
US 20190327140A1 
( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0327140 A1 

Lipstone et al . ( 43 ) Pub . Date : Oct . 24 , 2019 

( 54 ) SUBSCRIBER CONFIGURATION 
INGESTION IN A CONTENT DELIVERY 
NETWORK 

( 52 ) U . S . CI . 
CPC . . . . . . . . . . H04L 41 / 0813 ( 2013 . 01 ) ; H04L 67 / 10 

( 2013 . 01 ) 

( 71 ) Applicant : Level 3 Communications , LLC , 
Broomfield , CO ( US ) 

( 72 ) Inventors : Laurence Lipstone , Calabasas , CA 
( US ) ; Christopher Newton , Westlake 
Village , CA ( US ) ; William Crowder , 
Camarillo , CA ( US ) ; Vikas Dogra , 
Westlake Village , CA ( US ) ; Kevin 
Johns , Erie , CO ( US ) 

( 57 ) ABSTRACT 

A method on a device in a content delivery ( CD ) network 
( CDN ) that distributes content on behalf of one or more 
subscribers . In response to receiving configuration informa 
tion from a subscriber , the configuration information relating 
to at least one property of the subscriber , generating sub 
scriber - specific platform configuration information for the at 
least one property . Storing the subscriber - specific platform 
configuration information in platform configuration storage . 
Invalidating prior platform configuration information asso 
ciated with the particular subscriber . Responsive to a request 
from a CDN component for platform configuration infor 
mation associated with the particular subscriber : obtaining 
the subscriber - specific platform configuration information 
from the platform configuration storage ; and providing the 
subscriber - specific platform configuration information to the 
CDN component . 

( 21 ) Appl . No . : 15 / 961 , 686 

( 22 ) Filed : Apr . 24 , 2018 

( 51 ) 
Publication Classification 

Int . Cl . 
H04L 12 / 24 ( 2006 . 01 ) 

200 
REST CLIENT 

Create / Modify 
Subscriber 
configuration Store 

Service 
Image 124 

CONFIG . API 

Send message 
to create 
platform 
configuration 

. . 

204 
MESSAGING SYSTEM BROKER 

( E . G . , KAFKA CLUSTER ) . . . . . . . . . 

. . 

202 
DISTIRBUTED 

DATABASE ( E . G . , 
CASSANDRA 
CLUSTER ) 

. . . . . . 

. . 

. . . 

. . 

. . 

122 

Consume 
message for 

config generation 
Read subscriber 

metadata 118 
CONTROL CORE 

Save platform 
config . 

Invalidate and 
distribute 

platform config . 206 
PLATFORM 
CONFIG . 
STORE 208 

CDN COMPONENTS 



Patent Application Publication Oct . 24 , 2019 Sheet 1 of 5 US 2019 / 0327140 A1 

w W MI IR AR Y MI IR AN VE ARIMAR AV MII IWAP MI IR Iw w AP IM IWAP MI AR TUS AV MI IM IWAP MI IM IS AV AP IM ANY IM MIMI I 

102 CONTENT 
PROVIDER ( S ) CDN 

122 
CONFIG . 

124 
CONFIG . ?????????????????? ?????????????????????????????????????????? API CONTENT 

PROVIDER 

118 CONTROL 

104 ORIGIN ( S ) 
120 

CONTROL 
SERVICE 

ORIGIN 

106 DELIVERY SERVER ( S ) | 112 RENDEZVOUS 
SYSTEM 

DELIVERY 
SERVER 

114 RENDEZ 
VOUS MECH . 

110 NETWORK ( s ) 

CLIENT 

108 CLIENTS 

FIG . 1 
- - - - - - - - - - - - - - - - - - - - 



Patent Application Publication Oct . 24 , 2019 Sheet 2 of 5 US 2019 / 0327140 A1 

200 
REST CLIENT 

EEEEEEEEEEEEEEEEEEE 
Create / Modify 
Subscriber 
configuration Store 

Service 
Image 124 

CONFIG . API 
Send message 
to create 
platform 
configuration 

- - - - 

204 
MESSAGING SYSTEM / BROKER 

( E . G . , KAFKA CLUSTER ) 
202 

DISTIRBUTED 
DATABASE ( E . G . , 
CASSANDRA 
CLUSTER ) 

122 

Consume 
message for 

config generation 
Read subscriber 

metadata 118 
CONTROL CORE 

Save platform 
config . 

Invalidate and 
distribute 

platform config . 206 
PLATFORM 
CONFIG . 
STORE 208 

CDN COMPONENTS 

FIG . 2 



118 

200 REST CLIENT 

124 CONFIG 

202 CASSANDRA CLUSTER 
204 KAFKA CLUSTER 

206 PLATFORM CONFIG . STORE 

CONTROL CORE 

208 CDN 
COMPONENT ( S ) 

API 

Patent Application Publication 

1 1 . Create or Update 

Subscriber Metadata ! 

2 . Write to 
Cassandra Cluster ! 

1 

3 . Respond 
ICCESS 

4 . Send message to create 
platform config 

15 . Consume message ! 

www 

- 

6 . Read subscriber metadata 

17 . Generate & Store ! platform config 

- - 

8 . Invalidate 
platform config in master journal 

- 

1 - - - - - - - - - - - 

Oct . 24 , 2019 Sheet 3 of 5 

- - 

9 . Get master journal 

- 

| - - - - 

10 . Return master journal 

wwwwwwwwwwwwwwwwwwwwwwww 

11 . Get platform config . 

12 . Read platform 
config . 

FIG . 3 

13 . Return platform config . 

US 2019 / 0327140 A1 



Patent Application Publication Oct . 24 , 2019 Sheet 4 of 5 US 2019 / 0327140 A1 

FIG . 4A 
206 
PLATFORM CONFIG . STORE 400 

SUBSCRIBER CONFIGURATIONS 

SUBSCRIBER ID SUBSCRIBER CONFIGURATION 
CCS # 1 

2 CCS # 2 

CCS # N 

206 402 
PLATFORM CONFIG . STORE 

SUBSCRIBER / PROPERTY CONFIGURATIONS 

PROPERTY SUBSCRIBER CONFIGURATION SUBSCRIBER 
ID 

CCS # 1 , 1 

CCS # 1 , 2 

CCS # N , 1 
2 CCS # N , 2 

FIG . 4B 



Patent Application Publication Oct . 24 , 2019 Sheet 5 of 5 US 2019 / 0327140 A1 

500 COMPUTER SYSTEM 

504 
PROCESSOR ( S ) 512 

MASS STORAGE 
DEVICE 524 

PROCESS ( ES ) 

508 
READ - ONLY 
MEMORY 506 

MAIN MEMORY 
502 BUS 522 

APPLICATION ( S ) 514 
COMMUNICATION 

PORT ( S ) 

520 
I / O PORT ( s ) 

516 
SENSOR ( S ) 

516 
DISPLAY 

515 
INPUT 

DEVICE ( S ) 510 
REMOVABLE 

STORAGE MEDIA 

FIG . 5 



US 2019 / 0327140 A1 Oct . 24 , 2019 

SUBSCRIBER CONFIGURATION 
INGESTION IN A CONTENT DELIVERY 

NETWORK 

The various components of a mechanism may be co - located 
or distributed . The mechanism may be formed from other 
mechanisms . In general , as used herein , the term “ mecha 
nism ” may thus be considered shorthand for the term 
device ( s ) and / or process ( es ) and / or service ( s ) . BACKGROUND OF THE INVENTION 

DESCRIPTION Copyright Statement 
[ 0001 ] This patent document contains material subject to 
copyright protection . The copyright owner has no objection 
to the reproduction of this patent document or any related 
materials in the files of the United States Patent and Trade 
mark Office , but otherwise reserves all copyrights whatso 
ever . 

FIELD OF THE INVENTION 
[ 0002 ] This invention relates to content delivery and con 
tent delivery networks . More specifically , to subscriber 
configuration in content delivery networks and systems , 
frameworks , devices and methods supporting subscriber 
configuration in content delivery and content delivery net 
works . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0003 ] Other objects , features , and characteristics of the 
present invention as well as the methods of operation and 
functions of the related elements of structure , and the 
combination of parts and economies of manufacture , will 
become more apparent upon consideration of the following 
description and the appended claims with reference to the 
accompanying drawings , all of which form a part of this 
specification . 
10004 ] FIG . 1 depicts aspects of a content delivery net 
work ( CDN ) according to exemplary embodiments hereof ; 
[ 0005 ] FIGS . 2 and 3 depict aspects of exemplary embodi 
ments of real - time subscriber configuration ingestion 
according to exemplary embodiments hereof ; 
[ 0006 ] FIGS . 4A - 4B depict aspects of platform configu 
ration storage according to exemplary embodiments hereof ; 
and 
[ 0007 ] FIG . 5 depicts aspects of computing according to 
exemplary embodiments hereof . 

