
USOO7984192B2

(12) United States Patent (10) Patent No.: US 7,984.192 B2
Burr et al. (45) Date of Patent: Jul. 19, 2011

(54) SYSTEMAND METHOD FOR ASSIGNING (56) References Cited
UNIQUE IDENTIFIERS TO EACH REMOTE
DISPLAY PROTOCOL SESSION U.S. PATENT DOCUMENTS
ESTABLISHED VIA AN INTERMEDARY 5,734,865 A * 3/1998 Yu 709/250
DEVICE 7,042,879 B2* 5/2006 Eschbach et al. 370,392

7,146,431 B2 * 12/2006 Hipp et al. ... TO9,238
2005/OO971 79 A1* 5, 2005 Orme ... 709/2O7

(75) Inventors: Michael Burr, Redmond, WA (US); 2005/O198387 A1* 9, 2005 W11s ... TO9.245
Min-Chih Lu Earl, Redmond, WA 2007/0277034 A1* 11/2007 LiVecchi T13,166
(US); Anatoliy Panasyuk, Bellevue, WA OTHER PUBLICATIONS
(US); Abolfazl Sirjani, Kirkland, WA
(US) Winsock (http://iroiseu.edu.cn/books/ee dic? whatis/winsock.htm),

Dec. 19, 1999, pp. 1-2.*
(73) Assignee: Citrix Systems, Inc., Fort Lauderdale,

FL (US)
* cited by examiner

- Primary Examiner — Robert B Harrell
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm Foley & Lardner LLP; John

patent is extended or adjusted under 35 D. Lanza
U.S.C. 154(b) by 1064 days.

(57) ABSTRACT

The invention relates to systems and methods for assigning a
unique networkidentifier to one or more programs invoked on

(21) Appl. No.: 10/711,583

(22) Filed: Sep. 27, 2004 a computer. The computer obtains a plurality of network
identifiers and associates a first network identifier to a first

(65) Prior Publication Data program invoked on the computer and associates a second
US 2006/OO75123 A1 Apr. 6, 2006 network identifier, different from the first network identifier,

• as to a second program invoked on the computer. The program
(51) Int. Cl. may be a user session hosted by the computer, an application

or an application isolation environment. The computer
through a network communication interface transmits the

(52) U.S. Cl. ... 709/250 first network identifier with the network communication of
(58) Field of Classification Search. ... 709/223, the first program and transmits the second network identifier

709/228, 245, 227, 207,250; 370/392, 231, with network communication of the second program.
370/331, 409; 455/248, 422.1

See application file for complete search history. 20 Claims, 11 Drawing Sheets

G06F I3/00 (2006.01)

Program Program Program
340A 340B '340N

Network Interface 708A

Interface Mechanism 320
Virtual HostName Generator 750

IPAddresses 740

Virtual HostNames 730
Network Communication

Interface 310
Client 108A

DHCP 334

Name Resolution Service 70

Program Program. Program
340A 340B 340N

Network Interface 708
Interface Mechanism 320

Program
340A

Network Interface 708N
Interface Mechanism 320

Network Communication
Interface 310
Client 108N

Network Communication interface
310

Server 110

U.S. Patent Jul. 19, 2011 Sheet 1 of 11 US 7,984.192 B2

100
128

N

Software
121 122 of E. 120

Main VetOn
CPU Storage

150

123

I/O Display InStallation NetWOrk Display
126 127 Y-124 116 118

Pointing Keyboard

Fig. 1A

U.S. Patent Jul. 19, 2011 Sheet 2 of 11 US 7,984.192 B2

I (2

Main
Processor Cache

144

I/O I/O Memory Main
Port Port | Port Memory I 30

I ()3 I/O
Device

150

130

I/O
Device

Fig. 1 B

US 7,984.192 B2 Sheet 3 of 11 Jul. 19, 2011 U.S. Patent

Z $1){

US 7,984.192 B2 Sheet 4 of 11 Jul. 19, 2011

008

U.S. Patent

Ž? dOHO

Wg $1 +

Z08~,

US 7,984.192 B2 U.S. Patent

US 7,984.192 B2 Sheet 6 of 11 Jul. 19, 2011 U.S. Patent

Og $1){

WF7075 Sule]60]); NF7075 SueuôOJA

U.S. Patent Jul. 19, 2011 Sheet 7 of 11 US 7,984.192 B2

- 400

/
Obtain a plurality of Network Identifiers

Selecting a Network Identifier for a Program

Step 410

Step 415

Step 420
Associating a Network Identifier with a
Network Communication of the Program

Transmitting Network lodentifier with
Network Communication of the Program

Step 425

Fig. 4

U.S. Patent Jul. 19, 2011 Sheet 8 of 11 US 7,984.192 B2

Program
8 :
P Address

\\\ X X
X YaYas Y
S :r R. S * s

SOCS 3 - StarCK y ow X

X X
X X
X X
X X s 32 S 32. X

3. S sessessssssss

h

ovo Loopback
loopback interface 510 Ad

Client 108

Storage 336

Server 110

U.S. Patent Jul. 19, 2011 Sheet 9 of 11 US 7,984.192 B2

Obtain a plurality of
LOOpback Addresses

Step 610

Step 615
Select a LOOpback Address

for a Program

Step 620
ASSOCiating a LOOpback
Address with Program

Transmitting LOOpback Address with
Inter-process Communication of Program

US 7,984,192 B2 Sheet 10 of 11 Jul. 19, 2011 U.S. Patent

N078

U.S. Patent Jul. 19, 2011 Sheet 11 of 11 US 7,984.192 B2

Step 810
Obtaining a plurality of virtual

hOSt names

Obtaining a plurality of IP addresses
Step 815

Step 820
ASSigning a virtual host name to a user

ASSOciating virtual host name with
P address

Step 830
\ Virtual host name rOamS With USer

7

800 -

Step 825

Fig. 8

US 7,984, 192 B2
1.

SYSTEMAND METHOD FOR ASSIGNING
UNIQUE IDENTIFIERS TO EACH REMOTE

DISPLAY PROTOCOL SESSION
ESTABLISHED VIA AN INTERMEDARY

DEVICE

Co-pending U.S. patent application Ser. No. 10/711,591
claims the benefit of the present disclosure.

TECHNICAL FIELD

The invention generally relates to network communica
tions. More particularly, the invention relates to systems and
methods for assigning a unique network identifier to one or
more programs running on a computer.

BACKGROUND INFORMATION

A typical computer system uses a single internet protocol
(IP) address assigned to the computer system. Any user ses
sion or program on the computer will use the IP address of the
computer for network communications on a TCP/IP network.
Communications over the network to and from the computer,
for example between a client and a server, use the computers
IP address as part of the network communications of the
computer. Even in a multi-user environment Such as a server
using Microsoft Terminal Server(R), all users or programs
running on the multi-user server will share the same IP
address assigned to that server. The IP address is computer or
machine dependent and as such is associated with network
communications originating from the computer. Even in the
case where a computer has multiple network cards and mul
tiple IP addresses, these IP addresses are associated with the
computer and not with users or programs of the computer. As
Such, all users and programs on the computer will communi
cate over a network with the same IP address assigned to the
computer.
Some applications assume that each user or program will

use a unique IP address. For example, Voice Over IP (VoIP)
applications and video conferencing systems may require
unique IP addresses per user. In other examples, some net
work monitoring and mainframe systems use the IP address to
identify users. However, if two programs share the same IP
address of the computer, this will cause problems in uniquely
identifying users. For example, a first user starts a user session
on a multi-user server and a second user starts another session
on the same multi-user server. Both the first user's session and
the second user's session will use the same IP address
assigned to the multi-user server. Therefore, the network
communications of the user sessions cannot be distinguished
by IP address.

Additionally, a computer is typically also assigned a single
loopback address for local inter-process communications
using the loopback interface of the computer. Like the IP
address of the computer, this loopback address is shared by
multiple users of the computer. While one application is using
the loopbackaddress for communications another application
may be prevented from using it. For example, when running
in a multiple user environment, a first instance of the appli
cation may be started that uses the loopback address of the
computer. When a second instance of the application is
started using the loopback address of the computer, the first
instance of the application may no longer function.

Another related issue with computer dependent IP
addresses occurs when a user roams within a server farm. For
example, Some multi-user systems use a set of load balancing
servers to Support a large number of concurrent users. When

10

15

25

30

35

40

45

50

55

60

65

2
a user connects, that user is automatically and dynamically
directed to the least loaded server to balance the load. Unfor
tunately, this means the IP address to be assigned to the user
is not known until the user is connected to the dynamically
determined server. Therefore, systems cannot depend on a
user or a program having the same IP address when the user is
roaming within a server farm. Another issue with multiple
user systems is security. The loopback interface is shared by
all the users on a multiple user system and typically there is no
security protection for controlling multiple user access to the
loopback interface. For example, if an application is perform
ing TCP/IP communications on the loopback address on a
multiple user system, a security attacker may try to intercept
communications on the loopback interface shared by the mul
tiple users.
The same problems can occur in other types of networks,

such as IPX, where the network identifiers are computer
dependent. Thus, it is desirable to provide a technique for
assigning a unique network identifier to multiple programs or
users running on a single computer or multi-user system.
Systems and methods are needed for assigning unique net
work identifiers to multiple users or programs running on a
computer system.

SUMMARY OF THE INVENTION

The present invention relates to systems and methods for
providing unique network identifiers for network communi
cations of one or more programs, users or user sessions run
ning on a computer. The program may be an application, an
application isolation environment, or a user session hosted by
a multi-user environment, or any other computer program.
Monitoring applications, mainframe and other applications
or systems may rely on a user or program having a unique
network identifier, i.e., host name or IP address. The present
invention provides a program, user or user session with a
unique network identifier different than the one assigned to
the computer for communicating over a network. As such,
multiple users on the same computer can perform network
communications with unique network identifiers different
from each other and the computer. Furthermore, the present
invention also provides unique loopback addresses to one or
more programs, users or user sessions for inter-process com
munications using the loopback interface of a computer. This
enables multiple users and programs to use the loopback
interface concurrently on the same computer. In Summary, the
present invention provides for unique IP address and/or host
names on a computer that are independent from the IP address
and host name of the computer.

In one aspect, the invention relates to a system for assign
ing a unique network identifier to each program invoked on a
computer having a plurality of network identifiers. The com
puter comprises an interface mechanism and a network com
munication interface. The interface mechanism selects from
the plurality of network identifiers a first network identifier
for a first program invoked on the computer and selects a
second network identifier, different from the first network
identifier, for a second program invoked on the computer. The
interface mechanism associates the first network identifier
with the first program and associates the second network
identifier with the second program. The network communi
cation interface, in communication with the interface mecha
nism, transmits the first network identifier with a network
communication of the first program, and transmits the second
network identifier with a network communication of the sec
ond program.

US 7,984, 192 B2
3

In one embodiment, the network identifier comprises an
internet protocol address, and in another embodiment, a host
name. In one embodiment, one of the first program and the
second program comprises a user session hosted by the com
puter. In another embodiment, one of the first program and the
second program comprises one of an application isolation
environment and an application.

In one embodiment, the computer obtains at least one of the
plurality of network identifiers from a server. The server may
comprise a Dynamic Host Configuration Protocol server. In
another embodiment, the computer obtains at least one of the
plurality of network identifiers from a storage location. In
another embodiment, the computer obtains at least one of the
plurality of network identifiers from a network identifiergen
erator. In yet another embodiment, at least one of the plurality
of network identifiers is allocated to a user of the computer.

