
USOO7606812B2

(12) United States Patent (10) Patent No.: US 7.606,812 B2
Perrin et al. (45) Date of Patent: Oct. 20, 2009

(54) DYNAMIC INTENT LOG (52) U.S. Cl. .. 707/100
(58) Field of Classification Search 707/1,

(75) Inventors: Neil V. Perrin, Westminster, CO (US);
Stuart J. Maybee, Longmont, CO (US);
Jeffrey S. Bonwick, Los Altos, CA (US)

(73) Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 454 days.

(21) Appl. No.: 11/513,768

(22) Filed: Aug. 31, 2006

(65) Prior Publication Data

US 2007/0106679 A1 May 10, 2007

Related U.S. Application Data
(60) Provisional application No. 60/733,454, filed on Nov.

4, 2005.

(51) Int. Cl.
G06F 7700 (2006.01)

START

STEP 200

Receive a request to write a
set of deltas

STEP210

ls the
pre-allocated log block
Sufficient to fit the set of

deltas?

STEP 260 STEP 220

Store the set of deltas in the
log block

STEP 230

Preallocate the next log block

STEP 240

Store a partial set of deltas in
the log block

Allocate a new log block
perfectly sized to fit the
remaining set of deltas

707/6, 10, 100, 101, 102, 200
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,584,582 B1* 6/2003 O’Connor T14, 21

* cited by examiner
Primary Examiner Fred I Ehichioya
(74) Attorney, Agent, or Firm—Osha Liang LLP

(57) ABSTRACT

A method for dynamic intent logging in a file system. The
method including pre-allocating a first log block, receiving a
request to write a first set of deltas into a dynamic intent log,
determining whether a size of the first set of deltas is larger
than a size of the first log block, if the size of the first set of
deltas is not larger than the size of the first log block, storing
the first set of deltas in the first log block and pre-allocating a
second log block.

13 Claims, 5 Drawing Sheets

Remaining
deltas larger than
the maximum log

block size?

STEP 250

STEP 270

Allocate a new log block of
maximum block size

STEP 280

Store maximum number of
remaining deltas in the new

log block

US 7.606,812 B2 Sheet 2 of 5 Oct. 20, 2009 U.S. Patent

09 z dELS

08Z d'ELLS

072 c}

ELS01.2 dEl LS 00Z CHELLS

3

| –
3

Oct. 20, 2009 U.S. Patent

U.S. Patent Oct. 20, 2009 Sheet 4 of 5 US 7.606,812 B2

START

Read a log block from
dynamic intent log

STEP 400

STEP 410

Calculate checksum of
the log block

STEP 42O

STEP 430 STEP 440

Legitimate set of
deltas?

STEP 450

Additional log
blocks?

FIGURE 4

U.S. Patent Oct. 20, 2009 Sheet 5 of 5 US 7.606,812 B2

500 A1

FIGURE 5

US 7,606,812 B2
1.

DYNAMIC INTENT LOG

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of U.S. Provisional Appli
cation Ser. No. 60/733,454 filed on Nov. 4, 2005, entitled
"Dynamic Intent Log and Intent Log Testing in the names of
Neil V. Perrin, Jeffrey S. Bonwick, and Stuart J. Maybee.

BACKGROUND

Most modern file systems include a logging feature to
ensure faster write times and crash recovery times. Intent
logging is a type of file system journaling that enables faster
file system operation and system boot. It is relatively simple
to implement and inexpensive to the operation of the file
system. Empirical tests have shown that logging file systems
perform equal to or better than non-logging file systems.
The logging feature is a common option to a conventional

file system. For example, Unix File System (UFS) includes a
logging feature. More specifically, UFS Supports intent log
ging. To implement intent logging, UFS initially allocates a
certain amount of disk space within the persistent storage
(e.g., hard disks, etc.). Within that space, an intent log (i.e., a
data structure) is used to store all changes (i.e., "deltas') made
to the metadata associated with the file system. The metadata
associated with the file system typically corresponds to infor
mation related to the data in the file system, for example, the
file name.
Once the metadata changes, the corresponding deltas are

stored in the intent log. At a later time, the deltas in the intent
log are committed to the file system. To commit the deltas in
the intent log to the file system, the intent log is traversed and
each delta that is encountered is committed to the file system.
Once the file system (or a portion thereof) has been updated
with the delta, then the delta is removed from the intent log.

