
United States Patent (19)
Jacobs et al.

(54) PROGRAMMING CONFLICT
DENTIFICATION SYSTEM FOR

REPRODUCTION MACHINES

Craig W. Jacobs, Fairport; Joseph L.
Filion, Rochester, both of N.Y.
Xerox Corporation, Stamford, Conn.

75 Inventors:

73 Assignee:
21 Appl. No.: 272,041
22 Filed: Nov. 16, 1988
51 Int. Cl......................... G06F 15/00; G06F 3/14;

G06F 1 1/08
52 U.S. Cl. 395/575; 395/109;

395/118; 371/19; 371/16.5
58) Field of Search 364/200, 900, 518;

340/715; 371/19, 16.4, 16.5, 21.6; 355/204, 205,
206, 207

(56) References Cited
U.S. PATENT DOCUMENTS

3,415,981 12/1968 Smith et al. 371/19
3,427,443 2/1969 Apple et al. 37/19
4,161,277 7/1979 Steiner 37/16.4
4,332,464 6/1982 Bartulis et al. ... 355/14 C
4,413,314 11/1983 Slater et al. 364/88
4,499,581 2/1985 Miazga et al. 37/6.4
4,514,846 4/1985 Federico et al. ... 371/16.5
4,609,919 9/1986 Miyazaki et al. 340/715
4,639,881 1/1987 Zingher 364/521
4,646,250 2/1987 Childress 364/518
4,661,953 4/1987 Venkatesh et al. 371/16

WSASr.
Psy

syst

No

coA excons

says of

WAEOs
a splay
NAs.

SPLAYES
ESAS Ax

f

5,063,535
Nov. 5, 1991

11) Patent Number:
(45) Date of Patent:

4,691,317 9/1987 Miazga et al. 37/29.
4,317,48 4/989 Asami et al. 371/29.1
4,831,526 5/1989 Luchs et al. 364/40
4,853,878 8/989 Brown 364/52
4,920,538 4/1990 Chan et al. 371/19
4,922,49 5/1990 Coale 371/16.5
4,933,880 6/1990 Borgendale 364/523

9/1990 Uzuda et al. 358/76

OTHER PUBLICATIONS

Xerox 5700 Electronic Printing System Reference Man
ual; Sep. 1980; Appendix B; pp. 2-1 to 2-5.

4,956,703

Primary Examiner-Allen R. MacDonald
Assistant Examiner-Ayaz R. Sheikh
Attorney, Agent, or Firm-Frederick E. McMullen
57 ABSTRACT

Programming conflict identification system for repro
duction machines using a color touch screen for input
ting programming instructions having a job review
window for displaying the programming selections
made, a message area in which one conflict message at
a time is displayed, and an error table in which pro
gramming conflicts are queued, with programming
selections corresponding to the currently displayed
conflict message highlighted by black text on an amber
background, and remaining conflicts highlighted by
amber text on a white background.

3 Claims, 13 Drawing Sheets

FEAEW

MS.

say exons
As a
AE

Axel

FAte

YExces
FEAulas AM
Exo White
Axto

Acco

Sheet 2 of 13 5,063,535 Nov. 5, 1991 U.S. Patent

98

U.S. Patent Nov. 5, 1991 Sheet 3 of 13 5,063,535

MACHINE CONTROLLER

MEMORY

FIG. 3

U.S. Patent Nov. 5, 1991 Sheet 4 of 13 5,063,535

FIG. 4

U.S. Patent Nov. 5, 1991 Sheet 5 of 13 5,063,535

F.G. 5

U.S. Patent Nov. 5, 1991 Sheet 6 of 13 5,063,535

s

s

a su

U.S. Patent Nov. 5, 1991 Sheet 7 of 13 - 5,063,535

as

N
f

T
e
O

U.S. Patent Nov. 5, 1991 Sheet 8 of 13 5,063,535

a
l
N
V

e
O

AH anN

U.S. Patent

FIG.

Nov. 5, 1991 Sheet 10 of 13

352-N
3.

ERROR MESSAGE (2)
ERROR MESSAGE (3)

AREA

ERROR MESSAGE (4) 246
ERROR MESSAGE (5 350
ERROR MESSAGE (6)
ERROR MESSAGE 7)

..." UT) FIG. 10

ENTER

USER MAKES
SELECON

COMPARE WITH
PREVIOUS
SELECTIONS

11

WAS MSG.
PREVIOUSLY
QUEUED

END

DECUEUE
MESSAGE

5,063,535

U.S. Patent Nov. 5, 1991 Sheet 11 of 13 5,063,535

s

as

n

o
O

U.S. Patent Nov. 5, 1991 Sheet 13 of 13 5,063,535

ENTER

SELECT EXCEPTION
REVIEW CON

COMPARE EXCEPTIONS
FEATURE WITH

DISPLAYED CONFLC
MSG.

DISPLAY EXCEPTIONS
FEATURE AS BLACK
TEXT ON AMBER
BACKGROUND

COMPARE EXCEPTIONS
FEATURE WITH
UN - OSPLAYED
CONFLCTMSG.

DISPLAY EXCEPTIONS
FEATUREASAMBER
TEXT ON WHITE
BACKGROUND

DISPLAY EXCEPTIONS
FEATURES AS BLACK
TEXT ON WHITE
BACKGROUND

MORE FEATURES

NO

MORE
EXCEPTION
Pages

END

1.

PROGRAMMING CONFLICT IDENTIFICATION
SYSTEM FOR REPRODUCTION MACHINES

BACKGROUND OF THE INVENTION

The invention relates to reproduction machines, and
more particularly, to a system for identifying conflicts
when programming reproduction machines.

Reproduction machines such as copiers and printers
have become faster and more complex and versatile in
the jobs they can do, presenting numerous and varied
job programming selections numbering in the hundreds.
Still, these machines must accommodate various opera
tor skill levels ranging from the dedicated user at one
extreme to the casual user at the other extreme.
When programming jobs on machines of this type,

and particularly when programming long and complex
jobs having many documents to process, it is possible
and in some cases likely that programming conflicts will
be introduced. This is especially true in cases where the
operator lacks experience and training or is a casual
operator not totally familiar with the machine. These
programming conflicts are particularly common in
cases where the job itself calls for special exceptions and
features for certain pages in the job which are different
from the main job program involving the bulk of the
documents.
Where a conflict in the job program occurs and is not

detected prior to running the job, the machine stops
when it detects the conflict. This, of course, delays the
job while the conflict is being corrected. In a high speed
production environment handling many jobs, not only
is the job being processed delayed but other jobs queued
behind the job for processing are delayed. And if sev
eral programming conflicts exist, there may result a
series of interruptions, further reducing throughput,
increasing costs, and operator frustration and irritabil
ity.