[ 0017 ] A content delivery network ( CDN or CD network ) 
distributes content ( e . g . , resources ) efficiently to clients on 
behalf of one or more content providers ( or subscribers ) , 
preferably via a public Internet . Content providers provide 
their content ( e . g . , resources ) via origin sources ( origin 
servers or origins ) . A CDN can also provide an over - the - top 
transport mechanism for efficiently sending content in the 
reverse direction from a client to an origin server . Both 
end - users ( clients ) and content providers benefit from using 
a CDN . Using a CDN , a content provider is able to take 
pressure off ( and thereby reduce the load on ) its own servers 
( e . g . , its origin servers ) . Clients benefit by being able to 
obtain content with fewer delays . 
[ 0018 ] FIG . 1 shows aspects of an exemplary CDN in 
which one or more content providers ( or subscribers ) 102 
provide content via one or more origin sources 104 and 
delivery services ( servers ) 106 to clients 108 via one or more 
networks 110 . The delivery services ( servers ) 106 may form 
a delivery network from which clients 108 may obtain 
content . The delivery services 106 may be logically and / or 
physically organized hierarchically and may include edge 
caches . The delivery services 106 may be logically and / or 
physically organized into clusters . 
[ 0019 ] As should be appreciated , components of a CDN 
( e . g . , delivery servers or the like ) may use the CDN to 
deliver content to other CDN components . Thus a CDN 
component may itself be a client of the CDN . For example , 
the CDN may use its own infrastructure to deliver CDN 
content ( e . g . , CDN control and configuration information ) to 
CDN components . 
[ 0020 ] Client requests ( e . g . , for content ) may be associ 
ated with delivery server ( s ) 106 by a rendezvous system 112 
comprising rendezvous mechanism ( s ) 114 , possibly in the 
form of one or more rendezvous networks . The rendezvous 
mechanism ( s ) 114 may be implemented , at least in part , 
using or as part of a DNS system , and the association of a 
particular client request ( e . g . , for content ) with one or more 
delivery servers may be done as part of DNS processing 
associated with that particular client request ( e . g . , of a 
domain name associated with the particular client request ) . 
[ 0021 ] Typically , multiple delivery servers 106 in the 
CDN can process or handle any particular client request for 
content ( e . g . , for one or more resources ) . Preferably the 
rendezvous system 112 associates a particular client request 
with one or more “ best ” or “ optimal ” ( or “ least worst ) 
delivery servers 106 to deal with that particular request . The 
“ best ” or “ optimal ” delivery server ( s ) 106 may be one ( s ) 
that is ( are ) close to the client ( by some measure of network 
cost ) and that is ( are ) not overloaded . Preferably the chosen 
delivery server ( s ) 106 ( i . e . , the delivery server ( s ) chosen by 
the rendezvous system 112 for a client request ) can deliver 
the requested content to the client or can direct the client , 
somehow and in some manner , to somewhere where the 
client can try to obtain the requested content . A chosen 
delivery server 106 need not have the requested content at 

DETAILED DESCRIPTION OF THE 
PRESENTLY PREFERRED EXEMPLARY 

EMBODIMENTS 

Glossary 
[ 0008 ] As used herein , unless used otherwise , the follow 
ing terms or abbreviations have the following meanings : 
[ 0009 ] API means application program interface ; 
[ 0010 ] CCS means Customer Configuration Script ; 
[ 0011 ] CD means content delivery ; 
[ 0012 ] CDN means content delivery network ; 
[ 0013 ] DNS means domain name system ; 
[ 00141 GCO means Global Configuration Object ; and 
[ 0015 ] . REST ( or RESTful ) means Representational State 
Transfer 
[ 0016 ] A " mechanism ” refers to any device ( s ) , process 
( es ) , routine ( s ) , service ( s ) , module ( s ) , or combination 
thereof . A mechanism may be implemented in hardware , 
software , firmware , using a special - purpose device , or any 
combination thereof . A mechanism may be integrated into a 
single device or it may be distributed over multiple devices . 



US 2019 / 0327140 A1 Oct . 24 , 2019 

the time the request is made , even if that chosen delivery 
server 106 eventually serves the requested content to the 
requesting client . 
[ 0022 ] When a client 108 makes a request for content , the 
client may be referred to as the requesting client , and the 
delivery server 106 that the rendezvous system 112 associ 
ates with that client request ( and that the client first contacts 
to make the request ) may be referred to as the " contact ” 
server or just the contact . 
[ 0023 ] Exemplary CDNs are described in U . S . Pat . Nos . 
8 , 060 , 613 and 8 , 925 , 930 . 
[ 0024 ] The CDN may include a control system 118 
( formed from the various control services 120 ) . The control 
system 118 may be referred to as the control core or control 
mechanism . The control mechanism 118 may include two 
sides , namely a side dedicated to accepting and managing 
the configurations provided by CDN users ( or subscribers ) , 
and a side dedicated to controlling endpoint services ( such 
as caches ) based on established configurations . 
[ 0025 ] The CDN may have or provide default policies and 
procedures for delivery and / or handling of subscriber con 
tent . These system defaults may be specified and / or con 
tained in one or more system configuration files or objects . 
In addition , content providers ( or subscribers ) 102 may 
customize aspects of delivery and / or handling of their con 
tent by the CDN . The subscriber customizations may be 
specified and / or contained in one or more subscriber con 
figuration files or objects . The system default configuration 
may be augmented , supplemented , and / or replaced , at least 
in part , by subscriber configurations . 
[ 0026 ] The control system 118 ( e . g . , control service ( s ) 
120 ) may connect to / with delivery server ( s ) 106 and the 
rendezvous system 112 . This is represented in the drawing in 
FIG . 1 by the arrow to / from the control system 118 to the 
combined set of 106 and 112 . This arrow may represent , e . g . , 
sending config information to the delivery service ( e . g . , 
CCS / GCO files ) and / or to rendezvous system 112 ( e . g . , alias 
updates ) . 
[ 0027 ] Configuration may be maintained , controlled , and 
administered , at least in part , by configuration mechanism 
122 . Subscribers may access the configuration mechanism 
122 via an appropriate interface , e . g . , via configuration API 
124 . 
[ 0028 ] The configuration information may define , for a 
particular subscriber , for the subscriber ' s entire set of prop 
erties , how the CDN should handle those properties ( e . g . , 
how the CDN should service requests for that customer ' s 
properties ) . This may include , alias hostnames , origin serv 
ers from which to fill , and all policies associated with 
content associated with that subscriber . The system prefer 
ably maintains one subscriber configuration per subscriber 
( or per property per subscriber ) . 
[ 0029 ] FIGS . 2 and 3 depict aspects of exemplary embodi 
ments of real - time subscriber configuration ingestion 
according to exemplary embodiments hereof . As described 
here , subscriber configuration is modifiable directly by a 
subscriber or a subscriber ' s REST agent by invoking or 
calling the config API 124 . The configuration modification is 
ingested into the network through a distributed set of appli 
cations and data stores . 
[ 0030 ] With reference still to FIGS . 2 and 3 , a subscriber 
invokes or calls the configuration API ( or Config API ) 124 
( at 1 in FIG . 3 ) to create or modify the subscriber ' s con 
figuration . Recall that the subscriber ' s configuration defines 

