a9y United States

Lipstone et al.

US 20190327140A1

a2y Patent Application Publication o) Pub. No.: US 2019/0327140 A1

43) Pub. Date: Oct. 24, 2019

(54) SUBSCRIBER CONFIGURATION
INGESTION IN A CONTENT DELIVERY

(71)

(72)

@
(22)

(1)

NETWORK

Applicant: Level 3 Communications, LL.C,

Inventors:

Appl. No.:

Filed:

Apr. 24, 2018

Broomfield, CO (US)

Laurence Lipstone, Calabasas, CA
(US); Christopher Newton, Westlake
Village, CA (US); William Crowder,
Camarillo, CA (US); Vikas Dogra,
Westlake Village, CA (US); Kevin
Johns, Erie, CO (US)

Publication Classification

Int. CL.

HO4L 12/24

(2006.01)

(52) US.CL
CPC ... HO4L 41/0813 (2013.01); HO4L 67/10
(2013.01)

(57) ABSTRACT

A method on a device in a content delivery (CD) network
(CDN) that distributes content on behalf of one or more
subscribers. In response to receiving configuration informa-
tion from a subscriber, the configuration information relating
to at least one property of the subscriber, generating sub-
scriber-specific platform configuration information for the at
least one property. Storing the subscriber-specific platform
configuration information in platform configuration storage.
Invalidating prior platform configuration information asso-
ciated with the particular subscriber. Responsive to a request
from a CDN component for platform configuration infor-
mation associated with the particular subscriber: obtaining
the subscriber-specific platform configuration information
from the platform configuration storage; and providing the
subscriber-specific platform configuration information to the
CDN component.

200

REST CLIENT

Store
Service
Image

CONFIG. API

Create/Modify

Subscriber
configuration

Send message

to create
platform
configuration

v
204
202 | MESSAGING SYSTEM /BROKER

DISTIRBUTED | (E.G., KAFKA CLUSTER)
' DATABASE (E.G.,

CASSANDRA
. CLUSTER)

T 122

J,

Consume
message for
config generation

Read subscriber v
metadata 118
CONTROL CORE
Save platform
config.
Invalidate and
P distribute
platform config. 206
N PLATFORM
CONFIG.
208 STORE

CDN COMPONENTS

Patent Application Publication

Oct. 24,2019 Sheet 1 of 5 US 2019/0327140 A1

102 CONTENT CDN
PROVIDER(S) : E
B I 122
| . CONFIG.
CONTENT |
~__ PROVIDER
118 CONTROL
’ I
104 ORIGIN(S) l
B 1 120
| § CONTROL
- SERVICE
- ORIGIN
106 DELIVEH"Y SERVER(S) 112 RENDEZVOUS
: - | » | SYSTEM
| 1 |
. DeLWERY 114 Renpez-
____ SERVER "____ vOous MECH.

CLIENT

108 CLIENTS

FiGg. 1

Patent Application Publication Oct. 24,2019 Sheet 2 of 5 US 2019/0327140 A1

200 |
REST CLIENT

Create/Modify

Subscriber
Store configuration
Service ¥ \ Send message
Image 124 to create
| CONFIG. API platform
configuration
202 204
DIST—IRB MESSAGING SYSTEM /BROKER
UTED (E.G., KAFKA CLUSTER)
DATABASE (E.G.,
CASSANDRA x
N CLUSTER)
122
—
Consume
message for
config generation
Read subscriber
metadata 118

> CoONTROL CORE

Save platform

config.

Invalidate and
P . distribute
.. platform config. 206
N . PLATFORM
CONFIG.
STORE

208
CDN COMPONENTS

FIG. 2

US 2019/0327140 A1

Oct. 24,2019 Sheet 3 of 5

Patent Application Publication

$5800NS YIIM

puodsay ‘¢

_Blepelej 18g1osans

S SEpdn 1o sl |

/11#1‘1,“ e -11b ,,,, -‘1\,\,.
1, | |
“ Bijuoo wiogeid unjey ‘) “
I _l ‘Biyuoo _
“ "A wioneld peey Z1 " A_ ﬁ_
| I i | |
} } »i | |
| Byuoo wiopeld 189 1} I I _ .
I] | | |]
_1 feuInol Jejsew wney ol “ “ _ "
— h -
“ leu.nof Jejsew 189) ‘g 4 “ _ “
¥
_ _ _mcso?mwmmg _ _ _
_ _ ur Byuoo wuope|d ! _ _
! ! SEplEAUl g ! ! !
| | 1 | | |
" “\ "Bijuoo wuoge|d " “ " "
i | ©I0IS B BjessueY "/, EJepejoll 1equosqns pesy ‘g o I
I I I I i I
I | | obessew BuINSU0)D ‘G o | |
!]] g Biuoo wuoje|d]
| I | = 8jealo 0] 9bessew pueg |
| | | | | |
| | | | |]
| | | | | |
I | I I l2SI8NIQ Blpuesse) i
I I I i [0} &M 2 L
| |] | |]
| | | | | |
| | | | | |
1 i | ,] i I
(S)INaNOdINOD | JHOLS Exlele) H3LSNT) H3IsN1) Idv
Nad _ *O1ANOD m TOHLINOD L LY VHANYSSYD) 51E Vole)
807 WHO4LY14T0C BT 70e Z0¢ ¥er

IN3ITD
1say
00¢

Patent Application Publication Oct. 24,2019 Sheet 4 of 5 US 2019/0327140 A1

FIG. 4A

206
PLATFORM CONFIG. STORE /‘ 400
SUBSCRIBER CONFIGURATIONS
SUBSCRIBER ID | SUBSCRIBER CONFIGURATION
1 CCS#1
2 CCS#2
N CCS#N

206 402
PLATFORM CONFIG. STORE /
SUBSCRIBER/PROPERTY CONFIGURATIONS
SUBSCRIBER PROPERTY SUBSCRIBER CONFIGURATION
ID
1 1 CCS#1,1
1 2 CCS#1,2
N 1 CCS#n,1
N 2 CCS#n,2

FIG. 4B

Patent Application Publication Oct. 24,2019 Sheet 5 of 5

US 2019/0327140 A1

O

00 COMPUTER SYSTEM

504 |
PROCESSOR(S) l - / MASS STORAGE
’ : / DEVICE
524
PROCESS(ES)
508
s o
MaiN MEMORY
APPLICATION(S) N 214
/ COMFI:IIUNI((.‘.A)TION
l ORT(S
I/0 PORT(S) — / N / SENSOR(S)
DisPLAY | 1
DEVICE(S) REM?_V?ABLE

' STORAGE MEDIA

FIG. 5

US 2019/0327140 Al

SUBSCRIBER CONFIGURATION
INGESTION IN A CONTENT DELIVERY
NETWORK

BACKGROUND OF THE INVENTION

Copyright Statement

[0001] This patent document contains material subject to
copyright protection. The copyright owner has no objection
to the reproduction of this patent document or any related
materials in the files of the United States Patent and Trade-
mark Office, but otherwise reserves all copyrights whatso-
ever.

FIELD OF THE INVENTION

[0002] This invention relates to content delivery and con-
tent delivery networks. More specifically, to subscriber
configuration in content delivery networks and systems,
frameworks, devices and methods supporting subscriber
configuration in content delivery and content delivery net-
works.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Other objects, features, and characteristics of the
present invention as well as the methods of operation and
functions of the related elements of structure, and the
combination of parts and economies of manufacture, will
become more apparent upon consideration of the following
description and the appended claims with reference to the
accompanying drawings, all of which form a part of this
specification.