In this context, the user interface between the ma
chine and the operator, which in essence serves as the
conduit for dialogue (i.e., the ability to talk) between
operator and machine, becomes particularly important
since it can serve not only the programming function
but also act as the means for identifying to the user any
programming conflicts that have been made before the
job is run. One type of user interface admirably suited
for this purpose is a touch screen where the various
programming selections are displayed in the form of
icons or pictograms along with instructional text mes
sages. However, the amount of information that can be
reasonably displayed on the limited size screen of a
touch screen reduces its ability to identify conflicts,
particularly where a substantial number of conflicts
have occurred during programming the job. Thus, even
where a touch screen with icons and text displays is
used, the number and complexity of the conflicts that
occur when programming a job may overwhelm the
touch screen's limited abilities to identify and display
the conflicts.

In the prior art, U.S. Pat. No. 4,646,250 to Childress
discloses a data entry system employing a data entry
screen in which data that is entered incorrectly is high
lighted to provide an indication to the user as to
whether or not the data entered is correct or not. And
U.S. Pat. No. 4,639,881 to Zingher discloses a data input
system for printing machines employing a color moni
tor in which a diagram of the machine is displayed, with
a fault detecting and fixing program which on detection

5

10

15

20

25

30

35

45

50

55

60

65

5,063,535
2

of a fault, displays the fault on the diagram, activates an
alarm (where immediate operator attention is required),
and provides corrective prompts for remedying the
fault condition. Further, U.S. Pat. No. 4,332,464 to
Bartulis et al discloses an interactive interface for pro
gramming copiers/duplicators employing a touch
screen with icon displays representing various program
selections. The Bartulis et al patent relates to the Xerox
5700 reproduction machine (Xerox and Xerox 5700 are
registered Trademarks of Xerox Corporation) in which
the interface provides operator messages identifying
contradictory or invalid operator selections as de
scribed in pages 2-1 to 2-5 and Appendix B of the
"Xerox 5700 Electronic Printing Systems: Reference
Manual” (September, 1980). And, in a somewhat non
analogous field, U.S. Pat. No. 4,413,314 to Slater et al
discloses a control process for an industrial plant in
which a color touch screen with icon display is used for
inputting data through touching of selected icons dis
played on the screen, the display highlighting on the
screen operating parameters that have been in an "alarm
State.

SUMMARY OF THE INVENTION

The present invention is concerned with an improved
method for identifying programming conflicts in a re
production machine having an interactive data entry
system with data entry screen displaying touch active
data entry fields for use in programming the machine,
comprising the steps of highlighting by a first mark on
the screen each data field which on selection conflicts
with at least one previously selected data field; display
ing a message on the screen describing one of the con
flicts; and highlighting by a second mark those ones of
the conflicts which relate to the message.
The invention further relates to a method of identify

ing conflicts that occur when programming jobs in
reproduction machines using an interactive display with
touch screen, comprising the steps of: using the touch
screen, inputting desired program selections; where a
program selection is in error, generating an error mes
sage identifying the error; queuing the error message
with previous error messages in a message queue table;
displaying a preset one of the error messages in the
queue table on the screen; displaying a job review win
dow on the screen showing the program selections
made to date; for program selections shown in the job
review window corresponding to the one error mes
sage, highlighting the program selections in the job
review window by a first color; for other program
selections shown in the job review window correspond
ing to all other error messages in the queue table, high
lighting the other job selections by a second color; for
all remaining program selections shown in the job re
view window without error messages in the queue ta
ble, displaying the remaining job selections without
highlighting; deleting the one error message from the
queue table and from the screen while terminating high
lighting of the corresponding program selections in the
job window when the one error is corrected; displaying
the next one of the error messages in the queue table on
the screen while changing highlighting of the corre
sponding program selections in the job window from
the second color to the first color; and repeating the
above until all of the error messages in the queue table
are corrected.

5,063,535
3

DETAILED DESCRIPTION OF THE
DRAWINGS

For a better understanding of the present invention,
reference may be had to the accompanying drawings
wherein the same reference numerals have been applied
to like parts and wherein:
FIG. 1 is an isometric view of an illustrative repro

duction machine incorporating the programming con
flict identification system of the present invention;
FIG. 2 is a schematic elevational view depicting vari

ous operating components and sub-systems of the ma
chine shown in FIG. 1;

FIG. 3 is a block diagram of the operating control
systems and memory for the machine shown in FIG. 1;
FIG. 4 is a schematic elevational view showing the

finishing sub-system of the machine shown in FIG. 1;
FIG. 5 is a front view of the U.I. color touch monitor

showing the soft button display screen and hard button
control panel;
FIG. 6 is a front view of the touch monitor screen

with the principal elements of the soft touch dialogue
displayed;
FIG. 7 shows the touch monitor screen display in the

CURRENT job mode with the programming icons
displayed as a result of touch selection of the STAN
DARD file folder;
FIG, 8 shows the touch monitor screen with the

programming icons displayed as a result of touch selec
tion of the PAPER icon on the PROGRAM scorecard;
FIG. 9 shows the touch monitor screen with an illus

trative error message displayed in the program conflict
message area as a result of a programming conflict;
FIG. 10 is a view illustrating the error message table

with plural error messages queued therein;
FIG. 11 is a flow chart illustrating the sequence in

which error messages are identified and entered into the
error message table;

FIG. 12 shows the touch monitor screen with the
programming icons displayed as a result of touch selec
tion of the DOCUMENT SELECTION icon on the
EXCEPTION scorecard;
FIG. 13 shows the touch monitor screen with the

exception review window displayed and conflicting
exception features highlighted; and

FIG. 14 is a flow chart illustrating the sequence in
which conflicting exception features are highlighted to
distinguish those conflicting exception features that
relate to the error message currently displayed in the
program conflict message area and other conflicting
exception features in the error message table.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

While the present invention will hereinafter be de
scribed in connection with a preferred embodiment
thereof, it will be understood that it is not intended to
limit the invention to that embodiment. On the con
trary, it is intended to cover all alternatives, modifica
tions, and equivalents, as may be included within the
spirit and scope of the invention as defined by the ap
pended claims.
For a general understanding of the features of the

present invention, reference is made to the drawings. In
the drawings, like reference numerals have been used
throughout to identify identical elements. Referring to
FIGS. 1, 2, and 3, there is shown an electrophoto
graphic reproduction machine 5 composed of a plural

10

15

20

25

30

35

45

50

55

65

4.
ity of programmable components and sub-systems
which cooperate to carry out the copying or printing
job programmed through the touch dialogue User In
terface (U.I.) 11.
Machine 5 employs a photoconductive belt 10. Belt

10 is entrained about stripping roller 14, tensioning
roller 16, idler rollers 18, and drive roller 20. Drive
roller 20 is rotated by a motor coupled thereto by suit
able means such as a belt drive. As roller 20 rotates, it
advances belt 10 in the direction of arrow 12 through
the various processing stations disposed about the path
of movement thereof.

