United States Patent [19]

(11] Patent Number: 5,063,535

Jacobs et al. [451 Date of Patent: Nov. 5, 1991
[54] PROGRAMMING CONFLICT 4,691,317 9/1987 Miazga et al. ..occveeeerrerenene. 371/29.1
IDENTIFICATION SYSTEM FOR 4,817,418 4/1989 Asami et al. 371/29.1
REPRODUCTION MACHINES SEIET8 871989 Brown o 3421
[75] Inventors: Craig W, Jacobs, Fairport; Joseph L. 4:920:538 4/1990 Chan et al. .ocevevvverceceenirnnnnn 371719
Filion, Rochester, both of N.Y. 4,922,491 5/1990 Coale e 371/16.5
. . 4,933,880 6/1990 Borgendale .. e 3647523
[73] Assignee: Xerox Corporation, Stamford, Conn. 4,956,703 9/1990 Uzuda et al. eeeeeverrevrermrsossone 358/76
[21] Appl No.: 272,041 OTHER PUBLICATIONS
[22] Filed: Nov. 16, 1988 Xerox 5700 Electronic Printing System Reference Man-
[51] Int. CLS .ooooerrereeeriaens GO6F 15/00; GO6F 3/14; ual; Sep. 1980; Appendix B; pp. 2-1 to 2-5.
GO6F 11/08 . .
" Primary Examiner—Allen R. MacDonald
[52] U.S. CL weovoovvonnrenenneene o 3?6'17; ggmg% dssistant Examinor—Ayaz R, Sheikh
[58] Field of Search ’3 64 /200’ 900 51.8- Attorney, Agent, or Firm—Frederick E. McMullen
340/715; 371/19, 16.4, 16.5, 21.6; 355/204, 205, [57 ABSTRACT
206, 207 . L. . .
Programming conflict identification system for repro-
[56] References Cited duction machines using a color touch screen for input-
U.S. PATENT DOCUMENTS tir}g programm.ing ir}structions having a job review
68 Smith et al 37119 window for displaying the programming selections
g’:;;gzé lgﬁg 63 Amxtle i,tt 21. """""""""""""" 371;19 made, a message area in which one conflict message at
4161277 771979 Stoiner e .. 371/164 @ time is displayed, and an error table in which pro-
4,332,464 6/1982 Bartulis et al. .. 355/14C ~ gramming conflicts are queued, with programming
4,413,314 11/1983 Slater et al. 364/188 selections corresponding to the currently displaye
1 64 lecti di h ly displayed
4,499,581 2/1985 Miazga et al. 371/164 conflict message highlighted by black text on an amber
:;l)gg‘;'g ;; iggz iﬁg‘:‘;‘:}g ‘;‘t ‘;l]' 33%76{2 background, and rgmaining conflicts highlighted by
4,639,881 1/1987 Zingher 3647571 amber text on a white background.
4,646,250 2/1987 Childress 364/518
4,661,953 4/1987 Venkatesh et al. .cvueevevennenen. 371/16 3 Claims, 13 Drawing Sheets

ENTER

SELECT EXCEPTION

U*_

CDM'AI! W|YH
SEl!CﬂONS

COMPARE EXCEPTIONS
FEATURE WITH
DlSPLAYED CDN'LK.T

DISPLAY EXCEPTIONS L__

WAS MSG.
DEQUEUE
PREVIOUSLY MESSAGE

| “rEATURE AS BAACK
TEXT ON AMBER
BACKGROUND
COMPARE EXCEVTIONS
CONICTMSG,
YES FERTOREAS AMRER.
F RE AS AM
TEXTON WHITE [
SACKGROUND
NO
DISPLAY EXCEPTIONS
FEATURES AS BLACK
TEXT ON WHITE
BACKGROUND

U.S. Patent Nov. 5, 1991 Sheet 1 of 13 5,063,535

i

117
‘////! |12
—
—
FIG. 1

/l

X

|

U.S. Patent

Nov. 5, 1991

l"‘

Sheet 2 of 13

I

[I

l

l

HI

5,063,535

86

U.S. Patent Nov. 5, 1991 Sheet 3 of 13 5,063,535

5 114 61
MACHINE |le————» CONTROLLER |¢——>» u. 1.

MEMORY ¢
115 |

FiG. 3

U.S. Patent Nov. 5, 1991 Sheet 4 of 13 5,063,535

126

FIG. 4

U.S. Patent Nov. 5, 1991 Sheet 5 of 13 5,063,535

~ /)
(7
. J

e e OREERG . T
\ OO Emmma [ujn] ti)

222

FIG. 5

Sheet 6 of 13 5,063,535

Nov. 5, 1991

U.S. Patent

1144

0Lz
i —»
| (714
Ay
. . . \“ \j
- L}]
........ 2 H——z9z
734 2., 8 B J\ T
—| = oy I sy | ISR - ,
_z0sz - 1-0sz - 0-0Sz e.ﬁ.k\\l\ 3

\ IENRRRNRRARNRRERNRNRNND

0zZZ \

Sheet 7 of 13 5,063,535

Nov. 5, 1991

U.S. Patent

N lG‘t \ IOV J
— — ER E !
WYNDONd = .
JAINAIN
. ..r B . —_ l5.:5
1 ALNVYAD AdO)
. 4] p so¢ “ﬁ“ 1 -11 hd
> — | |==
A v _m._.IIH ‘=
=) = =¥
orz 144 * 039V S3Qls
4 i €
/
174 _ / Z0€
/v ¥IAOD OV WIAOD 1NONS idvd
~—y ' : |/
)]]
‘m« / oz | I | noudndx WYHDONd
“ , 1-052 \ ’ e
I (. (=) (=] !
:.ﬂ \D 1 E/ﬁc , a3zis ¥ano Q104 Nv4 QYVaNvLS y
$1001 QviHy aor \
z-0sz MYNDONY ININUND 0-08Z / mm.m «.knl.“' ".MMNn - «...bam.aﬂu."
‘ P I i
O S I S SRR
(1144
LU TETTTTOTO
N ZET

Sheet 8 of 13 5,063,535

Nov. 5, 1991

U.S. Patent

ore

1144

Z-0sT

r..----‘

A m w ‘ m ¥ \ ¥INVLS)
. — _ ey = !
j ﬂ :(‘ ‘
ws’.w._“.—wz - N , <hgs
ove R N | |
1 ; o e \
mm . % v9 . .
«m . . K™ 8 Qm.\\lug.jzu ALOVAD ADD
//. PEE C ve 1330038 —ﬂ_ -1 -
¥J01S ZEE > “wm | M=
— e
— | ve == —
rHxse MxXSse nxse h“.a ‘I “u@(!_ mwn.m."q
£ z i 2 . €
HI1LIMS O1NY \\ \
/ Z0g
AlddNS ¥3idvd 8ze 9zZ¢€ A L ¥IA0Y XoVe ¥INO) 1NOWS dve
|/
4 H
" “ NOWLdIDX3 WVHYD0Ud
== \ “
\ i
\ — (—— _]_//1 ¥ aazis ¥In0 @104 Nv4 ¢<oz<$
S1001 QAVY3IHY
:5_“.”5 hz“ﬁzu 0-0SZ / Q@N -—-- N@N

__________:_____::

5,063,535

Sheet 9 of 13

U.S. Patent

Nov. 5, 1991

1>

00

V'L - 00
3903 1HO9

TV AdOD

/\
X

60
s - 00
3903 WOolLl04d
£l
¥s - 00
3903 1431
TYINYON

‘3IOVNISIAISLOoIZI0 L0 ¢
10} pa1)3J3s aq Jouued | JIHS Z IPIS

(—

J

'SU0IIB|IS WVYDOUd LNIHUND Y3 ay)
- pawwesboud se paidod agjouued qof ¢

\ yNIVvILS)
€T !
HVIHON
IA3NLIN 104LN0
L X
4
60 = [4% m
S ! -
(T IoNVING ALITYND A0
o 713INAN
-»> (W4 1
— | ze
—) < 7
14IHS
QIDVYNI S3018
¥IA0D YOove NIAOD INOW¥Y Vidvd NivKn
- |/
WVYY90ud
a3azis ¥3n0 > 0104 Nvi > QYVANVLS
r====1 F====" re=-=-3
1] 1] 1]
" 1 ! ' 1 ' '
H § 1 | 1 ' 1
1 ' t] 1] 1
t | Sp——— | bacwwd | M |
S ,
AGV3IY 1ON }

