57067532 A2 | IV P00 0 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 July 2005 (28.07.2005)

A0 0 O OO0

(10) International Publication Number

WO 2005/067532 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2005/001284

(22) International Filing Date: 14 January 2005 (14.01.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/536,469 14 January 2004 (14.01.2004) US

(71) Applicant (for all designated States except US): RIVER-
STONE NETWORKS, INC. [US/US]; 5200 Great Amer-
ica Parkway, Santa Clara, CA 95054 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LODHA, Sandeep
[IN/US]; 2300 Walnut Street, Apt. 228, Philadelphia,
PA 19103 (US). BALAKRISHNAN, Thirumalpathy
[IN/US]; 3475 Granada #365, Santa Clara, CA 95051
(US).

(74) Agent: WILSON, Mark, A.; Wilson & Ham, PMB: 348,
2530 Berryessa Road, San Jose, CA 95132 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: MANAGING PROCESSING UTILIZATION IN A NETWORK NODE

New forwarding table entries
Software-based :
learning Learning
protocols ST filter
110 packets sent | 106
for learning
CPU 102
Network node 100

Y

Hardware-based 11
forwarding table ~—

Hardware-based 104
forwarding engine

) L

Incoming

Packets sent traffic

for learning

(57) Abstract: A technique for managing the utilization of processing resources involves filtering packets that are sent to a CPU for
& learning before allowing the packets to reach CPU. The filtering involves determining if related packets have already been allowed to
& reach the CPU for learning and using the knowledge about related packets to determine if a current packet should be allowed to reach
N he CPU. In one embodiment, the processing resources of the CPU are conserved by allowing only one packet per flow to reach the
CPU for learning. The one packet is used by the CPU generate the necessary forwarding information and to initiate programming of
the hardware-based forwarding table so that subsequent packets of the same flow can be forwarded directly from the hardware-based

forwarding engine.

WO 2005/067532 A2 I} N0 A0VOH0 T 0000 010N AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2005/067532

10

15

20

25

30

MANAGING PROCESSING UTILIZATION IN A NETWORK NODE

CROSS-REFERENCE TO RELATED APPLICATION

[001] This application is entitled to the benefit of provisional U.S. Patent
Application Serial Number 60/536,469, filed 14 January 2004.

FIELD OF THE INVENTION

[002] The invention relates to packet-based communications networks, and more
particularly, to techniques for managing the utilization of processing resources in a

network node such as a switch or router.

BACKGROUND OF THE INVENTION

[003] Packet-based network nodes, such as switches and routers, generate a
database of forwarding information that is used to forward incoming packetized
traffic. The forwarding information is generated through software-based protocols
that are executed by a central processing unit (CPU). In order to increase the speed
and throughput of switches and routers, the forwarding information is often
programmed into hardware-based forwarding tables. The hardware-based forwarding
tables can be rapidly searched to provide forwarding decisions without ever having to
utilize the resources of the CPU. When forwarding information for a received flow of
packets does not exist in the hardware-based forwarding table, the packets from the
flow are sent to the CPU for processing until forwarding information can be learned

and a forwarding table entry can be programmed into the hardware-based forwarding

PCT/US2005/001284

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

table. The CPU of a network node has a finite processing capacity and as more
packets are sent to the CPU, more of the finite processing capacity is consumed by
processing the received packets. If the load on the CPU is too great, the response time
of the CPU will slow and some packets may be dropped.

[004] Many of the most advanced switches and routers utilize a chassis-based
distributed architecture in which separate linecards are dedicated to different
functions. For example, a control module linecard is dedicated to central management
and control operations, port interface linecards are dedicated to sending and receiving
network traffic and performing hardware-based forwarding, and a switch fabric
linecard is dedicated to providing data paths between the various linecards. In a
distributed architecture, the control module includes a main CPU that is responsible
for generating and managing the forwarding information for the entire network node
and for programming the hardware-based forwarding tables of the port interfaces.

The wide set of responsibilities of the control module makes the finite processing
capacity of the main CPU a very valuable resource.

[005] Inview of the foregoing, what is needed is a technique for efficiently

managing the utilization of processing resources in a packet-based network node.

