wo 2023/098302 A1 | NI 0000 AR 0 00 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
08 June 2023 (08.06.2023)

(10) International Publication Number

WO 2023/098302 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(71)

(72)

International Patent Classification:
GO6F 8/72 (2018.01)

International Application Number:
PCT/CN2022/124669

International Filing Date:

Indiranagar-koramangala, Intermediate Ring Rd., Banga-
lore, KA 560071 (IN). SINGHEE, Amith; IBM India,
G2 8th Floor, Outer Ring Road, Embassy Manyatha B,
Rachenahalli & Nagawara Villages, Bangalore, KA 560045
(IN).

(74) Agent: CCPIT PATENT AND TRADEMARK LAW
11 October 2022 (11.10.2022) OFFICE; 10/F, Ocean Plaza, 158 Fuxingmennei Street,

Filing Language: English Beijing 100031 (CN).
Publication Language: English (81) Designated States (unless otherwise indicated, for every
Priority Data: kind of national protection available). AE, AG, AL, AM,
y ’ AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
17/538,355 30 November 2021 (30.11.2021) US CA. CHL. CL. CN. CO. CR. CU, CV. CZ. DE, DJ, DK, DM,
Applicant: INTERNATIONAL BUSINESS DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
MACHINES CORPORATION [US/US]; New Orchard HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
Road, Armonk, New York 10504 (US). KG, KH, KN, KP, KR, KW,KZ, LA, LC,LK,LR, LS, LU,
. LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
Applicant (for MG only): IBM (CHINA) CO., LIMITED NI, NO, NZ. OM. PA. PE, PG, PH, PL. PT. QA. RO, RS,
[CN/CN]; 7F, Bldg 10, Zhangjiang [nnovation Park, 399 RU, RW, SA., SC, SD, SE, SG. SK. SL. ST, SV, SY, TH.
Keyuan Road, Zhangjiang High-tech Campus, Pudong New TJ, TM. TN, TR, TT. TZ, UA, UG, US, UZ, VC, VN, WS,

Area, Shanghai 201203 (CN). ZA.ZM. ZW.

Inventors: TAMILSELVAM, Srikanth Govindaraj; (84) Designated States (unless otherwise indicated, for every

IBM India, G2 8th Floor, Outer Ring Road, Embassy
Manyatha B, Rachenahalli & Nagawara Villages, Banga-
lore, KA 560045 (IN). DESALI, Utkarsh Milind; Embassy
Golf Links, Embassy Cypress Pt, D Block, Ground Floor,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: IDENTIFYING MICROSERVICES FOR MONOLITH APPLICATION THROUGH STATIC CODE ANALYSIS

Perform a Static Code Analysis to Extract
Multiple Features of a Monolith Application

802

¥

Partition Code Elements of the Monolith
Application Into Multiple Groups Using an
Agglomerative Clustering Process, Wherein the
Agglomerative Clustering Process is Based on the
Extracted Multiple Features and a Set of
Clustering Metrics

— 604

!
L2

Obtain at Least One Weight Corresponding to One
of More of: at Least One of the Mulliple Fealures
and at Least One of the Multiple Groups

L— 606

!
L 2

Adjust the Multiple Groups Based at Least in Part

608

on the at Least One Weight

v

Generate a List of Candidate Microservices for
the Monolith Application, Wherein Each Candidate
Microservice in the List Corresponds {o a Diffsrent

One of the Multiple Groups

610

!
¥

Qutput the List of Candidate Microservices to
at Least One of a System and a User

812

FIG. 6

(57) Abstract: Methods, systems, and computer program products for identifying
microservices from a monolith application through static code analysis are pro-
vided herein. A method includes performing a static code analysis to extract mul-
tiple features of a monolith application; partitioning code elements of the mono-
lith application into multiple groups using an agglomerative clustering process,
wherein the agglomerative clustering process is based on the extracted multiple
features and a set of clustering metrics; obtaining at least one weight correspond-
ing to one or more of: at least one of the multiple features and at least one of the
multiple groups; adjusting the groups based on the at least one weight; generat-
ing a list of candidate microservices for the monolith application, wherein each
candidate microservice in the list corresponds to a different one of the adjusted
multiple groups; and outputting the list of candidate microservices to at least one
of a system and a user.

[Continued on next page]

WO 2023/098302 A1 |10} 00 00 00RO 0 DTS00 O

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, IR, HU, IE, IS, IT, LT, LU, LV,
MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

IDENTIFYING MICROSERVICES FOR MONOLITH APPLICATION
THROUGH STATIC CODE ANALYSIS

BACKGROUND
[0001] The present application generally relates to information technology and, more particularly, to

modernizing applications.

[0002] Organizations are increasingly attempting to refactor monolith application architectures into
microservice architectures as part of their journey to the cloud. Generally, refactoring a microservice
architecture involves partitioning the software components into finer modules such that development
of the modules can happen independently. Microservice architectures provide natural benefits when
deployed in the cloud since resources can be allocated dynamically to necessary components based

on demand.

SUMMARY
[0003] In one embodiment of the present disclosure, techniques for identifying microservices for a
monolith application through static code analysis are provided. An exemplary computer-implemented
method includes performing a static code analysis to extract multiple features of a monolith
application; partitioning code elements of the monolith application into multiple groups using an
agglomerative clustering process, wherein the agglomerative clustering process is based on the
extracted multiple features and a set of clustering metrics; obtaining at least one weight corresponding
to one or more of’ at least one of the multiple features and at least one of the multiple groups; adjusting
the multiple groups based at least in part on the at least one weight; generating a list of candidate
microservices for the monolith application, wherein each candidate microservice in the list
corresponds to a different one of the adjusted multiple groups; and outputting the list of candidate

microservices to at least one of a system and a user.

