of this invention. The flowcharting program as a control mechanism also determines a particular machine configuration, which is uniquely established while that program is in control; that is, the aforementioned mechanisms for automatically producing flow charts are established by various sequencies of particular instructions and by various combinations of those sequences. The machine system for making two-dimensional flow charts incorporates, for example, the mechanism for pulling branch sequences of symbols for display on the same page as the main flow sequence; the mechanisms for developing symbols, and the sequences of the symbols; the allocation mechanisms; the mechanism for pulling the sub-branch chains; the cluster mechanisms: the editing mechanisms: the layout mechanisms. These mechanisms are combined to form a special-purpose mechane, which in an illustrated embodiment is a stored-program controlled general-purpose computer.

This invention may also be embodied in various forms of fixed or wired program embodiments. For example, a program form of this invention, similar to the RCA 501 program noted below, may be established in a readonly type of memory for use in those computers employing such memories for the control program. This "firmware" embodiment of the invention is constructed and operates in the same way, in all material respects, as the stored-program embodiment described above: the term "firmware" indicates the relatively permanent character of the sequence control formed by the program in a read-only memory as contrasted to the "software" embodiment of the program temporarily written in a readwrite memory.

Another form of construction of the invention may employ a read-only memory to establish a macro-instruction embodiment of the invention; the physical removal of one read-only memory with its program and the re-

mechanism. Each of the different blocks of FIGS. 8/1-8/30 may be separately constructed and identified as a macro-instruction. That is, each such block represents a sequence of basic machine operations that are required to carry out the overall opeartion of each block as shown in the drawing and as described in the specification. In addition, each block represents the control mechanism or macro-instruction for directing that operational sequence. It will also be apparent from the detailed RCA 501 program, noted below, how the macro-instruction for each such block may be constructed. The computer so constructed has a macro-instruction set composed of the different types of blocks of FIGS. 8/1-8/30; each of these macro-instructions controls the computer to perform the appropriate combination and sequence of basic machine operations in accordance with the corresponding sequence of basic instructions that make up the macroinstruction. The macro-instructions of the computer so constructed with a read-only memory are specific to this flowcharting invention, and the computer having such a macro-instruction set has a unique flowcharting configuration. The control program for sequencing the macroinstructions calls for each of the individual macro-instructions by an appropriate identification code using standard computer techniques, and the corresponding sequence 25 of basic instructions is supplied from the read-only memory. The macro-instruction sequence is shown in FIGS. 8/1-8/30 and set forth in the associated description.

In a fully wired embodiment of the invention, each of the blocks of FIGS. 8/1-8/30 may be constructed as 30 its principles. a separate unit of logic circuitry, which unit includes And/Or logic circuits, and flip-flop registers and switches that are interconnected to perform the block's logic. For example, each such block may be composed of those portions of the arithmetic unit 104 and control unit 106 35 that are required to carry out the corresponding machine operations in association with the common memory 102 to which all such units have access as required and with the input-output devices. The machine operations corresponding to the instructions of the RCA 501 program 40 noted below may be used for the sequence of operations composing each such block, and the corresponding RCA 501 logic circuits or any other suitable form may be used therefor. Each such block has an input connection at which it receives an activation signal from a preceding 45block. Each block has at least one output connection, and in the case of decision blocks, two or three outputs. These output connections of each block are connected to the input connections of other blocks in the manner shown in FIGS. 8/1-8/30. The circuitry of each block is nor- 50 mally quiescent, and upon receiving an input activation signal, it proceeds to perform its sequence of basic machine operations including memory fetches and stores.

10

Upon completing the sequence, each block generates an output signal that is transferred to the succeeding block as the latter's activation signal, and the latter block proceeds to perform its operations. In the case of a decision block, but a single one of its output connections receives the signal for activating the next block depending upon the results of the comparison or decision operation that is performed. Thereby, a single block is active at any instant, the sequence of active blocks is in accordance with the description of FIGS. 8/1-8/30.

In this way, a hardware embodiment may be constructed of a serially operating computer having the operational and control relationships shown in FIGS. 8/1-8/30. The latter are schematic block diagrams of different portions of such a flow-charting computer with the inputs and out-15puts interconnected in the manner illustrated. Other hardware embodiments may be constructed. For example, each of the RCA 501 instructions may be provided by a separate unit of logic; in addition, a wired sequence control unit is connected to all of said logic units and establishes 20 their operating sequence in accordance with the RCA 501 program noted below. Such a sequence control unit is responsive to the completion of the operation of each unit for initiating the operation of the succeeding one, and similarly responsive to the various alternative results of the operation of a decision unit for initiating the operation of the proper one of the associated succeeding units. Thus, equivalent software, firmware and hardware embodiments of this invention may be constructed in accordance with

Various other modifications of this invention will be apparent to those skilled in the art from the above descriptions of illustrative forms of this invention. The appended claims are intended to cover such modifications as are encompassed by the scope and spirit of this invention. Appended hereto is a print-out of a complete program of one form of this invention known as the "Autoflow" Documentation System. This print-out is written in an assembly language known as the "RCA 501 EZCODE Assembly System, and also in machine language produced by an assembly of the former. This program, when as-sembled into machine language for the RCA 501 Electronic Data Processing System, directs the operation of that computing machine in accordance with the invention and particularly with the form of the invention described above in connection with FIG. 8. A detailed flow chart of that form of the invention, was produced automatically by an RCA 501 computing machine using the appended assembly language program as input data and using that program in machine language form to direct the operation of the machine. Copies of the appended program and of the aforementioned flow chart have been deposited with the U.S. Register of Copyrights.

ASSEMBLY LANGUAGE AND MACHINE LANGUAGE PROGRAM-RCA 501

NAME AUTOFLOR PROGRAM BLOCK 000 PROGRAM BLOCK 001 PROGRAM BLOCK 003 PROGRAM BLOCK 003 PROGRAM BLOCK 004 PROGRAM BLOCK 005 PROGRAM BLOCK 007 PROGRAM BLOCK 005	H\$C 002510 L\$C H\$C 003000 L\$C H\$C 004170 L\$C H\$C 004170 L\$C H\$C 004430 L\$C H\$C 007450 L\$C H\$C 003000 L\$C H\$C 004170 L\$C H\$C 002510 L\$C	1 NDEX 40000501 202607 005457 020157 011777 011357 022167 03017 011047 012527	DATE 11146	5 PAGE OOL
NATE AUTOFLOA PROGRAM BLUCK 000 C02510 40 646354 45 002520 01 010101 01 002530 01 010101 01 002540 01 010101 01 002550 01 010101 01 002550 00 002510 00 002570 00 000501 02 002600 00 00000 72	STARTS AT 002515 535666 010101 010101 010101 010101 010101 010000 010011 000000	1 0: X 4090.201	DÅTE 111665	i PAGE ora
NAME AUTOFLOW HSM OP A R	B SEO N TAG Qodajq	INDEX 40000501 OP A ANDRESS PID 40000501	SEG 01 DATE 111665 N ^d B ACDRESS 00300377777	PAGE 003 Compents Autoflow

PAGE 004 CONTENTS FOUNSERERTIA HOUSERERTIA FOINSERERTIA FOINSERERTIA FONSER PASS 1.112 PASS 1.112 PASS 1.112 PASS 1.112 PASS 1.112 PASS PAS	LEFT CONNECTION LEFT CONNECTION LEFT CONSECTION RIGHT TEST TAG Seg # OF RCD Levgeh of RCD Covvents FIELD Storage Areas Length of ENTRY		ALC FLUE ONE ONE OF ADDRESSES OF OLP ADDRESSES OF OLP ADDRESSES OF OLP ADDRESSES OF OLP ADDRESSES OF ASS ONE ACTAR OF ROSSES ACTAR OF ROSSES ACTUR OUTPUL ATT OFFLINE OUTPUL ATT UD RANT TAPE ATT UP INPUT TAPE ATT UP INPUT TAPE
SEG "I DATE 111665 N P ALDRESS nc3rog		٦	
INDEY 4000'50] OP A.A.DPESS SEG 01 TC S11 ⁴ T Dar 5.0,0 Dar 3 0.1 0.1 0.1 Dar 4 Dar	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DAC C:M.V.J. RAK C:M.V.J. PAC D:AC DAC C:AR DAR B DAR C:AR
	000100 C0DE 00110 146 00130 146 00030 8447 000150 844 000150 844 000190 849 000190 0914 000190 0914		000370 000380 000400 ALNT 000410 ALNT 000410 ALNT 000410 ALNT 000440 ANA 000440 ANA 000440 ANA 000440 ANA 000440 00040 000400 000400 000400 000000
AUTAFLOW N B M OP A N B 200 T1 0041TA 55 55069 713 714 714 720		- NN774499999999	04104 11 003010 01 010101 04477 01 003010 01 010101 04410 01 003025 01 010101 04410 01 003025 01 010101 004112 01 003025 01 010101 004120 11 000152 01 010101 004120 12 0001210 00 00000 004200 17 000010 00 00000 004200 17 000010 00 00000 004200 17 000120 00 00000 004200 17 000120 00 00000 004200 17 000120 00 00000 004200 17 000120 00 00000 004200 22 001210 00 00000 004035 004000 22 001210 00 00000 004035

3,533,086

		•		•	, TE&	•	U	•			C .		. •	4		•								. u	٦											. -	•					3				۵			Ľ
PAGE 005 Comments	OVP IF OFF I INC	CLOSE GATE	B.F. 5 ON	REAC PAPER TAPE		PEAT FIRST SOURCE	RECCRD OF PROGR	HAS AN ED PEAD						TYPE OUT NUMAED	OF FROGRAM	BRIDG IN SEC 2					500 TATS 900,0447		UNVIND AN EF ON	INPUT FILE		ERRER ON P.T.		TRY AGAIN	ED ON INPUT SOURCE	8.P. 5 ON		ON. SHOULD 1.07	MEALH ED DN 1/P			-E01+	•				PEAL PAPER TAPE	TEST FO	APC EF		Ε.	445 44 EF 0640			19 E3586E 43615
SEG OI DATE ILI665 N B ADDRESS	774	01000	40000			. 1,5			NE X 3	40000		1 P 4 R 1 4 2 B	NEY5	1 PAR1,29		02 STPAS1	*	. 3,7					. 1,5			770000	770000			40000			7,0000	770000			PROGRAM NOT	-	LOANI NO ONDUS	75	•				770100	ILPT1,3	7%	• 1	
1 ND EX 40007501 OP A ADDRESS		0.56	10 Nr×2		A Z Z			1041 - UN						0CT #75t	LW. IFARIAZI	RIS STAT			00 51841			7 I K			1C N: X2	TH TTAZ				TC .ECJ		2 T				٠	COX 12		CC3 14	1 120	2°, a	×7 Y		TCT \$4TU		SC. RPTL,L		11 E J Set 275742	
TAG	••	00	10 %EXT		C 4	50 NEX2	د . •	0		LO NEX3	20.02	00		SO NEX4		20				9		00	IO NEXS	0	0	50 NFX6		0	5	00 I.EX7	0.0			0	20		O NEXS		191	0	50	0				2	۲ ۲	00	
	000590			0004000	00440	4000		049000		000710		000730		•		000770					000100	00:000	000610	000"20					000890	6000						000260	000070	105996	3C15655015055576463	000000	00100	100	100	001000		090100		Col - 90	;
			000004										004540		770000		000000		000000						000000					00000					000000	000000		1059955510+50+19	1565501							004763	000000		
						•	с,	88		. e		•	c	•	n.				 					33		00 0	c	ç		000			00 0		00 0	со с										388 •		200 	
						00403	02320			00447	02352	02322	00461	00542	02322	•	00119	44400					0	720	¢ 00	1362	471	6690		\$7400			12520	0.471	00475	00465		101204	5566455							004761		005543	
50	~			•				23										\$. 0 c					22	c ı	~	-	12	•	1	-				•••	11	*	•	n _	- -							;‡29		22	
יג קיי גע	5	5	0000000			0435					0444	0445	0446	144	0450	į			1 IN 1 IN 1 IN				004560	0.57		1440	024620	463		0+++60			-0	- C	004670		<u> </u>	-		004742						005000	002-20	021300	

3,533,086

	LL U 1 7	۲	LOL L	x	
9 4 4 6 E 0 0 6 C 0 4 4 E × 1 5 C 0 4 4 E × 1 5	TYPE DUT MESSAGE And Explanation Halt Back to read		REMIND INPUT Is output offeline Write ed to ove Remind ove	TYPE END OF RUN P Halt Fromt of Page area	0
SE ^{6,} 01 DATE 111665 e address 194221 194221 1942210 1942210	770000 770000 18valid Message	PUT CORRECTION IN Reaver, Hit Start 75	• • • •	7 7 8000 E ND E ND 	END END 00000000000000000000 73 757 END OF RUN/ 000000000001
z					16 M H CO
z	10 7/1/17 1. 15492 1. 8913 965 8911 10 8911 10. 10		001 111 1001 111 1001 114 1001 114 114 114	8	101
146	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	015055 0015055 0015055	E O L	ЕОЈ] Гачғе Гачер Гарі 17арі	
SE0 001100 0011100 0011100 0011100	001140 RPTK 001150 RPTK 001150 RPTR 001140 001190 001190	47535743015446262405644160101 01225661414426252055501505501 01425661414442635055501505501 01425661350147506301520 001220 001220		001300 001310 E0J1 001330 Layer 001340 Layeut 001340 Layeut 001340 Pari 001340 Pari	001400 001410 001410 001410 0101010 01010101
N 0C 023511 0C 0235110 0C 023522 0C 023522	00 70000 00 770000 00 770000 00 000000 00 000000	3501544 2566161444 4613501475		90 00000 110000 000000 000000 000000	0 10101010101010101010 2 2 2 2 2 2 2 2 2
04 023511 005110 023522 023522	11 77777 12 023510 12 005150 01 000000 71 000000 71 000000	505565405 576463014 614440434		C C C C C C C C C C C C C C C C C C C	010101010 23232323232323232323232323232323232323
2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		005172 005214 005235			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,533,086

E PAGE OOT Couments			CONCENTS NORK AREA	THE TOTAL STREAM		LIZES IN CURR CHN	STORMENTS Of Comments		~	A REA BY INPUT SUD		,	14G 5		A ACDRESS						A ADDRESS	- - -	STOFAGE -LAREL CODE	VIDVAGE FOR ADDREGGES Dr. Triasions																		
SEG C2 DATE 111665 N P ANDRESS	START									FI EL DS+MOVED FROM READ						rot AF SPOAning an Andue in									Y21LQUF04.3	m		EL CODES	A D A		YYES NO			HOT HUIHI			DEGVALUNEGL	UUNEOLEO, AL		FOFF ON	CON OFP	#PLUS MINUS
	556 02 604 5		0 4 7 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		044 5		1 X 7 10		DAR TEAC	AMK INPUT AREAS FOR FI	24,0			0 A R 6	.:	STORAGE IPEAS	24,0			DAR 6	*				CON 11,0	CON 1.0				04R 224.0		E011 16	•	CON 16	CON 16		Cen 16	C0115		C0H 16	C011 16	CON 16
A B SED # 1AG	017100	ļ		10	01 010101 001480		015100			061550	001+60 IP			001+00 IPLA		369100	OCIVAO HA		001/70 HACOF		COLEGO AUNA				707:50834064455434:234 207:50834064455434:234	001750 LaCh1	041100	021120		COLADO Colado	018100	707044620101555601010101010101 001820	715556010101704462010101010101	0018305555555555555555555555555555555555	00101010101010101010101	53535666010147504647010101010101	001850 053645544655301210101		053446064405	9564545010156550101010101010101	0016364545610101010101010101	
NAME AUTOFLON HSH OP A		10101010	005104 01 004201	005110	2	005130 01 000000	;	DONESO ID BEISDO	5		5.97 CAD	005260	005267	005270			002310	005310	11000	005320	005326	005340	1+6500	005350		005374	26				005404	D05424 707044620		005444 504-60464	005464		695504 664460644		646455446	455645450	095564 565455010	005604

COMENTS COMENTS							TION	STORE TITLE FROM P		CLUSE 6ATE				STURE INDEX # F	4	GATE	PICK UP FIRST RECORD S			2	_				AVE VEV COVE LEAR D/P APEAS	PUT IN ST RESS					KEAU NEXT I/F KECURU & Code Fouki To C			APPEND THIS COMMENT T TO PACK OF PREVIOUS C		IF TAG FIELD IS		, ں			C LINE TO YORK AREA C		
SEG OZ D≜TE 111665 N P AUDRESS	-MINUSPLOS	∃EGUALHIGH LOW				1 NP1 1 . S	5 P 7 . 1			C10700	<1000 ¥		1 PAF 1 . 95			00000		600042									I C U Z				60042 600742	1 PCODE	4 A L					IPTAG.B		1 PL'., A			C 0 E
INPEX 4007/501 of A Address	CON 16	CON 16	- d	0 A C L B T B	C 0.7 11	057 Trl			A. 4.		OCT TI	-		ŝ			Ŀ		SC IFCODE Cir Fri		¥ 7 : 2 :	X 0 X 1 X 1	TCT COMAD				H 7 H					SC IPCODE		TC HVCOM	LET LATAG		CTC FP2					u U	TC FP2 DCT 440055
60 F	5	162575364	35347504647C	CI CI0101 001930 L875X	001440 VALCD 47515557624366	0.014535	001260			c eleñen	00151	5 000000		c 600000 3	C 723234		000000	e e			002140	002150	651000 0	c 000173	DC 004060 002190		007400 0	0 00000	0005307	C 000000 C02260	000000	002200	006500	00000 0	00 60000	00 017760	00 006310		97600 00 ·	00 005275	00 005266	00 005275 00241	
۲٥٩ ۲	365753646 005624	145450556 005644	264466444	4 21 005404	C5750 41424344					06010 75 0000	00 22 57 0140	N6030 14 0232	06r50 24 0233	06r69 72 0041	06070 24 0232	2720 41 00100 00100 42 0100	CA120 71 0143	06130 72 0061	006140 43 035267	1900 12 09190			06170 25 00510	n6200 25 00406	06210 22 00302	00000 00 00000 00000000000000000000000	06240 22 01775	06250 72 00533	06240 26 00526 04270 36 00526	04300 71 01573	06310 71 01430	006320 72 006377 006330 43 005267	06340 61 00650	04350 71 01573	15300 73 04540		06400 61 00631	04410 72 00531	00420 24 00326 22120 24 00326	00430 /2 00347 06440 24 00527	006450 34 005265	06440 34 00527	06470 71 00631

3,533,086

	•		TO SEGUENCE # P Move to dutent *		STORE RHE OF		ITS FIELD	Y EMPTY		HMY	02		TO ANS	8 F 8		BLE FOR C			OWPLETELY	NO+FPS,YES+ D		0	IN. TABLE			L F S S				4 T 265	V TAG B		TAC	IASLE ENTRY N	TAG FIELD P		COUNTER						UVTER TO TABLE				RHE TARLE			c		1	NE	,		2
1				77 TO RHI	STORE RHE	LTUBH".CD	IS COMMEN	COMPLETELY EMPTY		CREATE DUMMY	COM ENT A	ADJUST RHE	LHE COMM	-	CODE, PUT	IN TAG TABLE FOR	TAALE OF	IF T, BYP	ROUTINE C	T CODE NOMEPS, YE		XOVE 77 T	TAG AREA	VOVE 26 C		THE LESS		CHAPACTERS	INCR RHE TALLE	ADD TO NU	IS THERE		- 01 = d2d	MAKE TAG	MOVE TAG		AUD TU TAG		T'S TARIE	C	CLE/R ADDR	HOVE ASSE:	NUVIER TO				1 N 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3						· CCDE			
666 09 A494 41114	ADARE			5 77777	#00002##]	RIGCOR		Þ	•			00000K*			-								10 eT	e á S		33 TENTLY		23 TENTLX	TENTL,R	# 00000 # 1		#0Z7	•	ļ	8- 1 4 1 4 2 4 2	0000		30 51	hATAG.R	610000 E.		С	A SLA			,	ON FILLT RED OF EVENV			* A C J D E	• 2		5 T		• 2	
1 1 D F X 4 D D C R D 1	DP A APDRESS	TCA SLOVONS	TCT SEGNO	0CT #77#	105 \$5	TCT #5	201 COMOUNT		• •			HIA KIROCHAK HIA PIHAD				- 1 2 0 5 1	•			-	コント オオトロロ	*	. *			L ⁴ S OFCADZ	CTc • 1	5CC 019301		2 2 2		a 1	÷	Ē		2	1001	Ö		ŝ					CLT DEDEAD		HOLI-S								• 3	2
	SEO # TAG	002440	002450					003510		002=30				0.2570							002.40	002450	002 460	002470	002430	002690	002700	002710	027202	101	002750	002760	0.110	002750	002790	002-00	CO2 P 1 O	002+20	02130	067500	048200				0.20	5	0.20	002430 FP5	0 \$ * 2 0	FC2550	9°70	N I	002000		 	•
30	~ ~	04053 00	004050 00 003054 11774 05 77777			00 10100	00151 00	06640 00	00004 5C	1770 00	5133 00	02104 00	5317 00	10001 00	0000000	7240 00 007				04024 00 00013	17764 03 00001)	0003 3 3 C 60000	04201	70901 00 60000	00002 33 00003		00001 64 000043 7 00 004043	04023 00 01776	05317 60 60000	200n2 00 02000	07240 0C		3033 00	5310 00	4023 00	04024 00 000133	90n7 3C						7761 03 00000	0030 33	4027 00 00401			00 E 000				00000 00 002011	7350 90	1641 0C 00000	
AUTOFL	100	01200	000520 25 0		06550 25 0	06560 72 0	06570 43 0	06600 41 0	06610 72 0	06620 24 0	06630 44 0	06640 25 0	06650 22 0	06660 72 7	000 31 0	6700 61 0				06710 25	006720 22 0		0 57 30 72 0	06740 24 0	06750 72 7	0 1 6 0 9 1 0	0 10 0//00		07020 44 0	07130 72 0	07040 43 0	07050 61 0		C7060 72 0	07070 24 0	07100 44 0	007110 25 00	0 21 021/0			07160 72 0	0 12 0 21 20	07200 22 0	07210 22 0	07220 36 0	07230 44 0		7360 72	21 06210	C/ 200 43			007320 43 00	(7330 61	C7342 71 0	

со" ; китs р. с. ре	~	E COE		Z			2	Z COE		•			1				~		1				,	۲				H TO O/P APEA		5×17CM		ר שני אונמים	JUMP CODE T	CHECK FOR ASTERISKS 4	15 70 4575815454 USE P	A AS TAG		NATION.TAG	F .		TAAL	AFT 16 RMC PCD	CO TO MRITE J	PROCESS N CODE T
	N	11	H AC OPE	•	<u>ب</u>				- ۲	• 2	• •		5 •	,		3		¥ 8	ACODE	• 2	•	A C D E	841		1			0000	•		004000				• • •					LINE\$ #000010## 1		#000003#/J	•	
ê, ê	U K (73 040°E Sft se4 -	SC RCSUE		-	L.	• ĭ	- 401. - 401. - 441.	1	٠	÷.	a 1	K 🕈	C d	#+2#	4 2				ີ. •	000		10 C 3 C 3 C	2	2 × 1	87			Ē		567 E::071	ž		TC PAREN			. •		HI TAG		ינ	TC C1621 TC4 47		
563 # TAG 203-20	003.20	003750 003760	02-000		CCJIOD	011600	021500		051500	003160	01:10		002000	01210	003250	Cc3730	044600	053250		003280	003290	001500	CC332C			003360 FP6	010000	040000	003400 FP7	01+10	003430 FPB	04+600		003470 JC00E		067600		023520	003530	003540	5			
, B C 600CCN	17 55 405317 10 95 607410		00	נינ נינ		50		30	50	000	00		202		009 00	000	00 00 101	000000000	100 00231	00 00 1	00000 00 00		50010	000		2	03043 0C	00000 000 20015 07	00000 00	01000	000+00 30. UET+1		006170 00 000000	210 00	0 0410	00 (10)	00 9761		110 00	2	1127 00	730 00		

