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EFFICIENT NON-INTERACTIVE PROOF SYSTEMS FOR BILINEAR GROUPS

Reference to Related Applications

[0001] The present application claims priority from U.S. Provisional Application No.
60/859,875, filed November 17, 2006, titled "METHOD AND APPARATUS FOR EFFI-
CIENT VERIFICATION OF ENCRYPTED DATA,” the entire contents of which is hereby
incorporated by reference

Government Interest Statement
[0002] This invention was made with Government support of Grant No. CNS0456717
awarded by the NSF. The Government has certain rights in this invention.

Background
Field of the Invention

[0003] The technical field generally relates to cryptographic systems and specifically

relates to non-interactive zero-knowledge proofs.

Description of the Related Art
[0004] Non-interactive zero-knowledge (NIZK) proofs allow a prover to create a proof of

membership of an NP language. The proof can be used to convince another that a statement
in question belongs to the language, but the zero-knowledge property ensures that the proof
will reveal nothing but the truth (or falsity) of the statement. NIZK proofs are fundamental
cryptographic primitives used tn many constructions, including CCAZ2-secure cryptosystems,
digital signatures, and various cryptographic protocols. Blum, Feldman, and Micali, in Non-
interactive zero-knowledge and its applications in the proceedings of STOC ’88, pp. 103-112,
1988, introduced the notion of NIZK in the common random string model and showed how
to construct computational NIZK proof systems for proving a single statement about any NP
language. The fist computational NIZK proof system for multiple theorems was constructed
by Blurn, De Santis, Micali, and Persiano in Noninteractive zero-knowledge in SIAM Journal
of Computation, 20(6), pp.1084-1118, 1991. Both papers based their NIZK systems on cer-
tain number-theoretic assumptions (specifically, the hardness of deciding quadratic residues

modulo a composite number). Feige, Lapidot, and Shamir in Multiple non-interactive zero
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knowledge proofs under general assumptions in SIAM Journal of Computing, 29(1), pp. 1-28,
1999, showed how to construct computational NIZK proofs based on a trapdoor permutation.
Much research has been devoted to the construction of efficient NIZK proofs, but until now
the only known method to do so has been the hidden random bits method wherein the prover
has a string of random bits, which are secret to the verifier. By revealing a subset of these bits,
and keeping the rest secret, the prover can convince the verifier of the truth of the statement
in question.

[0005] Unfortunately, these prior NIZK proofs are all very inefficient. While leading to
interesting theoretical results, such as the construction of public-key encryption secure against
chosen ciphertext attack, they have therefore not had any impact in practice.

[0006] It is worthwhile to identify the roots of the inefficiency in the above mentioned
NIZK proofs. One drawback is that they were designed with a general NP-complete language
in mind, e.g. Circuit Satisfiability. In practice, we want to prove statements such as “the
ciphertext ¢ encrypts a signature on the message m” or “the three commitments ¢, ¢;, ¢, con-
tain messages a. b, c so ¢ = ab”. An NP-reduction of even very simple statements like these
requires large circuits containing thousands of gates and the corresponding NIZK proofs be-

come very large.

Summary
[0007] These and other problems are solved by a system for efficient non-interactive

proof for bilinear groups. In one embodiment, commitment schemes are homomorphic and
equipped with a bilinear map. The variables in the equations to be proved are replace with
commitments to those variables. Since the commitment schemes are hiding, the equations
will no longer be valid. However, we can extract out the additional terms mtroduced by
the randomness of the commitments: An additional term is introduced by substituting the
commitments. Because the additional term is a value which makes the equation true, giving
it away preserves witness indistinguishability. If there are many terms, that means that these
terms are not unique, and we can randomize these terms so that the equation is still true, but
s0 that we effectively reduce to the case of there being a single term being given away with a
unique value.

[0008] In one embodiment, the proof system is used for fair key exchange.

{009] In one embodiment, the proof system is used in a mix-net.

[0010] In one embodiment, the proof system is used for verifiable encryption.
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Brief Description of the Figures

[0011] Figure 1 shows a first computer and a second computer provided to a computer
network for exchanging encrypted data.

[0012] Figure 2 is a flow diagram of key generation in a system for verifiable encryption.

[0013] Figure 3 is a flow diagram of encryption in the system of Figure 2.

[0014] Figure 4 is a flow diagram of generation of a verification proof of membership in
the system of Figure 2.

[0015] Figure 5 is a flow diagram of decryption in the system of Figure 2.

[0016] Figure 6 shows a mix-net system wherein a plurality of senders and a plurality of
mix-net servers are provided to a network.

[0017] Figure 7 is a flow diagram of key generation in the system of Figure 6.

[0018] Figure 8 is a flow diagram of encryption in the system of Figure 6.

[0019] Figure 9 is a flow diagram of re-randomization in the system of Figure 6.

{0020] Figure 10 is a flow diagram of an NIZK proof of membership in the system of
Figure 6.

[0021] Figure 11 is a flow diagram showing decryption in the system of Figure 6.

Description

1 Introduction

[0022] In the following disclosure, for notational convenience we will follow the tradition
of mathematics and vse additive notation. (Note: In the cryptographic literature it is more
common to use multiplicative notation for these groups, since the “discrete log problem” is
believed to be hard in these groups, which is also important to us. In the present setfing,
however, it is more convenient to use multiplicative notation to refer to the action of the
bilinear map for the binary operations in GG; and Ga.) We have a probabilistic polynomial time
algorithm G that takes a security parameter as input and outputs (n, Gy, Ga, G, e, P1, Ps)
where

¢ (31, G5, Gr are descriptions of cyclic groups of order n.

e The elements P, P, generate G; and G, respectively.

3
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e ¢ : (G, x (Gy is a non-degenerate bilinear map so e(P,, P») generates Gy and for all
a,b € 7, we have e(aP, bP,) = (P, Pa)2.

¢ We can efficiently compute group operations, compute the bilinear map and decide

membership.

[0022] In this disclosure, we develop a general set of highly efficient techniques for prov-
ing statements involving bilinear groups. First, we formulate the constructions in terms of
modules over commutative rings with an associated bilinear map. This framework captures
bilinear groups with cryptographic significance -- for both supersingular and ordinary elliptic
curves, for groups of both prime and composite order. Second, we consider mathematical
operations that can take place in the context of a bilinear group - addition in G, and G,
scalar point-multiplication, addition or multiplication of scalars, and use of the bilinear map.
We also allow both group elements and exponents to be “unknowns” in the statements to be
proven.

[0023] With the level of generality heréin, for example it would be easy to write down
a short statement, using the operations above, that encodes “c is an encryption of the value
committed to in d under the product of the two keys committed to in @ and " where the
encryptions and commitments being referred to are existing cryptographic constructions based
on bilinear groups. Logical operations like AND and OR are also easy to encode into the
framework herein using standard techniques in arithmetization.

[0024] The proof systems we build are non-interactive. This allows them to be used in
contexts where interaction is undesirable or impossible. We first build highly efficient witness-
indistinguishable proof systems, which are of independent interest. We then show how to
transform these into zero-knowledge proof systems. We also provide a detailed examination
of the efficiency of the constructions herein in various settings (depending on what type of
bilinear group is used).

[0025] The security of constructions arising from the framework herein can be based on
any of a variety of computational assumptions about bilinear groups (3 of which we discuss
in detail here). Thus, the techniques herein do not rely on any one assumption in particular.

[0026] Note that while we want to avoid an expensive NP-reduction, it is still desirable
to have a general way to express statements that arise in practice instead of having to con-
struct non-interactive proofs on an ad hoc basis. A useful observation in this context is that
many public-key cryptography protocols are based on finite abelian groups. If we can capture

statements that express relations between group elements, then we can express statements that

4
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come up in practice such as “the commitments c,, c;. ¢, contain messages so ¢ = ab” or “‘the
plaintext of ¢ is a signature on ”, as long as those commitment, encryption, and signature
schemes work over the same finite group. In the disclosure, we will therefore construct NITWI
“and NIZK proofs for group-dependent languages.

[0027] The next issue to address is where to find suitable group-dependent languages.
We will look at statements related to groups with a bilinear map, which have become
widely used in the destgn of cryptographic protocols. Not only have bilinear groups been
used to give new constructions of such cryptographic staples as public-key encryption, dig-
ital signatures, and key agreement {see [[DBS04] and the references therein), but bilinear
groups have enabled the first constructions achieving goals that had never been attained
before. The most notable of these is the Identity-Based Encryption scheme of Boneh and
Franklin [BF03] (see also [Wat(3}), and there are many others, such as Attribute-Based En-
cryption [SWO05, GPSW06], Searchable Public-Key Encryption [BCOP04, BSW06, BW06],
and One-time Double-Homomorphic Encryption [BGNOS5]. For an incomplete list of disclo-
sures (currently over 200) on the application of bilinear groups in cryptography, see [Bar06].

[0028] We consider equations over variables from &1, G and Z,, as shown in Table 1.
We consiruct efficient witness-indistinguishable proofs for the simultaneous satisfiability of
a set of such equations. The witness-indistinguishable proofs have perfect completeness and
there are two computationally indistinguishable types of common reference strings giving
respectively perfect soundness and perfect witness indistinguishability. 'We refer to Section
1.2 for precise definitions.

[0029] We also consider the question of non-interactive zero-knowledge. We show that we
can give zero-knowledge proofs for multi-scalar multiplication in G) or G and for guadratic
equations in Z,,. We can also give zero-knowledge proofs for pairing product equations with
ty = 1. When £ # 1 we can still give zero-knowledge proofs for P;. @y, ....P,, &, such
that iy = [, e(Pi, Q).

{0030] Example Embodiment 1: Subgroup decision. The present disclosure includes a
general description of the proof techniques as well as three example embodiments that illus-
trate the use of thesc techniques. The first example embediment is based on the composite
order groups introduced by Boneh, Goh and Nissim [BGNO5]. Here we generate a composite
order bilinear group (n. ;. G'r, ¢. P} where n = pg. We can write (i = (G}, x (44, where
(7). (74 are the subgroups of order p and g respectively. Boneh, Goh and Nissim introduce the

subgroup decision assumption, which says that it is hard to distinguish a random element from
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Variables: A7, ... A, G, V... Y. e€Ga, 2100 T Y1e - e €4
Footnote®,

Pairing product equation:

7 Tr

H@(-Ai:y:i) He?(’ B, - HH (X, V) =ty

i=1 i=1 i=1 j=1
for constants A; € G, B; € Gy, tr € Gr.vi; € Zn.
Multi-scalar multiplication equation in G :

m n'

Z%A +Zbé¥+zz vy =1,

=1 3=1
for constants A;, 7, € Gy and by, vi; € Zin. Footnote”.

Multi-scalar multiplication equation in (75:

ZaL}/IJrZT B; +ZZ iV = To.

i=1l j=1
for constants 53;, 7> € G and a;, v € Zn,.

Quadratic equation in Z,,:

Zay,+21b +ZZ iy = L

i=1 j=1

for constants a;, vi;,t € Zn.

“We list variables in Z, in two separate groups because we will treat them differently in the NIWI
proofs. If we wish to deal with only one group of variables in Z,, we can add equations in Z,, of the form
Tl = Y1, = Yo, CIC,

®With multiplicative notation, these equations would be mult-exponentiation cquations. We use additive
notation for (7 and (5, since this will be notationally convenient in the disclosure, but stress that the discrete
logarithm preblem will typically be hard in these groups.

Table 1: Equations over groups with bilinear map.

(7 from a random element from (7. In this disclosure, we will demonstrate that assuming the
hardness of the subgroup decision probiem there exists a witness-indistinguishable proof for

satisfiability of a set of equations from Table 1 in the subgroup G|, and the order p subgroup

6
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of G

[0031] Example Embodiment 2: The symmetric external Diffie-Hellman (SXDH) prob-
lem. Let (p, Gy, Ga, Gr,e. Py, P;) be a prime order bilinear group. The external Diffie-
Hellman (XDH) assumption is that the decisional Diffie-Hellman (DDH) problem is hard in
one of the groups G; or (G5 [Sco02, BBS04, BGAMMOS, GR0O4, Ver04]. The Symmetric XDH
assumption is that the DDH problem is hard in both G and G5. We will construct a witness-
indistinguishable proof for satisfiability of a set of equations of the form given in Figure 1
under the SXDH assumption.

[0032] Example Embodiment 3: The decisional linear assumption (DLIN) problem. The
DLIN for a prime order bilinear group (p. G, Gr,e, P) introduced by Boneh, Boyen and
Shacham [BBS04] states that given (aP, 3P. ra’P, sfP.tP) for random «t, 3,7, 5 € Z, it is
hard to tell whether ¢ = r + s or t is random. Assuming the hardness of the DLIN problem,

we show a witness-indistinguishable proof for satisfiability of the equations from Table 1.

00331 The example embodiments iflustrate some of the variety of ways bilinear groups can
be constructed. We can choose prime order groups or composite order groups, we can have
G = Gy and Gy # Gs, and we can make various cryptographic assumptions. These three
security assumptions have been used in the cryptographic literature to build useful protocols.