[0004] Another embodiment of the present disclosure or elements thereof can be implemented in the
form of a computer program product tangibly embodying computer readable instructions which, when
implemented, cause a computer to carry out a plurality of method steps, as described herein.
Furthermore, another embodiment of the present disclosure or elements thereof can be implemented
i the form of a system including a memory and at least one processor that i1s coupled to the memory

and configured to perform noted method steps. Yet further, another embodiment of the present
1

10

15

20

25

WO 2023/098302 PCT/CN2022/124669

disclosure or elements thereof can be implemented in the form of means for carrying out the method
steps described herein, or elements thereof; the means can include hardware module(s) or a
combination of hardware and software modules, wherein the software modules are stored in a tangible

computer-readable storage medium (or multiple such media).

[0005] These and other objects, features and advantages of the present disclosure will become
apparent from the following detailed description of illustrative embodiments thereof, which is to be

read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 is a diagram illustrating a system architecture in accordance with exemplary

embodiments;

[0007] FIG. 2A shows an example of a usage matrix in accordance with exemplary embodiments, and
FIG. 2B shows an example of a path co-occurrence matrix in accordance with exemplary

embodiments;

[0008] FIG. 3 is a graph showing class usage information of a monolith application in accordance

with exemplary embodiments;

[0009] FIG. 4 shows a dendrogram generated for the monolith application associated with FIG. 3 in

accordance with exemplary embodiments;

[0010] FIG. 5 shows a modified version of the dendrogram from FIG. 4 in accordance with exemplary

embodiments;

[0011] FIG. 6 is a flow diagram illustrating techniques for identifying microservices for a monolith

application in accordance with exemplary embodiments;

[0012] FIG. 7 is a system diagram of an exemplary computer system on which at least one

embodiment of the present disclosure can be implemented;

[0013] FIG. 8 depicts a cloud computing environment in accordance with exemplary embodiments;

and

[0014] FIG. 9 depicts abstraction model layers in accordance with exemplary embodiments.

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

DETAILED DESCRIPTION
[0015] A monolith application generally refers to an application that is built as a single unit. For
example, a monolith application may include a database, a client-side user interface, and a server-side
application server, where all of the functions are managed and served in one place. Accordingly,
monolith applications often have a large and complex code base. Developers making changes or

updates to the application must all access the same code base.

[0016] In a microservice architecture, the application is broken down into a number of microservices,
where each microservice carries out a process of the application. The microservices can communicate
with each other via application programming interfaces (APIs). In contrast to monolith architectures,

each microservice can be updated or deployed independently.

[0017] Application refactoring refers to a process of rewriting one or more components of an
application, for example, in order to make the application cloud enabled, or to convert the application

from a monolith application to an application that uses a microservice architecture.

[0018] There are many technological challenges associated with refactoring monolith application. For
example, users might not be willing to give access to their application runtime or might not be ready
to share the application code. Also, a bottom-up approach to refactoring an application is also difficult
since it is harder to understand domain model boundaries on already implemented applications.
Generally, it 1s easier to define interfaces and identify bounded context, and then design microservices.
Obtaining and incorporating user feedback throughout the refactoring stages is also difficult. Further,
there is a lack of control in clustering of classes, which can lead to inadequate explanations on why

certain classes are grouped together.

[0019] It 15 desirable to have control over the microservices as the current implementation of an
application may differ from the actual business context planned. Also, strangler patterns are often
used to modernize module by module. Therefore, it 1s important to incorporate feedback of subject

matter experts (SMEs), for example, on changes and/or selection of modules.

[0020] As described herein, exemplary embodiments of the present disclosure include techniques for
an agglomerative clustering process that generates hierarchical cluster representations (e.g.,
dendrograms) of a monolith application in a controllable and explainable manner. One or more
embodiments provide the hierarchical cluster representation based on weights for features of the
monolith application that are adjustable based on one or more clustering metrics. Also, the hierarchical
cluster representation can be used to provide insights into the importance of particular features, cluster

3

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

groups that come together to form candidate microservices, and properties of the dendrograms that

explain how classes of the monolith were separated.

[0021] Additionally, one embodiment may include providing an interactive system that assists in
determining microservices for a monolith application using static analysis. Such embodiments may
include, for example, infusing structural, semantic, and behavioral features, and performing metrics-
driven iterations for grouping code elements of the monolith application. Additionally, in some
embodiments, the grouping of classes is explainable based on dendrograms, and the grouping of
classes 1s controllable by at least one of: varying weights of the features and/or selecting particular

hierarchy of clusters (e.g., based on user input).

[0022] FIG. 1 shows a diagram illustrating a system architecture, according to an exemplary
embodiment of the present disclosure. The FIG. 1 example includes an automated microservices
identification system 102 comprising a feature determination module 104, a metric-based clustering
module 106, and a cluster explainability module 108. The automated microservices identification

system 102 obtains source code 112 of a monolith application.

[0023] The feature determination module 104 performs a static code analysis of the source code 112
to determine multiple features of the monolith application. For example, the static analysis may be
used to identify interactions between different code elements (e.g., classes), path cooccurrence of code
elements, transactions, and/or affinity of different code elements. For example, the feature
determination module 104 can compute inter-code element usage (ICU), path code element-
cooccurrence (PCC), transactions (TR), and code element affinity (CA), as explained in more detail

elsewhere herein.

[0024] The metric-based clustering module 106 uses the results of the feature determination module
104 to perform an agglomerative clustering process to generate groups of code elements. The groups
of code elements can be presented to the user in the form of candidate microservices 114, for example.
Optionally, the metric-based clustering module 106 can incorporate feedback 116 from a user, for
example, in the agglomerative clustering process. For example, the feedback may specify certain
criteria for grouping the code elements of the monolith application or specify certain metrics that
should be considered when performing the agglomerative clustering process. The metric-based
clustering module 106 may also generate dendrograms (e.g., a view showing hierarchy of clusters)

based on the agglomerative clustering process and, possibly, the feedback 116.