how the CDN deals with aspects of delivery and / or handling 
of that subscriber ' s content . The subscriber ' s configuration 
may augment or modify or replace aspects of the system 
default configuration . 
[ 0031 ] The Config API 124 may be a RESTful API server 
for creating and modifying a subscriber ' s configuration . A 
REST client 200 that is authorized to access a subscriber 
configuration may read / modify / rollback the subscriber con 
figuration . 
10032 ] . The Config API 124 stores the subscriber ' s con 
figuration in a distributed database cluster 202 ( at 2 in FIG . 
3 ) . In a presently preferred embodiment , Cassandra is used 
for the distributed database 202 . Cassandra provides a 
distributed database management system designed to handle 
large amounts of data across many commodity servers , 
providing high availability with no single point of failure . 
Cassandra may offer robust support for clusters spanning 
multiple datacenters , with asynchronous masterless replica 
tion allowing low latency operations for all clients . The 
Cassandra cluster may be a multi - node , multi - datacenter 
Cassandra cluster for storing subscriber configuration infor 
mation . Those of ordinary skill in the art will appreciate and 
understand , upon reading this description , that different 
and / or other mechanisms may be used in place of the 
Cassandra cluster to implement aspects of embodiments 
hereof . 
[ 0033 ] In Cassandra , writes and reads offer a tunable level 
of consistency . In preferred embodiments , writes to the 
Cassandra cluster 202 are preferably done with a consis 
tency level of LOCAL _ QUORUM so that when a read is 
done with a LOCAL _ QUORUM , data is always consistent . 
[ 0034 ] A response from the Config API 124 will indicate 
( at 3 in FIG . 3 ) whether or not the write to the cluster 202 
was successful ( e . g . , providing " success " indication ) . 
[ 0035 ] If the request was to create or update the subscrib 
er ' s configuration , the config API 124 publishes a message 
( at 4 in FIG . 3 ) to a messaging system 204 ( e . g . , Kafka? 
cluster ) for ( or to cause ) generation of platform configura 
tion . 
[ 0036 ] The messaging system 204 may be a multi - node 
Kafka? broker cluster that works as a high - throughput 
distributed messaging system . 
[ 0037 ] Kafka® refers to Apache ' s distributed streaming 
platform , preferably with the following capabilities : Publish 
and subscribe to streams of records , similar to a message 
queue ; Store streams of records in a fault - tolerant durable 
way ; and process streams of records as they occur . 
[ 0038 ] Those of ordinary skill in the art will appreciate 
and understand , upon reading this description , that different 
and / or other mechanisms may be used in place of the 
Kafka® to implement aspects of embodiments hereof . 
[ 0039 ] Preferably the control core 118 consumes ( or 
obtains ) a message from the messaging system 204 . As 
should be appreciated , it is important that no request made 
by the Config API 124 for platform config generation is lost 
( or missed ) by control core 118 , so that the platform con 
figuration is always in sync with the config data configured 
by the subscriber . 
[ 0040 ] Config API 124 publishes messages to the cluster 
204 which are consumed by the Control Core 118 . 
[ 0041 ] The control core 118 preferably monitors the mes 
saging system 204 and consumes messages for the control 
core 118 . In particular , the control core 118 consumes 



US 2019 / 0327140 A1 Oct . 24 , 2019 

messages ( at 5 in FIG . 3 ) from a cluster of messaging system 
204 for generating platform configurations for a subscriber . 
[ 0042 ] While reading subscriber configuration informa 
tion from the Cassandra cluster 202 ( at 6 in FIG . 3 ) , a 
consistency level of LOCAL _ QUORUM should ensure that 
there is no data loss and that the control core 118 gets the 
latest copy of the subscriber ' s data . 
[ 0043 ] After consuming a message ( at 5 in FIG . 3 ) , the 
control core 118 reads subscriber configuration data / infor 
mation ( e . g . , subscriber metadata ) ( at 6 in FIG . 3 ) from the 
Cassandra cluster 202 and then generates and stores plat 
form configurations ( at 7 in FIG . 3 ) . 
10044 ] The generated platform configurations are based , at 
least in part , on the subscriber configuration information 
read from the Cassandra cluster 202 . The generated platform 
configurations are preferably also based on default and / or 
system - wide configurations and on CDN policies . As should 
be appreciated , while subscribers may be able to create 
and / or modify configurations , such configurations should 
comply with CDN policies . The generated platform con 
figuration contains the newly modified changes in platform 
aware language . 
[ 0045 ] The control core 118 stores configuration data ( e . g . , 
platform configuration data ) in a data store 206 and invali 
dates the prior configuration data ( at 7 and 8 in FIG . 3 ) . In 
order to invalidate prior configuration ( s ) , the control core 
118 may issue invalidation instructions to the network for 
configurations to be replaced by the newly generated plat 
form configuration ( s ) . While invalidation of control objects 
is the presently preferred approach , those of ordinary skill in 
the art will appreciate and understand , upon reading this 
description , that different and / or other approaches may be 
used . For example , the CDN may poll for changes to such 
objects . 
[ 0046 ] As noted above , the system preferably maintains 
one subscriber configuration per subscriber ( or per property 
per subscriber ) . The platform configuration store 206 main 
tains the subscriber configurations for the CDN ' s subscrib 
ers . 
[ 0047 ] The control core 118 may provide an interface 
( e . g . , a REST API ) for delivering the platform configurations 
to the CDN nodes . 
[ 0048 ] CDN components 208 ( e . g . , CDN delivery servers 
106 , etc . ) monitor the control core 118 for changes in the 
master journal indicating potentially invalid content ) . 
Accordingly , in response to the control core 118 invalidating 
the platform config in the master journal ( at 8 in FIG . 3 ) , 
each CDN component ( e . g . , CDN delivery servers 106 , etc . ) 
gets the updated master journal from the control core 118 ( at 
9 and 10 in FIG . 3 ) . The CDN component ( s ) then request the 
new / modified platform configuration from the control core 
118 ( at 11 in FIG . 3 ) . 
[ 0049 ] The control core 118 reads the platform configu 
ration from the platform configuration storage ( data store 
206 ) ( at 12 in FIG . 3 ) , and then returns the platform 
configuration to the requesting CDN component ( at 13 in 
FIG . 3 ) . 
[ 0050 ] A CDN component receiving configuration infor 
mation may use that information as is or it may process the 
configuration information into local configuration informa 
tion based , e . g . , on the capabilities of the CDN component . 
[ 0051 ] As should be appreciated , a CDN component ( e . g . , 
a CDN delivery server 106 ) may use the subscriber - provided 

configuration information to perform subscriber - specific 
handling ( e . g . , subscriber - specific request / response process 
ing ) . 
[ 0052 ] The configuration information in a subscriber ' s 
configuration may define , for the subscriber ' s entire set of 
properties , how the CDN should handle those properties 
( e . g . , how the CDN should service requests for that custom 
er ' s properties ) . This may include , alias hostnames , origin 
servers from which to fill , and all policies associated with 
content associated with that subscriber . The system main 
tains one subscriber configuration per subscriber ( or per 
property per subscriber ) . 
10053 ] Each subscriber has its own configuration informa 
tion ( which may be default ) . That is , the system maintains a 
single subscriber configuration for each subscriber , and that 
subscriber configuration defines all configuration details for 
all of that subscriber ' s content . As should be appreciated , the 
current approach ( with a single configuration per subscriber ) 
allows a subscriber to handle most or all content the same 
way , with differences expressed incrementally for that con 
tent to be handled differently . An alternate approach is to 
have a CCS per resource or for smaller groups of resources 
of a subscriber , but this alternate approach misses the 
commonality that most subscribers use for most of their 
resources . 
[ 0054 ] In some exemplary implementations , the sub 
scriber - specific configuration information may be specified 
in so - called Customer Configuration Scripts ( CCSs ) . Cus 
tomer - specific scripts may be used to process a customer ' s 
requests ( i . e . , requests for or associated with a subscriber ' s 
content ) , and may be associated with the customers / sub 
scribers , e . g . , via customer / subscriber identifiers . 
10055 ] FIG . 4A depicts aspects of platform configuration 
storage 206 according to exemplary embodiments hereof . As 
shown , the platform configuration storage 206 may include 
subscriber configurations 400 , indexed by subscriber iden 
tifier . Thus , e . g . , subscriber j has subscriber configuration 
CCS # j , and so on . In some cases , the system may include a 
default subscriber configuration for each subscriber , to be 
used unless / until the configuration is modified . 
[ 0056 ] If a subscriber has multiple properties with differ 
ent configurations for different properties , then that sub 
scriber may be allocated a different subscriber id for each 
property , or the data structure 402 shown in FIG . 4B may be 
used . 
[ 0057 ] A data structure ( e . g . , a Global Configuration 
Object or GCO ) may be used to determine whether a request 
is associated with a CDN subscriber ( and therefore , e . g . , 
whether a requested resource can be served ) . A GCO may 
include information that will allow a CDN component ( e . g . , 
a cache server ) to determine whether a requested resource 
corresponds to a resource of a subscriber ( or customer ) of 
the CDN ( or to a CDN resource ) . Essentially the CDN 
component may use the GCO to determine whether a 
resource belongs to a property configured to use the CDN . 
Since the GCO is a global control resource , common to all 
agents , whereas other control resources ( e . g . , CCSs ) are 
generally downloaded on demand ) , the GCO should be 
succinct . 
[ 0058 ] Configuration Model Implementation 
[ 0059 ] Match Rules 
[ 0060 ] An exemplary implementation of the customer 
( subscriber ) configuration model uses a so - called “ match 
rules ” approach . Within a configuration there is the option of 