[0034] For these three example embodiments, the techniques presented here yield very
efficient witness-indistinguishable proofs. In particular, the cost in proof size of each extra
equation is constant and independent of the number of variables in the equation. The size of
the proofs, can be computed by adding the cost, measured in group elements from Gy or G,
of each variable and each equation listed in Figure 2. We refer to Section 6 for more detailed
tables.

Subgroup decision SXDH DLIN
Variable in G or G 1 2 3
Variable in Z,, or Zp | 2 3
Paring product equation 1 8 9
Multi-scalar multiplication in G; or G5 1 6 9
Quadratic equation in Z,, or Z, 1 4 6

Table 2: Number of group elements each variable or equation adds to the size of a NIWI
proof.

Early work on NIZK proofs demenstrated that NP-languages have non-interactive proofs,

however, did not yield efficient proofs. One cause for these proofs being inefficient in practice

7
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was the need for an expensive NP-reduction to e.g. Circuit Satisfiability. Another cause of
inefficiency was the reliance on the so-called hidden bits model, which even for small circuits
is inefficient. The systems and methods disclosed herein are significantly more general, and
vastly more efficient.

[0035] We achieve generality, at least in part, by viewing the groups (71, G5, G as mod-
ules over the ring Z,,. The ring Z,, itself can also be viewed as a Z,,-module. We therefore
look at the more general question of satisfiability of quadratic equations over Z,-modules
Ay. Ay, A7 with a bilinear map, see Section 2 for details. Since many bilinear groups with var-
ious cryptographic assumptions and various mathematical properties can be viewed as mod-
ules we are not bound to any particular bilinear group or any particular assumption.

[0036] Given modules Ay, A, Ar with a bilinear map, we construct new modules
Bi. By, By, also equipped with a bilinear map, and we map the elements in 4;, A;, Ar into
B;. B3, By. These modules will typically be larger modules, which give us space to hide the
elements of A, A;, Ar. More precisely, we devise commitment schemes that map variables
from A, As, Ar to the modules By, By, By. The commitment schemes are homomorphic
with respect to the module operations but also with respect to the bilinear map.

[0037} It is instructive to begin with an intuition-based explanation before showing the
more detailed explanation in Section 6 and related sections. Because the commitment schemes
herein are homomorphic and we equip them with a bilinear map, we can take the equation that
we are trying to prove, and replace the variables in the equations with commitments to those
variables. Since the commitment schemes are hiding, the equations will no longer be valid.
Intuitively, however, we can extract out the additional terms introduced by the randomness
of the commitments: if we give away these terms in the proof, then this would be a con-
vincing proof of the equation’s validity (again, because of the homomorphic properties). But,
giving away these terms might destroy witness indistinguishability. However, if there is an
“additional term” mtroduced by substituting the commitments. Then, because it would be the
unique value which makes the equation true, giving it away would preserve witness indistin-
guishability. If there are many terms, that means that these terms are not unique, and we can
randomize these terms so that the equation s sti]l true, but so that we effeciively reduce to the

case of there being a single term being given away with a unique value.

1.1 Applications

[0038] In one embodiment, we construct ring-signatures of sub-linear size using the NIWI
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proofs in the first example embodiment, which is based on the subgroup decision problem.
Groth and Lu [GL07] have used the NIWI and NIZK proofs from example embodiment 3 to
construct a NIZK proof for the correctness of a shuffle. Groth [Gro07] has used the NIWI
and NIZK proofs from example embodiment 3 to construct a fully anonymous group sig-
nature scheme. By attaching NIZK proofs to semantically secure public-key encryption we
get an efficient non-interactive verifiable cryptosystem. This can be used for optimistic fair

exchange, where two parties use a trusted but lazy third party to guarantee fairmess.

1.2 Non-interactive Witness-Indistinguishable Proofs

[0039] Let R be an efficiently computable ternary relation. For triplets {gk, >, w)} € R we
call gk the setup, r the statement and « the witness. Given some gk we let L be the language
includes statements in R. For a relation that ignores gk this is of course the standard definition
of an NP-language. We will, however, be more interested in the case where gk describes a
bilinear group.

[0040] A non-interactive proof system for a relation R with setup incudes four probabilis-
tic polynomial time algorithms: a setup algorithm G, a CRS generation algorithm K, a prover
P and a verifier V. The setup algorithm outputs a setup {gk, sk). In the present disclosure,
gk will be a description of a bilinear group. The setup algorithm may output some related
information sk, for instance the factorization of the group order. A cleaner case, however, is
when sk is just the empty string, meaning the protocol is built on top of the group without
knowledge of any trapdoors. The CRS generation algorithm takes (gk, sk) as input and pro-
duces a common reference string ¢. The prover takes as input (gk, o, z, w) and produces a
proof 7. The verifier takes as input {gk. o, 2, 7) and outputs 1 if the proof is acceptable and 0
if rejecting the proof. We call {G, I{, P, V') a non-interactive proof system for i with setup G
if it has the completeness and soundness properties described below.

[0041] WTih respect to perfect completeness, for adversaries A we have

Pr [(yl;:., sk) — G(1FY 0 = K(gh,sk); (x,w) « A(gk,o);m « Plgk.o,x, w):

Vigh.o,v.7) = 1if (gh.z.w) € R] ~1.
[0042] With respect to perfect soundness, for adversaries A we have
Pr {(gk, sk) — G(1%); 0 K(gk. sk): (v, m) « Algk, o) V(gk.o,x,7) =0if z ¢ L} = 1.

9
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[0043] In the standard definition of soundness defined above, the adversary ts successful
if creating a valid proof for + ¢ L. We will generalize this notion to what we will call co-
soundness, where the adversary is successful if creating a valid proof for x € L, for some
language L,, which may depend on gk and . Standard soundness is a special case of co-
soundness with L., being the complement of L.

[0044] With respect to perfect L.,-soundness, for adversaries .4 we have

Pr [ {gk, sk) «— G(1%);
o «— K(gk,sk);
(x,7) — Alghk.o): V{gh.o.x.w)=0ifz LCO] =1
[0045] In this disclosure, we will use a strong definition of witness indistinguishability.
We introduce a reference string simulator .S that generates a simulated CRS. We require that
the adversary cannot distinguish a real CRS from a simulated CRS. We also require that on a

simulated CRS it is perfectly indistinguishable which witness the prover used.
[0046] In other words, for non-uniform polynomial time adversaries .4 we have

Pr {(gh sk) — G(1%);0 — K(gk.sk) : Algk,o) = 1}

~ Pr [(gk, sk) — G(1"); ¢ «— Slgk, sk) : Algk.o) = 1]

and

Pr[ (gk, sk) « G(1%); 0 « S(gk. sk);
{z.wg,wy) — Algk,o):
T — Plgk.o. v wg) 1 Alw) = 1]
— Pr [ (gk, sk) = G(1): 0 — Slgk. sk);
(x,wy, un) — Algk,o);
K Plgk.a.ee) s Al) = 1),

where we require {gk, ©, wq), (gk, x, w1} € K.
[0047] Composable zero-knowledge is a strengthening of the usual notion of non-

interactive zero-knowledge. First, we require that an adversary cannot distinguish a real CRS

10
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from a stmulated CRS. Second, we require that the adversary, even when it gets access to the
secret simulation key 7, cannot distinguish real proofs on a simulated CRS from simulated
proofs.

[0048] In other words, there exists a polynomial time simulator (S;,5;) so for non-

uniform polynemial time adversaries .4 we have

Pr [(gk, sk) < G(1%);0 « K{gk, sk) : Algk, o) = 1]
~ Pr [(yk',sk:) — G(1%); (0.7} o« Sy{gk. sk) : Alghk, o) = 1}:

and

Pr|  (gh.sk) —G(Y):
(o.7) — Si{gk, sk);
{z,w) — Algk,o,7);7m — Plgk, 0.z, w): Aln) = 1}
=Pr [ (gk, sk) « G{1%);
(0:7) = Si(gk, sk);
(. w) — Algh,0,7);m — Salgh. 07,0} Alm) = 1],

where we require A outputs (gk, z,w) € R.

2 Modules with Bilinear Maps

[0049] Let (R.+.-,0.1) be a finite commutative ring. Recall that an R-module A is an
abelian group (A, +, 0) where the ring acts on the group such that

Vros € R¥z,y € A : (r+s)x=rotsx Ar(a+y) =roc+ry A r{sz) = (rs)r A lz =z

f0050] A cyclic group GG of order n can in a natural way be viewed as a Z,-module. We
will observe that the equations in Table 1 can be viewed as equations over Z,-modules with a
bilinear map. To generalize completely, let K be a finite commutative ring and let A;. A, Ap

be finite R-modules with a bilinear map [ : A; x A, — Ay, We will consider quadratic

11
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equations over variables T, ..., 2, € A1 v1, ... yn € Aq of the form

™

Z Slaj, y;) + Z Fae, bi) + ZZ?‘ijf(xi-yj) =t
j=1 i=1

i=1 j=I

[0051] In order to simplify notation, let us for 1, .. .. 2, € A1, %1.. ... ¥ € A, define
Tg= Y flawy).
i=1
The equations can now be written as
Q-if+ai-b4a- D=1

We note for future use that due to the bilinear properties of f, we have for any matrix I’ €
Mat,, ., {(R) and for any =, . ... T, 41, ., Yu that - Ty =T"7 - ¢.

[0052] Now return to the equations in Table 1 and see how they can be recast as quadratic

" equations over Zy,-modules with a bilinear map.

o Pairing product equations: Define R = Z,, Ay = G, Az = Gy, Ay = G, f(z,y) =
e(x, y) and we can rewrite the pairing product equation as (A y)(X BYX-TY) = tr.
(We use multiplicative notation here, because, usually G'p is written multiplicatively in
the literature. When we work with the abstract modules, however, we will use additive

notation.)

e Multi-scalar multiplication in G;: Define R = Z,. A, = G1. A2 = Zy, Ay =
Gy, J[{X,y) = yX and we can rewrite the scalar multiplication equation as A+
X b+ X -Tg=T,.

e Multi-scalar multiplication in G3: Define R = Znp. Ay = Zn, As = Gy, Ay =
Go, f(x, V) = z) and we can rewrite the multi-scalar multiplication equation as
a-Y+i-B+i-TV="1,

e Quadratic equation in Z,: Define R = Zy, Ay = Zn, Ay = Zin, Ap = Ty, f2,y) =

xy mod n and we can rewrite the quadratic equationin Z, as -y + 7- b+ 2 I'y = ¢.

We now focus on the more general problem of constructing non-interactive compos-

able witness-indistinguishable proofs for satisfiability of quadratic equations over R-modules
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Ay, Ao, Ar (using additive notation for all modules) with a bilinear map f.

3 Commitment from Modules

[0053] In the present NIWI proofs we will commit to the variables z,,....z, <
ALy, ..., uq € As. We do this by mapping them into other -modules 3, B> and mak-
ing the commitments in those modules.

0054} Let us for now just consider how to commit to elements from one R-module A.
The public key for the commitment scheme will describe another R-module B and R-linear
maps ¢ : A — Bandp: B — A It will also contain elements u,, ..., u, € 5. To commit to

xr € Awepick ry,. ..., «— R at random and compute the commitment

¢ =z} + Z iU
i=1

In one embodiment, the Commitment scheme has two types of commitment keys, hiding keys
and binding keys. The main assumption that we will be making throughout this disclosure 1s
that the distribution of hiding keys and the distribution of binding keys are computationally
indistinguishable. Witness-indistinguishability of the present NIWI proofs and later the zero-
knowledge property of the present ZK proofs use this property.

e Hiding key: A hiding key contains (1. ¢, p, uy, . . ., u,) such that «(G) C (uy, .. .. ).
The commitment ¢ := t{x) + >, 77u, is therefore perfectly hiding when vy, .. .. Tn

are chosen at random from K.

¢ Binding key: A binding key contains {B, ¢, p, ui, . . ., u,) such that ¥i : p(u;) = 0 and
¢ o p is non-trivial. The commitment ¢ := ¢(z) -+ >, 7u; therefore contains the non-
trivial information p(c¢) = p(e(x)) about x. In particular, if © o p is the identity map
on A, then the commitment is perfectly binding. (The map p is not efficiently com-
putable. However, one can imagine scenarios where a secret key will make p efficiently
computable and ¢ o p is the identity map. In this case the commitment scheme is a

cryptosystem with p being the decryption operation.)

[0055] Since we will often be committing to many elements at a time let us define some
convenient notation. Given elements 1, ..., 1, we will write ¢ := {Z)} + R¥ with R ¢

Mat,;,wr, (R) for making commitments ¢y, . . . . G, computed as ¢; == (z;) + D0, 745

13
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3.1 Example Embodiments

[0056] The treatment of commitments using the language of modules generalizes several
previous works dealing with commitments over bilinear groups.

Example Embodiment 1: Subgroup decision.