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

[0025] The cluster explainability module 108, in some embodiments, generates one or more cluster
explanations 118 based on the results of the metric-based clustering module 106. The one or more

cluster explanations 118 may be generated based on the dendrograms, for example.

[0026] According to some embodiments, code elements can be mapped to microservices based on the
programming languages of the code elements. For object-oriented languages (e.g., Java, C++, C#)
modules may include classes and interfaces, for example, and for procedural languages (e.g., COBOL,
PL/1) modules includes subroutines and programs, for example. Examples of semantic features may
mclude mapping of identifiers in the code to a feature space, e.g., using one or more machine learning
algorithms. In some embodiments, mapping of identifiers in the code to a feature space additionally
or alternatively be performed using one or more rules. As an example, COBOL program names may
have a pattern such that some substring in the name maps to an application functionality indicator.
Entry points may include service interfaces exposed by the application to be invoked by other
applications, the user interface, or by users, for example. Examples of entry points include REST API

endpoints, SOAP/WSDL services, and COBOL transaction entry points.

[0027] By way of example, assume an application comprises a Java monolith application. According
to some embodiments, a process for identifying microservices corresponding to the application, where

a code element corresponds to a Java Class File may include the following steps:

1. Computing and normalizing an inter-Code element usage (ICU) matrix.

2. Extracting a call graph based on an identified set of entry-points.

3. Identifying unique call-flow paths within the call graph.

4. Extracting and normalizing a path code element cooccurrence (PCC) matrix based on
the call-flow paths.

5. Optionally, identifying and extracting one or more additional feature (F;) matrices.

6. Computing a weighted combination of ICU and PCC using the following equation: Fy
=wp X ICU + w1 X PCC + wi X Fi, where wo, w1, and Wi correspond to configurable
weights.

7. Applying agglomerative clustering on the matrix, Fy.

[0028] FIG. 2A shows an example of an ICU matrix 200 in accordance with exemplary embodiments,
and FIG. 2B shows an example of a PCC matrix 210 in accordance with exemplary embodiments.
The example ICU matrix 200 shows usage information for a number of classes (i.e., c0,cl, ci, ...,

¢j). The example ICU matrix 200 indicates, for example, cO calls APIs in ¢l 3 times and ci calls APIs

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

in ¢j 2 times. The normalization factor may include the following: a global normalization factor
(Global: Z = max(ICU)), a local normalization factor (Local: Zi = max(ICUJi])), and a symmetric
normalization factor (Symmetric: Z1ij = max(ICU[1,:], ICUJ:,j])). Generally, normalization helps adjust
values to common scales such as when certain programs have higher interaction compared to the

average interaction between other programs.

[0029] The PCC matrix 210 in FIG. 2B shows call paths for classes in the ICU matrix 200.
Specifically, the PCC matrix 210 indicates that cO and ci occur in the same path three times, (i.e.,

PCC(0, 1) = 3). The PCC matrix 210 also indicates PCC(y, j) = 2, PCC(j, 1) = 2.
[0030] A metric-based microservice generation process, in some embodiments, can include:

1. Identifying a set of metrics of interest.
2. Identifying a set of high-usage classes, sorted by usage.
3. Removing the top i classes from the set of high-usage classes fori =1, ..., n (where n is
the number of clusters), and applying step 4 on the remaining classes.
4. Performing clustering by:
a) Selecting the submatrices from the feature matrices based on the remaining classes
b) Computing the weighted matrix Fy, = woFo + wiF1 + ... + WyFy
c) Applying agglomerative clustering and generate a dendrogram
d) Computing the metric values of the root node for the set of metrics
e) Computing the metric values of the children nodes
f) If metrics(children) > B * metrics(parent), split the cluster 0 < < 1
g) Repeat e) and f) while no clusters can be split further

h) Save the metric values, clusters and 1 as the best result so far

5. Repeat (3) and (4) while: metrics(i) * (%) > metrics(i— 1) * (\/11__1)
[0031] It is noted that in the above process B is a hyper-parameter that can be used to decide whether

to split the cluster.

[0032] Optionally, the above process can also include a step of enabling forced clustering based on

user input, e.g., from a SME.

[0033] Referring now to FIG. 3, this figure shows a bar graph 300 of class usage information of a
monolith application in accordance with exemplary embodiments. The x-axis of the graph 300

corresponds to the classes of the monolith application, and the y-axis corresponds to the usage of each

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

class. In this example, classes 1-6 have the highest usage. The usage information may be used to
cluster the classes in an explainable and controllable manner based in part on dendrogram
representations, such as by computing an affinity-based weighted matrix, selecting weights and
clustering parameters (e.g., via an automated and/or guided process), and leveraging characteristics

of agglomerative clustering to sperate utilities and rarely used classes in the monolith application.

[0034] For example, the classes in graph 300 can be sorted by usage, and the most used classes can
be removed while performing the clustering in step 4 of the metric-based microservice generation

process described above.

[0035] FIG. 4 shows a dendrogram 400 generated for the monolith application described in
conjunction with FIG. 3, in accordance with exemplary embodiments. The values on the x-axis
correspond to indices of the classes, and the y-axis corresponds to a metric-based score. In this
example, the metrics-based score is based on the ICU and the PCC. In the FIG. 4 example, it is
assumed a number of classes have been removed from the list of classes based on the usage (e.g.,
classes 1-6) shown in graph 300, and that wO 1s assigned a value of 0.5 and w1 is assigned a value of

0.5.

[0036] FIG. 5 shows another dendrogram 500 that has been updated relative to dendrogram 400 to
consider another metric, in accordance with exemplary embodiments. For example, the additional
metric may be an affinity metric, and the weights applied to the metrics may be updated as follows:
w0 =0.3, wl =04, and w2 = 0.3, where w2 1s applied to the affinity matrix. Thus, the dendrogram

500 shows the score based according to the assigned weights and the metrics.