U.S. Patent Nov. 5, 1991 Sheet 10 of 13 5,063,535

352 —,
PROGRAM
o ERROR MESSAGE (1) | egp----| (ONFLICT
o i ERROR MESSAGE (2) i AREA
o i ERROR MESSAGE (3))
. ! ERROR MESSAGE (4) :11-\ 246
. i ERROR MESSAGE (5) _1_,/ 350
o i ERROR MESSAGE (6) .
o ERROR MESSAGE (7)
—> |
[]
[
[
S FIG. 10
/‘_—-—/—‘
. -
[J
ENTER
USER MAKES
SELECTION
COMPARE WITH
PREVIOUS
SELECTIONS
FIG. 11 T
MESSAGE
WAS MSG. DEQUEUE
PREVIOUSLY
QUE?UED MESSAGE

NO

END

Sheet 11 of 13 5,063,535

Nov. 5, 1991

U.S. Patent

1144

0zz

A

MIAIAN

4NOYd

VY
/\
\/

Y ¥l

G3NNVEDONd SNOLLIIINI

IN30

l

00Z- 1
{$3015) ANIWNDOQ

NOILDITIS LNIWNDOQa

i
\ NOUDITIS ANINNDOA €
SSE — j_
ALYND A4OD
L41HS 19vis ‘ 9IS -1

¥ILdVH)

@/ﬂm LSE— L

LMISNI W3dVd VD34S

NOLLd3IDX3 WvYD0ud

——

Qv3IHY
NYEDOW

Z-0SC

4
\ ']
\ /
\ i

//l J / a3zis ¥ano > a104 NV

J

S~z

4 > QYVANVLS
\Yv /.

Sheet 12 of 13 5,063,535

Nov. 5, 1991

U.S. Patent

1144

EL°O

4 N
8¢
(44
= D
174
ZLE—] vz M3IINIY
yieq %\\v S9A SIA ZAei} -1 Keay £7
ocs -} yeg—1 po—o LEN SAA zhes) L Aesy 44
3Nieq oo SIA SIA Z fea) | Aesy W or
L
9LE j1eq v'0—> $94 SIA Z feu) L Aesy 0¢
~—1
\
0LE >w__QJO 1ade Ipt
.I\v Ado> Hiys Papis-1 Hasu _m_uw%m «:..M:m.}wvoo
59€ e’ ves”
e i et 1 |/
! "anjeA 3DNAIY PAIIBAS Y3 YIM L4IHS L0 = XYW | ocz Pa NOLL4IOX3
b -SNOILd3IDXT 210w 10 | UO «u_z:ou ~9rZ
\
] 2052 i) wose [I5] \
= & =) ///s) @3zis ¥3n0 a104 N QUVANVIS
T e oz N E—— — oz
f-—==" F====" r===-19
... i P P i
0 H “ ' | i 1 i
! R W R S R G-
H 'SUOIIIAIS NVHOOUd LNIYUND Y3 Y3Yyd m
"p - pawweifioid se paidod aqg Jouued qor o Adv3IY hcz-

U.S. Patent

ENTER

SELECT EXCEPTION
REVIEW ICON

YES

COMPARE EXCEPTIONS
FEATURE WITH
DISPLAYED CONFLICT
M3G.

i

YES

NO

COMPARE EXCEPTIONS
FEATURE WITH
UN - DSPLAYED
CONFLICT MSG.

YES

NO

DISPLAY EXCEPTIONS
FEATURES AS BLACK
TEXT ON WHITE
BACKGROUND

Nov. 5, 1991

Sheet 13 of 13

DISPLAY EXCEPTIONS
FEATURE AS BLACK
TEXT ON AMBER
BACKGROUND

5,063,535

DISPLAY EXCEPTIONS
FEATURE AS AMBER
TEXT ON WHITE
BACKGROUND

MORE FEATURES

MORE
EXCEPTION
PAGES

END

FIG. 14

1
PROGRAMMING CONFLICT IDENTIFICATION
SYSTEM FOR REPRODUCTION MACHINES

BACKGROUND OF THE INVENTION

The invention relates to reproduction machines, and
more particularly, to a system for identifying conflicts
when programming reproduction machines.

Reproduction machines such as copiers and printers
have become faster and more complex and versatile in
the jobs they can do, presenting numerous and varied
job programming selections numbering in the hundreds.
Still, these machines must accommodate various opera-
tor skill levels ranging from the dedicated user at one
extreme to the casual user at the other extreme.

When programming jobs on machines of this type,
and particularly when programming long and complex
jobs having many documents to process, it is possible
and in some cases likely that programming conflicts will
be introduced. This is especially true in cases where the
operator lacks experience and training or is a casual
operator not totally familiar with the machine. These
programming conflicts are particularly common in
cases where the job itself calls for special exceptions and
features for certain pages in the job which are different
from the main job program involving the bulk of the
documents.

Where a conflict in the job program occurs and is not
detected prior to running the job, the machine stops
when it detects the conflict. This, of course, delays the
Jjob while the conflict is being corrected. In a high speed
production environment handling many jobs, not only
is the job being processed delayed but other jobs queued
behind the job for processing are delayed. And if sev-
eral programming conflicts exist, there may result a
series of interruptions, further reducing throughput,
increasing costs, and operator frustration and irritabil-
ity.

In this context, the user interface between the ma-
chine and the operator, which in essence serves as the
conduit for dialogue (i.e., the ability to talk) between
operator and machine, becomes particularly important
since it can serve not only the programming function
but also act as the means for identifying to the user any
programming conflicts that have been made before the
job is run. One type of user interface admirably suited
for this purpose is a touch screen where the various
programming selections are displayed in the form of
icons or pictograms along with instructional text mes-
sages. However, the amount of information that can be
reasonably displayed on the limited size screen of a
touch screen reduces its ability to identify conflicts,
particularly where a substantial number of conflicts
have occurred during programming the job. Thus, even
where a touch screen with icons and text displays is
used, the number and complexity of the conflicts that
occur when programming a job may overwhelm the
touch screen’s limited abilities to identify and display
the conflicts.

In the prior art, U.S. Pat. No. 4,646,250 to Childress
discloses a data entry system employing a data entry
screen in which data that is entered incorrectly is high-
lighted to provide an indication to the user as to
whether or not the data entered is correct or not. And
U.S. Pat. No. 4,639,881 to Zingher discloses a data input
system for printing machines employing a color moni-
tor in which a diagram of the machine is displayed, with
a fault detecting and fixing program which on detection

20

25

30

35

45

50

55

60

65

5,063,535

2

of a fault, displays the fault on the diagram, activates an
alarm (where immediate operator attention is required),
and provides corrective prompts for remedying the
fault -condition. Further, U.S. Pat. No. 4,332,464 to
Bartulis et al discloses an interactive interface for pro-
gramming copiers/duplicators employing a touch
screen with icon displays representing various program
selections. The Bartulis et al patent relates to the Xerox
5700 reproduction machine (Xerox and Xerox 5700 are
registered Trademarks of Xerox Corporation) in which
the interface provides operator messages ‘identifying
contradictory or invalid operator selections as de-
scribed in pages 2-1 to 2-5 and Appendix B of the
“Xerox 5700 Electronic Printing Systems: Reference
Manual” (September, 1980). And, in a somewhat non-
analogous field, U.S. Pat. No. 4,413,314 to Slater et al
discloses a control process for an industrial plant in
which a color touch screen with icon display is used for
inputting data through touching of selected icons dis-
played on the screen, the display highlighting on the
screen operating parameters that have been in an ‘alarm’
state.

SUMMARY OF THE INVENTION

The present invention is concerned with an improved
method for identifying programming conflicts in a re-
production machine having an interactive data entry
system with data entry screen displaying touch active
data entry fields for use in programming the machine,
comprising the steps of: highlighting by a first mark on
the screen each data field which on selection conflicts
with at least one previously selected data field; display-
ing a message on the screen describing one of the con-
flicts; and highlighting by a second mark those ones of
the conflicts which relate to the message.