US 2019 / 0327140 A1 Oct . 24 , 2019 

- continued 
< Match Rule > 

having rules or mappings . The match rules effectively act as 
mappings or lookup tables . An exemplary implementation of 
the match rules is described here . As should be appreciated , 
configurations may use approaches other than match rules , 
and match rules may be implemented differently . 
[ 0061 ] The exemplary match - rule model is table - driven . 
This has the advantage of readability , e . g . , when setting a set 
of options slightly differently across a large number of 
aliases . 
[ 0062 ] A basic Match Rule has the following format : 

“ " ID " : ' < numeric label > 
[ " “ Followed - by ” : ( “ break ” | “ jump - to ” < ID > ) ] 
[ " Expr " : ' < expression > ] 
[ " " MatchSet " : ' < Match Set > | 
[ " “ MatchSetOrder " : ' ( " first ” \ " last ” ) ] 
< flagName > " ; ? < flagValue > { ' ; " < flagName > " ; 
< flagValue > } * 

[ 0063 ] Each Match Rule may have a Match Rule ID that 
can be used to order rules and to provide jump targets . 
[ 0064 ] Each Match Rule may be part of a Match Rule 
Group . A Match Rule Group is a collection of Match Rules , 
with first - match - wins semantics . The subscriber configura 
tion has at least one collection of Match Rule Groups . In 
some cases two such collections may be used , one for 
processing on receipt of the request and the second for 
processing on the receipt of the response . The two - collection 
configuration may only be needed at nodes , generally 
referred to as parent nodes , that contact the origin server . 
[ 0065 ] Each Match Rule Group may be processed in a 
specified order ( e . g . , driven off of the numeric Match Rule 
Group ID in ascending order ) — when a match is found , the 
processing associated with that match is performed , and by 
default processing then jumps to the start of the next Match 
Rule Group . Processing can jump to a distinct Match Rule , 
or processing can be halted ( break ) using the Followed by 
element . If no Followed - by is specified , processing moves to 
the first element of the next Match Rule Group ( if present ) . 
[ 0066 ] An exemplary Match Rule Group may look like : 

[ 0067 ] Each Match Rule may specify one or more actions 
( e . g . , setting cache expiration , cache key manipulation , 
content / header processing modes , etc . ) directly . An action 
may involve setting one or more flags . 
10068 ] If a collection of Match Rules wants to set the same 
set of flags to the same set of values , then rather than 
repeating them within a series of Match Rules , the flag 
setting can be encapsulated within a Match Set . This is 
essentially the same as a Match Rule Group , but one that is 
not processed within the normal flow of processing ; rather it 
is called by reference when named within an executed 
Match Rule . If both a Match Set and explicitflagNames are 
provided within a single Match Rule , the Match Set is run 
first and then the explicitflagNames . This order can be 
altered via the optional MatchSetOrder which can specify 
that the MatchSet is either run first ( the default ) , or last ( i . e . , 
after the explicitflagNames ) . 
10069 ] . In order for a Match Rule to be matched , the 
expression has to evaluate to true in the Expr : element . If no 
‘ Expr ’ is specified , it implicitly evaluates to true , and hence 
such a Match Rule is always said to match when reached . 
Matching means that the specified flag settings ( explicit as 
well as via any MatchSet ) are made , and processing for this 
Match Rule Group completes . Processing by default moves 
to the start of the next Match Rule Group , unless a Followed 
by is specified in which case processing either completes 
completely ( on break ) or jumps to the Match Rule with a 
given ID ( on jump - to < ID > ) . 
[ 0070 ] Operators within the expression ( all operators may 
be inverted by prepending “ ! " ; for convenience , “ ! = " is a 
synonym for “ ! = " ) are : 

% = 

% * = 
# = 
% # = 
& & 

Equality test 
Equality test ( case insensitive ) 
Glob test 
Glob test ( case insensitive ) 
Set match ( match against list of strings or expressions ) 
Set match ( case insensitive ) 
Logical AND 
Logical OR 
Grouping 

“ Match Rule Group ID " : < numeric label > 
" Match Rules " : 

| | 

< Match Rule > 

< Match Rule > [ 0071 ] The following variables are available in a present 
implementation : 
[ 0072 ] Request - Related Variables : 

and the total collection may look like : 

“ Match Rule Collection ” : ( " request | “ response " ) 
“ Match Rule Groups ” : 

$ req . < name > 
$ uri 
$ full _ uri 
$ scheme 
$ authority 
$ user 
$ password 
$ host 
Sport 
$ path 
$ pathquery 

Request header < name > 
URI of request ( as received ) . 
Full URI of request ( derived ) . 
Scheme . 
Authority . 
User portion of authority . 
Password portion of authority . 
Host ( usually the same as $ req . host ) . 
Port of request 
Request path ( no query string ) . 
Request path ( with query string , equivalent 
to $ path $ queryq ) . 

“ Match Rule Group ID " : < numeric label > 
“ Match Rules " : 

< Match Rule > 

???? 



US 2019 / 0327140 A1 Oct . 24 , 2019 

- continued 

$ query 
$ queryq 
$ fragment 
$ client _ ip 
$ hop _ ip 

Query string . 
Query string with leading " ? " . 
Fragment . 
Effective client IP address . 
IP address of previous hop . 

[ 0073 ] Response - Related Variables : 

$ resp . < name > 
$ status 

Response header < name > 
Response HTTP status . 

[ 0074 ] Other Variables 

$ var . < name > 
$ cfgvar . < name > 
$ map [ < N > ] . < name > 

A variable set on the request by an earlier rule . 
Local configuration variable . 
Result of Nth ( starting from 0 ) map , counting 
from left to right in expression . 
“ $ map ” is the same as " $ mapo ” . < name > selects 
the value from the map . See ‘ Maps ' below . 

specified percentage of a library to a different server , in a 
consistent fashion , in the cases where the server normally 
responsible for the content is reporting that it is overloaded . 
[ 0081 ] Maps 
[ 0082 ] The expression syntax may also allow for a refer 
ence to a Map of data . These can be considered function 
calls ; they return a Boolean value which is true when a 
match is found within the map and are able to set additional 
values that can then be referenced by name from the calling 
layer — the names of these ' returned ' values are part of the 
definition of the map . 
[ 0083 ] The map ( call takes a list of one or more map 
names , and a string value to be passed into each as the key 
to be looked up . This string ( key ) argument may be a simple 
value ( e . g . , $ host ) or the result of an expression — in par 
ticular , it may be the result of another map lookup . The map 
) call returns a Boolean . An alternate valuemap call returns 
the actual value list from the matched entry . 
[ 0084 ] There are several types of maps : 

[ 0085 ] regular maps which perform exact lookups of the 
presented key and as such can be implemented as a 
direct key lookup , e . g . , hashtable ( discrete ) ; 

[ 0086 ] glob maps where the keys listed are shell glob 
patterns ; 

[ 0087 ] regexp maps ( same as glob maps , except a 
regular expression is used instead of a glob ) ; 

[ 0088 ] int - range maps where the key is interpreted as an 
integer on entry into the map , and where the key can be 
a single integer or integer range ( < lo » - < hi > ) — if the 
provided key string is not interpretable as an integer , 
the key looked up will be a NaN value ; and 

[ 0089 ] ip - range maps which are similar to integer ( int 
range ) maps , except that the key string is interpreted as 
an IP address ( range ) — this preferably supports both 
IPv4 and IPv6 ( using any of the standard formats ) and 
ranges can be specified as < lo > - < hi > or < addr > / < mask 
bits > . 