[0057] In this setting, we have a composite order group G of order n := pq. The
group can in a natural way be viewed as a Z,,-module; using the notation above we define
A = G and B = G. The commitment key will contain an element /. We can choose it so I
generates (4 or so 4 has order g. The subgroup decision assumption tells us that the two types
of commitment keys are computationally indistinguishable.

[0058] Lets : G — G be the identity map. Define A € Z,, so A = 1mod p and
A=0mod q. Themap p: G — G isp(X) = AX; in other words, p maps elements onto the
order p subgroup of (7. If i/ generates (7, then C := +(X') + rlf is perfectly hiding. On the
other hand, if 2/ has order ¢, then AC' = AA" defines A’ uniquely in G,

[0059] We can also commit to exponents. The modules are A = Z, and 13 = (. Let
'+ Zn — G begivenby /(z) = zPand p : G — Z, be given by p'(2P) = Az. When U
generates (5, the commitment scheme C = «P + ri{ is perfectly hiding. On the other hand,
if & has order g, then the commitment determines p'(C) = Az € Z,,.

Example embodiment 2: SXDH.

[0060] Consider a cyclic group A := G of prime order p. By entry-wise addition we get
an abelian group B := G?, which is a module over Z,. The commitment key will contain an
element u; = (P, @), where () = o'P for a randomly chosen a € Z,. It will also contain an
element uy = {4, 1V} which can be chosen in one of two ways: us = {u; of us = tu, —(O, P)
for a randomly chosen ¢ € Z7. The former will give a perfectly binding commitment key,
whereas the latter will give a perfectly hiding commitment key. The DDH assumption tells us
that the two types of commitment keys are computationally indistinguishable.

[0061] Let us now describe how to commit to an element X' ¢ . We define (X)) .=
(O, X). Using randomness 1, ry € Zp, we get a commitment of the form ¢ := 1{X) + ryju; +
rouy. If uy = tu; we have ¢ = ({r + st)P. {r + s1)Q) which is an ElGamal encryption of
P. We define p : (C;,Cy) — Cy — ol and see that the commitment is perfectly binding since
¢ o p is the identity map on G and p{u;) = p(us) = @. If w; and u, are linearly independent
we have that ;. uy is a basis for B = (G2 and therefore +(G) C {u;, up). When 1y and u, are
linearly independent we therefore have a perfectly hiding commitment.

[0062] To commit to an exponent » € A’ = Z,, we use the following approach. We
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define u = uy -+ (O, P) and () := zuand p' (1P, 2 P) = ¢3 — ey To commit to = using
randomness r € Z, we compute ¢ = ¢/(z) -+ rl;. On a hiding key we have v = lu; $0
u € {uy), which implies ¢'(Zy) € {u}. A hiding key therefore gives us a perfectly hiding
commitment scheme. On a binding key we have ¢ = ((r + «0)P, (v + 1) Q + «P), which is
an ElGamal encryption of 2P7. We have that «’ o ' is the identity map and p'(u;} = 0 so the
commitment scheme is perfectly binding.

Example Embodiment 3: DLIN,

[0063] In a DLIN group let i := P,V := 3P be given for random o, 3 € Z,. The
DLIN assumption states that it is hard to tell whether three elements rif, sV, tP have the
property that t = 7 + 5. We will use the Zy-modules A = G and B = G formed by
entry-wise addition. The commitment key will contain three elements 1, us, us € B. We
use u; = (U, 0, P),us == (O, V,P) and uz can be chosen as either u3 := ruy + sup or
uy = ru; + sup — (O, O, P}, which will give respectively a binding key and a hiding key.
The DLIN assumption implies that the two types of commitment keys are computationally
indistinguishable.

[0064] We will now describe how to commit to & € G. The map ¢ is defined by +(&X) :=
(O, 0, X). A commitment is formed by choosing ry. vy, 13 € Zp and computing ¢ := (&) +
Zf‘:i r;u;. On a hiding key u;, 1y, u are linearly independent so they form a basis for B = G*
and therefore t{G) C {u;, us. uz) so the commitment scheme is perfectly hiding. On a binding
key we have ¢ = ({(r; + rrs)ld, (ra + sr3)V, (11 + ro + (r + s)r3)}P + X)), which is a BBS
encryption [BBS04] of X Defining the decryption function p(Cy, Ca,Cs) := Cs — =C; — 3Ca
we see that p(u;) = p{us) = p{uz) = O and ¢ o p is the identity map so the commitment
is perfectly binding. (This commitment scheme coincides with the scheme of [Wat06]. We
noie that the different, and less efficient, commitment scheme of [Gro06} can be similarly

described in the language of modules, as well.)

| [0065] To commit to a message = ¢ A’ = Z, we first define v = uz + (O, O, P) and
() = ru. We commit to x using randomness ry. 7y by setting ¢ := zu + riuy + raug.
On a hiding key, we have that u = ru; + sus so ¢'(Zy) C {(u1,us) and the commitment
scheme is perfectly hiding. On a binding key, the commitment is ¢ = ((ry + ra)ld, (r2 +
s}V, (ry + 12+ x{r + s})P + «P). This corresponds to a BBS encryption of 2. We define
P (C1.Cp.C3) = Cy — %Cl — écg). We have p'(u;) = p/(u2) = O and ' o p' is the identity on
Zy, so the commitment scheme is perfectly binding.
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4 Setup

[0066] In the present NIWI proofs the common reference string contains commitment
keys to commit to elements in respectively A, and A;. These commitment keys specify
By, o,y and By, pe, 1, .. vy In addition, the common reference string
will also specify a third R-module Br together with R-linear maps ¢z : Ar — Br and
pr : By — Ap. There will be a bilinear map /" : By x By — By as well. We require that the

maps are commutative. We refer to Table 3 for an overview of the modules and the maps. For

Ay X Ay - Ar
f
tltm 2 [T p2 v LT pr

Bl X BQ BT

F

Vo € ALYy € Ayt Fuy(2), 1al(y)) = vr(flz,y))
Ve e ByVy € By: f{pi(z), palz)) = pr(F(z, y)})

Table 3: Modules and maps between them.

notational convenience, let us define for ¥ € BY, i ¢ BY that
n
Tey= Z Fle,y).
=1
The final part of the common reference string is a set of matrices H;, ..., H, € Mat,,/ . (R)
that satisfy i e H,;7 = 0. '
[0067] Two types of settings are of primary interest, soundness settings and witness-
indistinguishability settings.
e Soundness setting: In the soundness setting, we require that the commitment keys are
binding so we have p,(u) = {§ and pa(V) = 0 and the maps +; © p; and 1y o po are

non-trivial.

e Witness-indistinguishability setting: In the witness-indistinguishability setting we have
hiding commitment keys, so ¢ (G) C {uy..... ey and £2(Ge) C (vq, ... vp). We

also require that A, ..., H, generate the R-module of matrices H so we HT = (.

H ¥
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As we will see in the next section, these matrices play a role as randomizers in the

witness-indistinguishability proof.

The (only) computational assumption this disclosure is based on is that the two settings can
be set up in a computationally indistinguishable way. The example embodiments show that
there are many ways to get such computationally indistinguishable soundness and witness-

mdistinguishability setups.

4.1 Example Embodiments

Example Embodiment 1: Subgroup Decision.

[0068] The common reference string specifies {p, G. G, e, P, ), which is sufficient to
describe the entire setup given in this section. Weuse B = By = By = G and By = Gr
and the bilinear map (X", Y) = e(X, V). In the witness-indistinguishability setup we use
a hiding key U that generates G and consequently e(l4. /) generates Gr. The only solution
to e(i4. HU) = 1 is therefore the trivial /7 = 0, so we do not need to include any I7; in the
common reference string.

[0669) There are three scenarios to look at: pairing product equations, multi-scalar mul-
tiplication and quadratic equations in Z,,. In the pairing product equation scenario, we have
Ay = Ay = G and Ay = Gy and a bilinear map | := ¢. We define the map vy : Ar — By
to be the identity map, whereas py(z) := z*. Observe, since A = 1 mod p, A = O mod g
that A? = A mod n so we have the commutative property e(p; (X).p2())) = e(AX.AY) =
prie(X.Y)}) and the other commutative property is trivial.

[0070] In the multi-scalar multiplication scenario, we have A; = Z,, As = G, Ay =
(i. The bilinear map [ is the scalar multiplication function f(x,Y) := z)Y. We define
ir(Z) = e(P, Z) and pr(e(P. Z}} = AZ. This gives us the required commutative properties
(1) L (D)) = e(aP. D) = e(P,zY) = ir(a) and pr(e(aP. V)) = AV = (A2)(\Y) =
P (aP)p(Y).

[0071] In the quadratic equation in Z,,, we have A; = Ay = Ap = Z,. The bilinear
map [ is the multiplication function f(x,y) := zy mod n. We define .r,fr(z)rzz e(P.P)
and pi-(e(P. P)*) := Az. We have the commutative properties e(c/'(x),/(y)) = e(zP. yP) =
e(P. Py = vplay) and pple(xP. yP)) = day = (Az)(Ay} = p'(«P)p'(yP).

Example Embodiment 2: SXDH. _

[0072]} The common reference string specifies (p. Gy, G, Gr.e. Py, Po. up. us. v1, v2),

where (u;, ug) is a commitment key for the group (7, and (v, vo) is a commitment key for Gy
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as described in Section 3.1. We have B) = G%. By = 3 and define By := G4 with respec-

tively entry-wise addition and entry-wise multiplication. The map I is defined as follows:

F:G2x Gl Gl ((Xl),(yl))H(e(Xl’yﬂ e(Xl‘yz)).
Ay Vo E(mel) 6(3’2; y?)

[0073] In the pairing product equation scenario, we have Ay = (1, Ay = Go, Ay = Grp
and f(x,y) := e{x,y). The commitment keys are ;. us and vy, v> for committing to respec-
tively elements in GG; and G,. In the witness-indistinguishability scenario, the commitment
keys are hiding, which means they are chosen so u; and us are linearly independent and v,
and v, are linearly independent. The four elements F'(uy, v1), F {uy, va}, F'(ug, v1), F(ug, vo)
are linearly independent in this scenario. This implies that ¢ 7 only has the trivial solution

where H is the 2 % 2 matrix with O-entries. As for the maps c7, pr we define -

11 21 212
o ) —ee1 -1\ — g
tp 12 s pT( i ) = 299249 (221211 ) .
1 = Zny] 299

The map pr corresponds to first ElGamal decrypting down the columns using a; where
w3 = (P1,a1P1) and then ElGamal decrypting the resulting row by using o, where vy =
(Pa. a2P3). We note that 7 o pp is the identity map. One can check that the maps satisfy the
commutative properties in Table 3.

[0074] We will now look at the case of muliti-scalar multiplication in (5. The case of
multi-scalar multiplication in G is treated simitarly. We have 4; = Z,, Ay = Gy, Ay = Gy
and the bilinear map is f(z,Y) = z. We will use ¢/, u; for commitments to scalars in
Zp and ¢, v, vo for commitments to elements in G5. We define ir(2) = 1p(e(P. Z)). Let
e e(P. 2)) := Z and define pr(z2) = e '{pr{z)). We note that &y o pr is the identity
map on (5. We see that in the witness-indistinguishability setting, where vy, vo are linearly
independent, the equation u;  H¢ = 0 only has the trivial solution where /7 isthe 1 x 2
matrix containing O-entries.

[0075] Finally, we have the case of quadratic equations in Z,. We have A, = Ay = Ar =
Z,, and the bilinear map f(z,y) = zy mod p. We use u. u; for commitments in G} and
v, vy for commitments in G3. We define //.(2) := 1¢(e(P,P)*) and pi(z) = logp{pr{z)).
The maps satisfy the commutative properties from Table 3 and we have ¢/ o p, is the identity
map on Z,. Since (1, /1) has no non-trivial solution we do not need to specify a set of
generators ..., H,.
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Example embodiment 3;: DLIN.

[0076] The common reference string specifies (p, G, G, e, P.uy, uo, uz), where
(us, ué, ug) is a commitment key for the group G, and uy, up is used for committing to ex-
ponents. We have B = (2.

We will use the module By = G% defining the addition of two elements to correspond
to entry-wise multiplication of the 9 group elements. We will use two different bilinear maps
F F. The map I is defined as follows:

N X W E(Xlzyl) 6(9(1-,3}2) f—’(Xl, y3)
F: GSXGg —> G(}v ( XQ . yg ) — E(Xg.yl) 6(X27 yg) G{XQ, yg,)
A Vs G(XB:yl) G(Xs,y‘z) ff(Xaays)

[0077] The symmetric map F' is defined by F(z.y} = %f(w y) + %f(y x).

{0078] In the pairing product equation scenario, we have A; = Gy, Ay = G5, Ar = G
and f{z,vy) := e(z,y). The commitment key 1s u;, us, ug. In the witness-indistinguishability
scenario, the commitment key is hiding, which means that it is chosen so wu;, u us are linearly
independent and hence span of B = G*. Some computation shows that the nine elements
F (2;, u;) are linearly independent in the witness-indistinguishability setting. This implies
that & Hi only has the trivial solution where H is the 3 x 3 matrix with O-entries.

