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The amount of state over time ( demand curves ) that needs to 
be injected into a structure over time to achieve desired state 
values over time ( desired comfort curves ) at locations are 
determined by using a neural network that models the 
structure . Possibly random demand curves are fed into the 
neural network model at areas , such as the outside , state 
source locations ( such as heaters ) , and are fed forward 
though the model , diffusing the state throughout the model . 
Comfort curves at chosen locations within the neural net 
representing physical locations are output . The comfort 
curves are compared with the desired comfort curves using 
cost function . Machine - learning methods are used to incre 
mentally improve the demand curves until the output com 
fort curves are sufficiently close the desired state values . 
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DETERMINING DEMAND CURVES FROM 
COMFORT CURVES 

RELATED APPLICATION 

a 
[ 0001 ] The present application hereby incorporates by 
reference the entirety of , and claims priority to , U.S. provi 
sional patent application Ser . No. 62 / 704,976 filed 5 Jun . 
2020 . 
[ 0002 ] The present application hereby incorporates by 
reference U.S. utility patent application Ser . No. 17 / 009,713 , 
filed Sep. 1 , 2020 . 

FIELD 

[ 0003 ] The present disclosure relates to neural network 
methods for creating demand curves from comfort curves . 
More specifically the present disclosure relates to receiving 
a time curve of desired state values and outputting a time 
curve of energy amounts that may be input into a structure 
to achieve the desired state values . 

determine a new simulated demand curve ; iteratively per 
forming the using and computing steps until a goal state is 
reached ; and determining that the new simulated demand 
curve is the demand curve upon the goal state being reached . 
[ 0007 ] In an embodiment , the new simulated demand 
curve is a time series of zone energy inputs and the simulated 
comfort curve is a time series of zone state values . 
[ 0008 ] In an embodiment , computing the cost function 
further comprises determining difference between the 
desired comfort curve and the simulated comfort curve . 
[ 0009 ] In an embodiment , performing the machine learn 
ing process further comprises performing automatic differ 
entiation recursively through the neural network producing 
a new simulated demand curve . 
[ 0010 ] In an embodiment , the goal state comprises the cost 
function being minimized , the model running for a specific 
time , or the model running a specific number of cycles . 
[ 0011 ] In an embodiment , the neural network comprises 
multiple activation functions . 
[ 0012 ] In an embodiment , performing the machine process 
comprises computing a gradient of the neural network by 
taking a reverse gradient of the cost function result forward 
using automatic differentiation . 
[ 0013 ] In an embodiment , performing the machine learn 
ing process further comprises taking a gradient of the neural 
network backward using automatic differentiation . 
[ 0014 ] In an embodiment , the neural network is a hetero 
geneous neural network . 
[ 0015 ] In an embodiment , any neuron may be an output 

BACKGROUND 

neuron . 

[ 0004 ] Current building automation systems rely on cur 
rent state of the building and simple requirements to deter 
mine building behavior . For example , a building may know 
that at 7:00 am it should be at 70 ° . At 7:00 am it will then 
check what the current temperature is and turn on the heater 
to warm the building up to the desired temperature or turn 
on the air conditioner to cool it down . Not only is this 
simplistic , but it leaves buildings unable to adapt to predict 
able events , such as when weather reports predict changes ; 
when the number of people in the building is known to 
change a certain time , and so on . Trying to model 
buildings quickly runs into problems , as even simple build 
ings are very complex in terms of the current controllers that 
are used to manage the systems in buildings . Proportional 
Integral - Derivative controllers ( PID controllers ) originally 
designed for ship steering in 1922 — are widely used to 
control HVAC and other systems in building , but fit very 
poorly into creating models that have more than a single 
setpoint . To model a room heterogeneously , you would need 
roughly 50 PID controllers ; why so many ? The walls are 
made of multiple materials that transfer state differently , and 
there are four walls , typically ; the ceiling and floor are made 
of different levels of materials , forces act on the outside of 
the walls ; there are heat sources , such as people and lights 
in the room , all of which together make up the building . 

a 

new 

[ 0016 ] In an embodiment , a demand curve creation system 
is disclosed , the system comprising : at least one processor , 
a memory in operable communication with the processor 
and demand curve creation code residing in memory which 
comprises : receiving a heterogenous neural network of a 
plurality of controlled building zones ; receiving a ground 
truth comfort state zone curve for at least one of the plurality 
of controlled building zones ; performing a machine learning 
process to run the heterogenous neural network using a 
simulated demand curve as input and receiving a simulated 
comfort curve as output ; computing a cost function using the 
simulated comfort state zone curve and the ground truth 
comfort curve ; using the cost function to determine 
simulated demand curve ; iteratively performing the using 
and computing steps until a goal state is reached ; and 
determining that the current simulated demand curve is the 
demand curve upon the goal state being reached . 
[ 0017 ] In an embodiment , the machine learning process 
comprises a backward pass that computes the gradient with 
respect to the cost function , and then uses an optimizer to 
update the demand curves . 
[ 0018 ] In an embodiment , the backward pass that com 
putes the gradient uses automatic differentiation . 
[ 0019 ] In an embodiment , the optimizer uses stochastic 
gradient descent or mini batch gradient descent to minimize 
the cost function . 
[ 0020 ] In an embodiment , the neural network is a heterog 
enous neural network . 
[ 0021 ] In an embodiment , the heterogenous neural net 
work comprises neurons , any of which may be inputs . 
[ 0022 ] In an embodiment , any of the neurons may be 
outputs . 
[ 0023 ] In an embodiment , a computer - readable storage 
medium configured with executable instructions to perform 