SUMMARY OF THE INVENTION

[006] A technique for managing the utilization of processing resources involves
filtering packets that are sent to a CPU for learning before allowing the packets to
reach the CPU. The filtering involves determining if related packets have already
been allowed to reach the CPU for learning and using the knowledge about related
packets to determine if a current packet should be allowed to reach the CPU. In one
embodiment, the processing resources of the CPU are conserved by allowing only one
packet per flow to reach the CPU for learning. The one packet is used by the CPU to
generate the necessary forwarding information and to initiate programming of the
hardware-based forwarding table so that subsequent packets of the same flow can be
forwarded directly from the hardware-based forwarding engine. Because only one

packet per flow is allowed to reach the CPU for learning, the processing resources of

WO 2005/067532 PCT/US2005/001284

the CPU are not consumed by learning the same forwarding information for multiple
packets of the same flow.

[007] Other aspects and advantages of the present invention will become apparent
from the following detailed description, taken in conjunction with the accompanying

5 drawings, illustrating by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

10 [008] Fig. 1 depicts a network node that includes a CPU, a hardware-based
forwarding table, and a learning filter.

[009] Fig. 2 depicts an embodiment of the learning filter from Fig. 1.

[0010] Fig. 3 depicts a process flow diagram of a technique for managing the
utilization of processing resources.

15 [0011] Fig. 4 depicts an embodiment of a network node with a distributed
architecture that is configured to filter packets that are sent for learning.

[0012] Fig. 5 depicts another embodiment of a network node with a distributed
architecture.

[0013] Fig. 6 depicts a process flow diagram of a method for managing the
20 utilization of processing resources of a CPU.

[0014] Throughout the description, similar reference numbers may be used to

identify similar elements.

25 DETAILED DESCRIPTION

[0015] Fig. 1 depicts a network node 100 that includes a central processing unit
(CPU) 102, a hardware-based forwarding engine 104, and a learning filter 106. The
network node handles traffic in discrete segments, often referred to as datagrams. In
30 an embodiment, the network node is an Ethernet switch/router that forwards traffic
within the network node using Layer 2, Layer 3, and/or Layer 4 header information,
where the “Layers” are defined in the Open System Interconnection (OSI) model by

the International Standardization Organization (ISO). The network node may include

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

port interfaces that support other network protocols such as asynchronous transfer
mode (ATM), synchronous optical network (SONET), and Frame Relay. Although an
Ethernet-based switch/router is described, the disclosed techniques can be applied to
network nodes that utilize other protocols to transfer traffic.

[0016] The CPU 102 of the network node 100 runs an operating system and
supports software protocols that are necessary to forward network traffic. The CPU
may be embodied as a multifunction processor and/or an application-specific
processor. Examples of processors include the PowerPC™ family of processors by
IBM and the x86 family of processors by Intel. Examples of operating systems that
may be run by the CPU include NetBSD, Linux, and vxWORKS. Although not
shown, the CPU may be supported by other hardware (e.g., memory and application-
specific integrated circuits (ASICs)).

[0017] Among the protocols run by the CPU 102 are the protocols involved with
generating forwarding information. These protocols, referred to herein as software-
based learning protocols 110, include Layer 2 learning protocols and Layer 3 learning
protocols. In the embodiment of Fig. 1, the Layer 2 protocol that is used to switch
traffic is Ethernet and Layer 2 learning involves associating a destination media
access control (MAC) address with an output port of the network node. A destination
MAC address is associated with an output port of the network node by learning the
input port and source MAC address of received packets. As is well-known in the
field, the correct output port for a destination MAC address can be leafned by
“flooding” packets with the destination MAC address to be learned onto all of the
relevant output ports and then watching to see the port on which a corresponding
packet is received. Layer 2 learning may also involve associating virtual local area
network (VLAN) identifiers (IDs) with destination MAC addresses and/or output
ports.