[0037] 1t is to be appreciated a number of different metrics may be considered when clustering the

code elements including, for example:

1. Data independence: Measures percentage of single database accesses across partitions.

2. Transaction independence: Measures percentage of a sequence of database accesses
(transactions) across partitions.

3. Functional independence: Measure overlap of boundaries of domain model (generally
indicates level of independence of bounded context).

4. Semantic relatedness: Measures semantic relatedness of classes across the recommended
partitions.

5. Modularity. Measures the strength of division of a network into modules (e.g., partitions,

community).

WO 2023/098302

PCT/CN2022/124669

Cyclomatic complexity: Measures code complexity of individual implemented services.

Call dependencies (runtime):. Class call path and dependencies (temporal and higher order).

6
7. Data dependency. Measures dependency of data objects among classes and methods.
8
9

. Inter-partition call volume (runtime): Inter-partition call volume.

10. Business Context: Measures business context purity and involvement of a partition.

11. Self-encapsulation: Number of interface classes exposed.

[0038] By way of example, the following table provides explanations for at least some of the metrics

that can be considered when clustering the code elements:

Quality o
Metric Applicability Description
Aspect
Data Measures percentage of database tables that are
. Overall o
independence accessed by only one partition
Transaction Measures percentage of DB transactions call
) Overall N
independence sequence that span across partitions
. Individual Measures ratio of data objects scoped within a
Data Locality - N . . . o
Partition partition with objects escaping the partition
Inter-
partition call o -
. Pairwise Inter-partition call volume
Coupling volume
(runtime)
Measures the strength of division of a network
into modules (partitions, community).
Modularity Overall Effectively, captures class call path and
dependencies (temporal and higher-order,
static/runtime)
Self- Individual
. o Number of Interface classes exposed
encapsulation Partition
Domain Functional Overall Measures the number of partitions that
vera
Redundancy | independence contribute to a sub domain functionality

10

15

20

25

WO 2023/098302 PCT/CN2022/124669

Name based .
. o Measures semantic relatedness of classes across
Semantic Pairwise o
the recommended partitions
Relatedness
o Cyclomatic Individual Measures code complexity of the individual
Effort
complexity Partition implemented services.
. Cohesion of Individual ' o -
Cohesion - Measures the inter class usage within a partition
Classes Partition

[0039] Some embodiments can further include at least partially converting the candidate
microservices of the monolith application into deployable microservices (e.g., a monolith web API

can be automatically converted to a REST (representational state transfer) API).

[0040] FIG. 6 is a flow diagram illustrating techniques for identifying microservices for a monolith
application in accordance with exemplary embodiments. Step 602 includes performing a static code
analysis to extract multiple features of a monolith application. Step 604 includes partitioning code
elements of the monolith application into multiple groups using an agglomerative clustering process,
wherein the agglomerative clustering process 1s based on the extracted multiple features and a set of
clustering metrics. Step 606 includes obtaining at least one weight corresponding to one or more of’
at least one of the multiple features and at least one of the multiple groups. Step 608 includes adjusting
the multiple groups based at least in part on the at least one weight. Step 610 includes generating a
list of candidate microservices for the monolith application, wherein each candidate microservice in
the list corresponds to a different one of the adjusted multiple groups. Step 612 includes outputting

the list of candidate microservices to at least one of a system and a user.

[0041] The process may also include automatically generating an explanation of the partitioning for
the code elements in at least one of the groups; and outputting the explanation to at least one of the
system and the user. The partitioning may include generating a dendrogram representation of the code
elements based at least in part on the set of clustering metrics, wherein the generated explanation is
based on the dendrogram representation. The partitioning may include: assigning a respective weight
to each of the extracted multiple features based at least in part on the set of clustering metrics. The
multiple features may include at least one structural feature corresponding to at least one of:
interdependencies between at least two of the code elements; and one or more properties of at least
one of the code elements. The multiple features may include at least one semantic feature

corresponding to at least one of an affinity between at least two of the code elements, wherein the
9

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

affinity is based on at least one of: one or more comments associated with the code elements and one
or more identifiers associated with one or more corresponding portions of the code elements. The
multiple features may include at least one behavioral feature corresponding to at least one of; usage
mformation between at least two of the code elements; and path cooccurrence information for at least
one two of the code elements. The set of clustering metrics may be specified by the user. The at least
one weight may be provided as input from the user, and wherein the adjusting comprises dividing one

of the multiple groups into two or more groups.

[0042] The techniques depicted in FIG. 6 can also, as described herein, include providing a system,
wherein the system includes distinct software modules, each of the distinct software modules being
embodied on a tangible computer-readable recordable storage medium. All of the modules (or any
subset thereof) can be on the same medium, or each can be on a different medium, for example. The
modules can include any or all of the components shown in the figures and/or described herein. In an
embodiment of the present disclosure, the modules can run, for example, on a hardware processor.
The method steps can then be carried out using the distinct software modules of the system, as
described above, executing on a hardware processor. Further, a computer program product can include
a tangible computer-readable recordable storage medium with code adapted to be executed to carry
out at least one method step described herein, including the provision of the system with the distinct

software modules.

[0043] Additionally, the techniques depicted in FIG. 6 can be implemented via a computer program
product that can include computer useable program code that 1s stored in a computer readable storage
medium 1 a data processing system, and wherein the computer useable program code was
downloaded over a network from a remote data processing system. Also, in an embodiment of the
present disclosure, the computer program product can include computer useable program code that is
stored in a computer readable storage medium in a server data processing system, and wherein the
computer useable program code is downloaded over a network to a remote data processing system for

use in a computer readable storage medium with the remote system.