[ 0090 ] A glob map or regexp map needs to be searched 
entry by entry until a match is found . As usual , a first - match 
wins approach is taken . Since ranges could overlap ( either 
with other ranges or with discrete values ) , the smallest range 
( or lowest value of < lo > ) wins . 
[ 0091 ] This gives : 

[ 0075 ] Transforms : 
[ 0076 ] An extended syntax for variables allows named 
transforms to be applied . For example : 

or 
$ { < name > [ : < xfrm > [ ( < args > ) ] [ . . . ] } 
$ { " < string > " [ : < xfrm > [ ( < args > ) ] [ . . . ] ] } 
$ { ' < string > ' [ : < xfrm > [ ( < args > ) ] [ . . . ] ] } 

[ 0077 ] Some transforms include : 

base64encode 
base64decode 
urlencode ( < arg > ) 
urldecode ( < arg > ) 
hash ( < args > ) 

rex ( < args > ) 
lowercase ( < arg > ) 

uppercase ( < arg > ) 

Base 64 encode 
Base 64 decode 
URL encode ( arg decides “ + ” handling ) 
and decode 
Cryptographic hash , as defined 
by the arguments , which might 
include the type of hash , the 
secret or a reference to a 
secret , etc . 
Search / replace using rex . 
convert any text in the presented 
string to lower case 
convert any text in the presented 
string to upper case 
The pselect transform takes two 
or three arguments : a percentage 
value < p > ( a floating point 
number ) , a string < s > , and an 
optional string < ns > . It 
evaluates to the string < s > < p > 
percent of the time , else , < ns > 
or an empty string if < ns > is 
not provided . The < s > and < ns > 
strings are themselves subject 
to interpolation . 

pselect ( < p > , < s > [ , < ns > ] ) 

“ MatchMap " : 
“ " Name " : ' < match map name > 
[ " " ValueNames " : ' < name > [ , < name > ] * ] [ " " MatchType " : ' ( " discrete ” ] “ glob ” “ ip 
range ” l " int - range ” ) ] 
[ “ “ DefaultValue " : ' ( " error ( " < errText > " ) " | | 
< valueSpec > ) ] 
“ Data " : 

' { ' < keySpec > ' , ' < valueSpec > " } } 

keySpec : = = “ Key " : ' < key > | " Keys " : { ' . 
< key > { * , ' < key > } + ' } " 
valueSpec : = = " Value " : ' < value > | | 
“ Values " : { ' < value > { ' ; ' < value > } * • } ' | | 
“ valuemap ” ( ? < mapNameList > « , ' < arg > ) 

[ 0078 ] Transforms are applied in the order given . 
[ 0079 ] In some embodiments it may be possible to set 
fields in rules to the value of an interpolated string . 
[ 0080 ] The pselect transform ( with arguments ( < p > , < s > 
[ , < ns > ] ) ) may be used , e . g . , to distribute requests differently 
( e . g . , to locations specified by string “ s ” or by string “ ns ” ) 
based on the value of p . This may be used , e . g . , to move a 

[ 0092 ] The list of names specified in the ValueNames 
attribute are the names that can then be used in the $ map 

$ N ] . < name > variable in the calling context . Such names are 
only available in the direct caller . 
[ 0093 ] The list of values need not be the same length in 
each row of a given table ; any ' missing ' values are set to 



US 2019 / 0327140 A1 Oct . 24 , 2019 

- continued null / undef in the calling context , and are assumed to be the 
relevant number of trailing elements of any ValueNames list . 
null / undef can be placed within the values list to ' skip ' 
unneeded entries . 
[ 0094 ] Finally , the ‘ DefaultValue provides an option to 
return a set of values on any call that does not match a 
keySpec . Note that this means that this MatchMap will 
always match . 

" Expr " : " true " 
“ Token " : { 

" id " = < tokenID > 
“ Action " = " redirect 
“ URL ” = “ / sorry " 

Examples 
[ 0095 ] As a first example , consider a desire to set some 
authentication modes for particular paths on a couple of 
properties . In match rules , this ends up being ( assuming the 
alias for ID X is id < x > . com ) : 

“ Match Set " : { 
“ Name " : " auth3 ” 
“ MatchRule " : { 

“ Expr ” : “ $ path ” * = “ secure / * " 
“ Token " : { 

" id " = < tokenID > 
“ Action " = " error " 

" expr ” : “ $ host ” = = “ id12 . com " & & “ Spath ” * = " / image / * * 
" token " : { 

" id " = < appropriate id > , 
" action " = " error " , [ 0097 ] We may then have a map like : 

" expr ” : “ $ host ” = = “ id12 . com ” & & “ Spath ” * = " / doc / * * 
" geo " : { 

“ idlist ” = “ US ” , 
" type ” = “ whitelist ” , 
" action " = " error " , 

“ MatchMap " : 
“ Name ” : “ MatchSetsByAlias " 
“ ValueNames " : " MatchSetNames " 
“ DefaultValue " : " auth3 " 
“ Data " : 

“ expr ” : “ $ host ” = = “ id22 . com ” 
" token " : { 

" id " = < appropriate _ id > , 
" action " = " redirect " , 
“ url ” = “ sorry ” , 

“ Key " : " starwars . com " 
“ Values " : { " auth1 , auth3 " } 

w 

“ Key " : " alien . com ” 
“ Values " : { " auth1 , auth3 " } " expr ” : true 

" token " : { 
" id " = < appropriate _ id > , 
" action " = " error ” , " Key " : " bladerunner . com ” 

“ Values " : { " authl , auth3 " } 

" Key " : " marypoppins . com ” 
“ Values " : { " auth2 , auth3 " } 

[ 0096 ] This example has only four simple rules and there 
is only one redundant test ( the second test of host against 
" id12 . com ” ) . However , those of ordinary skill in the art will 
realize and appreciate , upon reading this description , that 
this approach would be useful in an extended case ( e . g . , with 
100 aliases , 90 of which shared the same authentication 
requirements as “ id123 . com " and the other 10 of which need 
what “ id12 . com ” has ) . One way to implement the extended 
example would be to utilize MatchSets : 

“ Key " : " musicman . com ” 
“ Values " : { " auth2 , auth3 " } 

“ Key ” : “ myfairlady . com ” 
“ Values " : { " auth2 , auth3 " } 

[ 0098 ] And finally a rule : “ MatchSet " : { 
“ Name " : " auth1 ” 
“ MatchRule " : { 

“ Expr ” : “ Spath ” * = " / image / * » » 
“ Token " : { 

" id " = < tokenID > 
" Action " = " error " 

“ MatchRule " : 
" ID " : 1 
“ Expr ” : “ map ” ( “ MatchSetsByAlias ” , “ $ host " ) 
“ MatchSet ” : “ $ map . MatchSetNames ” 

“ MatchRule " : { 
“ Expr ” : “ $ path ” * = " / doc / * * * 
“ Geo " : { 

" id " = < geoID > 
“ Type ” = “ whitelist " 
“ Action ” = “ error " 

[ 0099 ] Here , the map operator matches the given value in 
the given map . If the map has a default value , or if there ' s 
a match in the map , the result is true and the rule is executed . 
As a side effect , it also makes available the pseudo - variable 
$ map , from which values from the map can be selected 
using “ . < ValueName > ” . 
[ 0100 ] This concept of named match sets ( i . e . , reusable 
sets of rules which can be referenced by name ) can be 
efficiently extended to apply to a large number of aliases . 

“ MatchSet ” : { 
" Name " : " auth2 " 
“ MatchRule " : 



US 2019 / 0327140 A1 Oct . 24 , 2019 

[ 0101 ] An issue with the above is constant repetition of 
" auth1 , auth3 ” or “ auth2 , auth3 ” in the map , which leads to : 

[ 0105 ] MatchMap may be extended as follows : 

“ MatchMap " : 
" Name " : “ MatchSetsByAlias " 
“ ValueNames " : “ MatchSetNames " 
“ DefaultValue " : " auth3 " 
“ Data " : 

" Match Map " : 
" Name " : " StarWarsQSH ” 
" ValueNames " : " enabled " 
“ DefaultValue " : " true " 

" Match Map " : 
" Name " : " AlienQSH ” 
“ DefaultValue " : " false " 
“ ValueNames " : " enabled " 
“ Map Type ” : “ glob ” 
“ Data " : 

“ Keys " : { " starwars . com " , " alien . com ” , 
“ bladerunner . com ” , < . . . > } , 

“ Values " : { " auth1 , auth3 " } 

" Key " : " / nostromo / * " , 
“ Value " : " true " " Keys " : { " marypoppins . com ” , 

" musicman . com ” , 
“ myfairlady . com ” , < . . . > } , 

“ Values " : { " auth2 , auth3 " } “ MatchMap " : 
" Name " : " BladeRunnerQSH ” 
“ DefaultValue " : " false " 
“ ValueNames " : " enabled ” 
“ MapType " : " glob ” 
“ Data " : [ 0102 ] This concept may be further extended to allow 

matching of multiple maps in a single “ map ” call . For 
example , to add a host ID to the above , we have : “ Key " : " / pkdick - bio / * " , 

“ Value " : " true " 

“ Key " : " / images / * " , 
" Value " : " true " 

“ MatchMap " : 
“ Name ” : “ IDsByAlias " 
“ ValueNames ” : “ ID ” 
“ DefaultValue ” : error ( " Missing alias ! " ) 
" Data " : 

{ " Key " : " starwars . com ” , " Value " : " 11 " 

{ “ Key ” : “ alien . com ” , “ Value ” : “ 10 ” 

“ MatchMap ” : 
" Name " : " MusicManQSH ” 
“ DefaultValue " : " false " 
“ ValueNames " : " enabled " 
“ Map Type " : " glob ” 
" Data " : { “ Key ” : “ bladerunner . com ” , “ Value ” : “ 9 ” SAWASAWS { " Key ” : “ marypoppins . com ” , “ Value ” : “ 12 ” " Key " : " / mwilson - bio / * " . 