[0079] On the other hand, the map F' has non-trivial solutions to e //ii corresponding
to the identities F'(u;, u;) = F(u;.u;). Some computation shows that the matrices

0 1 0 01 0O 0 0
H = -1 0 0 He = 0 0 0 Hy=10 0 1
0 0 0 -1 0 0 0 -1 0
form a basis for the matrices // sou e [/ =0,
[0080] As for the maps tr. pr we define
1 1 1
n'T(f:) = 1 11
1 1 =
211 N1z T
—a,—1/3 —1/a _—1/8y-1/o /o —1/8\_1/:
pr(| zo1 oo zey |) = (Essina 2231/ ){2312111/ 221/ ) Y (232212/ 222/ ) 1o

<31 <32 233
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The map pr corresponds to first BBS decrypting down the columns using the decryption
key «v. 4 and then after that BBS decrypting along the row. We note that ¢ o py 1s the identity
map. One can check that the maps satisfy the commutative properties with both Fand Fin
Table 3.

[0081] We will now look at the case of multi-scalar multiplication in G. We have A; =
Zgp, A2 = G, Ay = G and the bilinear map is f(z,Y) = z). We will use ¢/, u1, uy for
commitments to scalars in Z,, and ¢, 17, us, us for commitments to elements in G. We define
ir(Z) = tp(e(P, Z)). Let e7(e{P. Z)}) := Z and define pp(z) := ™' (pr(z)). We note that
it o pr is the identity map on G. We see that (u;, us) ® Hu = 0 only has the trivial solution
where £ 1s the 2 x 3 matrix containing 0O-entries. We also have

H, = 0 10
-1 0 0

generates the matrices H so (u, uz) ¢ Hu = 0.

[0082] Finally, we have the case of quadratic equations in Z,,. We have A, = /A, =
Ar = Z, and the bilinear map f(z,y) := zy mod p. We use u,, up for commitments to the
exponents. We define v.(z) := itr(e(P, P)* and plp(2) = logp(Pr(z)). The maps satisfy the
commutative properties from Table 3 and we have ¢/ o pi is the identity map on Z,. Again

we have for F' only trivial matrices //, whereas for ' we have the non-trivial basis

1
]’.’[1 — 0
-1 0

5 Proving that Committed Values Satisfy a Quadratic
Equation
[0083] Recall that a quadratic eguation looks like the following:
q-g+F-b+ T Df=1t

with constants @ € A7. b e AP T ¢ Mat,,»«.(R).t € Ap. The prover’s task is to convince
the verifier that the commitments contain © € A", ¥ € A7 that satisfy the quadratic equation.
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[0084] We will first consider the case of a single quadratic equation of the above form.
The first step in the present NIWI proof is to commit to the variables &, y. The commitments
are of the form

C=u(®+Rdi , d=1u0)+Sv.

(Note that for various other embodiments, we will use these same commitments.)

[0085] Before giving the proof let us give some intuition. In the previous sections, we
have set up the commitments so that the commitments themselves also “behave” like the
values being committed to: they also belong to modules (the B modules) equipped with a
bilinear map (the map F, also implicitly used in the o operation). Given that we have done
this, a natural idea s to take the quadratic equation we are trying to prove, and “plug in” the

commitments in place of the variables; let us evaluate:
1(@) @ d+ o n(b) + Co T'd.

After some computations, where we expand the commitments, make use of the bilinearity of

¢, and rearrange terms (the details can be found in the proof of Theorem 1 below) we get

(LI((Z) o 15(if) + 11 () @ 1o () + 11(@) ® lﬁt..z('rj})

+i1(@) @ ST+ R @ o(b) + 11(Z) ® ST+ Ru e 12(y) + Riie v

By the commutativity properties of the maps, the first group of three terms are equal to vp(t),
if the equation is true. Looking at the remaining terms, note that the verifier knows « and ¢
Using the fact that bilinearity implies that for any 7. 4 we have T o 'y = I'" ¥ o i/, we can sort
the remaining terms so that they match either i or U to get (again see the proof of Theorem 1
for details)

—

(1) + T e (RTQ( )+ RTrf,g(g)) + (8T + sTr-Tf.](.-r:)) i

Now, for sake of explanation only, and not limitation, let us make some simplifying assump-
tions: Assume that we are working in a symmetric case where A; = A, and B = [, and

therefore # — ' and, so, the above equation can be simplified further to get:

or(t) F e (RTLQ(E) + RTTu(f) + STuld) + STI‘Tal(:E)).
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Assume further, 11 © py, i3 © po and v © pr are the identity maps on A;, A and Ar.

[0086] Now, suppose the prover gives to the verifier as his proof 7 = (RTLQ(E) +
RTw(§) + STuy(@)+ STy (f)) The verifier would then check that the following verifi-

cation equation holds:
(@) ed+ Cora(by+Cold = p(t) + @7

[6087] 1t is easy to see that this proof would be convincing in the soundness setting,
because we have that p; (@) = 0. Then the verifier would know (but not be able to compute)
that by applying the maps p,. p2, pr we get

—

i o pa(d) + pi(E) e b+ pi(c) ® Upa(d) =1 + py (i) ® pa(7) = 1.

—

This gives us soundness, since ¥ := p1(¢) and i/ == py(d) satisfy the equations.

[0088] The remaining problem is to get witness-indistingunishability. Recall that in the
witness-indistinguishability setting, the commitments are perfectly hiding. Therefore, in the
verification equation, nothing except for 7 has any information about ¥ and % except for the

information that can be inferred from the quadratic equation 1tself. So, consider two cases:

1. Suppose that 7 is the unique value so that the verification equation is valid. In this case,
we trivially have witness indistinguishability, since this means that all witnesses would

lead to the same value for 7.

2. The simple case above might seem too good to be true, but see what it means if it isn’t
true. If two values 7 and 7' both satisfy the verification equation, then just subtracting
the equations shows that ¥ ® (7 — @'} = 0. On the other hand, recall that in the witness

indistinguishability setting, the % vectors generate the entire space where 7 or 7 exist,

and furthermore we know that the matrices [, ..., H,, generate H such that i e Hi =
0. Therefore, choose ry,....7, at random, and consider the distribution 7@ = 7 4+

S riHiii. We thus obtain the same distribution on 7 regardless of what 7 we started

from, and such that @ always satisfies the verification equation.

[0089] Thus, for the symmetric case we obtain a witness indistinguishable proof system.
For the general non-symmetric case, instead of having just 7 for the @ part of the equation,
we would also have L: for the ¢ part. In this case, we would also have to make sure that this

split does not reveal any information about the witness. What we will do is 1o randomize the
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proofs such that they get a uniform distribution on 7, 1,; that satisfy the verification equation.
If we pick T — Mat, xm(R) at random we have that '4/?+ T completely randomizes 4. The
part we add in 'af can be “subtracted” from 7 by observing that

LT(t)Jrﬁ-v?ﬂEoﬁ:LT{t)Jra‘-(ﬁ—TTv}’)Jr(J+Tﬂ).ﬁ.

This leads to a unique distribution of proofs for the general non-symmeiric case as well.
[0090] Having now explained the intuition behind the following proof system, we proceed
to a formal description and proof of security properties.

Proof: Pick 7" — Mat,/xp (R), 71, ..., 7 — K at random. Compute

2N
[

n
RUa(®) + R Tuo(i) + RTTST~ T+ Y riHi¥
i=1

1

STea@) + ST (@) + T

L~
o

and return the proof (’q’?, 7).

Verification: Return 1 if and only if

(@) ed+cew(b)+FeTd=r(t)+uded+1ed
[0091] Perfect completeness of the NIWI proof will follow from the following theorem
no matter whether we are in the soundness setting or the witness-indistinguishability settig.
Theorem 1

[0092] Given .y, R. S satisfying

c=u@+Ri . d=uH+ST . @y+Tb+ITy=t
we have for all choices of T. ... .1, that the proofs 7, u-; constructed as above will be
accepred.

[0093] Proof. The commutative property of the linear and bilinear maps gives us ¢, (d) »

t2() + t1{T)} ® 12{b) + 11 (T} # T1a(§) = ¢7(t). For any choice of T',ry, ..., r, we have

(@) ed+ Tog{d)+EoTd
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= (d)e (52(37) + 517) + (Ll(.%') + Rﬁ) o 12() + (Li(f) + Rﬁ) . r(bg(g) + Sﬁ))
= (&) e 12(y) + 11(Z) @ Lz(g) + 1 (Z) o Tia(y)
+Rii @ 13(D) + Rii @ Diy() + Rit @ TST + 11(d@) ® ST+ 1,(7) o ['ST
— () +iie (1{12(5) + R Tuul(y) + HTFSE) + (5‘%1(5) + STFTLI(E)) o7
7
B) 1 R Tuoli) + RTFSﬁ) + S (@ e Ha) — e TTd
i=1

= (p(t)+ e (RTLQ(

+Ti e+ (S’Ta,l (@) + STFTQ(.%’)) .

= )+ ueT+UeT

Theorem 2

[0094] In the soundness setting, where we have p(tU) = 0, pa(¥) = 0 a valid proof implies
o1 (0 (@) - pald) + pr(@) - pa(e2(B)) + p1(E) - Twa(d) = pr(er(t)).
[0095] Proof. An acceptable proof 7, ¢ satisfies t(a) ® d + @ 13(b} + o I'd = 1p(t) +

e+ w’_ ¢ 7. The commutative property of the linear and bilinear maps gives us

—,

1 (11(@)) - pa(d) + p1(€) - p2e2(B)) + pi(@) - Tpa(d) = pr(er(t)) + pu(@) - p2(7) + pr(¥)
= pr(er(t)).

|

[0096] Observe as a particularly interesting case that when ¢; © py, £3 © ps, Ly © pr are the
identity maps on 4, 4, and A7 respectively, then this means ¥ := p,(¢) and ¥ := pg(d,?) give
us a satisfying solution to the equation a-y+- 7+ I'y = {. In this case, the theorem says that
the proof is perfectly sound in the soundness setting. It is still possible though that interesting
co-soundness properties emerge also in the case where these maps are not the identity-maps

on Ay, Ap and Ay,
Theorem 3

[0097} In the witness-indistinguishable setting where 11(G1) € (U1, ... U}, t2(Ga) C
{v9...., vy and Hy. .. .. H.,, generate the matrices H so ii ®« Hi = (, the satisfying wit-

P v . — ’ T : .
nesses Xy, R, S yield proofs © € {vy,...,vn)™ and v € {uy,....wy,)"" that are uni-
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—.

Sformly distributed conditioned on the verification equation 11(d) e d+ 7o Lo )+ ce I'd =
tp(E) + o7+ Lr e i

[0098] Proof. Since 11(G1) C {u,...,up) and 12(Ga) T {(v1,...,ty) there exists
A, B, X.Y 50 1,(@) = Aii, 11 (F) = Xui and 15(b) = BV, 15(y) = Y. Wehave ¢ = 0 + (X +

R)iand d = 0+ (Y + S)i. The proof is 7, ¥ given by
¥ = ST (@) + ST (7) + T = (STA + ST X + T)ﬁ

n
#=Ry(b)+ R Twa(f) + RTST) —TT0+ > riHd
i=1
n

_ (BTB +R'TY 4+ RIS - TT)'E% (ZriHi)ﬁ'.

i=1

We choose T at random, so we can think of ¢ being a uniformly random variable given by
1,5 = W for a randomly chosen matrix ¥. We can think of 7 as being written 7@ = II¥, where
11 is a random variable that depends on W,

[099] By perfect completeness the satisfying witnesses yield proofs where ¢, (@) o d+Ee
to(B) + #o Td — 1p(1) — i) @ 7 = G o @ = ii » 117. Conditioned on the random variable ¥
we therefore have that any two possible solutions 7, 7y satisfy « e (Il; — [I.)¢ = 0. Since
H,y, ..., H, generate the matriées H so e HT = () we can write this as IT; = II; -+ Z?:l ri f;.
In constructing 7 we form it as (RTB + R'TY + R'TS — TT)73+ (2?:1 ri]fi)t_;' for
randomly chosen 1, . ... r,,. We therefore get a uniform distribution over the 7 that satisfy the

equation conditioned on ¢. Since v is uniformly chosen, we conclude that for any witness we

get a uniform distribution over ¢. @ conditioned on them constituting an acceptable proof. [

5.1 Linear Equations

[0100] As a special case, we will consider the proof system when @ = 0 and I' = {. In this
case the equation is simply
Zb=t

The scheme can be simplified in this case by choosing 7' = 0 in the proof, which gives W=0
and 7 := RT1a(D) + >0, riH . Theorem 1 still applies with T = 0. Theorem 2 gives us
p1(7) - palea(B)) = pr(er (1)), which will give us soundness. Finally, we have the following

theorem.
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Theorem 4

[0101] In the witness-indistinguishable setting where 11(G1) T {uy, ..., Um), ta(G2) C

verification equation & e 15(b) = 17(t) + 1 e 7 being satisfied.
[0102] Proof. As in the proof of Theorem 3 we can write @ = I17. Any wilness gives a
proof that satisfies

—.

cou(b) —ip(l) = e 7 =1uellv

Since [fy,.... I, generate the matrices [/ so « e 4 = () we have that II has a uniform

distribution over the matrices I satisfying the verification equation. O

5.2 The Symmetric Case

[0103] An interesting special case is when B := By = By, m’ < n’ withu; = v, ..,y =
vy and for the z,y € B we have F{z,y) = F(y,z). We call this the symmetric case. In
the symmetric case, we can simplify the scheme by just padding ¢ with zeroes in the end
to extend the length to n’, call this vector 1:’ and revealing the proof q; = 7+ 4. Inthe

verification, we check that

-t

(@) ed+Cer(b)+celd=1p{l) + gt

Theorem 1 and Theorem 3 still hold in this setting. With respect to soundness we have the
following theorem.