[0018] Inthe embodiment of Fig. 1, the Layer 3 protocol that is used to route traffic
is Internet Protocol (IP)-based (including IP and IPX) and Layer 3 learning involves
associating a destination IP address with a next-hop IP address. Examples of common
Layer 3 protocols that are run by the CPU 102 include the open shortest path first
(OSPF) protocol, the border gateway protocol (BGP), the intermediate system-to-
intermediate system (ISIS) protocol, and multiprotocol label switching (MPLS).

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

[0019] Traffic is typically communicated between packet-based network nodes in
groups of related packets. The groups of related packets are often referred to as a
“flow.” Packets of a flow have some common information. For example, common
Layer 2 information may include any combination of a destination MAC address, a
source MAC address, a VLAN ID, and/or a port of entry. Common Layer 3
information may include any combination of a destination IP address, a source IP
address, type of service (TOS), a destination port number, and/or a source port
number.

[0020] The hardware-based forwarding engine 104 of Fig. 1 is responsible for
making hardware-based forwarding decisions for incoming traffic. The hardware-
based forwarding engine includes a hardware-based forwarding table 112 that is
programmed with forwarding table entries. The forwarding table entries associate
incoming packet information with output information. As is known in the field,
hardware-based forwarding tables are typically embodied in random access memory
(RAM) and/or content addressable memory (CAM) that can be rapidly accessed and
searched. Hardware-based forwarding decisions can only be made on incoming
packets if the respective hardware-based forwarding table contains forwarding

information that corresponds to the incoming packets. In operation, the hardware-

" based forwarding engine compares header information from received packets to the

forwarding table entries to look for a table entry match. If the hardware-based
forwarding engine is not able to make a forwarding decision on the incoming packets,
then the hardware-based forwarding table needs to be programmed with a forwarding
table entry that corresponds to the incoming packets. The process of obtaining
forwarding information is referred to herein as learning. In some embodiments, the
hardware-based forwarding table may contain forwarding information that
corresponds to the incoming packets although for some reason, the forwarding
information is inactive (e.g., cannot be used to make a forwarding decision). When
forwarding information is inactive, no forwarding decision can be made and the
related packets are sent to the CPU for learning.

[0021] Since traffic is typically communicated in a flow of packets, if the hardware-
based forwarding engine 104 is not able to make forwarding decisions on the
incoming packets, then all of the packets of the flow are sent to the CPU 102 for

forwarding until the CPU communicates forwarding information to the hardware-

10

15

20

25

30

WO 2005/067532 PCT/US2005/001284

based forwarding engine and the forwarding table is programmed with the necessary
forwarding information. The more packets that are sent to the CPU for processing,
the longer the delay in processing can be. If the processing delay is too long, packets
may be dropped. Delays in processing and dropped packets negatively affect the
performance of the network node.

[0022] In accordance with an embodiment of the invention, packets that are sent to
the CPU 102 for learning are filtered before being allowed to reach the CPU. The
filtering involves determining if related packets have already been allowed to reach
the CPU and using the knowledge about related packets to determine if a current
packet should be allowed to reach the CPU. In one embodiment, the resources of the
CPU are conserved by allowing only one packet per flow to reach the CPU for
learning. The one packet is used by the CPU to generate the necessary forwarding
information and to initiate programming of the hardware-based forwarding table 112
so that subsequent packets of the same flow can be forwarded directly from the
hardware-based forwarding engine 104. Because only one packet per flow is allowed
to reach the CPU for learning, the processing resources of the CPU are not consumed
by learning the same forwarding information for multiple packets of the same flow.
[0023] In the embodiment of Fig. 1, the filtering of packets that are sent to the CPU
102 for learning is performed by the learning filter 106. The learning filter receives
all of the packets that are sent from the hardware-based forwarding engine 104 to the
CPU for learning and determines which of the received packets are allowed to reach
the CPU. Only a subset of the originally sent packets is allowed to reach the CPU as
a result of the filtering. The learning filter may use a variety of techniques to
determine which of the received packets are allowed to reach the CPU. Some
examples of the learning filter and filtering techniques are described below. In the
embodiment of Fig. 1, the leaming filter is an ASIC chip that is located in a data path
between the CPU and the hardware-based forwarding engine.