In a further embodiment, the interface mechanism selects
the first network identifier for the first program during an
establishment of the first program. In still a further embodi
ment, the interface mechanism selects the second network
identifier for the second program during an establishment of
the second program. In one embodiment, the computer con
currently hosts a first user session and a second user session.
In another embodiment, the computer hosts a second user
session Subsequent to the hosting of a first user session

In one embodiment, the interface mechanism provides the
first network identifier of the first program in response to a
name resolution request of the first program and provides the
second network identifier of the second program in response
to a name resolution request of the second program. In
another embodiment, the interface mechanism comprises a
first TCP stack. Inafurther embodiment, the interface mecha
nism may comprise a second TCP stack. In one embodiment,
the interface mechanism comprises a socket library for com
munication with the network communication interface. The
Socket library may comprise a WinSock application program
ming interface. In one embodiment, the interface mechanism
binds the first network identifier to the first program for socket
communication with the network communication interface.
In still another embodiment, the interface mechanism binds
the second network identifier to the second program for
Socket communication with the network communication
interface. In yet another embodiment, the interface mecha
nism comprises a network packet-manipulation filter.

In another aspect, the present invention relates to a system
for assigning a unique loopback address to each program
invoked on a computer. The system comprises a computer
obtaining a plurality of loopback addresses. The computer
comprises an interface mechanism and a loopback interface.
The interface mechanism selects from the plurality of loop
back addresses, a first loopback address for a first program
invoked on the computer and selects a second loopback
address, different from the first loopback address, for a sec
ond program invoked on the computer. The interface mecha
nism associates the first loopback address as a local host
address of the first program and associates the second loop
back address as a local host address of the second program.
The loopback interface, in communication with the interface
mechanism, transmits the first loopback address with inter
process communication of the first program, and transmits the
second loopback address with inter-process communication
of the second program.

In one embodiment, one of the first program and the second
program comprise a user session hosted by the computer. In
another embodiment, one of the first program and the second
program comprises one of an application isolation environ
ment and an application.

10

15

25

30

35

40

45

50

55

60

65

4
In one embodiment, the interface mechanism selects the

first loopback address for the first program during an estab
lishment of the first program. In another embodiment, the
interface mechanism selects the second loopback address for
the second program during an establishment of the second
program.

In a further embodiment, the computer obtains at least one
of the plurality of loopback addresses from a server. In
another embodiment, the computer obtains at least one of the
plurality of loopback addresses from a storage location. In
still another embodiment, the system comprises a loopback
address generator to generate at least one of the plurality of
loopback addresses.

In another aspect, the invention relates to a method for
assigning a unique network identifier to each program
invoked by a computer. The method comprises the step of
obtaining a plurality of network identifiers and selecting,
from the plurality of network identifiers, a first network iden
tifier for a first program invoked on a computer, and a second
network identifier, different from the first network identifier,
for a second program invoked on the computer. The method
associates the first network identifier with network commu
nication of the first program and associates the second net
work identifier with network communication of the second
program. The method transmits the first network identifier
with a network communication of the first program, and
transmits the second network identifier with a network com
munication of the second program.

In one embodiment of the method, the network identifier
comprises an internet protocol address, and in another
embodiment, a host name. In one embodiment, one of the first
program and the second program comprises a user session
hosted by the computer. In another embodiment, the first
program or the second program may comprise an application
isolation environment or an application.

In one embodiment, the method further comprises the com
puter obtaining at least one of the network identifiers from a
server. In another embodiment, the computer obtains at least
one of the network identifiers from a Dynamic Host Configu
ration Protocol server. The computer may also obtain one of
the network identifiers from a storage location or a network
identifier generator. The method may further comprise allo
cating at least one of the network identifiers to a user of the
computer.

In one embodiment, the method further comprises select
ing the first network identifier for the first program during an
establishment of the first program, and selecting the second
network identifier for the second program during an estab
lishment of the second program.

In one embodiment, the method comprises the computer
concurrently hosting a first user session and a second user
session. In another embodiment, the method comprises the
computer hosting the second user session Subsequent to the
hosting of the first user session.

In one embodiment, the method provides the first network
identifier of the first program in response to a name resolution
request of the first program and the second network identifier
of the second program in response to a name resolution
request of the second program.

In one embodiment, the method further comprises using a
first TCP stack for network communication. In another
embodiment, the method may also use a second TCP stack.
The method may use a socket library to interface with a
network communication interface, and the socket library may
comprise a WinSock application programming interface. The
method may further comprise binding the first network iden
tifier to the first program for network communications using

US 7,984, 192 B2
5

the Socket library, and may also further comprise binding the
second network identifier to the second program for network
communications using the socket library. Inafurther embodi
ment, the method may comprise interfacing with a network
communication interface using a network packet-manipula
tion filter.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
may be better understood by referring to the following
description taken in conjunction with the accompanying
drawings, in which:

FIGS. 1A and 1B are block diagrams of embodiments of a
computing device for practicing an embodiment of the
present invention;

FIG. 2 is a block diagram of a client-server computer
system for practicing an illustrative embodiment of the
present invention;

FIG. 3A is a block diagram of an embodiment of the
present invention for assigning unique network identifiers in
a client node in a network;

FIG. 3B is a block diagram of an embodiment of the
present invention for assigning unique network identifiers in
a server node of a client-server computer system;

FIG.3C is a block diagram of an alternative embodiment of
the present invention for assigning unique network identifiers
with a proxy server in a client-server computer system;

FIG. 4 is a flow diagram of steps performed in embodi
ments of FIGS. 3A-3C:

FIG. 5 is a block diagram of the components of an embodi
ment of the present invention for assigning unique loopback
addresses;

FIG. 6 is flow diagram of steps performed in an embodi
ment of FIG. 5:

FIG. 7 is a block diagram of an embodiment of the present
invention for a uniform addressing scheme; and

FIG. 8 is a flow diagram of steps performed in an embodi
ment of FIG. 7.

DETAILED DESCRIPTION

Certain illustrative embodiments of the present invention
are described below. It is, however, expressly noted that the
present invention is not limited to these embodiments, but
rather the intention is that additions and modifications to what
is expressly described herein also are included within the
scope of the invention. Moreover, it is to be understood that
the features of the various embodiments described herein are
not mutually exclusive and can exist in various combinations
and permutations, even if such combinations or permutations
are not made expressly herein, without departing from the
spirit and scope of the invention.
The illustrative embodiments of the present invention pro

vide for assigning unique network identifiers for network
communications of one or more programs, users or user ses
sions running on a computer. The present invention also pro
vides for assigning unique loopback addresses to one or more
programs, users or user sessions for inter-process communi
cations using the loopback interface of a computer. Further
more, certain embodiments of the present invention provide
for a uniform addressing scheme to provide one or more
programs, users or users sessions a host name and/or internet
protocol address that is associated with a user as the user
moves from one computer to the next on the network or starts
up multiple user session.

10

15

25

30

35

40

45

50

55

60

65

6
FIGS. 1A and 1B depict block diagrams of a computing

device 100 useful for practicing an embodiment of the present
invention. As shown in FIGS. 1A and 1B, each computing
device 100 includes a central processing unit 102, and a main
memory unit 104. As shown in FIG. 1A, a typical computing
device may include a visual display device 124, a keyboard
126 and/or a pointing device 127. Such as a mouse. Each
computing device 100 may also include additional optional
elements, such as one or more input/output devices 130a
130b (generally referred to using reference numeral 130), and
a cache memory 140 in communication with the central pro
cessing unit 102.
The central processing unit 102 is any logic circuitry that

responds to and processes instructions fetched from the main
memory unit 104. In many embodiments, the central process
ing unit is provided by a microprocessor unit, Such as: the
8088, the 80286, the 80386, the 80486, the Pentium(R), Pen
tium Pro(R), the Pentium IIR, the Celeron(R), or the Xeon(R)
processor, all of which are manufactured by Intel Corpora
tion(R) of Mountain View, Calif.; the 68000, the 68010, the
68020, the 68030, the 68040, the PowerPC 601(R), the Pow
erPC604(R), the PowerPC604e.R, the MPC603e R, the
MPC603eiR), the MPC603ev(R), the MPC603rR, the
MPC603p(R), the MPC740R, the MPC745(R, the MPC750R,
the MPC755(R), the MPC7400R, the MPC7410R, the
MPC7441(R), the MPC7445(R), the MPC7447(R), the
MPC7450R, the MPC7451(R), the MPC7455R, or the
MPC7457(R) processor, all of which are manufactured by
Motorola Corporation of Schaumburg, Ill.; the Crusoe
TM5800R, the Crusoe TM5600R, the Crusoe TM5500R, the
Crusoe TM5400R, the Efficeon TM8600R, the Efficeon
TM8300R, or the Efficeon TM8620R) processor, manufac
tured by Transmeta Corporation(R) of Santa Clara, Calif.; the
RS/6000R) processor, the RS64(R), the RS64 IIR, the P2SCR,
the POWER3(R), the RS64 III(R), the POWER3-IIR, the RS64
IV(R), the POWER4(R), the POWER4+(R), the POWER5(R), or
the POWER6(R) processor, all of which are manufactured by
International Business Machines(R) of White Plains, N.Y.; or
the AMD Opteron(R), the AMD Athlon 64 FX(R), the AMD
Athlon(R), or the AMD DuronR processor, manufactured by
Advanced Micro Devices(R) of Sunnyvale, Calif. The com
puter 100 may be based on any of the above described pro
cessors, or any other available processors capable of operat
ing as described herein.
Main memory unit 104 may be one or more memory chips

capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 102, such as Static
random access memory (SRAM), Burst SRAM or Synch
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPMDRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink
DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). The main memory 104 may be
based on any of the above described memory chips, or any
other available memory chips capable of operating as
described herein. In the embodiment shown in FIG. 1B, the
processor 102 communicates with main memory 104 via a
system bus 150 (described in more detail below). FIG. 1B
depicts an embodiment of a computer 100 in which the pro
cessor communicates directly with main memory 104 via a
memory port 103. For example, in FIG.1B the main memory
104 may be DRDRAM.

US 7,984, 192 B2
7

FIGS. 1A and 1B depict embodiments in which the main
processor 102 communicates directly with cache memory
140 via a secondary bus, sometimes referred to as a backside
bus. In other embodiments, the main processor 102 commu
nicates with cache memory 140 using the system bus 150.
Cache memory 140 typically has a faster response time than
main memory 104 and is typically provided by SRAM,
BSRAM, or EDRAM.

In the embodiment shown in FIG. 1A, the processor 102
communicates with various I/O devices 130 via a local sys
tem bus 150. Various busses may be used to connect the
central processing unit 102 to any of the I/O devices 130,
including a VESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X
bus, a PCI-Express bus, or a NuBus. For embodiments in
which the I/O device is a video display 124, the processor 102
may use an Advanced Graphics Port (AGP) to communicate
with the display 124. FIG. 1B depicts an embodiment of a
computer 100 in which the main processor 102 communi
cates directly with I/O device 130b via HyperTransport,
Rapid I/O, or InfiniBand. FIG. 1B also depicts an embodi
ment in which local busses and direct communication are
mixed: the processor 102 communicates with I/O device 130a
using a local interconnect bus while communicating with I/O
device 130b directly.
The computing device 100 may support any suitable instal

lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard-drive or any
other device Suitable for installing Software and programs
such as software related to the present invention 120.
The computing device 100 may further comprise a storage

device 128, such as one or more hard disk drives or redundant
arrays of independent disks, for storing an operating system
and other related Software, and for storing application soft
ware programs such as any program 120 related to the present
invention. Optionally, any of the installation devices 118
could also be used as the storage device 128. Additionally, the
operating system and Software programs 120 of the present
invention can be run from a bootable medium, for example, a
bootable CD, such as KNOPPIX.RTM(R), a bootable CD for
GNU/LinuxCR) that is available as a GNU/LinuxOR distribution
from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g., ISDN. Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 100 to any type
of network capable of communication and performing the
operations described herein.
A wide variety of I/O devices 130a-130n may be present in

the computing device 100. Input devices include keyboards,
mice, trackpads, trackballs, microphones, and drawing tab
lets. Output devices include video displays, speakers, inkjet
printers, laser printers, and dye-sublimation printers. The I/O
devices may be controlled by aan I/O controller 123 as shown
in FIG. 1A. The I/O controller may control one or more I/O
devices such as a keyboard 126 and a pointing device 127,
e.g., a mouse or optical pen. Furthermore, an I/O device may

10

15

25

30

35

40

45

50

55

60

65

8
also provide storage 128 and/or an installation medium 118
for the computing device 100. In still other embodiments, the
computing device 100 may provide USB connections to
receive handheld USB storage devices such as the USB Flash
Drive line of devices manufactured by Twintech Industry(R),
Inc. of Los Alamitos, Calif.