[0004] FIG. 1 depicts aspects of a content delivery net-
work (CDN) according to exemplary embodiments hereof;
[0005] FIGS. 2 and 3 depict aspects of exemplary embodi-
ments of real-time subscriber configuration ingestion
according to exemplary embodiments hereof;

[0006] FIGS. 4A-4B depict aspects of platform configu-
ration storage according to exemplary embodiments hereof;
and

[0007] FIG. 5 depicts aspects of computing according to
exemplary embodiments hereof.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

Glossary

[0008] As used herein, unless used otherwise, the follow-
ing terms or abbreviations have the following meanings:

[0009] API means application program interface;

[0010] CCS means Customer Configuration Script;
[0011] CD means content delivery;

[0012] CDN means content delivery network;

[0013] DNS means domain name system;

[0014] GCO means Global Configuration Object; and
[0015] REST (or RESTful) means Representational State
Transfer.

[0016] A “mechanism” refers to any device(s), process

(es), routine(s), service(s), module(s), or combination
thereof. A mechanism may be implemented in hardware,
software, firmware, using a special-purpose device, or any
combination thereof. A mechanism may be integrated into a
single device or it may be distributed over multiple devices.

Oct. 24,2019

The various components of a mechanism may be co-located
or distributed. The mechanism may be formed from other
mechanisms. In general, as used herein, the term “mecha-
nism” may thus be considered shorthand for the term
device(s) and/or process(es) and/or service(s).

DESCRIPTION

[0017] A content delivery network (CDN or CD network)
distributes content (e.g., resources) efficiently to clients on
behalf of one or more content providers (or subscribers),
preferably via a public Internet. Content providers provide
their content (e.g., resources) via origin sources (origin
servers or origins). A CDN can also provide an over-the-top
transport mechanism for efficiently sending content in the
reverse direction—from a client to an origin server. Both
end-users (clients) and content providers benefit from using
a CDN. Using a CDN, a content provider is able to take
pressure off (and thereby reduce the load on) its own servers
(e.g., its origin servers). Clients benefit by being able to
obtain content with fewer delays.

[0018] FIG. 1 shows aspects of an exemplary CDN in
which one or more content providers (or subscribers) 102
provide content via one or more origin sources 104 and
delivery services (servers) 106 to clients 108 via one or more
networks 110. The delivery services (servers) 106 may form
a delivery network from which clients 108 may obtain
content. The delivery services 106 may be logically and/or
physically organized hierarchically and may include edge
caches. The delivery services 106 may be logically and/or
physically organized into clusters.

[0019] As should be appreciated, components of a CDN
(e.g., delivery servers or the like) may use the CDN to
deliver content to other CDN components. Thus a CDN
component may itself be a client of the CDN. For example,
the CDN may use its own infrastructure to deliver CDN
content (e.g., CDN control and configuration information) to
CDN components.

[0020] Client requests (e.g., for content) may be associ-
ated with delivery server(s) 106 by a rendezvous system 112
comprising rendezvous mechanism(s) 114, possibly in the
form of one or more rendezvous networks. The rendezvous
mechanism(s) 114 may be implemented, at least in part,
using or as part of a DNS system, and the association of a
particular client request (e.g., for content) with one or more
delivery servers may be done as part of DNS processing
associated with that particular client request (e.g., of a
domain name associated with the particular client request).

[0021] Typically, multiple delivery servers 106 in the
CDN can process or handle any particular client request for
content (e.g., for one or more resources). Preferably the
rendezvous system 112 associates a particular client request
with one or more “best” or “optimal” (or “least worst™)
delivery servers 106 to deal with that particular request. The
“best” or “optimal” delivery server(s) 106 may be one(s)
that is (are) close to the client (by some measure of network
cost) and that is (are) not overloaded. Preferably the chosen
delivery server(s) 106 (i.e., the delivery server(s) chosen by
the rendezvous system 112 for a client request) can deliver
the requested content to the client or can direct the client,
somehow and in some manner, to somewhere where the
client can try to obtain the requested content. A chosen
delivery server 106 need not have the requested content at

US 2019/0327140 Al

the time the request is made, even if that chosen delivery
server 106 eventually serves the requested content to the
requesting client.

[0022] When a client 108 makes a request for content, the
client may be referred to as the requesting client, and the
delivery server 106 that the rendezvous system 112 associ-
ates with that client request (and that the client first contacts
to make the request) may be referred to as the “contact”
server or just the contact.

[0023] Exemplary CDNs are described in U.S. Pat. Nos.
8,060,613 and 8,925,930.

[0024] The CDN may include a control system 118
(formed from the various control services 120). The control
system 118 may be referred to as the control core or control
mechanism. The control mechanism 118 may include two
sides, namely a side dedicated to accepting and managing
the configurations provided by CDN users (or subscribers),
and a side dedicated to controlling endpoint services (such
as caches) based on established configurations.

[0025] The CDN may have or provide default policies and
procedures for delivery and/or handling of subscriber con-
tent. These system defaults may be specified and/or con-
tained in one or more system configuration files or objects.
In addition, content providers (or subscribers) 102 may
customize aspects of delivery and/or handling of their con-
tent by the CDN. The subscriber customizations may be
specified and/or contained in one or more subscriber con-
figuration files or objects. The system default configuration
may be augmented, supplemented, and/or replaced, at least
in part, by subscriber configurations.

[0026] The control system 118 (e.g., control service(s)
120) may connect to/with delivery server(s) 106 and the
rendezvous system 112. This is represented in the drawing in
FIG. 1 by the arrow to/from the control system 118 to the
combined set of 106 and 112. This arrow may represent, e.g.,
sending config information to the delivery service (e.g.,
CCS/GCO files) and/or to rendezvous system 112 (e.g., alias
updates).

[0027] Configuration may be maintained, controlled, and
administered, at least in part, by configuration mechanism
122. Subscribers may access the configuration mechanism
122 via an appropriate interface, e.g., via configuration API
124.

[0028] The configuration information may define, for a
particular subscriber, for the subscriber’s entire set of prop-
erties, how the CDN should handle those properties (e.g.,
how the CDN should service requests for that customer’s
properties). This may include, alias hostnames, origin serv-
ers from which to fill, and all policies associated with
content associated with that subscriber. The system prefer-
ably maintains one subscriber configuration per subscriber
(or per property per subscriber).

[0029] FIGS. 2 and 3 depict aspects of exemplary embodi-
ments of real-time subscriber configuration ingestion
according to exemplary embodiments hereof. As described
here, subscriber configuration is modifiable directly by a
subscriber or a subscriber’s REST agent by invoking or
calling the config API 124. The configuration modification is
ingested into the network through a distributed set of appli-
cations and data stores.

[0030] With reference still to FIGS. 2 and 3, a subscriber
invokes or calls the configuration API (or Config API) 124
(at 1 in FIG. 3) to create or modify the subscriber’s con-
figuration. Recall that the subscriber’s configuration defines

Oct. 24,2019

how the CDN deals with aspects of delivery and/or handling
of that subscriber’s content. The subscriber’s configuration
may augment or modify or replace aspects of the system
default configuration.

[0031] The Config API 124 may be a RESTful API server
for creating and modifying a subscriber’s configuration. A
REST client 200 that is authorized to access a subscriber
configuration may read/modify/rollback the subscriber con-
figuration.