During the typical operation of the logging feature, once a
delta is generated (i.e., Some file system metadata changes), a
certain amount of disk space, in the disk space pre-allocated
for the intent log, is requested. The amount of disk space
requested corresponds to the size of the delta. If there is no
unallocated space in the pre-allocated disk space (i.e.,
because the pre-allocated disk space is full), then deltas
already stored in the intent log must be committed to the file
system and removed from the intent log in order to make
space for the new delta. While the currently stored deltas are
being committed to the file system, applications using the file
system are typically blocked until there is sufficient space to
insert additional deltas.

SUMMARY

In general, in one aspect, the invention relates to a method
for dynamic intent logging in a file system. The method
including pre-allocating a first log block, receiving a request
to write a first set of deltas into a dynamic intent log, deter
mining whether a size of the first set of deltas is larger than a
size of the first log block, if the size of the first set of deltas is
not larger than the size of the first log block: storing the first
set of deltas in the first log block, pre-allocating a second log
block, if the size of the first set of deltas is larger than the size
of the first log block: storing a first subset of the first set of
deltas in the first log block, wherein a size of the first subset is
less than or equal to the size of the first log block, for remain
ing deltas in the first set of delta: determining whether a size
of the remaining deltas is larger than a maximum log block

10

15

25

30

35

40

45

50

55

60

65

2
size; allocating a third log block and storing the remaining
deltas in the second log block, if the size of the remaining
deltas is not larger than the maximum log block size and
wherein a size of the third log block is less than or equal to the
maximum log block size, allocating a fourth log block and
storing a second Subset of the remaining deltas in the forth log
block, if the size of the remaining deltas is larger than the
maximum log block size, and wherein a size of the fourth log
block is the maximum size log block.

In general, in one aspect, the invention relates to a com
puter readable medium comprising executable instructions
for dynamic intent logging in a file system. The computer
executable medium comprising instructions for pre-allocat
ing a first log block, receiving a request to write a first set of
deltas into a dynamic intent log, determining whethera size of
the first set of deltas is larger than a size of the first log block,
if the size of the first set of deltas is not larger than the size of
the first log block: storing the first set of deltas in the first log
block, pre-allocating a second log block, if the size of the first
set of deltas is larger than the size of the first log block: storing
a first subset of the first set of deltas in the first log block,
whereina size of the first subset is less than or equal to the size
of the first log block, for remaining deltas in the first set of
delta: determining whether a size of the remaining deltas is
larger than a maximum log block size; allocating a third log
block and storing the remaining deltas in the second log
block, if the size of the remaining deltas is not larger than the
maximum log block size and wherein a size of the third log
block is less than or equal to the maximum log block size,
allocating a fourth log block and storing a second Subset of the
remaining deltas in the forth log block, if the size of the
remaining deltas is larger than the maximum log block size,
and wherein a size of the fourth log block is the maximum size
log block. In general, in one aspect, the invention relates to a
file system, comprising a dynamic intent log and configured
to pre-allocate a first log block, receive a request to write a
first set of deltas into a dynamic intent log, determine whether
a size of the first set of deltas is larger than a size of the first log
block, if the size of the first set of deltas is not larger than the
size of the first log block: store the first set of deltas in the first
log block, pre-allocate a second log block, if the size of the
first set of deltas is larger than the size of the first log block:
store a first subset of the first set of deltas in the first log block,
whereina size of the first subset is less than or equal to the size
of the first log block, for remaining deltas in the first set of
delta: determine whether a size of the remaining deltas is
larger than a maximum log block size; allocate a third log
block and store the remaining deltas in the second log block,
if the size of the remaining deltas is not larger than the maxi
mum log block size and wherein a size of the third log block
is less than or equal to the maximum log block size, allocate
a fourth log block and store a second Subset of the remaining
deltas in the forth log block, if the size of the remaining deltas
is larger than the maximum log block size, and wherein a size
of the fourth log block is the maximum size log block.

Other aspects of the invention will be apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a general structure of a dynamic intent log for
a file system in accordance with one or more embodiments of
the invention.

FIG. 2 shows a flowchart in accordance with one or more
embodiments of the invention.
FIG.3 shows an example in accordance with one or more

embodiments of the invention.

US 7,606,812 B2
3

FIG. 4 shows a flowchart in accordance with one or more
embodiments of the invention.