Initially, the photoconductive surface of belt 10
passes through charging station A where two corona
generating devices, indicated generally by the reference
numerals 22 and 24 charge photoconductive belt 10 to a
relatively high, substantially uniform potential. Next,
the charged photoconductive belt is advanced through
imaging station B. At imaging station B, a document
handling unit 26 sequentially feeds documents from a
stack of documents in a document stacking and holding
tray into registered position on platen 28. A pair of
Xenon flash lamps 30 mounted in the optics cavity illu
minate the document on platen 28, the light rays re
flected from the document being focused by lens 32
onto belt 10 to expose and record an electrostatic latent
image on photoconductive belt 10 which corresponds
to the informational areas contained within the docu
ment currently on platen 28. After imaging, the docu
ment is returned to the document tray via a simplex path
when either a simplex copy or the first pass of a duplex
copy is being made or via a duplex path when a duplex
copy is being made.
The electrostatic latent image recorded on photocon

ductive belt 10 is developed at development station C
by a magnetic brush developer unit 34 having three
developer rolls 36, 38 and 40. A paddle wheel 42 picks
up developer material and delivers it to the developer
rolls 36, 38. Developer roll 40 is a cleanup roll while a
magnetic roll 44 is provided to remove any carrier
granules adhering to belt 10.

Following development, the developed image is
transferred at transfer station D to a copy sheet. There,
the photoconductive belt 10 is exposed to a pre-transfer
light from a lamp (not shown) to reduce the attraction
between photoconductive belt 10 and the toner powder
image. Next, a corona generating device 46 charges the
copy sheet to the proper magnitude and polarity so that
the copy sheet is tacked to photoconductive belt 10 and
the toner powder image attracted from the photocon
ductive belt to the copy sheet. After transfer, corona
generator 48 charges the copy sheet to the opposite
polarity to detack the copy sheet from belt 10.

Following transfer, a conveyor 50 advances the copy
sheet bearing the transferred image to fusing station E
where a fuser assembly, indicated generally by the ref
erence numeral 52 permanently affixes the toner pow
der image to the copy sheet. Preferably, fuser assembly
52 includes a heated fuser roller 54 and a pressure roller
56 with the powder image on the copy sheet contacting
fuser roller 54.

After fusing, the copy sheets are fed through a de
curler 58 to remove any curl. Forwarding rollers 60
then advance the sheet via duplex turn roll 62 to gate 64
which guides the sheet to either finishing station For to
duplex tray 66, the latter providing an intermediate or
buffer storage for those sheets that have been printed on
one side and on which an image will be subsequently

5,063,535
5

printed on the second, opposed side thereof. The sheets
are stacked in duplex tray 66 face down on top of one
another in the order in which they are copied.
To complete duplex copying, the simplex sheets in

tray 66 are fed, in seriatim, by bottom feeder 68 back to
transfer station D via conveyor 70 and rollers 72 for
transfer of the second toner powder image to the op
posed sides of the copy sheets. The duplex sheet is then
fed through the same path as the simplex sheet to be
advanced to finishing station F.
Copy sheets are supplied from a secondary tray 74 by

sheet feeder 76 or from the auxiliary tray 78 by sheet
feeder 80. Sheet feeders 76, 80 are friction retard feeders
utilizing a feed belt and take-away rolls to advance
successive copy sheets to transport 70 which advances
the sheets to rolls 72 and then to transfer station D.
A high capacity feeder 82 is the primary source of

copy sheets. Tray 84 offeeder 82, which is supported on
an elevator 86 for up and down movement, has a vac
uum feed belt 88 to feed successive uppermost sheets
from the stack of sheets in tray 84 to a take away drive
roll 90 and idler rolls 92. Rolls 90, 92 guide the sheet
onto transport 93 which in cooperation with idler roll
95 and rolls 72 move the sheet to transfer station station
D.
After transfer station D, photoconductive belt 10

passes beneath corona generating device 94 which
charges any residual toner particles remaining on belt
10 to the proper polarity. Thereafter, a pre-charge erase
lamp (not shown), located inside photoconductive belt
10, discharges the photoconductive belt in preparation
for the next charging cycle. Residual particles are re
moved from belt 10 at cleaning station G by an electri
cally biased cleaner brush96 and two de-toning rolls 98
and 100.
The various functions of machine 5 are regulated by

a controller 114 which preferably comprises one or
more programmable microprocessors. The controller
provides a comparison count of the copy sheets, the
number of documents being recirculated, the number of
copy sheets selected by the operator, time delays, jam
corrections, etc. Programming and operating control
over machine 5 is accomplished through a U.I. 11. Op
erating and control information, job programming in
structions, etc. are stored in a suitable memory 115
which includes both ROM and RAM memory types,
the latter being, also used to retain jobs programmed
through U.I. 11. And while a single memory is illus
trated, it is understood that memory 115 may comprise
a series of discrete memories. Conventional sheet path
sensors or switches may be utilized to keep track of the
position of the documents and the copy sheets. In addi
tion, the controller regulates the various positions of the
gates depending upon the mode of operation selected.

Referring now to FIG. 4, finishing station F receives
fused copies from rolls 102 (FIG. 2) and delivers them
to gate 110. Gate 110 diverts the copy sheet to either
registration rolls 104 or inverter 112. Copy sheets di
verted to rolls 104 are advanced to gate 114 which
diverts the sheets to either the top tray 106 or to vertical
transport 108. Transport 108 transports sheets to any
one of three bins 116, 118 or 120 which are. used to
compile and register sheets into sets. The bins are driven
up or down by a bidirectional motor adapted to position
the proper bin at the unloading position where a set
transport 122 having a pair of set clamps is used to grasp
and transport sets from the bins to either sheet stapling
apparatus 124 when it is desired to staple the sets, or to

10

15

20

25

30

35

40

45

50

55

60

65

6
binder 126 when it is desired to bind the sets, or to
stacker 128 when unfinished sets are desired.

Referring to FIG. 5, there is shown the color touch
monitor 12 for the touch dialogue U.I. 11. Monitor 12,
which provides an operator user interface with hard
and soft touch control buttons enabling communication
between operator and machine 10, comprises a suitable
color cathode ray tube 216 of desired size and type
having a peripheral framework forming a decorative
bezel 218 thereabout. Bezel 218 frames a rectangular
video display screen 220 on which soft touch buttons in
the form of icons or pictograms (seen for example in
FIG. 7) and messages are displayed as will appear to
gether with a series of hard control buttons 222 and 10
seven segment displays 224 therebelow.