[0032] The Config API 124 stores the subscriber’s con-
figuration in a distributed database cluster 202 (at 2 in FIG.
3). In a presently preferred embodiment, Cassandra is used
for the distributed database 202. Cassandra provides a
distributed database management system designed to handle
large amounts of data across many commodity servers,
providing high availability with no single point of failure.
Cassandra may offer robust support for clusters spanning
multiple datacenters, with asynchronous masterless replica-
tion allowing low latency operations for all clients. The
Cassandra cluster may be a multi-node, multi-datacenter
Cassandra cluster for storing subscriber configuration infor-
mation. Those of ordinary skill in the art will appreciate and
understand, upon reading this description, that different
and/or other mechanisms may be used in place of the
Cassandra cluster to implement aspects of embodiments
hereof.

[0033] In Cassandra, writes and reads offer a tunable level
of consistency. In preferred embodiments, writes to the
Cassandra cluster 202 are preferably done with a consis-
tency level of LOCAL_QUORUM so that when a read is
done with a LOCAL_QUORUM, data is always consistent.
[0034] A response from the Config API 124 will indicate
(at 3 in FIG. 3) whether or not the write to the cluster 202
was successful (e.g., providing “success” indication).
[0035] If the request was to create or update the subscrib-
er’s configuration, the config API 124 publishes a message
(at 4 in FIG. 3) to a messaging system 204 (e.g., Katka®
cluster) for (or to cause) generation of platform configura-
tion.

[0036] The messaging system 204 may be a multi-node
Kafka® broker cluster that works as a high-throughput
distributed messaging system.

[0037] Katka® refers to Apache’s distributed streaming
platform, preferably with the following capabilities: Publish
and subscribe to streams of records, similar to a message
queue; Store streams of records in a fault-tolerant durable
way; and process streams of records as they occur.

[0038] Those of ordinary skill in the art will appreciate
and understand, upon reading this description, that different
and/or other mechanisms may be used in place of the
Kafka® to implement aspects of embodiments hereof.
[0039] Preferably the control core 118 consumes (or
obtains) a message from the messaging system 204. As
should be appreciated, it is important that no request made
by the Config API 124 for platform config generation is lost
(or missed) by control core 118, so that the platform con-
figuration is always in sync with the config data configured
by the subscriber.

[0040] Config API 124 publishes messages to the cluster
204 which are consumed by the Control Core 118.

[0041] The control core 118 preferably monitors the mes-
saging system 204 and consumes messages for the control
core 118. In particular, the control core 118 consumes

US 2019/0327140 Al

messages (at 5 in FIG. 3) from a cluster of messaging system
204 for generating platform configurations for a subscriber.
[0042] While reading subscriber configuration informa-
tion from the Cassandra cluster 202 (at 6 in FIG. 3), a
consistency level of LOCAL_QUORUM should ensure that
there is no data loss and that the control core 118 gets the
latest copy of the subscriber’s data.

[0043] After consuming a message (at 5 in FIG. 3), the
control core 118 reads subscriber configuration data/infor-
mation (e.g., subscriber metadata) (at 6 in FIG. 3) from the
Cassandra cluster 202 and then generates and stores plat-
form configurations (at 7 in FIG. 3).

[0044] The generated platform configurations are based, at
least in part, on the subscriber configuration information
read from the Cassandra cluster 202. The generated platform
configurations are preferably also based on default and/or
system-wide configurations and on CDN policies. As should
be appreciated, while subscribers may be able to create
and/or modify configurations, such configurations should
comply with CDN policies. The generated platform con-
figuration contains the newly modified changes in platform
aware language.

[0045] The control core 118 stores configuration data (e.g.,
platform configuration data) in a data store 206 and invali-
dates the prior configuration data (at 7 and 8 in FIG. 3). In
order to invalidate prior configuration(s), the control core
118 may issue invalidation instructions to the network for
configurations to be replaced by the newly generated plat-
form configuration(s). While invalidation of control objects
is the presently preferred approach, those of ordinary skill in
the art will appreciate and understand, upon reading this
description, that different and/or other approaches may be
used. For example, the CDN may poll for changes to such
objects.

[0046] As noted above, the system preferably maintains
one subscriber configuration per subscriber (or per property
per subscriber). The platform configuration store 206 main-
tains the subscriber configurations for the CDN’s subscrib-
ers.

[0047] The control core 118 may provide an interface
(e.g., a REST API) for delivering the platform configurations
to the CDN nodes.

[0048] CDN components 208 (e.g., CDN delivery servers
106, etc.) monitor the control core 118 for changes in the
master journal (indicating potentially invalid content).
Accordingly, in response to the control core 118 invalidating
the platform config in the master journal (at 8 in FIG. 3),
each CDN component (e.g., CDN delivery servers 106, etc.)
gets the updated master journal from the control core 118 (at
9 and 10 in FIG. 3). The CDN component(s) then request the
new/modified platform configuration from the control core
118 (at 11 in FIG. 3).

[0049] The control core 118 reads the platform configu-
ration from the platform configuration storage (data store
206) (at 12 in FIG. 3), and then returns the platform
configuration to the requesting CDN component (at 13 in
FIG. 3).

[0050] A CDN component receiving configuration infor-
mation may use that information as is or it may process the
configuration information into local configuration informa-
tion based, e.g., on the capabilities of the CDN component.
[0051] As should be appreciated, a CDN component (e.g.,
a CDN delivery server 106) may use the subscriber-provided

Oct. 24,2019

configuration information to perform subscriber-specific
handling (e.g., subscriber-specific request/response process-
ing).

[0052] The configuration information in a subscriber’s
configuration may define, for the subscriber’s entire set of
properties, how the CDN should handle those properties
(e.g., how the CDN should service requests for that custom-
er’s properties). This may include, alias hostnames, origin
servers from which to fill, and all policies associated with
content associated with that subscriber. The system main-
tains one subscriber configuration per subscriber (or per
property per subscriber).

[0053] Each subscriber has its own configuration informa-
tion (which may be default). That is, the system maintains a
single subscriber configuration for each subscriber, and that
subscriber configuration defines all configuration details for
all of that subscriber’s content. As should be appreciated, the
current approach (with a single configuration per subscriber)
allows a subscriber to handle most or all content the same
way, with differences expressed incrementally for that con-
tent to be handled differently. An alternate approach is to
have a CCS per resource or for smaller groups of resources
of a subscriber, but this alternate approach misses the
commonality that most subscribers use for most of their
resources.

[0054] In some exemplary implementations, the sub-
scriber-specific configuration information may be specified
in so-called Customer Configuration Scripts (CCSs). Cus-
tomer-specific scripts may be used to process a customer’s
requests (i.e., requests for or associated with a subscriber’s
content), and may be associated with the customers/sub-
scribers, e.g., via customer/subscriber identifiers.

[0055] FIG. 4A depicts aspects of platform configuration
storage 206 according to exemplary embodiments hereof. As
shown, the platform configuration storage 206 may include
subscriber configurations 400, indexed by subscriber iden-
tifier. Thus, e.g., subscriber j has subscriber configuration
CCS#j, and so on. In some cases, the system may include a
default subscriber configuration for each subscriber, to be
used unless/until the configuration is modified.

[0056] If a subscriber has multiple properties with differ-
ent configurations for different properties, then that sub-
scriber may be allocated a different subscriber id for each
property, or the data structure 402 shown in FIG. 4B may be
used.