FIG. 5 shows a computer system in accordance with one or
more embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described in detail with reference to the accompanying fig
ures. Like elements in the various figures are denoted by like
reference numerals for consistency.

In the following detailed description of embodiments of the
invention, numerous specific details are set forth in order to
provide a more thorough understanding of the invention.
However, it will be apparent to one of ordinary skill in the art
that the invention may be practiced without these specific
details. In other instances, well-known features have not been
described in detail to avoid unnecessarily complicating the
description.

In general, embodiments of the invention relate to a method
and apparatus for intent logging. More specifically, embodi
ments of the invention relate to a method and apparatus for
dynamically allocating log blocks in an intent log, where each
of the log blocks is of variable size. Further, embodiments of
the invention enable pre-allocation of additional log blocks.

In one or more embodiments of the invention, a file system
is represented on disk as a hierarchical tree structure in which
the leaf blocks contain data and the indirect blocks contain
metadata. In one or more embodiments of the invention, the
metadata includes directory and node information but not file
data blocks, essentially everything but the actual data within
the file.

In one or more embodiments of the invention, the file
system implements a copy-on-write algorithm. More specifi
cally, to write a modified data block to disk, the modified data
block is written to a currently unused location on disk, rather
than over-writing its existing location on disk. Once the modi
fied data block is written, then its parent block must be modi
fied to point to the new on-disk location of the modified data
block. Accordingly, the modified parent block is written to a
currently unused location on disk. The aforementioned pro
cedure is continued up the hierarchical tree structure until the
root of the hierarchical tree structure is reached. At this stage,
the root, which is stored in a fixed location, is overwritten with
a new root that is modified to point to one of the aforemen
tioned modified blocks.
When file system logging is enabled for a file system (as

described below), all changes to file system metadata or data
(i.e., deltas) during synchronous Input/Output (I/O) requests
are written to an intent log. The information in the intent log
(typically stored in log blocks) is Subsequently written to an
appropriate location in the persistent storage, typically by a
background process. In one or more embodiments of the
invention, if logging is enabled, then logging is enabled for
the duration of the mounted file system.

FIG. 1 shows a general structure of a dynamic intent log
(100) in accordance with one or more embodiments of the
invention. The dynamic intent log (100) comprises an intent
log header (110), intent log trailers (130, 150), log blocks
(120, 140), and a set of deltas (161, 162, 163, 164) for Log
Block 1 (120) and a delta (i.e., delta 5 (165)) for Log Block 2
(140). In one or more embodiments of the invention, there is
one dynamic intent log per file system. Those skilled in the art
will appreciate that there may be one dynamic intent log per
storage pool, as opposed to one dynamic intent log per file
system.

10

15

25

30

35

40

45

50

55

60

65

4
In one or more embodiments of the invention, the header

(110) references log block 1 (120) in the dynamic intent log
(100). As shown in FIG. 1, the dynamic intent log includes a
number of log blocks (e.g., 120, 140), where each log block
includes one or more deltas (e.g., 161, 162, 163, 164, 165).
Further, each log block (120, 140) is linked to at least one
other log block (120, 140) via a block pointer (170, 175)
stored in a log trailer (130, 150) of the previous log block
(120,140). In addition, the log trailer (130, 150) also includes
functionality to keep track of the size (180,185) of the delta(s)
(161,162, 163, 164, 165) stored in the log block (120, 140).
More specifically, because the log blocks (120, 140) are pre
allocated (discussed below), the size of the log block (120.
140) may be larger than the size of a set of incoming deltas
(161,162, 163, 164, 165). In such cases, the log block (120.
140) may include unused space (e.g., 160).

Continuing with the discussion of FIG. 1, log blocks (120,
140) and the deltas (161,162,163,164, 165) may vary in size.
In one or more embodiments of the invention, the minimum
log block size is 4 kilobytes and the maximum log block size
is 128 kilobytes. Further, each log block is dynamically allo
cated, as needed, from available space in the persistent Stor
age. In one or more embodiments of the invention, a set of
deltas (161, 162, 163, 164) entering into a log block (120.
140) may be larger than the size of the current log block. In
this case, the file system includes functionality to allocate
additional log blocks (see FIGS. 2 and 3).