Theorem 5

10104] In the soundness setting, where we have py(¢) = 0 a valid proof implies

i (a)) 'Pﬂdj +pmie) P2(L(E)) +pi(€) - Fp‘z(ff) = prier(l))-

[0105] Proof. An acceptable proof ¢ satisfies 11 (@) e d+ e 12(b) + o Td = i7(1) + G o .

The commutative property of the linear and bilinear maps gives us

— — - o,

pr{e(@)) - p2(d) + p1(@) - p2(e (b)) + p1(8) - Tpald) = prler(t)) + pa(9) - p2) = prier(t)).
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L]
[0106] We can simplify the computation of the proof i the symmetric case. We have

n
# = Rlup(b)+ R Tu(y)+ RTST-T 6+ > rHb
i=1

o o= STy (&) + ST (&) + T,

and extend 1 to ¥’ by padding it with " — n’ 0’s. Another way to accomplish this padding
is by padding T with m’ — n’ O-rows and .S with m’ — n’ O-columns and H; with m’ — »’
0-columns. We then have

¢ = R i)+ R Tuo(i)+ RIS T~ (T) i+ Y riHfi+(S") a(@)+ ()T 0y (&) +T"i.

i=1

Since the map is symmetric we have i o (T" — (T") 7 )& = 0, so if we have aset H},..., H,

H

that generates the matrices A’ so @ H't = 0, then we can rewrite the proof as

nl
&= R 1p(b) + R'Tep(§) + (8 0y(@) + (§) T (@) + RIS E + Y miHJiL.

i=1

6 NIWI Proof for Satisfiability of a Set of Quadratic Equa-

tions

[0107] We will now give the full composable NIWI proof for satisfiability of a set of quadratic

equations in a module with a bilinear map. The proof will have L ,-soundness, where
Lo = {{(azgz Ui i ML VZ. 53 - pr{n (@) - 7 + f"}h(m(a)) + 7Ty # PT(LT(ii))} :

Observe that L.,-soundness and soundness are the same notions in the common case where
L1 © Py, Lz © po and ¢; o pp are the identity maps on respectively A;, Ay and Ar.

[0108] The cryptographic assumption we make is that the common reference string is
created by one of two algorithms /X or S and that their outputs are computationally indis-
tinguishable. The first algorithm outputs a common reference string that specifies a sound-
ness setting, whereas the second algorithm outputs a common reference string that specifies a

witness-indistinguishability setting.
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[0109] Setup: (gk,sk) := ((R, A1, Ay, Ax, [), sk) « G(1%).

[0110] Soundness string: o == (B, 3y, B, I t1.p1. t9, p2, br, pr. 4, T) — K{gk. sk).

[0111] Witness-indistinguishability string: o =
(By, Ba, Br, Flouy,py.to, po, iy, prs i, ) +— S(gk, sk).

[0112) Proof: The input includes gk, o, a list of quadratic equations {(d;, 51 Ti b)Y,

and a satisfying witness 7, ¥/.

e Pick at random R «— Mat,, . (R} and S «— Mat, ., (R) and commit to the variables
as &= F+ Riiand d := i+ S7.

e For each equation (d;, E");-, I';, t;) make a proof as described in Section 5. In other words,
pick T; < Mat,xm (R} and r;, ..., ry «— R compute

d

7
7 o= Rlub)+ R Tu@) + RITST T, ¢4 ryHi
4=1

¥ = STy (d;) + ST, (Z) + T3t

« Output the proof (¢, d, { (7, ¥} HY,).

[0113] Verification: The input is gk, o, {{d;, b, T, {;)} | and the proof (&, d {7, L/;t)})

For each equation check
t1(d;) » d+ce Lz(gi) +celd = vpits) + i e 7 + et
Output 1 if all the checks pass, else output 0.
Theorem 6

[0114] The protocol given above is a NIWI proof for satisfiability of a set of quadratic
equations with perfect completeness, perfect L.,-soundness and composable wiiness-
indistinguishability.

[0115] Proof. Perfect completeness follows from Theorem 1.

[6116] Consider a proof {c, d. {(7;. Lf:)}) on a soundness string. Define &' = (), ¢ :==

—

po(d). 1t follows from Theorem 2 that for each equation we have

—

p1(11(@))-FHEpa(ua(bi) )+ T = pr(e2(@))-pe(d) 01 () 2{e2(8)) +1 (€) Tapa(d) = pr(er(t:))-
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This means we have perfect L,-soundness.

[0117] In the present disclosure, a computational assumption is that soundness strings and
witness-indistinguishability strings are computationally indistinguishable (or at least compu-
tationally similar). Consider now a witness-indistinguishability string ¢. The commitments
are perfectly hiding, so they do not reveal the witness 7, ¥ that the prover uses in the com-
mitments &.d. Theorem 3 says that in either equation each of two possible witnesses yield
the same distribution on the proof for that equation. A straightforward hybrid argument then
shows that we have perfect witness-indistinguishability. L)

[0118] Proof of knowledge. We observe that if K outputs an additional secret piece of
information £ that makes it possible to efficiently compute p; and p», then it is straightforward
to compute the witness & = p{¢) and ¢ = ])2((;), so the proof 1s a perfect proof of knowledge.

{0119] Proof size. The size of the common reference string is m’ elements in By and n’
elements in Bs in addition to the description of the modules and the maps. The size of the
proofis m + Nn' elements in By and n + Nm’ elements in B,.

[0120] Typically, m’ and n’ will be small, giving us a proof size that is O(m + n +
N) elements in By and By. The proof size may thus be smaller than the description of the
statement, which can be of size upto Vn elements in 4,, Nm elements in A,, Nmn elements

in R and N elements in Ap.

6.1 NIWI Proofs for Bilinear Groups

{01211 We will now cutline the strategy for making NIWI proofs for satisfiability of a set of
quadratic equations over bilinear groups. As we described in Section 2, there are four different

types of equations, corresponding to the following four combinations of Z,-modules:
e Pairing product equations: A, = G, Ay, = Go, Ap = G, [(X, V) = (X, )).
e Multi-scalar multiplication in G: A, = Gy, Ay = Z,,. Ar = Gy, f(X,y) = yX.
o Multi-scalar multiplication in Go: Ay = Zy, Ao = Gy, Ap = Gr. [f(z. V) = 2.
e Quadratic equations in Z,,: A, =Z,,. Ay = Z,,, Ar = Zy,, [(x.y) = 2y mod n.

[0122] The common reference string will specify commitment schemes to respectively
scalars and group elements. We first commit to the variables and then make the NIWI proofs

that correspond to the types of equations that we are looking at. It is important that we use the
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same commitment schemes and commitments for equations, i.e., for instance we only commit
to a scalar x once and we use the same commitment in the proof whether the equation z 1s
involved in is a multi-scalar multiplication in G or a quadratic equations in Zy,. The use of the
same commitment in the equations is necessary to ensure a consistent choice of x throughout
the proof. As a consequence of this we use the same module B/ to commit to x in both multi-
scalar multiplication in G5 and quadratic equations in Z,,. We therefore end up with at most
four different modules By, B], B2, Bj to commit to respectively A, z, Y, y variables.

Example Embodiment 1: Subgroup decision.

[0123] Setup: (gk, sk) := ((n, G, Gy, e, P), (p. q)) — G(1¥), where n = pq.

[0124] Soundness string: On input (gk, sk} return o := U where U := rpP for random
T & Ly,

[0125] Witness-indistinguishability string: On input (gk. sk) return ¢ = U where
U = rP for random r € Z;,.

[0126] Proof: Oninput (n, G, Gy, e, P, U), a set of equations and a witness ', Y do:

I. Commit to each exponent 2, . . ., z,, and each element 4, . . ., J, as respectively C, :
;P + riif and D; := Y; + ;U4 for randomly chosen 7, §.

2. For each pairing product equation (A - Y)(J - TY) = i7 make a proof as described in

section 5.2, Writing it out and doing calculations, we get

T 2

=5 A4S (THT Y45 sl = 252,4 +zz Wity )s Vit Y Y wsisd

=1 §=1 i=1 j=—=1

3. For each multi-scalar multiplication equation @ - ¥ + #- B+ # - T) = T the proof is

T ”TB+FTFJJ+FTF§U+ a73+ ST

™ Tl

- ZT;B +ZZ?‘”UJ}J+ZZ ViiTi sd,Zzi'JrZ:s’1 (a; +Z Vii T

=1 J=1 i=1 jy=1

-

4. For each quadratic equation ¥ - b + ' - 'Y = { in Z,, we have

m m m

0= FTEP~}~F(F+IWT)’EP+WW — (Z Tibi_"zz f!J+’YJ5 T3 LJ. P‘FZZ il _,l
=1

i=1 j=1 =1 j=1
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[0127] Verification: On input (n,G,Gr,e,P.U), a set of equations and a proof
C_‘z Ij‘: {qu}iil do:

1. For each pairing product equation (A - ¥)() - TV) = {1 check that [T, e(A. D) -
[T [ el Ds. D)™ = tpe(U. ¢).

2. For each multi-scalar multiplication V17 B1+z.TY = T check that [T, efa, P, D)
iy e(Ci, Bi) - TI) 1=y elCo, D3) ™ = e(P, T)e(U. §).

3. For each quadratic equation & - b -+ & - I'¥ = t in Z, check that [, e(C..b;P) -
H;n;] H;”:] e(c'i? Cj)fﬁj = S(P.{P)t@(ur é)‘

[0128] Define L., to be the sets of quadratic equations over Z,, that are unsatisfiable in

the order p subgroups of Z,,, G and Gr.
Theorem 7

[0129] The NIWI proof given above has perfect completeness, perfect L,-soundness and
composable witness-indistinguishability. _

[0130]1 Proof. Perfect completeness follows from Theorem 1. Perfect L.,-soundness
follows from Theorem 2 since the ¢ o p maps go to the order p subgroups of Z,, G and Gr.
The subgroup decision problem gives us that we cannot distinguish whether f has order ¢ or
order n so the two types of common reference strings are computationally indistinguishable.
On a witness-indistinguishability string, the commitments are perfectly hiding and we get
perfect witness-indistinguishability from Theorem 3. ]

[0131] The size of the proof is m: + n + /N group elements in G, where m is the number
of variables in &, n is the number of variables in J and N is the number of equations.

Example Embodiment 2: SXDH.

[0132] Setup: gk = (p, G, Gy, Gr, e, Py, Po) «— G(1¥).

[0133] Soundness string: On input gk return o = (uq, ug, ¥1, o) from the soundness
setup described in Section 4. This gives us up = {11y and vs = {2t for random {y, 1o «— Z,
so the elements are linearly dependent.

[0134] [Witness-indistinguishability string:} On input gk return o = (uy, uy, v1, t») from
the witness-indistinguishability setup described in Section 4. This gives us uy = tyuy —
(O, P)) and v = tauy — (O, Py) for random iy, Ly — Zip,.

[0135] Preof: On input gk, o, a set of equations and a witness 2’?, 37, &,y do:
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1. Commit to group elements X as & := ¢, (X) + Rii for R +— Matyys(Z;,) and group
elements ¥ as d := taf )7) + S@ for S « Mat,xo(Zp). Commit to exponents z° as

¢ = ){x) + r'uy and exponents y as d' := p(y) + 5v; for ¥ — Z;"", § Z’;’.

2. For each pairing product equation (A-Y)(X-BYY-TY) = t; make a proof as described
in section 5. Writing it out we have for T’ « Matsyo(Z, ) the following proof.

= R'(B)+ R Ti(0)+ (RTTS T
= bTL](”)JrSTFTLl( ’)+ T

o5y

For each lincar equation A - Y = {p we use ¢ := §' 11 {A).

-

For each linear equation X - B = t7 we use 7 -= R 15(B).

—

3. For each multi-scalar multiplication equation A - i + X - b+ X - I'y = 7, in (G the
proof is for random 7" «— Mat; «2(Zp)

7 = RU4MD)+ R + (RTT8 -1
¥ = F (A 4T (X)) Ta
For each linear equation A - 7 = 7; the proof is ¢ == & ¢, (A).