The invention further relates to a method of identify-
ing conflicts that occur when programming jobs in
reproduction machines using an interactive display with
touch screen, comprising the steps of: using the touch
screen, inputting desired program selections; where a
program selection is in error, generating an error mes-
sage identifying the error; queuing the error message
with previous error messages in a message queue table;
displaying a preset one of the error messages in the
queue table on the screen; displaying a job review win-
dow on the screen showing the program selections
made to date; for program selections shown in the job
review window corresponding to the one error mes-
sage, highlighting the program selections in the job
review window by a first color; for other program
selections shown in the job review window correspond-
ing to all other error messages in the queue table, high-
lighting the other job selections by a second color; for
all remaining program selections shown in the job re-
view window without error messages in the queue ta-
ble, displaying the remaining job selections without
highlighting; deleting the one error message from the
queue table and from the screen while terminating high-
lighting of the corresponding program selections in the
Jjob window when the one error is corrected; displaying-
the next one of the error messages in the queue table on
the screen while changing highlighting of the corre-
sponding program selections in the job window from
the second color to the first color; and repeating the
above until all of the error messages in the queue table
are corrected.

5,063,535

3

DETAILED DESCRIPTION OF THE
DRAWINGS

For a better understanding of the present invention,
reference may be had to the accompanying drawings
wherein the same reference numerals have been applied
to like parts and wherein:

FIG. 1 is an isometric view of an illustrative repro-
duction machine incorporating the programming con-
flict identification system of the present invention;

FIG. 2 is a schematic elevational view depicting vari-
ous operating components and sub-systems of the ma-
chine shown in FIG. 1;

FIG. 3 is a block diagram of the operating control
systems and memory for the machine shown in FIG. 1;

FIG. 4 is a schematic elevational view showing the
finishing sub-system of the machine shown in FIG. 1;

FIG. § is a front view of the U.I. color touch monitor
showing the soft button display screen and hard button
control panel;

FIG. 6 is a front view of the touch monitor screen
with the principal elements of the soft touch dialogue
displayed;

FIG. 7 shows the touch monitor screen display in the
CURRENT job mode with the programming icons
displayed as a result of touch selection of the STAN-
DARD file folder;

FIG. 8 shows the touch monitor screen with the
programming icons displayed as a result of touch selec-
tion of the PAPER icon on the PROGRAM scorecard,;

FIG. 9 shows the touch monitor screen with an illus-
trative error message displayed in the program conflict
message area as a result of a programming conflict;

FIG. 10 is a view illustrating the error message table
with plural error messages queued therein;

FIG. 11 is a flow chart illustrating the sequence in
which error messages are identified and entered into the
error message table;

FIG. 12 shows the touch monitor screen with the
programming icons displayed as a result of touch selec-
tion of the DOCUMENT SELECTION icon on the
EXCEPTION scorecard;

FIG. 13 shows the touch monitor screen with the
exception review window displayed and conflicting
exception features highlighted; and

FIG. 14 is a flow chart illustrating the sequence in
which conflicting exception features are highlighted to
distinguish those conflicting exception features that
relate to the error message currently displayed in the
program conflict message area and other conflicting
exception features in the error message table;

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

While the present invention will hereinafter be de-
scribed in connection with a preferred embodiment
thereof, it will be understood that it is not intended to
limit the invention to that embodiment. On the con-
trary, it is intended to cover all alternatives, modifica-
tions, and equivalents, as may be included within the
spirit and scope of the invention as defined by the ap-
pended claims.

For a general understanding of the features of the
present invention, reference is made to the drawings. In
the drawings, like reference numerals have been used
throughout to identify identical elements. Referring to
FIGS. 1, 2, and 3, there is shown an electrophoto-
graphic reproduction machine 5 composed of a plural-

10

15

20

25

30

35

40

45

50

55

65

4
ity of programmable components and sub-systems
which cooperate to carry out the copying or printing
job programmed through the touch dialogue User In-
terface (U.1.) 11.

Machine 5 employs a photoconductive belt 10. Belt
10 is entrained about stripping roller 14, tensioning
roller 16, idler rollers 18, and drive roller 20. Drive
roller 20 is rotated by a motor coupled thereto by suit-
able means such as a belt drive. As roller 20 rotates, it
advances belt 10 in the direction of arrow 12 through
the various processing stations disposed about the path
of movement thereof.

Initially, the photoconductive surface of belt 10
passes through charging station A where two corona
generating devices, indicated generally by the reference
numerals 22 and 24 charge photoconductive belt 10 to a
relatively high, substantially uniform potential. Next,
the charged photoconductive belt is advanced through
imaging station B. At imaging station B, a document
handling unit 26 sequentially feeds documents from a
stack of documents in a document stacking and holding
tray into registered position on platen 28. A pair of
Xenon flash lamps 360 mounted in the optics cavity illu-
minate the document on platen 28, the light rays re-
flected from the document being focused by lens 32
onto belt 10 to expaose and record an electrostatic latent
image on photoconductive belt 10 which corresponds
to the informational areas contained within the docu-
ment currently on platen 28. After imaging, the docu-
ment is returned to the document tray via a simplex path
when either a simplex copy or the first pass of a duplex
copy is being made or via a duplex path when a duplex
copy is being made.

The electrostatic latent image recorded on photocon-
ductive belt 10 is developed at development station C
by a magnetic brush developer unit 34 having three
developer rolls 36, 38 and 40. A paddle wheel 42 picks
up developer material and delivers it to the developer
rolls 36, 38. Developer roll 40 is a cleanup roll while a
magnetic roll 44 is provided to remove any carrier
granules adhering to belt 10.

Following development, the developed image is
transferred at transfer station D to a copy sheet. There,
the photoconductive belt 10 is exposed to a pre-transfer
light from a lamp (not shown) to reduce the attraction
between photoconductive belt 10 and the toner powder
image. Next, a corona generating device 46 charges the
copy sheet to the proper magnitude and polarity so that
the copy sheet is tacked to photoconductive belt 10 and
the toner powder image attracted from the photocon-
ductive belt to the copy sheet. After transfer, corona
generator 48 charges the copy sheet to the opposite
polarity to detack the copy sheet from beit 10.

Following transfer, a conveyor 50 advances the copy
sheet bearing the transferred image to fusing station E
where a fuser assembly, indicated generally by the ref-
erence numeral 52 permanently affixes the toner pow-
der image to the copy sheet. Preferably, fuser assembly
52 includes a heated fuser roller 54 and a pressure roller
56 with the powder image on the copy sheet contacting
fuser roller 54.

After fusing, the copy sheets are fed through a de-
curler 58 to remove any curl. Forwarding rollers 60
then advance the sheet via duplex turn roll 62 to gate 64
which guides the sheet to either finishing station F or to
duplex tray 66, the latter providing an intermediate or
buffer storage for those sheets that have been printed on
one side and on which an image will be subsequently

5,063,535

5

printed on the second, opposed side thereof. The sheets
are stacked in duplex tray 66 face down on top of one
another in the order in which they are copied.

To complete duplex copying, the simplex sheets in
tray 66 are fed, in seriatim, by bottom feeder 68 back to
transfer station D via conveyor 70 and rollers 72 for
transfer of the second toner powder image to the op-
posed sides of the copy sheets. The duplex sheet is then
fed through the same path as the simplex sheet to be
advanced to finishing station F.

Copy sheets are supplied from a secondary tray 74 by
sheet feeder 76 or from the auxiliary tray 78 by sheet
feeder 80. Sheet feeders 76, 80 are friction retard feeders
utilizing a feed belt and take-away rolls to advance
successive copy sheets to transport 70 which advances
the sheets to rolls 72 and then to transfer station D.