[0044] An exemplary embodiment or elements thereof can be implemented in the form of an
apparatus including a memory and at least one processor that is coupled to the memory and configured

to perform exemplary method steps.

[0045] Additionally, an embodiment of the present disclosure can make use of software running on a

computer or workstation. With reference to FIG. 7, such an implementation might employ, for

10

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

example, a processor 702, a memory 704, and an input/output interface formed, for example, by a
display 706 and a keyboard 708. The term “processor” as used herein is intended to include any
processing device, such as, for example, one that includes a CPU (central processing unit) and/or other
forms of processing circuitry. Further, the term “processor” may refer to more than one individual
processor. The term “memory” is intended to include memory associated with a processor or CPU,
such as, for example, RAM (random access memory), ROM (read only memory), a fixed memory
device (for example, hard drive), a removable memory device (for example, diskette), a flash memory
and the like. In addition, the phrase “input/output interface” as used herein, is intended to include, for
example, a mechanism for inputting data to the processing unit (for example, mouse), and a
mechanism for providing results associated with the processing unit (for example, printer). The
processor 702, memory 704, and input/output interface such as display 706 and keyboard 708 can be
mterconnected, for example, via bus 710 as part of a data processing unit 712. Suitable
mterconnections, for example via bus 710, can also be provided to a network interface 714, such as a
network card, which can be provided to interface with a computer network, and to a media interface

716, such as a diskette or CD-ROM drive, which can be provided to interface with media 718.

[0046] Accordingly, computer software including instructions or code for performing the
methodologies of the present disclosure, as described herein, may be stored in associated memory
devices (for example, ROM, fixed or removable memory) and, when ready to be utilized, loaded in
part or in whole (for example, into RAM) and implemented by a CPU. Such software could include,

but 1s not limited to, firmware, resident software, microcode, and the like.

[0047] A data processing system suitable for storing and/or executing program code will include at
least one processor 702 coupled directly or indirectly to memory elements 704 through a system bus
710. The memory elements can include local memory employed during actual implementation of the
program code, bulk storage, and cache memories which provide temporary storage of at least some
program code in order to reduce the number of times code must be retrieved from bulk storage during

implementation.

[0048] Input/output or I/O devices (including, but not limited to, keyboards 708, displays 706,
pointing devices, and the like) can be coupled to the system either directly (such as via bus 710) or

through intervening I/0 controllers (omitted for clarity).

[0049] Network adapters such as network interface 714 may also be coupled to the system to enable

the data processing system to become coupled to other data processing systems or remote printers or

11

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

storage devices through intervening private or public networks. Modems, cable modems and Ethernet

cards are just a few of the currently available types of network adapters.

[0050] As used herein, including the claims, a “server” includes a physical data processing system
(for example, system 712 as shown in FIG. 7) running a server program. It will be understood that

such a physical server may or may not include a display and keyboard.

[0051] An exemplary embodiment may include a system, a method, and/or a computer program
product at any possible technical detail level of integration. The computer program product may
include a computer readable storage medium (or media) having computer readable program
instructions thereon for causing a processor to carry out exemplary embodiments of the present

disclosure.

[0052] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may
be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a semiconductor storage device, or any
suitable combination of the foregoing. A non-exhaustive list of more specific examples of the
computer readable storage medium includes the following: a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact
disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the foregoing. A computer readable storage
medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electromagnetic waves propagating through a
waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or

electrical signals transmitted through a wire.

[0053] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer
or external storage device via a network, for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may comprise copper transmission cables, optical
transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or

edge servers. A network adapter card or network interface in each computing/processing device

12

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

receives computer readable program instructions from the network and forwards the computer
readable program instructions for storage in a computer readable storage medium within the respective

computing/processing device.

[0054] Computer readable program instructions for carrying out operations of the present disclosure
may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions,
machine dependent instructions, microcode, firmware instructions, state-setting data, configuration
data for integrated circuitry, or either source code or object code written in any combination of one or
more programming languages, including an object oriented programming language such as Smalltalk,
C++, or the like, and procedural programming languages, such as the "C" programming language or
similar programming languages. The computer readable program instructions may execute entirely
on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute
the computer readable program instructions by utilizing state information of the computer readable
program instructions to personalize the electronic circuitry, in order to perform embodiments of the

present disclosure.

[0055] Embodiments of the present disclosure are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program products
according to embodiments of the disclosure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or

block diagrams, can be implemented by computer readable program instructions.

[0056] These computer readable program instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or blocks. These computer readable program

instructions may also be stored in a computer readable storage medium that can direct a computer, a

13

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

programmable data processing apparatus, and/or other devices to function in a particular manner, such
that the computer readable storage medium having instructions stored therein comprises an article of
manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0057] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be
performed on the computer, other programmable apparatus or other device to produce a computer
implemented process, such that the instructions which execute on the computer, other programmable
apparatus, or other device implement the functions/acts specified in the flowchart and/or block

diagram block or blocks.

[0058] The flowchart and block diagrams in the Figures 1llustrate the architecture, functionality, and
operation of possible implementations of systems, methods, and computer program products
according to various embodiments of the present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or portion of instructions, which comprises one
or more executable instructions for implementing the specified logical function(s). In some alternative
implementations, the functions noted in the blocks may occur out of the order noted in the Figures.
For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or
the blocks may sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.

[0059] It should be noted that any of the methods described herein can include an additional step of
providing a system comprising distinct software modules embodied on a computer readable storage
medium; the modules can include, for example, any or all of the components detailed herein. The
method steps can then be carried out using the distinct software modules and/or sub-modules of the
system, as described above, executing on a hardware processor 702. Further, a computer program
product can include a computer-readable storage medium with code adapted to be implemented to
carry out at least one method step described herein, including the provision of the system with the

distinct software modules.