“ Value " : " true " { " Key " : “ musicman . com ” , " Value " : " 13 " 

{ " Key ” : “ myfairlady . com ” , “ Value ” : “ 14 ” “ Key " : " / images / * " , 
" Value " : " true " 

“ Match Rule ” : 
“ ID : 1 
“ Expr ” : “ map ” ( “ IDSByAlias ” , 

“ MatchSetsByAlias ” , “ $ host ” ) 
“ HostID " : " $ map1 . ID ” 
“ MatchSet ” : “ $ map2 . MatchSetNames ” 

" MatchMap " : 
“ Name " : “ MyFairLadyQSH ” 
“ DefaultValue " : " false " 
“ ValueNames " : " enabled " 
“ Map Type ” : “ glob ” 
“ Data " : 

[ 0103 ] Query String Handling mode ( QSHMode ) may 
be used to extend the MatchMap syntax and semantics . In 
this example , the rules ( not in matchrule / matchmap syntax ) 
are as follows ( where the default is “ off ” ) : 

" Key " : " / cockney - primer * 
" Value " : " true " " Value " cockney - primeri * 

[ 0106 ] This provides the overall QSHMode map for this 
property : starwars . com 

on 

alien . com 
/ nostromo / * on 

bladerunner . com 
on / pkdick - bio / * 

/ images / on 

“ MatchMap ” : 
“ Name " : “ QSHModeByAlias ” 
“ DefaultValue " : " false " 
“ Data " : 

{ " Key " : " starwars . com " , 
“ ValueMap " : { " StarWarsQSH ” , “ $ path ” } 

musicman . com 
on / mwilson - bio / * 

/ images / * on 

myfairlady . com 
cockney - primer * on { " Key " : " alien . com ” , 

“ ValueMap " : { “ AlienQSH ” , “ $ path ” } 

{ " Key " : " bladerunner . com ” , 
“ ValueMap " : { " Blade RunnerQSH ” , “ $ path ” } [ 0104 ] Note that “ marypoppins . com , ” is left out of the 

rules because , in this example , none of the paths associated 
with that property require QSHMode . 



US 2019 / 0327140 A1 Oct . 24 , 2019 

- continued 
{ “ Key ” : “ musicman . com ” , 

“ ValueMap " : { " MusicManQSH ” , “ $ path " } } , 
{ “ Key ” : “ myfairlady . com ” , 
" ValueMap " : { " MyFairLadyQSH ” , “ $ path ” } 

[ 0107 ] So the rule for this property is now : 

“ Match Rule " : 
" ID " : 1 
“ Expr ” : “ map ” ( “ IDSByAlias ” , 

“ MatchSetsByAlias ” , 
“ QSHModeByAlias ” , “ $ host " ) 

“ HostID " : “ $ map1 . ID " 
“ MatchSet " : " $ map2 . MatchSetNames " 
" QSHMOde " : " $ map3 . enabled " 

[ 0108 ] This can be equivalently written : 

“ MatchRule " : 
" ID " : 1 
“ HostID ” : “ map ” ( “ IDSByAlias ” , “ $ host ” ) ” . ID " 
“ Match Set ” : “ map ” ( “ MatchSetsByAlias ” , 

“ $ host ' ' ) " . MatchSetNames " 
“ QSHMOde ” : “ map ” ( “ QSHModeByAlias ” , 

" $ host ) " . enabled " 

Real Time 

[ 0109 ] Those of ordinary skill in the art will realize and 
understand , upon reading this description , that , as used 
herein , the term " real time ” means near real time or suffi 
ciently real time . It should be appreciated that there are 
inherent delays built in to the CDN ( e . g . , based on network 
traffic and distances ) , and these delays may cause delays in 
data reaching various components . Inherent delays in the 
system do not change the real - time nature of the data . In 
some cases , the term “ real - time data ” may refer to data 
obtained in sufficient time to make the data useful in 
providing feedback . 
[ 0110 ] Although the term “ real time ” has been used here , 
it should be appreciated that the system is not limited by this 
term or by how much time is actually taken for data to have 
an effect on control information . In some cases , real time 
computation may refer to an online computation , i . e . , a 
computation that produces its answer ( s ) as data arrive , and 
generally keeps up with continuously arriving data . The term 
“ online ” computation is compared to an " offline ” or “ batch ” 
computation . 

processes of various embodiments . Thus , various combina 
tions of hardware and software may be used instead of 
software only . 
[ 0113 ] One of ordinary skill in the art will readily appre 
ciate and understand , upon reading this description , that the 
various processes described herein may be implemented by , 
e . g . , appropriately programmed general purpose computers , 
special purpose computers and computing devices . One or 
more such computers or computing devices may be referred 
to as a computer system . 
[ 0114 ] FIG . 5 is a schematic diagram of a computer system 
500 upon which embodiments of the present disclosure may 
be implemented and carried out . 
[ 0115 ] . According to the present example , the computer 
system 500 may include a bus 502 ( i . e . , interconnect ) , one 
or more processors 504 , a main memory 506 , read - only 
memory 508 , removable storage media 510 , mass storage 
512 , and one or more communications ports 514 . As should 
be appreciated , components such as removable storage 
media are optional and are not necessary in all systems . 
Communication port 514 may be connected to one or more 
networks by way of which the computer system 500 may 
receive and / or transmit data . 
[ 0116 ] As used herein , a " processor ” means one or more 
microprocessors , central processing units ( CPUs ) , comput 
ing devices , microcontrollers , digital signal processors , or 
like devices or any combination thereof , regardless of their 
architecture . An apparatus that performs a process can 
include , e . g . , a processor and those devices such as input 
devices and output devices that are appropriate to perform 
the process . 
[ 0117 ] Processor ( s ) 504 can be any known processor , such 
as , but not limited to , an Intel® Itanium® or Itanium 2® 
processor ( s ) , AMD® Opteron® or Athlon MP® processor 
( s ) , or Motorola? lines of processors , and the like . Com 
munications port ( s ) 514 can be any of an RS - 232 port for use 
with a modem based dial - up connection , a 10 / 100 Ethernet 
port , a Gigabit port using copper or fiber , or a USB port , and 
the like . Communications port ( s ) 514 may be chosen 
depending on a network such as a Local Area Network 
( LAN ) , a Wide Area Network ( WAN ) , a CDN , or any 
network to which the computer system 500 connects . The 
computer system 500 may be in communication with periph 
eral devices ( e . g . , display screen 516 , input device ( s ) 518 ) 
via Input / Output ( I / O ) port 520 . 
[ 0118 ] Main memory 506 can be Random Access Memory 
( RAM ) , or any other dynamic storage device ( s ) commonly 
known in the art . Read - only memory 508 can be any static 
storage device ( s ) such as Programmable Read - Only 
Memory ( PROM ) chips for storing static information such 
as instructions for processor 504 . Mass storage 512 can be 
used to store information and instructions . For example , 
hard disks such as the Adaptec® family of Small Computer 
Serial Interface ( SCSI ) drives , an optical disc , an array of 
disks such as Redundant Array of Independent Disks 
( RAID ) , such as the Adaptec® family of RAID drives , or 
any other mass storage devices may be used . 
101191 Bus 502 communicatively couples processor ( s ) 
504 with the other memory , storage , and communications 
blocks . Bus 502 can be a PCI / PCI - X , SCSI , a Universal 
Serial Bus ( USB ) based system bus ( or other ) depending on 
the storage devices used , and the like . Removable storage 
media 510 can be any kind of external hard - drives , floppy 
drives , IOMEGA® Zip Drives , Compact Disc - Read Only 

Computing 
[ 0111 ] The services , mechanisms , operations and acts 
shown and described above are implemented , at least in part , 
by software running on one or more computers of a CDN . 
[ 0112 ] Programs that implement such methods ( as well as 
other types of data ) may be stored and transmitted using a 
variety of media ( e . g . , computer readable media ) in a 
number of manners . Hard - wired circuitry or custom hard 
ware may be used in place of , or in combination with , some 
or all of the software instructions that can implement the 