[0024] Fig. 2 depicts an embodiment of the learning filter 106 from Fig. 1. The
learning filter includes a hasher 116, a per-flow state machine 118, and an output
controller 120. The learning filter receives packets that are sent by the hardware-
based forwarding engine 104 to the CPU 102 for learning. The hasher obtains header
information from the received packets and hashes certain header information to

generate hash values that identify the flows to which the packets belong. For

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

example, Layer 2 packets are hashed on a combination of the destination MAC
address, the source MAC address, the VLAN ID, and the port of entry while Layer 3
packets are hashed on the destination IP address, source IP address, TOS, destination
port number, and source port number. Although some examples of hashing fields are
described, other fields or combinations of fields are possible. The hash value
generated by the hasher is provided to the per-flow state machine. The per-flow state
machine maintains a state table 122 that indicates a state for each identified flow,
where each flow is identified by a hash value. The current state of a flow is provided
to the output controller. The output controller determines whether or not a packet is
allowed to reach the CPU based on the current state. As a result of the filtering that
takes place, only a subset of the packets that were received by the learning filter are
allowed to reach the CPU.

[0025] In the embodiment of Fig. 2, the per-flow state machine 118 'maintai_ns two
states for each flow, where the states are identified as state 1 (S1) and state 2 (S2).
State 1 indicates that no packets from the corresponding flow have been allowed to
reach the CPU 102 and state 2 indicates that a packet of the corresponding flow has
been allowed to reach the CPU. In the embodiment of Fig. 2, the state of a flow is
initially set to state 1 and a packet is allowed to reach the CPU when the state is state
1. Once a packet is allowed to reach the CPU, the state is changed to state 2. While
the state of a flow is set to state 2, no more packets from the flow are allowed to reach
the CPU. The state of a flow can be reset to state 1 according to a pre-established
algorithm to ensure that the forwarding information of flows is periodically updated.
For example, the state machine may be configured to reset to state 1 after the
forwarding table is programmed with the corresponding table entry or after some
fixed period of time. The result of the learning filter logic of Fig. 2 is that only one
packet pEr flow is allowed to reach the CPU for processing. This can greatly reduce
the load on the CPU without inhibiting the learning process. Although one example
of the learning filter and filtering logic is described, other filtering techniques may be
used to reduce the number of packets that are allowed to reach the CPU for learning.
[0026] Fig. 3 depicts a process flow diagram of a technique for managing the
utilization of processing resources of a CPU. At block 200, a packet is received at a
network node. At decision point 202, it is determined whether or not learning is

required. If it is determined that learning is not required, then at block 204 the packet

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

is forwarded by the hardware-based forwarding engine using forwarding information
that exists in its hardware-based forwarding table. If it is determined that learning is
required, then at block 206, the flow to which the packet belongs is identified. For
example, the flow is identified by hashing certain fields of the packet header. After
the flow is identified, at decision point 208, it is determined if a packet from the
identified flow has already been sent to the CPU for learning. For example, a state
machine is consulted to determine whether a packet from the identified flow has
already been sent to the CPU for learning. If a packet from the identified flow has
already been sent to the CPU for learning, then the current packet is not sent to the
CPU for learning (block 210). If a packet from the identified flow has not already
been sent to the CPU for learning, then the current packet is sent to the CPU for
learning (block 212). The process flow of Fig. 3 is repeated for each packet that is
received at the network node.

[0027] Fig. 4 depicts an embodiment of a network node 130 with a distributed
architecture that is configured to filter packets that are sent for learning. The
distributed architecture of the network node includes a control modulé linecard 132, a
switch fabric linecard 134, and two port interface linecards 136 (port interfaces A and
B). In the embodiment of Fig. 4, a single learning filter 106 is located at the control
module to filter packets received from all of the port interfaces. The learning filter
depicted in Fig. 4 performs the same filtering functions as the learning filter that is
described above with reference to Figs. 1 and 2.

[0028] The control module 132 includes a CPU 102.(identified as the “main CPU”)
and the learning filter 106. In general, the control module supports various functions
such as network management functions and protocol implementation functions.
Although not shown, the control module also includes memory such as electrically
erasable programmable read-only memory (EEPROM) or flash ROM for storing
operational code and dynamic random access memory (DRAM) for buffering traffic
and storing data structures, such as forwarding information. In addition, there may be
more than one discrete processor unit and more than one memory unit on the control
module. The main CPU may include a multifunction processor and/or an application-
specific processor as described above. The main CPU supports the software-based

learning as indicated by the software-based learning protocols functional block 110.