Referring now to FIGS. 6 and 7, for dialogue pur
poses, screen 220 of monitor 12 is separated into five
basic display areas, identified as a message area 232, a
dialogue mode selection area 234, a dialogue pathway
selection area 236, a scorecard selection area 238, and a
work selection area 240.
Message area 232 consists of 3 lines 241 located at the

top of screen 220. The dialogue mode selection area 234
comprises an active area containing certain top level
dialogue mode controls available to the operator. The
mode controls are soft touch buttons 250-0 (CUR
RENT JOB), 250-1 (PROGRAM AHEAD), and 250-2
(TOOLS) in the form of icons representing file cabinets
located on the right side of the screen 220 directly
below message area 232.
The dialogue pathway selection area 236 and the

scorecard selection area 238 basically simulate a card
within a card filing system with primary dialogue path
way file folders 260 and secondary file cards, the latter
being referred to as scorecards 270. The dialogue path
way file folders 260 each have an outwardly projecting
touch tab 262 along the top edge identifying the dia
logue pathway represented by the folder, as for example
STANDARD, FANFOLD, OVERSIZED, etc.
Scorecards 270, which present the features (first level
program selections) available with each of the dialogue
pathway file folders 260, have a touch tab 272 display
ing the programming pathway options available with
the scorecard, such as PROGRAM, EXCEPTION,
etc.

Work selection area 240 has program conflict mes
sage area 246 reserved for programming conflicts and
prompts with the remaining area used for displaying the
feature options (second level program selections) avail
able with the first level program selection that is
touched on the scorecard currently displayed.

Referring particularly to FIG. 8, using touch screen
12 of U.I. 11, the user in order to program a copy or
print job for machine 5, touches the CURRENT JOB
button 250-0 to display the STANDARD, FAN
FOLD, and OVERSIZED file folders 260. By touch
ing the STANDARD tab, the tabs 272 of scorecards
PROGRAM, EXCEPTION, etc. are displayed with
the programming options available displayed in the
form of icons.

Presuming that the user is starting programming the
job, the job programming score card is selected by
touching the "PROGRAM” tab. As seen in FIG. 8, the
program score card 270 contains various primary pro
gramming selections such as paper icon 302, reduce/en
large icon 308, etc. By touching a selected one of the
primary programming icons, as for example paper icon
302, the various programming selections in that cate

5,063,535
7

gory are displayed in the form of icons such as PAPER
SUPPLY icons 326, 328, etc. and STOCK icons 332,
334, etc. in work selection area 240. By touching se
lected icons (USER MAKES SELECTION-see FIG.
11 such as the 8.5x11 (tray "2") paper supply icon 328,
tab icon 340 for tabbed paper stock, etc., the particular
job parameters for the primary programming icon se
lected are programmed for the job.

Referring now to FIGS. 9-11, during the aforedes
cribed job programming selection process, each selec
tion is compared with previous selections (COMPARE
WITH PREVIOUS SELECTIONS). If a selection
conflicts with one or more previous selections (CON
FLICT2 as for example selecting side 2 image shift
where only single side copying (i.e., 1:1 sides) has been
selected, an error message 350 is generated and entered
into a program error or queue table 352 QUEUE MES
SAGE). If the error message was previously queued
(WAS MSG PREVIOUSLY QUEUED?), the message
is not queued a second time DEQUEUE MESSAGE).
Each error message 350 is entered into table 352 in the
order in which the error occurs so that there results, in
the event several uncorrected conflicts occur during
job programming, a queue of error messages in table
352.
The first error message 350 in the queue of error

messages in table 352 is displayed in programming con
flict message area 246 identifying to the user the pro
gram error that has been made. If the user re-programs
and corrects the program conflict error shown in the
conflict message area 246, the error message is deleted.
If additional error messages are queued in table 352, the
next error message in the queue is displayed in conflict
message area 246. If there are no other error messages in
table 352, conflict message area 246 is blank.

Referring particularly to FIG. 12, where special fea
tures and exceptions for certain pages in the stack of
documents that comprise the job are desired, the excep
tion program score card 270 is accessed. The exceptions
score card is brought up by touching the tab labeled
EXCEPTION. By touching DOCUMENT SELECT
icon 355 of the exception score card and using the pro
gram selections associated therewith that are displayed
in work area 240, certain documents, document sides, or
blocks of documents in the job can be selected for spe
cial treatment. By touching other selected ones of the
exception icons displayed such as SPECIAL PAPER
icon 357, INSERT icon 359, etc., the special programs
for the document pages selected can be made.

In the case of exception programming, particularly
where the reproduction machine offers a great number
of possible selections numbering in the hundreds and
the job requires a variety of special features and excep
tions, it is usually difficult for the user to remember
previous program selections and avoid making selec
tions which conflict with previously made selections.
As described, where a conflict occurs, it is entered in
the order of occurrence in program error table 352,
with the first error message in the queue displayed in
program conflict message area 246 of screen 12. When
programming long and complex jobs having numerous
special features and exceptions, it is usually more effi
cient to ignore programming conflicts until program
ning of the job is completed. This is because the num
ber of conflicts that can be identified and corrected at
one time is limited since only one conflict message at a
time is displayed in conflict message area 246. Further,

5

O

15

20

25

30

35

40

45

50

55

65

8
many attempted conflict corrections introduce new
conflicts which then must be resolved.

Referring particularly to FIGS. 13 and 14, to enable
job programming errors and conflicts to be identified
and dealt with more efficiently, a job table or job re
view window shown here as exception review window
365 is provided. Window 365 can be accessed at any
time during programming of the job or after program
ming is completed SELECT EXCEPTION REVIEW
ICON). Exception review window 365 displays by page
number and descriptive code all of the exceptions pro
grammed for the job. Since the number of possible
exceptions that can be programmed is substantial and
exceeds the capacity of window 365 to display all the
exceptions at once, a scroll icon 367 is used to scroll
review window 365. In the example shown, exception
review window 365 is sized to display up to 10 excep
tions at once, each exception having up to 6 selections.
Where the error message currently displayed in mes

sage area 246 is identified with one or more of the job
exceptions displayed in the exception review window
365 COMPARE EXCEPTIONS FEATURE WITH
DISPLAYED CONFLICT MSG.), those job excep
tions are visually identified or highlighted by displaying
the exceptions in black letters 370 on an amber back
ground 372 (DISPLAY EXCEPTIONS FEATURE
AS BLACK TEXT ON AMBER BACKGROUND).
Where additional conflicts with corresponding error
messages are queued in table 352 but are not currently
displayed in message area 246 (COMPARE EXCEP
TIONS FEATURE WITH UN-DISPLAYED CON
FLICT MSG.), these job exceptions are visually identi
fied or highlighted by displaying the exception in amber
letters 374 on a white background 376 in exception
display window 365 DISPLAY EXCEPTIONS FEA
TURE AS AMBER TEXT ON WHITE BACK.-
GROUND. This notifies the user that error messages
are currently pending in error table 352 but are not
currently displayed. The remaining exceptions dis
played in window 365 which are not in conflict and
hence do not have error messages pending in error table
352 are displayed in black letters 370 on white back
ground 376 (DISPLAY EXCEPTIONS FEATURE
AS BLACK TEXT ON WHITE BACKGROUND).
For each additional job exception (MORE FEA