In one or more embodiments of the invention, after the set
of deltas has been stored in the intent log, a new log block is
pre-allocated prior to returning from a call to write a set of
deltas into a log block. Accordingly, there is always at least
one pre-allocated, empty log block in the dynamic intent log.
The size of the pre-allocated log block may be set using a

number of methods. The following discussion details three
methods that may be used to set the size of the pre-allocated
log block. Those skilled in the art will appreciate that the
following methods are not intended to limit the scope of the
invention and, further, that any method may be used for set
ting the size of the pre-allocated log block.

Using one method, the size of the pre-allocated log block is
the maximum size of all (or a Subset of) previously used log
blocks. For example, if three log blocks currently exist in a
dynamic intent log and the size of each of the first two blocks
is 10 kilobytes and the size of the third block is 15 kilobytes,
then the pre-allocated size of the fourth block using the first
method is 15 kilobytes (i.e., the maximum size of the first
three log blocks). Using a second method, the size of the
pre-allocated log block is the size of the current log block (i.e.,
the log block which precedes it in the dynamic intent log).
Using a third method, the size of the pre-allocated log block
is the size of a delta in a queue, where the queue includes
deltas waiting to be stored in the dynamic intent log.

In one embodiment of the invention, the dynamic intent log
may be stored in the storage pool along with other file system
data (e.g., file system data and metadata). As an alternative,
the dynamic intent log may be stored in a separated, dedicated
logging device (e.g., separate persistent data store) opera
tively connected to the file system.

In one embodiment of the invention, a checksum is calcu
lated for a set of deltas stored in the log block and the check
Sum is stored in the same log block. In one embodiment of the
invention, the checksum is calculated using a set of deltas and
Some external information unique to that log block (e.g., the
log block sequence number).

FIG.2 shows a method of storing deltas in a dynamic intent
log in accordance with one or more embodiments of the
invention. First, a request to write a set of deltas is received by

US 7,606,812 B2
5

the dynamic intent log (STEP 200). Those skilled in the art
will appreciate that each time a delta is generated it may not
be immediately stored in a log block; rather, the deltas are
accumulated in memory until an event triggers the writing of
the accumulated deltas (i.e., the set of deltas) to the dynamic
intent log. In one embodiment of the invention, the event
corresponds to a fisync command.

Continuing with the discussion of FIG. 2, as stated previ
ously, the dynamic intent log already includes a pre-allocated
log block, which is ready to store the set of deltas. Therefore,
when the request to write a delta is processed, a determination
is made whether the pre-allocated log block is large enough to
fit the incoming set of deltas (STEP210). If the entire set of
incoming deltas fit into the pre-allocated log block, then the
file system completes storing of the set of incoming deltas
(STEP 220). The file system subsequently pre-allocates a
next log block and saves an address of the next log block in the
current log block to create a link list to the next log block
(STEP 230).

Continuing with the discussion of FIG. 2, if the entire set of
incoming deltas does not fit into the current log block (i.e., the
combined size of the set of deltas is larger than the size of the
current log block) (STEP210), then the file system stores a
partial set of deltas in the current log block (STEP240). More
specifically, the maximum number of deltas in the set of
deltas that can be stored in the current log block are stored in
the current log block. At this stage, a determination is made
about whether the combined size of the remaining deltas in
the set of deltas (i.e., the deltas not stored in the current log
block) is larger thana maximum block size (STEP250). If the
combined size of the remaining deltas in the set of deltas (i.e.,
the deltas not stored in the current log block) is larger than a
maximum log block size, then the file system allocates a new
log block with the maximum log block size (STEP 270) and
stores as many of the remaining deltas into the new log block.
(STEP280). Once STEP280 has been completed, the process
proceeds to STEP 250.

If the combined size of the remaining deltas in the set of
deltas (i.e., the deltas not stored in the current log block) is not
larger than the maximum log block size, then the file system
allocates a custom-sized new log block (i.e., a new log block
is large enough to store all the of the remaining deltas) (STEP
260) and stores all remaining deltas in the new log block
(STEP 220). At this stage, the entire set of deltas has been
stored into one or more log blocks. Prior to returning from the
original request to write the set of deltas to the dynamic intent
log, the file system pre-allocates a log block, where the size of
the log block is determined using one of the methods
described previously (STEP 230). In one embodiment of the
invention, the trailer of the current log block includes a ref
erence to the pre-allocated log block.