14

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

[0060] In any case, it should be understood that the components illustrated herein may be
implemented in various forms of hardware, software, or combinations thereof, for example,
application specific integrated circuit(s) (ASICS), functional circuitry, an appropriately programmed
digital computer with associated memory, and the like. Given the teachings provided herein, one of

ordinary skill in the related art will be able to contemplate other implementations of the components.

[0061] Additionally, it 1s understood in advance that although this disclosure includes a detailed
description on cloud computing, implementation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the present invention are capable of being
implemented in conjunction with any other type of computing environment now known or later

developed.

[0062] Cloud computing is a model of service delivery for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (for example, networks, network
bandwidth, servers, processing, memory, storage, applications, virtual machines, and services) that
can be rapidly provisioned and released with minimal management effort or interaction with a
provider of the service. This cloud model may include at least five characteristics, at least three service

models, and at least four deployment models.
[0063] Characteristics are as follows:

[0064] On-demand self-service: a cloud consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring human interaction

with the service’s provider.

[0065] Broad network access: capabilities are available over a network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones,

laptops, and PDAs).

[0066] Resource pooling: the provider’s computing resources are pooled to serve multiple consumers
using a multi-tenant model, with different physical and virtual resources dynamically assigned and
reassigned according to demand. There is a sense of location independence in that the consumer
generally has no control or knowledge over the exact location of the provided resources but may be

able to specify location at a higher level of abstraction (for example, country, state, or datacenter).

[0067] Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases

automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the

15

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

capabilities available for provisioning often appear to be unlimited and can be purchased in any

quantity at any time.

[0068] Measured service: cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of service (for
example, storage, processing, bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the provider and consumer of the utilized

service.
[0069] Service Models are as follows:

[0070] Software as a Service (SaaS): the capability provided to the consumer 1s to use the provider’s
applications running on a cloud infrastructure. The applications are accessible from various client
devices through a thin client interface such as a web browser (for example, web-based e-mail). The
consumer does not manage or control the underlying cloud infrastructure including network, servers,
operating systems, storage, or even individual application capabilities, with the possible exception of

limited user-specific application configuration settings.

[0071] Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the
cloud infrastructure consumer-created or acquired applications created using programming languages
and tools supported by the provider. The consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating systems, or storage, but has control over the

deployed applications and possibly application hosting environment configurations.

[0072] Infrastructure as a Service (IaaS): the capability provided to the consumer is to provision
processing, storage, networks, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and applications. The
consumer does not manage or control the underlying cloud infrastructure but has control over
operating systems, storage, deployed applications, and possibly limited control of select networking

components (for example, host firewalls).
[0073] Deployment Models are as follows:

[0074] Private cloud: the cloud infrastructure is operated solely for an organization. It may be

managed by the organization or a third party and may exist on-premises or off-premises.

[0075] Community cloud: the cloud infrastructure 1s shared by several orgamizations and supports a

specific community that has shared concerns (for example, mission, security requirements, policy,

16

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

and compliance considerations). It may be managed by the organizations or a third party and may

exist on-premises or off-premises.

[0076] Public cloud: the cloud infrastructure is made available to the general public or a large industry

group and is owned by an organization selling cloud services.

[0077] Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private,
community, or public) that remain unique entities but are bound together by standardized or
proprietary technology that enables data and application portability (for example, cloud bursting for

load-balancing between clouds).

[0078] A cloud computing environment is service oriented with a focus on statelessness, low
coupling, modularity, and semantic interoperability. At the heart of cloud computing is an

infrastructure comprising a network of interconnected nodes.

[0079] Referring now to FIG. 8, illustrative cloud computing environment 50 is depicted. As shown,
cloud computing environment 50 includes one or more cloud computing nodes 10 with which local
computing devices used by cloud consumers, such as, for example, personal digital assistant (PDA)
or cellular telephone 54A, desktop computer 54B, laptop computer 54C, and/or automobile computer
system 54N may communicate. Nodes 10 may communicate with one another. They may be grouped
(not shown) physically or virtually, in one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local computing device. It is understood that the
types of computing devices S4A-N shown in FIG. 8 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50 can communicate with any type of
computerized device over any type of network and/or network addressable connection (e.g., using a

web browser).

[0080] Referring now to FIG. 9, a set of functional abstraction layers provided by cloud computing
environment 50 (FIG. 8) is shown. It should be understood in advance that the components, layers,
and functions shown in FIG. 9 are intended to be illustrative only and embodiments of the invention

are not limited thereto. As depicted, the following layers and corresponding functions are provided:

[0081] Hardware and software layer 60 includes hardware and software components. Examples of
hardware components include: mainframes 61; RISC (Reduced Instruction Set Computer) architecture

based servers 62; servers 63; blade servers 64; storage devices 65; and networks and networking
17

10

15

20

25

30

WO 2023/098302 PCT/CN2022/124669

components 66. In some embodiments, software components include network application server

software 67 and database software 68.

[0082] Virtualization layer 70 provides an abstraction layer from which the following examples of
virtual entities may be provided: virtual servers 71; virtual storage 72; virtual networks 73, including
virtual private networks; virtual applications and operating systems 74; and virtual clients 75. In one
example, management layer 80 may provide the functions described below. Resource provisioning 81
provides dynamic procurement of computing resources and other resources that are utilized to perform
tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as
resources are utilized within the cloud computing environment, and billing or invoicing for

consumption of these resources.

[0083] In one example, these resources may include application software licenses. Security provides
identity verification for cloud consumers and tasks, as well as protection for data and other resources.
User portal 83 provides access to the cloud computing environment for consumers and system
administrators. Service level management 84 provides cloud computing resource allocation and
management such that required service levels are met. Service Level Agreement (SLA) planning and
fulfillment 85 provide pre-arrangement for, and procurement of, cloud computing resources for which

a future requirement is anticipated in accordance with an SLA.