[0057] A data structure (e.g., a Global Configuration
Object or GCO) may be used to determine whether a request
is associated with a CDN subscriber (and therefore, e.g.,
whether a requested resource can be served). A GCO may
include information that will allow a CDN component (e.g.,
a cache server) to determine whether a requested resource
corresponds to a resource of a subscriber (or customer) of
the CDN (or to a CDN resource). Essentially the CDN
component may use the GCO to determine whether a
resource belongs to a property configured to use the CDN.
Since the GCO is a global control resource, common to all
agents, (whereas other control resources (e.g., CCSs) are
generally downloaded on demand), the GCO should be
succinct.

[0058] Configuration Model Implementation
[0059] Match Rules
[0060] An exemplary implementation of the customer

(subscriber) configuration model uses a so-called “match
rules” approach. Within a configuration there is the option of

US 2019/0327140 Al

having rules or mappings. The match rules effectively act as
mappings or lookup tables. An exemplary implementation of
the match rules is described here. As should be appreciated,
configurations may use approaches other than match rules,
and match rules may be implemented differently.

[0061] The exemplary match-rule model is table-driven.
This has the advantage of readability, e.g., when setting a set
of options slightly differently across a large number of
aliases.

[0062] A basic Match Rule has the following format:
“ID” : ’ <numeric label>
[“Followed-by” : > (“break™ | “jump-to” <ID>)]
[““Expr” : * <expression>]
[““MatchSet” : © <MatchSet>]
[““MatchSetOrder” : * (“first”|“last”)]
<flagName> *:” <flagValue> {*,” <flagName> *:’
<flagValue>}*
[0063] Each Match Rule may have a Match Rule ID that

can be used to order rules and to provide jump targets.

[0064] Each Match Rule may be part of a Match Rule
Group. A Match Rule Group is a collection of Match Rules,
with first-match-wins semantics. The subscriber configura-
tion has at least one collection of Match Rule Groups. In
some cases two such collections may be used, one for
processing on receipt of the request and the second for
processing on the receipt of the response. The two-collection
configuration may only be needed at nodes, generally
referred to as parent nodes, that contact the origin server.

[0065] Each Match Rule Group may be processed in a
specified order (e.g., driven off of the numeric Match Rule
Group ID in ascending order)—when a match is found, the
processing associated with that match is performed, and by
default processing then jumps to the start of the next Match
Rule Group. Processing can jump to a distinct Match Rule,
or processing can be halted (break) using the Followed-by
element. If no Followed-by is specified, processing moves to
the first element of the next Match Rule Group (if present).

[0066] An exemplary Match Rule Group may look like:

“Match Rule Group ID” : <numeric label>
“Match Rules™ :

<Match Rule>

~——

<Match Rule>

HR

and the total collection may look like:

“Match Rule Collection” : (“request”|“response”)
“Match Rule Groups™ :

{

“Match Rule Group ID” : <numeric label>
“Match Rules™ :

<Match Rule>

~——

Oct. 24,2019

-continued

<Match Rule>

b

[0067] Each Match Rule may specify one or more actions
(e.g., setting cache expiration, cache key manipulation,
content/header processing modes, etc.) directly. An action
may involve setting one or more flags.

[0068] Ifa collection of Match Rules wants to set the same
set of flags to the same set of values, then rather than
repeating them within a series of Match Rules, the flag
setting can be encapsulated within a Match Set. This is
essentially the same as a Match Rule Group, but one that is
not processed within the normal flow of processing; rather it
is ‘called by reference’ when named within an executed
Match Rule. If both a Match Set and explicitflagNames are
provided within a single Match Rule, the Match Set is run
first and then the explicitflagNames. This order can be
altered via the optional MatchSetOrder which can specify
that the MatchSet is either run first (the default), or last (i.e.,
after the explicitflagNames).

[0069] In order for a Match Rule to be matched, the
expression has to evaluate to true in the Expr: element. If no
‘Expr’ is specified, it implicitly evaluates to true, and hence
such a Match Rule is always said to match when reached.
Matching means that the specified flag settings (explicit as
well as via any MatchSet) are made, and processing for this
Match Rule Group completes. Processing by default moves
to the start of the next Match Rule Group, unless a Followed-
by is specified in which case processing either completes
completely (on break) or jumps to the Match Rule with a
given ID (on jump-to <ID>).

[0070] Operators within the expression (all operators may
be inverted by prepending “!”’; for convenience, is a

iy

synonym for “!==") are:
== Equality test
%= Equality test (case insensitive)
*= Glob test
%*= Glob test (case insensitive)
= Set match (match against list of strings or expressions)
Yott= Set match (case insensitive)
&& Logical AND
I Logical OR
0O Grouping

[0071] The following variables are available in a present
implementation:
[0072] Request-Related Variables:

$req.<name> Request header <name>.

$uri URI of request (as received).

$full_uri Full URI of request (derived).

$scheme Scheme.

$authority Authority.

$user User portion of authority.

$password Password portion of authority.

$host Host (usually the same as $req.host).

$port Port of request

$path Request path (no query string).

$pathquery Request path (with query string, equivalent

to $path$queryq).

US 2019/0327140 A1
-continued
$query Query string.
$queryq Query string with leading “?”.
$fragment Fragment.
$client_ip Effective client IP address.
$hop__ip IP address of previous hop.
[0073] Response-Related Variables:

$resp.<name> Response header <name>.

$status Response HTTP status.
[0074] Other Variables
$var.<name> A variable set on the request by an earlier rule.

Local configuration variable.

Result of Nth (starting from 0) map, counting
from left to right in expression.

“$map” is the same as “$map0”. <name> selects
the value from the map. See ‘Maps’ below.

$cfgvar.<name>
$map[<N>].<name>

[0075] Transforms:
[0076] An extended syntax for variables allows named
transforms to be applied. For example:

${<name>[:<xfrm>[(<args>)] [...]]}
or

${“<string>"[:<xfrm>[(<args>)][...]]}

${ <string>[:<xfrm>[(<args>)][...]]}

[0077] Some transforms include:

base64encode Base 64 encode

base64decode Base 64 decode

urlencode(<arg>) URL encode (arg decides “+” handling)

urldecode(<arg>) and decode

hash(<args>) Cryptographic hash, as defined
by the arguments, which might
include the type of hash, the
secret or a reference to a
secret, etc.

rex(<args™>) Search/replace using rex.

lowercase(<arg>) convert any text in the presented
string to lower case

uppercase(<arg>) convert any text in the presented

string to upper case

The pselect transform takes two
or three arguments: a percentage
value <p> (a floating point
number), a string <s>, and an
optional string <ns>. It
evaluates to the string <s> <p>
percent of the time, else, <ns>
or an empty string if <ns> is
not provided. The <s> and <ns>
strings are themselves subject
to interpolation.

pselect(<p>, <s> [,<us>])

[0078] Transforms are applied in the order given.

[0079] In some embodiments it may be possible to set
fields in rules to the value of an interpolated string.