-,

For each linear equation X b="T, the proof is 7 ;= R i} (b).

—

4. For each multi-scalar multiplication equation @- YV + - B+# I'Y="TinG,the proof
is for random T «— Matoy 1 {Zp)

n o= F(B)+ 7 DY)+ (F TS — TN
T ST+ STUT(E) + T

For each linear equation d 7Y =T, the proof is 7 := S i}{a).

For each linear equation & - B = 75 the proof is 7 := 77 15(5).

5. For each quadratic equation @ - b+ i-T'E=Lin Zy, the proof is for random T « Zy,

w o= TG+ P L) - (P Ty
v o= 5 @) + 5 TR + Ty
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For each linear equation @ - § = { we use ¥ := § ' ¢}(d).
b

7

Tor each linear equation # - b = { we use n := 7 15(b).

[0136] Verification: On input (g, ), a set of equations and a proof ¢, 57 c. a?, {7;. z;}j"zl
do:

1. For each pairing product equation (A - Y)(X - B)(Y - TY) = t check that

(A ed+Ee(B)+Cold = ip{ly) +iieT+ o,

2. For cach multi-scalar equation (A - g‘){)? -bH{X - T§) = 7; in G, check that

— —

LI(A)oJ;JrEOL’Q( )%EOTQ?=E}(Tl)—l-’tfofr—|—F(1/),v1).

3. For each multi-scalar multiplication @ - Y + 7 - B+ @ - TV = T in G, check that

V(@) ed+ ex(B) + & eTd = ix () + Fluy,7) + 0 e T.

4. For each quadratic equation @ - y + & - b+7Z-Ty=tin Zy, check that

@) ed +& ely(D)+ & oTd = (1) + Fluy, m) + F¢h, v1).

Theorem 8

[0137] The protocol is a NIWI proof with perfect completeness, perfect soundness and com-
posable witness-indistinguishability for satisfiability of a set of equations over a bilinear
group where the SXDH problem is hard.

[0138] Perfect completeness follows from Theorem 1. Perfect soundness follows from
Theorem 2 since the ¢ o p maps are identity maps on Zy, G1. G2 and GGy. The SXDH as-
sumption gives us that the two types of common reference strings are computationally indis-
tinguishable. On a witness-indistinguishability string, the commitments are perfectly hiding
and we get perfect witness-indistinguishability from Theorem 3. il

[0139] The modules we work in are By = G’% and By = Gg, 50 each element in a module
includes two group elements from respectiveiy (i; and (7. Table 4 list the cost of the different

types of equations.
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Assumption: SXDH

Variables ¢ € Zp, X € G

Variables y € Zy,. Y € Gy

Pairing product eguations

- Linear equation: A-V=tr

- Linear equation: X B= tr
Multi-scatar multiplication equations in G,
- Linear equation: A - = 73

- Linear equation: X b= T

Multi-scalar multiplication equations in Gy
- Linear equation: @ - V=17

- Linear equation: - B = T

Quadratic equations in Z,

- Linear equation: & -y =

—

- Linear equation: ¥ -b =1

CMNNS B RO NNS R oD

R R I R N O N L=

PCT/US2007/085018

Table 4: Cost of each variable and equation measured in elements from G, and G,

Example Embodiment 3: DLIN.
[0140] Setup: gk := (p,G,Gr, e, P) « G(1%).
[0141] Soundness string: On input gk return o := {u;, Us, u3) from the soundness setup

described in Section 4. This gives us ug = t;u; +{auy for random ¢y, {5 — Z, so the elements

are linearly dependent.

[0142] Witness-indistingnishability string: On input gk return ¢ = (us, ug2. us)

from the witness-indistinguishability setup described in Section 4. This gives us u; =
(aP, 0. P)us = (O, 8P, P).uz = (O — P} + tyuy + louy) for random o, 5 + Zy and

t1, 12 — Zp. Define for notational convenience ¢ := (uy, up).

[03143] Proof: On input gk. o, a set of equations and a witness . 37 do:

1. Commit to exponents @' as ¢ = /(%) + R for R «— Mat,,«2(Z,). Commit to group
elements Y as d = ._',(37) + St for S — Mat,x3{Zp).

—

2. For each pairing product equation (.,ZT . y)()? . Fﬁ) = | make a proof as described in

section 5 using the symmetric map £

— —,

3

¢ = RT(B)+ R'TuY) + STe(A) + STTTUX) + RTTSu+ Y riHidi.

i=1
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[0144} For each linear equation 37 ‘B = tr we use the asymmetric map Fto get the
proof

We remark that the reason we use the asymmetric F is that there are no matrices non-
trivial 7/ so i & Hi@ = 0, which simplifies the proof. Observe that ¢ = (S B) =
ST.(B) and vice versa p(¢) = ST B is easily computable in this special setting, since
t(B;) = (O, O, B;). We can therefore just reveal the proof ¢’ := p((g) = ST, which is

three group elements.

3. For each multi-scalar multiplication equation « - Y+#-B+7-TY =T, we use the
syrmmetric map I, The proof is for random ry « Z,

¢ = R'W(B)+ RTTuY) + ()@ + (S)YTT(&) + RTUS"w + ry Hydd.
For each linear equation Y -b= T we use the asymmetric map Fto get the proof
¢ = ST/(D).

It suffices to reveal the value ¢ = S'b. Since ¢ determines ¢’ uniquely, this
does not compromise the perfect witness-indistinguishability we have on witness-
indistinguishability strings. The verifier can compute o = L’(C_’T)," ). The proof now in-

cludes 3 elements in Z,.

For each linear equation T - B =7 weuse I again to get the proof

We can use ¢’ = R as the proof, since it allows the verifier to compute ¢ = L((E’).

The proof therefore includes 2 group elements.

4. For each quadratic equation z - b+Z-TZf=lin Z,y, we use the symmetric map I*. There

is one matrix 1, that generates the /{ so ¢'e /7. The proof is for random r; «— Z,

—,

R7B)+ RTT+ T (2) + RT(&) + RTTRT + r Hy 0.

ol

For each linear equation 7 - b = { we use the asymmetric map F to get the proof
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[0145] Verification: On input (gk, o), a set of equations and a proof ¢, d. {ggl N do:

1. For each pairing product equation (A - Y)(¥ - I'Y) = ¢y check that

—,

U A)od+deld=ip(ty) +ieg

For cach linear equation Y -B = Iy check

2. For each multi-scalar multiplication & - Y+ 7 B+ 7 -I'Y =7 check that

W
=
=)
=
o
o]
o
=
Na)
=
]
o
-
[a]
=
3]
o
Na
=
jav]
o,
)
=
(11
Ll
+
&
=
|
I
-
5
B
k-
(o]
=
&
o
=
—
=
jak)
2

- = { check

271

For each linear equation

Theorem 9

36



WO 2008/127428 PCT/US2007/085018

[0146] The protocol is a NIWI proof with perfect completeness, perfect soundness and com-
posable witness-indistinguishability for satisfiability of a set of equations over a bilinear
group where the DLIN problem is hard.

[0147] Perfect completeness follows from Theorem 1. Perfect soundness follows from
Theorem 2 since the ¢ o p maps are identity maps on Z,,, G and Gr. The DLIN assumption
gives us that the two types of common reference strings are computationally indistinguishable.
On a witness-indistinguishability string, the commitments are perfectly hiding and we get
perfect witness-indistinguishability from Theorem 5. £

[0148] The module we work in is B = G?, so each element in the module includes three
group elements from . In some of the linear equations, we can compute p(qf)') efficiently and
we have L('p(r;g)) == 95 which gives us a shorter proof. Table 5 list the cost of the different types

of equations.

Assumption: DLIN
Variables x € Z,. Y € G
Pairing product equations

By
)

—

- Linear equation: V- B = tp
Multi-scalar multiplication equations
- Linear equation: 37 b=T

- Linear eguation: % - B=T
Quadratic equations in Z,

- Linear equation: ¥ - b=1

SO SO WO WD

N OO WO OO

Table 5. Cost of each variable and equation measured in elements from G.

7 Zero-Knowledge

[0149] We will show that in many cases it is possible to make zero-knowledge proofs for
satisfiability of quadratic equations. One strategy is to use the NIWI proofs directly, however,
such proofs may not be zero-knowledge because the zero-knowledge simulator may not be
able to compute any witness for satisfiability of the equations. However, we can often modify
the set of quadratic equations into an equivalent set of quadratic equations where a witness
can be found.

[0150] We consider first the case where A) = R, Ay = Ap, f(r.y} = ry and where S

outputs an extra piece of information + that makes it possible to trapdoor open the commit-
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ments in B;. More precisely, 7 permits the computation of 5 € R™ 50 1,(1) = ¢;(0) + &7 @
We remark that this is a common case; in bilinear groups both multi-scalar multiplication
equations in (,, G and guadratic equations in Z,, have this structure.
[0151] Define ¢ = ¢;(1) to be a commitment to ¢ = 1. Let us rewrite the equations in the
statement as
oyt f—ot)+ T b+ 7 Tg=0.

We have introduced a new variable ¢ and if we choose the variables in these modified equa-
tions to be 0 then we have a satisfying witness. In the simulation, we give the simulator
trapdoor information that permits it to open ¢ to 0 and we can now use the NIWI proof from
Section 6. '

[0152] Setup: {(gk, sk) := ((R, Ay, Az, Ar, f), sk) « G(1%).

[0153] Soundness string: o := (B, By, By, I, i3, 1. ta, po, b1, pr. 4, U} — K{(gk. sk).

[0154] Proof: This protocol is exactly the same as in the NTWI proof. The input includes
gk. o, alist of quadratic equations {(d@;, b;, I';, #,)}Y , and a satisfying witness &, 7.

Pick at random £ «+— Mat,xm{R) and S «— Mat, () and commit to the variables as
¢:= (%) + Riand d := 1,(%) + ST.

For each equation (&, Eh ;. ;) make a proof as described in Section 5. In other words,

pick 77 «— Mat, (R} and r;1, ..., riy — R and compute

'11
% = Rub)+ R Tu@) + RTEST - T 0+ > riH;v
J=1
?_f,, = STﬂl (ﬁz) + STFTLI (f) + Tlﬁ

Output the proof (7, d. { (7, ;) }L,).
[0155] Verification: The inputis gk, o, { (. b;. Iy, 1)}, and the proof (¢, d, {(7:, ¢:)}).
For each equation check

.’,1(5:1') OC;+ e LQ(SZ‘) + e Ti(f: LT{ii) +iUe T-T‘l+?.;; i

Output 1 if all the checks pass, else output 0.

[0156] Simulation string: (c.7) = (B, Bo. Br. F.t1,p1, to, po,tr. pr, €. ©), 5) «
Si(gk, sk), where ¢1(1) = 1, (0) + Z:’:i Silt;.

[0157] Simulated proof: The input includes gk,o, a list of quadratic equations

{(@:. ;. T 1;)}¥ | and a satisfying witness . .
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Rewrite the equations as @; - 4 + & - by + f(¢, —;) + - T;f = 0. Define £ := 0,4 := 0
and ¢ = 0 to get a witness that satisfies the equations.

Pick at random R « Mat . {R) and S — Mat,,,-(R) and commit to the the variables
as =0+ Riiand d .= 0 + ST. We have ¢ = t1(1) = ¢1(0) + Z:’il Sgtl.

For each modified equation (@;, b;, —¢;,I';, 0) make a proof as described 1n Section 5.
Return the simulated proof {{&, d, i, ¢;) MY,

Theorem 10

[0158] The protocol described above is a composable NIZK proof for satisfiability of pairing
product equations with perfect completeness, perfect L,-soundness and composable zero-
knowledge.

[0159] Proof. Perfect completeness on a soundness string follows from the perfect
completeness of the NIWI proof. The simulator knows an opening of ¢ = (1) to
c = 11(0) + Z:; s;u;. It therefore knows a witness 0,0, ¢ = 0 for satisfiability of the
modified equations. It therefore outputs a proof {( d, 7i;, ¥;) }X, such that for ¢ we have

0 (@) o d+ ce (b)) + Fle. —ia(t;)) + co Tid = tr(0) + e 7 + s @ 0.

The commutative properties of the maps gives us F(,{1), ta(t;)) = vr(f(1, 1)) = tr(ti)s
so the proof satisfies the equation the verifier checks. Perfect completeness on a simulation
string now follows from the perfect completeness of the NIWI proof as well.

[0160] Perfect L ,-soundness tollows from the perfect L.,-soundness of the NIWI proof.