FIG. 3 shows an example for storing a set of deltas using
the method described in FIG. 2 in accordance with one
embodiment of the invention. For the purposes of FIG. 3,
assume that there is a set of five deltas (302A, 302B, 303C,
310, and 318) in memory awaiting to be stored in the dynamic
intent log. Once a request to write the set of deltas (302A,
302B, 303C,310, and 318) is received, an attempt is made to
write all five deltas (302A, 302B, 303C, 310, and 318) into
log block A (308). As shown in FIG.3, log block A (308) is not
large enough to store all of the deltas (302A, 302B, 303C,
310, and 318). Accordingly, the first three deltas (302A,
302B, 303C) are stored in log block A (308). However,
because log block A (308) is larger than the combined size of
delta1 (302A), delta2 (302B), and delta3 (302C), but smaller
than the combined size of delta1 (302A), delta 2 (302B), delta
3 (302C), and delta 4 (310), log block A (308) includes an

5

10

15

25

30

35

40

45

50

55

60

65

6
empty space (305). The file system subsequently stores the
size (304) of deltas stored in log block A (308).
At this stage, one or more additional log blocks must be

allocated to store the remaining deltas (i.e., delta 4 (310) and
delta 5 (318)). Assuming that delta 4 (310) corresponds to the
maximum size of the log block (excluding the trailer portion
of the log block), the file system allocates a log block (i.e., log
block B (310)) of maximum log block size. Once allocated,
the file system saves a reference (306) of log block B (316) in
log block A (308).

Continuing with the discussion of FIG. 3, once delta 4
(310) has been stored in log block B (316), the file system
subsequently stores the size (312) of deltas stored in log block
B (316). At this stage, there is one remaining delta to store
(i.e., delta 5 (318). Since delta 5 (318) is smaller than the
maximum log block size, a log block (i.e., log block C (324))
is allocated and the reference (314) to log block C (324) is
stored in log block B (316). Delta 5 (318) is subsequently
stored in log block C (324), and the file system stores the size
(320) of deltas stored in log block C (324).
At this stage, all deltas have been stored, thus, a log block

is pre-allocated using one of the methods described above.
Once allocated, the file system saves a reference (322) to log
block D (332) in log block C (324). The remaining space in
log block C (324) is empty space (321) (i.e. no data is cur
rently stored in this space). The size (328) of the deltas in log
block D (332) and the reference (330) in log block D (332) are
both set to null. The remaining space in log block D (332) is
empty space (326).

Those skilled in the art will appreciate that while the above
discussion indicates that the file system includes functionality
to write to the dynamic intent log, another process related to,
but separate from, the file system may perform the method
described in FIGS. 2 and 3.

In one or more embodiments of the invention, the dynamic
intent log may be used to optimize an applications interac
tion with the file system. Further, in one or more embodi
ments of the invention, the dynamic intent log may be used to
aid the file system in recovering from a system crash.

FIG. 4 shows a flowchart for replaying a chain of blocks in
accordance with one or more embodiments of the invention.
As shown in flowchart in FIG. 4, when replaying the deltas
after a crash, the following flow occurs starting at the log
block referenced by the header. In one or more embodiments
of the invention, replaying of a set of deltas involves commit
ting a system call intent expressed in each delta to the file
system and tracking resulting changes in the file system.

Initially, a log block is read from a dynamic intent log
(STEP 400). In the next step, a checksum of the log block is
calculated (STEP 410). In one or more embodiments of the
invention, a strong checksum is used to confirm data integrity
of the log block.

In one or more embodiments of the invention, a checksum
is a result of a mathematical operation on the data in the log
block. The critical characteristic of a checksum is that even a
Small change in the log block (or more specifically, the data in
the log block) results in a definitive change in its checksum.
For example, a change of a single byte in the log block
triggers an unavoidable difference in its checksum. A strong
checksum assures data integrity better thana weak checksum.
In typical applications, the weak checksum uses 32 bits and
the strong checksum uses 256 bits. The extra bits in the strong
checksum significantly reduces the chances of a random
chance checksum match.