[0080] The pselect transform (with arguments (<p>, <s>
[,<ns>])) may be used, e.g., to distribute requests differently

(e.g., to locations specified by string “s” or by string “ns”
based on the value of p. This may be used, e.g., to move a

Oct. 24,2019

specified percentage of a library to a different server, in a
consistent fashion, in the cases where the server normally
responsible for the content is reporting that it is overloaded.
[0081] Maps
[0082] The expression syntax may also allow for a refer-
ence to a Map of data. These can be considered function
calls; they return a Boolean value which is true when a
match is found within the map and are able to set additional
values that can then be referenced by name from the calling
layer—the names of these ‘returned’ values are part of the
definition of the map.
[0083] The map() call takes a list of one or more map
names, and a string value to be passed into each as the key
to be looked up. This string (key) argument may be a simple
value (e.g., $host) or the result of an expression—in par-
ticular, it may be the result of another map lookup. The map(
) call returns a Boolean. An alternate valuemap() call returns
the actual value list from the matched entry.
[0084] There are several types of maps:

[0085] regular maps which perform exact lookups of the

presented key and as such can be implemented as a
direct key lookup, e.g., hashtable (discrete);

[0086] glob maps where the keys listed are shell glob
patterns;
[0087] regexp maps (same as glob maps, except a

regular expression is used instead of a glob);
[0088] int-range maps where the key is interpreted as an
integer on entry into the map, and where the key can be
a single integer or integer range (<lo>-<hi>)—if the
provided key string is not interpretable as an integer,
the key looked up will be a NaN value; and
[0089] ip-range maps which are similar to integer (int-
range) maps, except that the key string is interpreted as
an [P address (range)—this preferably supports both
IPv4 and IPv6 (using any of the standard formats) and
ranges can be specified as <lo>-<hi> or <addr>/<mask-
bits>.
[0090] A glob map or regexp map needs to be searched
entry by entry until a match is found. As usual, a first-match-
wins approach is taken. Since ranges could overlap (either
with other ranges or with discrete values), the smallest range
(or lowest value of <lo>) wins.
[0091] This gives:

“MatchMap”
“Name” : > <match map name>
[““ValueNames” : * <name>[, <name>]*]
[““MatchType” : * (“discrete”|*glob”|*ip-
range”|“int-range”)]
[““DefaultValue” : * (“error(“<errText>")" |
<valueSpec>)]
“Data”

{* <keySpec> *,” <valueSpec> ‘}"

keySpec == “Key” : * <key> | ““Keys” : { °
<key> {*,” <key>}+ ‘}’

valueSpec == “*Value” : > <value> |
“Values” : {* <value> {*,” <value>}* *}* |
“valuemap”(” <mapNameList> ©,” <arg> ©)’

[0092] The list of names specified in the ValueNames
attribute are the names that can then be used in the $map
[$N].<name> variable in the calling context. Such names are
only available in the direct caller.

[0093] The list of values need not be the same length in
each row of a given table; any ‘missing’ values are set to

US 2019/0327140 Al

null/undef in the calling context, and are assumed to be the
relevant number of trailing elements of any ValueNames list.
null/undef can be placed within the values list to ‘skip’
unneeded entries.

[0094] Finally, the ‘DefaultValue’ provides an option to
return a set of values on any call that does not match a
keySpec. Note that this means that this MatchMap will
always match.

Examples

[0095] As a first example, consider a desire to set some
authentication modes for particular paths on a couple of
properties. In match rules, this ends up being (assuming the
alias for ID X is id<X>.com):

1. “expr’” : “$host” == “id12.com” && “$path” *= “/image/*”
“token” : {
“id” = <appropriate id>,
“action” = “error”,

2. “expr’” : “$host” == “id12.com” && “$path” *= “/doc/*”
“geo” : {
“idlist” = “US”,
“type” = “whitelist”,
“action” = “error”,

3. “expr” : “$host” == “id22.com”
“token” : {
“id” = <appropriate__id>,
“action” = “redirect”,
“url” = “/sorry”,
}
4. “expr” : true
“token” : {
“id” = <appropriate_id>,
“action” = “error”,

}

[0096] This example has only four simple rules and there
is only one redundant test (the second test of host against
“id12.com”). However, those of ordinary skill in the art will
realize and appreciate, upon reading this description, that
this approach would be useful in an extended case (e.g., with
100 aliases, 90 of which shared the same authentication
requirements as “id123.com” and the other 10 of which need
what “id12.com” has). One way to implement the extended
example would be to utilize MatchSets:

“MatchSet” : {
“Name™: “authl”
“MatchRule”: {
“Expr’: “$path” *= “/image/*”

“Token™: {
“id” = <tokenID>
“Action” = “error”

“MatchRule” : {
“Expr” : “$path” *= “/doc/*”

“Geo” : {

“id” = <geoID>
“Type” = “whitelist”
“Action” = “error”

}

“MatchSet” : {
“Name” : “auth2”
“MatchRule” :

Oct. 24,2019

-continued

“Expr”: “true”

“Token™ : {
“id” = <tokenID>
“Action” = “redirect”
“URL” = “/sorry”
}

}

“MatchSet” : {
“Name” : “auth3”
“MatchRule” : {
“Expr” : “$path” *= “/secure/*”

“Token™ : {
“id” = <tokenID>
“Action” = “error”
¥
¥
¥
[0097] We may then have a map like:
“MatchMap” :
“Name” : “MatchSetsByAlias”
“ValueNames” : “MatchSetNames”
“DefaultValue” : “auth3”
“Data” :
{
“Key” : “starwars.com”
“Values” : { “authl, auth3” }
b
{
“Key” : “alien.com”
“Values” : { “authl, auth3” }
b
{
“Key” : “bladerunner.com”
“Values” : { “authl, auth3” }
b
{
“Key” : “marypoppins.com”
“Values” : { “auth2, auth3” }
b
{
“Key” : “musicman.com”
“Values” : { “auth2, auth3” }
b
{
“Key” : “myfairlady.com”
“Values” : { “auth2, auth3” }
¥
[0098] And finally a rule:
“MatchRule” :
“ID” : 1
“Expr” : “map”(“MatchSetsByAlias”, “$host™)
“MatchSet” : “$map.MatchSetNames™
[0099] Here, the map operator matches the given value in

the given map. If the map has a default value, or if there’s
a match in the map, the result is true and the rule is executed.
As a side effect, it also makes available the pseudo-variable
$map, from which values from the map can be selected
using “.<ValueName>".

[0100] This concept of named match sets (i.e., reusable
sets of rules which can be referenced by name) can be
efficiently extended to apply to a large number of aliases.

US 2019/0327140 Al Oct. 24,2019

[0101] An issue with the above is constant repetition of [0105] MatchMap may be extended as follows:
“authl, auth3” or “auth2, auth3” in the map, which leads to:

“MatchMap” :

“MatchMap” : “Name” : “StarWarsQSH”
“Name” : “MatchSetsByAlias” “ValueNames™ : “enabled”
“ValueNames” : “MatchSetNames” “DefaultValue” : “true”
“DefaultValue” : “auth3” “MatchMap” :

“Data” : “Name”: “AlienQSH”

{ “DefaultValue” : “false”
“Keys” : { “starwars.com”, “alien.com”, “ValueNames” : “enabled”
“bladerunner.com”, <...> }, “MapType” : “glob”

“Values” : { “authl, auth3” } “Data” :
b {
{ “Keys” : { “marypoppins.com” “Key” : “/nostromo/*”,
oot S ’ “Value” : “true”
‘musicman.com”,
“myfairlady.com”, <..> }, . "
“Values” : { “auth2, auth3” } MatchMap™ :
} “Name” : “BladeRunnerQSH”

“DefaultValue” : “false”
“ValueNames” : “enabled”

[0102] This concept may be further extended to allow g[;;;Type * “glob
matching of multiple maps in a single “map” call. For { '
example, to add a host ID to the above, we have: “Key” : “/pkdick-bio/*”,
“Value” : “true”
I
“MatchMap” : {
“Name” : “IDsByAlias” “Key” : “/images/*”,
“ValueNames” : “ID” “Value” : “true”
“DefaultValue” : error(“Missing alias!”)
“Data” : “MatchMap™ :
{ “Key” : “starwars.com”, “Value” : “117 “Name” : “MusicManQSH”