3,533,086

END OF COMMENT FIELD D YESANIJNOG C ADD TO LINF CNTR P GO TO WRITF CNTR D υ u HAA L Δ. GO TO WRITE L PROCESS P CCDE T SET R LINES CCDE T EDIT LINE OF COVVENT I END OF CONVENT FIELD KIGH # TO AVOID USE OF SEC. COPUN GO TO MRITE PROCESS ECOF 2 - LINE COF 200 TO LINE CTR PROCESS N CODE Set # Lines to 5 Edit Line of Comment PUT J IN FIELD RHT For USE by Pass 3 ANT IS RHE OF RCD IF "Ext code 15 a or REDUCE # LINES BY 3. PROCE**S\$ \$** CCDE Pick up destivation T. SET E LINES IN CURRENT CHAIN TO YES+P1,NO+ ADD TO LINE CNTR GO TO BRITE NOTE TOO BIG TO CREATE ARTIFICIAL WORD WITH SPACE COMPENTS SET # LINES TO 10 ADD TO LINE CTR CODE OF NEXT PCD Equal To J CPEATE ARTIFICIAL Adre With Space CHAIN TABLE ENTRY Amy is rhe PCD PROCESS 8 CODE Zero To a lives Set up addriss NOV5 COMMENTS TO #082 TOO BIG TO FIT ON LIVE FROM + FIELD+ USE & ADMESS 001201 48FA 50 TO 48TF PAGE 011 3 N O 4 8 1 1 1 1 SEG 02 DATE 11665 • 2 #001000##1 L.INES #000010##1 1"#010100# 10000014,1 B ADDRESS Lines *C00003#+1 #000003#+1 L INE S 000023 P1 LINES, R LINES, R cs 77777 LINES DUODIT 45 77777 PCODE 00.000 LINES -19-THA • [5 ī 505 z 40000501 0P A ADPRESS TCT #C00010#/1 TCA L.C.T.R SET "J" SC 1PC0DE - #200054**,1** Eglin **:**"#0000003# #C00012#_1 L4C.1,R #000002# L: C'T B F: 6 LACVT.R 0CT 1PC0DE R^MK LINESAR Lecv7, R 2677777 RUPTON IPCODE 770001 P.85N CHE'-T ELLIN + ب ج K 1 1 A P1.7 * **1**0¥ #:] : # F F.A. T^hDF X F P & **6** P **6 F** P **b** Ī ä ۶N с. # Ċ, \$ 1 24 2 . ХХ ХХ μX ×-- × 10A 561 0 M 1 D 1 D 1 D 101 101 10. 105 55 CX Fĭ 20 101 U ¥ ₩ 50 c to ບໍ່ບ 101 101 510 ž с 1 1 1 sεt u¥ ¥d ŝ ۲ ۲ žža XXXX e ų 003930 603940 NC03E 003950 NL 003960 NL ŤAG HC0DE PCODE P1 6COn£ SCOLE ECODE 2 2 Ŧ 003850 003850 003850 003690 003660 5E0 # 003600 004160 004170 004180 004150 004160 004160 003+500 003+500 003+500 003+500 001600 021500 004110 204120 004130 004130 067600 041600 05×000 04-90 04100 003860 90 003011
 90 000133
 90 000133
 90 000153
 90 000153
 91 000000
 92 000000
 93 000000 611010 600000 00 01 7767 00 01 0321 00 02 00000 00 02 00001 00 01 0360 00 02 00360 00 02 00360 00 02 0030 003011 020027 000000 017767 003011 000023 010450 C10527 77777 000000 010550 010550 00301 01777 0020027 002000 005267 010300 017777 003045 0000000 0000000 010627 000000 000000 110500 000000 2000000000 888888 000 200 888 0 in 0 0000 88 000 H54 010210 25 02027 00 010220 42 02023 00 010230 72 020230 00 010240 43 005267 00 010250 45 010370 00 010250 45 005267 00 010270 22 005267 00 010300 45 000173 0 010310 22 005247 0 010320 72 770001 0 010320 72 770001 0 010320 31 020000 0 010340 61 015127 0 010350 44 005127 0 010350 71 007750 0 010370 25 02023 0 010400 44 005177 0 010410 71 016730 0 010420 45 000173 0 010420 45 000173 0 010430 71 007750 0 020037 (016217 0011010 44 005127 (71 007750 (010457 012557 71 017060 61 010510 010610 005127 007750 760020 VAME AUTOFLOW 1225 515 22 142 010440 25 :: 010740 7 010750 5 010760 7 010450 0 010470 4 010510 2 010520 2 010530 7 010550 7 010610 2 010620 2 010630 7 010573 210600 210540

73

(65 PAGE 012 Comments If No a field C		c .		NOM PICK UP	TO PUT	C. STOLES		MOVE DESTINATION	- 4							EDIT LINE OF COMMENT &				-			INSERT BLANK LINE P		VERTICAL ALIGNMENT C	4554 # 102554 40 10 P	-			,	INE OF COMMENT		LINE OF COMMENT	COMMENT FIELD		1080	CREATE ARTIFICIAL	HORD AND SET	TO TRY AGAIN	1		,				. 0			
SEG CZ DATE 111665 N r address Admare		11	HUTAGAR					а. Т							1)7 000°01	•10000	5 2 5	:	<u>به</u>			#000001 # 1		~	1 * 1 0 0 0 0 4	5 3 2 1 1 1 5 3 2 1 1		50000		ï	51000	6.9	000014	8				-	05 77777	05					. 2.7		50 77777		
1'.DEX 4000-501 0P 4 4004-55					R 15		10 S. SP			STC L-T	1					TC ELLIN			SET 740002						TCA 57	TCT #0000124,1	TCA LACATAR	TC FPO	,	TC 518		CTC \$6	TC SK TC FDLIN	CTC S6	****			7CT 77767	1 ()#	TC 777760		•	E E E E E E E E E E E E E E E E E E E	TC \$2		LCT XHECOM		- 61 - 61	R 2 R
SED & TAG	004160	061900		004220	004230	004240	004250	004260	01210	004280	04290	001 00	016400	004320		004360	015400	004380	004390	004400		- 13 07 1900		004450		004470 52	004480	004490	004510		004530 53	004540	004550		004580	004570	004610 56	004620	004930	004940	004/50 004/50 57	004670	004680	004070		UDATIO DEODE	004730	004740	004750
, 	005326 OC	JU JE0110					71 n1744n cc 000000		72 013074 00.60000	24 003635 00 00364	22 017757 0C 00306	22 020044 00	72 010001 0C	31 003664 00			61 011430 00		72 740C02 CC	31 003064	72 000001 /0	24 000001		20 940600 44	44 000173 00	25 020023	44 005127 00	71 007750 00	71 017065		71 017060 00	61 011430 GC	71 011270 00 00000	71 017050 00 00 0114		5 71 011270 00 000000	35 000243 00	25 777767 30		71 777760 30		19//10 00 F11000 57 0		0 71 011270 DD 000000		0 55 005130 00 00 00 00 00 00 00 00 00 00 00 00 0	0 72 150000 50 7777	0 61 012770 0	
E ≜U	010770	0011					011130		1104	11.5	9011	11-7	1110	Ξ			1116		1117	1120	121	1 2 2				1127	0611	1131	2611			•	1137		-	011420				1		011470		011500		1131	1152		

3,533,086

6		υ	D	ມ	U					ιu		u Z	υU	•• L	B .	υ				F1600				ບ່	c		N		0 1	ر	:	2	ں م	u
PAGE CI J Covients Ani to • Ani to •e	CLEAR 158 FROM FRONT OF COMMENTS #/A Find first space	TO LEFT OF STAR	MOVE 5 CHARACTERS	TO LAB AREA IN O/P Clear Label Field In	COMMENTS AREA CLEAR OUT AND CLEAR		SAVE ANI U CHAR	1 4 1 1 4 1 1 1 1	LATEL 121 TAG AND Latel IN Star Field Tig Cove on	OUTPUT AREA	CARL GUES 10 Outbut Adra	IF TO TAG OR LABEL	PRACES ARE "OVED TO. OUTPUT AREA	EXTRACT ZND TAG AND Label in Star Fifid	HOVE ZND TAG AND	LTBLE TO CAP AREA		IF A sterisk field was at end fe	FIELDA ADJUST	15472 TO RHE CO4M F1 But of F1-10 10	LEFT OF LAREL	SET LHE COM" FIELD	SET AMP TO POINT P	TO COMMENTS FIELD "			SKIP ANY SPAFES TO	RIGHT OF . FIELD	COTTENT 14 Cottent Parton		5	ינ	PUT 1 2 155 FOR	Z RLANK LIVES
\$EG 02 DAYE 111665 % B ADDRESS * 1 * 000001#/f			70 ±1		\$T 77 000015				*	HDTAG.R	>				8 T H C T A G = R	70 57	H Dia Araa X	000153			1 00001	2		5 T		~ •		6 4		0.01441	1 •		70 17	
1%D:X 4000501 DP 4 400RESS TCT 8574 TCT 85 TCA 85						CTr • 1 SCC 000001				510 10170 561 01000		7 T T	R*K TO P:REV.		SET RET.R STC HUTAG			000151	CTC + 1 TCT TE4P2	-	#77 u	TCT COMAD Rak if asterisk fifld		RET BADY	0	CTC + 2 +6 +600E	φ,	X.*K Tot Ricox		10 H		2 H 2		51C 274742
146								v I d															5											
8 0000 004 04 1444 1444 1476 00 1476 00 00 00 00	004400	0044400	004750	004070	042900	004400	0040300		004970	004400	000500	005020	005030	020200	002-500	002-00	001200	005110	0021300	005140	005150	0021200		002200	005210	0052300	005240	094500	065270	005200	005100	005110	065320	OFLEDY
8 000153 00113 017763						011740 000015		000000	00000	000000	005123		000000		005116	600000	000000	000153	0/1710	06130	00000153		020053	600000	*Z0200	000000	00000	££1000	000153	012310	> •		600000 90060	
2000 2000 2000		88						00	0	0.0	0		00	ŝ	38	2	200	20		000	0 0)	00	0		38	00	8	8	200	1		00	2,
L0 4 000 22 000 15		017740		000	000	000	000	016210	TOP:	611500 611500			016210	205	002110	00		5.0			7 7 5 0 1 5		000173	1002		UZ#E10	1744	513	<u> </u>	012410	•		000000	С Ч
UT0F1 0 25 2 455 2 455 2 4 10 10 10 10 10 100 100 100 100 100 10	4 4 1		~ ~	m h		0 0	~ ~	1	~	52	~		71	•	24		• •	*	0 ~	•	NŇ	•	•	~ •	é 4	5	~	~	* *	; ;			~ *	
NAH H D D D D D D D D D D D D D D D D D D	1161		9911 1992	1167	2	1173	1174	011760	1177	012010	1202		02030	1204	012050	1205	1210	1211	1213	1214	1215		6/1710	1220	1221	012230	1224	1225	1226	012300			016210	

, 2011

3,533,086

79

USE LABEL CODE TABLE T AVI TO MSC OF TABLE P Compare Label Code D Against Table Entry C • 000 Ð z CO TO WRITE COVNENT S EDIT LINE OF COVNENT S END OF CONVENT FIELD D ں^ں EDIT LINE OF COMMENT S NIGO N# 0 N # 0 N 10 07 PRP.PRN ILLCGICAL Set # Lines to 13 P Add to Line Counter P EDIT LIVE OF COMMENT 5 END OF COMMENT FIELD O FINISHED ROOM IN THE DIANOOM IN THE DIANOOM IN THE DIANONO PORCE RUD OF COMMENT N PROP REST OF COMMENT N U YES-DABANO C U B. EDIT LINE OF COMMENT Enn of Comment field EDIT LINE OF COMMENT End of Comment Field POVE A AND P ADDRESS EDIT LIVE OF COMMENT End of Comment field ADJUST AMT Pict up Simple Line LINE TOO SMALL FOR Even one word Create artificial Hord and try Again SHIFT LINES DOWN BY CNE FOR FETTER VERT ALIGNUENT SHIFT LINES DOWN BY CVE FOR GETTER VERT ALIGNVENT THREE WAY DECISION HOVE LABELS OF COMMENT DUTPUT AREA P≜GE 014 CO4"ENTS SEG FZ DATE 111665 P AFDRESS #000002#,1 ±000002## 1 *# 100000# #000001#11 C10 1 N 1 N 2 • • • • • • • LINES R 70 47 11 00005 70 47 11 000017 41 14 €00°07 D48 30 + 1.7 75 77777 30 00003 55 2. • E 10000 2 * 000240 000001 • 2 000000 000000 WALAB DIZ 10 .7 -F # 22 20 2 TLREE WAY DECISION Lettr 4000.501 CTC 010240 RXX TTT # 4000154 TTA # 100154 TTA FF6 FF6 ECL10 CTC 05 FTC 05 FTC 05 STT 00001 STT 05 COT 0P. A ADDRESS TCA \$7 TC ELIN x ªa-,1 048 74G C 4 A **9**0 20 50 002500 005460 005170 005490 0102010 005450 26.7 #
 005744
 00
 000113

 000000
 000000
 000000

 001340
 00
 005440

 000015
 70
 000000

 0000011
 11
 000000

 0000011
 11
 000000

 0000011
 10
 000000

 0000010
 11
 000001

 0000010
 10
 000017

 0000010
 00
 000000

 0000110
 00
 000017

 0000101
 00
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 000011
 000017
 000017

 0011
 000017
 000017
 25 000243 00 000133 25 777767 30 012757 22 017740 05 777777 71 777760 36 000000 000000 0000077 012520 HS" PP A A B 012330 44 nc5173 00 017767 012340 71 017060-500 000015 012350 61 000240 00 000240 003011 10500 017767 000009 000000 C12362 25 02067 0C 0 012379 44 05127 0C 0 01200 71 07759 0C 0 012410 71 017769 0C 0 012420 61 012730 0C 0 g 71 012367 00 8 610500 000173 NAME AUTOFLO-013110 31 -4 27 001610 72 061610 012710 012720

	• • •					· -	
Ð	a.u.L		ລ ິບ			LULUL 27	
4/0							ບບ ບ & ຈ ພ ພ ຜ
PAGE 015 Com"Ents Storage Areas to (IF ANY OF THE Destination tags Have ezeode =	CONVENTION CLEAR THEY TO SPACES	A ACDRESS WAVE Asterisk notation	USE 8 ADDRESS AS DESTINATION USE A ADDRESS Loe Freen 1044550	A41 10 KE 41 10 10 10 10 10 10 10 10 10 10 10 10 10	70.000 1000 1000 1000 1000 1000 1000 100	PROCESS T CODE SET # LINES TO 3 SET # LINES TO 3 FOP YERTIOUS CODE J HA EA C_{1} T J HA EA C_{2} T LA COVEENTS COTE IN COVEENTS COTE IN COVEENTS COTE TA THE EDLINE COTE TA THE EDL
SEG N2 DATE 111465 B Address Madcarr Adcarr		к. с.	CA	011 81 81 61 61 61 7 81 81 81 81 81 81 81 81 81 81 81 81 81	2000020 200002 20002	85 605 7474 7452665063424774	LINES LINES - 1+1 -
56 05 56 05 57 05 58 00 58 00 58 00 58 0000000000	. .	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#T ¥ADCA	011 47 44008 41008 41008			LINES LINES 11 11 11 11 11 11 11 11 11 11 11 11 11
~			••			0 N 12 (22	N
*			Z				
1 ^{NDEK} 4000501 0 ⁰ Acdres 540 Aldres 571 Midres 561 Rutir		500 LLT 500 R.T 510 8.1 500 R.2 500 R.2		18 18 18 18 18 18 18 18 18 18 18 18 18 1		100 100 100 100 100 100 100 100	CON 11 R4K T4T #200034,1 T4T #200034,1 SET 77001 C4S #21474416 SET 77001 C4T #1474416 SET 77000 C4T #10001 C4T #100001 C4T #10001 C4T #10001 C4T #10001 C4T #10001 C4T #100
					ما	- N - N - N - N - N - N - N - N - N - N	-
TAG	8.0		010	110	012 NC005	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
5000 5000 5000 5000 5000 5000 5000 500		002600 002600 001400			006130 006130 006140 006150	006170 006170 006170 006170 0062210 0062210 006220 006220 006220 006220 006220 006220	
005347 005347 005000 5356					000000 020077 000000 020103	600000 013527 003024 003024 00000 1414141	414 414 414 414 414 414 414 414
		8888		3555558		-	
L0= 005441 003054	020071		020070		013000 013000 013000 013000	000000 013470 020055 012365 012365 4141414	4141414 1777 1775 1775 1755 1755 1755 177
P P P P P P P P P P P P P P P P P P P	F 4 0	~ * • ~ `		N4 - N4 - N4 - N4		N 4 N 1 1 1	N NY MANY MANY Y A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	••••	0 0 4 2 6 1 0 0 4 2 6 1 0	, <u>"</u> "		1340	013440 0134430 0134440 0134440 0134460 0134460 013460 01350 01350 01350 01350	- M 49960-NM49960-NM4 N M MMMADAAAAAAANNAA M DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3,533,086

	4	4	ີ	78					•			L I		5			-	•		•		3			¢					ר	4 5 (J J	U,	•					,	•	(6				N	. .
		AS '.07E	INSTEAP OF TEXT							REAT 98.10H FT9				50 PA55	- •	2	ELT OF PASS -			HRITE ED		RE # 1 ND	. SUIT THE NI OF THE	00 17 77 7 7 CMATH - ABLE	- 2 - 2 - 2 - 2					• 5 7 P A 5 2 =	PASS' 1 SUBROUTINES	IN 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	COTHER THAN		. QNV . QV	COLVENTS TO HE AREAS	SET EXIT Ami to mgc old red		DECISIONS N		ALTENATO ALTENATE ARTAS		Ξ	SENSE BING HODE	•		END PASS	ANY PASS 1 0/P D		BRING BACK IN Pontedi Brakrny
55						-	-																																ADDREASES ON	u								11	•	
ALDRE	CODE						* 200-00 x		N I VHO	5 h 2 h 2	1.1.	. 1	->1-	FPSA		00000			000072	• 1.5	000073	• 1.5	:		57PAS2		116 +		222472								X 4 1		PICK UP	OMITTED				•	# L	3121		#000000		
•						ņ	-		E > C I	-						n									20															CODE 15					-					ī
LUCY TOUC 221		- 104		4C02E		#74:	.7		FIRST RECCRD OF	FP5.7	C 5 C F	770701		•	CHLCC	÷0	FP5A		772	112		TT2	1	Crroc	#0x	001167	• 2	000340	51AFT 03								\$\$7P		ALOVE SHITCH 15	HEN LABEL	10		1. F 1 1 2 7 0 R 2			#72#				
		- ¥	ž	₽	101	100	1CA	10	¥ v	100	001	5 E T	2 2	010	101	001	U:		10	100		001	() ¥ (X	101	00		10	ų	000	2 2	 	¥ĭä	¥ 1 a		- 1 - 7 - 8	I I I I	707.		9 K 9 1 1 1	A A	TCT.	101	101	7 5 5	\$ET	ទ្ធ		100		1 M 1 M 1 M
		7			•					FRC								•	ENDPI																		I A NI								٠					
Sen a			005400	0	~	064430	014400	064550	006560	006570	006580	006590	004400	006610	0006.20	006430	006640				004490	004100	006710	006720	004130						000100	004770	004780	061900		000000	061900			004870	004880	000100	004900	004920	004430	004040	026400			066900
a	4 C C C C C			000000	017767	77777	017767	000000		007245	120410	00000	020112	007250	000133	0000	000000		014145	01-14	E10000	014295	000000	0001 33	000000				000000								015330	F11000	000000		014530	003140	1000	014370	00000	020114	014530			
		2		000	_		_	о С С			_	_	_		0000	_	0						c	c	_			0	000	•							8		0 E		c	•	000	. 0	. 0		ο.		• •	>
5		-		950	cc15	1775	0017	1366		00724	00302	77000	02011	01410	00404	2011	.007250		2				000	40	177	-		00	00417	000							00024		•		5	5	01453		000	20	-	8		2
				•		~	÷	•		~	~	•	-	4	12	•	•	1	~ •		•	- ~	-	~	~	•	N	•	8	ē							-	NS I	•		•	•		• •	•	•	•	~	-	
VE AUT				376	13,	1400	1-1-1	5-41			1404	1475	4041	1407	14100	1411	2		1113			1 4 1 7	1420	1421	1422	1423	1424	1425	014260	194							14300	-	1432		6641	1434				1441	275			

3,533,086

3 FAGE 017 Comments			READ SOURCE RECORD	1 - 7 - 7 - 1 - 4 - 1 - 4 4		PICK CP 1AG FROM SOLVER FABLE	ASSY LINE &	TORAGE	MOVE A ADDRESS P To storage		IS THIS A REALINE D		MOVE AND RIGHT	JUSTIFY ALL FIELDS C											846% FOR 25% RC0 U Fot benady	1.5	ENT UNSTIFY	LAST CHARACTER D	SCPERATED BY C		LID FLO. CHART		-	CLE: ? LAST CHAPACTER P	TEST CODE FCR 5	بال		SET SWITCH INPLA	Reer carter teals a	
SEG 22 DAYE 111463 N ADDRESS		NEX	Ta Ct		•••			11 000001 1	11 000033				÷.	1E1000 11	2104	11 CO0100	N +	11 00053		11 00050	IPTAG	TPAD, R		I hPI 2B		6 T	TICOD II	5 5				VALED, R		I PCOV.R	• 1,1	1 1 1 1 1	YEIdyI	11.11	1.,P1 k	
1%0EX 4000Å501 8ª 4 ADDRESS 55 041155	515 • 2 515 • 2 75 0r0340 00 LGAD1		LRF SET DEDOIL	#C.2 #		-			STC 0-0025	SCT IPCOM	AFT CCODES		NODAI			SCR 000/55		000		- 00	I d I	SCC IFAJ Set Iraj	: デ 		TC INPLA					OCT IPCOM.R	100044	LUS VALGO FIC - 1	IPCOM.		001]FC^06 SFT 770:01		a	00T #714 TC 345757	, 5	TC 1 P1X
SEO # TAG		007010	007020 1NP11 007030 1NP12		007050	007 570	007/50	007/70 0.7100 (Kei9.	007110	007120	04140	007150	007,160	067180	007190	007200	007220	007230	007240	007260	007270	CO7290	001100	007310	001330	007350 INP12C	007260	007370 [NP]23	001300	00400	007410	007420	07440	43	00,100	007480	Cc749Q		2	062200
E AUTOFLOM H\$M OP A N 14460 72 001167 00 é	400 -40 000 000		014530 14 000000 00 000000 014540 72 000011 10 600000	14550 43 020002 00 0	14570 72 005266 00	14600 24 000011 11	14610 72 005275 00 14620 74 000002 11	14430 72 005304 0C	14640 24 000075 11	14650 36 005144 00 14660 72 nences 10	14670 43 020115 00	14700 61 015170 00	14710 72 005257 14720 35 000107	14730 61 014740 00	14740 24 017769 00	11 620000 cf Dc. 11	4770 24 017760 00	15n00 35 000052 11	15020 24 017760	15-30 35 000075 11	15040 34 005260 0C	15060 72 005257 00	15070 43 017760 00 01	15100 61 015150 15110 71 014310			15140 61 015150 00	15150 72 005256 00		15200 22 005257 0C	15210 72 7700n1 0C	15230 61 015240	15240 22 005257 00	525,0 34 0,5257 5260 33 0,5257	15270 72 770001 0C	15300 31 020122	15310 61 015330 00 15330 33 030134 00	00 21620 27 02021 00 21620 27 12 02021	15340 22 029114 0C 91432	15350 71 01533A