SUMMARY 

[ 0005 ] This summary is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the Detailed Description section . This summary 
does not identify required or essential features of the 
claimed subject matter . 
[ 0006 ] In an embodiment , a method of determining a 
demand curve implemented by one or more computers is 
disclosed , comprising : receiving a neural network of a 
plurality of controlled building zones ; receiving a desired 
comfort curve for at least one of the plurality of controlled 
building zones ; performing a machine learning process to 
run the heterogenous model using a simulated demand curve 
as input and receiving a simulated comfort curve as output ; 
computing a cost function using the simulated comfort curve 
and the desired comfort curve ; using the cost function to 

a 
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a method for creation of a demand curve upon receipt of a 
comfort curve is disclosed , the method comprising : receiv 
ing a ground truth comfort curve for at least one of the 
plurality of controlled building zones ; performing a machine 
learning process to run a heterogenous neural network using 
a simulated demand curve as input and receiving a simulated 
comfort curve as output ; computing a cost function using the 
simulated comfort state zone curve and the ground truth 
comfort curve ; using the cost function to determine a new 
simulated demand curve ; iteratively performing the using 
and computing steps until a goal state is reached ; and 
determining that the current simulated demand curve is the 
demand curve upon the goal state being reached . 
[ 0024 ] In an embodiment , the machine learning process 
comprises using automatic differentiation to perform back 
propagation . 
[ 0025 ] In an embodiment , the machine learning process 
comprises using a gradient descent method to perform 
incremental optimization of the simulated demand curve 
[ 0026 ] Additional features and advantages will become 
apparent from the following detailed description of illus 
trated embodiments , which proceeds with reference to 
accompanying drawings . 

? 

BRIEF DESCRIPTION OF THE FIGURES 

[ 0036 ] Various alternatives to the implementations 
described herein are possible . For example , embodiments 
described with reference to flowchart diagrams can be 
altered , such as , for example , by changing the ordering of 
stages shown in the flowcharts , or by repeating or omitting 
certain stages . 
[ 0037 ] Embodiments comprise using a heterogeneous 
neural model of a defined space that models the various 
materials in the space as connected nodes , and uses machine 
learning techniques to train the model . “ Defined Space ” 
should be understood broadly - it can be a building , several 
buildings , buildings and grounds around it , a defined outside 
space , such as a garden or an irrigated field , etc. A portion 
of a building may be used as well . For example , a floor of 
a building may be used , a random section of a building , a 
room in a building , etc. This may be a space that currently 
exists , or may be a space that exists only as a design . Other 
choices are possible as well . 
[ 0038 ] The defined space may be divided into zones . Each 
zone may have a different set of requirements for state 
values during a time period . For example , for the state 
“ temperature , " a user Chris may like their office at 72º from 
8 am - 5 pm , while a user Avery may prefer their office at 77 ° 
from 6 am - 4 pm . These preferences can be turned into 
comfort curves , which are a chronological ( time - based ) state 
curve . Chris's office comfort curve may be 68 ° from Mid 
night to 8 am , 72º from 8 am to 5 pm , then 68 ° from 5 pm 
to midnight . The comfort curves ( for a designated space , 
such as Chris's office ) , are then used to calculate demand 
curves , which are the amount of state that may be input into 
the associated zones to achieve the state desired over time . 
For Chris's office , that is the amount of heat ( or cold ) that 
may be pumped into their office for the 24 hour time period 
covered by the comfort curve . These zones are controlled by 
some sort of equipment , allowing their state to be changed . 
Such zones may be referred to as controlled building zones . 
[ 0039 ] As a brief overview , in an illustrative embodiment , 
we have the comfort curve ( s ) we want zones ( e.g. , areas ) to 
conform to , such as Chris's office , as described above , and 
we wish to find the amount of state necessary over time to 
meet the temperature ( e.g. , state ) indicated by the comfort 
curve . We call the amount of state over time a demand curve . 
To determine comfort curves , we use demand curves as 
input into a heterogenous model , such as a heterogenous 
neural network that represents the zones within a structure . 
We then run the model forward with the demand curves as 
input to determine comfort curve output for that demand 
curve . That is , when we pump such an amount of state into 
a structure , the structure , in turn , has some amount of state 
over time . This can be thought of as running a furnace from 
time T to time T + 20 , and from time T + 120 to time T + 145 in 
a structure with two zones . The state propagates through 
both zones in the neural network which includes the walls , 
the air , etc. The model outputs the state from time T to time 
T + 240 in both zones , giving us two comfort curves , e.g. , 
what temperature the two zones were from time T to time 
T + 240 . We then check the comfort curve output with the 
desired comfort curve using a cost function , and then 
machine learning curves are used to tune the input values to 
create a new demand curve . In some embodiments , a gra 
dient of the cost function is calculated through backpropa 
gate to the input , and then optimized by , e.g. , a type of 
gradient descent , etc. , giving us a new demand curve to try . 
This is repeated until a goal state is reached . The last demand 