“DefaultValue” : “false”

% “Key” : “alien.com”, “Value” : “10” “ValueNames” : “enabled”
“ManType” - “clob”
{ “Key” : “bladerunner.com”, “Value” : “9” “D;[;”y.pe gl
| :
{ “Key” : “marypoppins.com”, “Value” : ©12” { . .
¥ “Key” : “/mwilson-bio/*”,
{ “Key” : “musicman.com”, “Value” : “13” ! “Value® : “true”
1 ,
{ “Key” : “myfairlady.com”, “Value” : “14” {
1 “Key” : “/images/*”,
“Value” : “true”
“MatchRule” :
“ID: 1 “MatchMap” :
“Expr” : “map”(“IDSByAlias”, “Name” : “MyFairLadyQSH”
“MatchSetsByAlias™, “$host™) “DefaultValue” : “false”
“HostID” : “$mapl.ID” “ValueNames™ : “enabled”
“MatchSet” : “$map2.MatchSetNames™ “MapType” : “glob™
“Data” :
. . {
[0103] A Query String Handling mode (QSHMode) may “Key” : “/cockney-primer/*”,
be used to extend the MatchMap syntax and semantics. In “Value” : “true”
this example, the rules (not in matchrule/matchmap syntax) ¥

are as follows (where the default is “off™):

[0106] This provides the overall QSHMode map for this

starwars.com property:
* on
alien.com
/nostromo/* on - -
bladerunner.com MatchMap™ : .
/pkdick-bio/* on “Name” : “QSHModeByAlias”
/images/* on “DefaultValue” : “false”
musicman.com “Data”“: L .
/mwilson-bio/* on { “Key : Stéj.’rwar‘ss.com s . .
/images/* on ValueMap” : { “StarWarsQSH”, “$path” }
myfairlady.com S .
Jeockney-primer/* on { “Key” : “alien.com ,
“ValueMap” : { “AlienQSH”, “$path” }
I3
« . - { “Key” : “bladerunner.com”,
[0104] Note that “marypoppins.com,” is left out of the “ValueMap” : { “BladeRunnerQSH”, “Spath” }
rules because, in this example, none of the paths associated I

with that property require QSHMode.

US 2019/0327140 Al

-continued

{ “Key” : “musicman.com”,

“ValueMap” : { “MusicManQSH”, “$path” } },
{ “Key” : “myfairlady.com”,

“ValueMap” : { “MyFairLadyQSH”, “$path” }

[0107] So the rule for this property is now:

“MatchRule” :

“ID”:1

“Expr” : “map”(“IDSByAlias”,
“MatchSetsByAlias”,
“QSHModeByAlias™, “$host™)

“HostID” : “$map1.ID”

“MatchSet” : “$map2.MatchSetNames™

“QSHMOde” : “$map3.enabled”

[0108] This can be equivalently written:

“MatchRule” :
“ID” : 1
“HostID” : “map”(“IDSByAlias”, “$host”)”.ID”
“MatchSet” : “map”(“MatchSetsByAlias”,
“$host”)“.MatchSetNames”
“QSHMOde” : “map”(“QSHModeByAlias™,
“$host”)“.enabled”

Real Time

[0109] Those of ordinary skill in the art will realize and
understand, upon reading this description, that, as used
herein, the term “real time” means near real time or suffi-
ciently real time. It should be appreciated that there are
inherent delays built in to the CDN (e.g., based on network
traffic and distances), and these delays may cause delays in
data reaching various components. Inherent delays in the
system do not change the real-time nature of the data. In
some cases, the term ‘“real-time data” may refer to data
obtained in sufficient time to make the data useful in
providing feedback.

[0110] Although the term “real time” has been used here,
it should be appreciated that the system is not limited by this
term or by how much time is actually taken for data to have
an effect on control information. In some cases, real time
computation may refer to an online computation, i.e., a
computation that produces its answer(s) as data arrive, and
generally keeps up with continuously arriving data. The term
“online” computation is compared to an “offline” or “batch”
computation.

Computing

[0111] The services, mechanisms, operations and acts
shown and described above are implemented, at least in part,
by software running on one or more computers of a CDN.

[0112] Programs that implement such methods (as well as
other types of data) may be stored and transmitted using a
variety of media (e.g., computer readable media) in a
number of manners. Hard-wired circuitry or custom hard-
ware may be used in place of, or in combination with, some
or all of the software instructions that can implement the

Oct. 24,2019

processes of various embodiments. Thus, various combina-
tions of hardware and software may be used instead of
software only.

[0113] One of ordinary skill in the art will readily appre-
ciate and understand, upon reading this description, that the
various processes described herein may be implemented by,
e.g., appropriately programmed general purpose computers,
special purpose computers and computing devices. One or
more such computers or computing devices may be referred
to as a computer system.

[0114] FIG. 5is a schematic diagram of a computer system
500 upon which embodiments of the present disclosure may
be implemented and carried out.

[0115] According to the present example, the computer
system 500 may include a bus 502 (i.e., interconnect), one
or more processors 504, a main memory 506, read-only
memory 508, removable storage media 510, mass storage
512, and one or more communications ports 514. As should
be appreciated, components such as removable storage
media are optional and are not necessary in all systems.
Communication port 514 may be connected to one or more
networks by way of which the computer system 500 may
receive and/or transmit data.

[0116] As used herein, a “processor” means one or more
microprocessors, central processing units (CPUs), comput-
ing devices, microcontrollers, digital signal processors, or
like devices or any combination thereof, regardless of their
architecture. An apparatus that performs a process can
include, e.g., a processor and those devices such as input
devices and output devices that are appropriate to perform
the process.

[0117] Processor(s) 504 can be any known processor, such
as, but not limited to, an Intel® Itanium® or Itanium 2®
processor(s), AMD® Opteron® or Athlon MP® processor
(s), or Motorola® lines of processors, and the like. Com-
munications port(s) 514 can be any of an RS-232 port for use
with a modem based dial-up connection, a 10/100 Ethernet
port, a Gigabit port using copper or fiber, or a USB port, and
the like. Communications port(s) 514 may be chosen
depending on a network such as a Local Area Network
(LAN), a Wide Area Network (WAN), a CDN, or any
network to which the computer system 500 connects. The
computer system 500 may be in communication with periph-
eral devices (e.g., display screen 516, input device(s) 518)
via Input/Output (I/O) port 520.

[0118] Main memory 506 can be Random Access Memory
(RAM), or any other dynamic storage device(s) commonly
known in the art. Read-only memory 508 can be any static
storage device(s) such as Programmable Read-Only
Memory (PROM) chips for storing static information such
as instructions for processor 504. Mass storage 512 can be
used to store information and instructions. For example,
hard disks such as the Adaptec® family of Small Computer
Serial Interface (SCSI) drives, an optical disc, an array of
disks such as Redundant Array of Independent Disks
(RAID), such as the Adaptec® family of RAID drives, or
any other mass storage devices may be used.

[0119] Bus 502 communicatively couples processor(s)
504 with the other memory, storage, and communications
blocks. Bus 502 can be a PCI/PCI-X, SCSI, a Universal
Serial Bus (USB) based system bus (or other) depending on
the storage devices used, and the like. Removable storage
media 510 can be any kind of external hard-drives, floppy
drives, IOMEGA® Zip Drives, Compact Disc-Read Only

US 2019/0327140 Al

Memory (CD-ROM), Compact Disc-Re-Writable (CD-
RW), Digital Versatile Disk-Read Only Memory (DVD-
ROM), etc.