,z

COM ENTS LOT FLOM CHART CODE N	-	LASEL CODE			77E LABEL CODE P	PICK UP ADD ⁴ ESSES S		LODE		LARL CODE		DE A CTC.	OR TALL							2 X X X X X X X X X X X X X X X X X X X	ADDRE 55		•	ari rii a Arderic D		PICK UP & ADDRESS P		SET SALTCH INPIG P		COMMENT FROM				1810 C	CLD YAVE ANYTHING D	570RE 7 AS LHE 7					GET LENGTH DF FIELD F		A76A				CREATE SPACE TO P	0 Z		DF NEXT FIELD C	
	51	5		0. 0.	51	٩	10			Z	3 E	15	10.						>			1×3	:		-	I.		R S A	× ·		2 4		æ	Ų			1				5	2 4 6	5	- 3	2	D.	U	æ			4
B ADDRESS	• 141	ar	Luco, R	A L A L	× 4 6 4 8		1	a TOLI		PICK UP ADDRESSES	INPLAX.	\$ Т	000023	* 2	:	0000 EZ0000			147124				ADDRESSES T	1 2 4 1 3 X			000163	INPIG				NVCONX		I PCOM.R	A COMX	8T		#01x	~		× × 2	21				I PCOM.R	E-2A	#000005# \$	77777		
2											•		11			=		-	-				۹ د		-	:	11										ç	2				ç	C N			ŝ			5		
1.71.4 400.000 001 07 A Atdukess	DCT ISCOM.R	r 770701	-	CTC • 1	OCT IF COMPR				ι.		CT 857P	SET "TA TC CTC"				ŏ		10 JUP14A				u t	Ť			STC DEGRES SET MADCBAR		1 00001 001 #72F		I I I	天 (() ()		SET IPCOM.R				•	set dougou				108 X4241		x :				1 1 1	SCC 77777	¥ ×	-
1 A G	C V D V J										1 NP 1 4									. 1.014.		INPLAX		s i 4 v i					XSI dNI			20022	17 17 17 17 17 17									•	3 4 4							" NCOVA	
560 K 1 207540		001540	00110	007530	007590	007700	01710		000000		07650	007660	007070	001/80	007690	001100	004410	021700				007770			001100	007820	001930	007840	007450	007240	002-200			007010	001920	001430	001040		007970	001080	001990	0000000		0208080			00000	000070	0080800		
đ		000000	005372	016910	0+6500	000000	745200			200	015630	000009	000033	015540	000000	000053	015510	000000	570000			000000		071510			00000	014320	000000				000000			00000			010050			EE 1000			5 6		0	5			000000
z	Ċ		00	00	8	00		50	2		_		=	00	000	_	0	n .	- (-	, c) O		0 m		~ C		:8	~			č	38	ō	ò	ò	Ö,		0	0	0	88							~		00
4		100012	536	545	525	564					0024	6102	000	1554	1561	0005	1551	1961						4200	0514			11020	777						-	-	~ .	-	-		-	01607		- n				`	•		7777
0			-	i.						_	25	2	1	19	-	43					3.5	: =		~	•	N P-	•	2	*			•	*	-	-	•			-		~	41	•	•	• •				•	•	
24.15 AC		0000010	1540	1541	1542				•••	9.61	547	1550	1551	552	1553	1554	1555	526	1001	0961		1563		1564	595	0 4 6 4 4 7 4		012510	1572				***	515	1574	1977	00.			404	1405	010000	1001						1 • 1 •		01010

3,533,086

	F	υ	U I		ں ر	e . 1	۵.		L 4		U		N	L (u e	` •	•		۵	8		LU	U	ų		۵	υ	UI	5			٩.	U.		۰.	سا	F 1	۰ - ج	, ⊢	8	•	י ר	F L	ه د		٩	٩
PAGE 019 Comvents	EXTRACT TAG AND	LABEL FROM	COMMENTS FIELD. Prail Arel Obterve	PERIODE TREATE	PRN=ND LABEL		CLEAR HOLD AREAS			COMPENT FIELD	EXHAUSTED			DE ARTHUR FRO	RIGHT FND FOUND	RHE TO AMI	LOCATE COMMA	ATTHIN FIELD C	HAS COMMA FOUND	SET STRNAL FOR DOD		HOLF AREAL LEFT	JUSTIFYS AND	~		POVE TAG TO		UCS1154, AND 14848 40 84044			CLEAR ASTERISK FIELD	ADUCST AMS TO NEW	LHE OF COMM FIELD 156 TO MEE FORM	814 - 0 - 140 - 00 - 1 8141081 - 149		EXIT	AD SSTEPISK FIELD		40 LABEL IN FIELD	SIGNAL FOR PRN	SET COMMA DVER STAR		ENTER NEW CTAIN 12 Chain taile		PICH UP LSC OF TABLE	۔ اور اور	A LINES TO TAPLE
'E 111665																																														ġ	,
566 02 0A71 e aðdress						PARENX		H0146, K		-	õ	- 2	4.	7 00000	CAVA		F 8	1 000001		PAR2.3	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	171-00 X	0 HDLAB,R	5 T	5 000n07	\$ T HD T A G . R		O HDTAG.R	0	\$2 +000001=			5 P.R.I		6482 J			PAR2,3	101001		•	CHE' TX		~	3 CCOLO7
z														iii iii			•	ñ				•			2(ñ			N	A									-	Ξ.					¢	-
40003501 55																																												1		and the second second	
"DFX A Andre 3.1	×							HUTAG										50		8514 #148			150001		• •			350001 H 16		00000		8 1			00007		201								ū		
0	0 A C 7 X X 7 X X	μX	СС 2 1 7 7	A H G	1 × 7. 62	101				SET	5	010				101	567	21 21			55		551			557	5 7C	2 2 Ω 2 Ω		SCC	50	101		101	SE 1	U H		2	ž.	001		220		LUL	101	101	1 1
1 4 G 1 4 G	¥ ^ W					PAREN													۰.							PARI									PAR2	PARENX	2019	ĩ		PAR4				CHENT	1		Ì
5 E G # 000110	0081800	09140	006150	008170	009180	041900			002300	008240	008290	008260	0052900	008280	008300	006310	008320	0003300			008370	008380	006390		008420	008430	006440	008457	008470	009490	047200	005200	000055000	000000	008-40	009150	008570	008580	06-900	004900		0044000	044800	008450	008660	1.9	069900
6	101010 .									6000		0 0		000000			000000			016643			000000									Fe1000 0		-	10000	000000	016643	000000 0		000001		69069			00013	E00000 E	00065
2	5)) 	.0	0		0 (0 () m	0	0	0	n 1)))	0 6	~			50 50 51	• •	n :	00 - C	• •	~	n (50	0	•	2 2	o c		00	2 0 2 0	3		0 6	о с	с ч	9 7
	00210								00513	00017	00015	1010		00000	01635	00022	35000	0000	0.010	0020	00512	00000	15000		00000	00511	00000	00065	01656	00000	00000	11000	01775	11600	0000	7777	0200	01663		91776	165			0002	0040	00405	
5 -						ч г Э с	• • • •) N) C	0	•	••	••	- r-	. n	9 0	N 0	• •	• •		2 N	•	0	~ * 0 ¢	• • • •		•	N *	~ n - o	- 0	n (• •	9 9 0 0	• • •	0	ь і 0	► 0	• •	11 0			• • • •	5		~ 0	0	0 0 82 8 82 8	ч Э
NAME A 15% 01620	162					1201	1 5 5 1	1624	1625	1626	1627		1691	1633	1634	1635	1636			1642	1643	1644	1645	1647	01050	1651	2 2 9 1	1654	1655	1656		1 6 6 1	1662	1663	1664	1665	166	21667		0101070	101			167	167	01675	

3,533,086

90

•

3,533,086

92

•

 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 1541
 LAST LINE OF COMMENT COMPUTE TRUE LENGTH OF FINAL LINE SET RIGHT AND LEFT LIMTS OF LINE MOVE LINE TO O/P NOT LAST LINE Set Location of Rightmost character is character a space SHIFT LEFT BY 1 CHAR SET SIGNAL FOR PRZ Add to Live CTR Set Pri Indicator Exit ISS OVERLAYS SPACE Set ang and any to to line goundaries move line to o/p \$KIP EXTRA SPACES To right of paren field in comments \$ET Exit SET SIGNAL FOR PRN IDVANCE LHE BY ONE P.O SET IND TO GO IST RCD INDIC CURPENT LINE A SPACE P26E 020 COM. ENTS BET PRP SEG 72 DATE 111665 #000010#1 #00001#1 L&C^NT FP5+5 #000002## ED4 1#3 77777 #000001## E ED3#3 1,*100000 N 6 ACDRESS -3 COCCO -3 COCCO 1000001 ##1 204 1/3 \$ 1 \$ 3 \$ 5 \$ 1 00000 000000 E 1 3 4 3 5.1. + 1.1 100000 E1E03 \$K\$PX 5×572 104 1848 ¥03 50 2 5 51 ŝ 0 6 <u>°</u> 2 ŝ z 102.000* С. L. C.C. P N.C. M.C.M. R M.C. P.C.M. R M.C. C.C.O.D.C. R F P.S. b 7.7.7.7 7 1.05× 400 0P × 400RE55 0CT #103 0CT #103 000000 41014 Lines, 000077 •3 779001 000000 000000 \$57P 77777 77776 #01# 5K5P2 65 #014 808 804 857A # C] z E C **5** 8.5 8.7 4 c # C 7 # 4 S 7 P -• 00 k 8 F 8 44 FF 3 UF. u E ¥ L 50 ő. 50 HO IC ×× X X T T 006990 EU2 009000 ED3 009010 ED11Nx CHENTX 8×57 5×571 EDLIN TAG EDI 056900 094400 6 000000 000014 017530 000000 017760 017520 620027 017763 005124 005124 000000 000113 000133 600000 000153 000000 661000 661000 933 000000 017233 01763 100900 100900 017263 60000 017760 017460 017460 017460 00000 017767 017263 777777 647710 647710 700000 700000 0000000 HSV OP A '' D16770 22 017761 03 017000 22 017761 03 0.000000 0000000000 ou a o on a o ⊾ o a o o →n o o o o o o o n o o o o 88 000000 000000 0004040 00000 00000 00000 00402700 0047777 **NMMN ACON ACCOUNTS** 77777 00153 00153 000153 000153 21 77776 44 000173 22 017760 017230 0000243 77777 7700133 7700133 0000001 017140 017220 017410 000243 NAME AUTOFLON NN7 33 1 1 N N E 8 8 4 N F Ģ **** 5 N G 4 ... 22 - 091410 - 091410 - 011410 - 011410 - 011410 - 011410 - 011410 017720 2 017720 2 017730 2 017730 2 017730 2 2047710 2 2047730 2 017250 2017250 2017250 2017250 2017250 2017250 2017250 2017250 2017270 201700 2017270 200 017440 017440 017440 017470 017420

	Совется Вижикази Вижикази Визания Визания	77777 77777 777 778 774 774 774 7	ССССС Т 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
000000 000000 5587 77777 10101010101010101010101010101010101010	анинаани анаанааниянал анинаани анаанааниянал оосоосоосоосоосоосоосоосоосоосоосоосоос	EX1 FX F000000000000000000000000000000000	
10101010101010101010101010101010101010			
10101010101010101010101010101010101010			
2222222222222222222222222222222222222			
# 0000 # 0000			
	7		
2777 3000 0000			
? ? 0 0 0 0			
202	6 0 a		
•			
2003 - 10.02			
	DZ 0000 #		
	•		
101			
	24		
Ċ			
	1010 1		
	20		
#0051 F0's 01	11		
	: .		

3,533,086

	,	6L 1	- د	u	U	U	u		U 1	•	6		1	•	L 0		•	4	٥	8	7	01	ر ،	, ¹	. •	ר	۵.	ר																						•	<i>د</i> د	,
PAGE 023				TAG IN TAG TABLE.	*PRZ SET IF OK.	PRV IF NO TAG.	PRP IF NO ENTRY		0/P-AH5 TO TBL LOC		-IS FIELD EMPTY				EX11 2005 715 40		POVE TALLY TO LA	ANS TO START TABLE	END OF TAG TABLE	TAT TATES OF	TO ENTY	COMPARE 146 10 1218 12180		TAG FOUND		TO EXIT	INCREMENT A'S						COLUMN #	SET # OF LAST RCD		ACPRESS COLI	True stobies to	HOLD ADDRESS	USED IN LOFITING	COLUMN 2 ARTRESS		RELATING TO E GAPS		1001 000 JULOUTS				40 IF EVEN COL	PSELDO COUL PCP	2 3 5 4 4 7 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5	DUTTUT TAPES	
SEG 03 DATE 111665	N B ADDRESS	START										A = 1 = =	L0C1	8 T T I	F .	100000 Ec	TEHP2	\$ 5	TEMP2	5 P.R.I					1 2 4 4		TENTL,R.		ELOAD AD		10626754 H	-															00			-		
101																																																		4		
1/05.Y 4000361	OP A ADDRESS	SEG 03	¥ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 <u>1</u>	R i K	R I R	1 L L	R M K		SET 000000		cte Leci	567 000001	TC 77777 555 Truby 0		TCT NUMTED		TA L'CJ			5ET 000007 EC TEVES			5FT 00002			TC Lrcz	CO% 5,10		COV 4						0.0.0.0.01 0.0.7777		DAC 01 6-06	Q.≤K				048 3.1					~ " " L EYO	¥,	007 172 R4D	
	TAG					-							-		LOCTAGX				LOC2			.0C.#					Loc4		LOAD4		,		COL 70	TPCS	T \$ 0	 		5	CECAD		STORS								PSRCD		51P452	
•		000010			055600	000300	009370	005380	00939C	004400	000410	024400	001130	0000	009450			064600		015600	024400	009530	0+4400		045400	0095800	04240	00400	009610		02 4 6 0 0	053000	094600	009670	009630	009690				009740		C9760	04140		044400	00.00	009120	004400	009140	064120	009460 CC9470	,
	•0									<u> </u>	υ.	U	0	Ŷ					0	0	0	000000					212400	U.		14043		3	101010	10		0	101010		010101												000000	•
:	z																					0 i			0	0	8	0		4 30			10				5 6		10												55	•
го г	~								'	00024	00000	00420	00425	00000	7777			00403	00434	000	00424	2 000007			00000	0.424	4 000153	ŝ		74535640			 			- -	1000001	_	1 000006												22 004655 17 006605	
AUT	•				-				1	2 04170 2	04200 7	04210 4	04220 6	04230 7	04240 7			2 00290	04310 6	04320 7	- 06640	004340 72			04370 7	04400 7	4410 4	420 7	06430		0000000		0 04460 0	04464 0	1441	04474			004510 01		5	2	22	165400		* *	1	L.	004554		004600 2	

3,533,086

96

•

		٩	U				2	٩		c	2		۳.	. '	3		2	٩	4	0 L	,	e		N	' •	•	• •	•°	•		•		U	6			N	<u>م</u>				• 6	\$			r	
PAGE 024 Co4'Fents		SET ANT TO START	HAIN TABL	DOVE RECORD	X 1 ZND POSITION	HEARS PSEUDO CON	BEGIN MAIN LOOP	READ RECORD		END FILE				۲.			:	SET SYMBOL ADDRESS	TO LINE CT	FOR THIS RECORD		T CUDE			REALE B		FIND TAG IN TARE	r round		TAG TABLE Build to Anthered		Ň		7				DECISION			Z DI GEOJJE JIJE	OR E CODE				IF NOT A JUMP, GO	
111665																																															
SEG 03 DATE e address	•	* 1		PSRCD 1 2	PSRCD.1	010000		• 1,5		•	#72¤	• 2	1 P 0 5		CODE	• 2					5 T C	1 1	5 C U E	•	#7424K			5 P 4	50 87				ADDR		- 570-	5 P 5		8 T 2001		•		• 1/1	•	201442 101	* - *		
2																																															
1NDEX 4000-501 OP A JORESS	007 713 R4D	TCT CH1.	11.4.7. C (+	CT #75	007 #674 844	C SG			4 10 4	SET OPAR			TCT DPSQ		υ	*				EPCON PCON			2.0			TC 80P	50	5 P 4	0		OCT COLZON		OCT COLDO,R	.0	- 570-	•	0	オガイキ トロリーレイスレーション			TC OPT2	OCT COPE	ET 7700	i i Mili Zi		i ×	
146							į	571																	4 P 2				591			5 P.4									5 P B	:					
н 10	CO9830 CO9830	005600	009520	064430	046600	094400	040400		010000	010010	010050		010050	010060	010070	010180	010090			2	010140	- -	20		10190	010200	010220	10230	10240		10770	10250				1033	04001	-		0900	04501	00701	410	210			
	004635	E11000	5	0	004555	C10000			004130	000009	011675		004464	60000	003024	005050			000000	0	005500	20	0051.60	8	10110		000000	005270	600000	000023	000050	10000		00000	011704	092300	000000		005420	000000	000000	1++500	000000	011707			
z	s c	4	0 N	m	•	00 U		n c	. 0	o	in i					c .	. .			10			8	0			-	8	o c n c		50	8		38	8	8	88		38	8	8	20	8	88	38		
LON	00000	0400	116	01167	116	00000			50	ĕ	ž,		č	2	ĕ	š				-	5		3140	527		01010	414	527	1000		-			000	170	505	101			000	460	30	000	-			
1 U E	22 0	N	~	0 22	N	0 75	•	• -	• •	•	•	•	. ••	*		-01		9 4	•		4 1	•	•	~ 1	5		*	-	• •	• •	-	~ *	-	•	•	•	• •		•	•	*	•	• •	n 4	•		
HSr.	29	0464	0465	004660	0467	004700			12	Ξ.			2	-	2	23		1		0		1 1		en -	• •	002500		2	<u> </u>		-0	<u>• 1</u>	2 -	• •••	2	<u> </u>	<u>n</u> :	• •	• •	- (•	•	4.8	n 4	• •		

3,533,086

3	533	086
_ບ,	000	000

~ 1	تا ہے	•	¥	и		6 1	u	z	_ل ۾	υ		۵	U	٥	. 2	: 0	U,	21	u	Z,	' .	•	ر ا	5 N	0	,	N2	٩	บห	ບໍ	5 0	۹.	ئى ر	6. L	N C	ט מ	ى ^ە
CO4 CO45 CO4 CO45 PROCESS NEXT #CO CU4 FRAT RCO CU4 FRAT RCO CU4 FRAT RCO	<u>z</u> w	PRV - NOT J, H, E	IF EVEN COLUMN, GO	END OF COLULY CODING	JOR E CODE	;	EQUAR NUBSTAFTERS FALL THREETE DDD	POSITION TAFE FOR	REXT MAIN CHAIN Advance to Lext		HIS CHAIN REEV US Noespija.vese	OWPUTE # CIPS	O THIS CHAIN F	PORTE NON TAPA	EF IF IT PAYS	TO PUT NEN CHAIN	IN THIS COLUMN	2:3	-	ELO DE COLUCA COLING		EGIN HANDLING	DECISION RECORDS	בשאנ בשרטי	COLUMN 4		HOT TOT TOT JOT	NO TO SC OF	1ST DESTIVATION TAG Leterines status of		r i			SET AV3 TO 'SC OF	LETERMINE STATUS OF	ZAN DESTINALION TAG Zee tag Suitade Eng	IGNUENT TO COLE
566 03 0476 111665 8 Atoress	111		5			10 •			400C010# 1		1.5	10 51127			0.0 0.0					SP14					1	COL, 0, F	- 1 				. 2.45	51005 1108		ŗ		6 P 2 G	1
1. DFX 4000.50% 07 a 4.07855 X-X X-X	C/ DE 770001			567 000240 76 e doqu	3	ر م ۳	561 ST30	1 W 1 2 1 00		4 ¥ 9 7 - 8	001 000000 661 66138	414 77773 414 77773		001 11		× 9 × 8					- •	•	1				CTC SPO R™K IF ALLREAD™ X№ 5000	ALHT	84.K 111 Sro[010 Si 21 84k	\$			TC STOL	¥ i	
110	~1d\$			5 P I 1		SPIZ			55125	-				- - -	21.0			5113						5120								5 P 2 1					
5 E G # 0 1 0 4 4 0 0 1 0 4 4 0	010400	01010	010540	010550	010570 010580	010590	010+00	01012010	010/30	010+50	010660	0104010	010690	010700	01/010	010730	010740	010750	010700	010780		01010	0102.20	054010	010250	01010	010777	6. 	010400	010620	0000000	010650	016010	010.010	с. -		DEILU
Ŧ	000000	005550	002265	0000000	000000	005625	000000		011717		005655 000000	000000	004467	0.05715	000000			511500	011723	005760	000000			006015	000000	004463	060900.	500133	000000		006350	004521		00133	000005	04420	1 2 2
e	00		200	88	U D	0	0		00	,	20	n n 1	0	0	0			8		200					200	5		00	Ċ	,	8	5	3	0	20	č	*
به ال	100011	011/1	00455	000247	00200	004550	0000		51000		000000			U ,				1 00	111600	00471	100			004550	01172	00446	24500	004074	c		0000350	0045	11000	004100	1010470		
AUTOFLO Sk op	22					22 0			4		22								• •					0 0	• •	•	•	0 25		,	190	520	-	0 25	11 0	4	2
NAHE AU HSX	005500	000	50	6 00	8	019200	2950		005630)) 1	005649		-9	057	^ C D		1	0572	051400	0575				20000000000000000000000000000000000000	0602	0603	6 e o	00605(404	i i	DueoTi	01900	2	90612	006130		-

		HOTA TAGS SCITABLE R	FIND CLOSEST OF	ч ,		PR ¹¹ =2447 15 FLOSER	USE TAG 1 FOR COL 2 M	SET ZWP TAG FOR	CONNECTOR C					•				SET ZAP TAR FOR P		15T TAG NOT SUITABLE N	FOR COL Z, TRY 2ND C		2ND DESTINATION TAG C		. .			COL 2		LOCATE, PROCESS T	CONING FOR COL 2. C				LAST RECORD PEAD C				UNKIND CAPE TO		SET INDICATOR IN P	1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	STORE MAIN COLUMN IN P	SET COL # TO				EVEN COLUMN TO 3 C
566 73 DATE 111665 31 - Afridesco					STOPE. B	SP25	ŗ	· · · · · · · · · · · · · · · · · · ·								TTTTT E	STOPT				•	E 8	5 P G			S 70 c 7		¢1087	- - -					1 POSI			5 P 3 1	• 1.5	00000				5 P S T 1	1 ** 1 00000 #	5 5 7 3		DECADAR	
1.05× 400°501 0P = 400855		4 ¥ 3 2	0011 2011	ALK ATDOBUR	51015								TC SP3				TCT STURY									TCT 51025	TC 5P26			¥ 7.:	x 1 x 1	1 ¥		TCT Tros			TCT 51007	0CT T12	177777 S-10	R 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			TCT COLVO		2227 111 L.C.		TCS L'.Cl.R	х Х
Srg # TAG	0.4	C11-50	011 60	011-80 SP22		C11100		011120 SP23		011150 CP24		G11170	011180	061110	011200 5P25	C11710	011220 011330 6826	011240	011250	011260	U11270	011500 arz7	01110	011320	066110	011340 SP28	045110	011370 SP29	0911300	065110		011420	01110	011440 SP30	011450	011170	09*110	04110	011500 5731	015110	01110	011540	011550	011560	0115500 5P32	04-110	00 1 1 000	01110
MAME AUTSFLOA MS' 3P 1 2 8	, ,			72 0n4523 9C	m T	006200 00	The section of		35 004551 0C	010520 25 004074 00 000133	22 011726 03	004531 30	71 006440		004074	11111 ED 561110 22	25 004010 00 004020 25 004100 00 00433	77777 60	71 006445 00 00000		10000 000 000 000 000	014337 23 004100 00 000133 004340 71 010410 00 00000	006370 61 005420 0C 005420			016400 25 004515 00 004525 004410 31 014320 00 000000		25 0045.21 00 004525	71 006230 00 000000					000440 25 004444 00 004535	006450 71 010340 00 000000		25 004525 00 006500	22 004055 00 006505	000000	006510 22 011727 07 00000				66110 00 E4++00	006540 25 004474 00 004545		004559 45 004477 00 004513	

	υu		5	. 13	<u>ر</u>	, ,	U	UL	UB	. iu	ట •	U	LU	2		υ	L			. 0	2	0.0	יק	·	٥	N	٥		N	2.	U	ب	7 P	- 1	υ	_ن ،	ه م	. a.	s	°_	
PÁGE OZ7 Comments	HIDDLE Syngol		INDICATOR TO EVEN	NIV	FOR COLUMN THO	RETURN MERE FROM		214	INDICATOR TO OOD Store current		COL FOR LATER TEST Restore address		RESTORE HAIR Column Number		VAS Ocessig			ILLOGICAL:		REPOSITION	ŝ	5		CODE B RECOVD IS THIS FIRST CARD			STAUT OF NEW PAGE			SET ADDRESS FOR P	PSEUDO CONVECTOR	END OF COLUTY CODING			TAG TAPLE EATRY DF	DESTINATION TAGS		SET LOOP TALLY	LCOV.UP DEST TAG	TAG FOUND IN TARLE Add i to co mier	•
sec d3 date 111665 B Adoress		EVOD						EVDO	LNC2		LNCI		COLNO				*			000000	1			s T	0 P S () # R	5 9 4 1		,		LNC3							, ,	5.7		5.12 4.1	
z																																			×			4 ¹ *			
INDEX 4000505 OP A ADDRESS	žž	0CT #404	7 1 7 1 1		•			Rik OCT BOOM	ž		R4K Trt Sp512	•	TCT SPST1 RMK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 2. 7. 7. 7. 7.					007 TT& Rus 77777	R 4 K	7 I I I I I I I I I I I I I I I I I I I	TC SFI	SET HLODDO2H#1	50 0P54,R+2		B C C	50 #43634 010 + 2	TC SF41	7.1 1.1			TC 51-3	2 7 C		X N A		CT REGGOODE.	LCCTAG	CTC DJZ SFT NA 12	,
1 A G	•							5P.34	•											3P.36	•			5P40									5 4 1					۲ د	153		
		011640	011650	011670	00		011110	00	4	09112	011750		011800	011420	040110	0.5	0	011850	064110	011910	011920	023110	011950	011960	096110	066110	012000	010210	012730	012040	012060	012070	012080	012100	C12110	012120	0E1210	012150	012160	012170	
¢		04550				000000		004550	004600		004474		004460			153400	000000	000000	004710	000000			000000	600000	C03057	021040	000009	007020	000000	004504			0000000					001230		007200	
7		ö			٠	0		00	•	Ċ	0		00				38	8	88	88			00	8						0		÷.	20 0							000	
, < ,		011727			!	014400		011715			004545		004541				006670	000000	4464	550+00 77777			01710	1E1110	55060	006765		04/110	07040	1441		0974700	005450					1113	11400	00720	
PLO.						ō [22 0		n	52 52		52							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			71 0	72 0	10		120		1	55	,	11 0					1		-	1.	1
NĂME AUTOFLO Hŝm op		60656Q 22				006570 7		006600			006620		006930				00000						06720	006730			006760	000100	001010	060200	2		040					040700	007070	001100	