US 2019 / 0327140 A1 Oct . 24 , 2019 

Memory ( CD - ROM ) , Compact Disc - Re - Writable ( CD 
RW ) , Digital Versatile Disk - Read Only Memory ( DVD 
ROM ) , etc . 
[ 0120 ] Embodiments herein may be provided as one or 
more computer program products , which may include a 
machine - readable medium having stored thereon instruc 
tions , which may be used to program a computer ( or other 
electronic devices ) to perform a process . As used herein , the 
term “ machine - readable medium ” refers to any medium , a 
plurality of the same , or a combination of different media , 
which participate in providing data ( e . g . , instructions , data 
structures ) which may be read by a computer , a processor or 
a like device . Such a medium may take many forms , 
including but not limited to , non - volatile media , volatile 
media , and transmission media . Non - volatile media include , 
for example , optical or magnetic disks and other persistent 
memory . Volatile media include dynamic random access 
memory , which typically constitutes the main memory of the 
computer . Transmission media include coaxial cables , cop 
per wire and fiber optics , including the wires that comprise 
a system bus coupled to the processor . Transmission media 
may include or convey acoustic waves , light waves and 
electromagnetic emissions , such as those generated during 
radio frequency ( RF ) and infrared ( IR ) data communica 
tions . 
[ 0121 ] The machine - readable medium may include , but is 
not limited to , floppy diskettes , optical discs , CD - ROMs , 
magneto - optical disks , ROMs , RAMs , erasable program 
mable read - only memories ( EPROMs ) , electrically erasable 
programmable read - only memories ( EEPROMs ) , magnetic 
or optical cards , flash memory , or other type of media / 
machine - readable medium suitable for storing electronic 
instructions . Moreover , embodiments herein may also be 
downloaded as a computer program product , wherein the 
program may be transferred from a remote computer to a 
requesting computer by way of data signals embodied in a 
carrier wave or other propagation medium via a communi 
cation link ( e . g . , modem or network connection ) . 
[ 0122 ] Various forms of computer readable media may be 
involved in carrying data ( e . g . sequences of instructions ) to 
a processor . For example , data may be ( i ) delivered from 
RAM to a processor ; ( ii ) carried over a wireless transmission 
medium ; ( iii ) formatted and / or transmitted according to 
numerous formats , standards or protocols ; and / or ( iv ) 
encrypted in any of a variety of ways well known in the art . 
[ 0123 ] A computer - readable medium can store in any 
appropriate format ) those program elements that are appro 
priate to perform the methods . 
[ 0124 ] As shown , main memory 506 is encoded with 
application ( s ) 522 that supports the functionality discussed 
herein ( the application 522 may be an application that 
provides some or all of the functionality of the CD services 
described herein , including the client application ) . Applica 
tion ( s ) 522 ( and / or other resources as described herein ) can 
be embodied as software code such as data and / or logic 
instructions ( e . g . , code stored in the memory or on another 
computer readable medium such as a disk ) that supports 
processing functionality according to different embodiments 
described herein . 
[ 0125 ] During operation of one embodiment , processor ( s ) 
504 accesses main memory 506 via the use of bus 502 in 
order to launch , run , execute , interpret or otherwise perform 
the logic instructions of the application ( s ) 522 . Execution of 
application ( s ) 522 produces processing functionality of the 

service related to the application ( s ) . In other words , the 
process ( es ) 524 represent one or more portions of the 
application ( s ) 522 performing within or upon the processor 
( s ) 504 in the computer system 500 . 
[ 0126 ] It should be noted that , in addition to the process 
( es ) 524 that carries ( carry ) out operations as discussed 
herein , other embodiments herein include the application 
522 itself ( i . e . , the un - executed or non - performing logic 
instructions and / or data ) . The application 522 may be stored 
on a computer readable medium ( e . g . , a repository ) such as 
a disk or in an optical medium . According to other embodi 
ments , the application 522 can also be stored in a memory 
type system such as in firmware , read only memory ( ROM ) , 
or , as in this example , as executable code within the main 
memory 506 ( e . g . , within Random Access Memory or 
RAM ) . For example , application 522 may also be stored in 
removable storage media 510 , read - only memory 508 and / or 
mass storage device 512 . 
[ 0127 ] Those skilled in the art will understand that the 
computer system 500 can include other processes and / or 
software and hardware components , such as an operating 
system that controls allocation and use of hardware 
resources . 
( 0128 ] . As discussed herein , embodiments of the present 
invention include various steps or operations . A variety of 
these steps may be performed by hardware components or 
may be embodied in machine - executable instructions , which 
may be used to cause a general - purpose or special - purpose 
processor programmed with the instructions to perform the 
operations . Alternatively , the steps may be performed by a 
combination of hardware , software , and / or firmware . The 
term “ module ” refers to a self - contained functional compo 
nent , which can include hardware , software , firmware or any 
combination thereof . 
[ 0129 ] One of ordinary skill in the art will readily appre 
ciate and understand , upon reading this description , that 
embodiments of an apparatus may include a computer / 
computing device operable to perform some ( but not nec 
essarily all ) of the described process . 
[ 0130 ] Embodiments of a computer - readable medium 
storing a program or data structure include a computer 
readable medium storing a program that , when executed , can 
cause a processor to perform some ( but not necessarily all ) 
of the described process . 
[ 0131 ] Where a process is described herein , those of 
ordinary skill in the art will appreciate that the process may 
operate without any user intervention . In another embodi 
ment , the process includes some human intervention ( e . g . , a 
step is performed by or with the assistance of a human ) . 

Discussion 
[ 0132 ] Thus are described systems , methods , and devices 
supporting subscriber configuration ingestion in a content 
delivery network . 
[ 0133 ] As described , when a subscriber makes a change to 
their configuration , that change will be ingested into the 
CDN in real time . 
[ 0134 ] Those of ordinary skill in the art will appreciate 
and understand , upon reading this description , that embodi 
ments hereof distribute risk , and that the distributed and 
highly scalable design guarantees high - availability , no data 
lose and “ near real - time " distribution and consumption of 
changes into the CDN network . 



US 2019 / 0327140 A1 Oct . 24 , 2019 
10 

CONCLUSION 
[ 0135 ] As used herein , including in the claims , the phrase 
" at least some ” means “ one or more , " and includes the case 
of only one . Thus , e . g . , the phrase " at least some services ” 
means “ one or more services ” , and includes the case of one 
service . 
[ 0136 ] As used herein , including in the claims , the phrase 
“ based on ” means “ based in part on ” or “ based , at least in 
part , on , " and is not exclusive . Thus , e . g . , the phrase " based 
on factor X ” means “ based in part on factor X ” or “ based , 
at least in part , on factor X . " Unless specifically stated by 
use of the word " only ” , the phrase " based on X ” does not 
mean “ based only on X . ” 
[ 0137 ] As used herein , including in the claims , the phrase 
“ using ” means “ using at least , ” and is not exclusive . Thus , 
e . g . , the phrase " using X ” means " using at least X . ” Unless 
specifically stated by use of the word " only ” , the phrase 
“ using X ” does not mean “ using only X . ” 
[ 0138 ] In general , as used herein , including in the claims , 
unless the word “ only ” is specifically used in a phrase , it 
should not be read into that phrase . 
[ 0139 ] As used herein , including in the claims , the phrase 
" distinct ” means “ at least partially distinct . ” Unless specifi 
cally stated , distinct does not mean fully distinct . Thus , e . g . , 
the phrase , “ X is distinct from Y ” means that “ X is at least 
partially distinct from Y , " and does not mean that “ X is fully 
distinct from Y . ” Thus , as used herein , including in the 
claims , the phrase “ X is distinct from Y ” means that X 
differs from Y in at least some way . 
[ 0140 ] As used herein , including in the claims , a list may 
include only one item , and , unless otherwise stated , a list of 
multiple items need not be ordered in any particular manner . 
A list may include duplicate items . For example , as used 
herein , the phrase " a list of CDN services ” may include one 
or more CDN services . 
10141 ] It should be appreciated that the words " first ” and 
“ second ” in the description and claims are used to distin 
guish or identify , and not to show a serial or numerical 
limitation . Similarly , the use of letter or numerical labels 
( such as “ ( a ) ” , “ ( b ) ” , or ( i ) , ( ii ) , . . . , and the like ) are used 
to help distinguish and / or identify , and not to show any serial 
or numerical limitation or ordering . 
[ 0142 ] While various embodiments have been described 
herein , other manners are contemplated . 
10143 ] As used in this description , the term “ portion ” 
means some or all . So , for example , " A portion of X ” may 
include some of “ X ” or all of “ X ” . In the context of a 
conversation , the term “ portion " means some or all of the 
conversation . 
[ 0144 ] Throughout the description and claims , the terms 
" comprise ” , “ including ” , “ having " , and " contain ” and their 
variations should be understood as meaning " including but 
not limited to ” , and are not intended to exclude other 
components unless specifically so stated . 
10145 ] It will be appreciated that variations to the embodi - 
ments of the invention can be made while still falling within 
the scope of the invention . Alternative features serving the 
same , equivalent or similar purpose can replace features 
disclosed in the specification , unless stated otherwise . Thus , 
unless stated otherwise , each feature disclosed represents 
one example of a generic series of equivalent or similar 
features . 
[ 0146 ] Use of exemplary language , such as “ for instance ” , 
“ such as ” , “ for example ” ( “ e . g . , " ) and the like , is merely 