In further embodiments, an I/O device 130 may be a bridge
170 between the system bus 150 and an external communi
cation bus, such as a USBR), an Apple Desktop Bus(R), an
RS-232 serial connection, a SCSI bus, a FireWire R bus, a
FireWire 800R) bus, an EthernetR) bus, an AppleTalkR) bus, a
Gigabit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPIbus, a Super HIPPIbus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.
A computing device 100 of the sort depicted in FIGS. 1A

and 1B typically operate under the control of operating sys
tems, which control scheduling of tasks and access to system
resources. The computing device 100 can be running any
operating system such as any of the versions of the
Microsoft(R). Windows operating systems, the different
releases of the Unix(R) and LinuxOR operating systems, any
version of the MacOSR) for Macintosh R computers, any
embedded operating system, any real-time operating system,
any open source operating system, any proprietary operating
system, any operating systems for mobile computing devices,
or any other operating system capable of running on the
computing device and performing the operations described
herein. Typical operating systems include: WINDOWS 3.xR),
WINDOWS 95R, WINDOWS 98(R), WINDOWS 2000R,
WINDOWS NT 3.51(R), WINDOWS NT 4.0R, WINDOWS
CE(R), and WINDOWS XP(R), all of which are manufactured
by Microsoft Corporation(R) of Redmond, Wash.; MacOSR),
manufactured by Apple Computer R of Cupertino, Calif.;
OS/2(R), manufactured by International Business Machines(R)
of Armonk, N.Y.; and Linux R, a freely-available operating
system distributed by Caldera Corp.(R) of Salt Lake City, Utah,
Java R or Unix R, among others.

In other embodiments, the computing device 100 may have
different processors, operating systems, and input devices
consistent with the device. For example, in one embodiment
the computer 100 is a Zire 71(R) personal digital assistant
manufactured by Palm, Inc.(R) In this embodiment, the Zire
71(R) operated under the control of the PalmOS(R) operating
system and includes a stylus input device as well as a five-way
navigator device. Moreover, the computing device 100 can be
any computer, workStation, desktop computer, laptop or note
book computer, server, handheld computer, mobile tele
phone, or other form of computing or telecommunications
device that is capable of communication and that has suffi
cient processor power and memory capacity to perform the
operations described herein.

Referring to FIG. 2, in general, the present invention per
tains to client-server systems and network communications.
In brief overview, one embodiment of a client-server system
102 in which the present invention may be used is depicted. A
client node 108a communicates with a server node 110a over
a communications network 104. The system 102 may have
one or more client nodes 108a-108m, each communicating to
one or more server nodes 110a-110m over the network 104.
The topology of the network 104 over which the client nodes
108a-108n communicate with one or more server nodes,
110a-110m may be a bus, star, or ring network topology. The
network 104 can be a local area network (LAN), a metropoli
tan area network (MAN), or a wide area network (WAN) such
as the Internet. The network 104 and network topology may

US 7,984, 192 B2

be of any such network or network topology capable of Sup
porting the operations of the present invention described
herein.

The client and server nodes 108a-108m, 110a-110m can
connect to the network 104 through a variety of connections
including standard telephone lines, LAN or WAN links (e.g.,
T1, T3, 56 kb, X.25, SNA, DECNETR), broadband connec
tions (ISDN. Frame Relay, ATM, Gigabit Ethernet, Ethernet
over-SONETR), and wireless connections. Connections can
be established using a variety of communication protocols
(e.g., TCP/IP, IPX, SPX, NetBIOS.R., Ethernet(R), ARC
NETR, Fiber Distributed Data Interface (FDDI), RS232,
IEEE 802.11(R), IEEE 802.11a(R), IEEE 802.11b(R), IEEE
802.11g R, and direct asynchronous connections).

In one embodiment (now shown), the network 104 is sepa
rated into networks 104 and 104'. The networks 104 and 104
can be the same type of network or different types of net
works. In one embodiment, the network 104 and/or the net
work 104' is, for example, a local-area network (LAN), such
as a company Intranet, or a wide area network (WAN). Such as
the Internet or the World Wide Web. The clients 108a-108n
and the server 10118a-118n can be connected to the networks
104 and/or 104 through a variety of connections including,
but not limited to, standard telephone lines, LAN or WAN
links (e.g., 802.11, T1, T3, 56 kb, X.25), broadband connec
tions (e.g., ISDN. Frame Relay, ATM), wireless connections,
or some combination of any or all of the above.
The client nodes, or clients, 108a-108n may be any work

station, desktop computer, laptop, handheld computer,
mobile telephone, or other computing device 100 capable of
communication and that has sufficient processor power and
memory capacity to perform the operations described herein.
Additionally, the client 108a-108n can be a local desktop
client on a local network 104 or can be a remote display client
of a separate network 104". The client 108a-108n can include,
for example, a visual display device (e.g., a computer moni
tor), a data entry device (e.g., a keyboard), persistent and/or
Volatile storage (e.g., computer memory), a processor, and a
pointing device, such as a mouse. In a similar manner, the
server nodes, or servers, 110a-110m may be any type of com
puting device 100 capable of operating as described herein.
Furthermore, the server nodes 110a-110m may be provided as
a group of server systems logically acting as a single server
system, referred to herein as a server farm. In one embodi
ment, the server node 110a-110n is a multi-user server system
Supporting multiple concurrently active client connections or
user sessions.

In some embodiments, as shown in FIG. 2, a client agent
109a–109n is included within the client 108a-108m. The client
agent 109a–109n can be, for example, implemented as a soft
ware program and/or as a hardware device, such as, for
example, an ASIC or an FPGA. An example of a client agent
109a–109n with a user interface is a Web Browser (e.g. a
Microsoft(R). Internet Explorer browser and/or Netscape(R).
browser). The client agent 109a–109n can use any type of
protocol and it can be, for example, an HTTP client agent, an
FTP client agent, an Oscar R client agent, a Telnet client
agent, an Independent Computing Architecture (ICA).R. cli
ent agent from Citrix Systems(R), Inc. of Fort Lauderdale, Fla.,
or a Remote Desktop Protocol(R) (RDP) client agent from
Microsoft Corporation(R) of Redmond, Wash. In some
embodiments (not shown), the client 108a-108m includes a
plurality of client agents 109a–109n, each of which may
communicate with a server 110a-110m, respectively.

In any of the clients 108a-108m and servers 110a-110m, the
computers (100, 100', etc) typically run a single copy of the
operating system for operating the computer 100. The oper

5

10

15

25

30

35

40

45

50

55

60

65

10
ating system provides Software and resources such as those
necessary for the computer 100 to communicate on a network
104 over a network interface 118. A most widely used stan
dard for network communications is the Transmission Con
trol Protocol/Internet Protocol (TCP/IP), which is a com
bined set of protocols that performs the transfer of data
between computers 100 on a network 104. The TCP protocol
monitors and ensures correct transfer of data. The IP protocol
uses an internet protocol address or IP address, which is a
numerical address to uniquely identify computers 100 on a
network 104 to route network traffic and establish connec
tions among computers 100 on the network 104. A more
user-friendly domain name, or computer host name, compris
ing a string of characters can be associated with the IP address
to uniquely identify the computer. A computer 100 may have
more than one domain name or IP address but a given domain
name or IP address points to only one computer 100 on a
network 104.
With many operating systems capable of running on the

computer 100, such as Microsoft WINDOWS(R), Linux(R or a
UNIX(R) operating system, there is a single network and TCP/
IP protocol layer, or TCP stack, for performing network com
munications. The IP address and domain name assignment to
a computer is device dependent. That is, the network identi
fier, Such as an IP address and/or domain name, is assigned to
the computer 100 to associate and identify any network com
munications from the computer 100. Any user, application,
user session or any other program that may run on the com
puter 100 that causes network communications uses the com
puter assigned network identifier. As such, a user of a com
puter or a program running on a computer communicates over
the network using a network identifier assigned to the com
puter. For example, a computer 100 is assigned an IP address
of 192.168.1.100. A first user logs into the computer and runs
a program that generates network traffic over the network
104. The IP address of 192.168.1.100 will be used as part of
the TCP/IP protocol related network communications to
uniquely identify the network to and from the computer 100.
A second user logs into the computer 100 and runs another
program that also generates network traffic over the network
104. The same IP address of 192.168.1.100 will be used in the
network communications of the second user. As such, the user
who generates the network traffic can not be distinguished by
the IP address of their respective network communications.

In the case of a multi-user computer, such as a server
running Microsoft Terminal Server, multiple users can log
into the server and run programs concurrently or simulta
neously. Since the server is running a single operating system
and has an IP address assigned to the server, the multiple users
and the multiple programs run by the users all share the same
IP address. Each user session hosted by the server share the
same IP address. Even in the case where a computer has
multiple network interface cards (118, 118', etc.), such as a
server 110 running multiple ftp or web-sites, and having one
or more IP addresses assigned to each network interface card
118, the IP address is still machine dependent. The one or
more IP addresses identify the server and not the user or
programs communicating on the server 110.
Many applications require each user or program to have

separate IP addresses in order to work. Yet other applications
use the IP address or host name to identify the user. Addition
ally, network monitoring applications and systems can moni
tor network activity Such as internet activity and other appli
cation activity. However, if each user or application is using
the same IP address, the monitoring application cannot iden
tify the user associated with the activity. The present inven
tion provides the advantage of assigning unique network

US 7,984, 192 B2
11

identifiers to each of multiple programs or users communi
cating on the network 104 from the same computer 100.

FIGS. 3A-3C depict components of the present invention
that allow unique network identifiers, such as an IP address or
domain name, to be assigned to multiple programs running on
a computer 100 or assigned to users of the programs.

Referring now to FIG.3A, the system 300 is a client-server
system comprising a client 108 and server 110 communicat
ing over a network 104. The client 108 has a network com
munication interface 310, an interface mechanism 320, a
plurality of network identifiers 330 and one or more programs
340a-340b. The network communication interface 310
includes any and all of the network related hardware and
software required for the client 108 to communicate over the
network 104. For example, the network communication inter
face 310 includes any network adapter 118 of the computer
100 and any other software and/or hardware, such as operat
ing system provided software and interfaces, necessary for
the computer 100 to communicate over the network 104.