A high capacity feeder 82 is the primary source of

10

—

5

copy sheets. Tray 84 of feeder 82, which is supported on

an elevator 86 for up and down movement, has a vac-
uum feed belt 88 to feed successive uppermost sheets
from the stack of sheets in tray 84 to a take away drive
roll 90 and idler rolls 92. Rolls 90, 92 guide the sheet
onto transport 93 which in cooperation with idler roll
95 and rolls 72 move the sheet to transfer station station
D.

After transfer station D, photoconductive belt 10
passes beneath corona generating device 94 which
charges any residual toner particles remaining on belt
10 to the proper polarity. Thereafter, a pre-charge erase
lamp (not shown), located inside photoconductive belt
10, discharges the photoconductive belt in preparation
for the next charging cycle. Residual particles are re-
moved from belt 10 at cleaning station G by an electri-
cally biased cleaner brush 96 and two de-toning rolls 98
and 100. '

The various functions of machine 5 are regulated by
a controller 114 which preferably comprises one or
more programmable microprocessors. The controller
provides a comparison count of the copy sheets, the
number of documents being recirculated, the number of
copy sheets selected by the operator, time delays, jam
corrections, etc. Programming and operating control
over machine 5 is accomplished through a U.1. 11. Op-
erating and control information, job programming in-
structions, etc. are stored in a suitable memory 115
which includes both ROM and RAM memory types,
the latter being also used to retain jobs programmed
through U.I. 11. And while a single memory is illus-
trated, it is understood that memory 115 may comprise
a series of discrete memories. Conventional sheet path
sensors or switches may be utilized to keep track of the
position of the documents and the copy sheets. In addi-
tion, the controller regulates the various positions of the
gates depending upon the mode of operation selected.

Referring now to FIG. 4, finishing station F receives
fused copies from rolls 102 (FIG. 2) and delivers them
to gate 110. Gate 110 diverts the copy sheet to either
registration roils 104 or inverter 112. Copy sheets di-
verted to rolls 104 are advanced to gate 114 which
diverts the sheets to either the top tray 106 or to vertical
transport 108. Transport 108 transports sheets to any
one of three bins 116, 118 or 120 which are.used to
compile and register sheets into sets. The bins are driven
up or down by a bidirectional motor adapted to position
the proper bin at the unloading position where a set
transport 122 having a pair of set clamps is used to grasp
and transport sets from the bins to either sheet stapling
apparatus 124 when it is desired to staple the sets, or to

20

25

35

40

45

55

60

65

6
binder 126 when it is desired to bind the sets, or to
stacker 128 when unfinished sets are desired.

Referring to FIG. 5, there is shown the color touch
monitor 12 for the touch dialogue U.1. 11. Monitor 12,
which provides an operator user interface with hard
and soft touch control buttons enabling communication
between operator and machine 10, comprises a suitable
color cathode ray tube 216 of desired size and type
having a peripheral framework forming a decorative
bezel 218 thereabout. Bezel 218 frames a rectangular
video display screen 220 on which soft touch buttons in
the form of icons or pictograms (seen for example in
FIG. 7) and messages are displayed as will appear to-
gether with a series of hard control buttons 222 and 10
seven segment displays 224 therebelow.

Referring now to FIGS. 6 and 7, for dialogue pur-
poses, screen 220 of monitor 12 is separated into five
basic display areas, identified as a message area 232, a
dialogue mode selection area 234, a dialogue pathway
selection area 236, a scorecard selection area 238, and a
work selection area 240.

Message area 232 consists of 3 lines 241 located at the
top of screen 220. The dialogue mode selection area 234
comprises an active area containing certain top level
dialogue mode controls available to the operator. The
mode controls are soft touch buttons 250-0 (CUR-
RENT JOB), 250-1 (PROGRAM AHEAD), and 250-2
(TOOLS) in the form of icons representing file cabinets
located on the right side of the screen 220 directly
below message area 232.

The dialogue pathway selection area 236 and the
scorecard selection area 238 basically simulate a card
within a card filing system with primary dialogue path-
way file folders 260 and secondary file cards, the latter
being referred to as scorecards 270. The dialogue path-
way file folders 260 each have an outwardly projecting
touch tab 262 along the top edge identifying the dia-
logue pathway represented by the folder, as for example
STANDARD, FANFOLD, OVERSIZED, etc.
Scorecards 270, which present the features (first level
program selections) available with each of the dialogue
pathway file folders 260, have a touch tab 272 display-
ing the programming pathway options available with
the scorecard, such as PROGRAM, EXCEPTION,
etc.

Work selection area 240 has program conflict mes-
sage area 246 reserved for programming conflicts and
prompts with the remaining area used for displaying the
feature options (second level program selections) avail-
able with the first level program selection that is
touched on the scorecard currently displayed.

Referring particularly to FIG. 8, using touch screen
12 of U.L 11, the user in order to program a copy or
print job for machine 5, touches the CURRENT JOB
button 250-0 to display the STANDARD, FAN
FOLD, and OVERSIZED file folders 260. By touch-
ing the STANDARD tab, the tabs 272 of scorecards
PROGRAM, EXCEPTION, etc. are displayed with
the programming options available displayed in the
form of icons.

Presuming that the user is starting programming the
job, the job programming score card is selected by
touching the “PROGRAM?” tab. As seen in FIG. 8, the
program score card 270 contains various primary pro-
gramming selections such as paper icon 302, reduce/en-
large icon 308, etc. By touching a selected one of the
primary programming icons, as for example paper icon
302, the various programming selections in that cate-

5,063,535

7

gory are displayed in the form of icons such as PAPER
SUPPLY icons 326, 328, etc. and STOCK icons 332,
334, etc. in work selection area 240. By touching se-
lected icons [USER MAKES SELECTION—see FIG.
11] such as the 8.5 11 (tray “2”) paper supply icon 328,
tab icon 340 for tabbed paper stock, etc., the particular
job parameters for the primary programming icon se-
lected are programmed for the job.

Referring now to FIGS. 9-11, during the aforedes-
cribed job programming selection process, each selec-
tion is compared with previous selections [COMPARE
WITH PREVIOUS SELECTIONS]. If a selection
conflicts with one or more previous selections [CON-
FLICT?] as for example selecting side 2 image shift
where only single side copying (i.e., 1:1 sides) has been
selected, an error message 350 is generated and entered
into a program error or queue table 352 [QUEUE MES-
SAGE]. If the error message was previously queued
[WAS MSG PREVIOUSLY QUEUED?], the message
is not queued a second time [DEQUEUE MESSAGE].
Each error message 350 is entered into table 352 in the
order in which the error occurs so that there results, in
the event several uncorrected conflicts occur during
job programming, a queue of error messages in table
352. '

The first error message 350 in the queue of error
messages in table 352 is displayed in programming con-
flict message area 246 identifying to the user the pro-
gram error that has been made. If the user re-programs
and corrects the program conflict error shown in the
conflict message area 246, the error message is deleted.
If additional error messages are queued in table 352, the
next error message in the queue is displayed in conflict
message area 246. If there are no other error messages in
table 352, conflict message area 246 is blank.

Referring particularly to FIG. 12, where special fea-
tures and exceptions for certain pages in the stack of
documents that comprise the job are desired, the excep-
tion program score card 270 is accessed. The exceptions
score card is brought up by touching the tab labeled
EXCEPTION. By touching DOCUMENT SELECT
icon 355 of the exception score card and using the pro-
gram selections associated therewith that are displayed
in work area 240, certain documents, document sides, or
blocks of documents in the job can be selected for spe-
cial treatment. By touching other selected ones of the
exception icons displayed such as SPECIAL PAPER
icon 357, INSERT icon 359, etc., the special programs
for the document pages selected can be made.

In the case of exception programming, particularly
where the reproduction machine offers a great number
of possible selections numbering in the hundreds and
the job requires a variety of special features and excep-
tions, it is usually difficult for the user to remember
previous program selections and avoid making selec-
tions which conflict with previously made selections.
As described, where a conflict occurs, it is entered in
the order of occurrence in program error table 352,
with the first error message in the queue displayed in
program conflict message area 246 of screen 12. When
programming long and complex jobs having numerous
special features and exceptions, it is usually more effi-
cient to ignore programming conflicts until program-
ming of the job is completed. This is because the num-
ber of conflicts that can be identified and corrected at
one time is limited since only one conflict message at a
time is displayed in conflict message area 246. Further,

5

10

15

25

30

35

45

50

55

60

65

8

many attempted conflict corrections introduce new
conflicts which then must be resolved.