[ 0027 ] FIG . 1 depicts a computing system in conjunction 
with which described embodiments can be implemented . 
[ 0028 ] FIG . 2 is a flow diagram showing an exemplary 
embodiment of a method to determine demand curves from 
comfort curves . 
[ 0029 ] FIG . 3 is a functional block diagram showing an 
exemplary embodiment of the input and output of a model 
with which described embodiments can be implemented . 
[ 0030 ] FIG . 4 is a functional block diagram showing 
different machine learning functions with which described 
embodiments can be implemented . 
[ 0031 ] FIG . 5 depicts a physical system whose behavior 
can be determined by using a neural network . 
[ 0032 ] FIG . 6 depicts a simplified neural network that may 
be used to model behaviors of the physical system of FIG . 
3 . 
[ 0033 ] FIG . 7 is a block diagram describing the nature of 
exemplary neurons . 
[ 0034 ] Corresponding reference characters indicate corre 
sponding components throughout the several views of the 
drawings . Skilled artisans will appreciate that elements in 
the FIGURES are illustrated for simplicity and clarity and 
have not necessarily been drawn to scale . For example , the 
dimensions of some of the elements in the figures may be 
exaggerated relative to other elements to help to improve 
understanding of various embodiments . Also , common but 
well - understood elements that are useful or necessary in a 
commercially feasible embodiment are often not depicted in 
order to facilitate a less obstructed view of these various 
embodiments . 

a 

a 
a 

DETAILED DESCRIPTION 

[ 0035 ] Disclosed below are representative embodiments 
of methods , computer - readable media , and systems having 
particular applicability to systems and methods for building 
neural networks that describe physical structures . Described 
embodiments implement one or more of the described 
technologies . 
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curve run is the demand curve that is then used to determine 
state needed over time in one or more spaces . 
[ 0040 ] " Optimize ” means to improve , not necessarily to 
perfect . For example , it may be possible to make further 
improvements in a value or an algorithm which has been 
optimized . 
[ 0041 ] “ Determine ” means to get a good idea of , not 
necessarily to achieve the exact value . For example , it may 
be possible to make further improvements in a value or 
algorithm which has already been determined . 
[ 0042 ] A “ cost function , ” generally , compares the output 
of a simulation model with the ground truth- a time curve 
that represents the answer the model is attempting to match . 
This gives us the cost — the difference between simulated 
truth curve values and the expected values ( the ground 
truth ) . The cost function may use a least squares function , a 
Mean Error ( ME ) , Mean Squared Error ( MSE ) , Mean Abso 
lute Error ( MAE ) , a Categorical Cross Entropy Cost Func 
tion , a Binary Cross Entropy Cost Function , and so on , to 
arrive at the answer . In some implementations , the cost 
function is a loss function . In some implementations , the 
cost function is a threshold , which may be a single number 
that indicates the simulated truth curve is close enough to the 
ground truth . In other implementations , the cost function 
may be a slope . The slope may also indicate that the 
simulated truth curve and the ground truth are of sufficient 
closeness . When a cost function is used , it may be time 
variant . It also may be linked to factors such as user 
preference , or changes in the physical model . The cost 
function applied to the simulation engine may comprise 
models of any one or more of the following : energy use , 
primary energy use , energy monetary cost , human comfort , 
the safety of building or building contents , the durability of 
building or building contents , microorganism growth poten 
tial , system equipment durability , system equipment longev 
ity , environmental impact , and / or energy use CO2 potential . 
The cost function may utilize a discount function based on 
discounted future value of a cost . In some embodiments , the 
discount function may devalue future energy as compared to 
current energy such that future uncertainty is accounted for , 
to ensure optimized operation over time . The discount 
function may devalue the future cost function of the control 
regimes , based on the accuracy or probability of the pre 
dicted weather data and / or on the value of the energy source 
on a utility pricing schedule , or the like . 
[ 0043 ] A “ goal state ” may read in a cost ( a value from a 
cost function ) and determine if that cost meets criteria such 
that a goal has been reached . Such criteria may be the cost 
reaching a certain value , being higher or lower than a certain 
value , being between two values , etc. A goal state may also 
look at the time spent running the simulation model overall , 
if a specific running time has been reached , the neural 
network running a specific number of iterations , and so on . 
[ 0044 ] A machine learning process is one of a variety of 
computer algorithms that improve automatically through 
experience . Common machine learning processes are Linear 
Regression , Logistic Regression , Decision Tree , Support 
Vector Machine ( SVM ) , Naive Bayes , K - Nearest Neighbors 
( kNN ) , K - Means Clustering , Random Forest , Backpropaga 
tion with optimization , etc. 
[ 0045 ] An “ optimization method ” may include Gradient 
Descent , stochastic gradient descent , min - batch gradient 
descent , methods based on Newton's method , inversions of 
the Hessian using conjugate gradient techniques , Evolution 