The interface mechanism 320 comprises a socket library
332 and a TCP stack 324 in order to provide a unique network
identifier from the plurality of network identifiers 330 that
may be available to each of the programs 340a-340m running
on the client 108. The socket library 322 is a general purpose
networking application programming interface or API to
access network services provided by the operating system.
Briefly stated, a socket is an end point for interprocess com
munication, either locally or over a network running TCP/IP.
Sockets can simultaneously transmit and receive data from
another process, using semantics that depend on the type of
Socket. The Socket interface can Support a number of under
lying transport mechanisms. Ideally, a program written with
socket calls can be used with different network architectures
and different local interprocess communication facilities with
little or no changes. The socket library 322 can be the Win
sock API from Microsoft, the Berkeley Software Distribution
(BSD) socket library for Unix or any other supported archi
tecture, other socket libraries based on the socket interface
from University of California at Berkeley, or any other avail
able Socket library providing a socket based network pro
gramming API to communicate using TCP/IP over a network
104, which may or may not be based on the Winsock or the
BSDAPI, and capable of operating on the computing device
100 as described herein.
The TCP stack 324 provides an implementation of the

TCP/IP communications protocol engine in order for the
client 108 to communicate using TCP/IP over the network
104. The TCP Stack 324 includes TCP/IP software and hard
ware driver software, sometimes referred to as packet drivers,
that allows a computer 100 to communicate via TCP/IP.
Applications that use TCP/IP. Such as an application making
API calls to a socket library 322, require a TCP stack to
operate on the computer where the application runs. The TCP
stack 324, in one embodiment, may include the socket library
322 software, and in another embodiment, the socket library
322 software may be not be included with the TCP stack 324.
In a typical computer 100, the operating system provides a
single TCP stack 324 for applications to use for network
communications via TCP/IP. For example, operating systems
such as Microsoft Windows, versions of UNIX and Linux
only support a single instance of the TCP stack 324. Addi
tional TCP/IP software, socket library software and/or hard
ware driver software may be installed on the computer in
addition to or instead of the similar software provided by the
operating system. In an exemplary embodiment of the present
invention, a single TCP stack 324 is used as provided by
default by the operating system. In an alternative embodi

10

15

25

30

35

40

45

50

55

60

65

12
ment, the interface mechanism 320 may comprise a second
TCP stack 324 in addition to the TCP stack 324 provided by
the operating system. Each TCP stack 324, 324" may handle
multiple users and/or programs communicating over the net
work 104.

Additionally, the interface mechanism 320 may be any
type of software component and/or a special purpose hard
ware device, such as, for example, an ASIC or an FPGA. The
one or more software components of the interface mechanism
may each be embodied in a library, module, program, execut
able, application, service, process or task. Furthermore, the
interface mechanism 320 may be made of several software
components either running locally or distributed across mul
tiple clients 108, 108' or servers 110, 110'. The interface
mechanism 320 may include the socket library and a portion
of or all of the TCP stack 324. One ordinarily skilled in the art
will appreciate the various permutation of the possible alter
native embodiments of the interface mechanism 320.
The client 108 may provide for or obtain a plurality of

network identifiers 330 for the interface mechanism 320 to
use in assigning unique network identifiers to one or more
programs 340a-340n on the client 108. The network identi
fiers 330 may comprise IP addresses, domain or host names,
or both IP addresses and host names. In a preferred embodi
ment, the network identifiers 330 comprise a unique list of IP
addresses with each IP address having at least one unique host
name associated with it. The network identifiers 330 may be
statically defined in one embodiment, or dynamically deter
mined in another embodiment. In some cases, some of the
network identifiers 330 will be statically defined while other
network identifiers 330 will be dynamically obtained from
the client 108, server 110, or another client 108' or server 110'
on the network 104.
The client 108 may obtain the network identifiers 330

many different ways and may receive a portion of the network
identifiers 330 one way and other portions of the network
identifiers 330 other ways. In one embodiment, the network
identifiers 330 may be statically defined in a storage 336
location, such as a file, either remotely on the server 110 or on
the client 108. For example, the local hosts file of the client
108 referenced by the operating system and TCP stack 324 in
performing network operations using IP addresses and host
names may contain a list of multiple network identifiers. In
another embodiment, one or more of the network identifiers
330 are allocated or dedicated to a specific user.

In another embodiment, the client 108 obtains a one or
more of the network identifiers from a server 110 accessible
by the client 108 on the network 104. The server 110 may be
a Dynamic Host Configuration Protocol server, also known as
a DHCP server. DHCP is a standard for computers on a
TCP/IP network to request from one or more central servers
information Such as the IP number, the netmask, the gateway,
etc. that the computer should be using. The DHCP protocol
provides for assigning dynamic IP addresses to devices on a
network and Supports a mix of static and dynamic IP
addresses. DHCP consists of two components: a protocol for
delivering host-specific configuration parameters from a
DHCP server 334 to a client 108 and a mechanism for allo
cation of network addresses to clients 108, 108'.

In another embodiment, the client 108 obtains one or more
of the network identifiers 330 from a network identifiergen
erator 330, which can run on the server 110, or on the client
108, or on another client 108' or server 110' which is acces
sible by the client 108 on the network 104. The network
identifier generator 330 may have an algorithm engine, busi
ness rule or logic engine for generating one or more of the
network identifiers 330 for the client 108 or the server 110.

US 7,984, 192 B2
13

The network identifier generator 332 may generate a sequen
tial series of IP addresses and/or host names. In another
embodiment, the network identifier generator 332 may gen
erate a random set of numbers with the numbers correspond
ing accordingly to the appropriate IP dot numbering scheme
for the network 104. In another case, the network identifier
generator 332 may use any combination of a user name,
computer name, domain name or other descriptive strings of
text in generating a host name for any of the IP addresses of
the network identifiers 330. Furthermore, the network iden
tifier generator 332 may have business rule logic that applies
different addressing and generation schemes depending on
the client 108 or server 110 requesting or obtaining the net
work identifiers 330 from the network identifier generator
332. One ordinarily skilled in the art will recognize that the
network identifier generator 332 can apply a wide range of
algorithms for generating network identifiers and apply a
wide range of business rule logic for providing network iden
tifiers to one or more computers on a network 104.

The client 108 may obtain, provide or be assigned a maxi
mum number of unique network identifiers 330 as the client
108 or server 110 may be able to host. In other embodiments,
the client may obtain, provide or be assigned less than a
maximum number of unique network identifiers 330 as may
be determined based on the number of users, number of
programs or other factors impacting the need for assigning
unique network identifiers 330 to programs 340a-304n or
users on the client 108. In one embodiment, the number of
network identifiers 330 is a configurable parameter.
The client 108 may obtain a portion of the network identi

fiers 330 from the server 110, such as a storage location 336,
another portion from a DHCP server 334, another portion
from the network identifier generator 332 and yet another
portion locally on the client 108. Furthermore, the client 108,
the server 110, or any programs 340a-340b on the client 108,
the interface mechanism 310 of the client 108, or any program
on the server 110 may obtain one or more network identifiers
programmatically by making any API calls, such as operating
system level API calls, or by using any configuration tool
provided by the operating system or other application to
obtain network identifiers 330. One ordinarily skilled in the
art will appreciate the various permutations and alternative
embodiments for the client 108 to obtain or provide for a
plurality of network identifiers 330 for the present invention.
The client may provide for one or more programs 340a

340n to execute on the client 108. The programs 340a-340n
can be any application, Software or computer program
capable of being invoked, executed on or processed by the
computing device 100 of the client 108. For example, the
program 340a-340n can be any general purpose desktop
application such as Microsoft Windows Explorer. The pro
gram 340a-340n could also be any type of web interface
accessing services provided over the network 104 via one or
more servers 110, 110'. The program 304a-340n can be an
enterprise application client accessing the server 110 over the
network 104. In another case, the program 340a-340n can be
a custom application Written in any programming language
and compiled to execute on the client 108. In one embodi
ment, the program 340a-340n is any program that is causing
network communications over the network 104 to which a
network identifier would be provided in the network commu
nications. For example, the program 340a-340n may make
socket related API call through the socket library 322 using
the TCP stack 324 to communicate to the network 104
through the network communication interface 310.

In one embodiment, the program 340a-340n comprises an
application isolation environment, which provides an execu

10

15

25

30

35

40

45

50

55

60

65

14
tion context within a computing device 100 to separate, or
isolate, a group of processes from another set of processes
running in a separate instance of an application isolation
environment. The isolation of processes in separate contexts
protects one set of processes from issues generated from
another set of processes. Typically, application isolation
occurs at the process level where processes running in one
execution context do not directly use the address space in
memory used by other processes running in another execution
context. However, an application isolation environment can
provide any level of virtualization of operating system
resources so as to separate or isolate the use of those resources
by any program running 340a-340n in each application iso
lation environment 340a-340n. By way of example, on the
client 108, program 34.0a can provide an application isolation
environment for one or more programs 340a-340n to run in
while program 340b provides a second application isolation
environment for another set of one or more programs 340a
340n to run in.

In another embodiment, the programs 340a-340n can com
prise a thin-client program for accessing applications, pro
grams and services on a server 110 using a remote display
protocol. For example, any of the programs 340a-340n may
be an Independent Computing Architecture (ICA) client from
Citrix Systems, Inc. of Fort Lauderdale, Fla., or a Remote
Desktop Protocol (RDP) client from Microsoft Corporation
of Redmond. These thin-client programs 340a-340n provide
access to user sessions running on the server 110, or one or
more other servers 110", 110', such as multiple servers in a
server farm or server cluster. As such, the program 340a-340m
can be a user session hosted by the client 108 or the server
110.

In one embodiment, each of the programs 340a-340n can
be running different types of applications, application isola
tion environments, or user sessions. For example, program
34.0a may be an enterprise application client providing web
access to enterprise application servers on the network. Pro
gram 340b may be an application isolation environment pro
viding an execution context for a user to run one or more
programs. Program 340n may be a thin-client program run
ning a user session on the server 110. In another embodi
ments, the programs 340a-340n may be any type of service
running in the operating system. Additionally, a program
340a-340n can also be referred to as any service, task, pro
cess, or thread running on the client 108a-108m, or any com
bination thereof. One of ordinary skill in the art will recognize
that the programs 340a-340n may be any type of program
capable of executing on the computing device 100 of the
client 108 or server 110 and that multiple types of programs
may run subsequently or concurrently on the client 108 or the
server 110 by one or more of the same user or different users.

In operation, the interface mechanism 310 of the client 108
provides for the association of unique network identifiers
from the plurality of network identifiers 330 to the programs
340a-340m running on the computer or to users of the pro
grams 340a-340m. Although there may be a single operating
system, TCP stack 324 and socket library 322 supporting the
network communications of the programs 340a-340m, the
interface mechanism 320 locks, or binds, each user or pro
gram 340a-340n to a unique network identifier so that net
work communications from that user or program from the
same client 108 has a unique network identifier. Without the
interface mechanism of the present invention, each user or
program 340a-340n of the client 108 would generate network
communications with the same network identifier assigned to
the client 108.