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

The software-based learning includes generating Layer 2 and Layer 3 forwarding
information as is well-known in the field.

[0029] The switch fabric 134 provides datapaths between the control module 132
and the port interfaces 136 (e.g., datapaths between the control module and the port
interfaces and datapaths between the port interfaces). The switch fabric may utilize,
for example, shared memory, a shared bus, or crosspoint matrices.

[0030] The port interfaces 136 include a port interface CPU 138, a hardware-based
forwarding engine 104, and input/output ports 140. In general, functions performed
by the port interfaces include receiving traffic into the network node, buffering traffic,
storing forwarding information, protocol processing, making forwarding decisions,
and transmitting traffic from the network node 130. In the embodiment of Fig. 4, the
port interface CPU of each port interface runs its own operating system. The port
interface CPU within each port interface linecard may include a multifunction
processor (e.g., an IBM PowerPC® processor) and/or an application specific
processor. Operational code is typically stored in non-volatile memory (not shown)
such as EEPROM or flash ROM while traffic is typically buffered in volatile memory
(not shown) such as RAM.

[0031] The hardware-based forwarding engines 104 depicted in Fig. 4 perform the
same functions as the hardware-based forwarding engine described with reference to
Fig. 1. One task performed by the hardware-based forwarding engine is determining
if incoming packets need to be learned so that forwarding decisions can be made
directly by the hardware-based forwarding engines. Packets that need to be learned
are sent to the control module 132 through the switch fabric 134.

[0032] In operation, the hardware-based forwarding engines 104 of the port
interfaces 136 determine if received packets need learning. If received packets need
learning, then the packets are sent across the switch fabric 134 to the control module
132. At the control module, the packets are first processed by the learning filter 106.
The learning filter acts as a gateway that determines whether or not the packets reach
the main CPU 102 for learning. Because the learning filter is located on the control
module, it can receive packets from all of the different port interfaces énd therefore
functions as a central filtering point. This enables all of the filtering to be

accomplished with a single learning filter ASIC. Additionally, this enables the

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

10

filtering to be accomplished without requiring changes to the main CPU or the
hardware-based forwarding engines.

[0033] Fig. 5 depicts another embodiment of a network node 150 with a distributed
architecture. The embodiment of Fig. 5 is similar to the embodiment of Fig. 4 except
that the filtering function is performed in a distributed manner at each port interface
136. In particular, each port interface includes an interface-specific learning filter
106A and 106B that filters only packets from its corresponding port interface. The
interface-specific learning filters perform the same basic functions as the learning
filter described with reference to Figs. 1 and 2. Packets that pass the filtering are sent
from the respective port interfaces to the main CPU 102 of the control module 132
through the switch fabric.

[0034] Fig. 6 depicts a process flow diagram of a method for managing the
utilization of processing resources of a CPU. At block 220, a packet is received. At
block 222, it is determined if forwarding information related to the packet needs to be
learned to forward the packet. At block 224, if learning is needed, a decision is made
whether to subject the packet to learning. The decision is based on whether any other
related packets have already been subjected to learning. |
[0035] Inthe embodiment described herein, only packets that pass the filtering are
sent to the CPU 102 for processing. In an alternative embodiment, the filtering
function may be incorporated into the CPU such that all packets sent for learning are
received by the CPU but only selected packets are subjected to learning processing.
[0036] Although in one embodiment only one packet per flow is allowed to reach
the CPU 102, in other embodiments, the number of packets allowed to reach the CPU
is reduced from the total number of packets of a flow that are initially sent to the CPU
for learning.

[0037] In an embodiment, sending a packet within the network node may involve
sending only header information of the packet. For example, sending a packet to the
CPU for learning may involve sending only header information of the packet to the
CPU.