[0084] Workloads layer 90 provides examples of functionality for which the cloud computing
environment may be utilized. Examples of workloads and functions which may be provided from this
layer include: mapping and navigation 91; software development and lifecycle management 92;
virtual classroom education delivery 93; data analytics processing 94; transaction processing 95; and
identifying microservices 96, in accordance with the one or more embodiments of the present
disclosure.

[0085] The terminology used herein is for the purpose of describing particular embodiments only and

%

is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an” and “the”
are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or “comprising,” when used in this specification,
specify the presence of stated features, steps, operations, elements, and/or components, but do not
preclude the presence or addition of another feature, step, operation, element, component, and/or

group thereof.

18

10

WO 2023/098302 PCT/CN2022/124669

[0086] At least one embodiment of the present disclosure may provide a beneficial effect such as, for
example, converting a monolith application into a microservice architecture by identifying clusters of

code elements in a controllable and explainable manner.

[0087] The descriptions of the various embodiments of the present disclosure have been presented for
purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed.
Many modifications and variations will be apparent to those of ordinary skill in the art without
departing from the scope of the described embodiments. The terminology used herein was chosen to
best explain the principles of the embodiments, the practical application or technical improvement
over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand

the embodiments disclosed herein.

19

WO 2023/098302 PCT/CN2022/124669

CLAIMS

What 1s claimed 1s:

1. A computer-implemented method, the method comprising:

performing a static code analysis to extract multiple features of a monolith application;

partitioning code elements of the monolith application into multiple groups using an
agglomerative clustering process, wherein the agglomerative clustering process is based on the
extracted multiple features and a set of clustering metrics;

obtaining at least one weight corresponding to one or more of: at least one of the multiple
features and at least one of the multiple groups;

adjusting the multiple groups based at least in part on the at least one weight;

generating a list of candidate microservices for the monolith application, wherein each
candidate microservice in the list corresponds to a different one of the adjusted multiple groups; and

outputting the list of candidate microservices to at least one of a system and a user;

wherein the method is carried out by at least one computing device.

2. The computer-implemented method of claim 1, comprising:
automatically generating an explanation of the partitioning for the code elements in at least
one of the groups; and

outputting the explanation to at least one of the system and the user.

3. The computer-implemented method of claim 2, wherein the partitioning comprises:
generating a dendrogram representation of the code elements based at least in part on the set

of clustering metrics, wherein the generated explanation is based on the dendrogram representation.

4. The computer-implemented method of claim 1, wherein the partitioning comprises:
assigning a respective weight to each of the extracted multiple features based at least in part

on the set of clustering metrics.

5. The computer-implemented method of claim 1, wherein the multiple features comprise

at least one structural feature corresponding to at least one of’

20

WO 2023/098302 PCT/CN2022/124669

interdependencies between at least two of the code elements; and

one or more properties of at least one of the code elements.

6. The computer-implemented method of claim 1, wherein the multiple features comprise
at least one semantic feature corresponding to at least one of:

an affinity between at least two of the code elements, wherein the affinity is based on at least
one of: one or more comments associated with the code elements and one or more identifiers

associated with one or more corresponding portions of the code elements.

7. The computer-implemented method of claim 1, wherein the multiple features comprise
at least one behavioral feature corresponding to at least one of’
usage information between at least two of the code elements; and

path cooccurrence information for at least one two of the code elements.

8. The computer-implemented method of claim 1, wherein the set of clustering metrics is
specified by the user.
0. The computer-implemented method of claim 1, wherein the at least one weight is

provided as input from the user, and wherein the adjusting comprises dividing one of the multiple

groups 1nto two or more groups.

10. The computer-implemented method of claim 1, wherein software is provided as a

service in a cloud environment for performing at least a portion of the method.

11. A computer program product comprising a computer readable storage medium having
program instructions embodied therewith, the program instructions executable by a computing device
to cause the computing device to:

perform a static code analysis to extract multiple features of a monolith application;

partition code elements of the monolith application into multiple groups using an
agglomerative clustering process, wherein the agglomerative clustering process is based on the

extracted multiple features and a set of clustering metrics;

21

WO 2023/098302 PCT/CN2022/124669

obtain at least one weight corresponding to one or more of: at least one of the multiple features
and at least one of the multiple groups;

adjust the multiple groups based at least in part on the at least one weight;

generate a list of candidate microservices for the monolith application, wherein each candidate
microservice in the list corresponds to a different one of the adjusted multiple groups; and

output the list of candidate microservices to at least one of a system and a user.

12. The computer program product of claim 11, wherein the program instructions
executable by a computing device further cause the computing device to:

automatically generate an explanation of the partitioning for the code elements in at least one
of the groups; and

output the explanation to at least one of the system and the user.

13. The computer program product of claim 12, wherein the partitioning comprises:
generating a dendrogram representation of the code elements based at least in part on the set

of clustering metrics, wherein the generated explanation is based on the dendrogram representation.

14. The computer program product of claim 11, wherein the partitioning comprises:
assigning a respective weight to each of the extracted multiple features based at least in part

on the set of clustering metrics.

15. The computer program product of claim 11, wherein the multiple features comprise at
least one structural feature corresponding to at least one of’
interdependencies between at least two of the code elements; and

one or more properties of at least one of the code elements.

16. The computer program product of claim 11, wherein the multiple features comprise at
least one semantic feature corresponding to at least one of:

an affinity between at least two of the code elements, wherein the affinity is based on at least
one of: one or more comments associated with the code elements and one or more identifiers

associated with one or more corresponding portions of the code elements.

22

WO 2023/098302 PCT/CN2022/124669

17. The computer program product of claim 11, wherein the multiple features comprise at
least one behavioral feature corresponding to at least one of’
usage information between at least two of the code elements; and

path cooccurrence information for at least one two of the code elements.