ary computation such as Swarm Intelligence , Bee Colony 
optimization ; SOMA , and Particle Swarm , etc. Non - linear 
optimization techniques , and other methods known by those 
of skill in the art may also be used . 
[ 0046 ] In some machine learning techniques , Backpropa 
gation may be performed by automatic differentiation , or by 
a different method to determine partial derivatives . 
[ 0047 ] A " state ” as used herein may be Air Temperature , 
Radiant Temperature , Atmospheric Pressure , Sound Pres 
sure , Occupancy Amount , Indoor Air Quality , CO2 concen 
tration , Light Intensity , or another state that can be measured 
and controlled . 
[ 0048 ] Some structures comprise multiple zones ( such as 
rooms or specific areas monitored by a sensor ) . Each sepa 
rate zone may be modeled by its own neural model . The 
collection of neural models can comprise the heterogenous 
model of the structure . In such a multiple zone model , when 
zones share a surface , such as ( in a building implementa 
tion ) , a wall , a floor , or a ceiling , the outside neuron of one 
neural model may be used as the inner neuron of the next . 
Some zones may overlap with other zones , while some 
zones do not . The structure may be covered in zones , or 
some locations within a structure may have no explicit zone . 
Defined spaces may be defined into multiple subsystems . 
Any of these portioned defined spaces may be used as the 
subsystems . 
[ 0049 ] FIG . 1 illustrates a generalized example of a suit 
able computing environment 100 in which described 
embodiments may be implemented . The computing envi 
ronment 100 is not intended to suggest any limitation as to 
scope of use or functionality of the disclosure , as the present 
disclosure may be implemented in diverse general - purpose 
or special - purpose computing environments . 
[ 0050 ] With reference to FIG . 1 , the core processing is 
indicated by the core processing 130 box . The computing 
environment 100 includes at least one central processing 
unit 110 and memory 120. The central processing unit 110 
executes computer - executable instructions and may be a real 
or a virtual processor . It may also comprise a vector pro 

which allows same - length neuron strings to be 
processed rapidly . In a multi - processing system , multiple 
processing units execute computer - executable instructions 
to increase processing power and as such the vector proces 
sor 112 , GPU 115 , and CPU can be running simultaneously . 
The memory 120 may be volatile memory ( e.g. , registers , 
cache , RAM ) , non - volatile memory ( e.g. , ROM , EEPROM , 
flash memory , etc. ) , or some combination of the two . The 
memory 120 stores software 185 implementing the 
described methods of using a neural net to derive a demand 
curve from a comfort curve . 
[ 0051 ] A computing environment may have additional 
features . For example , the computing environment 100 
includes storage 140 , one or more input devices 150 , one or 
more output devices 155 , one or more network connections 
( e.g. , wired , wireless , etc. ) 160 as well as other communi 
cation connections 170. An interconnection mechanism ( not 
shown ) such as a bus , controller , or network interconnects 
the components of the computing environment 100. Typi 
cally , operating system software ( not shown ) provides an 
operating environment for other software executing in the 
computing environment 100 , and coordinates activities of 
the components of the computing environment 100. The 
computing system may also be distributed ; running portions 
of the software 185 on different CPUs . 

cessor 
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[ 0052 ] The storage 140 may be removable or non - remov 
able , and includes magnetic disks , magnetic tapes or cas 
settes , CD - ROMs , CD - RW , DVDs , flash drives , or any 
other medium which can be used to store information and 
which can be accessed within the computing environment 
100. The storage 140 stores instructions for the software , 
such a demand curve creation software 185 to implement 
methods of neuron discretization and creation . 