Referring particularly to FIGS. 13 and 14, to enable
job programming errors and conflicts to be identified
and dealt with more efficiently, a job table or job re-
view window shown here as exception review window
365 is provided. Window 365 can be accessed at any
time during programming of the job or after program-
ming is completed [SELECT EXCEPTION REVIEW
ICON]. Exception review window 365 displays by page
number and descriptive code all of the exceptions pro-
grammed for the job. Since the number of possible
exceptions that can be programmed is- substantial and
exceeds the capacity of window 365 to display all the
exceptions at once, a scroll icon 367 is used to scroll
review window 365. In the example shown, exception
review window 365 is sized to display up to 10 excep-
tions at once, each exception having up to 6 selections.

Where the error message currently displayed in mes-
sage area 246 is identified with one or more of the job
exceptions displayed in the exception review window
365 [COMPARE EXCEPTIONS FEATURE WITH
DISPLAYED CONFLICT MSG.}, those job excep-
tions are visually identified or highlighted by displaying
the exceptions in black letters 370 on an amber back-
ground 372 [DISPLAY EXCEPTIONS FEATURE
AS BLACK TEXT ON AMBER BACKGROUND].
Where additional conflicts with corresponding error
messages are queued in table 352 but are not currently
displayed in message area 246 [COMPARE EXCEP-
TIONS FEATURE WITH UN-DISPLAYED CON-
FLICT MSG.), these job exceptions are visually identi-
fied or highlighted by displaying the exception in amber
letters 374 on a white background 376 in exception
display window 365 [DISPLAY EXCEPTIONS FEA-
TURE AS AMBER TEXT ON WHITE BACK-
GROUNDY]. This notifies the user that error messages
are currently pending in error table 352 but are not
currently displayed. The remaining exceptions dis-
played in window 365 which are not in conflict and
hence do not have error messages pending in error table
352 are displayed in black letters 370 on white back-
ground 376 [DISPLAY EXCEPTIONS FEATURE
AS BLACK TEXT ON WHITE BACKGROUND)].

For each additional job exception [MORE FEA-
TURESY?], the foregoing process is repeated until all the
exception pages [MORE EXCEPTION PAGES?]
have displayed, with the job exceptions highlighted or
not highlighted as described. As each conflict is re-
moved by re-programming the job, highlighting of the
associated job exception(s), whether by black text on
amber background or by amber text on white back-
ground is terminated and the exception displayed as
black text on white background. Concurrently, the
associated error message in program error table 352 is
deleted. Where the error message is also displayed in
programming conflict message area 246, the error mes-
sage is deleted and the next error message in the queue
of error messages in table 352 displayed. Where all
conflicts have been resolved, the job exceptions in re-
view window 365 are displayed by black text on white
background.

Appendix A provides the program listings for
“Queue Parser” and “Display Mark” [Copyright ((©)
Xerox Corporation, 1985, 1986, 1987, 1988, All Rights
Reserved] routines for the above-described process.

While use of color to highlight conflicts has been
described, other forms of highlighting such as pulsing;

5,063,535
9 10

flashing; character distinctions as by bolding, italicizing, While the invention has been described with refer-
boxing, etc. may be envisioned. Further, other program ence to the structure disclosed, it is not confined to the
selection displays depicting job programming selections details set forth, but is intended to cover such modifica-
with selection conflicts highlighted in accordance with tions or changes as may come within the scope of the

the teachings of the
sioned.

MacroDefs: LOOPHOLE
.

SetlLabel CNAME
PROC

LF 0s

L

CF{2) EQU
PEND

present invention may be envi- 5 following claims.

APPENDIX A

QUEUE PARSER
—

SOS_INTERFACE_ReEnterLOOP CNAME

LF
.

L]
END LOOPHOLE MacroDefs;

PROC
0s 0

JMP LOOPReEntryAddrass:
PEND

ReEnterlOOP: OSINTERFACE;

== Private Proc to allow listing of Conditional Checks:

ListConditionalChecks:

ENTER;

PRIVATE PROCEDURE «

LOOPHOLE

SetLabel,RefNumbers39

END LOOPHOLE ;

IF (Conrl1ctlsg.LocnlExcoptionCo-pos1t|Arr|y[nuuorTruylNonSt-oloxSp.c1clPlpnr£xcoptions] <> 0)

AND ((ConflictMsg,
OR (ConflictMsg.
OR (ConflictMsg.

THE

stockinTrayl = UiSelect.tads
stockInTrayl = utsoloct.trlnspnrnncy
stockinTrayl = UlSnloct.lnxslhanﬂin-lncn))

compositRegister « co-posftltqixtorltrlylNonSilploxSpocia]Pnporﬁusk;
IF buildDisplayedMsgRegister

THEN

== We are now looking at the currantly displayed sessage;

END I
END IF;

di:plcyndlsgColpos1tnogiat'r - displcycd!:gtonposttﬂcqistlrltrlyllonSi-plnxSpcc1anaporulsk;

IF (Confl1ctlsq.Locn1Excnpt1onCo-pos1t.Arrly(nu-OfTrly2u0n51-ploxSpoc11]P|por£1cop:ions] <> 0)
AND ((Conll1ctlsg.stocxlnlr|y2 * UiSelect.tabs)

OR (Con!]1ctlsq.stnck1ntrcy2 a UiSoloct.Lrlnsp;rtncy

OR (Conlltcl!sq.:zocklnfrlyz - UtSoloct.losslhlnlinolnch))

THEM

compasitRegister « co-potitlcnist-rltruyllonsi-ploaSp.ctcanporInsk:
IF bulldDisplaysdMsgRegister
THEN

-~ We are now looking at the currently displayed nessage:
displayodﬂsgtnﬂpox1tllgistcr - displnyodﬂsqtonpositkog1star|trlyZlonSinpl.xSpoc1¢lFaporllsk:

END IF;
END IF;
ReEnterLOOP[];

LOOPHOLE

SetLabel, RefNumber540

END LOOPHOLE ;

IF (Conflictusq.LoculExcnptinnCo-pos1;0Arrly[nuaOfTrlylGroupodSpociulPaporEuc-ptions] < 0)
AND ((ConflictMsg.stockInTrayl = UiSelect.tabs) .

OR (Conflicths

g-stockInTrayl » UiSelact.transparency

OR (ConflictMsg.stockInfrayl = uisolnc:.lossInlnllnclncn))

THEN

compositRegister « co-positﬂogistnrltrlyleoup.dSpotxalPaporﬁnsk;
IF buiidDisplayedMsgRegister

THEK

<~ We are now looking st the currently displayed sessage:

END IF
END IF;

dispisyeddsgCompositRegister « displayodﬂquo-positﬁ.qistlr[trnylﬁroup-dSpnc1-1Pnpnrﬂusk;

If (Can!!1ctlso.Localixcopt1onCo-pos1toArrny[nu.O!TrlyZGroupcdSpoc1uIPuparExcnpttons] < 0)
AND ((ConfiictMsg.stockinTray2 = UiSelect. tans

OR (ConflictMs
OR (ConfliceMs

9.3tockinTray2 « UiSelect.transparency)
9.s5tockinTray2 » U|s-loct.losslnnnllnnlncn))

THEN

5,063,535
11 12

compositRegister ~ compositRegisteri t.rayzl‘GroupcdSpocillhpprluk;

IF buildDisplayedisgRegister

THE

M .
We are now looking at the currently dispiayed messaqe:
displayediisgCompositRegister « displayedisgCompositRegister|{tray2GroupedSpecialPapertask;

END IFf;

END IF
ReEnte

+

cLOOP(];

LOOPHOLE

Setiabel,RefNumbersdld

END LOOPHOLE;

nonCompositRegister » nonCompositRegisterjpageTwoChapterStart;

1f

buildOisplayedsgRegister

THEN

We are now looking at the currently displayed messagse:
displayeditsgonCompositRegister « displayedNsgNonCompositRegister|pageTwoChapterStart;