3,533,086

MAGE 726 COMPENSE C OF CRASS FISST REFF TO THIS BO TABLE RECURN TABLE SET TAGE SET TAGE RELUN TAGE RELUN TAGE	EAD OF PASS 2 . IF EVEN COLUMN ILLOGITAL HALT BYPASS WRITING FINAL EF IF BOX # 15 00 WRITE EF FOR LAST .PAGE OF CHART REWIND OUTPUT		7 455 % % 5 4 05 % 0.011 % 6 % C 051 % 6 7 0 % 6 % 0 C 051 % 6 7 0 % 6 % 0 6 07 % 6 % 0 7 1 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 7 % 0 8 % 0 8 % 0 8 % 0 9 % 0 1 % 0	
SEG F3 DATE 111665 5 C 0000 5 C 0000 5 0 5 5 0 5 5 1 5 1 5 1 5 1 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	•	• 1.5 • 577.5 • 1 • 1 • 1 • 5 • 5 • 5 • 5 • 5 • 5	е Карала 1985 1986 1986 1987 1987 1987 1987 1987 1987 1987 1987	COLMORR 1 1 1 1 1 1 1 1 1 1 1 1 1
1'DIX 4000'501 84 A.508655 567 A.10 677 A.14 677 A.14 677 A.14 577 B.44 547 B.44 74 D.4 74 D.				5 5
569 # TAG 012190 0122190 012210 012230 012230 012240 012240 012260 012260 012280 0000000000	2 2 2 2 2 2		N N N N N N N N N N N N N N N N N N N	012590 012590 012590 012590 012640 012640 012640 012640 012640 012640 012640 012640 012640 012700 012700 012700 012700 012700 012700 012700 012700 012700 012700 012700 012700 012700 012700 012640 012700 0126400 0126400 0000000000000000000000000000000000
<pre>ME AUTCFLO4 H45. TP 0 0 1 1 007120 41 000001 55 60000 007140 43 011742 05 012000 007140 43 011742 05 01200 007140 72 00033 55 60000 007170 24 003031 55 60000 007170 24 003031 05 003133 007220 55 004107 05 00133 007723 71 005346 05 001031</pre>	7240 72 000000 00 7240 72 0004550 00 77260 72 0004550 00 77200 43 004445 00 07310 61 007445 00 07310 61 007445 00 07330 12 011675 00 07360 12 011675 00 07361 22 007456 00 07360 22 007456 00 07360 22 007456 00	07157 17 000000 00 07400 22 005055 00 07420 72 001167 00 07420 72 001167 00 07450 24 001467 00 07450 00 001440 00 07450 00 00440 00 07450 00 00440 00	77470 25 000243 00 77510 25 004504 00 77510 22 004563 00 11745 00 7520 72 011745 00 7530 41 007740 00 7550 41 007740 00 7550 71 007740 00	

-

-	
	11.7
- 1	111

3,533,086

סר NŁ 00 Nz uu u AU L+ -L) + UL FRECUUR 000000 HIFT & COLUMNS OVER PAGE 029 Comuents Create Pseudo Conn Xrite Fe to HOVE PAGE AND BOX TO PSEUDO CONN RCD BOX H IS ONE LESS HIAN IT SHOULD BE FRITE PSEUDO CONN RCD TO PUTPUT IF THIS IS AN ODD Column Store Code -It May re "Eeded Ry Pscn Routine Rcd Lgth to AM3 CUAFENT OR PREV ACD
 B0X
 # 10
 0.7

 B0X
 # 70
 0.7
 ARG

 B0X
 # 70
 0.7
 ARG

 CVCE
 FAGE
 # 70
 ARG

 CVCE
 FAGE
 # 70
 ARG

 CVCE
 B0X
 # 71
 ARG

 CVCE
 B0X
 # 70
 ARG

 CVCE
 ARG
 ARG
 ARG
 SURPOUTINE TO DETERVINE STAUS OF TAGENSET OF TAGENSET PR2-105 COL 2 PR2-405 COL 2 PR2-405 COL 2 SET S PSC PSC PTAC SET STAT TAG TV TABLE IS THIS COLUMN 3 If COL 3, NEW PAGE PSEUDO=CONNECTOR IF JUMP, HALT, Exit, or text GENERATE PSEUDO Connector record Set exit OUTPUT TAPE DO 1 OT CREATE HRITE RECONC T^ 0/P FILE SET EXIT EXIT EXIT SEG NJ DATE]]1665 B APDRESS COLNO.R • 1 *000002311 EOFX BOXFO BOXFO BOXFO BOXFO BOXFO BOXFO BOXFO • 1.5 000072 950%x 111 111 111 111 111 111 111 111 111 + 1,1 -JHET-57 7407.2 81 8 207.2 4 1.5 00000 LSTCD 0P12X SCOLX 3V40 2 3 z ENDCOLZ COLVORR ENDCOLA E.DCOLT COLVO.R 04174 113 04 0000 04 48 71777 \$<u>5</u>tP L-ctag 2 2 2 F. 1 1 2 U U $\mathbf{v}_{\mathbf{x}}^{\mathbf{x}}$ ž X ENDCOL³ OPTZX 0P12 PSC-SCOL BOPX 746 605 013270 013150 012720 × C13260 s S G 0103020 003020 003022 003022 003022 003022 003023 003023 C10270 010101 000000 000000 010460 010405 000000 004000 000000 000000 003010 003010 010470 25 000243 00 01140 010500 71 004170 00 00000 004446 010265 **Z**5 000243 **D**C 0 **22** 004441 **0**C 0 **22** 004442 **0**C 0 **22** 004445 00 0 **22** 004445 00 0 **22** 004445 00 0 **77777 00 0** 00000 000000
 M4
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 003060 004056 004056 000000 003010 77777 NAME AUTOFLON 2222 **** D10300 Z 010310 Z 010320 Z 010320 Z 010330 Z 010340 Z 010350 Z 010360 2 010370 2 010400 7 010400 7 010420 2 010430 2 010430 2 010450 1 010450 1 010450 1

•	•	LUC		• ۲ س به	υc	U	•	0 0	U	٥.	•	0 7		•		ີ	U		JZU		a. L	. .	U	'n	υ.	ר
COL	,UTTEFSCOLII,NOTAG Is tag allready Assigned	GET SEQ # OF TAG F%om Chai' table IS tag lorater	I' CURRENT	GET CHAIN OF Destination tag Adv. to Next Emiry	IL CHAIN TABLE TAG PART OF THIS	CHAIN TABLE ENTRY	ART OF THIS	AG THE S	OF A CHAIN	IS COLUMN 2 FREE At this point	•					CACH CHAIN	N N	CHAIN OK FOR AÚJ COÚ Set Prz Exit	CHAIN NOT SUITED FOR ADJACENT COLUMN	SET PRN To Exit	ũ T	TAG SECOND	ECORD OF	NO 15 151 852 6 08 1	0+SCOL6+YES+	NO GOOD FOR COL 2 Hork Area
5EG C3 PATE 111665 N e afdress Scolii	50 \$7 \$01# \$COL11	50 TS0		۲,	001	. 150, R	70 TEMP2 #000001#1	1	150,R 50013	TEMP2 #00007##1	4C2, R	5 4 5 4 6 4 6 5	0000		- 1 70 570R5	TPOS.R TEMP2	#000]44#/1 • 1	- 24		1 H 4 9	77777 EO		#000001##	500115 70'- 1.5		
1' DIX 4000' 501 0P A ATDRESS, CTC STO[13 R ⁴ K	84K SET 0.9117 SC #114 CTF SC0[1]	с o	150 Scol	5	164 \$7 SET 0:0003		E77777	2 H P 2	2 C 0		4 E M	TCT L.CI TCS TFMP2.K	TE 492,	4 8 H 9 4 E H 9	SCOL1		16 MP2	00000	žž	SET 000001 TÇ Scolx				510L13	5 C O L 6	12. SCULIS DAC 000000
0 m r.	013330 SCOL1 013330 SCOL1 013340 013350	113360 SCC1 2 113370 013380	06210 004010 014010	3420 3430 3440 \$COL	3450 SCO 3460	013470 013460	13490 SCOL5	01561	13530	13540 SCOL6 13550	013540	013500 SCOL7 013590	009610	013610 013620	13630 13640 SCOL8	13650 13660 500L9	013670 013680	013100 550L10 013710 550L10 013710 550LX	9720 9730	3740 SCOLI 3750	13740 550L13	13780 SCOL14	013510	029210	01010	50
UTFLO 8 ^ 8 ¢ 41 01117∩ 05 511150	3 72 010017 50 699000 3 43 011742 60 611742 9 61 011157 90 011150	0 25 000013 50 004471 0,72 000003 10 600000	0 43 n04471 00 004473 0 61 910627 90 011157 0 71 011155 00 000000	5 25 00012 00 00 00 00 00 C	0 44 600173 06 611717 0 72 000003 76 600000	0 43 004471 00 004473 0 61 010630 00 010670	0 25 77773 76 004001 0 44 004003 00 011733	0.72 004003 00 600000	0 43 004471 00 004473 0 61 011210 00 011170	0 25 004504 00 004001 0 44 004003 0C 011757	0 45 004003 00 004503 0 61 011000 00 011150		0 44 0040n3 07 000007	0 45 004003 00 011737 0 45 004003 00 004117	0 61 011150 00 011060 0 25 77773 70 004515	0 45 004517 DC 004467 0 25 004517 D0 004001	0 45 004003 00 011763 0 61 011170 00 011130	0 72 0000n2 00 100000 0 71 77777 00 000000		0 72 000001 00 100000 0 71 011140 00 000000	<i>111111</i> ED \$21110 22 D	0 71 011150 00 000000 0 25 004001 00 011300	0 45 011303 00 011733 0 45 011303 00 004473	0 61 011170 00 011170 0 22 000004 70 011265	0 72 010740 00 000000 0 71 011170 00 000000	101010 10 00000 10 0
VAME A U.S.U 0.1051	01052 01053 01053	105	01057 01060 01061	106	01063	106	106	101	101	107	101	011	110	110	01106	111	111	==		01110	=	20	112	==	211	::

3,533,086

OP N B SED # NOSE DA Z COT Z DA	;						
Construction of the second sec	5 ¥ 40	5ED # TAG 013870	0P A ANDHESS DAq 2 C		z	B ACDRESS	FOR PATCHES
Control for		#0029	CO. 2710				
23272222222222222222222222222222222222		01010101010101010101010101010101010101	C101010101 Cov: 22.55			00000000000000000000000000000000000000	000
63 135162 147463 14		2323232323232323232323	232325253				
63 135162 147463 147463 1474663 1474663 1474663 1474663 1474663 1474643 1474643 147463 147		#002B	COM 01		•	76	
4 10060 4 10000 4 100000 4 10000 4 100000 4 100000 4 10000 4 100000 4 1000000 4 10000000 4 1000000 4 1000		# 00 #	C34 01		Ħ	4 2	
63 135162 13		40040	10 100		ŧ:	67	
63 135162 C02 C02 C0 135162 200064 C02 C0 200065 C02 C0 200075 C02 001 200075 C02 0005 200075 C02 0005 20005 20005 20005 20005 20005 20005 20005 2000	.5	#00¥1	C04 01		-	72	
63 435162 435162 435162 435162 435162 435162 435162 435162 435162 435162 40068 40068 40068 40068 40068 40068 40068 40068 40068 40068 40068 40075 40		#0062	CON 01		•	-	
435162 435162 40065 40075		800F3	CO2 01			-	
435162 40065 C0% 02 40065 C0% 02 40065 C0% 01 40065 C0% 01 40075 C0					1		
435162 C0V 03 435162 C0V 03 40066 C0V 03 40066 C0V 03 40066 C0V 03 40075 C0V 03 40071 C0V 03 40071 C0V 03 40077 C0V 01 40077 C0V 01 40077 C0V 03 40077 C0V 03	00	#00##	C0% 02		3		
435162 40065 40065 40065 40065 40065 40065 40065 40065 40075 4	02	#0065	CO: 03			212	
коосе коосе коосе коосе коосе коосе коосе коосе коосе сом оз коосе сом оз коот сом оз коот сом оз коот сом оз сом со сом оз сом со сом оз сом со сом оз сом со сом	435162						
<pre># # # # # # # # # # # # # # # # # # #</pre>		#009P	C 3% 01		£	E 7	
400000 40000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 400000 4000000 4000000 4000000 4000000 4000000 40000000 400000000	9	#0067	CON 02		ນ	5144	
кооф коот коот коот коот коот коот коот	01	#0098	COV 03		Ľ	514744	
		20040	COV 03.1		£.	000010	
41 41 41 41 41 41 41 41 41 41	21	#0010	COV 03.1		7	00005 t	
41 41 41 41 41 41 41 41 41 41		1001	10 202		7	63	
тоот3 сок от #0075 сок от #0075 сок от 10 коот6 сок от 1474463 #0052 сок от 21474463 #0052 сок от 2147463 #0055 сок от 214765 #0055 сок от 214565 #0055 сок от 214555 #0055 сок от 214555 #0055 сок от 214555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #00555 #005555 #005555 #005555 #005555 #005555 #005555 #005555 #005555 #005555 #005555 #0055555 #0055555 #005555555 #0055555555		40072	CON 01		Ħ	02	
41 41 41 41 41 41 41 41 41 41	56	#0013	CO. 01		v	•0	
#0075 C04 0341 #0076 C04 037 #0079 C04 037 #0090 C04 01 #0090 C04 03 #0091 C0N 04 #1 #0091 C0N 04 #1474463	2.2	#0074	CON 01		2	0	
# 1 4 4 4 7 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4		#0075	COV 03.1		Ħ	000001	
41 41 41 41 41 41 41 41 41 41		#0076	CON DB+1		#	200002	
41 41 40050 CON 01 40050 CON 03 40051 CON 04 51474463 40075 CON 04		#0077	C01 02		4	2323	
41 #0050 CON 01 #0050 CON 03 #0051 CON 04 \$147463 #0052 CON 021	4.2	#0018	CO% 01		n	10	
41 #0050 C04 03 #0051 C04 03 \$1474463 #0052 C04 03/1		80019	CON 01			8	
#0080 COV 03 #0081 CON 04 #1474463 #0082 COV 04							
\$1474463 #0087 CON 04 #0582 ECN 03#1	**	0000					
51474463 KOOAZ CCN 0341	47	#008	CON 04				
TINE AND RECAR			•	,			
		N E C O R			3	000001	
				9	s-1	0001444	

PIGE 032 Coutents Pass Three Usec For St Vess Vait, Header				SUB HEADER		USED FOR ST MESS T OF C HEADER						AREA FROM WHICH Actual Print or Write is done Msc of Page	A.1001 A.4.A	OF PROCESS BOX	S CHAR PER LINE OM PAGE LAVOUT Hige Tallies
SEG 74 DATE 111665 E aldress Loara	2 57615646614054 2 06 1/8LE OF CONTENTS	DATE	P A G F	0 7475	424740616306 # 3475		TAG PAGE BO _x	ASSY LINE #	TAG PAGE BOX	A LINE R	# 1475 B	* 75	****	-	* 7424
N 10				·		•					-	*			
1':05X 4000°501 0P 4 1\07E55 555 0x DA9,1 DA9,1 DA9,120,200	500 H H H H CON 1	610 H041,88 607 4	SEC H2 N1+ R40 Cold 4	SEC H. 41.7 L CON 2 DAR 170.200 SEC HER2.6	CO2 6. SLC H1R2,R 1 CO2 9	DAR 1 DAR 170,200	567 H343,16 604 16	CON 14	SLC Hr.P3,74 Con 16	1 4	8 C. H. H. H. H. H. C. C. L. K. C. C. L. K. C. C. L. C. C. L. C. C. L. C. C. L. L. C. C. L. L. L. C. C. L. L. C. C. L. L. L. C. C. L. L. C. C. L. L. L. C. C. L. L. L. C. C. L. L. L. C. L. L. L. L. C. L.	048 170,200 818 858 858 150 1 14701 1	CO4 +	74K 602 1	CON 2 DAC DUOJO DAC DUOJO DAC DCOCO DAC DCOCO DAC DCO170 DAY 3,1
TAG HDR1	HDR12 HDR12	100302	+Гадн	HDR2	HUR21	Г ¥01	HDR31 5667	HDR32	5667			014180 PRAR 014190 014210 014210 014220 ADDLAY 014220 ADDLAY	FCON2	PCONS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 6 7 4 7 4	013520 H0F11 013520 H0F11 013540 H0F12	01345599962 013960 013970 HDR13	C13+80 013+90 HDR14	014010 01400 014020 014020 014030		0140410	014090 014100 HDR31 4401-1415647	01410	014120 014130 14130	55440130	041410 041410 014170	014180 014190 014200 014210 014210 014220	014240 FCON1 41414 014250 PCON2	014260	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ه ۲		03404,153440,29850,42 43406344	57494644				43404601010101574044	010101406262700153505544-136		0101014062627001535055440136	2	0	141414141414141414 1414141414141414		20 01 000000 01 010101 01 000006 01 010101 01 000010 01 010101 01 000170 01 010101 01 000170 01 010101
NA4E AUTOFLO HS* OP 094439 094600	004607 004607 004667	061100	004757	014770	002010	005172	005250	005240	†1ES CO	•66500	016800 016800	005570 005570 005574	005600	005625	0000000 00000000 00000000 000000000 0000

...

113

3,533,086

7.46 0.33 Comerts	VERTICAL LINE	a CHARACYERS FROM Left Side of Col to Centerline a Lines Per Page Offaline BreakPry	LENGTH OF LINE LENGTH OF LINE	L1/K6 0F HALT
566 04 DATE 111045 5 Address [11045 60 1		-		HaLT 1414114141414 141414141414 141414141
z		- 20 3a) 22, 30, 12, 10, 32, 1	a	а саларата в се сован, ч
INDIX 4000501 OP A Address DAR 3.1 DAR 3.1 DAR 3.1 DAR 3.1 Con 1 Con 1	201 12 202 12 202 13	TAR TAR TAR TAR TAR TAR TAR TAR TAR TAR	CON 7 DAC 000003 CON 1 CON 1 CON 1 CON 4 CON 4 CON 7	
11 146 146 146 146 146 146 146 148 146 148 148 148 148 148 148 148 148 148 148	N CON			
SE0 # 1 014390 7/ 014390 7/ 014390 7/ 014390 7/ 014390 7/	0000			
• • •	50 014: 1414141414141414141414 014:	005724 01 000014 01 01014 1414 1414 1414 141	01 000005 01 01010 014 01 000007 01 010101 014 151515151515151515151515 1515151515 15	C 4E 504 Y
NALE AUTOFLOX NSV 09 05555 005651 005661 005661 005665 005670	002402	00577424 01 00557424 01 00557424 01 00557424 00557424 00557452 00557450 00557450 00557450 00557450 00557450 00557450	00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

¥.

3,533,086

			I	. .	- 1	د	، د		E C	۵		•		2		u	4		: A .	R .	U		J														4	ں '	•	. 4		۵			u				
PAGE 034 Co4"ENTS			SUGPOUTINE SYMDOL	Starotyter to			۴c	TO DFF.LINE TAPE	EXIT	HOVE PAGE # TO HOR		ADD 1 TO PAGE #			WRITE MAIN AND	HEADEFS	SET TALLY TO		-	T TALLY T		BLARK LINES AT Bottom of Baar	SET ANG TO BOTTON	LINE OF PAGE	RESET TALLY TO	A LINES ON PAGE	TEAT LINE FOR Alt Sparts		ALLY	THIS IS BLANK PAGE	2717	KECTCLE Initialise Ang	ADJUST TALLY	Ň	REQUIRED TO GIVE A Trompage flage		5	OUTPUT AREA Off-1145		Ĩ		END OF PAGE				٦,	P/C 15 REGUIRED To GIVE THOMBAGE		3
*) M #1 =											•		B P O	* 1.5	• • •	•	TALI	OCTSXAR	6 4				L & T + , R	7441	7461 2615 -		• ••	ENPOIC	TAL1				OCTONAR										•		5	404000		5 " 5 T 5 L 7 H	
1'DEX 4007-501 .0P A 2007655 Cont 7 .		DAC 0:01006			RIK.	X 1.K		I	CT \$57P	661.H. F.44.K Q			نعا		C. HORI,		T EFC	TCA TALLAR		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			٠	۰	TCT EPCON		-	أيما			te si Te fils	10		661 186198 60 84444 804		051 E.PG38+7			•		TCA 89			0CT Tr4				0CT E. PG36+6	
TAG								-	ENPG								ENPG1									s N D c 1 o						ENPGIC					25773				E 9 A N 3		ENPORA			E 0 4 V 3			
5E0 8 014+40			014:410	014660	C14590	C14500	014410	014620	026710			014410	014980	014990		012020	015030	015040	012020		001410	015040	012100	0112110	071510		012150	015160	013170		012200	015510	015250	015240	015250	015240	015240	015290	015300	016510		015340	015350	015360	015510	015180	007510	015410	
ø		2						1	096703	<u>с</u>						000000			CF1000			1			109600									007443			020000			000000		000427		00705	000000			007035	
× •	In Annua	-0000								05735	54740	6	01010	04057	1.0000	05177	91140		n c.				0 66100		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23367 3	07250	06620 0		00133	06530	02930		7441	06670	7037	00200	007140 00	54057	1160		00262	01210	14057	5742	04010		00/034 00	
AUTAF S× CP 6305	1690								N 000040	06340 2	06350 3	06360 5	06370 7	00490	06420 2	1 06430	06440 2	006450 44					06470 44		000520 46	06530 72	04540 43	06550 61		00000	04610-71	06620 25	44 0 6 4 9 0 4 4 0 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4		00000	0000100 22 ·	06710 26	004720 71	06730 22	24 04 40 12 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 44 04 0		06770 36	01000 71	07010 22	07020 12	2/ 010/0		007040 22	

		ند ال	. U	·		""	L (L.	3 8		2								*	u u		٩. ١	.		. e	L U	i L	•												a.			٤ د	. U		۵.	u.	20	به ب	. u
PAGE.035 Compents		EXIT Print Main Ang	SUB HEADERS	A ADD VARIABLE					FATER AVVANTE	CLUBE BATE		PAGE CHANGE			AREA TO TEST SPACES	CONSTANT FOR TEST	OF EXTRA P/C		PRODUCE TABLE	OF CONTENTS	SET SPACES CONSTANT	PUT INDEX-SERIAL #	IN TAIN MEAUER		TATA TEAUER	STAP DATE FROM						2461270	PUT IN STAT	537CES.				'n	PAPER ADVANCE P	R _w n lyp tape			ELGIN CULSO V Pot't tible of	CONTENTS	SET TALLY TO M TAG	SET AM5 TO 'SC	CF TAG TARLE	TVITIALIZE FOR	ALT TACK	DE COLUMN 1
SEG 04 DATE 111665 B ADDRE55							00000			01000		20200	01000).						a	SPACES	* *	INDEXAR											HDR2 1	I - CHOH					• 1.5					7268	\$\$				
405X 40004501 A Address N		77777			00002	EZPOL		8 × 3 8	000001		E773		00000		120.0	0-0075		6.1 0	CANDI		SPACE S	HDR11.8.10	ILDEX	HURIIIR 44	717LE	000271	000272	2/62 0/073			01.0275	0-0276			#774	#765	T 1 4		0100000		1	L . Y F R						*		A. DLAY
THDEX OF A A			1			10	C \$ G	ar B	<	020	10	5			248	DAC	¥ 2 4	A A O				3 E 7	51C	\$ E1	5 70	100	100			100					001		004			100	67 B			2 J			- 12 - 12	¥: 4	¥ 7 8	101
TAG	•	1967 1967	C D L D D	r ND G S A			ENPOA					ENPG7			SPAPES	PCTAL		LOAD5			STPAS3	-																	1673	5132					12021					150%2
5E0 #	20	01510		DISANG FUELS	015470	015480	015490	015500	015510	015520	015530	015540	065510		015580	015510	015400	019910	019620	019510		015660	015670	015680	015690	018100	01510			019750	015760	01510	015760		019610	015-20	015030	015740		019670	01510	01510	00451 1	013510	020510		05-510	094510	013470	00.510
-	00000	000000	00000		00000	00000	00000	00000	00000	10000	00000	00000	00000	00001		101010					761700	000000	591900	000009	004155	004735	004736	004140	141400	004742	ö	ō	0		0	0	õ	0		ē	c				-					C00173
z		8														10																					-				88	~			•		,			4 55
10	, <u>,</u> ,	77777	6	ຸ່ມ 🕯 ເມຍ			0000		0000	0000	0675	0000	2000	000		000075							00415	00400	00417	00027	00027	20110	2000	2000	00027	00027	00772		66110	C 1 10	00403	00574	00773		000000	02305								00557
																5		-						_	_	~	~	~	~ .				~			0	0	0		0.0	11	0			•		-			0 25
N N	ľ	040200	6	2:		-	1		-	-	2	2	2	N		1		001450					147	750	751	752	153	151				761	762		7	766	747	110			4400	770					-			01010

3,533,086

120

. . .