[0120] Embodiments herein may be provided as one or
more computer program products, which may include a
machine-readable medium having stored thereon instruc-
tions, which may be used to program a computer (or other
electronic devices) to perform a process. As used herein, the
term “machine-readable medium” refers to any medium, a
plurality of the same, or a combination of different media,
which participate in providing data (e.g., instructions, data
structures) which may be read by a computer, a processor or
a like device. Such a medium may take many forms,
including but not limited to, non-volatile media, volatile
media, and transmission media. Non-volatile media include,
for example, optical or magnetic disks and other persistent
memory. Volatile media include dynamic random access
memory, which typically constitutes the main memory of the
computer. Transmission media include coaxial cables, cop-
per wire and fiber optics, including the wires that comprise
a system bus coupled to the processor. Transmission media
may include or convey acoustic waves, light waves and
electromagnetic emissions, such as those generated during
radio frequency (RF) and infrared (IR) data communica-
tions.

[0121] The machine-readable medium may include, but is
not limited to, floppy diskettes, optical discs, CD-ROMs,
magneto-optical disks, ROMs, RAMs, erasable program-
mable read-only memories (EPROMs), electrically erasable
programmable read-only memories (EEPROMs), magnetic
or optical cards, flash memory, or other type of media/
machine-readable medium suitable for storing electronic
instructions. Moreover, embodiments herein may also be
downloaded as a computer program product, wherein the
program may be transferred from a remote computer to a
requesting computer by way of data signals embodied in a
carrier wave or other propagation medium via a communi-
cation link (e.g., modem or network connection).

[0122] Various forms of computer readable media may be
involved in carrying data (e.g. sequences of instructions) to
a processor. For example, data may be (i) delivered from
RAM to a processor; (ii) carried over a wireless transmission
medium; (iii) formatted and/or transmitted according to
numerous formats, standards or protocols; and/or (iv)
encrypted in any of a variety of ways well known in the art.
[0123] A computer-readable medium can store (in any
appropriate format) those program elements that are appro-
priate to perform the methods.

[0124] As shown, main memory 506 is encoded with
application(s) 522 that supports the functionality discussed
herein (the application 522 may be an application that
provides some or all of the functionality of the CD services
described herein, including the client application). Applica-
tion(s) 522 (and/or other resources as described herein) can
be embodied as software code such as data and/or logic
instructions (e.g., code stored in the memory or on another
computer readable medium such as a disk) that supports
processing functionality according to different embodiments
described herein.

[0125] During operation of one embodiment, processor(s)
504 accesses main memory 506 via the use of bus 502 in
order to launch, run, execute, interpret or otherwise perform
the logic instructions of the application(s) 522. Execution of
application(s) 522 produces processing functionality of the

Oct. 24,2019

service related to the application(s). In other words, the
process(es) 524 represent one or more portions of the
application(s) 522 performing within or upon the processor
(s) 504 in the computer system 500.

[0126] It should be noted that, in addition to the process
(es) 524 that carries (carry) out operations as discussed
herein, other embodiments herein include the application
522 itself (i.e., the un-executed or non-performing logic
instructions and/or data). The application 522 may be stored
on a computer readable medium (e.g., a repository) such as
a disk or in an optical medium. According to other embodi-
ments, the application 522 can also be stored in a memory
type system such as in firmware, read only memory (ROM),
or, as in this example, as executable code within the main
memory 506 (e.g., within Random Access Memory or
RAM). For example, application 522 may also be stored in
removable storage media 510, read-only memory 508 and/or
mass storage device 512.

[0127] Those skilled in the art will understand that the
computer system 500 can include other processes and/or
software and hardware components, such as an operating
system that controls allocation and use of hardware
resources.

[0128] As discussed herein, embodiments of the present
invention include various steps or operations. A variety of
these steps may be performed by hardware components or
may be embodied in machine-executable instructions, which
may be used to cause a general-purpose or special-purpose
processor programmed with the instructions to perform the
operations. Alternatively, the steps may be performed by a
combination of hardware, software, and/or firmware. The
term “module” refers to a self-contained functional compo-
nent, which can include hardware, software, firmware or any
combination thereof.

[0129] One of ordinary skill in the art will readily appre-
ciate and understand, upon reading this description, that
embodiments of an apparatus may include a computer/
computing device operable to perform some (but not nec-
essarily all) of the described process.

[0130] Embodiments of a computer-readable medium
storing a program or data structure include a computer-
readable medium storing a program that, when executed, can
cause a processor to perform some (but not necessarily all)
of the described process.

[0131] Where a process is described herein, those of
ordinary skill in the art will appreciate that the process may
operate without any user intervention. In another embodi-
ment, the process includes some human intervention (e.g., a
step is performed by or with the assistance of a human).

Discussion

[0132] Thus are described systems, methods, and devices
supporting subscriber configuration ingestion in a content
delivery network.

[0133] As described, when a subscriber makes a change to
their configuration, that change will be ingested into the
CDN in real time.

[0134] Those of ordinary skill in the art will appreciate
and understand, upon reading this description, that embodi-
ments hereof distribute risk, and that the distributed and
highly scalable design guarantees high-availability, no data
lose and “near real-time” distribution and consumption of
changes into the CDN network.

US 2019/0327140 Al

CONCLUSION

[0135] As used herein, including in the claims, the phrase
“at least some” means “one or more,” and includes the case
of only one. Thus, e.g., the phrase “at least some services”
means “one or more services”, and includes the case of one
service.

[0136] As used herein, including in the claims, the phrase
“based on” means “based in part on” or “based, at least in
part, on,” and is not exclusive. Thus, e.g., the phrase “based
on factor X means “based in part on factor X or “based,
at least in part, on factor X.” Unless specifically stated by
use of the word “only”, the phrase “based on X does not
mean “based only on X.”

[0137] As used herein, including in the claims, the phrase
“using” means “using at least,” and is not exclusive. Thus,
e.g., the phrase “using X” means “using at least X.” Unless
specifically stated by use of the word “only”, the phrase
“using X” does not mean “using only X.”

[0138] In general, as used herein, including in the claims,
unless the word “only” is specifically used in a phrase, it
should not be read into that phrase.

[0139] As used herein, including in the claims, the phrase
“distinct” means “at least partially distinct.” Unless specifi-
cally stated, distinct does not mean fully distinct. Thus, e.g.,
the phrase, “X is distinct from Y means that “X is at least
partially distinct from Y,” and does not mean that “X is fully
distinct from Y.” Thus, as used herein, including in the
claims, the phrase “X is distinct from Y” means that X
differs from Y in at least some way.

[0140] As used herein, including in the claims, a list may
include only one item, and, unless otherwise stated, a list of
multiple items need not be ordered in any particular manner.
A list may include duplicate items. For example, as used
herein, the phrase “a list of CDN services” may include one
or more CDN services.

[0141] It should be appreciated that the words “first” and
“second” in the description and claims are used to distin-
guish or identify, and not to show a serial or numerical
limitation. Similarly, the use of letter or numerical labels
(such as “(a)”, “(b)”, or (1), (ii), . . . , and the like) are used
to help distinguish and/or identify, and not to show any serial
or numerical limitation or ordering.

[0142] While various embodiments have been described
herein, other manners are contemplated.

[0143] As used in this description, the term “portion”
means some or all. So, for example, “A portion of X” may
include some of “X” or all of “X”. In the context of a
conversation, the term “portion” means some or all of the
conversation.