END IF;
ReEntert00P[];

LOOPHOLE

. ENMD LOOPHOLE;

SetLabel,RefNumberssl

If

(ConflictMsg.LocalExceptionCompositeArray[numOfTrayiSpecialPapertxceptions] <> 0)

AND ((ConflictMsg.ConflictSelectionArray{UiSelect.paperSupplylndex] = UiSelect.trayl

THE

END
IF

AND
THE

END

OR (ConflictMsg.ConflictSelectionArray[UiSelect.paperSupplyindex] = UiSelect.sutoSwitch))
N
compositRegister ~ compositRegister{traylSpecialPaperMask;
IF buildDisplayeddsgRegister
THEN
-- We are now looking at the currently displayed message:
displayedidsgCompositRegister « displayedMsgCompositRegisteritrayiSpeciaiPaperiask;
END IF;
IF;

{ConflictMsg.LocaiExceptionCompositeArray nusOf Tray2SpecialPaperExceptions] <> 0)
(ConflictMsg.ConflictSelectionArray[UiSelect.paparSupplylindex] = UiSelect.tray2)
N
compasitRegister « compositRegister)tray2SpecialPaperMask;)
;;!buildmuhyumqloquur

N

-~ We are now looking at the currently displayed message:
displayedisgCompositRegister + dispiayedMsgCompositRegisterftray2SpecialPaperiask;

END IF;

IF;

ReEnterlO0P(];

LOOPHOLE

SetLabel ,RefNumber5s2

ENO LOOPMOLE ;

IF
THE

nonCompos itRegister +~ nonlompositRegister|pagsTwoTrayOneSpecialPaperipageTwolrayTwoSpecialPaper;

buildDisplayedsgRegister
N
We are now looking at the currently displayed message:

displayedisgonCompositRegistar « displayedsgNonCompositRegisteripageTwolrayOneSpecialPaper| pageTwolrayTwoSpecialPaper;

END IF;

nterlOOP{]; o e

LOOPHOLE

SetLabel,RefNumbersss

END LOOPHOLE ;

noaCompos itRegister ~ nonCompositRegister|pagedneSimplax;

IF

buildDisplayedisgRegister

THEN

ReE

We are now looking at the currestly displayed message:
d;:phyt‘lsglu‘.‘upouthonnr + displayedisgNonCompositRegister{pageOneSimplex;
H

nterl00P(];

LOOPHOLE

SetLabel,RefNuabersss

END LOOPHOLE ;

IF ((pagelExceptions & ExceptionAccess.pageUneTrayOneSpecialPaper) » ExceptionAccess.pageOneTrayOneSpecislfaper)
AND (ConflictMsg.ConflictSelectionArray[UiSelect.frontCaverindex] > UiSelect.frontTrayOneBothSidesIsaged)

THE

END

IF
AND

[pageiExcoptions] ExcoptionAccn:.DcnﬁinnPlgoﬂnoAndT-oExcnptionvnuns[]; .

]
noaCompositRegister ~ nonCompositRegister|pageOneTrayOnaSpecislPaper;
IF build0isplayedMsgRegister
THEN .
== We are now looking at the curreatly displayed message:
l:;pluo‘sgﬂoﬂ:msﬂlqunr + displayedMsgNonCompositRegister|pageOneTrayOneSpacialPaper;

IF;

((pagelExceptions & ExceptionAccess.pageOneTrayTwoSpecialPaper) = ExceptionAccess.pageOneTrayTwoSpecialPaper)

((ConflictMsg.ConflictSelectionArray{UiSelact.frontCoverindex] > UiSelect.nofrontCovers
AND (ConflictMsg.ConflictSelectionArray[UiSelect.frontCoverIndex

< UiSelect.frontTrayTwoNoImaging))

5,063,535
13 14
THEN

aonlompositRegister « nonCompos itRegister|pageOneTrayiwoSpecisiPaper;
1F buildDisplayedisgRegister

THEN
--.¥e are now looking at the currently displayed message:
displayedisgionCompositRegister « displayedMsgiNonCompositRegister|pageOneTrayTwaSpecialPaper;

END IF;
ReEnterlOOP[]:
~e AR EEY AN NCEACSESSEAENERE
LOOPHOLE
SetLabel,RefNumbers5s?
ENO LOOPHOLE ;
~eEEAENSNEANSSEINEAIRNANERRES
nonCompositRegister « allExceptionsConflictMask;
IF buildDisplayedMsgRegister :
THEN
-= We are now looking at the currently displayed message:
displayedisgNonCompositRegister + displayedisglonCompositRegistec|aliExceptionsConflictMask;
END IF;
ReEnterlOOP{];

~=AEBASANENSRNAAESENSNLNARSS
LOOPHOLE
SetLabel,RefNuaberd24
END LOOPHOLE;

~-SANSssassssssasssssssssss
nonlompositRegister « nonCompositRegisteripsgeldnelnsert;
IF buildDisplaysdMsgRegister
THEN
-- We are now looking at the currently displayed message:

displayedMsgNonCompositRegistar « displayeoMsgNonCompositRegister|pageOnelnsert;

END IF;
ReEnterlO0P{];

END PROCEDURE ListConditionalChecks;

ENTER; .
--'Don't let procedures accessing Conflict Message Queue execute concurrently:

0S.LockUs ing[@queveLock];

compositRegister « 0;
nonCampositRegister + 0;
displayedMsgCompasitRegistar « 0;
displayedMsghonCompositRegister « 0;
buildDisplaysdMsgRegistar « FALSE;

-- LOOP from 0 upto Conflict Queue Currant Message Position:
K: FOR k ~ beginningofqueue UPTO conflictCMP

Loop
Displayeddsg: IF k = conflictCMP
THEN

buildDisplayedMsgRegister + TRUE;
END IF DispiayedMsg;

I: FOR 1 « 0 UPTO (numberOfExProgConflictisgs - 1)
LooP

ExProgisgDisplayed: IF ConflictQueue[k] = EaProgConflicts[i]
THEN
-~ Registers can be built either unconditionaly, or by further conditons being parsed:
NonConditional: IF BitPatterns{i] <> conditionDependent
N

compositRegister « (compositRegister | BitPetterns(i]);
IF buildDisplayedMsgRegister :
. THEN
g << We are now looking at the curreatly displayed message:
d}:pllyndllgCo-positloq1stlr « (displayedMsglompositRegister | BitPatteras(i]);
.’

ELSE :
== Check other conditions which depend on message 1, found in conflictQueue @ k:
LOOPHOLE

LXI 0,ConditionalTable: * <DE> <- Address of LSB(1st entry in "ConditionaiTable:*)
LHLD 4 "® CHLY <~ X,Index into "ConditionalTable:*
MVl H,0 * CHL> <~ 0,Index into "ConditionalTable:"
DAD H ® CHLY> <~ 2*1; Word Values in table
OAD O ® CHL> <- Address of LSB(i-th eatry in table)
MOV E.M ® CE> <- LSB(Address of i-th entry in table)
INX H ¢ CHL> <~ Address of MSB(1-th entry in table)
WV D,N ¢ <D> <~ MSB(Address of i-th entry in table)
:g:f ® CHL> <~ Address of i-th entry in table
. ConditionalTable:
. ASESScsusssssmsSsasEse
CoaditionsiTable: EQU §
DW RefNumber539
OW RefNumber540
DW RefNumbers4d '
OW RefNumbers5i
O RefNumberS552 .
O RefNumbersss
W RefNumber558
O RefNumbersh?
O RefNumber624

5,063,535
15 16

. EQU $+2
LOOPRsEntryAddress: O eecenunsanca
END LDOPHOLE;

END IF NonConditional;
END IF ExProgMsgDisplayed;
ENO LOOP I:
END LOOP K;

ENO PROCEDURE DetermineExceptionConflicts;

END MOOULE MsgDisplaylmpl;
DISPLAY MARK
DisplayMark: PRIVATE PROCEDURE «
displayEaceptionProgramCounter: CARODINAL;

ENTER; -- DisplayMark
SwitchTaskIn{displayExceptionProgramCounter]);

compositelnfoforfeature ~ compositelnfoforfeatureTableffeatureld];
nonCompositeinfoforfeaturs ~ (nonCompositeinfoforfeaturelable(featureld] & originallnfo);

== If not image shift at O.
IF featureld <> 6 THEN

UiPrimitives.itemID v currentTextRootld + fwatureld;
ELSE -- If image shift at zero.