P46E 036 Com.Ents.	SET SHITCH TRCFF TO		END UP TAG TABLE D	ANTER SIME	A CHART TITLE C		Z Move tig to bigt			A'D ASSEMPLY LINE C					NEXT LINE OF BACK										17E		JOVA LIN	CHART TITLE ENTRY T	HURE THAN & LINES D	· LEFT IN COLUMN C	-	OF COLUMN, DO	NOT LEAVE Blatk line	7 70	_					7		TO TAG TALLY		END TABLE OF CONTENTS	PRIVT OR MRITE
SEG ∂4 DATE]] 665 'N 8 ADPESS	1aC. 9 5	7 4 L 2 7 4 L 4	-	r i			70 47	22 00002	F T				55 000027			TENTL, R	- 1 - L				004100	57 = 000074#= 1						;	# 1 # 0 0 0 0 0 4 #				•	L. 7 T L . R	141.2.8	70 #T	TECZILAR	70 #7	120000 45		•				
1'1'× 4000~501 0P A ATORESS 0C+ 7 C. A.T	- 1	TOT EFECT	-	2		• •	6	511 000101				500.0		12.000 1		TCA 85	TA TUCUL	•	1 I I I I I I I I I I I I I I I I I I I			TET ADDLAT Tea st		TC TACV3			IC TACV2	RYK Se- tilsir		CTC TBCV12	TALG,R Fordu - D			TCA 47	7.4 . 1	SET 00014			310 00000 10 12/17				TC THCVB		,
י 1,∧0 מח	•	BO TACA		1301 3013 240		00	-90 TBC:6	00		00	04	50		SO TECAT	0	000	07	00	5	50 44 19719	-		0.	00 10 11010	20 100 14	10	00	40 78CN10												TBCN11	ADD TRENS		540	560 TBCN13	
6555 016600	5455		C00000 016			000000 0161		000007 0161 600000 0141				600000 0161 000027 0161				10401/ 0162	005655 0162	0162	910			2910 ECC110					000000 01 63									900000 0194		00027	00000 019		011343 0144	•10	000000	5910 000000	•
FL0. F A 5. 2 010257 00	5 004114 00	6 010050 0C	1 010550 00		1 010110 00	1 010340 00	2 000026 70	000001 35	1 000014 55	27 700001 7C	000016 55	2 003052 7C	000010 57	000173 00			0 00 000010 9			010320 00	005574 00	000173 00	010256 00	010020 00			00 000010	005657 00	011334 00	00 002010	004115 00	010430 00	010450 00		010450 00	000014 70	00045 70	000002 55 0	010220 00 0		247404163 005667 DC		010250 00	006320 00	
NA4E AUTO H5" 01 D10C10 21	0200	9 0800		0900	0170 6	0100 7	10110	2 0210	2 0 4 10	0150 7	0160 2	- 0110	2210 2	1220 4			010240 66			10250 7	10260 2	10270 4	2 00201	010310 71			LA DEEDIO	1034	10350 4	010360 61	10400 4	10410	10420 7			2 2	10470	10500	10510	10520	** 0E2010		010540 71	010550 71	

3,533,086

	U	•	•	U	۵	. 1	U	٩	. •	J	U	*	•								2																				
CONFENTS	FINAL PAGE			BACK TO ONE	20 2 4 4 2 2 2 7 1 C		MATH HEADER	VIDILS SUBS VILLET		TO PRINT UIFFEELT	SUBICADER	A TARARA CAL																		000											
SEG 04 DATE 111000 N B ADDRESS				FOR 1 2 A			1 BC 2 1 4 5 8							1						1.1		501 FLOW CHART										* 22	R 10			# 0000 #	. 000/06				B 0000000000000000
-																											•														
1' DEX 40000501 * A ADDRESS			#14232324E			SET HERIZORWI			TCT TACVIS	-C- +DC/14		~	RIS LCADS		101100 4	57C + 2	000340			05					DAC MERSING	DAC HDR2	DAR 200	N 22.0	010101	CON 2203	1232323				COV 01	100 03.1				CON 01	CON 8,10
6	,	ž	-		S	35		ñ	F				2			2		-	õ	00	3 7. 0						Å	ິບ	0101	ິບ	12323	ĩ	5	5	ü			5	ŭ	ŭ	ບັ
746		~			~			_	•				0									014470 Thrul4			OI6600 TBCNIS	014490 TBCN16	0	#0084	010101010101010101010101010101	#0085	252323232323232323232323232323232323232	48007		19008	2900F	8 0 0 a			1004	80002	
5ro #		016570	014580		014240	014400			014420				014650								014440			Felo0+ +2+10	01665	01449	014700		1010101		[- L - E - L -										
	0		005740		204402			1010	064400						000000	010707	000000	000000	000000	00 001450				+ 10.000cC	010101	101010			10101010												00000
z	•		ŝ	2	8	ç	3	0	00		B			Ì	8	00		20	8	00				4	5	10			010												00 0
	•				004665			010710							001167				007450	00000			•	3023240143399966	01 004777 01 010101	01 005000 01 010101			01												00 000000 0
TOFI	5				5										0 72		••	5	0000														•	•		, .	.	•	-		200
NAME AUTOFLOW	X A X			Decolo	010570		100010	010010	010410		010030				010640	010450		010000	010670	010700			01/010		010730	010734	010740	011210		001110		•	976110	011327	0000110			011334	11011341	1114	

3,533,086 **124**

		6	•	۵.	ß		ļ		- ر	7				۵			,		u	4	2				•	00		N	(5		•	10		,	• 0	•		21	3		P	10	•		N	0			10
P266 038 Co4"Ents	E SSVd	ASS THREE	8661N PASS 3	READ RECORD	END FILE		10 EVE	PAGE SUBBAUTION		END DATA D			2	PSEUDO CONVEÇTOR	4EC08D	,	2 257 441 77 Ver			3 100F		~		COMPUTE LOCATION OF	0	RECORD MAVE A TAG	·						J CODE										H CODE							D CODE
SEG rs Date 111665 B audress	LOARS		• 1.5	ņ						11	0 P A R	• 2			0 7 4 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		1	1 000001 x 1		CODE			E 9			.1	T46			, 00 F			5 T	CUDE	8		CODE	N •		CODE	~	ï		CODE	~ ~		- 00F		l	
Z																																																		
I'DIX 4000r50] OP A A'DRESS	5Er 05 24: 2	¥ ¥ F 7.	CT 173	0FA		11		ł	TC TF1	*	0						TCT OFCOM					8 C D	A A D C		ж	567 R.13	ہ ب			000	Ľ	U							~			0 L N					100			5ET #43#
T ▲ G			191							TPIA				2			7 P.3																																	
SEO N	014910	027810	016740	014140	014770	014750	016790	016830		016820	016430	•	•		091410	014590		016910	-	-	- 1	•				1	2:		: =	Ξ	Ξ.	21	010110	: _				011110		1714	-	091410				1723	1724	1725	172	-
40			0.			· ·	0			00000					007640				00009	20200	00772	00000				000000			00000	003024	010040	000000	000000	010100	000000	000000		000000	00000	003024	01010	000000				00000	120200	010300	000000	000004
~			90,00	ос с 4) U) D	0 0	0 0								. C											in i	n c			¥	000			8	00 0	80		88	0	8	8	000		ŝ	3	88	0	00	8	0
۲ ۲			00402		100	007	006		0	20					007640	210	00	000	022	000	000	10			i	2	'nο		202	302	50	240		0 0	ç.			50	202	ខ		10110		22	1.10	10	2	2	ខ្ល	0 N
			22 0	- •	•	• •	•								19 0																																			
NA46 AL			00745	1440	0510	0751	0752		5 <u>7</u> 5 7	0754				0.761	007620	0763	0164	765	0766	787			2.7.2					1110	1000	1001	1072			100	1001			1013	101	5101		01010		1022	023	1024	1025	9201	1027	0101

3,533,086

3,533,086

	N 0		×۲.					j.			. .		. ۳	• 0	•	ບີ	•⊷			U	4	. u	, -1	۵	U	U			CI		. -	F	۹.	دم	. L	•
PAGE 039 Comments	T 6966		ILLOGICAL CONDITION		BACK UP ANY TO	LINE ABOVE Put tag on Ling	, ABOVE SYNGOL Put bov e on Line	ABOYE SYNBOL	DE PROFESS BOX	ON PAGE LAYOUT	INCREMENT TO Get to Next Line			- 6 -	PUT LOVER LINE	01 7400045 BOX	PUT IN VERTICAL	CONNECT LINE		PUT BOX NUMBER	0.2 PAGE 05 LIXP		DRAH CIRCLE ON PAGE	MSC OF DESTIVATION Tag to and	FIND TAG IN TAPLE	TAG FOUND IN TABLE Dut Page and Dox 6	CESTINATION TA	INSIDE CIRCLE		ADJUST ANY TO	BOTTOM OF CIRCLE	PUT DESTIVATION	LET VEN REFERD	PROCESS E . DE	PUT TAG OF EXIT			CPA. CIRCLE D' FAGE
DATE 111665 [43.	 1																																		х + ¹ т			
SEG DS DAT N B AUDRESS. CODE					LNTH, R	70 87		0 0	LNTH, R 10 41	•	LNTHAR		07 777744			PCONEAR				U	n7 00006		•			1001		n7 00000		57 000002	L T L P P P	70 47	L + 7 = R		70 47			
105		•																																			-	151
TNDEX 4000303 0P A ADDRESS 5 F.DF		557 8638 55 CODE 515 4 2	TC TCD RMK	PES TC TP1	RMK 104 87					510 PCON1		12018 - 100 10018 - 100			511 00012 111 000012	.			TC TP1	ANK OCT BCX NO. 2'		\$67 77773 477 7.7			R4K TC L4CTAG	CTC JCP1			0 Ŭ	001 0, 0117		• •		10 T-1	857 77773		OCT B. X.0.2	001 P X 00 3
TAG					PCD								3		202					8 57										4	1000				ÉCP		_	
5 E 8	0017200	016710 0162710 0166710	017340	017340	017360	017400	017420	017430	017450	017400	017480	017490	017510	017520	017540	017550	017540	0175710	017590	017600	017620	017630		017460	017670	017690	017700	017710	017730	017740	047710	617770	017780	017790	017710	017-20	017-30	017+50
		000000 003024 010400		000000	005447		003033	000011	005647	600000	005647							000000	000000	200000	000000	00000	******	EC1000		011000	77776	11111	00000				00304	000000		ECOLO-1		000000
		888		8 g			29	00	8	20	38	2	50	8	85	. 0		000	00 0			20			00					7 57				00 C		8	~	n c
NO.	20100 4010 10	022045 003024	01250	000000		5.1	003025	80	3 8	8	ă	•	24200	01371	010530	00500		01432	00745	20200	00302	7777	20500	10,00	11400	01100	10000	10000		10000	00017	10000	0000	1 00745		00000	0000 2	2 01307
1.5	7 J F	293	1	6 Z 0 0			N 8	0.0		0				0				1	11 0	c		21 0					•			70 22	0 0	o c	0	o	۲. ح	. .	N 0	100 2
۲. •	010010	010340	010376	010400				1045	1901	1050	1052			1055	01029	0901		19010	01042	40		100		01070	2	2 9	2	23	20	01077	2:	22	:=	Ξ.	5	::	Ξ	

		¢	ų	7	+-	é.	ų		0	*	6 . (U	a	•	, •	1	′⊷	۵	U I	•	U 1		5 m .	. L J	•		۰.				. u		~	•	U (U		, 1	•	u	-			•	ų		56	. u	•	U
PAGE 040	COMPENTS	UT EXIT	INSIDE CIRCLE	GET NEK RECTRD	8 C ⁰ DE	COMPUTE LENGTH OF	COMPENTS FIELD		BLOCK NAME PRESENT		MOVE NEW BLOCK		CLEAR 150 Clear tot the		CLEAR WHOLF LINF	F	PROCESS N CODE	ADJUST ANY TO	CENTERLINE OF NOTE	BACK UP ANY TO	LINE ABOVE	TOP LINE	<u>ے</u>	ON PAGE	PUT TAE ON PAGE	1	AN7 TO NEXT LINE Bit in tot 1.55		ANY TO NEXY LINE	PUT IN SIDE OF	VOTE SYMBOL	TO PAG	COMMENT FIEL	PC1 12 B0110% LINE	OF NOTE SYMBOL	COLUMN CENTERLINE	VERTICAL	CONNECT LINE				ABOVE SYNGOL Put bou = on page		FUT TAS ON PASE		ADJUST ANY TO TOP	LINE OF SYMBOL But of the 1.45		ADJUST ANY TO	NEXT LINE		HALT SYMBOL
SEG OF D	•	•	74467506g#			~ .	A CPAR, RA	PCOH.	• 1				×.		HDR2 R	•		#000005# J			70.47	20074.R	000001	Ň	•	TAG. Rel	1 H H H			01 00010	01 11110		Ž ·						1 * #2000001			n7 00005	0	70 67	TAGAR	1211 <i>5</i>	7				87 77774	07 00004
× X:0;		0,0002	۳.	TC TP1	•	o	*			BCDZ	SET HDRZIJK U			Tel		BCDI		TCA 87			RTE OFOOD	510 NO14		BCXNO.		STC TAG	87 0001				EYOLN LOO		NCD1	557 000010 612 01001			TC VILN	•	TCS #7 TE TP1		TCS ST	NHK OCT BCKNOP 2		~	-	•	R I K R R R C C C C L		TCA #7	L I I I I I I I I I I I I I I I I I I I		0C1 8048
•		017-60	C17270	017880	1	017500 800	01/10	026110	017930	0+6110	046410		017=00	2	010000 8502			016030 NCD			016770	018080	018090	018100	011810	018120			018160	DIGITO NCDI	01210	01810	018200	012910		018240	016250	018240	019260	016290	CIDIO HCD	018320	018330	018340	050010	096910		046810	010400	01841	018420	164910
0FL0.	A 17 A0	000007 70 0000	022047 00	007450 00 00		090500		35 FE1000	011270 00		74 003020 40 003064 24 003064 63 003064		005021 30	007450 00	005020 00	11260 00 000		140220 00 E11000 ++	45 000123 00 005447		000003 70 600	000052 00 000	003072 07 000	003023 07 000	77775 70	00 00 520ED0			000173 00	00 1 50 90	006051 07	00000 00 014610.	011450 00 01145		000173 00 02205		71 014320 00 000000	0 [1]000 2	00000 0		42 000111 00 002041	10 220000	003023 07 0	72 77773 70 60000	00302500	000173 00 00564	00 20000	00 950000	00 6	•	22 022060 07 77774	190220
10 ·				54111		00111		0/111	00711		02211	1240	11250	1260	11270	1300		0161	1220		11330	01011	11350	11360	11370	11400	11420	11430	11440	11450	11440	11470	00611	01211	11530		11540				0/611	1000	1.1 610	11420			11650	11460	1470		011700	11710

3,533,086

10.11 10 10 10 10 10 10 10 10 10 10 10 10 1	Т. 100000 Г. 100000 Г. 1000000 Г. 1000000 Г. 10000000 Г. 10000000 Г. 10000000 Г. 10000000 Г. 100000000 Г. 100000000 Г. 1000000000 Г. 10000000000	00007 PUT TAG ON PAG TAGAR ADJUST ANY BAG LNTH,R ADJUST ANY BAG		TO PAGE LIVE OF FOR 0 70 PAGE LIVOUT 5##] 51EP ADDRESSES	ALL LINES VO	LNTH, P BACK UP TO SOTTON Line of Symbol Put in Vertical	CONVECT LIVE SET ANY TO TOP SET ANY TO TOP	LATY, R ADJUST TO FIRST LINE OF TEXT ECODODIA, SHIFT CENTERLINE	CD2 EAP OF COMPENT OF AGE		SET ANT TO 2ND LIVE OF SYMHOL	77771 77771 Lotward box # 0F			577775 1111-272 Lutus R	77771 551 NEW RECCAD
	LNTH. 7 0000	000000 00000 196.7 176.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1	1462 53 7461	0 81 3 500/20 200025#1]	LZTHAR TAL1		2	.NT4,R	D2			771	771		7771	111.
				~ 11			-		S		47 L 1	57 777 LV1	177 72	11 10		57 77
				0	• •		u ¥ tu s					• • •	ò	5.5	100	0CT 0. 0017
	0195550 195550 195550 0195500 0000000000	018600 018610 018620 018630	6440 6440 6460	015550 5001 015590 015700	016710	047610	010100000000000000000000000000000000000	018790 018600 018600 018610	018820 018830 SCD2 018840	018250 618360 018270	016850				018470 018470 018450	018990
0 24 006056 00 0 72 022062 00 0 43 003045 00 0 61 012030 00 0 61 012030 00	0 11 007450 00 0 45 000173 00 0 22 003022 07	0 22 003023 07 0 0 72 77777 70 0 0 24 003025 00 0 4 44 000173 00 0	0 25 000173 00 0 25 022067 00 0 25 006314 00	0 72 000012 70 0 24 006071 33 0 44 000133 00	0 44 000173 00 0 46 012150 00	a 45 000173 00 00564	0 71 014320 40 49444 0 25 095655 00 00017	50 44 000173 00 005647 50 44 000173 00 022033	0 71 013710 90 0 0 61 012270 00 0	0 25 004074 00 0 0 71 004170 00 0	0 61 012470 0C 0 0 25 005655 0C 0 0 44 000123 00 0			0 44 000173 00 0 22 022046 07	0 44 000173 00 0 22 000016 57 0 44 000173 00	0 22 000017 57
	1170 12 02000 00 00000 01500 567 11770 72 022045 00 0000 015500 567 12010 41 012030 00 00045 00 013500 567 12010 41 012030 00 012030 767 12010 41 012030 00 013500 767	11100 12 020000 000000 010000 010000 12000 43 003045 00 000000 010500 50 12010 41 012030 012030 010500 50 12010 41 012030 012030 010520 67 12020 71 014320 000000 010530 74 12030 71 014320 000000 010540 76 12030 71 07450 0000000 010540 76 12030 71 07450 0000000 010540 76 12030 22 000173 000000 010590 74 12030 22 000022 0100000 010590 74	11170 X 02000 00000 01950 567 12010 4101203 012034 018520 567 12010 4101203 012034 018520 567 12020 71014320 012030 018530 77 12020 71014320 000000 018550 77 12030 71014320 000000 018550 77 12040 45 000173 000564 018550 76 12030 22 003022 018590 76 76 12050 22 003023 018590 76 74 12050 22 003023 018590 76 74 12050 22 003023 018590 76 74 12100 24 000000 018500 76 12100 24 000000 018610 97 12100 24 003647 018610 97	11770 7 02005 000000 01000 557 045 12010 41 012030 012030 012030 557 045 12010 41 012030 012030 012030 557 01550 12020 71 014320 000000 018530 77 77 12030 71 07450 000000 018540 77 77 12030 71 07450 000000 018550 77 77 12040 45 000173 0005647 018550 77 77 12040 22 000173 0005647 018550 77 77 12040 22 000022 000000 018590 657 77 12040 22 000023 016590 055 77 77 12040 72 7777 000000 018590 657 77 12040 72 77777 000000 018590 77 77 12040 72 77777 000000 01850 77 77 12100 24 000173 0005647 018640 77 77 12100 25 000173	11770 7 000000 0100000 0100000 0100000 0100000 0100000 0100000 01000000 01000000 0100000000 010000000 01	11770 7 02000 010000 010000 010000 010000 010000 010000 010000 010000 010000 0100000 0100000 0100000000000 010000000000000000000000	11770 7 02000 010000 010000 010000 010000 010000 010000 010000 010000 010000 0100000 010000 0100000	11770 7 000000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 01000000 01000000 01000000 010000000 010000000 010000000 0100000000 01000000000 010000000000000000000	11770 7 02000 010000 010000 010000 010000 010000 010000 010000 010000 010000 0100000 0100000 0100000000000 010000000000000000000000	11770 2 02000 01000 01000 01000 01000 12010 41 012010 01000 01000 01000 01000 12020 71 014320 000000 01000 01000 01000 12030 71 007450 0000000 01000 01000 01000 12030 71 007450 0000000 01000 01000 01000 12030 71 000000 010000 01000 01000 01000 12030 2 000173 000000 01000 01000 01000 12000 2 000173 000000 01000 01000 01000 12100 2 000173 000000 01000 01000 01000 12100 2 000173 000000 01000 01000 01000 12100 2 000173 0000000 01000 01000 01000 12100 2 000173 0005651 010000 01000 01000 12100 2 000012 0000000 010000 010000 01000 12100 2 0000173 00001200 0100000 010000 010	11770 7 000000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 01000000 01000000 01000000 <	11770 7 002025 000000 018500 557 77 12010 1012030 012030 012030 012030 757 77 12020 7 014320 000000 018510 55 77 77 12030 7 007450 0000000 018540 76 71 77 12030 7 007450 0000000 018540 77 77 77 12030 22 003022 7 000007 018540 77 77 12050 22 003022 7 000007 018540 77 77 12050 22 003022 7 000353 018570 55 77 77 12100 24 000173 00 003647 018540 77 77 77 12110 4 000173 00 003647 018540 77 77 77 12110 4 000173 00 03647 018540 77 77 77 77 1211	11707 72 042030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 012030 0 013530 7<	11700 2000000 018000 018000 018000 018500 557 777 12010 410100 010000 018000 018500 557 777 12030 71014320 000000 018540 756 777 7 12030 71014320 000000 018590 756 777 7 12030 200000 018590 756 7777 7 7 12030 2000007 018590 757 77777 7 7 12030 2000007 018590 756 77777 7 7 12000 200007 018590 757 77777 7 7 12100 2000173 00000073 0000133 018500 77777 7 12100 2000173 0000133 018500 77777 7 7 7 12100 2000173 0000133 018500 77777 7 7 7 12100 2000173 0000133 018500 7 7 7 7 7 <	1170 72 000000 010000 010000 010000 000000 010000 000000 010000 000000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 0100000 01000000 01000000 01000000 01000000 01000000 010000000 01000000 010000000 <td>11170 72 020203 018510 567 77 12010 10 10 2016510 018540 77 77 12010 10 10 2016510 018540 77 77 12020 71 00 118540 77 77 7 12030 71 00 118540 77 7 7 12030 71 00 118540 77 7 7 12030 71 019540 018540 77 7 7 12030 71 019540 018540 77 7 7 12030 71 019540 018540 77 7 7 12040 22 000017 0005451 018540 77 7 7 12100 22 000017 018540 717 7 7 7 7 12100 22 00017 0101044 7 7 7 7 7 7 7 7 7 7 7 7</td>	11170 72 020203 018510 567 77 12010 10 10 2016510 018540 77 77 12010 10 10 2016510 018540 77 77 12020 71 00 118540 77 77 7 12030 71 00 118540 77 7 7 12030 71 00 118540 77 7 7 12030 71 019540 018540 77 7 7 12030 71 019540 018540 77 7 7 12030 71 019540 018540 77 7 7 12040 22 000017 0005451 018540 77 7 7 12100 22 000017 018540 717 7 7 7 7 12100 22 00017 0101044 7 7 7 7 7 7 7 7 7 7 7 7