TURES2, the foregoing process is repeated until all the
exception pages MORE EXCEPTION PAGES
have displayed, with the job exceptions highlighted or
not highlighted as described. As each conflict is re
moved by re-programming the job, highlighting of the
associated job exception(s), whether by black text on
amber background or by amber text on white back
ground is terminated and the exception displayed as
black text on white background. Concurrently, the
associated error message in program error table 352 is
deleted. Where the error message is also displayed in
programming conflict message area 246, the error mes
sage is deleted and the next error message in the queue
of error messages in table 352 displayed. Where all
conflicts have been resolved, the job exceptions in re
view window 365 are displayed by black text on white
background.
Appendix A provides the program listings for

"Queue Parser" and "Display Mark” (Copyright (C)
Xerox Corporation, 1985, 1986, 1987, 1988, All Rights
Reserved routines for the above-described process.
While use of color to highlight conflicts has been

described, other forms of highlighting such as pulsing;

5,063,535
flashing; character distinctions as by bolding, italicizing,
boxing, etc. may be envisioned. Further, other program
selection displays depicting job programming Selections
with selection conflicts highlighted in accordance with

10
While the invention has been described with refer

ence to the structure disclosed, it is not confined to the
details set forth, but is intended to cover such modifica
tions or changes as may come within the scope of the the teachings of the present invention may be envi- 5 following claims.

sioned.

APPENDIX A

QUEUE PARSER
MicroDfs: 00PHOLE
O

Setabel CNAME
PROC

LF OS O
p

CF (2) EQU S+2
PENO

- in a - an an - - - - a was a was on as - as a a - a a a

SOSINTERFACEREnterLOOP CNAME
PROC
OS O f

JMP LOOPRnEntryAddress:
PEND

END LOOPHOLE MacroDefs;

RainterLOOP: OSINTERFACE;

Private Proc to allow listing of Conditional Checks:
stConditional Checks; PRIVATE PROCEOURE as

ENTER:

LOOPHOLE
Stabel, RefNumbers39

END LOOPhOLE:

IF (Conflicts.g. Local ExceptionComposite Array (nunoff ray tonSiplex Special PaperExceptions (x 0) Ato ((Conflicts g. stock In Tray1 USelect. tabs)
OR (Conflicts.g. stock. In Tray a U1 Select, transparency }

HE OR (Conflicts.g. stock IATrayl is U Select. less thanNine Inch)) HEN

compositRegister compositRegistertray1 NonSimplex Special Paperitask; If buildDisplayedits gRegister
THE
-- We are now looking at the currently displayed message:

playedtsgcompositRegister displayedtsgcompositrogister tray1 NonSiapex Special Paper task;
END IF;

If (Conflicts.g. Local ExceptionCompositeArray(nunof Tray2NonSimplex Special PaperExceptions) (> 0) AND ((Conflicts.g. stock. In Tray2 a USelect. tabs)
OR (Conflictsg.stockinTray2, a Ui Select. transparency)
OR (Conflicts.g. Stock. In Tray2 a USelect. less Than N1 nonch)) E.

compositRegister compositRegister tray2NonSimplex Spectal Paperitask: IF buildDisplayedisg?tegister
hEN
- We are now looking at the currently displayed message:

playaatsscopositing titor * displayedtsgcomposit Registertray2NonSimplex Special PaperMask;
END IF;
Re&nterLOOP);

LOOPOLE
Stabel, RefNumbers40

ENO LOOPHOLE:
as as as a as a

If (Conflictiisg. Local ExceptionCompositeArrayn unoff ray GroupedSpecialPaperExceptions gx 0)
ANO (Conflicts. Stock In Trayi USelect. tabs)

OR (Conflicthis g. stock. In Tray1 U1Select. transparency)
OR (Conflicts. Stockin fray1 Ui Select...less Than 1 no inch)) The N

compositRegister - compositRegistertray1GroupedSpecial Papertask; IF but idDisplayed Msg?.gi Ster
THEN
-- we are no looking at the currently displayed essage:

displayed his gcompositRegister - displayedisgcomposit Register tray 1GroupedSpecial PaperMask: END IF;
END F;

If (Conflicts.g. Local Except 1 onCompositeArrayn unoff ray2Grouped Special PaperExceptions c) 0)
AD ((Conflicts.g. stock In Tray2 USelect. tabs)

OR (Conflictiisg.stock in Tray2 U Select. transparency)
OR (Conflictiisg. Stock. In Tray2 s U Select. less Thanidine inch))

5,063,535
11 12

The
composit togister - composit Register tray2GroupedSpecial Paperlaski
F but dotsplayedsgegister
E.

-- we are now looking at the currently display9 ge
displayedisgcompos 1 t?ogister displayeaksgcomposit Ragister tray2GroupedSpecial Paportask;

ED IF;
ENO IF;
ReEnterLOOP);

LOOPOLE
Stabel, RefNumbers43

ENO LOOPHOLE;
- w is assssssss

noncomposit Register r noncompositRegisterpago TwoChapterStart:
If buildOisplayedtsgegister
HE

-- We are no looking at the currently displayed essage:
displayedisgonCompositRegister t displayed Sg.NonCompositRegister pagewochapterStart;

END F
ReEnterLOOP);

00PHOLE
Setlabel, RefNumbers 51

Ed LOOPhoLE:
a sa ska seas a k . .