intended to better illustrate the invention and does not 
indicate a limitation on the scope of the invention unless 
specifically so claimed . 
[ 0147 ] No ordering is implied by any of the labeled boxes 
in any of the flow diagrams unless specifically shown and 
stated . When disconnected boxes are shown in a diagram , 
the activities associated with those boxes may be performed 
in any order , including fully or partially in parallel . 
10148 ) While the invention has been described in connec 
tion with what is presently considered to be the most 
practical and preferred embodiments , it is to be understood 
that the invention is not to be limited to the disclosed 
embodiment , but on the contrary , is intended to cover 
various modifications and equivalent arrangements included 
within the spirit and scope of the appended claims . 
We claim : 
1 . A computer - implemented method operable on a device 

in a content delivery ( CD ) network , wherein said CD 
network ( CDN ) distributes content on behalf of one or more 
subscribers , the method comprising : 

( A ) receiving configuration information from a particular 
subscriber of said one or more subscribers , said con 
figuration information relating to at least one property 
of said particular subscriber ; 

( B ) in response to said receiving , generating subscriber 
specific platform configuration information for said at 
least one property of said particular subscriber ; 

( C ) storing said subscriber - specific platform configuration 
information in platform configuration storage ; 

( D ) invalidating prior platform configuration information 
associated with said particular subscriber ; and 

( E ) in response to a request from at least one CDN 
component for platform configuration information 
associated with said particular subscriber , 
( E ) ( 1 ) obtaining said subscriber - specific platform con 

figuration information from said platform configu 
ration storage ; and 

( E ) ( 2 ) providing said subscriber - specific platform con 
figuration information to said at least one CDN 
component . 

2 . The method of claim 1 , wherein said receiving in ( A ) 
was based on a message obtained from a messaging broker , 
said message indicating a need to create new subscriber 
specific platform configuration information for said particu 
lar subscriber . 

3 . The method of claim 2 , wherein said configuration 
information is received in ( A ) from distributed database 
distinct from said messaging broker . 

4 . The method of claim 2 , wherein said messaging broker 
obtained said message from a configuration interface based 
on an action by said particular subscriber . 

5 . The method of claim 4 , wherein said action by said 
particular subscriber comprises : creating said configuration 
information . 

6 . The method of claim 5 , wherein said creating comprises 
modifying existing configuration information . 

7 . The method of claim 1 , wherein said request from said 
CDN component in ( E ) was based on said CDN component 
determining that said prior platform configuration informa 
tion associated with said particular subscriber had been 
invalidated . 

8 . The method of claim 1 , wherein said providing in 
( E ) ( 2 ) is performed for multiple distinct CDN components . 



US 2019 / 0327140 A1 Oct . 24 , 2019 

9 . The method of claim 1 , wherein said at least one CDN 
component provides CD services selected from the group 
comprising : delivery services , caching services , streaming 
services , rendezvous services , collector services , object ser 
vices , compute services , fill services , origin services , storage 
services , control services , reduction services , distribution 
services , monitoring services , and reporting services . 

10 . The method of claim 9 , wherein said at least one CDN 
component comprises a delivery server . 

11 . The method of claim 10 , wherein , after said providing 
in ( E ) ( 2 ) , said delivery server customizes said subscriber 
specific platform configuration information to form server 
specific platform configuration information for said particu 
lar subscriber . 

12 . The method of claim 11 , wherein , after said providing 
in ( E ) ( 2 ) , said delivery server serves content on behalf of 
said particular subscriber based on said server - specific plat 
form configuration information for said particular sub 
scriber . 

13 . The method of claim 12 , wherein said server - specific 
platform configuration information for said particular sub 
scriber is formed using said subscriber - specific platform 
configuration information , and based on capabilities of said 
server . 

14 . The method of claim 1 , wherein said configuration 
information comprises at least one match rule . 

15 . The method of claim 14 , wherein the at least one 
match rule is table driven . 

16 . The method of claim 1 , wherein said configuration 
information comprises at least one match rule group , each 
said group comprising a collection of one or more match 
rules . 

17 . The method of claim 16 , wherein a match rule group 
comprises a collection of one or more match rules with 
first - match - wins semantics . 

18 . The method of claim 16 , wherein said at least one 
match rule group comprises : a first collection of one or more 
match rules for processing on receipt of a request and a 
second collection of one or more match rules for processing 
on receipt of a response . 

19 . The method of claim 16 , wherein the at least one 
match rule group comprise multiple match rule groups , and 
wherein said multiple match rule groups are processed in a 
specified order . 

20 . The method of claim 19 , wherein match rules may 
have corresponding match rule IDs that can be used to order 
rules and to provide jump targets . 

21 . The method of claim 14 , wherein said at least one 
match rule comprises at least one transform . 

22 . An article of manufacture comprising a computer 
readable medium having program instructions stored 
thereon , the program instructions , operable on a device in a 
content delivery ( CD ) network , wherein said CD network 
( CDN ) distributes content on behalf of one or more sub 
scribers , said instructions , when executed by a processor in 
said CDN , cause said processor to : 

( a ) receive configuration information from a particular 
subscriber of said one or more subscribers , said con 
figuration information relating to at least one property 
of said particular subscriber ; 

( b ) in response to said receiving , generate subscriber 
specific platform configuration information for said at 
least one property of said particular subscriber ; 

( c ) store said subscriber - specific platform configuration 
information in platform configuration storage ; 

( d ) invalidate prior platform configuration information 
associated with said particular subscriber ; and 

( e ) in response to a request from at least one CDN 
component for platform configuration information 
associated with said particular subscriber , 
( e ) ( 1 ) obtain said subscriber - specific platform configu 

ration information from said platform configuration 
storage ; and 

( e ) ( 2 ) provide said subscriber - specific platform con 
figuration information to said at least one CDN 
component . 

23 . The article of manufacture of claim 22 , wherein said 
receiving in ( A ) was based on a message obtained from a 
messaging broker , said message indicating a need to create 
new subscriber - specific platform configuration information 
for said particular subscriber . 

24 . The article of manufacture of claim 23 , wherein said 
configuration information is received in ( a ) from distributed 
database distinct from said messaging broker . 

25 . The article of manufacture of claim 23 , wherein said 
messaging broker obtained said message from a configura 
tion interface based on an action by said particular sub 
scriber . 

26 . The article of manufacture of claim 22 , wherein said 
at least one CDN component provides CD services selected 
from the group comprising : delivery services , caching ser 
vices , streaming services , rendezvous services , collector 
services , object services , compute services , fill services , 
origin services , storage services , control services , reduction 
services , distribution services , monitoring services , and 
reporting services . 

27 . The method of claim 22 , wherein said configuration 
information comprises at least one match rule . 

28 . The method of claim 27 , wherein the at least one 
match rule is table driven . 

29 . An device in a content delivery ( CD ) network , 
wherein said CD network ( CDN ) distributes content on 
behalf of one or more subscribers , said device constructed 
and adapted to : 

( a ) receive configuration information from a particular 
subscriber of said one or more subscribers , said con 
figuration information relating to at least one property 
of said particular subscriber ; 

( b ) in response to said receiving , generate subscriber 
specific platform configuration information for said at 
least one property of said particular subscriber ; 

( c ) store said subscriber - specific platform configuration 
information in platform configuration storage ; 

( d ) invalidate prior platform configuration information 
associated with said particular subscriber ; and 

( e ) in response to a request from at least one CDN 
component for platform configuration information 
associated with said particular subscriber , 
( e ) ( 1 ) obtain said subscriber - specific platform configu 

ration information from said platform configuration 
storage ; and 

( C ) ( 2 ) provide said subscriber - specific platform configu 
ration information to said at least one CDN component . 