US 7,984, 192 B2
15

The interface mechanism 320 obtains and/or selects a net
work identifier from the plurality of network identifiers 330 to
associate and assign to a program 340a-340n or user of the
programs 340a-340n. The interface mechanism 320 may
obtain a network identifier from the plurality of network
identifiers 330 programmatically through an API call, such as
an API call to a DHCP server. The interface mechanism 320
may obtain a network identifier for a program 340a-340b
through any other form of interfacing by which it could obtain
a network identifier, Such as for example, reading a row of
data from a file. Such as a local hosts file, or by querying a row
of data from a database. The interface mechanism 320 may
have one or more network identifiers stored in memory upon
start up of the client 108. One ordinarily skill in the art will
recognize the interface mechanism 320 may obtain a network
identifier for a program 340a-340n in many different ways
allowed by various known interfacing techniques.
The client 108, programs 340a-340n and/or interface

mechanism 320 may obtain, select and/or assign a unique
network identifier for a program 340a-340n or user at various
times. In one embodiment, the client 108 may obtain one or
more network identifiers upon booting or starting of the client
108. In another embodiment, the network identifier for a user
may be obtained when the user logs into the client 108 or
otherwise starts a user session. In one embodiment, the pro
gram 340a-340m and interface mechanism obtains, selects,
and assigns a network identifier to the program 340a-304n
upon establishment of or starting of the program 340a-340n.
In another embodiment, the network identifier for the pro
gram 340a-340n is not obtained, selected or assigned until the
program makes a call to the Socket library 324. In other cases,
the network identifier assigned to a program 340a-340n or a
user of the client 308 may be released or returned at any point
after is no longer needed by the interface mechanism 320 or
the program 340a-340n. One ordinarily skilled in the art will
recognize the many variations upon which a network identi
fier may be obtained, selected and/or assigned to a program
340a-340n or a user of the client 108 and in other cases
returned to or released from the pool of network identifiers
330.

In an exemplary embodiment, the interface mechanism
320 locks in, or binds, a user or program 340a-340n to one of
the network identifiers 330 by intercepting and modifying
calls made to the socket library 322. Since there is typically a
single TCP stack 324 with one IP address assigned to the
client 108, applications usually do not specify an IP address
of the client 108 in API calls to the socket library 322. The IP
address of the client 108 is a well-known IP address identified
in one global name space of the TCP stack 324. By intercept
ing and modifying socket library 322 API calls, the interface
mechanism 320 can apply a specific network identifier to the
API call instead of the socket library 322 using the IP address
and/or host name assigned to the client 108 and already
known by the TCP stack 324. After intercepting a socket
library 320 API call, the interface mechanism 320 can apply
a unique network identifier to the socket library 320 API call
so that a network identifier is applied in making the API call.
The interface mechanism 320 will apply the unique network
identifier associated with the program 340a-340n or associ
ated with the user of the program 340a-340n making the
socket library 322 API call.

For Socket based network communications, a program call
ing the socket library 322 API may perform a variety of API
calls on a socket, the endpoint of communications between a
source and destination process. An endpoint in TCP/IP net
working is determined by a unique combination of an IP
address and a port address, or port number. Multiple applica

10

15

25

30

35

40

45

50

55

60

65

16
tions on the same client 108 can use the same IP address
concurrently with different port addresses as each IP and port
address combination defines a unique endpoint. However, the
present invention allows multiple programs 340a-340n on the
same client 108 to use the same port address concurrently.
Since each program 340a-340n may obtain a different IP
address, each endpoint, i.e., IP and port address, will be
uniquely defined via the unique IP address assigned to the
program 340a-340n. As such, a program 340a with a first IP
address may be bound to the same port address as another
program 304b with a second IP address on the same client
108.

The API of the socket library 322 defines function calls to
create, close, read and write to/from a socket, among other
socket related functions as described by the specific API
implementation of the socket library 322, such as the Win
Sock API. In establishing socket communication, the IP
address and the port of the Source and destination processes
must be provided to the socket library 322 API. Then send and
receive API calls can be made on the socket. A socket can be
bound to a specific network address by calling the bind func
tion of the socket library 322. The interface mechanism 320
would bind the socket to the unique network identifier deter
mined by the interface mechanism 320 as associated with or
assigned to the program 340a-340b making the Socket com
munications, or for the user accessing the program 340a
340n. This network identifier would be provided as the source
address for the program 340a-340n on the client 108 and once
the socket was mapped to this network identifier, all other
Socket based communications, such as a send API call, would
use this network identifier as the source network address. The
interface mechanism 320 will also make a program 340a
340n listen on a particular network identifier assigned to the
program 340a-340n by replacing a generic listen socket API
call with a listen API call for the specific network address. As
such, the interface mechanism 320 would ensure that connec
tions and packets would originate from the unique network
identifier associated with the program 340a-340n. The socket
library 322 may provide for API calls to determine the net
work identifier of the local process sending and/or receiving
socket based communications. The interface mechanism 320
would intercept and modify these types of API calls to return
the specified network identifier of the program 340a-340n.
The approach of having unique network identifiers

assigned to a particular program 340a-304n or user on the
client 108 can also be referred to as virtual IP addresses. The
IP addresses are virtual in that although the client 108 is
assigned an IP address, each of the programs 340a-340m
and/or users running on the client 108 have an IP address
unique from and different than the IP address already and
typically assigned to the client 108. Furthermore, these vir
tual IP addresses can be used dynamically, with a virtual IP
address being assigned and then unassigned on an as needed
basis for a user or program 340a-340n
The technique of intercepting and modifying socket library

322 calls can be applied to many operating systems such as
the various types of Linux and UNIX operating systems that
use a similar socket communications based approach and
have Socket libraries for Such communications. Furthermore,
it is advantageous to use an interface mechanism 320 with a
single TCP stack 324 as many of these operating systems
already use a single TCP stack 324 for network communica
tions. In this case, the interface mechanism 320 would work
with these standard available operating systems and be less
intrusive on the operating system of the client 108, or other
computing device 100 hosting the present invention.

US 7,984, 192 B2
17

In certain embodiments, the interface mechanism 320 can
intercept and modify socket library 322 API calls by using the
technology of a Layered Service Provider (LSP), a
Namespace Service Provider (NSP) or other technology that
will enable the interface mechanism 320 to hook, overwrite,
overload, extend or otherwise intercept and modify socket
library 322 API calls. For example, an LSP is a software
component that can be inserted into a Windows TCP/IP han
dler like a link in a chain. The Winsock implementation from
Microsoft provides a service provider interface between the
API and the protocol stacks. The service provider interface
would enable one to create their own service provider or
extend an existing transport service provider by implement
ing a custom LSP.

Alternatively, instead of intercepting and modifying socket
library 322 API calls, the interface mechanism 320 may com
prise a custom or modified socket library 322 which provides
the programming logic to use, provide or apply the unique
network identifiers assigned to any of the programs 340a
340n or users. In another alternative embodiment, the inter
face mechanism 320 may use multiple TCP stacks 324, 324
and/or socket libraries 322, 322 for providing unique net
work identifiers to a portion of or all of the programs 340a
340n or the users of the client 108. For example, in one
embodiment, a TCP stack 324 and socket library is assigned
to each program 340a-340n or each user on the client 108. In
yet another alternative embodiment, the interface mechanism
320 may comprise a network manipulation filter by which it
filters packets of network traffic via the network communica
tion interface 310. In this case, the interface mechanism 320
is intercepting and modifying network traffic sent to and from
a program 340a-340n beyond or below the layer of the socket
library 322. As such, the API calls to the socket library 322
would not be intercepted and modified but the network traffic
generated from such calls would be intercepted and modified.

Referring now to FIG. 3B, system 302 depicts a client
server network system where the present invention of provid
ing virtual IP addresses resides on the server 110. In an
exemplary embodiment, the server 110 may be a multi-user
server running remote display protocol servers such as
Microsoft Terminal Server or Citrix Presentation Server,
which allow users to connect to the server 110 to run appli
cations from the server 110 and have output from the running
of the application display on the clients 108a-108n. In broad
overview, any one orall of the clients 108a-108n may connect
to the server 110 over the network 104. The server 110 may
have a network communication interface 310, an interface
mechanism 320, a network identifier generator 332, network
identifiers 330, and one or more programs 340a-340m.

The clients 108a-108m may have a client agent 109a–109b
to provide additional application functionality to the client or
allow the client to access services on another system Such as
the server 110. For example, a client agent 109a–109n may be
a remote display client, such as any of the remote display
clients from Microsoft or Citrix that work in conjunction with
Microsoft Terminal Server or Citrix Presentation Server that
may be running on the server 110. In these cases, the client
108a-108m would connect to the server 110 and establish a
user session on the server 110. The server 110 may concur
rently and/or Subsequently host multiple user sessions. For
example, the server 110 may concurrently hosta user session
for a first user from client 108a and a user session from a
second user from client 108b. In another embodiment, the
user session of the first user from client 108a may be hosted
by the server 110 after the server terminates hosting of the
user session of the second user from client 108b.

10

15

25

30

35

40

45

50

55

60

65

18
Without the present invention, each of the user sessions

hosted on the server 110 would use the IP address assigned to
the server 110. So although different users are using the server
110, the network traffic generated from each user would share
the same IP address of the server 110. With the present inven
tion, each user session hosted on the server 110 via the pro
grams 340a-340n may be assigned a unique network identi
fier different than the server's 110 network identifier. If the
user is running more than one program 340a-340m, each user
program 340a-340n may be assigned a network identifier
associated with the user. In a similar fashion as described with
FIG. 3A, the interface mechanism 320 on the server 110
would obtain, select and assign a unique network identifier
from the plurality of network identifiers 330 and apply
accordingly the network identifier to network communica
tions of the programs 340a-340n using the intercept and
modify technique with regards to the socket library 322.

Referring now to FIG. 3C, system 304 depicts an alterna
tive embodiment of the present invention for providing virtual
IP addresses where the interface mechanism 320 is deployed
on a proxy server 110. In brief overview, one or more of the
clients 108a-108n may connect to the server 110" via a proxy
server 110. The clients 108a-108m may communicate via the
proxy server 110 to the server 110' by a VPN protocolor some
other tunneling or encapsulation protocol. Furthermore, any
of the clients 108a-180m may be a server, server farm, or other
multi-user server. The server 110' may be on the same net
work 104 as the proxy server 110 or on a different network
104".
The proxy server 110 may comprise the plurality of net

work identifiers 330 to be assigned to any of the programs
340a-340m residing on any of the clients 108a-108m or the
server 110'. The interface mechanism 320 on the proxy server
110 would manage the assignment of network identifiers to
network traffic passing through the proxy server 110 between
the client 108a-108m and the server 110' that is associated
with a specific program 340a-340n or user of the client 108a
108m or the server 110'. Since the clients 108a-108m or the
server 110' would not bind the network identifier to the spe
cific program 340a-340n or user prior to communicating
network traffic, the proxy server 110 and the interface mecha
nism 320 would need to manage the context of network traffic
from the user or program 340a-340n to appropriately apply
the unique network identifier.

In one aspect, the present invention relates to methods for
assigning unique network identifiers to one or more programs
340a-340m and/or users of a computer 100, such as the client
108 or the server 110. FIG. 4 depicts a flow diagram of the
steps of a method 400 for practicing the present invention as
shown in FIGS. 3A-3C. The method 400 comprises the steps
of obtaining a plurality of network identifiers (step 410),
selecting a network identifier for a program (step 415), asso
ciating a network identifier with network communication of
the program (step 420) and transmitting the networkidentifier
with network communication of the program (step 425). This
method 400 can be repeated for each of the programs 340a
340m, or optionally, at any of the steps of method 400, the step
can be performed for multiple programs 340a-340m, or users.
In another embodiment, the method 400 can applied to each
user of the client 108 or server 110.
At step 410, the computer 100, such as the client 108, the

server 110, or the proxy server 110, obtains a plurality of
network identifiers 330. One or more of the network identi
fiers 330 may be obtained from a server 110 separate from the
computer obtaining the network identifiers. Optionally, one
or more of the network identifiers 330 may be obtained from
a DHCP server. In another embodiment, one or more of the

US 7,984, 192 B2
19

network identifiers 330 may be obtained from a storage loca
tion 336 such as a file system or database locally on the
computer 100 or remotely on a server 110 or client 108. In
another embodiment, one or more the network identifiers 330
may be obtained from a network identifier generator 332. For
step 410, a plurality of network identifiers 330 may be
obtained by all or a portion of the above alternative embodi
ments of the step. Furthermore, one or more of the network
identifiers 330 may be allocated specifically to a user or on a
user basis. In one embodiment, the network identifier is
obtained for a user when a user starts a user session on the
client 108. As described in relation to FIG.3A, one ordinarily
skilled in the art will appreciate the various permutations of
step 410 in obtaining a plurality of network identifiers 330.
At step 415, the interface mechanism 320 selects a network

identifier from the plurality of network identifiers 330 for a
program invoked, executing or otherwise running on the com
puter 100, such as the client 108 or the server 110. The
networkidentifier may be selected on booting up or starting of
the computer 100. In another embodiment, the network iden
tifier may be selected when the program 340a-340n is
invoked on the computer or in yet another embodiment, when
the program 340a-340n makes its first call to the socket
library 322. In further embodiments, the network identifier
330 selected for a program 340a-340n may be released or
returned once the program 340a-340n is terminated or other
wise complete Socket communications.