[ 0053 ] The input device ( s ) 150 may be a device that 
allows a user or another device to communicate with the 
computing environment 100 , such as a touch input device 
such as a keyboard , video camera , a microphone , mouse , 
pen , or trackball , and a scanning device , touchscreen , or 
another device that provides input to the computing envi 
ronment 100. For audio , the input device ( s ) 150 may be a 
sound card or similar device that accepts audio input in 
analog or digital form , or a CD - ROM reader that provides 
audio samples to the computing environment . The output 
device ( s ) 155 may be a display , printer , speaker , CD - writer , 
or another device that provides output from the computing 
environment 100 . 
[ 0054 ] The communication connection ( s ) 170 enable 
communication over a communication medium to another 
computing entity . The communication medium conveys 
information such as computer - executable instructions , com 
pressed graphics information , or other data in a modulated 
data signal . Communication connections 170 may comprise 
input devices 150 , output devices 155 , and input / output 
devices that allows a client device to communicate with 
another device over network 160. A communication device 
may include one or more wireless transceivers for perform 
ing wireless communication and / or one or more communi 
cation ports for performing wired communication . These 
connections may include network connections , which may 
be a wired or wireless network such as the Internet , an 
intranet , a LAN , a WAN , a cellular network or another type 
of network . It will be understood that network 160 may be 
a combination of multiple different kinds of wired or wire 
less networks . The network 160 may be a distributed net 
work , with multiple computers , which might be building 
controllers , acting in tandem . A computing connection 170 
may be a portable communications device such as a wireless 
handheld device , a cell phone device , and so on . 
[ 0055 ] Computer - readable media are any available non 
transient tangible media that can be accessed within a 
computing environment . By way of example , and not limi 
tation , with the computing environment 100 , computer 
readable media include memory 120 , storage 140 , commu 
nication media , and combinations of any of the above . 
Computer readable storage media 165 which may be used to 
store computer readable media comprises instructions 175 
and data 180. Data Sources may be computing devices , such 
as general hardware platform servers configured to receive 
and transmit information over the communications connec 
tions 170. The computing environment 100 may be an 
electrical controller that is directly connected to various 
resources , such as HVAC resources , and which has CPU 
110 , a GPU 115 , Memory , 120 , input devices 150 , commu 
nication connections 170 , and / or other features shown in the 
computing environment 100. The computing environment 
100 may be a series of distributed computers . These distrib 
uted computers may comprise a series of connected electri 
cal controllers . 