Continuing with the discussion of FIG. 4, if the calculated
checksum does not match a checksum value Stored prior to
forming the intent log block, the process ends (STEP 420). If

US 7,606,812 B2
7

the checksum matches, then determination is made whether
the delta in the intent log block is legitimate (STEP 430). In
one or more embodiments of the invention, the legitimacy of
a delta in the log block is determined by comparing the state
of a file system against the delta which expresses an intent of
a system call. Recall that a delta indicates a particular intent
(i.e. system call) to the file system. If the file system already
committed the particular intent expressed in the delta but the
delta Still remains in the dynamic intent log, the situation
Suggests that the delta entry is illegitimate. If the delta is
determined to be illegitimate, then the validation process ends
since the illegitimate delta indicates the dynamic intent log
itself is no longer valid. However, if the delta is legitimate,
then it is replayed (i.e., it is committed to file system). Each
delta entry in a set of deltas grouped by a particular log block
is replayed (STEP 440). If there is an additional log block
(STEP450), this process repeats until a checksum mismatch
occurs (STEP 420), an illegitimate delta (STEP 430) exists
from the set of deltas, or no additional log block remains in the
dynamic intent log (STEP450).

In general, embodiments of the invention dynamically
extend an intent log in a file system, Such that writing out a
delta only takes a single block write. The single block write
may increase file system performance as there is a decreased
wait time for applications interacting with the file system.

The invention may be implemented on virtually any type of
computer regardless of the platform being used. For example,
as shown in FIG. 5, a computer system (500) includes a
processor (502), associated memory (504), a storage device
(506), and numerous other elements and functionalities typi
cal of today's computers (not shown). The computer system
(500) may also include input means, such as a keyboard (508)
and a mouse (510), and output means, such as a monitor
(512). The computer system (500) is connected to a local area
network (LAN) or a wide area network (e.g., the Internet) (not
shown) via a network interface connection (not shown).
Those skilled in the art will appreciate that these input and
output means may take other forms.

Further, those skilled in the art will appreciate that one or
more elements of the aforementioned computer system (500)
may be located at a remote location and connected to the other
elements over a network. Further, the invention may be imple
mented on a distributed system having a plurality of nodes,
where each portion of the invention may be located on a
different node within the distributed system. In one or more
embodiments of the invention, the node corresponds to a
computer system. Alternatively, the node may correspond to
a processor with associated physical memory. The node may
alternatively correspond to a processor with shared memory
and/or resources. Further, software instructions to perform
embodiments of the invention may be stored on a physical
computer readable medium Such as a compact disc (CD), a
diskette, a tape, or any other computer readable storage
device.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
Scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.

What is claimed is:
1. A method for dynamic intent logging in a file system,

compr1S1ng:
pre-allocating a first log block, wherein the first log block

is part of a chain of log blocks and a size of the first log

5

10

15

25

30

35

40

45

50

55

60

65

8
block corresponds to a size of the largest block previ
ously allocated in the chain of log blocks;

receiving a request to write a first set of deltas into a
dynamic intent log, wherein the first set of deltas is
stored in memory;

determining, using a processor, whether a size of the first
set of deltas is larger than the size of the first log block;

if the size of the first set of deltas is not larger than the size
of the first log block:
storing the first set of deltas in the first log block;
pre-allocating a second log block;

if the size of the first set of deltas is larger than the size of
the first log block:
storing a first subset of the first set of deltas in the first log

block, wherein a size of the first subset is less than or
equal to the size of the first log block;

for remaining deltas in the first set of deltas:
determining whether a size of the remaining deltas is

larger than a maximum log block size;
allocating a third log block and storing the remaining

deltas in the third log block, if the size of the
remaining deltas is not larger than the maximum
log block size and wherein a size of the third log
block is less than or equal to the maximum log
block size;

allocating a fourth log block and storing a second
subset of the remaining deltas in the forth log block,
if the size of the remaining deltas is larger than the
maximum log block size, and wherein a size of the
fourth log block is the maximum size log block,

wherein a size of the second log block is one selected from
a group consisting of (a) the size of the first log block if
the size of the first set of deltas is not larger than the first
log block and (b) a size of one of a second set of deltas
waiting in a queue.

2. The method of claim 1, further comprising:
storing the size of the first set of deltas in the first log block,

if the size of the first set of deltas is not larger than the
first log block, and

storing the size of the first subset of deltas in the first log
block, if the size of the first set of deltas is larger than the
first log block.

3. The method of claim 1, further comprising:
replaying the first log block.
4. The method of claim 3, wherein replaying the first log

block comprises:
calculating a checksum of the first log block;
determining whether the first log block is legitimate, if the

checksum of the first log block is valid; and
replaying the first log block if the first log block is legiti

mate.