-~ Use image shift offset.
ViPrimitives.itemlD ~ currentTextRootld + 1;
END IF;

== 11 composite information for this exception is not known,
IF (MOT compositelnfovalid) THEN

== If information will not be needed because no composite conflicts are displayed.
IF (MsgDisplay.compositRegister = 0) THEN

compositeRegister « 0;
ELSE -- If composite info may be needed.

-= Determine which composites are effected by this exceptioa.
[compos iteRegister] ~ ExceptionAccess ManageComposites nextRaviewLine, .report];
compositelnfovalia ~ TRUE:
ENDIF;
END IF;

== If this feature is associated with a conflict.
IF (((compositeRegister & compositelnfoforfeature) & MsgDisplay.compositRegister) <> 0)
OR {((nonCompagitelnfoforfeature & nonCompositeRegister) & MsgOisplay.nonCompositRegister) <> 0) THEN

== If this feature is associated with the conflict that is curreatly displayed.
IF (((cnlpositoﬂoqtstor & compasitelnfoforfeature) & MsgDisplay.displayedMsgCompos 1tRegister) <> 0)
OR (((nonCompositeinfoforfeature & nonCompositeRegister) & MsgDisplay.displayedMsgNonCompositRegister) <> 0) THEN

-- Display taxt on amber background.
UiPrimitives.msglD « UiPrimitives.msgID + (conflictOffsets(featureld));

ELSE -- If this Teature 1s associated with a con?lict that 1s not on the display.

-~ Display amber teat.
¢ UiPrimitives.asglD ~ ViPrimitives.msglD + (2'(conflICtOflscts[folturoldj));
NOD IF; ¢
_ _END IF;

UiPrimitives.DisplayText{];

SwitchTaskOut[displayExceptionProgramCounter];
END PROCEDURE DisplayMark;

ENTER; -- ExceptionReviewframe

== If a new selection has just been made.
IF (TSL1b.iconOperation = .select) AND (TSLib.action = .fingerUp) THEN

SELECT TSLib.sensorID FROM

-~ If up scroller selected.
CASE » waicurrentjobstandardexceptionreviewscrollupl:

-= Move review window pointer forward by nine exceptions.
index « 0; °
Advancedindow: BLOCK
LOOPHOLE

Advancedindowioop: 0s o
ENO LOOPHOLE ;

-- If advancing would not make us point to tail of list.
IF displayforwardLinkst{reviewindex] <> tailOfList THEN

5,063,535
17 18

-- Start from next excsption.
reviewindex « displayforwardLinkst{ceviewindex];

ELSE -- If at bottom of list.

~= Stop looping.
EXIT 8LOCK AdvanceWindow;
ENO IF;

IF (index = 8) THEN
EXIT BLOCK AdvanceWindow;

ELSE

index ~ 1ndex + 1;

END IF;

-- Jump back to top of loop (and over E7 75)
LOOPHOLE
JMP AdvanceWindowlLoop:+2
ENO LOOPHOLE ;
END BLOCK AdvanceWindow;

-~ If down scroller sslectad.
CASE = waicurrentjobstandardmainexceptionreviewscrolldown!:

-~ Move review window pointer back by nine exceptions.

index = 0;

ReverseWindow: 8LOCK

LOQOPHOLE

ReverseWindowloop: DS o

END LOOPHOLE ;
== If backing up would not make us point to head of list.
IF displayBackwardLinkst{reviewlndes] <> hesadOfList THEN

-- Start from previous exception.
reviewindex « displayBackwardLinkst{reviewlndex];

ELSE -~ If at top of list.

-~ Stop looping.
EXIT BLOCK ReverseWindow;

IF (1index = 8) THEN

EXIT BLOCK ReverseWindow;
ELSE

index «~ index + 1;
END IF;

== Jump back to top of loop (and over E7 75)
LOOPHOLE
JMP ReverseWindowloop:+2
ENDO LOOPHOLE ;
ENO BLOCK ReverseWindow;

-~ If leaving exception review frame.
CASE = waicurrentjobstandardexceptionreviewreturnt:

-- Have display manager remova exception review frame.
TSLib.dialogControi{TSLib.exitExceptionReview] « TRUE;

END SELECT;
“ .

== If frame nesds to be displayed.
IF (((TSLib.iconOperation = .select) AND (TSLib.action = .fingerup))
OR (TSLib.iconOperation s ,initialize)
OR (TSLid.iconOperation » .videoEngineRecovery)
OR ((TSLib.iconOperation = . reDraw)
ANO (1vviewlndea « headOfList)))
ANO (NOT TSLib.aialogControi{TSLib.exitExceptionReview]) THEN

-~ If review index is not indicating empty list,
1F reviewladex <> headOfList THEN '

-~ Parse review window values to see if review index needs to be adjusted.
nestReviewLine ~ displayForwardLinkst{reviewindex];

-- Check Tines 1 through 9.
index « 1;

== Set up non pre-emptive looping.
ParseWindow: BLOCK
) LOOPHOLE
TopOfParselaoop?: s 0
END LOOPHOLE ;

- If oot at bottom of list,

IF nextReviewiine <> ta1i0fList THEN

-~ Go to next line.

nextReviewiine » displayForwardlLinkst{nextfReviewlLine]; *

ELSE -- If at bottom of list.

-- If backing up one exception would not make us point to head of list.
If otsplayBackwardlinks?{reviewindex] <> headOfList THEN

-- Backup review index by one sacaption. Continue looping in case we need to back up more.
reviswindex + displayBsckwardLinks?{reviewlndex];
END IF;
END IF;

5,063,535
19 20

IF (index = 9) THEN

EXIT BLOCK ParseWindow;
ELSE

index « index + 1;
END IF;

-- Jump back to top of loop {and over EJ 75)
LOOPHOLE
JMP TopOfParseloop:+2
ENO LOOPHOLE ;
END BLOCK ParseWindow;
END IF;

-- Blank entire review window.
UiPrimitives.itemiD ~ exceptionreviewtableblankingbitmapl;
UiPrimitives.Displayitem{];

-~ Now start displaying review window.

-- Assume we are not at bottom of window.
reviewWindowAtBottom ~ FALSE:

== Initialize next review 1ine for loop.
nextReviewline + reviewindea;

index « 0;
currentRootld « exceptionreviewdocumentonel;
currentfextRootid « waprexceptionreviewcqone;

-- Set up non pre-emptive looping.
DisplayWindow: BLOCK
LOOPHOLE
TopOfDisplayloop2: 0s o
END LOOPHOLE ; .

exceptionfisldRootid + curreantRootld;

-« If not at end of list.
IF nextReviewlLine <> tailOfList THEN

-- Display next line.
displayEaceptionNumber » aextReviewl ine;

-- Display exception number fast. This 1s safe since display 1s always locked when this routine 15 callad.
turboDisplay « TRUE; —
LOOPHOLE
Ca11SwitchTask DisplayExceptionfast
END LOOPHOLE ;

compositelnfovalid « FALSE;
-~ Setup original information.