3,533,086

			- 4	D . (u	,	A. (L 6	,	2 (ء د	. (υ		1	۔ ا	•	u.	7	•	U						l	•	J				0	•		•	LU	,			•	U	7	\$	•		•	ر ب	•					٦	2
		MTENTS	rrocess i code set stidt of				01 ALK 190000		LINE TO BE MOVED	ية 1 <						1011 - 10			REAL LINE ON FAGE		TO THE AN ADDACENT			5	DROF A VERTICAL LINE		7		TROCEME TSECOO	A TO		COMPUTE LOCATION OF		444801 07 PAGE				NSIDE CIRCLE		ADD ONE TO	NCMB	OVEB	CIRCLE	GET NEW RECORD		AND I/W TAPE		CROVE REVERENCE " + + + + + + + + + + + + + + + + + + +		INJEGJA NI SVILG					• 61•	L1371NG
400111 JANG 20 513		AUCKES	+CD2,3	#000001#1				TXLST		TXLST		TCD2.3		.77 '000000		TCD3	0 1 2 2							*000016*1			.1777771.			51	#00000###1				4.7	0 A 4 . 1 1	77776			P 501, 1	*	n7 00001	00000						AT ETART					ETART		OF CROSS REFERENCE
1 400 X 4000 X 400 T		י י י	TCT DECOM	TCD2,3	-		•	TCT \$7'		RD 77777		TCT SSTA		SCr 0:0000		CT TD3			TC Troi		7777		•							TCT ADPAR	-	TC GFTAD	: 3 0			STT OPAR, B	•	2			P.01.		2						RIC START				TAAT 00			REA RETURN HERE AT END
	SEO # TAG		019120 TCD	C191.30	019140	010050	019060	CI9170 TCD1	0810	019090 TCD2	0016	0119110	019120	001410	019140	051610	019160	019170	091410	190 TCD	019200 TCD4	210	019220	019230	019240	010250	019260 TxLST	1270	019280	019290 PSD	000	016410	01020	01510	019340	056610	924		090610	•	•			- -	019460 ENDER	9470			005610						014410	025410
• • •			004044 00 012553	12553 00 022	00173 DC C12643 .	00173 00 022077		000173 00 012720		<i>77777</i> 00 012720	•	0223 00 012553		000000 77 00000			00173 00 005647		12540 00 00000	12643 OC 005647	7777 00 60000	22100 00 022100	07450 00 007450	00173 00 C22077	014370 00 000000	07450 00 000000				EE1000 00 0.	00133 00 022103	13540 00 000000		3370 05 000000	3113 00 60000	003020 00 003023	3110 07 77776	0111 07 77777							 04054 00 013135	0000	13220 00 040000			01167 00	13200 00	00340 00	004170 00 000000 000000 00 004170	00001-00 004110		-
NAME AUTOFL	54 JP		012500 25.	12510 4	12520 2	12530 4		012540 25		12 056210		012560 25		012570 34		012600 61	12610 44		12620 71	12630 45	12640 72	12650 43	12660 61	12670 44	12700 71	12710 71	2726			012730 25	12740 44	12750 71		12760 71	12770 72	000 26	13010 22	22 02001						01101	20 22	11 OCIEI	11 01 IEI			13150 72	13160 24	14 041CI	013200 00 00			

3,533,086

	۵			u	۵.								ţ۲.	-4	U I	- נ	υ	U	e.	6 .	c	۰ ۵	U		ند ۵		. a .	<u>ں</u>	, ^ר	- L	υ	U	υı	ب و ر		a (ہ ^ر	. L	E	÷	; u	12	L	٩.	ć	: U	L
PAGE 043	COMPENTS OFF LINE LISTING				CALL IN CONTROL							•	-	CREATE CIRCLE ON	PAGE LAYOUT	ALL TOTAL OF TOP	DF CRCLE-CHANGED	TO CENTER OF CIRCL	SET ExIT	# LINE\$ TO TALLY INTTALITE AND		BACK OFF AVY TO	CENTER OF EIRCLE	I	EX11 1041 5051 104 70	PERFUSE PERFUSE	SET ADDRESSES FOR	3717 1X37	RECYCLE	LUCATES FACT AN Adverse Decere	POSITION ON PAGE	NO DOX SAI UIA	COL NEADOR FIELD.	211 5519 279251 551 5211	E a TO STOPAGE	SET ANT TO START OF	1.400 LAYOF ATCA DUAD AND TO GIVE			A C NOS HAS VST	DE LIVE DE LAVOUT	STATES TO A TO A TO	STAPT OF COLUMN	COLUMN # TO TALLY	-	INCLUSION CONCULS -	EXIT
S E	N. B. ADDRESS Bad	• 1=5	-	• •	DI NEX		11E *		►.E.X			- 7601010101012075	-						GENCRX	TALI			Lutur	L TTI A		70 4 ⁻ 32 101 - 5		L 7 1 1 2 4							30 TALI	52	0 * 1 H N -		TALI					30 TALLAR	A 600017405	TALL	
	A ADDRE	TC ELUPSE 001 114		001 114	RIS L'ADI	SET 001167	611 - 2	ο.	00 LUACI		0	E-0-3			× 1	¥. 2	× 2 1	x 0 x 1 x 1			001	TA 6/ NCR2 Vec 2-		TCS 87	TC 77777	SET OPODOJ	5TC C4C1 16	TCA 87	TC GENCRI	R.I.K.		1 I I I I I I I I I I I I I I I I I I I	× × ×		101 00003 107 00003		ž I			•	32 Z I			DCT 02000	TCS #7	TA 6676	TC 77777
	TAG					E NDP 31					ENDP32		541094						SE N T R			GENCR1			GENCRX	GENCRZ									GETAD				0 6571		0			- ^	r.	0 GET2	U C CETADA
	SEC #	0145410	019550	01+560						010500	009610	014410	029610		019650	019660	019670			01410	019720	021010		014760	014410	019780	064610	019610	019620	019630	019540		C19F70	019-60		16610	019920	066610	1566 I O	019960	19910	099610	66610	020000			529550
	120	010000	000000	592610		00000	1003337	000000	000000	0	000000	000000							044610	005651	000133	005651	1 9 5 0 0				005760									21000		005647	005651					05653	02211	0 905651	000000
		88					8	ŝ	8	-	8	0							ç	20	00	00	8	56	00	10			200	,						38		20	00					000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	7 00
• 0	-	013340	013360	004057	197610	001167	045510	000340	003000	000001	2000	013270							1	020000	3	0	6			0	õ	00	5 6	5					5 000243	00000		£ 1000 ₽	A 013650					00000	0000	19610	77777
LOFL	8	-	27	22	1 2		24				-	•										- N.													5.5	~ ~	•	•	4						4 4 5 C	• 0	11 0
NAME AUT	181	013220	426	325	2	1327	013300	1331	1332	EEE I	466	052210	336							001010	341	342	343			1.46	1350								1354	6 4		013570	046.	5				1361	290	1363	1364

3,533,086

	Ŀ	٦ ٩	۲ ۲	. ט	U	ų I	u	υ	υ	U	U I	r	2	υ	م	6 L	•	٩.	5							a .	υe		ه د	U,	۹. ۱	٣	7															
¥4	STEP A.7 BY 120	STER AUT BY 30		I /P RCL T	PAGE LAYOUT. ANT	ser to devee ser tert of stor		7 1 1 2 4 2 C 1 0 F		ATT AUGUSTER TO	SEX BIRE ALEXIT SET EVER	RCD LGTH TO AMB	LOCATE VEXT 155		XHE LIVE TO AVE	NO-WVI NA-YES	FOR PRV	DET LENGTH OF LINE		2 51055 242	2	PITTUR LENGIN RT 2	SET HOVE ADERSS	2	RHF LINE TO AM3 Kott 1 - 45 - 50		SET AMI TO MSC-1	EXT 1/P	SET AMP FOR NEXT	LINE ON PAGE		SET FOR PRZ		UCTAL DIVIDE BY 2.		5	VALUE IS USED		SET ANSKER TO 2500	FRACT D2	IF NEGATIVES EXIT	AUD 1 TO ANSHER			FROM CURRENT	STHEOL TO CONNECT	TO NEXT SYMBOL.	ANT SET ONE LINE
xt(. ≤ h/rt 111665 № - A⊺D9ESS		# 000036## #									X 1 1 A A	*3 *	#1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		2015 2015	b 1	E SA JA		047000	TALS	117	•	# • C2] > 2		31 20 sT	13 000-00		2 * ¥ 1 00 0 0 ×	۲ × ۲ × ۲	1 P P 1							.,	30 0073			03 000000 30 2000000							
	TC 6111			:× ax	, x 0 , x 0			, u , j				0	567 74001 555			, ,	R -					TC DCTOV			TCA 53 SET 77777		TCT SI	TCA \$1	TCA #7	SET 0.077	777	200 4 - 10		(¥ 7	32 T 77 T 02 E					TCK DTTS, R	сте е I Тса ттутт	0.11			RIK	2.5 C	11 12 12 12 12 12 12 12 12 12 12 12 12 1	Xex
5-1-5- 1-7-5-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-		90 6673	0	<u>c</u>						, c	PO KVLS	0	0			0	0		0.0	IC MVL42	0	c V	0	00	CVUVH O	0	0	O MVLV4	e c	IN HVLVS			0	0	••		0 DCTAV			0 0011		0 0072	001		0	0 0	0 0	2
SER 4		C23-50	001020	102	021020	020140		020160	0.2013	0.0	0201	52020	020210		C 2 C 2	02025	02029	2020		02030	02031	02032	66020		050360	02037	02030	02039		02042	02043	020440	02046	02047	02020		02051	020520	02053	040000	046020	020570	020580	020590	N 1	N (020420	
a a a a a a a a a a a a a a a a a a a	100003	C 22117											000000				E91+10	с с		0							000113	0220	2+9600									014311			000000							
0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	003173	000173 00									00243	03060	1000	000533	00240		22035	000000		56100	66100	14220	4057		777777 70	00001	66100	00113	F1100	11000	7777	022170 00 014000 00					00243	77777	22067		77777 3C	14250						
▲ ¥ ; ↓	3667	3670									25	52	2.5	2	61	;	2	; ;	-	52	25			4	12	24	5		•	72	1	014210 71	•				14220 25	14230 25	27 07241	D	014270 44	14300 71	161					

FA&F 045 Coxxents Above start	SET EXIT SET TALLY Andres ours fire		EXIT	FOLLOWING AREAN Loto in Poncesta		TALEY IN DEC LEG Ludet tag indiat	RIGHT SIDE SIGNAL	LEFT SIDE SIGNAL	6644 88688874																						H LIZESA) I' FORM Derision Professive R	-	PRASERVE AV1 - 1 - 1			TO PAGE LAYOUT AREA C		10 / EXT L 1/1 		QUIL RANKCY C	203.51 A47 70 L251 P
SEG 09 DATE 111455 N 8 ADDRE55 		02 00000									" 010101010101	5			# 010101		# 010101 1010101 #	# 010115010101		8 150101 1 150101010101	H 010115			H CICICICIISCICI		# 010101010115 # 010101010115	# 010101150101	# 010101	# 0112010101010101	# 010101			S V 7		70 41	33 DEO' . 16	# 0 0 0 5 1 # 1				L'THAR
× × ·	***	154 87 057 V150N			1. T T T T	DAR 3.1	0 4 4 1 D 4 9 1	DAT 1			•		2 2 0 0		C NOU			200						201				CO2 3	F 202		DAC 0-0010	× 30 7.2 2.0⊓		**		0 0	TCA \$3	•	TA DCE1 557 73777		
5 E G # 1 A G 0 2 0 6 4 0	020650 VTLN 020660	020470 VILVI 020480	020690 020700 vilny	020710	020730 020730	020740 TAGTA	020750 UNDS 020760 R55	020770 155	020780 \$V7	1414 04020 030500 7744	020810 DC0V	020520	020030		020540	020570	020850	020900	020910	020920	020550	050960	020970	020990	051000	021010	051030	021040	02120	021070	021080 00041	021100	021110 500	021120	1	521150 LCU1	051160	021170	221180 621180		21210
2 × ×	014320 25 000243 00 014370 014330 25 022057 00 005451	14340 44 000173 00 0056 14350 22 005670 07 0000	14360 66 014340 00 0056 14370 11 11771 00 0000			4			Ŧ			113		* *	44	5	Ň		5	n		4	ŝ,	n in • •	4	44	• •	4	÷.	6 4 7 7	4		4670 25 000173 0C 0144	4700 25 022067 0C 00013	4710 25 014664 00 00565	0000 17 000010 77 02411 4730 24 014410 33 0144	14740 44 000133 0C 52212	14750 44 000173 00 03564	14760 66 014724 00 0056	14//0 /2 ///// /0 BC0000 15000 35 003074 50 30310	

3,533,086

PAGE 146 CON"ENTS	INE OF SYMBOL	UT IN VERTICAL P	CON'ECT LINE	4V7 817K +0		TAG DN PAGE			• 5 7	OF TEXT	ART P	COMMENT FIELD	O PAGE	IELO				LEFT AND RIGHT	SIDE SIGNALS TO OFF	SET TAG TALLY TO 1		46 15		ADUACENT COLUMN, C Bruther Doutoing	SVDIJED.		ADJ COLUMN		PROCESS FIRST C						CENTER OF SYMBOL	8 1 1	SET AND TO HEC OF	WATJON TAG			UNDEFedede NOTAGe C		U U		•		RA-CNKNOLZ	2-CONNECTOR	r s To
SEG 75 DATE 111665 N B ADDRESS		(]]				70 41	, , ,	, au	LNTH R.	L N T H # R	#000017#*1			0.04				L55 515		TAGTA	87	LHTC		81 1 47 • 0				TPXX, R			0 X X 0 0			H	LNTLAR		5 G G		000			UND 5			DC015	1			
1'-D:X 4000-501 0P, A ADDRESS		TC. VTL'			A LA	567 77775 573 717	- 0	6	-	TCA S7	TCA '81			ະ ພ	7. K	R XX		1004 FU0			*	SC LHTC	4000	SET TPAK,R STT LHTC		STT RLTC			564 TDXX+4 619 T/EX							•	707 ARTT Bir	-			XIX	0CT #004		SET 0.0077	_		RIA R		ДI.Т.
SEG # TAG	2	~ ~	021250	N	~	021260	021300	0101310	021320	021330	021340		021320 DCVZ	021360	051390	5	410	021420 DC03	2	021440	021450	021460	011120	021490	021500	021510	021520	021530	021550	05150	021570	021580	021570	3	021620	05170	021450	021460	021470 DCD5	~	021490	2170	021720 Drh4	21730	2174		2176		
∩FLO, A № B			005670 07 0	014411 00 00		72 77775 7C 600000 35 003035 0C 603033	000004 70	003072 00	000173 00	000173 00	00 511000							Z 022031 0C 014406 2 022031 0C 014405		022033 0	022061 00	00 4 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		003034.00	00 610600	003044 0	003053 00		003064 00	003070 00	003071 00		014411 00	00173 0	000173 00		00+100 00'	04170 00 00000	016440 00 016110				10 00 00 00 01	2 000077 00 100000	016300 00 00				

	tient c	RIGHT CONNECTOR." N Set dest tag suitch: Set ant to right y	SIDE OF DEC SYMBOL: C. Put lagel of P		, NIDDLE	Ļ		INDICATOR TO ON C	•		PUT IN VERTICAL P Line to convector c		ų	NAT CINCLE UN TAGE &	•		TO ENTRY	TABLE BY Subdutine		CIRCLE	-RIGHT SIDE SHITCH	IDE OF			E BOTH TAG FIELDS D		GET NEXT RECORD L Profess and tag	ء در		CVERLAY FIELDS C	J	T CONNECTOR	T 0681 140 8×11CH 7 489 10 1651 6	E OF DEC SYM: DL			1	1. H021201	RATE CH'ARCTOR
	7050 715 810	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$10E	PAGE	VERT	104	567 567	I NO I		30	101	AD V	4 0 F				16 H K	941 21 941 21			101	50			V A H	1338	+ c ⊔ a 0 a		05	0 u	⊾	LEF L	567	-15	104				- u - u
EG OS DATE 11665 8 ADDRESS	• 1.5 00000	DCD ⁸ 8+5 #000013#+1					HZCONPZ RSS				LNTH.R	L NTIPR		• 1.5		77777				L V T H _ R		• 00		# 1 5 1 7 .	TAGTA				LHT,R				n i	0	بر				7 f N =: 2 7 H
-61 - 2	• -		*	2		70									1	n r	2	5	2			0/		10											۲.			0.	
1 ¹⁴ dex 4000501 P A Address	ЖЖ. Ост Ж.5 \$ет dcd1	RMK OCT 2008 TC4 47					510 H7CON		¥ .	¥ ¥	CA ST St Versk) 	; -	10 GENCA 201 UPDS	500	0.	10000 1000		00001		•	.ET 77775	r O	SET OCCA11	χ.	, , ,	TC TPL		•	SET COW'' 9		د م	**	105 \$7 8 4 4	SET DAMAGZ	. H . J	TCA 87 041	ن 1 -	ì cy
46 01	CD7 81	¥ ÖF	. <u>.</u> .		⊢ a	. ••9		5 GC			DCDA T	→ -	- 62	F C		•				¢coa∀	CD # 8			•••	0 2 1								00011						
		021820 021530		5 10 ·		021900	- •	024120	021940	021920	2	051990	022000	022110	050220	04220		022070	022080	022090 0	022110	02120	022140	022150			052190		022220	05220	022240	04220		022280	022300	016220	022320	052340	C2236C C2236C
-	015955 00000	016035		003075	1+9500	60000	005673				005647	000000		000000	000000	77776	11111	100000	00000	005647	000000	000009		600000	003053		000000	-		69	0	5	C C16C35	02212	60009	C COJUTS	00564	έ εσος ος	19567
z	80		э 1		0	•	8	o			0			D, (00	in i	n c	ŝĥ	5	8		20			000	2	00 00			0 6	4 00	0 6/	õ	0 6	2	0 -	o m	02 70	
r Lok	014405	E0220	1000	00000	00017	00000	005671	£1220			00017	2 0000 4		16610	01440	0000	0000	10000	00001	00017	01607	7777	0000	00000	0000	71010	1 00745			2 0030	4 00306	1012	2 02	5 0001	2 0100	4 00307	4 C001	2 0005	4 0256
NAME AUTOFLO HSM OP	015540 22 015550 72	15560 2		015610 72	15620 4	15630 7	015640 24	Z Deact			15660 4	015670 22 015700 44		5710	5730	5740	5750	015770 22	16000	6010	00500 16030	04091	001041	1010	00191	01101	Q16120 7		10130	16150	01010	16170	1620	616210 4	16220	016230 2	6240	1625	016260 2

3,533,086

		2	0		i D.	L -	υa			ບ່	υ	٩	υ.	2	. .	υz	ر	• •	٥ د		<u>م</u>	υz	a	L		٥u	د ا	٥	U	U	_	U	z	٩.	Ua			Ja	U -	υż	: U	U		. u
PAGE 243 10221414		INDICATOR SAYS USE	SECTORAN COLONY Put Last of	RIGHT SIDE OF SYS	AVT TO PIDALE LIVE	SET AV7 TO CENTER OT SEVERATE DE CONTRE	UP ANDAGENT COLUMN ROVE HORIZONIAL	LIVE TO PAGE	DROP VERTICAL	LIVE 10- CONFECT	5	SET RIGHT SIDE	0	UNDEFINED TAG	INDEF NED	INDICATOR TO ON Create connector		DECIDE MHETHER 17 • 6 0000101 1 70 2010	A LINE DR KUST A	CONNECTOR BE USED	LEFT SIDE SIGNAL ON	TE ONE USE CONNECTOR	IS DESTINATION ON	ON THIS PAGE	ALLING AT STATE	AS COLUMN OF DEC BOX		IS DEST ABOVE OR	BELOW DECISION SYMP.	RELOW+DCD23,ABOVE+		IN THE HAY	FOR VERTICAL LINE	-PUT LABEL	ABOVE LINE Adjust Amy to	MIDDLE OF SYMBOL	MULTER VERT INC	PUT IN HORIZ LINE	EXTENDING TO LEFT	YO JOIN VERT LINE Now compute length	DF VERTICAL LINE	VERDED TO CONNECT	COMPLIE & LINES	BETREN MIDDLE OF
SEG "5 "ATE 1]]665" N = aldress	1	PCD4	2T	6 O		I FRODUDIA	70 &T		. 2013-12-1 100-00-00-00-00-00-00-00-00-00-00-00-00-			RSS		5 C C C C C C C C C C C C C C C C C C C						•	• 1/1		50 \$7	120° 4		•		- -		•	70 47	#01# DCD20	FOR VERTICAL LINE	70 \$7				70 87	HZCON+				50 VTAL	A004,3
1 No EX - 4000 501 07 - 400655		ν, α	R4, SET D. Dr15		-	1CA \$7	SET 0: 0,000		TCA \$7			0CT #40H					TC DCD7	x 0 x 2	. T T		007 L55 664 Ded?			50 P.0.3		A 5 D 9				TC DrD?				77767	SCR COMMAN TCA B7	•		-	STC HZCON			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TCT 000023	TCS VIALOZ
# 715		C F	90 30 DCD13	•	20		00	60	0		00	01				0	00		01	-			60 DCD16	0	90 hch17	00	10	00						00 00010	0.0	0.0		0		0	00		30 DCD20	
56.7		02220	052390 222400				522450	0224	022470		0224	015220	02220	022540		022570	0225	4620	022610	022620	4220	022650	0226	022670	022690	022700	022710	022720	1220	022750	022760	022780	0227	022800	02420	022530	022450	022860	018220	052590	02200	016220	022930	022940
đ	CS: 500400				C 005647		000009 0	0			0	014405	c´ oooooo				000000						000000		000000			000000				C17630			CO2647	c		000000	19500					1003017
`.≥	c		2	0	с . 		~	_	80.0			•	0 0	•			000			4			5 20			-	~	.		80					- 6		>	2	D				in,	1 00
~*	01564		1.0001	003071			000	003	00017		000	022	01611		121720-		01554						0000	00573	20000	10600			0210	01554	77776	E9270	1	77776	10000	1000		00000	•				000023	
AUTOFLO	12				•				100				171	•			2				2 2		12			ę				5					53	5		22	N					4
NAME AL	016270		1630	016910	1632	5.01	634	635	016360		641	642	016430				016450				014410		<u>م</u>		۰.	-	<u>م</u> .			016610		a .a		1665	014410	1670		016710	7/01				016730	016740

. .

145

3,533,086

3,533,086

147

.....