At step 420, the interface mechanism 320 associates the
selected network identifier with the network communications
of the program 340a-340n. In an exemplary embodiment,
step 420 includes the intercepting and modifying technique
discussed in relation to FIG. 3A. In other embodiments, the
step 420 may include using multiple TCP stacks 324 or a
network manipulation filter. At step 425, the method 400
provides for the transmitting of the selected and associated, or
assigned, network identifier of a program 340a-340n with
network communication of the program 340a-340m. The
interface mechanism 320 interfaces with the network com
munication interface 310 to transmit the assigned network
identifier with the network communications of the program
340a-340n.

In another aspect, the techniques of the present invention
for assigning unique network identifiers for programs 340a
340n can also be applied to local inter-process communica
tions using the loopback interface of a computer 100. The IP
protocol specifies a loopback network and most IP implemen
tation Support a loopback interface. A loopback is a commu
nications channel with only one endpoint so that any traffic
that a computer program sends on the loopback network is
addressed to the same computer. The most commonly used
loopback IP address is 127.0.0.1 with a host name or domain
name of local host. Any of the loopback addresses in the
127.X.X.X range are considered loopback addresses by the
TCP stack 324. On a UNIX like system, the loopback inter
face is commonly referred to as device lo or lo0. A loopback
interface may have several uses. Some applications use the
loopback address to establish an inter-process communica
tion between programs running locally. In other cases, ping
ing the loopback address can be used to test if the TCP stack
is working. Additionally, the loopback interface may be used
to test Software without needing to actually access the net
work 104.

FIG. 5 depicts a block diagram of a computer system 500
applying the techniques of the present invention to the loop
back interface 510 of a client computer 108. In brief overview,
the client 108 comprises a loopback interface 510, an inter
face mechanism 310, a plurality of loopback addresses 530,

10

15

25

30

35

40

45

50

55

60

65

20
and one or more programs 340a-340m. The client 108 is
connected to a network 104 by which the client 108 can
access a server 110. The server 110 may comprise a storage
336 having one or more loopback addresses, and I may further
comprise a loopback address generator 532.
The client 108 may provide for or obtain a plurality of

loopback addresses 530 for the interface mechanism 320 to
use in assigning unique loopback addresses to one or more
programs 340a-340n or one or more users on the client 108.
The loopback addresses 530 may comprise IP addresses,
domain or host names or both IP addresses and host names,
which would be intended for use as a loopback address for the
loopback interface 510.

In an exemplary embodiment, the loopback addresses 530
comprises a unique list of IP addresses with each IP address
having at least one unique host name associated with it. The
loopback addresses 530 may be statically defined in one
embodiment, or dynamically determined in another embodi
ment. In some cases, some of the loopback addresses 530 will
be statically defined while other loopback addresses 530 will
be dynamically obtained from the client 108, server 110, or
another client 108 or server 110' on the network 104. Similar
to the network identifiers in FIGS. 3A-3C, the client 108 may
obtain the loopback addresses 530 many different ways and
may receive a portion of the loopback addresses 530 one way
and other portions of the loopback addresses 530 other ways.
In one embodiment, the loopback addresses 530 may be
statically defined in a storage 336 location, Such as a file,
either remotely on the server 110 or alternatively, on the client
108 or another client 108" or server 110' on the network 104.
For example, the local hosts file of the client 108 referenced
by the operating system and TCP stack 324 in performing the
loopback interface 510 may contain a list of multiple loop
back addresses. In another embodiment, one or more of the
loopback addresses 530 are allocated or dedicated to a spe
cific user. In another embodiment, the client 108 obtains one
or more of the loopback addresses 530 from a server 110
accessible by the client 108 on the network 104. In yet another
embodiment, one or more of the loopback addresses may be
obtained from a loopback address generator 532 running on
either the server 110 as shown, or optionally on the client 108
(not shown). The loopback address generator 532 may run
any of the similar address generating schemes and business
rule logic as with the network identifier generator 332. As
with the network identifiers 330 of FIGS. 3A-3C, one ordi
narily skilled in the art will recognize the client 108 may
provide or obtain a plurality of loopback addresses 530 in
many different ways.

Furthermore, the client 108 may obtain, provide or be
assigned a maximum number of unique loopback addresses
330 as the client 108 may be able to have, or host or otherwise
supported by the loopback interface 510. For example, there
may be one loopback address for each of the users of the client
108 up to the maximum numbers of specific users the client
108 can host, either concurrently or subsequently. In other
embodiments, the client may obtain, provide or be assigned
less than a maximum number of unique loopback addresses
530 as may be determined based on the number of users,
number of programs or other factors impacting the need for
assigning unique loopback addresses to programs 340a-304n
or users on the client 108. In one embodiment, the number of
loopback addresses 530 is a configurable parameter.
The loopback interface 510 includes any and all of the

network related hardware and software required for the client
108 to communicate with the loopback interface 510. For
example, the loopback interface 510 includes any software

US 7,984, 192 B2
21

and/or hardware. Such as operating system provided Software
and interfaces, that implements the loopback network of the
client 108.
The interface mechanism 310 comprises a socket library

322 and a TCP stack 324, and as described in conjunction
with FIG. 3A may have other embodiments. Also, as further
described in conjunction with FIG. 3A, the interface mecha
nism 310 in FIG. 5 performs a similar intercepting and bind
ing technique for applying unique loopback addresses to pro
grams 340a-304 in or users on the client 108. Any of the
programs 340a-340n communicating to the loopback inter
face 510 would make API calls to the socket library 322 as
they would when performing socket based communications
over the network 104. However, a local host address or loop
back address would be specified as the source and/or desti
nation communication endpoint so that all communications
stay local to the client 108 but exercise a portion of the TCP
stack 324 as implemented by the loopback interface 510.
By way of example, program 34.0a on client 108 may be a

web client establishing local inter-process communications
with a local web server 340b. The programs 340a and 340b
may establish the inter-process communications by make API
calls using the default local host address of 127.0.0.1. Instead
ofusing the typical local host address of 127.0.0.1 assigned to
the client 108, the interface mechanism 320 would apply a
unique loopback address, from the unique loopback
addresses 330, for example 127.0.0.101, to the inter-process
communications between program 340a and program 340b.
In an exemplary example, the programs 34.0a and 340n con
tinue to make API calls using the 127.0.0.1 address. However,
the interface mechanism 320 substitutes the default address
with a unique loopback address from the loopback addresses
330 in the 127.X.X.X range recognized as a loopback address
by the TCP stack 324. In this case, the programs 340a-340n
are not aware of the Substitution and continue to perform as if
the programs 340a-340n were using the 127.0.0.1 address.

This loopback address may be program 340a-340m specific
or may be assigned to or dedicated to the user running the
program 340a-340m. The web server of program 340b may
point the web client of program 34.0a to the local URL address
of 127.0.0.101 to access the web site provide by the web
server locally to the client 108. While program34.0a and 340b
use the unique loopback address that may be different than the
one assigned to the client 108, a second set of programs, 340c
and 340d, may also establish local inter-process communica
tion with a unique loopback address such as 127.0.0.102.
different from the loopback address of the programs 34.0a and
340b, and different than the default loopback address of
127.0.0.1 of the client 108. Like programs 34.0a and 340b in
the above example, the second set of programs 340c and 340d
also make API calls using the 127.0.0.1 address but the inter
face mechanism 320 automatically substitutes a unique loop
back address in the 127.X.X.X range.
By applying unique loopback addresses 530 to one or more

of the programs 340a-340n or users of the client 108, the
present invention allows multiple loopback interface inter
process communications to occur concurrently or simulta
neously. Without the present invention, the first set of pro
grams 340a and 340b and the second set of programs 340c
and 340d would have had to use the same local loopback
address, such as the typical default of 127.0.0.1, causing one
of the set of programs not to work properly. Additionally, the
present invention as it applies to loopback addresses allows
monitoring systems and applications to associate inter-pro
cess loopback communications with a particular program or
USC.

10

15

25

30

35

40

45

50

55

60

65

22
In another aspect, the present invention relates to methods

for assigning unique loopback addresses to one or more pro
grams 340a-340m and/or users of a computer 100, such as the
client 108 or the server 110. FIG. 6 depicts a flow diagram of
the steps of a method 600 for practicing the present invention
as shown in FIG. 5. The method 600 comprises the steps of
obtaining a plurality of loopback addresses (step 610), select
ing a loopback addresses from the plurality of loopback
addresses for a program (step 615), associating a loopback
address with loopback interface communication of the pro
gram (step 620) and transmitting the loopback address with
loopback interface communication of the program (step 625).
This method 600 can be repeated for each of the programs
340a-340m, or optionally, at any of the steps of method 600,
the step can be performed for multiple programs 340a-340n.
In another embodiment, the method 600 can be applied to
each user of the client 108
At step 610, the client 108 obtains a plurality of loopback

addresses 530. One or more of the loopback addresses 530
may be obtained from a server 110 separate from the client
108. In one embodiment, one or more of the loopback
addresses 530 may be obtained from a storage location 336
such as a file system or database remotely on a server 110 or
optionally, locally, on the client 108. In another embodiment,
one or more the loopback addresses 530 may be obtained
from a loopback address generator 532. For step 610, a plu
rality of loopback addresses 530 may be obtained by all or a
portion of the above alternative embodiments of the step.
Furthermore, one or more of the loopback addresses 530 may
be allocated specifically to a user. As described in relation to
FIG. 5, one ordinarily skilled in the art will appreciate the
various permutations of step 610 in obtaining a plurality of
loopback addresses 530.
At step 615, the interface mechanism 320 selects a loop

back address from the plurality of loopback addresses 530 for
a program invoked, executing or otherwise running on the
computer 100, such as the client 108 or the server 110. The
loopback address may be selected on booting up or starting of
the client 108. In another embodiment, the loopback address
may be selected when the program 340a-340n is invoked on
the client 108 or in yet another embodiment, when the pro
gram 340a-340n makes its first call to the socket library 322.
In another embodiment, the loopback address is selected on a
user basis. In one embodiment, the loopback address is
obtained and/or selected for a user when a user starts a user
session on the client 108. In further embodiments, the loop
back address selected for a program 340a-340n may be
released or returned once the program 340a-340n is termi
nated or otherwise complete socket communications.
At step 620, the interface mechanism 320 associates the

selected loopback address with the loopback interface com
munications of the program 340a-340n. In an exemplary
embodiment, step 620 includes the intercepting and modify
ing technique discussed in relation to FIG. 5 and FIG. 3A. In
other embodiments, the step 620 may include using multiple
TCP stacks 324 or a network manipulation filter. At step 625,
the method 600 provides for the transmitting of the selected
and associated, or assigned loopback address of a program
340a-340m with loopback interface communication of the
program 340a-340n. The interface mechanism 320 interfaces
with the loopback interface 510 to transmit the assigned loop
back address with the loopback interface communications of
the program 340a-340n.