IF (Conflicts. Local ExceptionCompositeArraymunoft ray1Special PaperExceptions gx 0)
AND (Conflictsg. ConflictSelectionArray(USelect. paperSupply Index USelect. tray1)

OR (Conflicts. ConflictSelectionArray (Ui Select. paperSupply index) USelect. AutoSwitch))
HEN

compositRegister r compositRegister tray1Special Paporia Sk;
If buildOisplayed SQReg1 Stor
HE

-- We are now looking at the currently displayed message:
displayedisgCompositRegister t displayOdisgcopositRegister tray Special Paper ask:

ENO IF;
END IF:

IF (Conflictiisg. Local ExceptionCompositeArrayInunoft ray2Special PaperExceptions gX 0)
AND (Conflictiisg. ConflictSelectionArrayu Select. paperSupply Index Ui Select. tray2)
HE

compostttegister t compositRegister tray2Special Paperkask;
If buildOsplayedlag?togister
THEN
-- We are now looking at the currently displayed Massage:

displayedisgComposit Register t displayed his gComposit Register tray2Special Paperblask;
END IF;

END IF;
RenterLoop);

LOOPOLE
Stabel RefNuabers 52

END LOOPHOLE;

noaCompost tRegister - nonCompost Register page. Two TrayOne Special Paper page Twof ray TwoSpecial Paper;
If but laot splayedisgogister
HE

-- we are now looking at the currpaty displayed message;
played soloncanoestlegister t displayedisgonCompositRegister page. Two rayOneSpecial Paper page Two Tray TwoSpecial Paper;

F:
Renterloor(); - - ---------

LOOPOLE
SetLabel, RefNumbers56

Elio LOOPhOE
up is R.

noncompositRegister noncompositRegisterpageOneSimplex;
If but dotsplayedisgtegister
HEN

- We are now looking at the currently displayed message:
glycatsaloncompositRegister displayedsgloACompositRegister pagaOneSimplex;

REnt-Loop();

Setlabel. RefNubers58
END LOOPhOLE;

page 16xceptions ExceptionAccess. Determine PageOneAnd TroExceptionvalues(); .
IF ((page 1 Exceptions ExceptionAccess pageOne TrayOne Special Paper) ExceptionAccess. pageOne TrayOneSpecial Paper)
AND (Conflicts. ConflictSelectionArray(USelect. frontCoverIndex X U Select. front rayOneBothSides Imaged)
HE

noncompositRegister nonCompositRegister pageOne TrayOne Special Paper;
If but dotsplayedisg?tegi Star
This
-- ble are now looking at the currently displayed message:

glycatsaloncaposthetitor displayeds gonCompositRegisterpago0ne TrayOneSpactal Paper;
Eoif;
If ((pagitaceptions ExceptionACCS SpagnetrayTwoSpecial Paper) ExceptionAccess. page0netrayTwoSpecial Paper)
AND ((Conflictsg. ConflictSelectionArray(USelect. frontCoverIndex X Ui Select.nofrontCovers)

AO (Conflicts.g. ConflictSelectionArray(U1Seluct. frontCoverIndex c Ui Select. front TrayTwoMoImaging))

E.

13

IF buildOisplayedsgeister
E.

5,063,535
14

aoncoapositegister . noncompositRegisterpageOne Tray TwoSpecialPaper

--. We are now looking at the currently displayed essage:
displayed its goaCompositRegister displayed signoncompositRegisterpageOne TraytroSpecialPaper;

ENO F;
Ed F:
ReEnterL00P;

OOPOLE
Settabel, RefNunbar357

EN LOOPOLE

noncompositRegister t all Exceptions Conflictitask;
IF biddisplayedsgeg Stor
HEN

-- we are now looking at the currently displayed message:
displayedisgNonCompositRegister displayedisgonCompositRegister all ExceptionsConflictask;

EN IF;
ReÉnterLOOP:

OPOLE
SetLabo, RefNuator24

ENO LOOPHOLE

noncomposit Register - noncompositRegisterpageOne Insert:
IF buildOsplayedisgregister

E.
-- ale are now looking at the currently displayed assage:

displayed is gonCompositrogister displayedSg.NonCompositRegisterpageOneInsert:
END IF;
RoenterLOOP);

EO PROCEURE listconditional checks;

ENTER;
-- Don't et procedures accessing Conflict essage Queue execute concurrently :
OS. Lock using queunlock
compositrogister (;
nonCampositRegister 0;
displayedisgCompositRegister 0;
displayedisgonCompostegister 0;
but do isplayedisgregister - FALSE;

-- LOOP from O up to Conflict Queue Current essage Position:
K: FOR k r beginning of queue UPTO conflictCP
OP
Displayedtsg: If k is conflictCP
THE

buildisplayedtsgregister TRUE;
ED IF Displayedisg;

I: FOR 1 - O UPTO (numberOf Ex ProgConflictsgs - 1)
OP

ExProgisgOisplayed; IF ConflictOueuk) is EProgConflicts(i)
HE

-- Registers can be built at ther unconditionally, or by further conditions being parsed:
lion Conditional: IF 8tt Pattern si gX conditionDependent

E.
compositRegister (compositRegister BitPatterns);
If buildotsplayedsgegister
TE
- We are now looking at the currently displayed message:

layed socopositRegister t (displayedisgcompositRegister BitPatterns(i);
ESE

Conditionatable:

Conditionable:

,

Conditional Table:
as assassasses

EOS
RefNanberS39
RefNumbers 40
RefNumbers43
RefNumberss
Refers52
RefNumbers
RefNumberss
RefNumbers
RefNaber 24

gEX
child
gld
gd
chs
KEX

g

-- Check other conditions which depend on message i, found in conflictOueue k:
OOPOLE

Address of LSB (1st entry in Conditional Table:)
Index into "Conditional Table:

o, Index into "Conditionalate:
2; lord Walues in the
Address of LS8(i-th entry in table)
LSB (Address of i-th entry in table)
Address of MSB 1-th entry in tab1)
S8(Address of i-th entry in table)

Address of i-th entry in table

5,063,535
15 16

00PREntryAddress: EQU S+2
() as is a sea has

Eno loophol;
END IF NonConditionali

Edo IF EProgsgot 3 playOdi
Enio LOOP I:

EO OOP (;

Elio PROCEDURE petraineExceptionConflicts:

ENO poouLE isgdisplay impli

DISPLAY MARK
DisplayMark: PRIVATE PROCEOURE
display Exception ProgramCounter: CAROINAL;
ENTER; -- DisplayMark

Switch Taskin(displayexception ProgramCounter);
composite InfoFor feature - composite Info forfeature Table featured);
noncomposite InfoFor feature r (nonComposite info for feature fable featured) original Info);
-- If not image shift at 0.
F featured cd 6 TheN

ui Primitives. itemID r curretextRoot Id t featured;

ELSE -- If image shift at zero.

-- use image shift offset.
ui Pratives. itemID - currentTextRootd t 1;

END IF;

-- composite information for this exception is not known,
IF (NOT composite infowai id) THEN

-- If information will not be needed because no composite conflicts are displayed.
IF (Msg01 splay. composit Register 0) THEN

composite Register - 0;

ELSE -- If composite info may be needed.

-- deteratine which composites are effected by this exception.
(composite Register - ExceptionAccess. Managecomposito Snext ReviewLine, ... report;
composite infoWald TRUE:

ENO IF;
END IF;

-- If this feature is associated with a conflict.
If (((composite Register composite Info for feature) & MsgDisplay . compositRegister) g> 0)
OR (((nonComposite InfoForfeature & nonComposite Register) isgOisplay. nonCompositRegister) {X 0) THEN

-- If this feature is associated with the conflict that is currently displayed.
if (((composite Register compos 1 to info for feature) & MsgOisplay.displayudsgComposit Register) g> 0)
OR (((noncomposite Info?forfeature noncomposite Register) MsgDisplay.displayed MsgonCompos 1 tRegister) {X 0) THEN
-- Display tax t on amber background.
Ut Pratt ves. As glo r u Pratives.asgD t (conflict Offsets featured);

LSE - If this feature S associated with a conflict that is not on the display.
- -) is play amber text.