[0161] We will now show that on a simnulation string we have perfect zero-knowledge, The
commitments &. d and ¢ = t1(1) are perfectly hiding and therefore have the same distribution
whether we use witness Z, ¢, ¢ = 1 or 0.0.¢ = 0. Theorem 3 now tells us that the proofs
T zﬂl made with either type of opening of ¢, cf ¢ are uniformly distributed over the possible
choices of {(1,7; ;) MY | that satisty the equations ¢1{d;) ® d+ceb, +celd = tr(t). We
therefore have perfect zero-knowledge on a simulation string. (W

7.1 NIZK Proofs for Bilinear Groups

[0162] Let us return to the four types of quadratic equations given in Fable 1. If we set up

the common reference string such that we can trapdoor open respectively ¢ (1) and ¢5(1) to 0
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then multi-scalar multiplication equations and quadratic equations in Z,, are of the form for
which we can give zero-knowledge proofs (at no additional cost).

[0163] In the case of pairing product equations we do not know how to get zero-
knowledge, since even with the trapdoors we may not be able to compute a satisfiabil-
ity witness. We do observe though that in the special case, where {7 = 1 the choice of
X = 6, )7 =OJisa satisfactory witness. Since we also use X = (5., 37 = @ in the other zero-
knowledge proofs, the simulator can use this witness and give a NIWT proof. In the special
case where {7 = 1 we can therefore make NIZK proofs for satisfiability of the set of pairing
product equations.

[0164] Next, let us look at the case where we have a pairing product equation with ¢ =
11, e(Ps, Q;) for some known P;, Q;. In this case, we can add linear equations Z; = P; to
the set of multi-scalar multiplication equations in ;. We already know that such equations
have zero-knowledge proofs. We can now rewrite the pairing product equation as (A - Y}(X -
g)(f L)X 1“37) = 1. This is a pairing product equation of the type where we can make
a zero-knowledge proof. We can therefore also make zero-knowledge proofs for a set of
quadratic equations over a bilinear group if the pairing product equations have tr of the form
tr = [, e(Pi, Q;) for some known P;, Q;.

[0165] The case of pairing product equations points to a couple of differences between
witness-indistinguishable proofs and zero-knowledge proofs using the techniques herein.
NIWTI proofs can handle any target i, whereas zero-knowledge proofs can only handle spe-
cial types of target ¢5-. Furthermore, if ¢y 5 1 the size of the NIWI proof for this egunation is
constant, whereas the NIZK proof for the same equation may be larger,

8 Application Embodiments

8.1 Fair Key Exchange

[0166] Suppose two parties want to exchange a pair of keys. However, neither party wants to
give away his key without having assurance that the other party will give him a key in return.
In the standalone setting, there is no fair protocol to implement this objective, since either
party may abort the protocel after learning his cutput. I we introduce a trusted party, the
problem is of course easily solved, the parties can hand their keys to the trusted party that then
gives each party the desired key.

[0167] In one embodiment, each party encrypts the key under the public key of a trusted
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party. Now both parties exchange their keys. If either party aborts, the other party can cail on
the trusted party to get his key, however, if both parties act honestly there will be no need to
call upon the trusted party. This way, we reduce the burden on the honest party that is only
invoked in case of protocol breaches.

[0168] Verifiable encryption can be used to solve this problem. In addition to encrypting
the key, we also make a proof that we have encrypted a proper key. Of course this proof should
not reveal the nature of the key we are encrypting.

[0169] Given witness indistinguishable proofs, it is straightforward to construct NIZK
proofs. We can therefore use an NIZK proof to prove that we have encrypted a proper key.
This NIZK proof suffices for our purpose. since it guarantees the correctness of the encryption,
yet reveals nothing else. The present techniques makes these NIZK proofs efficient enough to
be practical, when we set up the cryptosystem in groups with bilinear maps. We therefore get
a satisfactory sclution to the fair key exchange problem.

8.2 Verifiable Encryption

In one embodiment, the NIZK proof system is used to provide verifiable encryption. Figure
1 shows a first computer 101, a second computer 102 provided to a computer network 103
for exchanging encrypted data, and, optionally, a third party computer 105. One of ordinary
skill in the art will recognize that one or more of the computers 101, 102, and 105 can be
combined to provide the functionality shown in Figure 1. A message is encrypted in the
computer 101 and sent to the second computer 103 where it can be decrypted and displayed
or the second computer 103 can use techniques as describe herein to use an NIZK proof of
membership for one or more aspects of the encrypted message without decrypting (or even
being able to decrypt) the message. In one embodiment, a third computer (not shown) is
provided as a third party that uses a proof of membership algorithm to verify one or more
aspects of the encrypted message without decrypting the message. This allows two parties to
exchange information while using a third party to verify one or more aspects of the message
without revealing the contents of the message to the third party. Thus the NIZX proof aliows
two parties to communicate through a third party (e.g., an escrow party) who verifies aspects
of the message and/or escrows the messages. This permits encryption of a message A and
construction of an NIZK proef that A satisfies a certain equation. For the purpose of this
example I have chosen the equation e(X, Q + mP) = ¢(P. P). This equation has practical
value, such an A is a Boneh-Boyen signature on m (with public verification key Q). So it is
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a verifiable encryption of a signature on m. Those skilled in the art can extend the verifiable
encryption scheme to encrypt multiple messages and prove that they simultaneously satisfy
multiple equations. Figure 2 is a flow diagram of key generation in a system for verifiable
encryption. Figure 3 is a flow diagram of encryption in the system of Figure 2. Figure 4 is a
flow diagram of generation of a verification proof of membership in the system of Figure 2.

Figure 5 is a flow diagram of decryption in the system of Figure 2.

8.3 Verifiable encryption based on the DLIN embodiment

[0170] Verifiable encryption includes key generation, encryption, and verification.

o Key generation: Generate bilinear group gk = (p, C, Gr, e, P) «— G(1*). Pick a soud-
ness reference string for the NIWI proof o = (uy, ug. uz) (€ G*3). Pick at random
@b Z;and set A = «P and B = bP.

The public key is pk = {gk, 0. A, B). The secret decryption key is sk = (a, b).

¢ Encryption: To encrypt a message A pick atrandom r, s < Z,, and let the ciphertext be
c= UV W)= (rA sB.X+(r+35)P).

e Verification proof: To prove that the ciphertext ¢ = (U4, V, W) contains A satisfying
e(X, Q@+ mP) = e(P.P) we need to prove

s, X U=1AANV=sBAW=X+{r+s)P A eX.Q+mP)=¢e(P,P).
Since we need an NIZK proof, we start by rewriting the equations as described in section

Jo.r.s, XUV W, Q
p=1lmodp AU =l AV =V AW =W+ (1—0)P A Q = d(Q+mP)+(1-¢)P
AU =TAAV =B AW =X+ (r+s)P A e(X, Q) =e(P,P).

Observe, ¢ = 1 and r, s. X chosen as in the encryption phase gives a satisfying witness for
the statement (provided we have indeed encrypted a Boneh-Boyen signature A7),

[0171] Asin Section 7, by choosing a simulation reference string, we can typically open
¢ to both 0 and 1. This means wecanchoose r =0, s = 0. X =P .U =0,V =0 W =
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P, Q" = P such that all equations are satisfied. This in turn means we can make a ZK
simulation of the proof, without knowing how the ciphertext ¢ was generated.)

[0172] We now give an NIWI proof 7 as described in Section 6 for all the equations above
being simultancously satisfiable.

o Verifying ciphertext and proof: Write out the equations as described above and verify
the NIWI proof 7.

» Decryption: To decrypt ¢ = (U, V, W) using the secret decryption key (a, b) compute
X=W—a U~ b1V

8.4 Mix-nets

[0173] Figure 6 shows a mix-net system wherein a plurality of senders 601 and a piurality of
mix-net servers 602 are provided to a network 604. A mix-net takes a set of messages from
one or more senders 601 as input and publishes them in random order (e.g., to one or more
receivers 603. At the recievers 603, the message can be decrypted and displayed. The sender
of each message is thus hidden among all the other senders, so it provides some degree of
anonymity. Mix-nets are for instance used in intermet-voting protocols, anonymous broadcast
protocols, etc. The goal for the parties is to publish a message without revealing the sender.
One place where this is useful is in internet-voting protocols, where voters anonymously pub-
lish their votes.

[0174] A standard way of constructing mix-nets is to use a2 homomorphic cryptosystem,
since such ciphertexts can be rerandomized. The senders encrypt their intended message and
send them to the mix-net. The mix-servers one by one take the encrypted messages, permute
them and rerandomize them. After they have all rerandomized and permuted the ciphertexts,
they use threshold decryption to get out the ciphertext. Provided just one server is honest,
the ciphertexts get permuted completely and thus loose their link to the sender, This is what
gives us anonymity. It is of course important that the decryption keys are shared between the
servers, such that no single server can decrypt the incoming or intermediate ciphertexts.

[0175] The conmstruction described here works well as long as the servers are honest
but curious. However, it is easy to timagine a setting where a server might wish to replace
messages with other messages, for instance votes for a particular candidate. To guard against

this, it has been suggested to provide a proof of correctness of the shuffle, 1.¢., the permutation
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and rerandomization of the ciphertexts. Such a proof would guarantee that no messages are
replaced. However, it is of course important that this proof keeps the permutation secret.

[0176] Research in this area has resuited in a number of interactive proofs for correctness
of a shuffie that hide the permutation. To minimize server interaction, it is desirable to reduce
the round complexity and several 3-move schemes have been suggested.

[0177] Some use a permutation network based approach for proving the correctness of
a shuffle. The idea 1s to write the permutation as n logn potential transpositions. For each
transposition, we may choose to transpose the ciphertexts or choose not to transpose them,
thus giving us the potential of selecting all of the n! possible permutations. By publishing
the intermediate ciphertexts in this network and by making a proof for each potential trans-
position that we have transposed them or not, it is straightforward to build an interactive
zero-knowledge proof for the correctness of the shuffle.

[0178) The witness-indistingnishable proofs in the present disclosure will give us the
first non-interactive shuffle proof. We first describe our setup. We need a homomorphic
cryptosystem, for instance the one based on the DLIN problem, i.e., we encrypt m € & as
(/7. 2%, g"*"m). This cryptosystem is obviously, semantically secure and homomorphic and
it is easy to set up a threshold decryption structure for it. The mix-servers will in addition also
publish (u, v, w). We will now encrypt as (f"u!, h*v', ¢ w'm). Ifu = [ v = h¥, w = ¢*7¥
this is fine, we just get a slightly more complicated way of encrypting m. However, if we set
itup withu = f* v = h¥.w = g* for z # 2-+y, then we have a perfectly hiding commitment
scheme instead,

[0179] We can now make Abe’s shuffle proof non-interactive as follows. We compute all
the intermediate ciphertexts in the network. For each potential transposition, we now make a
WI proof that either we transposed the ciphertext or we kept them in place, i.e., in either case
-we did not introduce new messages into the shuffle. In the perfect binding case, i.e., when 1 =
ffv =R, w = ¢""¥ we can set up the proof with perfect soundness. This means we have a
non-interactive proof that the shuffle is correct. On the other hand, we may compare with using
u = f* v = hY w = g* in which case we have perfectly binding commitments. In this case,
there are many possible witnesses and we can set up our proofs so they are perfectly witness
indistinguishable. We can therefore argue that the permutation is computationally hidden
because the cryptosystem setup that we use in the mix-net is computationally indistinguishable

from the perfect hiding setup, where we do not reveal the permutation.
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[0180] The mix-net is run by a set of mix-servers M, ..., My. Each sender encrypts
his message (for privacy) and sends it to the mix-net. We will now describe what the mix-
servers do with the ciphertexts. The first mix-server M; permutes and re-randomizes the
ciphertexts. It also provides an NIZK proof for having permuted and re-randomized correctly
{otherwise it would be able to replace some ciphertexts and thus alter the messages). The
second mix-server Af; permutes and re-randomizes the output from A,. It also provides an
NIZK proof for having done this correctly. The mix-servers continue like this until all of them
have permuted and re-randomized the ciphertexts. If at least one of the mix-servers is honest
the messages have now been permuted and re-randomized so it is impossible to trace them
back to the senders. The mix-servers now cooperate to decrypt.

[0181] A mix-net showing permutations of the messages in rows 1,...N. (The messages
are encrypted, so outsiders do not actually see these permutations).

Input: 123456

Miout: 634215

MZout: 245163

[0182] Each mix-server permutes and re-randomizes all the ciphertexts that the previons
mix-server outputs. It must prove that this has been done correctly. This can be done by
creating a permutation network of log IV layers. In each layer, we have N /2 pairs of cipher-
texts, which can either pass on to the next layer after re-randomization or be swapped and
re-randomized. (Any permutation of /V elements can be built from N log N swaps/not swaps)

A permutation of N elements built from swaps/non-swaps of pairs of messages. E.g.

Layer1: 123456

Layer 2: 21 4 3 5 6 swapping/non-swapping neighbours

Layer 3: 36425 1 swapping/non-swapping 3 spaces apart

Layer 4: 6 34 2 1 5 swapping/non-swapping neighbours

The key operation is therefore an NIZK proof of having swapped or not swapped two
ciphertexts.