[0038] Additionally, although in one embodiment the first packet of a flow is
allowed to reach the CPU for learning, in other embodiments it is possible that a

packet other than the first packet is allowed to reach the CPU.

WO 2005/067532 PCT/US2005/001284
' 11

[0039] Although specific embodiments of the invention have been described and
illustrated, the invention is not to be limited to the specific forms or arrangements of

parts as described and illustrated herein. The invention is limited only by the claims.

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

12

WHAT IS CLAIMED IS:

1. A method for managing the utilization of processing resources in a packet-
based network node comprising:

receiving a packet;

determining if forwarding information related to the packet needs to be
learned to forward the packet;

if learning is needed, deciding whether to subject the packet to learning based

on whether any other related packets have already been subjected to learning.

2. The method of claim 1 wherein determining if forwarding information related
to the packet needs to be learned comprises comparing header information of the

packet to entries in a hardware-based forwarding table to find a match.

3. The method of claim 2 wherein learning is needed if no match is found in the
comparison of the header information to entries in the hardware-based forwarding

table.

4, The method of claim 1 wherein deciding whether to subject the packet to
learning comprises identifying a flow to which the packet belongs and determining

whether a packet from the same flow has already been subjected to learning.

3. The method of claim 4 further including subjecting the packet to learning only
if it is determined that a packet from the same flow has not already been subjected to

learning.

6. The method of claim 4 wherein identifying a flow to which the packet belongs
involves hashing header information of the packet to produce a hash value and
wherein determining whether a packet from the same flow has already been subjected
to learning comprises indexing a state table using the hash value to obtain state

information.

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

13

7. The method of claim 6 wherein the state information indicates whether a

packet from the flow has already been subjected to learning.

8. The method of claim 1 further comprising sending the packet to a central
processing unit (CPU) for processing if it is determined that the packet should be

subjected to learning.

9. A system for managing the utilization of processing resources in a packet-
based network node comprising:

a central processing unit (CPU) configured to learn forwarding information
that is used to forward packets;

a hardware-based forwarding engine configured to determine whether a packet
should be sent to the CPU for learning; and

a learning filter configured to receive packets from the hardwafe-based
forwarding engine that are determined by the hardware-based forwarding engine to
need learning and to decide whether to allow the received packets to reach the CPU
based on whether any other related packets have already been allowed to reach the
CPU.

10. The system of claim 9 wherein the hardware-based forwarding engine includes
a hardware-based forwarding table that can be programmed with forwarding table
entries and wherein the hardware-based forwarding engine is configured to send a
packet to the CPU for learning when the hardware-based forwarding engine does not

contain forwarding information corresponding to the received packet.

11. The system of claim 9 wherein related packets are packets from the same flow
of packets and wherein the learning filter comprises a hasher that is configured to |
identify a flow to which the packet belongs and a state table for indicating whether a
packet from an identified flow has already been sent to the CPU, wherein the hasher
generates a hash value that identifies a flow and wherein the hash value is used to

index the state table.

WO 2005/067532 PCT/US2005/001284

10

15

20

25

30

14

12. The system of claim 9 wherein the learning filter is configured to allow a

reduced number of packets from a flow to reach the CPU.

13. The system of claim 9 wherein the CPU and learning filter are located on a
control module linecard and the hardware-based forwarding engine is located on a
port interface linecard, the system further including a plurality of port interface
linecards each having a hardware-based forwarding engine, wherein the learning filter

is configured to receive packets from each of the port interface linecards.

14. The system of claim 9 wherein the CPU is located on a control module
linecard and the learning filter is located along with the hardware-based forwarding
engine on a port interface linecard, the network node further comprising a plurality of

port interface linecards, each port interface linecard including a learning filter.

15. A method for managing the utilization of processing resources in a packet-
based network node comprising:
receiving a packet;
sending the packet to a central processing unit (CPU) for learning;
before the packet reaches the CPU;
determining if a related packet has already been allowed to reach the
CPU for learning;
deciding whether to allow the packet to reach the CPU based on
whether a related packet has already been allowed to reach the CPU.

16. The method of claim 15 wherein determining if a related packet has already
been allowed to reach the CPU for learning comprises identifying a flow to which the

packet is associated.