[ 0056 ] Although the operations of some of the disclosed 
methods are described in a particular , sequential order for 
convenient presentation , it should be understood that this 
manner of description encompasses rearrangement , unless a 
particular ordering is required by specific language set forth 
below . For example , operations described sequentially can 
be rearranged or performed concurrently . Moreover , for the 
sake of simplicity , the attached figures may not show the 
various ways in which the disclosed methods , apparatus , and 
systems can be used in conjunction with other methods , 
apparatus , and systems . Additionally , the description some 
times uses terms like “ determine , ” “ build , ” and “ identify ” to 
describe the disclosed technology . These terms are high 
level abstractions of the actual operations that are per 
formed . The actual operations that correspond to these terms 
will vary depending on the particular implementation and 
are readily discernible by one of ordinary skill in the art . 
[ 0057 ] Further , data produced from any of the disclosed 
methods can be created , updated , or stored on tangible 
computer - readable media ( e.g. , tangible computer - readable 
media , such as one or more CDs , volatile memory compo 
nents ( such as DRAM or SRAM ) , or nonvolatile memory 
components ( such as hard drives ) using a variety of different 
data structures or formats . Such data can be created or 
updated at a local computer or over a network ( e.g. , by a 
server computer ) , or stored and accessed in a cloud com 
puting environment . 
[ 0058 ] FIG . 2 illustrates a method 200 that that determines 
a demand curve from a comfort curve using a heterogenous 
neural network . The operations of method 200 presented 
below are intended to be illustrative . In some embodiments , 
method 200 may be accomplished with one or more addi 
tional operations not described , and / or without one or more 
of the operations discussed . Additionally , the order in which 
the operations of method 200 are illustrated in FIG . 2 and 
described below is not intended to be limiting . 
[ 0059 ] In some embodiments , method 200 may be imple 
mented in one or more processing devices ( e.g. , a digital or 
analog processor , or a combination of both ; a series of 
computer controllers each with at least one processor net 
worked together , and / or other mechanisms for electronically 
processing information etc. ) The one or more processing 
devices may include one or more devices executing some or 
all of the operations of method 200 in response to instruc 
tions stored electronically on an electronic storage medium . 
The one or more processing devices may include one or 
more devices configured through hardware , firmware , and / 
or software to be specifically designed for execution of one 
or more of the operations of method 200 . 
[ 0060 ] operation 205 , a neural network model 205 is 
received . The neural network model may have been stored 
in memory , and so may be received from the processing 
device that the model is being run on . In some implemen 
tations , the neural network model may be stored within a 
distributed system , and received from more than one pro 
cessors within the distributed system , etc. 
[ 0061 ] In some embodiments described herein , in a het 
erogenous neural network , the fundamentals of physics are 
utilized to model single components or pieces of equipment 
on a one - to - one basis with neural net neurons . In some 
embodiments , some neurons use physics equations as acti 
vation functions . Different types of neurons may have dif 
ferent equations for their activation functions , such that a 
neural network may have multiple activation functions 
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within its neurons . When multiple components are linked to 
each other in a schematic diagram , a neural net is created 
that models the components as neurons . The values between 
the objects flow between the neurons as weights of con 
nected edges . These neural networks model not only the real 
complexities of systems but also their emergent behavior 
and the system semantics . Therefore , it bypasses two major 
steps of the conventional AI modeling approaches : deter 
mining the shape of the neural net , and training the neural 
net from scratch . 
[ 0062 ] As the neurons are arranged in order of an actual 
system ( or set of equations ) and because the neurons them 
selves comprise an equation or a series of equations that 
describe the function of their associated object , and certain 
relationships between them are determined by their location 
in the neural net . Therefore , a huge portion of training is no 
longer necessary , as the neural net itself comprises location 
information , behavior information , and interaction informa 
tion between the different objects represented by the neu 
rons . Further , the values held by neurons in the neural net at 
given times represent real - world behavior of the objects so 
represented . The neural net is no longer a black box but itself 
contains important information . This neural net structure 
also provides much deeper information about the systems 
and objects being described . Since the neural network is 
physics- and location - based , unlike the conventional AI 
structures , it is not limited to a specific model , but can run 
multiple models for the system that the neural network 
represents without requiring separate creation or training . 
[ 0063 ] In some embodiments , the neural network that is 
described herein chooses the location of the neurons to tell 
you something about the physical nature of the system . The 
neurons are arranged in a way that references the locations 
of actual objects in the real work . The neural network also 
places actual equations that can be used to determine object 
behavior into the activation function of the neuron . The 
weights that move between neurons are equation variables . 
Different neurons may have unrelated activation functions , 
depending on the nature of the model being represented . In 
an exemplary embodiment , each activation function in a 
neural network may be different . 
[ 0064 ] As an exemplary embodiment , a pump could be 
represented in a neural network as a series of network 
neurons , some that represent efficiency , energy consump 
tion , pressure , etc. The neurons will be placed such that one 
set of weights ( variables ) feeds into the next neuron ( e.g. , 
with an equation as its activation function ) that uses those 
weights ( variables ) . Now , two previous required steps , shap 
ing the neural net and training the model may already be 
performed , at least to a large part . Using embodiments 
discussed here the neural net model need not be trained on 
information that is already known . In some embodiments , 
the individual neurons represent physical representations . 
These individual neurons may hold parameter values that 
help define the physical representation . As such , when the 
neural net is run , the parameters helping define the physical 
representation can be tweaked to more accurately represent 
the given physical representation . 
[ 0065 ] This has the effect of pre - training the model with a 
qualitative set of guarantees , as the physics equations that 
describe objects being modeled are true , which saves having 
to find training sets and using huge amounts of computa 
tional time to run the training sets through the models to 
train them . A model does not need to be trained with 