In another aspect, the present inventions relates to provid
ing a uniform addressing scheme for associating virtual host
names with users as they roam in a network 1-4. As discussed
above, the present invention allows unique network identifi

US 7,984, 192 B2
23

ers to be assigned dynamically to either programs or users
upon start of the program or upon start of the user session. As
such, a user can be dynamically “bound to a virtual host
name so that the user will always use the same host name, and
in Some cases the same IP address, regardless of the computer
the user may be using to access the network. A virtual host
name and/or virtual IP address can be allocated to a specific
user and follow the user as the user roams the network from
one computer to another or from one Sub-network to another.

Referring now to FIG. 7 is a block diagram depicting a
client-server system 700 for practicing an embodiment of the
present invention. In brief overview, one or more clients
108a-108n connect to a network 104 and access a server 110.
The network 104 may comprise one or more sub-networks
104 or may be multiple networks 104, 104", etc. The server
110 comprises a name resolution service 710, a set of virtual
host names 730 and IP addresses 740 and optionally, a DHCP
server 334. The server 110 could be a server farm, server
cluster, or other multiple server system, including servers
110, 110", 110', etc. Each of the client 108a-108m and the
server 110 may be able to invoke, run or otherwise execute
programs 340a-340m. In certain embodiments, a program
340a-340n on a client 108a may be used for establishing a
user session on a multi-user server 110 or server farm 110',
with the user session on the server 110 comprising a program
340b running on the server 110. Each client 108a-108m
includes a network interface 708a-708n for performing net
work interfacing of the present invention. In an exemplary
embodiment, one or more of the network interfaces 708a
708n includes the interface mechanism 320 as described with
FIGS. 3A-3C and FIG.5 for assigning unique network iden
tifiers to programs 304a-304n and/or users.

The server 110 may have a DHCP server 334 for dynami
cally assigning IP addresses to clients 108a-108n and/or the
interface mechanism 320 of the network interface 708a-708n
of a client 108a-108n. For example, when a user session
starts, a new IP address can be obtained from the DHCP
server 334 and when the user session ends, the IP address can
be released and returned back to the pool of IP addresses of
the DHCP server 334. Optionally, the DHCP server 334 could
be on another server 110' on the network 104. DHCP334 can
be configured to reserve IP addresses, and one or more IP
addresses can be reserved for a particular name. Such as a user
or host name. In addition to providing a client 108a-108n the
information of the IP address, subnet mask and default gate
way of the client 108a-108m, the DHCP server 335 can pro
vide other information Such as the address of a name resolu
tion service or any other information configured to be
provided by DHCP334. Furthermore, the DHCP server 336
is able to receive information about a particular name with a
reservation, Such as a user name or host name, when receiving
a request for an IP address assignment from a client 108a
108m. In this manner, the DHCP server 334 can return a
reserved IP address associated with a name in the request. In
certain embodiments, the clients 108a-108n may obtain one
or more IP addresses from the DHCP server 334. In other
embodiments, the clients 108a-108n may obtain one or more
IP addresses separate from the DHCP server 334, for
example, from a file on the client 108 or from a storage on the
server 110. The client 108 of FIG. 7 can obtain IP addresses in
any of the ways discussed in relation to FIG. 3A.
The server 110 may comprise a name resolution service

710, such as a Domain Name Server (DNS). Alternatively, the
name resolution service 710 may run on another server 110'
on the network 104, or one or more servers 110", 110' on the
network 104. A name resolution service such as a DNS server
maintains centralized lists of domain names, or host names, to

10

15

25

30

35

40

45

50

55

60

65

24
IP addresses and maps requests specified by domain name to
the respective IP address. Host names can be registered with
the name resolution services 710 or can be updated dynami
cally. In one embodiment, the name resolution service com
prises WINS, the Microsoft Windows Internet Naming Ser
Vice that translates a host name into an IP address using the
NETBIOS API over TCP/IP. Although the name resolution
service 710, such as DNS, may dynamically update records as
a clients 108a-180n IP address changes, e.g. dynamically
assigned by a DHCP server 334, the name resolution service
710 is only tracking the IP address of the client 108a-108m.

In operation of the client-server system 700, a program
340a-340n is invoked on a client 108a-108m. The client 108a
108m, program 304a-304n or the network interface 708a
708n can dynamically request an IP address, for example,
from the DHCP server 334 and can “bind the IP address with
the user name of the user invoking the program 34.0a or the
user currently logged into the client 108a-108n. When the
client 108a-108m, program 304a-304n or network interface
708a-708m requests an IP address from the DHCP server 334,
it can report the name of the user with the request. In an
exemplary embodiment, the DHCP server 334 may be con
figured to reserve an IP address for the user reported to it via
the IP address request. The DHCP server 334 can then return
the reserved IP address to the client 108a and therefore effec
tively binding the user to the reserved IP address.

In another embodiment, the client 108a-108n may retrieve
an IP address from the plurality of network identifiers 330 as
described in conjunction with FIGS. 3A-3C. The client 108a
108n can then make system API calls to update the DHCP
server 334 with the IP address obtained for the virtual host
name. In another embodiment, the client 108a may register
the virtual host name with the name resolution service 710
and provide the IP address it obtained from making the sys
tem call. In yet another embodiment, the client 108a-108n
may obtain an IP address from a DHCP server 334 and reg
ister the virtual host name for the IP address obtained from the
DHCP server 334 with the name resolution service 710.
The virtual host name for a user or a program 340a-304n

can be dynamically created and can be based on the user name
associated with the user session or the user who invoked the
program 340a-340n. In another embodiment, the virtual host
name can be statically defined in DHCP server 334 or the
name resolution service 710. Optionally, it could be defined in
another storage 336 location on the client 108a-108m or the
Server 110.

For example, a user named userl on the network domain of
mycompany may have a virtual host name of
userl.mycompany.com. This virtual host name for userl can
be registered in DHCP server 334 and/or the name resolution
service 710. In another embodiment, the virtual host name
can be created when the user invokes a program 340a-340m
such as a user session. Then the client 108a-108m, or the
program 340a-304n or the network interface 708a-708n can
dynamically update the name resolution service with the vir
tual host name for the user and provide the IP address
assigned to the virtual host name, which also be reserved or
allocated to the user.
Any of the client 108a-108m, the programs 340a-340n or

the network interface 708a-708n may include a virtual host
name generator 740 that dynamically creates a virtual host
name for a user based on a variety of attributes and factors.
The virtual host name may simply be the user name. In other
cases, the virtual host name can be the user name combined
with the host name of the client 108a-108n. In other cases, the
virtual host name may be the user name combined with the
domain name of the network 104. In other embodiments, the

US 7,984, 192 B2
25

virtual host name may depend on the number of user sessions
the user is concurrently running. In yet another embodiment,
the virtual host name may depend on a logical name of the
sub-network the client 108a-108m is connected to. One ordi
narily skilled in the art will appreciate that the virtual host
name can be formed from a portion of any type of characters
or descriptive text that may be combined, concatenated,
stripped or otherwise formed to make a virtual host name that
may uniquely identify the user or login entity to which it is
assigned.
The dynamic nature of assigning unique IP addresses to

users rather than the client 108a enables the present invention
to provide a uniform addressing scheme for roaming users.
For example, a first user named userl logs into the client
108a, which may have already been assigned a default IP
address, such as 192.168.1.100. Upon invoking a user session
or starting another program 340a-340m, the client 108a may
request an IP address from the DHCP server 334. In the
request to the DHCP server 334, the virtual host name of
userl may be provided. In one embodiment, the DHCP server
334 has reserved an IP address of 192.168.1.200 for user1 and
provides this reserved IP address in responding to the request.
As a result, userl on client 108a has a virtual host name of
userl assigned to the reserved IP address of 192.168.1.200.
This user1 virtual host name mapping to the IP address of
192.168.1.200 would be available in the name resolution
service 710. As such, any lookups of the name resolution
service 710 would show the virtual host name of userl asso
ciated with the IP address of 192.168.1.200. Since the virtual
host name is descriptive of the user, any lookups of the name
resolution service would quickly identify users and their IP
addresses and associate it with other information provided
with the lookup.

The same userl may terminate the user session on client
108a and move into another part of the network 104 and log
into the client 108n to invoke another user session. In a similar
manner, an IP address for userl’s user session on client 108n
may be requested from the DHCP server 334. The request
would include the virtual host name of userl and the DHCP
server 334 would provide the reserved IP address of
192.168.1.200. As such, userl now has the same virtual host
name and the same IP address as the user session it had on
client 108a. The virtual host name and IP address effectively
roamed with the user as the user moved from client 108a
108n to client 108a-108m in the network 104. In this manner,
the IP address and virtual host name assigned process has
been decoupled from the physical computer to which a user
session is running, which would already have an assigned IP
address and host name to connect to the network 104.

If the same userl has multiple sessions on different clients
108a-108m, separate IP addresses and virtual host names are
required for each session. The virtual host naming scheme
would need to account for these cases. For example, the client
108a-108m, the program 340a-304n, the network interface
708a-708n or optionally, a virtual host name generator 740
may create a virtual host name for each user session that
identifies both the session and the user. For example, the first
session of userl may have a virtual host name of
userl. Session 1 and the second session of userl may have a
virtual host name of userl. Session2. A unique IP address may
be assigned to each virtual host name from the DHCP server
334 or by the interface mechanism 320 of the network inter
face 708a-708n. While userl has multiple user sessions with
a uniform addressing scheme, other users can also have mul
tiple users sessions each identified by a virtual host name
following the uniform addressing scheme.

5

10

15

25

30

35

40

45

50

55

60

65

26
Uniform network addressing can be particularly useful in

the cases of a user connecting through a proxy server as
depicted in the illustrative embodiment of FIG.3C. A proxy
server 110, using VPN for example, can provide virtual IP
addresses not limited by the topology of the network. In
contrast, a DHCP server 334 is limited to providing IP
addresses that work with the network topology. For example,
the virtual IP addresses provided by a DHCP server may all be
in the same range, e.g., 192.X.X.X. of IP addresses assigned
to clients 108a-108n on the network 104. In the case of a user
connecting to a network 104 and being assigned a virtual IP
address provided by a DHCP server 334, the user will have a
unique IP address in the same range as IP addresses assigned
to clients 108a-108n on the network. Although the user still
obtains a unique IP address, the IP address assigned to the
user will be dependent on the network 104 the client 108a
108m is on. If a user connects to the network via a proxy server
110 as in FIG. 3C, the user can be provided a unique IP
address that is not tied to the network topology of the network
104 of the proxy server, or the network 104 the user may
access through the proxy server 110. By using the proxy
server, a virtual IP address not associated with a network
topology can be assigned to a user regardless of the client
108a-108n the user connects to the network 104 with.

This uniform addressing scheme with virtual host names
can be applied to non multi-user computing environments
Such as a desktop as well as a multi-user system such as server
or server farm hosting multiple user sessions concurrently
with Microsoft Terminal Server or Citrix Meta Presentation
Server. When a user logs into a desktop computer, an IP
address for the user can be obtained and associated with a
virtual host name for the user. For a multi-user system, the
present invention allows the system to provide each user and
user session, concurrent or otherwise, with an execution envi
ronment similar to a desktop computer environment where
each user has a separate and unique IP address.