E uffinitives.asio U1 prinitives.msg0 t (2 (conflictOffsets featured))); No F; O
END IF;

ui Primitives. Oisplay Text();
switch Taskout displayexception ProgramCounter;

END PROCEDURE Oisplaylark;

ETER -- Exception Rowtowfine

-- If a new selection has just been made.
If (Tslib. iconoperation a select) AND (TSL1b. action . fingerUp) THEN

SELECT Stib, sensord fo

-- If up scroller selected.
CASE is wai current jobstandardexception review scroll upl;

-- love review window pointer forward by n1nt exceptions.
inde - 0 o
Advanced indow: BLOCK
LOOPOLE

Advance indowloop: OS O
END LOOPhOLE;

-- If advancing would not make us point to tail of list.
If displayforwardLinkst (review Index) {x tail of Lt St TheN

5,063,535
17 18

rr Start from nett exception.
review Index r display forwardLinks frew inunde();

ELSE ss f at botton of is.

-- Stop looping.
EXT LOCK Advancelindow;

EN IF;

IF (index is 8) THEN
EIT lock Advance window;

ESE
inde r had t l;

ENO IF;

-- Jump back to top of loop (and over El 75)
OOPHOE

JMP Advanced indowloop: t2
END LOOPHOLE;

ED BOC Advancewindow;

-- If down scroller selected.
CASE a wai current jobstandardia inexception revious cro down:

-- owe review window pointer back by nine exceptions.
index r);
Reverselindow: 3.0C
LOOPOE

Roverse bindow.oop: OS
ENO LOOPOE;

e- if backing up would not take us point to head of 1st.
If displayBackwardLinks treviewindex KX head of list THEN

-- Start from previous exception.
review Index t displayBackwardLinks treview Index;

ELSE s - If at top of list.

-- Stop looping.
EXT CK Riversindow

ENO F;

If (index s 8) THEN
EI 80CK Rewersawindow;

ESE
index - index + 1 :

EN IF

-- Jump back to top of loop (and over E7 5)
OPE
JP Reverself indow Loop: t2

ENO LOOPOE:
ENO BLOCK Reversellidow;

-- If leaving exception review frame.
CASE a si current obstandarde caption review returnt:

have display manager renowe exception review frame.
TSLib. dialogControl (TSL b. exit Exception Review - TRUE;

Ed SELEC
El F;

- If frano needs to be displayed.
If (((TSL1b. iconoperation is . Select.) AND (TSL b. action is . fingerup))

OR (TSlib icon0peration a , initialize)
OR (TSlib iconoperation . videoEngine Recovery)
OR ((St. ib. iconoperation a ... redraw)
AO (vienden a head of list)))

AND (OT TSL1b. dialogControl (TSL1b. extException Review.) THEN
If review index is not indicating empty list.

if reviewadi & headloftist EN

-- Parse review window values to see if review index needs to be adjusted.
nextReviewLine - d 1 splay ForwardLinkst (reviewindex;
-- Check lines through 9.
ide t .

- Set up non pre-emptive looping.
Parself indow: Block
OOPOLE

Topof Parseloop 2: DS O
END LOOPOLE:

* - If not at but to uf is t.
if no twent me cd ta. Of List The
-- Go to not ine.
nestReviewLine r display forwardLinks nextReviewLine;

ELSE -- If a botton of St.

-- If backing up one exception would not aake us port to head of St.
If displaybackwardLinkstrove Index gX head of Lt St THEN

- Backup review inde by one exception. Continue looping if case we need to back up nor.
reviewindex t displaysackwardLinks treviewindex;

END F :
END F

5,063,535
19 20

IF (index 9) THEN
EXIT BLOCK Parse window;

ELSE
index - index + 1 ;

END IF;

-- Jump back to top of loop (and over E7 75)
LOOPHOE

JMP TopOf Parsloop 2: t2
ENO 00PHOLE:

ENO BLOCK Parsewindow;
END F :

- - Bank entire review window.
ui Primitives. teno exception review table blankt ngbi taap
Ui Primitives. Displayton();

- - Now start displaying review window.

-- Assume we are not at bottom of Window.
reviewindowAt3otton - FALSE;

-- Initialize next reviour ling for loop.
next Reviewine F raw ie index :

index r 0;
current Rootd - exception reviewdocumentone 0;
current extRootd - wap rexcept 1 on rew owcqone;

-- Set up non pre-emptive looping.
Displaywindow; BLOCK

OOPOLE
Topof Display loop 2: OS O

END LOOPHOLE:

exception field Root Id - current Rootd;

- If not at end of list.
If nextReviewine gx tail Ofl. 1st. TheN

-- Display next no.
display Except on Number r next Reviewline:

- display exception number fast. This is safe since display is always locked when this routine is called.
turboDisplay - TRUE; -
OOPhOLE
CSwitchTask display Exception fast

END LOOPHOLE;

composite InfoWalid f ASE;

-- Setup original information.
-- If this exception is for original 1.
IF (d. 1 splayexceptionArrayt (group Loweroriginal Index (next Review Line) - 1) THEN

original Info - ortginal 1 Info:

-- If this eception also includes original 2.
If (t display ExceptionArray group flag Index) nextReview in & group flagasik) gx 0)
ANO (display Exception Array (groupUpperOriginal Indo (next Rev 10w Line »s 2) THEN
original Info t t original Info original 2 Info);

ENO IF;

-- If this exception includes original 2 (but not original 1).
ELSIF (display Except on Array group lowerorginal Index next Review Line) s 2) THEN

original Info - original 2 Info; w

ESE - - If this exception does not include original 1 or 2.

original Info - MsgDisplay, all Exceptions Conflict.Mask:
ENO F;

-- Display nark for features that are selected.

IF ((display ExceptionArray togNotAtDefault Index) next ReviewLine) & cqNotAtDefaultMask) c> 0) THEN
-- Determine message id based on selection.
tempvalue r RECAST (display Exception Array t cqPreset index (next ReviewLine) & cq Preset Mask), SHORT CARDINAL); If (tempvalue gs US act. paste Up) hEN

ui Pratt i ve S. as QIO r cqMessage Table(top value - 2);
ESE

U1 Pratt ves.asg I O - 1 i ;
ENO IF;

featured - 0;

00POLE
Cal Sw1tch Task Display Mark

END LOOPHOLE;
END IF;

If ((display Except 1 on Array 71 mageShiftNotAtoe fault Index (next Raw awl 1 no & imageShiftNotAtDefaul task) <> 0) THEN
-- Determine message id based on selection.
tempValue RECAST (displaye acept on Array f (shift Index (nort ReviewLine & shift Mask), SHORT CARDINAL;
tempvalue) Job Programming. Convert.Shiftvalue. toScorecardo is play, tapvalue);
- if zero has been returned.