[0183] Figure 7 is a flow diagram of key generation in the system of Figure 6. Figure
3 is a flow diagram of encryption in the system of Figure 6. Figure 9 is a flow diagram of
re-randomization in the system of Figure 6. Figure 10 is a flow diagram of an NIZK proof of
membership in the system of Figure 6.
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8.5 Encryption with swap/non-swap NIZK proofs based on SXDH em-

bodiment

[0184] Encryption with swap/non-swap NIZK proofs includes key generation, encryption,
etc.

Key generation: Generate a group gk = ((n, G1,Ga, Gr, e, P1. Ps)) «— G(1%). Generate a
soundness reference string o as described in Section 6. Generate an encryption key by
selecting at random a « Z, and setting A = a’P,. The public key is (gk. . A) and the
secret decryption key is a.

Encryption: To encrypt a message A’ € (7 pick at random r « Z, and let the ciphertext be
U.V)= (P, X +rA).

Re-randomization: To re-randomize a cipertext {4, V) pick at random s — Z, and set
U V) = U+ 5P, V+sA).

NIZK swap proof: Given input ciphertexts ({4;,V,} and (L. V,) and output ciphertext
(U, V), (U3, V3} we want to make an NIZK proof for them being swapped or not
swapped

dr, s
U{ZU1+TP} AN V{:Vl—E—TA FAN LV:Z/{Q“"TP] A V;:VQ‘FT.A

ORU{ :1/{2+-?Pl A V]’:VQ—FS.A A Z/{;Iul‘f'?‘?:)l/\v; :V2+T'A-
As in Section 7 we do this by rewriting the equations as

ga(?/{i — Uy - 7'731) =0 A C’)’T(V{ -V - T'A) =0
/\@(Ué—ug—rpl) =0 A @(]/2’*])2-—7‘_,4):;1

and (1 — @)Uy —Us = sP1) = O A (1 — )V = Va—sA) = 0O
A=) Uy —Uy —1P)=OAN1 =) (Vo= Vy—14) =0
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We then give an NIWI proof (7, n?r) as in Section 6 for these equations being simultane-
ously satisfiable.

Verifying swap proof: Verify the NIWI proof {7, 'u;) for the equations above.

Decryption: To decrypt (4, V) compute X = V — ald.

8.6 Blind Signatures

{0185} In blind signatures, there is a signing server and a set of users. The users should be
able to obtain signatures on messages of their choice from the signing server, At the same
time, the signing server should not learn, which message 1t 1s signing. Blind signatures has
application in e-cash and anonymous credentials.

[0186] It is straightforward to construct a blind signature scheme using the present
witness-indistinguishable techniques. The server will have a verification key for a signature
scheme as well as a public key for a commitment scheme. There will be two types of keys for
the commitment scheme, one being such that a secret decryption key can be used to extract
messages. The other type of public key will give a perfectly hiding commitment. The blind
signature protocol now works as follows. The user commits to his message and send it to the
signing server. The signing server signs this message. The user can now take his message
and create a WI proof for having a commitment to a pair of a commitment to the message
and a signature on this message. Since the commitment is perfectly hiding and the WI proof
perfectly witness-indistinguishable, there is no way to link the message and the original input

to the server.

8.7 Ring Signatures

[0187] In ring signatures, we have a bunch of public verification keys for various users. We
want to make a signature such that we know one of the users have signed, yet we do not want to
reveal which user signed the message. This could for instance be useful in whistleblower-cases
for instance, enabling employees of a company to anonymously identify themselves as being
from the particular company and testify to malpractice, yet remain anonymous. The central
idea in this protocol is that the signer makes a witness-indistinguishable proof of knowledge
that he knows the signature on the message under one of the keys, yet does not reveal which

of the verification keys the signature correspond to.
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[0188] The above disclosure shows the construction of efficient non-interactive crypto-
graphic proofs for use in bilinear groups. These proofs can be instantiated with many different
types of bilinear groups and the security of the proofs can be based on many different types
of intractability assumptions, of which we have given various example embodiments and ap-
plications. One of ordinary skill in the art will recognize thai other embodiments will be
apparent from the disclosure. For example, the embodiments shown are based on the modules
on bilinear groups. One of ordinary skill in the art will recognize that these techniques do not
require the modules to be cyclic as is the case for bilinear groups. Other types of modules
with a bilinear map exist, which are not constructed from bilinear groups.

[0189] While the present disclosure has been described in connection with various em-
bodiments , it is understood that similar aspects may be used or modifications and additions
may be made to the described aspects of the disclosed embodiments for performing the same
function of the present disclosure without deviating therefrom. Therefore, the present disclo-
sure shouid not be limited to any single aspect, but rather constreed in breadth and scope in
accordance with the appended claims.
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A Quick Reference to Notation

Bilinear groups.
G, Go, Gr: cyclic groups with bilinear map e : Gy x Gy — Gy
71, Po: generators of respectively (7 and Go.

Group order: prime order p or composite order n.

Modules with bilinear map.
R: finite commutative ring (R, +, -, 0, 1).
Ay, Az, Ap, By. Bs, Br: R-modules.
I F: bilinear maps Al X Ay — Arand F : B, X By — Byp.

Tt k3
Foy= Y J(ww) . Eed= Y Pl

i=1 i=1

Properties that follows from bilinearity:
TMy=M"y-y TeMj=M"7ey
Commutative diagram of maps in setup.
A X Ay - Ag
n il m t2 LT pe vr 1T pr

Bl X BQ — BT

Commutative properties:

Fla(e).w(y) = w(fz.9)) . f;de)pe(n) = pr(F(e.y)).

Equations.
(Secret) variables: ' € AP, i€ A
(Public) constants: @ € 42,0 € AP, T € Matyya(R).1 € Ap.
Equations: ¢ -4+ b+ T-T§=1t.
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Commitments.
Commitment keys: 4 ¢ B, 7 € BY .

Commitments:
C=u(F)+Rie B . d=.,7)+Ste Bl
NIWI proofs.
Additional setup information: H,, ... H,sod e H;¥' = 0,
Randomness in proofs: 7" e~ Mat,,n (R}, r1.... .1 < R.
- Proofs:

=}

7
= R+ R Tu@) + R'TST-TT5+ > ra
i=1

= STu(@) + ST () + T

<=

—

Verification: ¢1(d)  d+ ¢'e 15 )+ EeTd = (p(t) +deR+ e
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WHAT IS CLAIMED IS:

1. A method for verification of encrypted data, comprising:
encrypting data using an encryption algorithm related to groups with a bilinear
map to produce encrypted data; and
using a witness-independent algorithm to verify said data.

2. The method of Claim 1, further comprising sending said encrypted data as part of

a key exchange.

3. The method of Claim 1, further comprising sending said encrypted data as part of

a non-interactive shuffle.

4, An apparatus for verification of encrypted data, comprising:

a computer memory provided to a computer processor; and

a program loaded into said computer memory, said program configured to ver-
ify encrypted data using a witness-independent algorithm and according to selected
groups with a bilinear map, wherein said witness-independent algorithm uses com-

mitments of variables from said bilinear map to verify said encrypted data.

5. A method for generating a proof of membership, the method comprising:
receiving a common reference string comprising a group order, a description of
a first group having the group order, a description of a second group having the group
order, a description of a bilinear map from the first group to the second group, a first
generator of the first group, and a second generator of a proper nontrivial subgroup of
the first group;

receiving a message from a first computing entity;

identifying a ciphertext encrypting the message;

determining a proof value comprising a triple of values from the first group, said
triple of values generated using a unit from the group of integers modulo the group
order, the first generator, the second generator, the message, and the secret integer
value; and

communicating the proof value to a second computing entity.

6. The method as recited in Claim 5, wherein identifying a ciphertext comprises

receiving the ciphertext from the first computing entity.
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7. The method as recited in Claim 5, wherein identifying a ciphertext comprises
computing the ciphertext using at least the first generator, the message, the second generator,

and a secret integer value.

8. A proof system comprising:

a common reference string computed from a group order, a description of a first
group having the group order, a description of a second group having the group or-
der, a description of a bilinear map from the first group to the second group, a first
generator of the first group, wherein said common reference string is computed from
commitments of variables mapped by said bilinear map;

a message, said message having been generated by a first computing entity;

a ciphertext representing an encryption of the message, said ciphertext having
been generated using elements of the common reference string and a secret integer

value;
a proof value comprising a plurality of values from the first group, said plurality

of values generated using a unit from the group of integers modulo the group order,
the first generator, the second generator, the message, and the secret integer value;

and
a communications module for communicating the proof vatue to a second com-

' puting entity.

9, The system of claim 8 wherein the pluratity is a triple.

10. The system of Claim 8, lurther comprising: a vertfier configured to receive the
common reference key, the ciphertext, and the proof value and to verify that relationships
hold when the bilinear map is applied to selected elements of the common reference key, the

ciphertext, and the proof value.

1t A method of verifying a proof, the method comprising:
recelving a common reference key comprising a group order, a description of a
first group having the group order, a description of a second group having the group
order, a description of a bilinear map from the first group to the second group, a first
generator of the first group, and a second generator of a proper subgroup of the first
group;
receiving a ciphertext encrypting a message;
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receiving a proof value, said proof value comprising a triple of values from the
first group;

using the bilinear map, the first generator, the second generator, the ciphertext,
and the proof value to determine whether the ciphertext encrypts a value from a set of

values; and
generating a signal representative of the determination.

12. A method for generating a proof, the method comprising:

receiving a common reference string computed at least in part from, a description
of a first group, said first group comprising a DLIN group, a description of a second
group having the group order, a description of a bilinear map from the first group to
the second group, a plurality of generators of the first group. and a first plurality of
values from the first group, wherein the first plurality of values from the first group
have a relationship to the plurality of generators;

receiving a message from a first computing entity;

identifying a ciphertext encrypting the message and comprising a second plural-
ity of values from the first group, the values of the second plurality of values from the
first group determined at least in part by a relationship of the plurality generators;

determining a proof value comprising a matrix of values from the first group,
said matrix of values computed at least in part from commitments to variables in said
relationship and from a satisfying witness to said relationship; and

communicating the proof value to a second computing entity.

13. The method as recited in Claim 12, wherein tdentifying a ciphertext comprises

receiving the ciphertext from the first computing entity.

14. The method as recited in Claim 12, wherein identifying a ciphertext comprises
computing the ciphertext.

15, A system for generating a proof, the system comprising:
a common reference string comprising a prime group order p, a description of
a first group as an SXDH group, a description of a second group, a description of a
bilinear map from the first group to the second group, a plurality of generators of the
first group, and a first plurality of values from the first group;

a message received from a first computing entity;
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a ciphertext encrypting the message and satisfying at least one first equation;

a proof value computed from proof equations, wherein coefficients for said proof
equations are computed at least in part form commitments to said first equation; and

a communications module for communicating the proef value to a second com-

puting entity.

56



WO 2008/127428 PCT/US2007/085018

SUBSTITUTE SHEET (RULE 26)



WO 2008/127428 PCT/US2007/085018

Generate bilinear group gk = (p, &, Gp,e,P) « G(1%).

P

Pick a soudness reference string for the NIWI proof o = (u;, uz, us) (€ G3*3),

Pick at random o, b «— 7 and set A = o and B = bP.

The public key is pk = (gk,o, A, B). The secret decryption key is sk = {a, b).

G, 2

To encrypt a message X pick at randomr, s +— Z,,

Compute cyphertext ¢ = (U, V, W) = (v A, sB, X + (r 4 s)P)

rG. S

SUBSTITUTE SHEET (RULE 26)
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Choose r, s, & for a satisfying witness

Compute 7 according to Section 6

G 4

Obtain secret decryption key {a,b) and cyphertext ¢ = (¢4, V, W)

Compute compute X' = W — o714 — b=V

rG. o

SUBSTITUTE SHEET (RULE 26)
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SENDERS

RECEIVER

rrG. 6

SUBSTITUTE SHEET (RULE 26)
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5/6

Generate a group gk - (<n7 Gl: G‘Z: GT? Sv‘Ph P‘Z)) — g(lé‘)‘

Generate a soundness referenee string o as described 1n Section 6.

Generate an encryption key by selecting at random a «— Z, and setting A = /.

The public key is (gk, o, A} and the secret decryption key is a.

rG. 7

To encrypt a message X € &y pick at random r +— Z,,

Compute the ciphertext be (U, V) = (vP, X +rA).

reG. &

To re-randomize a cipertext ({4, V) pick at random s «— 7,

Compute new cyphertext (¢, V') = (U + 5P,V + s.A).

rG. 9

SUBSTITUTE SHEET (RULE 26)
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Obtain input ciphedexts (4, V0 and {$, V)

Obtamn oatput ciphertest {264, V)1, (U5, V)

Compule {74y as i Section 6 for the sgoations below being simultansously satisfiable,

U Uy TP =0 A Gr(V] -V 1 A) = O
AL —Uy— 1P = O A (V) — Vo —rA) =1

and (1 —@)(U] — U —sP) =0 A (1—¢)(V] Vo —sA) =0

rrG. 10

Obtain input ciphertext (Z4, V)

To decrypt (¢4,V) compute X =V — ald.

G, 717

SUBSTITUTE SHEET (RULE 26)
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