information about the world that is already known . With 
objects connected in the neural net like they are connected 
in the real world , emergent behavior arises in the model that , 
in certain cases , maps to the real world . This model behavior 
that is uncovered is often otherwise too computationally 
complex to determine . Further , the neurons represent actual 
objects , not just black boxes . The behavior of the neurons 
themselves can be examined to determine behavior of the 
object , and can also be used to refine the understanding of 
the object behavior . One example of heterogenous models is 
described in U.S. patent application Ser . No. 17 / 143,796 , 
filed on Jan. 7 , 2021 , which is incorporated herein in its 
entirety by reference . 
[ 0066 ] At operation 210 , a simulated demand curve is 
received . Initially , the values of the demand curve may be 
random , may be a demand curve from another similar model 
run , etc. As a brief overview , in an illustrative embodiment , 
we have the comfort curve ( s ) we want zones ( e.g. , areas ) to 
conform to , such as Chris's office , as described above , and 
we wish to find the demand curve ( amount of state needed 
over time ) necessary for the structure modeled by the 
heterogenous model amount of state necessary over time to 
meet the state ( e.g. , temperature ) indicated by the comfort 
curve . To do so , we use simulated demand curves as input 
in the model , run the model which outputs the simulated 
comfort curve for the given demand curve . 
[ 0067 ] FIG . 3 is a functional block diagram showing an 
exemplary embodiment of the input and output of a model . 
With reference to FIG . 3 , this entails using a demand curve 
302 ( e.g. , an amount of state over time , e.g. , zone energy 
inputs 310 ) as input into the heterogenous model 305. In 
some embodiments , specifically , the demand curves 302 are 
injected into a defined space as described by the demand 
curve at times T ( 0 ) through T ( n ) ; in the case of a heterog 
enous model modeling multiple zones , multiple demand 
curves are injected in corresponding zones over time . In 
some embodiments , outside influences , such as weather 320 , 
are also used as inputs . In some cases , if the model is 
optimized using backpropagation , the backpropagation may 
not be backpropagated to such outside influence inputs , as , 
e.g. , the weather inputs are not optimized , and so are not 
changed . 
[ 0068 ] At operation 220 , the neural network is run . Run 
ning the model may entail feedforward - running the 
demand curve state though the model to the outputs over 
time T ( 0 ) -T ( n ) , capturing internal state values within neu 
rons over the same time T ( 0 ) -T ( n ) . These internal state 
values ( such as a temperature variable in a neuron that 
model's Chris's office ) may be the outputs that define the 
simulated comfort curves 225. At operation 225 , simulated 
comfort curve ( s ) are output . In other embodiments , the 
comfort curve is output 225 successively in timesteps during 
the model run , or other methods are used . The first time the 
heterogenous model is run for a given set of comfort curves , 
a demand curve 210 may be supplied . This initial demand 
curve may be determined randomly , or another method may 
be used , such as a demand curve stored previously that was 
used as the solution to a similar comfort curve problem . 
[ 0069 ] At operation 215 , the desired comfort curve ( s ) are 
received . These are the curves that describe the state the 
structure being modeled is to be in ; e.g. , the temperature 
Chris's office should be for some time period . These may 
also be called ground truth comfort curves . Ground truth is 
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the information provided by direct evidence or is the desired 
output from the neural network . 
[ 0070 ] At operation 230 , a cost function is computed using 
the time series of desired comfort curve ( s ) and the model 
output simulated comfort curve . The cost function mea 
sures the difference between the time series of desired 
comfort curve ( s ) ( e.g. , the desired temperature of Chris's 
office over 24 hours ) and the comfort curve ( s ) output 304 
from the neural network 220. Details of the cost function are 
described elsewhere , such as with reference to FIG . 7 . 
[ 0071 ] At operation 235 a goal state is checked to deter 
mine if a stopping state has been reached . The goal state may 
be that the cost from the cost function is within a certain 
value , that the program has run for a given time , that the 
model has run for a given number of iterations , that the 
model has run for a given time , that a threshold value has 
been reached , such as the cost function should be equal or 
lower than the threshold value , or a different criterion may 
be used . If the goal state has not been reached , then a new 
set of inputs needs to be determined that are incrementally 
closer to an eventual answer a lowest ( or highest or 
otherwise determined ) value for the cost function , as 
described elsewhere . This can be thought of as iteratively 
executing the running neural network 220 , outputting the 
simulated comfort curve 225 , and computing the cost func 
tion 230 , and determining a new simulated demand curve 
240 until the goal state 235 is reached . 
[ 0072 ] At operation 240 new simulated demand curve ( s ) 
are determined for the next run of the neural network . This 
may be performed using the cost function ; by using machine 
learning algorithms , etc. In some embodiments , backpropa 
gation is used to determine a gradient of the cost function in 
relation to the various values in the neural network ( such as 
the inputs shown in FIG . 7 ) is determined and then used to 
backpropagate that gradient through the neural network to 
obtain an updated set of demand curves . 
[ 0073 ] If the goal state 235 has determined that a stopping 
state been reached , then the demand curve that was used for 
the last heterogenous model run is set as the solved demand 
curve ; that is , the demand curve that will meet the require 
ments for the desired comfort curve , within some range . The 
input that is given to the model is used as the eventual 
output . 
[ 0074 ] In some implementations , once the demand curve 
has been determined 245 , it can then be used to determine 
equipment behavior 250 for controlled equipment in the 
building ( i.e. , when the equipment should turn on and 
off / hold intermediate values ) , which can then be used to control equipment in a building . Controlling equipment in 
such a predetermined fashion can save greatly on energy 
costs , as well as more accurately controlling state in a 
defined space for the people and objects therein . 
[ 0075 ] FIG . 3 depicts some potential inputs and outputs of 
the heterogenous model . The end result we want is a demand 
curve 302. To create the demand curves 302 we use a 
demand curve 302 as input into the model , the model then 
outputs a comfort curve 304. This comfort curve can be 
thought of as a time series of zone state values 315 , where 
a zone is a location whose state values wish to be measured . 
For example , the zone state values may be the simulated 
temperature taken in a zone for each model time step , here , 
from T ( 0 ) to T ( n ) . There does not need to be a direct way to 
measure the corresponding location in a space that is to be 
measured . We iteratively modify the demand curve using 