== If this exception is for originai 1.
IF (¢1spluyExcopt1nnArruyv[groupLo~or0r1g1nulIndo:][noxtﬁovio-Ltnc] = 1) THEN

originallnfo ~ ortiginalllafo;

-- If this exception also includes original 2. .
LF ((displayExceptionArrayt[groupflagindex][nextRaviewt ine] & groupflagMask) <> 0)
AND (displlyExcoptionArrly'[groupUprrOrlglnalIndnn][noxtﬂovlcuLtno] >= 2) THEN

originallnfo « {originalllafo | original2lnfo);
ENOD IF;

--= If this exception includes original 2 (but not original 1),
ELSIF (d‘spllyixclptionkrrlyr[groupLonorOr!ginulInno;][nc::ﬂovicuLtnn] = 2) THEN

originallnfo ~ original2lnfo; N
ELSE -~ If this exception does not include original 1 or 2.

originallnfo ~ MsgDisplay.aliExceptionsConflictMask;
END JF;

-- Display mark for features that are selected.
IF ((displlyincnptIonArrnyf[chotAtDornuItlnnnx][nnxtﬂov1c-L1nn] & cqNotAtDefaultMask) <> 0) THEN

-~ Determine message id based on selection.
tempvalue - RECAST[(displayﬁxcnpt1onArray'[chrosatInuon][noxtR.vlnuLinc] & cqPresetMask), SHORT CARDINAL);
IF {tempvalue <= UiSelect.pasteup) THEN
UiPrimitives.msgID » cqMessageTable[{tempVaiue - 2)1:
ELSE
UiPrimitives.asQlil « 11;
ENO IF;

featursld « 0;

LOOPHOL E
CaliSwitchTask DisplayMark
END LOOPHOLE ; .
END IF;

IF ((d\spl.yincopt\ouArruyv[1-oq¢5nifthtALOnraulLlndon][nnxtkcv|o-L1no] & imageShiftNotAtDefaultMask) <> 0) THEN
+
-- Determine message id based on selection.
tempValue - RECAST[(dlspI.yE-cnptlonArray'[shiftlnd.n][no-lﬂnvto-Lino] & shiftMask), SHORT CARDINAL];
[tempValus] ~ JnDProgru-ing.Canvortsniftvaluc[.LoScorocnrdOisplay. tempvalue]:

-~ If zero has been returned.
IF tempvalue = 0 THEN

5,063,535
21 22

IF UiSelect.displayUnitsinMetric THEN
UtPrimitives.msglD « 172;

ELSE
UiPrimitives.msglD « 173;

END IF;

featureld = 8;

ELSE

UiPrimitives.msgID « tempValue + 3;
featureld + 1;

END IF;

LOOPHOLE
CallSwitchTask DisplayMark
END LOOPHOLE ;
END IF;

IF ((displayExceptionArrayt{chapterizationindex]{nextReviewLine] & chapterizationMask) <> 0) THEN
UiPrimitives.msglD « 4;
featureld ~ 2;

LOOPHOLE
CallSwitchTask DisplayMark
END LOOPHOLE ;
END IF;

IF ((displayExcaptionArrayt{oneSidedOriginalindex][nextReviewLine] & oneSidedOriginaiMask) <> 0) THEN
UiPrimitives. . msglD « 4;
featureld « 3;

LOOPHOLE
CallSwitchTask DisplayMark
END LOOPHOLE;
END IF;

tempValue «~ RECAST[ROTATE{(displayExceptionArrayt[insertindex][nextReviewi1ne] & insartMask), 2], SHORT CARDINAL];
IF (tempValue <> UiSelect.trayl) THEN

UrPrimitives.msgiD ~ tempValue + 4;
featureld « 4;

LOOPHOLE
CaliSwitchTask DisplayMark
END LOQPHOLE ;
END IF;

tempvalue « RECAST{ROTATE[(d1splayExceptionArrayr{specialPaperindex}{nextReviewline] & speciaiPaperMasx), 2], SHOR! CARDINAL];
IF (tempValue <> UiSelect.trayld) THEN

UiPrimitives.msgiD « tempValue + 4;
festureld « 5;

LOQPHOLE
CallSwitehTasx DisplayMark
ENO LOOPHOLE;
TEND IF;

-- Determine index of next line.
nextReviewLine + displayforwardLinkst{nextReviewlLine];

ELSE -~ If at end of list.

«- Terminate looping.
index ~ 9;

END IF;

If (index = 9) THEN
EXIT BLOCK DisplaywWindow;
ELSE
index + index + 1;
currentRootld « currentRootid + (exceptionreviewdocumenttwol - exceptironreviewdocumentonel);
currentTextRootld = currentTextRootld + (waprexceptionreviewcqiwo - wapraxceptionreviewcqone);
END IF;

-- Jump back to top of loop (and over E7 75)
LOOPHOLE
JMP TopOfDisplayLoop2:+2
END LOOPHOLE;
END BLOCK DisplayWindow;

‘== 1f not reviewing top of list.
IF (reviewlndex <> topOfActivelList) THEN

-« Make scrollaers full color.
UiPrimitives. iconOperator + fullColorShadowed;

ELSE

-- Make scrollars ghosted.
UiPrimitives.1conOperator +~ ghostedShadowed;

END IF;

35,063,535
23 24

-- If review window 15 showing top of list.
IF (reviewlndex » topOfActivelList) THEN

-~ Remove shadow from down scroller.
UiPrimitives.1conOperator « (UiPrimitives.1conOperator | removeShadowBit);

END IF;

-- Update propertres.
UiPrimitives.itemlD ~ waigurrent jobstandardmainexceptionrevigewscrol ldownt;
UiPrimitives.Modifylcon[]:

== If review window 15 showing bottom of Vist.
IF (nextReviewlLine » ta110fList) THEN

-- Remove shadow from up scroller.
UtPrimitives.iconOperator « (UiPrimitives.iconOperator | removeShadowBit);

ELSE

-- Display up scroller with shadow.
UiPrimitives. 1conOperator ~ (U1Primitives. 1conOpsrator & addShadowBit);

END IF;

-- Update properties.))
ViPrimitives.itemlD « waicurrentjobstandardexceptionreviewscrollupl;
UViPrimitives.Mod1fylcon[];

-- Display return icon full color with shadow.

UiPrimitives. tconOperator + fullColorShadowed;

UrPrimitives.itemID ~ waicurrentjobstandardexceptionreviawreturnt;
UiPrimitives . Modifylcon[];

END IF;
ENO PROCEDURE ExceptionReviewFrame;

We claim: b} highlighting the program selections for other error
messages displayed in said job table by a second
color.

3. A method of identifying conflicts that occur when

1. A method for programming a reproduction ma- 30
chine and identifying programming conflicts that occur,

comprising: programming jobs in reproduction machines using an

a) using an interactive display with touch display interactive display with touch screen, comprising:
screen, inputting desired program selections; a) using said touch screen, inputting desired program

b) where a program selection error is made, generat- 37 selections;
ing an error message; b) where a program selection error is made, generat-

¢) queuing said error message with other error mes-‘ ing an error message identifying said error;
sages for different programming selections in a ¢€) queuing said error message with previous error
predetermined order in an error message queue messages in a message queue table;
table; 40 d) displaying a preset one of said error messages in

d) displaying at least one error message from said said queue table on said touch screen;
queue table on said touch display screen; ¢) displaying a job review window on said touch

e) selectively displaying a job table on said touch screen in which the program selections made are
display screen in which the program selections displayed;
made are displayed; 45 f) for program selections displayed in said job review

f) highlighting the program selections displayed in window corresponding to said one error message,
said job-table for said one error message by a first highlighting said program selections in said job
visual identifier; review window by a first color;

) highlighting the program selections displayed in g) for other program selections displayed in said job
said job table for other error messages in said quene 50 review window corresponding to all other error
table by a second visual identifier; messages in said queue table, highlighting said

h) in response to correction of said program selection other program selections by a second color;
error; h) for all remaining program selections displayed in
1) deleting said one error message from said queue said job review window without error messages in

table and from said touch display screen, s said queue table, displaying said remaining job
2) terminating highlighting of the program selec- selections without highlighting;

tions for said one error message by said first i) deleting said one error message from said queue

visual identifier in said job table; table and from said touch screen while terminating
3) displaying the next error message in said queue highlighting of the corresponding program selec-

table on said touch display screen, tions in said job window when said one error is
4) changing highlighting of the program selections 60 corrected; .

displayed in said job table for said next error J) displaying the next error message in said queue

message from said second visual identifier to said table on said touch screen while changing high-

first visual identifier; and lighting of the corresponding program selections in

J) repeating step h until all of said program selection said job window from said second color to said first
errors are corrected. 65 color; and

2. The method according to claim 1 including: k) repeating steps i and j until all of said error mes-

a) highlighting the program selections for said one sages in said queue table are corrected.

] L] - * *

error message by a first color; and