		U		10		۰.					U			<u>م</u>	u		. .	,	۵	J		•	R .	U 1		₽.	•		ור	L (67	,	٩.	U		a . I	. '	۵,			¥	٩.		I	× 0	. .	ے م	L	4	C	
	A C F	. =		j.				¥		_	-								*			• 71				4 F R	PAREN			10			914	LINE		. 01Y			2	é E S		۲	PAGE P			۲ م ۲ م	3.11	LEFT	3 O A E		•
_	d ~ A	OF DESTINATION	T T T T T	TOP OF DEST SYMBO	<u>ר</u> ב	15 LINE COMPLETE			V FUE DORN AFFUE	SICE	TO ON			S THERE A TOP	O" CONN'IN WAY		PUT IN HORIZ LINE	2 	5 T A	*	AN WAY	104	IN HORIZ LI	BACK TO CENTER -DrD-15. TEN.		•	4			PUT IN ELEMENT	1.1		ALLY.	FOR & CHAR IN		RESERVE TALLY		5 ANY PART OF	EVICAL CULUMS	a LINE	•	-	ĉ		APT TO MID CF		IN HORIZ LIVE	XTENDING TË LEFT	۹ u.V.I	LINE COVILETE	17.00
E 049	OMMENTS EC evedoi	511 N	100		TO NE					SET LEFT SIDE	INDICATOR TO	TAL		3¥3H	CONN				IS THERE A	IN THE HAY	PRN-STAR IN	SET SH TO PUT	01 21			SHITCH	• 2		1		VERTICAL LIVE		. 11E 1	H C H		ERVE	TO AMB			TALLY DV		iui Ar	PUT. LABEL			- 20 L	i i	EXTENDING TÊ	10 1	ш і 2 і 1	
7 D C E	COMPENTS	OF D	P C O A		AHT				5		INDI	120		IS I	5804	•	104		, - 	IN I	P R N	567	P U 4		2	SET	PUT			104	VERT		0707	F OR		201	× 4	5	2	TALLY			PUT.					E X B	* *	2	
57										a and		RFERENCE BETWEEN NOR	AND FROM CONNECTORS																												CAN BE										
111445												THEE	ONNE												č	5						۲	-								2011	;									
DATE	E \$ 2		2 = 1									CE BE	RON					11				5		+	, , ,			04 K	•	~		8		m	05811									• 1	1			• 6	œ		bx
\$EG 05	ADDRESS		#000002#		L N T P. R	VTAL -	K 4 1 1 2			101 1991		FEREN	AND F		#16H	DC0218	8 T 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	HZCON'	1	000016	C021C	DCD21D+	⊷	HZCON 1		012020	1.	03150		000000			- 	5000 23	#00000a	DCD26		-	2 I O R			VTAL	. T		LATH, R		T.	HZCONN	しってい。日	VTAL	L ^ T + , K
	ай н	i.	ā		ب	>.		6.		x S	•	4 E B		10		۵	70 .	I	•	77 0		٥	\$ 02	I	د ب د		70	-		5		•	9	5	•			000	-				20	-	-	-	70	,			
	Z								,	2		7																				-	a t 1																		
201										ц е		CHECK FOR													-								2																		
1050000	м.									202		CHEC										•				2	,	-																							
	A ADDRESS	71-14	VTALOZ			DC D 2 2				FOLLOWING LOGIC				0.0017		0r0218	00.0013	HZCON				Dr D210'	000016	HZCON			01:0013	#031504	6 0	VICON		Droz1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VTAL 2	VTAL 2	VIAL		177761	2 1 2 2	0-07	00000	0r078	777757	C(NV S			4000.0	HZL JN		Dr027	
1 \ DE X				×	A 87																											6			CA <7			SET 77				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			CA 87	14 S.	2 . Y				C 7 0
	80	5 2 5 2 6 4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TCA.	ΤA	Ļ	001	10	2 U 2 U 2 U			20	5.5			35	51					. •1	515		2 C		111	E 10	0	ж х (F i				Ĕ	Ŧ	ŝ	š	5	Ē	¥Ŧ	- 1		Ē	ı –	0C V			-	+
	TAG				00021	ł					ULU21A								a. cuju				DCD21C		012030				0001	00022								00024					•		•	_			0001		
	5E0 #	046220	0252970	022980	001220	023110	023520	023030	023040	050520		0 9 2 0 9 0		041640	01150	02120	051520	023140	051620			023190	023200	012620	023220	052520	053250	042620	023270	023280	053290	0023300	016620	02223300	01523	056620	095620	0253370	023380	046620	023400	017620	023430	023440	023450	023460	023470	023490	023500	0123510	023620
											0			c															00	00						21	33	00	. 50	0	5	*	000	15	47	13	ŝ			511	547
	-	fr1220	022057		005647	014415	005647	000000	005647					00009	022046	011130	000009	005704	000000			017215	000000	005707	404000	212210	0000	161220	000000	000000		000000		000023	022133	017621	000133	600000	0220	015540	•		000009					000000			
	2	8	8			8	00	6	8		0			10	20	8	10		80			20	0	00	8	č	3 <mark>0</mark>	0	20	20		8	-	20	8	8	8	2	o	-	8 0		2	00	300			000		00	3 70
	4	. .	114110			017260					06122			1000	47026	17130	00013	05471	16110	10000		7217	000	12950	172	-		٠.	1 6 1	ŝ	1	16770		714410	4417	1 4 4 1 5	00173	177741	22035	15540	017565	12421		003071	•	•	5	000000	17	2	-
AUTOFLO	6 1	0 •	10				•	N	-		0 '1				c		0	0		- (0 0	, c	0	0			-		22 0		10		00	-	in.	5	N	•		۰		1	1	+	ŝ		2 4			
AUTO		o o	16760.4		c	000	D	0	0					•												2		•	o n	260		270					0	0	•	0	0	-		6.4	4.4	₽.			0	5	3
NAME	5	0101	0167		9	0110	1	1	1		0110			-	: 1	1	1	5	1110	22	1	1	1	5	2	2		1	1	1	1	0172		22	1		5	1	2	217	2			1	1	5		22	110	1	1

₩16E (50 00"ENTS 01 10 1500Ed 8	DA AN UP ASROW C	H3 TO LINE AROVE	UT IN ELEWENT	L.	TALLY STORAGE Save Place		O SCAN VERT	L1.1E FOR UP APROK C	116	CHAFACTER	U	E	ACT CLE		LINE GOING D	O SAME DESTINATION C	PUT LARFL O' PAGE P			ں ر	•			60.8		N TABLE	REACE D	FOR THIS STROL C CROSS-BFF PRESENT		BACK OFF TO THO	THBOL C	-	OF RCD EGL TO	OF REF				OF	×				
χές 5 λαΤΕ 111665 9 αιστες 55 7 αιστες 55		۲. ۲۲۰, B	, 000ron		T S I DOWN LINE SOLVE TO S	PCD32+R			-		761	0001 6001				DC0321R		COM7.#		HZCON S			ON PACE	1			T					NOT SHOW DN PAGE		BOXNON1					55 000033	FRTJZ	FR1A		
2 4 1		TC 0/5214 TC4 83	2 >	70 Dr025	3,1 2,1 6,674 15 11 1 1 2 4V	A:0303	0,0				777761	_		DOAT ARRON FOUND &	0~00 23	50 00032 110 0003	717767	2014		511 11/101 511 19502		DA9 3,1	PUT FROM COMPECTORS				SET 00033				17 District For	RAK CLECK FOR REDUCTIONS RMK 15 REF 15 REDUCTION	160000						0		• •		SET 77720
SED d Case			023620	023590	023410 CCD28		C2344C	C23+50				023700		023730								023830 DCD32	051620	023860 FP		042620						020020									024070		
	2 0 2 2 2 0 7 0	001133 20	1 017350 00			5 013617 50 5	020053 60 0	25 000173 9C 090133	0 00 FENDER -	2 022144 00 4	5 777761 33	1 017740 00 0	71 017660 00 00000		Z 000023 50 6	3 020051	2 777747 70 4	5 003071 00	4 000173 00	24 005671 00 005676	1 016115 00 000			25 004104 00 000133	1 00-11-0 00 00	1 007770 00	2 000033 5C	00 051020 1	1 007770 00	45 000173 00 005647	20 61000 5		2 000031 SC	003020 00	1 020375 00	00 041220 1	00 201120 70 F	2 021126 00	4 000032 55	2 021123 00	1 020310	Z 021123 00	2 777.420 70

3,533,086

		۵		N	0	U	U	6 . (.	ل فيا	•	•	U		•		2	: 6	Ū	U	z		IJ	U	U)		•		•					,																			
1 8 0 3874		IS BOX ABOVE A NOTE	THEOWDANT		MIDDLE OR TOP OF	TAIN COLUMN	+01H ** ## #0+	ADJUST ANT TO BIVE		AT TOP OF SYMBOL	RETORE ANT	PUT IN VERTICAL	LINE CHARACTER		ADVANCE ANY BACK TO				HORIZONTAL LINE	IN THE RAY	HORIZ LINE IN WAY			21 134 412104	ARENS AND		1.144.400 V. TUB	LINE TO LEFT	ADJUST ANT TO LEFT	OF CENTERLINE	PUT REFERENCE TO	LEFT OF CENTERLINE	RESCT AND						PAGE B			BOX #	i		MEFS REGO	PUT 14 5740							FCP PATCHES
366 05 DATE 111665	S ADDRESS		FR1A		70 .7	#01#	2 2 2	#000004#**			#000004# 1	LNTH, R	07 00000				ON STAF OF ADDING		,	FRZB		50 8T	602 s	•	-	# 0 0 1 0 0 4 W	10 11		#000017#+ 8							REFERENCE ON PAGE.				57 00003		0	57 00000		B 0 2 B		э с		•	10 1001 11-		740101	
1 NDEX 4000001	A ADDRE		•		00000	\$C #11#	•	TCR 87		•	TCA B7			7C + 2			1111 1111 1001 000000000000000000000000	THE FAST PERMIT				00	5C #02#	CTC FR	77774	U Fi	F.C.1 - 74777		TC4 87		TC FE3				;	RHK SUBROUTINE TO PLACE	ALT IS ONE TO			č	OCT #164		OCT DEPESA	SET 0- 0.00	SC # 20				•				045 4 C
	TAC	0	0	0	O FRIA		0	0				0	D		O FRI	0				0		BO FR2C	0.	50	0	0			0.0	02	0.0	4	•	400 470 FR24	>	90	- 1	00 F×3			0	0	c .	70	00	0			TXL UN			60 F k7	
	550 1	024116						024170					024230													7 024370			024410		0 024430					024480				024530										01 024730 J		024560	1120
	-	022153				022035		01220	•		0		0		<u> </u>	0			0 02215	0 02064		0 00000	0	0	0 00000	0	000000000000000000000000000000000000000	> c	ວບ		00000 0		11220 00	00000 0	4141414			021010	2 6			7 00005	0	000009 01	0 0221	021050				97,9000			
×o	<	02153 00	010	045	000	02 2035 00	330	173			0173	E / 100	005670 07	20510	64100	00173	01110		22154 0	020440 00		000000	022170 0	020500	77774 7	0 22135 0	0 004000		000173 0	•	020730		000173	004070	41414141	•		000543	040770		022040	000032	00003	000000	022120	091100	661220	190220	777777	022061	10160		
1 U V	H54 07	4 0100	9 0300	0360 7	0370 7	0400	9 01 10	0420 4		11 01-090	20440	20450	020460 22	20470	20500	20510	07407	* 0530 *	20540 4	020550 41		20540 7	20570 4	20600 6	20410 7	20620 2	11 0C4020			•	020470 71		0102	11 01020				2 06101			20770 2	21000 2	2 01012	21020 7	1 00vlz	21040 6	2 00017	21090 2	21070 7	2110		215	021127

.

3,533,086

CO***	0000																																								FA62 053	COMPENTS Source update prospan	DUMPY BLOCK
	C0000000000000000000000000000000000000	72	73	67 000001		01	57	51	4 1	. P		ţ	69	16	440/3043		40	7	00000	000025	+10000		00004	74	7424			000021	C10000	40	200002 ×	-	031504	3 0	74010101	-7425	. :	•			SEG 06 DATE 111665	S AUDARSS Ofload1	400000000000000000
Ż		23	*	म स	74	4	1	Π	*		-	#	r	11		1 10	-			. 4	R		4	*		1 1	4 4	. 11	*	-	•		N 4	•	*	•	I			¢	;	z	đ
UT A AUGKESS Com 2210 1010101	C01 27.0 2912323	CO1: 01	CON OI	C0% 01 70% 01.1			COV 01					01 01	CON 01	C04 01			CON OI	10	CON 0341		1.00	CON 01	CON 03,1			1 MG 400			CON 01, 1		CON 01		60× 03			CON 02					1 NDFX 4000501	UT A AUDICAS	0 4 8 6 7 0 7 8 10
ē	#0094 C01 Z2*0 23232323232323232323232323232323232323	#0095	N 0 0 0 0	16001	6600#	80108	1010#	2010\$						6010#		#0112	C110#	40114	5110	#0110#	#0117	10110	# I 10#	80120	12108	22102	80124	82108	#015#	12101	67108			10132					42103		L L	A V1	049820
0101010	23272373	1		160720 160720	-	022035			022040	- ~	022743	022044		022046		. 0	022041	2	022065	022071		072100 3 0		922104	022103	022115	022120	_		8 -	022134	5	022141	022144		C21210			022140 A0 AANAA 60 00005		AUTOFLOW	5	001000 002010 00 000000 00 000000

3,533,086

^{ہ ہ} ں ALU 00x272U7 UL UOZZELEU EFULUEEUEUAU **6** U A U **6**. BOX B 567 1401(24708 TO 72 567 147 TO 45C TABLE 567 14LLY TO 8 TABLE 561 14LLY TO 8 TABLE 11040 OME 746 111040 OME 746 11101 10 FONE 11101 FONE 11101 FONE 11101 FONE 11101 FON ADD 1 TO # TACS CNTR ADJUST ANJ TO NEXT Entry in Net table ADJUST ANJ TO NEXT ADJUST ANJ TO NEXT Entry in OLD Table End Of Table N 0 CROSS REFERENCE LIST Coutaining Tag, Page FEFERENCE SET TALLY TO NUVEER SET TALLY TO NUVEER SET TALS CNTR TO G SET TAL TO 'SC OF DLD TADLE OF DLD TADLE THIS ENTRY A THIS ENTRY A MOVE TAGA PAGEA AND Box # To VEH TABLE 1 TEMPORARY STORAGE Avail if Expansion Remind d/P tafe ILLOGICAL Set indicator to 7 Reverse entries in table END OF ITERATION 15 TABLE 1N Proper sequence sort 18 finismed THIS ENTRY HAVE A C9055 REFERENCE ADVANCE TO NEXT Entry in table 8.66 054 Com.ENTS TEMP1 TAG TABLE COMPLETED Sequence by PAGE An 53 N JUBREVIATED VERSION And Address of "Ext Tempi SEG CT DL**TE 111665** P aloress Ostart 11 000017 #000001#+\$ RTL+R TEMP1 #00002## 1 ENDCC 000047 47 33 000023 30 17 11 000007 30 17 000037 000021 * 1,5 10101 RTLIR HTLIR а Т 8768 1100 #02r C 2 A 5 ç * ~ ~ ~ ~ 22 2 5 11
 SE
 < • ~ •••• ģ. 00000 000023 000024 000024 000047 C36 C36 20,0 450 10 04 110 04 110 04 th C X M X M A A D 567 z ų CJA υ C³C 300 C38 000 C2A 140 - 5 3 2 ч 025210 025220 025230 025230 025240 025240 025250 025250 025250 00 004640 00 000173 00 003775 00 011007 00 011007 70 007210 77 000037 004640 000173 003775 011007 011007 004723 003775 004765 1-03775 010773 094020 060113 007457 003775 000009 600000 000000 00:0047 C00133 <u>ع</u>د 0000000 000 88 8 8 8 20 8 ပ ၀ . 004750 0.4457 0.4775 0.477510 0.477510 004500 004054 0r7464 000113 004240 004430 004030 NATE 2010510. 664170 25 004200 45 004210 25 004720 25 **6** b \$ 1 22 44 72 1 52 004670 004700 004724 004650 004660 004640 004750 014410 004420 064230

			ມີ ເລີ ຄ.ບທ ີ 2	UL UM D3F U	ULLL CZLWO	& ⋽& ゔ ⊨ ∪∪ & 3
#46E 055 Co47EN75 6From #465 3	MOVE DATE TO HEADER	MOVE INDEX & TO HDR Move Title To Hdr P Read Record Test First character Shafsteriolog		BRANCH TAG Set ANS TO VSC OF Second Branch Tag Of Sate DN Second BRATCH TAG Sen New Record Ge New Record 14ALC.	T ES TO TALLY OF TARLE 149LE 149LE 179UN 760 NO FIND 148LE ENTRY	5 1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SEG 07 DATE 111465 B ADDRESS	HDC11.4 HDC11.4 HDC11.4 HDC11.4 HDC11.10 HDC11.11 HDC11.11 HDC11.11 HDC11.12	11000 1000 11100 1111 1111 1111 1111 1	КАЖЕ А №0 КС64 В • 1 - 1 •	45 146 1N 148Le 146 15 101 1000 1N	00 12 12 12 12 12 12 12 12 12 12	6 P. I. R TL. R C K 0 S S C K 0 S S R R S C K T A C C L C C A T 10 N C 1 I C 1 S C 1 S C 1 S C 1 S C 1 S C 1 S C 2 S C 1 S C 2
z			ш (Э		70	ч Ч
1∿DEX 4000∩501 0P A APD4E\$\$ 8⊀D	001 0.0271 001 0.0272 001 0.0273 001 0.0273 001 0.0273 001 0.0275 001 0.0275 001 0.0275 001 0.0275		TC C20 067 C70 144 EF SYMBOL IS A PAGM 567 77001 144 40.45= 1717 6 1 1717 6 1 1717 6 1 1717 7 1717 6 1 1717 7 1717	TCT C17 RKK C17 TC C10 RKK 5:8800111NE T0 F1ND RKK 5:8800111NE T0 F1ND RKK 7:87 15 F1 ND	-	SET 0.002 TC F: TCX TC F: TCX TC F: TC1 DAR 3,1 DAR 3,1 DAR 3,1 DAR 3,1 DAR 3,1 DAR 0,1 T1,1 F: X T: *EXT AVAILABLE TCT \$5TP
46		ŝ		۵	NTG NTG1 NTG2 2152	FNT63 FNT64 FNT64 C10
5E0 # 1 025230	C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	است است	00000000000000000000000000000000000000
8000 00000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 000000	00055400 0005501 000179 10000050179 000000 0000000 0000000 00000000 000000	100000 000000 0000453 0002453 0002453 0002455 0000 00000 00000 00000
20				0000		0000 0 0000 0
< 000 X	000271 0110110 00027101110 0002710 0110110 0110110 000275	00000000000000000000000000000000000000	4 NC~40 N	006054 005520 005140	00000 00000 00000 00000 00000 00000 000000	00000000000000000000000000000000000000
AUTOFLO 0P 60 17 DI	~~~~	N 4 N 4 N 5 N 6	NNTIS T	2 2 2	55550 N-NM-1 NNN0 FFF10F	21 1 1 5
ХАНЕ АЦ Н5м .004760	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	008300 008310 008320		00000000000000000000000000000000000000

3,533,086

1	6	υ	ية		υ	.1	٥	•	υ	6	υ		R .	<u>ں</u>	5 4	5 3	-	•	U		•	U	•	U	٦,		ر د			•	•		. :	U	•	-	•	. •	U	•	U						u			•		,
PAGE 056 OMTENTS	15 PRANCH TLG	all SPACES		MOVE 746 70.	ORK AREA	FINT TAG IN TABLE	TAG FOUND	ADJUST ANY TO FIRST	TAG	S FIRST REF	AREA BLANK		L IN FIRST	REFERENCE BOX				لسا ک	THIS		PUT ADDRESS OF NEW	ENTRY IN OLD ENTRY	INCREMENT AND FOR	VEXT ENTRY		SET AUGRESS OF SEX.	-			N PRINTING OF TABLE.	RENIND TAPE	-	SET TALLY TO NUMBER	OF TABLE ENTRIES=1 460 of table to 445			SET ANT TO START OF	Z		THE ROX R.	TO PRINT L				1.01	ADJUST ANS TO FIRST	RINT LI	ż	UT LINE		POVE THIS REFERENCE	
560 F7 DATE 111665 13 P ADDRESS	50 \$1	11 C L D A	C12	.,				DEFLAR		70 87		-1-	70 .7	BOXLORR	•	211 • 02	articities fab fire	A STATEMENT STATEMENT Statement statement st		BOXADAR	000007	00000	RTLANR			70 87				L EI COMPLETE. NOM BEGI	• 1.5			#000001##1				٩	~ 1	50 81		50 41						GUT4	•		15 00000	100000 \$1
1'D'X 40005501 DP 4 A:D4655	è		-			5				R R DFDD						001 0.0004	÷.	RMK HAVE REACHED LAST			•	007 #408		•	TC CI		5 Z Z	υ.								SCT CPLV Suit stady Poncessing Ed			TCT CPLN1	Rik Fit digof				SET 00.0021	õ u		TCA 05		5 0 5 0		-	0CT 000001
TAG	•			10							3					•										c15		:	•	3	620			_	_		121		_				~	•	~	~	_				0 C23	
Sro #	024450	0.95960	025870	025480	0525490	025500	014520	026520	029620	025440	040400			052990	026100	026110	024620	02920					054090	094100	026110	024120	024130	026140	026150				024200	024210	024220	02.5420	024250	026260	024270	029290	024300	016430	026320	024330	054340	056420				024400		02442
đ	40000	011017	05570	000000	600000	900000	000000	005560	E1+100		000000			E20E00		005735							00246		00000	£11000		0	5	101010	220400		517600	010773	000133	10010	000173		ES1000 1	40000									000000000000000000000000000000000000000			00000
-		n 0	8	0	0	5	20	8	00	•	~ '		•			-	0		50					•	0	10 70		o	10 50	•	1			11 88	•	e	13 00	•	74 00		<u>.</u>	04 20	-	Ξ	Ξ	2	2			ŝ	8	-
ő		10110	00.557	7777	15500	00000	00533	00554	00013		20000	0110			00554	00000	0000		00000	0000	0000	1000		1000	5	10000		057	0030	0.00	-			100	0074	0	1000		010			00000									. 6	0
ייר	• •	•	e -0	•	•	~	~	•	4	ļ	2	.	- ;		12	22	12			•	N (• •	,	•			•	ĩ	0				1			-		0 25	•			N 0	•	~	•	•		:	 	. ~* > 0	- 0
NARE AUT		n 1	05550	1 M R	1	÷	•	÷	•		6	0565	999		1 4 5 0	0572	0573		005740	5750	9 1 6 0 1 6 0				0403			9604	000020	0000				000110	0612	0613	141400		000130		• •		1	2	2	2	2		42400		1640	0032

	PAGE 057	COMMENTS				NEXT					•		PICK UP ADDRESS OF P	NEXT REFERENCE C		-	The Entry I'v TABLE C						ON THIS LINE			CHARGE PAGE ROUTINE \$				TALLY		LINE		Talluar Furthers on Lat	Ζ.		TALIZER FOR ABOV	GE ROUTINE						FRITE FAGE CHANGE P	LAGE C			-	Breff - the T V		SALT'E PAGE CHANGE		
2	-	N B ADDREAD	h (15 00003	9 00000 e		70 . 1.4		÷	TENPI			70 47					T AND INITIALIZE FOR	OUTK	5	#000030# 1	50 aT		•	0075					0U14											CHP4, R-1	HDC12+6	010000	. 1.5				h	CU15				
							0CT 0.0004		TC OUT	TA C25		TC ENDCC								TCT CPLN1									_	TCT DITTA						DAr 00000						25 H C 12 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 1 4				ō	TC 77777		Ì (
	Sed # Tie	024430			024440	024470	024480	024490	024500	015450	024520		U28540 524 Dalero	024540	024570 CZ5		056590	024400	024410 QUT	024420	064420					026690 0011	•	024710	024720 0UT2	024730	026740 0UTX D34260 0UTX	024760	026770	024760 OUT4	026790 0UT4A	024800 0UT5 024810 0UT5	2	02410 02420	024740	024150	04440			024900	026910	026920	026430	054940		024960 CHPK		C 2 6 4 9 0	627r00
		1024 05	2000	1 1000			0004 70	6440 00	5	6440 00				6260 00	0133 00 007453		6140 00 000000		0243 00	4460		-00 1001			6730 60 000000 6730 60 000000	6440 00 010000	4057 00 006625	0177 00 000000	02n0 00 010367	6/14 00 000/10		0002 00 00000	6630 00 00000	101010 10 10101	0014 01 010101	0000 01 010101 0000 01 010101		243 00 007100	204 00 011031	7 A 6 00 600000				170 00	02 190	577 ac raoron	57 60 607n65		724 00 006720	7777 35 500000 20000 55 500000		00.02 00	
AUT	HSH OP	1330 22 0	1340 22 0	1350 22 0	000300 44 00	•	04370 22 0	006400 72 00	06410 71 0	0 9 9 0 2 9 0				06450 71 0	006460 44 00		006470 71 00		00 62 00600	10 23 01200			06550 41 00		06570 71 00	0000 71 00	04410 22 00	04420 12 01	000000000000000000000000000000000000000			06670 03 00	06700 71 00	06710 01 00	00100100			0 52 06130	06740 51 0	0 21 0 21 0 0			07010 22 0	07120 12 0	07030 22 0	C7r40 12 0	01150 22 0	07760 12 0	0 62 UJC/0		07120 02 0	07130 03 00	c7140 c2 01