Additionally, the IP address assignment process can be
decoupled from the virtual host name registration process.
For example, the IP address can be obtained via a DHCP
server 334 without reserving an IP address for a user or by any
other means, such as the interface mechanism 320 of the
network interface 708a-708n. Although the IP address has not
been reserved or otherwise allocated to the user, the virtual
host name may be registered with the name resolution service
710 based on the user name. This allows the virtual host name
for a user to roam with the user across networks that may have
different subnet addresses. The virtual host name remains the
same for the user through the network 104 accessible name
resolution service 710 while the IP address assigned to the
virtual host name and therefore the user changes to account
for the different IP address subnet addressing schemes. In
another aspect, the uniform addressing scheme with virtual
host names can also be used to provide location services of
users on the network since the virtual host name will follow
the user as the user roams the network. A lookup service can
be provided to locate the user by the virtual host name and/or
IP address assigned to the user.

In another aspect, the present invention relates to methods
for providing a uniform addressing scheme for a user inde
pendent from the client 108a-108m from which the user con
nects to the network 104. FIG. 8 depicts a flow diagram of the
steps of a method 800 for practicing the present invention as
shown in FIG. 7. The method 800 comprises the steps of
obtaining a plurality of virtual host names (step 810), obtain
ing a plurality of internet protocol addresses (step 815),
assigning a virtual host name to a user (step 820), associating
a virtual host name with an IP address (step 825) and provid

US 7,984, 192 B2
27

ing a virtual host name as the user roams the network (step
830). This method 800 can be repeated for each user or
optionally, at any of the steps of method 800, the step can be
performed for multiple users.

At step 810, a plurality of virtual host names 730 is
obtained to be assigned to one or more users on the network
104. One or more of these virtual host names 730 may be
registered in a DHCP server 334 or a name resolution service
710. In other embodiments, one or more of these virtual host
names are defined in a storage location, on a client 108a-108n
or a server 110, such a file or a database. In another embodi
ment, one or more of the virtual host names 730 are dynami
cally created by a virtual host name generator 740. A virtual
host name may be obtained one at a time on an as needed basis
per user or may be obtained in batches in a frequency as
desired or needed to provide a virtual host name to each user
or user session. At step 815, the method 800 provides for also
obtaining a plurality of IP addresses. The IP addresses may be
obtained via a DHCP server 334 or by the interface mecha
nism 320 of the network interface 708a-708n or by any other
means discussed in relation to FIGS. 3A-3C and FIG. 4. The
method 800 will assign IP addresses to virtual host names and
associate the virtual host name with a user or a user session.
At step 820, the method 800 assigns a virtual host name or

virtual host names to each user accessing the network via one
or more of the clients 108a-108n. A first user accesses the
network 104 via client 108a and establishes a user session on
server 110. The method assigns the user a virtual host name
from the plurality of virtual host names 730 for the user's
session on the server 110. The virtual host name assigned may
be dedicated to the user and may include the name of the user.
The same user may also access the network 104 and the server
110 concurrently from a second client 108b while the user is
accessing the network 104 and the server 110 from the client
108a. A virtual host name will be assigned to the user for this
second session from client 108b. This second virtual host
name may be similar but will need to be different from the
virtual host name assigned for the first user session via client
108a. For example, the virtual host name for these two ses
sions of the user may comprise the user's login name with a
Suffix identifying the session, such as a session number.
A second user may access the network 104 via the client

108b and establish a user session on the server 110. Method
800 allows this second user or any other subsequent or con
current user on the network 104 or the server 110 to be
assigned a virtual host name to uniquely identify the user
and/or the user session. The virtual host name will distinguish
this user and/or user session from any other user or user
session that may be concurrently executing or had previously
executed. Step 820 assigns the second user a virtual host name
different from the virtual host name of the first user, such as a
virtual host name based from the user's unique network user
ID. Step 820 may also include assigning the second user a
virtual host name uniquely identifying the user and the user's
session. In another embodiment, the virtual host name may be
descriptive of the user, the client 108a-108m or the server 110
the user is accessing or the sub network of the network 104
from which the user is communicating.

At step 825, the method 800 associates the virtual host
name of each user or user session with an IP address assigned
to each user or each user session. Not only can the virtual host
names be dynamically assigned to each user or user session as
discussed above but also each IP address for each user or user
session can be dynamically assigned as discussed in regards
to FIGS. 3A-3C. Each virtual host name assigned to a user or
a user session will need to be associated with an IP address in
order to resolve the virtual host name into an IP address for

10

15

25

30

35

40

45

50

55

60

65

28
network communications such as Socket based communica
tions as described in FIGS. 3A-3C. The virtual host name can
be resolved to an IP address via a name resolution service 710
on the network 104. After obtaining each of the IP address and
virtual host name for a particular user or user session, the IP
address to virtual host name mapping may need to be updated
in the records of the DHCP server 334 and/or the name
resolution service 710. In other cases, the virtual host name
and/or IP address may have been previously registered with
the DHCP server 334 and/or name resolution service.
At step 830, the virtual host name addressing scheme of

steps 810, 815, 820 and 825 are performed as a user roams
from one client 108a-108n to another client 108a-108m in a
network 104, or a user starts up multiple users session on a
client 108a-108m or a server 110, such as a multi-user server
110'. Each time a user starts a program 340a-340m, such as a
user session, on any client 108a-108m or server 110, the user
may obtain an IP address as described in conjunction with
FIGS. 3A and 3B and corresponding methods of FIG. 4, and
a virtual host name as described in conjunction with FIG. 7
and the steps of method 800 described above. As such, the
virtual host name roaming feature of the present invention
allows efficient use of the virtual host name and/or virtual IP
address to easily identify users, which can be used as a means
for providing security or monitoring user activity or to pro
vide location services to find users, and to satisfy applications
and systems that use the host name or IP address to identify a
USC.

Although the illustrative systems and methods of the
present invention are generally discussed in terms of a TCP/IP
network, the systems and methods can also be applied to other
types of networks, such as IPX(R) or DECNETR). One ordi
narily skilled in the art will appreciate the application of the
systems and methods of the present invention to networks
other than a TCP/IP based network. As such, the present
invention can provide unique network identifiers for pro
grams, users or user sessions running on any type of network
applying the techniques and mechanisms described herein.
Additionally, the present invention can provide unique loop
back identifiers for inter-process communications using any
similar loopback type interfaces Supported by the particular
network. Furthermore, the present invention can provide for a
uniform network addressing scheme for users on these other
network types.
Many alterations and modifications may be made by those

having ordinary skill in the art without departing from the
spirit and scope of the invention. Therefore, it must be
expressly understood that the illustrated embodiments have
been shown only for the purposes of example and should not
be taken as limiting the invention, which is defined by the
following claims. These claims are to be read as including
what they set forth literally and also those equivalent elements
which are insubstantially different, even though not identical
in other respects to what is shown and described in the above
illustrations.
What is claimed as new and desired to be protected by

Letters Patent of the United States is:
1. A method for assigning a unique network identifier to

each remote display protocol (RDP) session established via a
device intermediary between a server and at least one client,
the device executing an application for establishing each RDP
session and delivering a service from the server via a corre
sponding RDP session to the at least one client, the method
comprising:

(a) allocating, by a device intermediary between a server
and at least one client operated by a user, a plurality of
network identifiers to the user;

US 7,984, 192 B2
29

(b) establishing, by the device, a first RDP session between
the server and a first client operated by the user;

(c) selecting, by the device from the plurality of network
identifiers, a first network identifier to assign to the first
RDP session;

(d) establishing, by the device, a second RDP session
between the server and a second client operated by the
user,

(e) selecting, by the device from the plurality of network
identifiers, a second network identifier different from the
first network identifier to assign to the second RDP
session;

(f) receiving, by the device via a port of the device a first
network communication received from the server,

(g) identifying, by the device, the first network identifier in
the first network communication;

(h) communicating, by the device, the first network com
munication to the first client of the first RDP session
responsive to the identification of the first network iden
tifier;

(i) receiving, by the device via the same port of the device
a second network communication received from the
server;

(j) identifying, by the device, the second network identifier
in the second network communication; and

(k) communicating, by the device, the second network
communication to the second client of the second RDP
session responsive to the identification of the second
network identifier.

2. The method of claim 1 further comprising assigning the
first network identifier to the first RDP session for network
communications using a socket library.

3. The method of claim 2 further comprising modifying a
call from an application executing the RDP session to the
Socket library, the modification comprising including in the
call the network identifier for mapping to a socket, the socket
for handling network communications of the RDP session.

4. The method of claim 1, wherein each network identifier
comprises one of either of an internet protocol address, a host
name, and a loopback address.

5. The method of claim 1, wherein step (a) further com
prises obtaining, from the server, at least one of the plurality
of network identifiers.

6. The method of claim 1, wherein step (a) further com
prises obtaining, from a Dynamic Host Configuration Proto
col server, at least one of the plurality of network identifiers.

7. The method of claim 1, wherein step (c) further com
prises selecting the first network identifier for the first RDP
session responsive to establishing the first RDP session.

8. The method of claim 1 further comprising hosting con
currently, by the device, the first RDP session and the second
RDP session.

9. The method of claim 1 further comprising hosting, by the
device, the second RDP session subsequent to the hosting of
the first RDP Session.

10. The method of claim 1 further comprising transmitting,
by the device to the server, the first network identifier with a
network communication originating from the first client.

11. A system for assigning a unique network identifier to
each remote display protocol (RDP) session established via a
device intermediary between a server and at least one client,
the device executing an application forestablishing each RDP
session and delivering a service from the server via a corre
sponding RDP session to the at least one client, the system
comprising:

10

15

25

30

35

40

45

50

55

60

30
means for allocating, by a device intermediary between a

server and at least one client operated by a user, a plu
rality of network identifiers to the user;

means for establishing, by the device, a first RDP session
between the server and a first client operated by the user;

means for selecting, by the device from the plurality of
network identifiers, a first network identifier to assign to
the first RDP session;

means for establishing, by the device, a second RDP ses
sion between the server and a second client operated by
the user;

means for selecting, by the device from the plurality of
network identifiers, a second network identifier different
from the first network identifier to assign to the second
RDP session;

means for receiving, by the device via a port of the device,
a first network communication received from the server;

means for identifying, by the device, the first network
identifier in the first network communication;

means for communicating, by the device, the first network
communication to the first client of the first RDP session
responsive to the identification of the first network iden
tifier;

means for receiving, by the device via the same port of the
device, a second network communication received from
the server;

means for identifying, by the device, the second network
identifier in the second network communication; and

means for communicating, by the device, the second net
work communication to the second client of the second
RDP session responsive to the identification of the sec
ond network identifier.

12. The system of claim 11 further comprising means for
assigning the first network identifier to the first RDP session
for network communications using a socket library.

13. The system of claim 12 further comprising means for
modifying a call from an application executing the RDP
session to the socket library, the modification comprising
including in the call the network identifier for mapping to a
socket for handling network communications of the RDP
session.

14. The system of claim 11, wherein each network identi
fier comprises one of either of an internet protocol address, a
host name, and a loopback address.

15. The system of claim 11 further comprising means for
obtaining, from the server, at least one of the plurality of
network identifiers.

16. The system of claim 11 further comprising means
obtaining, from a Dynamic Host Configuration Protocol
server, at least one of the plurality of network identifiers.

17. The system of claim 11 further comprising means for
selecting the first network identifier for the first RDP session
responsive to establishing the first RDP session.

18. The system of claim 11 wherein the device hosts the
first RDP session and the second RDP session concurrently.

19. The system of claim 11 wherein the device begins to
host the second RDP session after hosting the first RDP
session.

20. The system of claim 11 further comprising means for
transmitting, by the device to the server, the first network
identifier with a network communication originating from the
first client.