17. The method of claim 16 further comprising determining whether a packet

from the same flow has been allowed to reach the CPU.

PCT/US2005/001284

WO 2005/067532

10

15

18. The method of claim 17 further comprising allowing the received packet to
reach the CPU for learning 6nly if another packet from the same flow has not already

been allowed to reach the CPU for learning.

19. The method of claim 17 further comprising allowing a reduced number of

packets from the same flow to reach the CPU for learning.

20. The method of claim 15 wherein determining if a related packet has already
been allowed to reach the CPU for learning comprises hashing header information of
the received packet to produce a hash value and indexing a state table using the hash
value, wherein the state table includes state information that indicates whether a

related packet has already been allowed to reach the CPU.

PCT/US2005/001284

WO 2005/067532

1/5

Jjjen
Surmoou]

['DId

Suruea] 10j
JU0S §)ay98

3

SUISUS FuIpIEMIO]
Y07 Paseq-orempieq

___ 9]qe} Surpremioy
IT paseq-aremprepy

A

~

901
1
guruIed

00T dpou yiomjN
01 N
gurued] 1o
Juas spoxoed 011
----mm-u.o.vm_m_.m.---.v $]020301d
Suruzeq]
Poseq-aIemiJoq

SALIUD 2]qe) SmpIEMIo] MaN

PCT/US2005/001284

WO 2005/067532

2/5

SuyuIed] 10§
WSy FuIpIeMIo]
poseq-arempiey
WOIJ JUdS §19%08d

¢OI

90T oWy Surmres]

- ,

—> Io[onuod
mdin

(78 “18) uonemIOyuI ojeIg

811
anjeA SUTIBw
o] Ise a1e)S MOTJ-1g
IoTsey > —
ol
31qe} oe)g

—-

Surue

1d) ¢
sjoxoed J

WO 2005/067532 PCT/US2005/001284

3/5

Receive a packet at a network node [-—200 204

A

< Learning required? N\ N > FOT“]’(ard
' /(202 packet

Y
Y
Identify a flow to which 206
the packet belongs 210
Has a packet from the é
identified flow a]ready\ Y ?c(])(elzott OS%I?U
been sent to the CPU P fof Learmin
for learning? 208 g
N

Send packet to CPU for learning 212 FIG.3

Receive a packet ——220

A

Determine if forwarding information related to the
packet needs to be learned to forward the packet ——222

4

If learning is needed, decide whether to subject the
packet to learning based on whether any other related ——224
packeis have already been subjected to learning

FIG.6

PCT/US2005/001284

WO 2005/067532

4/5

0¥l

q Q08I Jiog

[

_ uidud Suipremio;
YOT poseq-orempiey

___ 9[qey Swpremio]

IT poseq-aremprey

8T) 90eIxN] 10d

9¢17 ¢l

~

0¥l

0v1

¥ 20uJ300 3304

i —

_ oudud Surpremio
70T paseq-orempiey

___ 9[qe) Surpremio;
IT poseq-aremprery

€1 (14D SoepIoqu] uog

Vel
OHqe]
qonmg

ﬂ 9pOU JI0MIIN

(431
o[powm
1013109

|

SN
g S

BN

i

il
Suruiea|

d
..... > 011

$J020301d
..... > Sume

Paseq-01eMI0g

P DI

PCT/US2005/001284

WO 2005/067532

5/5

Ovl

Ovl

Ovl

0v1

L e

q 20131 0]

— —o

0T

WSO Surpremio;
paseq-oreMpIey

4901

Ry
Supureay

9]qe) Suipremio]
POseq-IemMpIRy

8¢1

(14D 99epIqu] 1104

9¢1-" ~9¢€1

) [~

V 90B1I9)01 10g

01

oUIgud Suipremio]
Poseq-aIeMpIRy

V901

Ry
gutuzea|

I

9[qe) Swpemio]
paseq-arempief]

€1 [1dD 9B Hod

el
O11QE]

V| NS

T 9pou JjomjaN

el
a[tipou
[o1m0))

01
14 We

011
sj000301d
Suruee]

Paseq-aIeMyIog

¢OI

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