If tempvalue a 0. The N

5,063,535
21 22

F USelect. displayunits Inletric THEN
UPrinitives.sgD 172;

ESE
ui Prinitives. IsgID - 173;

END IF;
featured ;

ESE

Ui Primitives. Insg|ID tempvalue t 3;
featured ;

EN IF;

LOOPOE
Cal SwitchTask DisplayMark

ENO LOOPHOE;
END F

IF ((displayexceptionArrayf chapterization Index next ReviewLine) & chapterizationMask) cd 0) The N

Ui Prinitives. RsgD 4;

featured r 2;

LOOPHOLE
CalSwitch Task Displaymark

END LOOPHOE:
Elio IF

IF ((display ExceptionArray tonesided Original Index (nextReviewLine & oneSidedOrigina Mask) c> 0) THEN
Ui Priit ves. AnsgD - 4;

featured 3;

OOPHOE
Cal Switch Task Displaybark

END LOOPHO:
END F :

tempvalue - RECASTROYATE (display Exception Array finsert Index) next Rey all 1ne & insert Mask), 2), SHORT CARDINAL;
If (topvalue gx ui Select. tray3) THEN

UPrimitives. AnsgD r taapvalue + 4;

featured t 4;

LOOPHOE
CaSwitch Task Display Mark

END LOOPOLE;
ENO F;

tempvalue * RECAST ROTATE (display ExceptionArray special Paper Index nextReviewline & specia PaperMask), 2. SHORT CARO iMAL;
If (tempvalue gX Uiselect. tray3) THEN

U1 Printives, as giD - tempvalue + 4;
featured s;

POLE
Cal Switch ask Display Mark

Elio Opole;
END F

-- Deterans inde of next line.
nestReviewLine - display forward inks nextRevitaline;

ESE -- If at end of itst.

- Teranate loop 1ng.
inde - 9;

ENO EF;

IF (index is 9). THEN
E. BLOCK D1 splay indow;

ESE
index - index + i ;
current Rootd - curren trood t (exception row of docuAnttoo except on rew 10 docus ontone 0):
current Test Rootd r currentText Rootid + (wapraxcept on rew oncq two wap recept on reviou? cqone);

Ed F;

-- Jump back to top of loop (and over El 75)
OOPHOE
JMP TopOf OisplayLoop 2: t2

END LOOPOLE:
ED BLOCK Displaylindoor;

-- If not reviewing top of list.
IF (review Index <> topof Active List) THEN

-- take scrollers full color.
Ulipriatives. iconoperator - full ColorShadowed;

ESE

-- Make scrollers ghosted.
Ui Pratives. 1 con0perator - ghostedShadowed;

ENO EF;

5,063,535 23
-- If review window is showing top of list.
IF (raw how Index a top of Act we List) The N

-- Remove shadow from down scroller.

24

U Print ves. 1 con0perator r (Ui Priatives. con0perator remove Shadow81 t);
END IF;

-- Update proport tes.
ui Priatives. itan IO r wancurrent jobstandardma in wxcept 1 on review Scroll down i;
U1 Pratt Wes. Modify icon();

-- if rew aw window is showing bottom of list.
if (next ReviewLine tail of List) The N

-- Remove shadow from up scrollf.
upriatives.conoperator r (U Prinitives, iconoperator removeShadow81 t);

ESE

-- Display up scroller with Shadow.
uprates, iconoperator - (Un Praith V8 S. 1 con0perator & addShadow81 t) ;

END F :

-- Update propert 10 S.
UiPrimitives. i tend wai current jobstandard exception review Scroll upl;
ui Prinitives. biodify icon();

-- Display return icon full color with Shadow.
UPrimitives. conoperator - full ColorShadowed;
priatives. tenID - wancurrentjobstandardoxception review return:

ui Primitives. Modify icon();

END IF;
END PROCEDURE Exception Review frame;

We claim:

1. A method for programming a reproduction ma
chine and identifying programming conflicts that occur,
comprising:

a) using an interactive display with touch display
screen, inputting desired program selections;

b) where a program selection error is made, generat
ing an error message;

c) queuing said error message with other error mes
sages for different programming selections in a
predetermined order in an error message queue
table;

d) displaying at least one error message from said
queue table on said touch display screen;

e) selectively displaying a job table on said touch
display screen in which the program selections
made are displayed;

f) highlighting the program selections displayed in
said job table for said one error message by a first
visual identifier;

g). highlighting the program selections displayed in
said job table for other error messages in said queue
table by a second visual identifier;

h) in response to correction of said program selection
error;
1) deleting said one error message from said queue

table and from said touch display Screen,
2) terminating highlighting of the program Selec

tions for said one error message by said first
visual identifier in said job table;

3) displaying the next error message in said queue
table on said touch display screen,

4) changing highlighting of the program Selections
displayed in said job table for said next error
message from said second visual identifier to said
first visual identifier; and

j) repeating step huntil all of said program selection
errors are corrected.

2. The method according to claim 1 including:
a) highlighting the program selections for said one

error message by a first color; and

b) highlighting the program selections for other error
messages displayed in said job table by a second,
color.

3. A method of identifying conflicts that occur when
programming jobs in reproduction machines using an
interactive display with touch screen, comprising:

a) using said touch screen, inputting desired program
selections;

b) where a program selection error is made, generat
ing an error message identifying said error;

c) queuing said error message with previous error
messages in a message queue table;

d) displaying a preset one of said error messages in
said queue table on said touch screen;

e) displaying a job review window on said touch
screen in which the program selections made are
displayed;

f) for program selections displayed in said job review
window corresponding to said one error message,
highlighting said program selections in said job
review window by a first color;

g) for other program selections displayed in said job
review window corresponding to all other error
messages in said queue table, highlighting said
other program selections by a second color;

h) for all remaining program selections displayed in
said job review window without 'error messages in
said queue table, displaying said remaining job
selections without highlighting;

i) deleting said one error message from said queue
table and from said touch screen while terminating
highlighting of the corresponding program selec
tions in said job window when said one error is
corrected;

j) displaying the next error message in said queue
table on said touch screen while changing high
lighting of the corresponding program selections in
said job window from said second color to said first
color; and

k) repeating steps i and j until all of said error mes
sages in said queue table are corrected.

K s

30

40

45

50

55