P.4.6E 058	COH E		-			REFERENCE LISTING 7	PAGE CHANGE	щ	HERE WRITTEN FOR THE C	U		FOR EDITING PURPOSES C		BRITG BACK SEGHELT 5 P					2			SUBROUT INE					LESSIT ZEN 1400E EXTRA 15221101011405		•	MSC OF TABLE		A 1 A HEADER																		
SE	E ALDRESS			7601010101012075		END OF CROSS	•		6,14			~ •	c10700	S ENDRJO	-	+ 3/7			570 01 PASS 1		ENDCCB	010000							END SEG					a / a		* 0*	TROSS REFERENCE		LISTING		DATE			PAGE		ы 7475			а 76	
1/Dr X 4000-501	OP A ADDEESS N													RIS LEADS		57r • 2	TC 0(0340	00 F0732					007 774 22		TC • 2 • 010000		DAC Dr0224	DAC 000034			DAT 00014	DAR 1 DAR 120.200	· I		CON 01	CON 01	SLC HPC1,50	CON 13					545 HPC1,112			500 02 604 02		DAR 130,200		
	SEO # TAG	027-10	C27-20										027130	027140						021120	027170 ENDCCA	027150	027190	027200	027210	027230 ENDECE		027250 MTL			027290 DFF1	027300	027320	021330	027340	027350	027360	UZ7370	027360		051390	1130H 001/20	027410	027420 HDC12		027430	027450	027460 HDC2	047420	
NAVE AUTOFLOF	ŝ	1 13 ACAGAZ AC CO			067170	rc72rd	•	07210 71 007360 00	00 ZE0110 ZZ 02235	10 EUZIOO Z 0EZIO	17240 72 051207 CC		001270 71 007360 00 00000 027300 75 00000 00 010000		07310 72 GF1167 0C	320 24 007345 00	07330 71 000340 00	007340 00 007450 00 00000	07350 CO 000005 0C		360 25 000243 00	170 71 007430 0C	100 22 004057 0C	110 12 007170 00	120 71 007440 DC		10 000010 01	007454 01 000034 01 010101	460 P1 000010 01	050 444 ri nilo50 ol 0101	170 01 000014 01 010	66	5	007577	07600	•		34441417636.14.14	4 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20	0153504263505546			43406344	007760	57404644		007772	010000		

3,533,086

	PEO E TAG	OP A ADDERC	3	sever orte 11403	PAGE 059
	027490	Cov 15	z	PAGE BOX TAG	COMMENTS
214046440141365701010101634046 027500	7101634046 027500				
* 1 4 2 4 5 4 4 1 4 4 5 5 4 2 4 4 4 4	027510	CON		REFERENCES	
	027520				
	027530				
	022540		~	7475	
	027550 CPLN				
	027560	ALT COLOURS			DUTPUT AREA
	027570		ı		
	027580	SLC CPLVAR 1	•	2	
	027590	CON 02			
	027600 CPLN1	DAC CPLV	7		
	027610	DAR 2.0			
	80138				FOR PATCHES
01	1010101010101	0101010101			
	#0139	CON 2700			
23	CSESESESESES	232323222			000
	80140	CON 03+1		00001	
	1910#	CON 03.1	1		
	#0142	CON DI			
	64104		1 1		
	#0144				
	#0142		• •	20000	
	20145		ł		
			n	11	
		Con ol	3	22	
		CON 01	11	73	
4 3 5 1 X 5	4 7 I D #	CON DO		5-5	
		,			
	10150	C04 02	ų	c101	
	20151	C04 01	2		
	#0152	CON OTAL	. 3		
	ES107	CUN 01			
	#0154	CON 03.1			
	80145				
	20154		d. 1	8284	
10 00000 00 00 00000			Ħ	23	

 $\mathbf{5}$

/hat is claimed is:

. For use in a system for automatically controlling imputer having a storage, a processor, an output unit, control apparatus for controlling the operation of

processor, storage and output unit to perform iences of operations on blocks of data in the form coded digital signals stored in said storage and repreing successive instructions of various types of a comer program including process, unconditional transfer

conditional branch instructions; means for directing 10 operation of said control apparatus to process said a blocks sequentially and to produce a record of a

v chart representative of said program, the method said directing means comprising:

- rocessing said data blocks to identify the types of 15 instructions represented thereby and to establish flow chart symbols therefor;
- llocating successive ones of said symbols forming a main flow and branch sequences of the computer program as arrays in sections of each of successive 20 flow chart pages;
- dentifying branch sequences of the computer program associated with branch instructions of said main flow sequences and initiating said allocating of successive symbols of said branch sequences to other sections 25 of the associated flow chart pages to form a symbol array with said main flow array; and producing a record of said symbol arrays in successive flow chart pages in accordance with the allocation thereof including producing chart indications of the relation- 30 ships of branch and main flow symbols.

2. The directing means having the method as recited claim 1 wherein the identifying of said branch juences includes identifying sub-branch sequences of computer program that are associated with branch 35 structions of said branch sequences and allocating sucssive symbols of said sub-branch sequences to other ctions of the associated flow chart page to form a

mbol array with the branch symbol array. 3. The directing means having the method as recited 40claim 2 wherein said allocating includes forming

usters of main flow and branch sequences with each uster being formed as a sequence of main flow symbols id available sequences of branch and sub-branch symis associated with branch instructions of said main 45ow and branch sequences, respectively, and allocating

id clusters successively to said chart pages. 4. The directing means having the method as recited claim 1 and further comprising:

determining the amount of page space required for 50 each of said symbols;

- identifying chains of said symbols occurring between successive transfer instructions and determining the amount of page space required for the symbols of 55each chain;
- and wherein said branch sequence identifying includes determining in connection with each branch instruction of the main flow whether the page space required for the symbols of the associated branch chain fits within the space of an unallocated section of 60 the associated chart page.

5. The directing means having the method as recited 1 claim 2 and further comprising:

- determining the amount of page space required for 65 each of said symbols;
- identifying chains of said symbols occurring between successive transfer instructions and determining the amount of page space required for the symbols of each chain:
- 70wherein said branch sequence identifying further includes determining in connection with each branch instruction of the main flow and branch chains whether the page space required for the symbols of the associated branch and sub-branch chain, respec- 75 ducing includes producing from said identifying portions

tively, fits within the space of an unallocated section of the associated chart page.

6. The directing means having the method as recited in claim 4 wherein said allocating includes, upon allocating a branch instruction symbol, determining the fit of branch chain. а

7. The directing means having the method as recited in claim 6 wherein said branch symbol allocating is performed upon the allocating of a branch instruction of the main flow sequence, and said main flow symbol allocating continues upon the completion of the branch chain allocation.

8. The directing means having the method as recited in claim 6 wherein said branch symbol allocating is performed upon the completion of a page section of main flow allocating.

9. The directing means having the method as recited in claim 6 wherein said data block processing includes scanning a predetermined field of each of said data blocks to establish different flow chart symbols therefor or to reject said data block, respectively, in accordance with different coded signal groups in said field, and extracting coded signal portions from said field for certain types of instructions; and wherein said record producing includes means for producing indications on said chart representative of the extracted signal portions.

10. For use in a system for automatically controlling a computer having a storage, a processor, an output unit, and control apparatus for controlling the operation of said processor, storage and output unit to perform sequences of operations on blocks of data in the form of coded digital signals in a certain format stored in said storage and representing successive instructions of various types of a computer program including process, uncon-ditional transfer and conditional branch instructions; a method for directing the operation of said control apparatus to process said data blocks sequentially and to produce a record of a flow chart representative of said program, said method comprising:

- processing said data blocks successively included scanning predetermined fields of each of said data blocks to establish a flow chart symbol therefor or to reject said data block, respectively, in accordance with different coded signal groups in said fields;
- allocating successive ones of said symbols forming a sequence of the computer program as an array and allocating each of successive ones of said sequences as an array in a section of each of successive flow chart pages;
- and producing a record of said symbol arrays in successive flow chart pages in accordance with the allocation thereof.

11. The method as recited in claim 10 wherein said scanning of said data block field includes establishing different flow chart symbols in accordance with different coded signal groups in said field.

12. The method as recited in claim 10 wherein said scanning of said data block field includes extracting from said data block field a coded signal portion representing an instructional commentary and extracting therefrom a coded signal portion representing a supplementary commentary to append it to the extracted portion of a preceding data block, respectively, in accordance with different coded signal groups in said field; and wherein said record producing includes producing symbols with representations of said commentary portions set forth therein and of variable size in accordance with the lengths of the commentary portions.

13. The method as recited in claim 10 wherein said scanning of said data block field includes identifying the types of instrutcions represented by said data blocks and extracting from said data block field for transfer and branch instructions; a coded signal portion identifying the transferee instruction; and wherein said record prod-

indications of the relationships of the transferor and transferee symbols.

14. The method as recited in claim 10 wherein said scanning of said data block field includes identifying the types of instructions represented by said data blocks and extracting from said data block field for branch instructions a coded signal portion identifying the operational conditions of the branch instruction; and wherein said record producing includes producing from said identifying portion labels of the branch conditions at the associated 10 branch instruction symbol.

15. For use in a system for automatically controlling a computer having a storage, a processor, an output unit, and control apparatus for controlling the operation of said processor, storage and output unit to perform sequences 15of operations on blocks of data in the form of coded digital signals stored in said storage and representing successive instructions of various types of a computer program including process, unconditional transfer and conditional branch instructions; the method of directing the 20operation of said control apparatus to process said data blocks sequentially and to produce a record of a twodimensional flow chart representative of said program, said method comprising:

- processing said data blocks to identify the types of in- 25 structions represented thereby and to establish flow chart symbols therefor;
- forming sequences of successive related symbols and allocating some of said sequences as arrays in sections of successive flow chart pages;
- identifying branch sequences associated with branch instructions of others of said sequences and allocating said branch sequences to other sections of the associated flow chart pages to form two-dimensional arrays:
- and producing a record of said symbol arrays in successive flow chart pages in accordance with the allocation thereof including producing chart indications of the relationships of branch sequences to the associated branch instruction symbols.

16. The method as recited in claim 15 wherein said sequence forming and allocating allocates the symbols of said sequences in an order corresponding to that of said data blocks and said branch sequence identifying and allocating includes allocating said branch sequence sym- 45 bols subsequent to the allocation of and on the same page as the associated branch instruction.

17. In a data processing system for producing flow charts of a computer program and having a storage, a processor, an input and an output unit, and control ap- 50 paratus for controlling the operation of said processor, storage and input and output units to perform sequences of operations on input blocks of data in the form of coded combinations of digital signals stored in said storage and representing successive operations of various 55 types employed in a computer program, including conditional branch instructions;

- said control apparatus being operative with said processor and storage for determining the size of page space to display flow chart symbolic repre- 60 sentations of said data blocks and of one-dimensional arrays of said symbolic representations in relation to subdivisions of a flow chart page, and operative with said processor and storage for allocating successive ones of said symbolic representations of a one-dimen- 65 tional array thereof to sections of a flow chart page, and operative with said processor and output unit for producing an output record of pages of said one-dimensional flow chart arrays;
- control means for directing the operation of said data 70 processing system to produce an output record of a two dimensional flow chart representative of said computer program, the method of said flow chart control means comprising:

one-dimensional branch sequence arrays having symbolic representations for data blocks referenced by said branch instruction data blocks of parent sequences to unallocated sections of the same pages as the parent one-dimensional arrays that include said branch instruction representations;

producing an output record of successive flow chart pages in accordance with said allocations of said one-dimensional sequence arrays and said one-dimensional branch sequence arrays with chart indications of the relationships of the symbolic representations of the branch sequence arrays to those of the associated branch data block representations in the parent arrays on the same pages; whereby clusters of one-dimensional arrays and associated one-dimensional branch arrays are formed each for display on a page to provide a two-dimensional flow chart display.

18. The method as recited in claim 17 wherein said initiating of said allocating includes initiating allocating of one-dimensional sub-branch sequence arrays having symbolic representations for data blocks referenced by said branch instruction data blocks of parent branch sequences to unallocated sections of the same pages as the parent branch arrays that include said branch instruction representations; and producing records of said pages in accordance with the allocations of said sub-branch arrays and in relation to parent arrays on the same pages; whereby clusters may be formed with sub-branch arrays.

19. For use in a data processing system having a storage, a processor, an input and an output unit, and control apparatus for controlling the operation of said processor, storage and input and output units to perform sequences of operations on input blocks of data in the form of coded combinations of digital signals stored in said storage and representing successive operations of various types of a program including branch operations,

- an automatic control method for directing the operation of said data processing system to process said data blocks sequentially and to produce a record of a two-dimensional flow chart representative of said program for reproduction on a rectangular page of a known size in a plurality of similar rectangular columns, said automatic control method comprising:
 - processing said data blocks to establish flow chart symbolic representations thereof for display within a width corresponding to that of one of said columns, including processing sequences of said data blocks of varying lengths to form onedimensional arrays of said symbolic representations for display within said column width;
 - allocating to the columns of said flow chart pages said one-dimensional arrays for parent sequences of said program, including identifying branch ones of said one-dimensional arrays for data block sequences having operations referenced by branch operations of said parent sequences and having lengths that fit within unallocated portions of said columns on the same pages as said parent arrays and allocating the identified branch arrays to said unallocated column portions; and producing an output record of successive flow chart pages in accordance with the allocations of said parent and branch arrays with chart indications of the relations of associated parent and branch arrays on the same pages; whereby clusters of parent and branch arrays are formed for a two-dimensional flow chart display.

20. An automatic control method for a data processing system as recited in claim 19, wherein said allocating includes identifying sub-branch ones of said one-dimeninitiating operation of said allocating to allocate 75 sional arrays for data block sequences having operations erenced by branch operations of said branch sequences having lengths that fit within unallocated portions of t columns on the same pages as said branch arrays and icating the identified sub-branch arrays to said unicated column portions; and said output record proing includes producing records of said pages in acdance with the allocations of said sub-branch arrays h chart indications of the relations of associated branch sub-branch arrays on the same pages.

I. An automatic control method as recited in claim wherein said data block sequence processing to form -dimensional arrays includes determining the column gth of each of said arrays in terms of lines of a page imn for display of the symbolic representations thereand determining the line length of each of said symic representations from the associated data blocks.

2. An automatic control method as recited in claim wherein said data block sequence processing further ludes storing in said storage a table of identifiers for 1 data block sequences including an identifier for the 20 umn lengths determined for the associated one-dimenial arrays; and said allocating includes determining

unallocated column lengths, locating within said age table said identifiers of branch sequences and aparing the column lengths thereof with the unallo- 25 ed lengths.

13. An automatic control method as recited in claim wherein said sequence processing includes identifying h of said data blocks representative of operations of ertain type and generating said sequence identifiers 30 each group of sequential data blocks between sucsive ones of said certain type, whereby data block uences of varied lengths are automatically formed in ordance with the character of the program.

14. An automatic control method as recited in claim 35 wherein said allocating and said column length coming include allocating a portion of a one-dimensional ay to one column and a remaining portion of the array a succeeding column, and generating and allocating a ibolic representation of a connective relation between 40 J array portions, whereby an array that exceeds the ullocated column length may be broken in portions display in separate columns.

- **:5.** An automatic control method as recited in claim wherein said table storing includes storing a table of $_{45}$ identifiers of data blocks in said branch sequences
- erred to by branch operations of said parent sequences; aid allocating further includes supplying to said tag table identifiers of page allocations of the symbolic
- table identifiers of page allocations of the symbolic representations in said branch arrays for the tag $_{50}$ data blocks;
- and allocating symbolic representations of connective relations between the associated referring and tag symbolic representations in the parent and branch 55arrays.

16. An automatic control method as recited in claim wherein said connective relation generating includes ierating connector line symbols where the referring i tag symbolic representations are on the same page 60 l in suitable relation, and generating and allocating inector symbols at the parent referring symbolic repentations and recording thereat identifiers of the page scations of the associated tag symbolic representations
65

27. An automatic control method as recited in claim wherein said allocating further includes supplying to 1 tag table identifiers of page allocations of parent erring symbolic representations associated with tag abolic representations; 70

and said output record producing further includes producing a record for each tag data block of page allocations of all associated referring symbolic representations.

18. For use in a data processing system having a 75

storage, a processor, an input and an output unit, and control apparatus for controlling the operation of said processor, storage and input and output units to perform sequences of operations on input blocks of data in the form of coded combinations of digital signals stored in said storage and representing successive operations of various types of a program including branch operations;

- an automatic control system for directing the operation of said data processing system to process said data blocks sequentially and to produce a record of a two dimensional flow chart representative of said program for reproduction on a page of a known size, the method of said automatic control system comprising:
 - processing said data blocks to identify the types of operations represented thereby and to establish flow chart symbols therefor;
 - identifying sequences of said data blocks and storing in said storage a table of identifiers of said data block sequences, said identifying including determining the size of a one-dimensional array of the symbols for each of said data block sequences in relation to subdivisions of a flow chart page;
 - allocating successive ones of said symbols for parent and branch sequences of the program as parent and branch-sequence arrays, respectively, in sections of each of successive flow chart pages, including locating within said storage table branch sequences of the program associated with branch operations of said parent sequences and of sizes that fit within unallocated sections of the associated pages and initiating the operation of said allocating means to allocate successive symbols of the associated branch sequence arrays to other sections of the associated flow chart pages to form a twodimensional array with said parent array;
 - producing a record of said symbol arrays in successive flow chart pages in accordance with the allocations thereof including producing chart indications of the relationships of branch and parent symbols;
 - whereby flow chart records are produced with parent and branch arrays on the same pages and corresponding to parent and branch sequences of data blocks in different sequential locations in said program.

29. The method of an automatic control system for a data processing system as recited in claim 28, wherein said sequence identifying includes generating said sequence identifiers for each group of sequential data blocks between successive ones of a certain type of operation, whereby data block sequences are automatically formed in accordance with the program.

30. In a method of controlling a data processing system to produce flow charts of a computer program, said system having a storage, a processor, an input and an output unit, and control apparatus for controlling the operation of said processor, storage and input and output units to perform sequences of operations on input blocks of data in the form of coded combinations of digital signals stored in said storage and representing successive instructions of various types of a computer program, including transfer instructions;

wherein the size of page space for reproducing flow chart symbolic representations of said data blocks and of sequences of said symbolic representations is determined in relation to subdivisions of said flow chart page, successive ones of said symbolic representations of any array thereof are allocated to sections of said flow chart pages, and a record of said pages of arrays is produced by means of said output unit;

the method of directing the operation of said data

processing system to produce a record of a two-dimensional flow chart representative of said computer program, said method comprising:

forming chain sequences of said data blocks;

allocating chain sequences of said data block representations to certain sections of said pages;

- allocating chain sequences of said data block representations associated with transfer instructions of previously allocated chain sequences to unallocated sections of the same pages;
- and producing a record of successive flow chart pages ¹⁰ in accordance with said chain sequence allocations with chart indications of the relationships of the transfer chain sequences to the associated transfer instruction data block representations. ¹⁵

¹⁵ 31. The method set forth in claim 30, wherein said step of forming chain sequences includes determining the page space size thereof in relation to said page subdivisions; and wherein said step of allocating transfer chain sequences includes the step of first determining whether the page sizes thereof are within those of the unallocated page sections.

32. The method set forth in claim 30, wherein said transfer instructions of the previously allocated chain sequences are conditional transfer instructions; and

wherein said step of forming chain sequences includes forming chain sequences between successive unconditional transfer instructions.

33. The method set forth in claim 32, wherein said step of forming chain sequences includes forming a plural- 30 ity of shorter chain sequences from a longer chain sequence; and identifying on said pages the sequential relationships of the shorter chain sequences.

34. A data processor method of automatically producing two-dimensional flow charts of operations of a com- 35 puter program, each of said program operations being represented by an input block of data in the form of coded combinations of digital signals; said method being performed with a digital computer and comprising:

- forming signal records of sequence chains of flow chart ⁴⁰ symbols, each of said chains being representative of a different sequence of said data blocks;
- allocating some of said sequence chains together with associated branch path ones of said sequence chains to portions of the same flow chart pages;
- and identifying interrelationships of said sequence chains and the associated branch path sequences.

35. A data processor method as set forth in claim 34, wherein said step of chain allocating includes the step of allocating sub-branch path sequence chains to portions of the same flow chart pages to which associated branch path sequence chains are allocated.

36. A data processor method of automatically producing two-dimensional flow charts of operations of a computer program, each of said program operations being represented by an input block of data in the form of coded combinations of digital signals; said method being performed with a digital computer and comprising:

- forming signal records of sequence chains of flow chart 60 symbols, each of said chains being representative of a different sequence of said data blocks;
- allocating clusters of interrelated ones of said sequence chains to flow chart pages; and identifying interrelationships of said sequence chains in each of said clusters.

37. A data processor method as set forth in claim 36, wherein said cluster allocating step includes allocating a cluster to each flow chart page; and assembling clusters from said sequence chains associated in the same data block sequence chains and in branch and sub-branch sequence chains.

38. A data processor method as set forth in claim **37**, wherein said cluster assembling step includes forming a 75

plurality of shorter sequence chains from a longer sequence chain.

39. A data processor method as set forth in claim **38**, wherein said cluster assembling step includes assembling a cluster from at least one sequence chain and at least one associated branch sequence chain of combined page space within the space size of said chart pages.

40. A data processor method as recited in claim 36, wherein said program operations include transfer operations; and the step of forming records of sequence chains includes forming sequence chains as a sequence of flow chart symbols between successive transfer operations.

41. A data processor method as recited in claim 36, and further comprising producing from said signal records a display of said flow chart symbols on successive rectangular pages each comprising a plurality of rectangular columns with each column being of a width suitable for display of various ones of said symbols;

and wherein said step of allocating clusters of sequence chains includes allocating branch path ones of said interrelated sequence chains having lengths that fit within unallocated portions of said columns on the same pages.

42. A data processor method as recited in claim 37, 25 and further comprising producing from said signal records a display of said flow chart symbols on successive rectangular pages each comprising a plurality of rectangular columns with each column being of a width suitable for display of various ones of said symbols;

and wherein said step of assembling clusters includes incorporating in a cluster a sequence chain and associated branch and sub-branch chains having lengths that fit within portions of said columns on the same page.

43. A data processor method as recited in claim 34, wherein said program operations include transfer operations; and the step of forming records of sequence chains includes forming sequence chains as a sequence of flow chart symbols between successive transfer operations.

40 44. A data processor method as recited in claim 34, and further comprising producing from said signal records a display of said flow chart symbols on successive rectangular pages each comprising a plurality of rectangular columns with each column being of a width suitable for 45 display of various ones of said symbols;

and wherein said step of allocating sequence chains includes allocating those of said associated branch path sequence chains having lengths that fit within unallocated portions of said columns on the same pages.

45. A data processor method as recited in claim 35 and further comprising producing from said signal records a display of said flow chart symbols on successive rectangular pages each comprising a plurality of rectangular columns with each column being of a width suitable for display of various ones of said symbols;

said step of allocating branch and sub-branch sequence chains including the allocating of those of said associated branch and sub-branch chains having lengths that fit within unallocated portions of said columns on the same page.

References Cited

Krider, L., A Flow Analysis Algorithm, Journal of the Association for Computing Machinery, vol. II, No. 4, October 1964, pp. 429–436.

IBM 7070/7074 Autochart Programming System, file No. 7070/7074-48, Form C28-6772-1, IBM Corp., Feburary 1964.

Scott, A. E., Automatic Preparation of Flow Chart Listings, Journal of the Association for Computing Machinery, January 1958, pp. 57-66.

(Other references on following page)

175 References Cited

Knuth, D. E., Computer Drawn Flow Charts, Comnications of the ACM, September 1963, pp. 555-563. Anderson, H. E., Automated Plotting of Flow Charts a Small Computer, Communications of the ACM, 5 warv 1965, pp. 38-39.

uary 1965, pp. 38–39. Jant, W. T., Flow Outlining---A Substitute for Flow arting, Communications of the ACM, November 1959, 17.

iaalbach, C. P. and Sapovchak, B. J., The Flow Chart 10 gram, Proceedings of 4th Annual Meeting of UAIDE, ober 1965, pp. XXII-1—XXII-8.

176

Haibt, Lois M., A Program to Draw Multilevel Flow Charts, Proceedings of the Western Joint Computer Conference, 1959, pp. 131-137.

Hain, G. and Hain, K., Automatic Flow Chart Design, Proceedings of ACM Conference, August 1965, pp. 513-523.

Hain, G. and Hain, K., A General Purpose Automatic Flow Charter, Proceedings of 4th Annual Meeting of UAIDE, October 1965, pp. IV-1—IV-11.

RAULFE B. ZACHE, Primary Examiner