5. A computer readable medium comprising executable
instructions for dynamic intent logging in a file system by:

pre-allocating a first log block, wherein the first log block
is part of a chain of log blocks and a size of the first log
block corresponds to a size of the largest block previ
ously allocated in the chain of log blocks;

receiving a request to write a first set of deltas into a
dynamic intent log;

determining whether a size of the first set of deltas is larger
than the size of the first log block;

if the size of the first set of deltas is not larger than the size
of the first log block:
storing the first set of deltas in the first log block;
pre-allocating a second log block;

if the size of the first set of deltas is larger than the size of
the first log block:

US 7,606,812 B2

storing a first subset of the first set of deltas in the first log
block, wherein a size of the first subset is less than or
equal to the size of the first log block;

for remaining deltas in the first set of delta:
determining whether a size of the remaining deltas is

larger than a maximum log block size;
allocating a third log block and storing the remaining

deltas in the third log block, if the size of the
remaining deltas is not larger than the maximum
log block size and wherein a size of the third log
block is less than or equal to the maximum log
block size;

allocating a fourth log block and storing a second
subset of the remaining deltas in the forth log block,
if the size of the remaining deltas is larger than the
maximum log block size, and wherein a size of the
fourth log block is the maximum size log block,

wherein a size of the second log block is one selected from
a group consisting of (a) the size of the first log block if
the size of the first set of deltas is not larger than the first
log block and (b) a size of one of a second set of deltas
waiting in a queue.

6. The computer readable medium of claim 5, further com
prising executable instructions for dynamic intent logging in
the file system by:

storing the size of the first set of deltas in the first log block,
if the size of the first set of deltas is not larger than the
first log block, and

storing the size of the first subset of deltas in the first log
block, if the size of the first set of deltas is larger than the
first log block.

7. The computer readable medium of claim 5, further com
prising:

replaying the first log block.
8. The computer readable medium of claim 7, wherein

replaying the first log block comprises:
calculating a checksum of the first log block;
determining whether the first log block is legitimate, if the

checksum of the first log block is valid; and
replaying the first log block if the first log block is legiti

mate.
9. A computer system comprising:
a processor;
a file system, when executed on the processor, is configured

tO:

pre-allocate a first log block, wherein the first log block
is part of a chain of log blocks and a size of the first log
block corresponds to a size of the largest block previ
ously allocated in the chain of log blocks;

receive a request to write a first set of deltas into the
dynamic intent log;

10

15

25

30

35

40

45

50

10
determine whether a size of the first set of deltas is larger

than the size of the first log block;
if the size of the first set of deltas is not larger than the

size of the first log block:
store the first set of deltas in the first log block;
pre-allocate a second log block;

if the size of the first set of deltas is larger than the size of
the first log block:
store a first subset of the first set of deltas in the first

log block, wherein a size of the first subset is less
than or equal to the size of the first log block;

for remaining deltas in the first set of delta:
determine whether a size of the remaining deltas is

larger than a maximum log block size;
allocate a third log block and storing the remaining

deltas in the third log block, if the size of the
remaining deltas is not larger than the maximum
log block size and wherein a size of the third log
block is less than or equal to the maximum log
block size;

allocate a fourth log block and storing a second Subset
of the remaining deltas in the forth log block, if the
size of the remaining deltas is larger than the maxi
mum log block size, and wherein a size of the
fourth log block is the maximum size log block,

wherein a size of the second log block is one selected from
a group consisting of (a) the size of the first log block if
the size of the first set of deltas is not larger than the first
log block and (b) a size of one of a second set of deltas
waiting in a queue.

10. The file system of claim 9, further configured to:
store the size of the first set of deltas in the first log block,

if the size of the first set of deltas is not larger than the
first log block, and

store the size of the first subset of deltas in the first log
block, if the size of the first set of deltas is larger than the
first log block.

11. The file system of claim 9, further configured to:
replaying the first log block.
12. The file system of claim 11, wherein replaying the first

log block comprises:
calculating a checksum of the first log block;
determining whether the first log block is legitimate, if the

checksum of the first log block is valid; and
replaying the first log block if the first log block is legiti

mate.

13. The file system of claim 9, wherein the first log block is
part of a chain of log blocks and the size of the first log block
corresponds to a size of the largest block previously allocated
in the chain of log blocks.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,606,812 B2 Page 1 of 1
APPLICATION NO. : 11/513768
DATED : October 20, 2009
INVENTOR(S) : Perrin et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 504 days.

Signed and Sealed this

Twelfth Day of October, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