[0144] Throughout the description and claims, the terms
“comprise”, “including”, “having”, and “contain” and their
variations should be understood as meaning “including but
not limited to”, and are not intended to exclude other
components unless specifically so stated.

[0145] It will be appreciated that variations to the embodi-
ments of the invention can be made while still falling within
the scope of the invention. Alternative features serving the
same, equivalent or similar purpose can replace features
disclosed in the specification, unless stated otherwise. Thus,
unless stated otherwise, each feature disclosed represents
one example of a generic series of equivalent or similar
features.

[0146] Use of exemplary language, such as “for instance”,
“such as”, “for example” (“e.g.,”) and the like, is merely

Oct. 24,2019

intended to better illustrate the invention and does not
indicate a limitation on the scope of the invention unless
specifically so claimed.

[0147] No ordering is implied by any of the labeled boxes
in any of the flow diagrams unless specifically shown and
stated. When disconnected boxes are shown in a diagram,
the activities associated with those boxes may be performed
in any order, including fully or partially in parallel.

[0148] While the invention has been described in connec-
tion with what is presently considered to be the most
practical and preferred embodiments, it is to be understood
that the invention is not to be limited to the disclosed
embodiment, but on the contrary, is intended to cover
various modifications and equivalent arrangements included
within the spirit and scope of the appended claims.

We claim:

1. A computer-implemented method operable on a device
in a content delivery (CD) network, wherein said CD
network (CDN) distributes content on behalf of one or more
subscribers, the method comprising:

(A) receiving configuration information from a particular
subscriber of said one or more subscribers, said con-
figuration information relating to at least one property
of said particular subscriber;

(B) in response to said receiving, generating subscriber-
specific platform configuration information for said at
least one property of said particular subscriber;

(C) storing said subscriber-specific platform configuration
information in platform configuration storage;

(D) invalidating prior platform configuration information
associated with said particular subscriber; and

(E) in response to a request from at least one CDN
component for platform configuration information
associated with said particular subscriber,

(E)(1) obtaining said subscriber-specific platform con-
figuration information from said platform configu-
ration storage; and

(E)(2) providing said subscriber-specific platform con-
figuration information to said at least one CDN
component.

2. The method of claim 1, wherein said receiving in (A)
was based on a message obtained from a messaging broker,
said message indicating a need to create new subscriber-
specific platform configuration information for said particu-
lar subscriber.

3. The method of claim 2, wherein said configuration
information is received in (A) from distributed database
distinct from said messaging broker.

4. The method of claim 2, wherein said messaging broker
obtained said message from a configuration interface based
on an action by said particular subscriber.

5. The method of claim 4, wherein said action by said
particular subscriber comprises: creating said configuration
information.

6. The method of claim 5, wherein said creating comprises
modifying existing configuration information.

7. The method of claim 1, wherein said request from said
CDN component in (E) was based on said CDN component
determining that said prior platform configuration informa-
tion associated with said particular subscriber had been
invalidated.

8. The method of claim 1, wherein said providing in
(E)(2) is performed for multiple distinct CDN components.

US 2019/0327140 Al

9. The method of claim 1, wherein said at least one CDN
component provides CD services selected from the group
comprising: delivery services, caching services, streaming
services, rendezvous services, collector services, object ser-
vices, compute services, fill services, origin services, storage
services, control services, reduction services, distribution
services, monitoring services, and reporting services.

10. The method of claim 9, wherein said at least one CDN
component comprises a delivery server.

11. The method of claim 10, wherein, after said providing
in (E)(2), said delivery server customizes said subscriber-
specific platform configuration information to form server-
specific platform configuration information for said particu-
lar subscriber.

12. The method of claim 11, wherein, after said providing
in (E)(2), said delivery server serves content on behalf of
said particular subscriber based on said server-specific plat-
form configuration information for said particular sub-
scriber.

13. The method of claim 12, wherein said server-specific
platform configuration information for said particular sub-
scriber is formed using said subscriber-specific platform
configuration information, and based on capabilities of said
server.

14. The method of claim 1, wherein said configuration
information comprises at least one match rule.

15. The method of claim 14, wherein the at least one
match rule is table driven.

16. The method of claim 1, wherein said configuration
information comprises at least one match rule group, each
said group comprising a collection of one or more match
rules.

17. The method of claim 16, wherein a match rule group
comprises a collection of one or more match rules with
first-match-wins semantics.

18. The method of claim 16, wherein said at least one
match rule group comprises: a first collection of one or more
match rules for processing on receipt of a request and a
second collection of one or more match rules for processing
on receipt of a response.

19. The method of claim 16, wherein the at least one
match rule group comprise multiple match rule groups, and
wherein said multiple match rule groups are processed in a
specified order.

20. The method of claim 19, wherein match rules may
have corresponding match rule IDs that can be used to order
rules and to provide jump targets.

21. The method of claim 14, wherein said at least one
match rule comprises at least one transform.

22. An article of manufacture comprising a computer-
readable medium having program instructions stored
thereon, the program instructions, operable on a device in a
content delivery (CD) network, wherein said CD network
(CDN) distributes content on behalf of one or more sub-
scribers, said instructions, when executed by a processor in
said CDN, cause said processor to:

(a) receive configuration information from a particular
subscriber of said one or more subscribers, said con-
figuration information relating to at least one property
of said particular subscriber;

(b) in response to said receiving, generate subscriber-
specific platform configuration information for said at
least one property of said particular subscriber;

Oct. 24,2019

(c) store said subscriber-specific platform configuration
information in platform configuration storage;

(d) invalidate prior platform configuration information
associated with said particular subscriber; and

(e) in response to a request from at least one CDN
component for platform configuration information
associated with said particular subscriber,

(e)(1) obtain said subscriber-specific platform configu-
ration information from said platform configuration
storage; and

(e)(2) provide said subscriber-specific platform con-
figuration information to said at least one CDN
component.

23. The article of manufacture of claim 22, wherein said
receiving in (A) was based on a message obtained from a
messaging broker, said message indicating a need to create
new subscriber-specific platform configuration information
for said particular subscriber.

24. The article of manufacture of claim 23, wherein said
configuration information is received in (a) from distributed
database distinct from said messaging broker.

25. The article of manufacture of claim 23, wherein said
messaging broker obtained said message from a configura-
tion interface based on an action by said particular sub-
scriber.

26. The article of manufacture of claim 22, wherein said
at least one CDN component provides CD services selected
from the group comprising: delivery services, caching ser-
vices, streaming services, rendezvous services, collector
services, object services, compute services, fill services,
origin services, storage services, control services, reduction
services, distribution services, monitoring services, and
reporting services.

27. The method of claim 22, wherein said configuration
information comprises at least one match rule.

28. The method of claim 27, wherein the at least one
match rule is table driven.

29. An device in a content delivery (CD) network,
wherein said CD network (CDN) distributes content on
behalf of one or more subscribers, said device constructed
and adapted to:

(a) receive configuration information from a particular
subscriber of said one or more subscribers, said con-
figuration information relating to at least one property
of said particular subscriber;

(b) in response to said receiving, generate subscriber-
specific platform configuration information for said at
least one property of said particular subscriber;

(c) store said subscriber-specific platform configuration
information in platform configuration storage;

(d) invalidate prior platform configuration information
associated with said particular subscriber; and

(e) in response to a request from at least one CDN
component for platform configuration information
associated with said particular subscriber,

(e)(1) obtain said subscriber-specific platform configu-
ration information from said platform configuration
storage; and

(e)(2) provide said subscriber-specific platform configu-
ration information to said at least one CDN component.

#* #* #* #* #*