18. The computer program product of claim 11, wherein the set of clustering metrics is
specified by the user.
19. The computer program product of claim 11, wherein the at least one weight is provided

as input from the user, and wherein the adjusting comprises dividing one of the multiple groups into

two or more groups.

20. A system comprising;
a memory configured to store program instructions;
a processor operatively coupled to the memory to execute the program instructions to:
perform a static code analysis to extract multiple features of a monolith application;
partition code elements of the monolith application into multiple groups using an
agglomerative clustering process, wherein the agglomerative clustering process is based on the
extracted multiple features and a set of clustering metrics;

obtain at least one weight corresponding to one or more of: at least one of the multiple
features and at least one of the multiple groups;

adjust the multiple groups based at least in part on the at least one weight;

generate a list of candidate microservices for the monolith application, wherein each
candidate microservice in the list corresponds to a different one of the adjusted multiple groups; and

output the list of candidate microservices to at least one of a system and a user.

23

PCT/CN2022/124669

WO 2023/098302

1 "Old

(s)uoneue|dxg
B8N

fmm mmm e mmmn mmem e e e e e e - ——

wzﬂ\

SOAIAIBSOIIIN
ajepipueg

S.FR

ajnpow
Apgeuteidx3 Jeisni)

mo_\\

SINPORY
Buusisnin peseg-ouen

mom‘\,

2INPOK
uoneuILBleq aines4

wow\

WelsAS uoneoyuap)
SBOIAISSOIN PajBLIOINY

A

Nom\\,

8po7) 82IN0g

m:\\

1/9

PCT/CN2022/124669

2/9

a¢ 9Old V¢ Old
0 v 00bh
L 0 Z ¢
Z 6 0019
0 8 €000
.Nu:m@: 13 09

WO 2023/098302

1]74 00¢

PCT/CN2022/124669

WO 2023/098302

¢ Ol

59858|7)
_ _
9 ssej)

i SSB|D % ¢ s
G $SB|D
Z ssepn
L 58]0
00¢

- 0058

- 0008

- 0064

- 00001

gussr4s

- 00061

FO0GLL

- 00002

3/9

WO 2023/098302 PCT/CN2022/124669

400
FIG. 4

1.41
1.21
1.01
0.8
0.6
0.4
0.2
0.0

81005

4/9

WO 2023/098302 PCT/CN2022/124669

500
FIG. 5

5 & 5 S ¥
o (e (o] od -
81008

5/9

WO 2023/098302 PCT/CN2022/124669

Perform a Static Code Analysis to Extract 602
Multiple Features of a Monolith Application

Partition Code Elements of the Monolith
Application Into Multiple Groups Using an
Agglomerative Clustering Process, Whereinthe | 604
Agglomerative Clustering Process is Based on the
Extracted Multiple Features and a Set of
Clustering Metrics

Obtain at Least One Weight Corresponding to One
or More of: at Least One of the Multiple Features |— 606
and at Least One of the Multiple Groups

Adjust the Multiple Groups Based at Leastin Part | __ gng
on the at Least One Weight

Generate a List of Candidate Microservices for
the Monolith Application, Wherein Each Candidate | 610
Microservice in the List Corresponds to a Different

One of the Multiple Groups

Output the List of Candidate Microservicesto | 612
at Least One of a System and a User

FIG. 6

6/9

WO 2023/098302

PCT/CN2022/124669

712
/

714
To/From
702—~ Processor -\\ Network <«——p Computer
710 VF P
| /’ i Network
| !
704— Memory 16~ Msgia ———\ 718
E Media
706 — Display
708 — Keyboard

FIG. 7

7/9

PCT/CN2022/124669

WO 2023/098302

8 "Old

8/9

PCT/CN2022/124669

WO 2023/098302

6 'Ol
\. 09

SIEMIJOS pue BiempieH

juswebeuepy

N@\\g\;

9/9

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2022/124669

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 8/72(2018.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNKI, CNPAT, WPL, EPODOC.IEEE: application, static, code, feature, group, weight, cluster, candidate, explanation, tree, cloud

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™® Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y WO 2021064058 A1 (DUBLIN CITY UNIVERSITY) 08 April 2021 (2021-04-08) 1-20
description, pages 10-19

Y CN 109948710 A (HANGZHOU DIANZI UNIVERSITY) 28 June 2019 (2019-06-28) 1-20
description, paragraphs [0010]-[0038]

A CN 113204465 A (ZHEJIANG UNIVERSITY et al.) 03 August 2021 (2021-08-03) 1-20
the whole document

A CN 112398899 A (NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS) 120
23 February 2021 (2021-02-23)
the whole document

A US 2021232390 Al (INTERNATIONAL BUSSINESS MACHINES CORPORATION) 29 1-20
July 2021 (2021-07-29)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: «1> later document published after the international filing date or priority
«“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention
«<g~ earlier application or patent but published on or after the international <} document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive step
«1» document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“p” document published prior to the international filing date but later than . g,»

et ; document member of the same patent famil
the priority date claimed P y

Date of the actual completion of the international search Date of mailing of the international search report
09 December 2022 15 December 2022
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing ZHOU,Yanan
100088, China
Facsimile No. (86-10)62019451 Telephone No. 86-(10)-53961530

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/CN2022/124669
. Pat(.ant document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
WO 2021064058 Al 08 April 2021 EP 4038492 Al 10 August 2022
GB 201914106 DO 13 November 2019
CN 109948710 A 28 June 2019 None
CN 113204465 A 03 Angust 2021 None
CN 112398899 A 23 February 2021 None
Us 2021232390 Al 29 July 2021 DE 112021000189 T5 29 September 2022
WO 2021148927 Al 29 July 2021
GB 202212227 DO 05 October 2022
CN 114830091 A 29 July 2022

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