machine learning techniques to successively more closely 
match the comfort curve . The initial demand curve 302 may 
be chosen randomly from among feasible values , or may be 
chosen by some other method . The demand curve 302 zone 
energy inputs 310 feeds state into the model at each model 
step . The state may be fed in at various locations , such as at 
neurons that represent HVAC equipment , etc. The state then 
diffuses through the model through the time steps . The 
model outputs a comfort curve of the state that has diffused 
at specific locations , such as at Chris's office — the comfort 
curve may be a time curve of the temperature at a neuron 
representing Chris's office . This comfort curve is then 
compared with the desired state over the model running 
time . The desired state may be the desired temperature in 
Chris's office over the time that the model was run for . This 
pattern iterates until the modeled comfort curve is close 
enough to the desired comfort curve . Then , the last demand 
curve used becomes the solution , that is , the amount of state 
needed to be injected into areas in the model over time . Very 
often the neural network will be comprised of many neurons 
that represent zones . The state values of these neuron zones 
affect each other . For example , a room with a heater in it will 
warm up the room next door , for example . Therefore , the 
calculations in a neural network that model such a system 
are far from straightforward . 
[ 0076 ] A heterogenous model 305 may take as input a 
demand curve 302 ( e.g. , an amount of state over time 310 , 
in this example , from T ( 0 ) to T ( n ) , with the state value 
fluctuating during that time ) . These comfort curves 215 can 
be areas whose state needs can be quantified , such as the 
amount of humidity that should be in an area , how loud a 
sound should be , the amount of CO2 in a space allowed , 
temperature , etc. FIG . 3 only explicitly shows one set of 
demand curves 302 and a weather curve 320 as input , but 
many heterogenous model runs will be run for multiple 
zones , and will include multiple demand curve 302 / zone 
energy inputs 310 . 
[ 0077 ] In some implementations , other values that may 
affect the state of a designated space during the time the 
model is being run may also be used as input into the neural 
network 205. In an exemplary embodiment , the desired 
comfort curves are for a known period of time . In such 
instances , weather 320 affecting the building ( such as one or 
more of the temperatures , wind speed , rainfall , etc. in a 
weather forecast ) can be used as a further input into the 
heterogenous model expressed as weather value curve ( s ) for 
the same time period , in this case , T ( 0 ) to T ( n ) . 
[ 0078 ] FIG . 4 is a functional block diagram 400 showing 
different machine learning functions . At operation 240 , new 
demand curves are determined . Ways of determining new 
demand curves 240 are shown with reference to FIG . 4 . 
These demand curves may be determined by using machine 
learning 405. These machine learning 405 techniques may 
comprise determining gradients 415 of the various variables 
within the neural network with respect to the cost function . 
This will provide a space which allows one to incrementally 
optimize the inputs 430 using the gradients . This shows 
which way to step to minimize the cost function with respect 
to the inputs . In some embodiments , gradients of the internal 
variables with respect to the cost function are determined 
415. With reference to FIG . 7 , in some embodiments , the 
internal parameters , e.g. , 707-737 of each neuron have their 
partial derivatives calculated . Different neurons may have 
different parameters . For example , a neuron modeling a 
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pump may have parameters such as density , shaft speed , 
volume flow ratio , hydraulic power , etc. If the derivatives 
are differentiable , then backpropagation 420 can be used to 
determine the partial derivatives . Backpropagation finds the 
derivative of the error ( given by the cost function ) for the 
parameters in the neural network , that is , backpropagation 
computes the gradient of the cost function with respect to the 
parameters within the network . 
[ 0079 ] Backpropagation 420 calculates the derivative 
between the cost function and parameters by using the chain 
rule from the last neurons calculated during the feedforward 
propagation ( a backward pass ) , through the internal neurons , 
to the first neurons calculated . In some embodiments , back 
propagation will be performed by automatic differentiation 
425. According to Wikipedia , " automatic differentiation is 
accomplished by augmenting the algebra of real numbers 
and obtaining a new arithmetic . An additional component is 
added to every number to represent the derivative of a 
function at the number , and all arithmetic operators are 
extended for the augmented algebra . ” Other methods may be 
used to determine the parameter partial derivatives . These 
include Particle Swarm and SOMA ( ( Self - Organizing 
Migrating Algorithm ) , etc. The backpropagation may work 
on a negative gradient of the cost function , as the negative 
gradient points in the direction of smaller values . 
[ 0080 ] After the partial derivatives are determined , the 
demand curve 302 is optimized to lower the value of the cost 
function with respect to the inputs . This process is repeated 
incrementally . Many different optimizers may be used , 
which can be roughly grouped into 1 ) gradient descent 
methods 435 and 2 ) other methods 440. Among the gradient 
descent methods 435 are standard gradient descent , stochas 
tic gradient descent , and mini - batch gradient descent . 
Among the other methods 440 are Momentum , Adagrad , 
AdaDelta , ADAM ( adaptive movement estimation ) , and so 

. 

on the right side by Wall 4 520. Zone 2 530 has a heater 555 , 
which disseminates heat over the entire structure . The zones 
1-4 are controlled building zones , as their state ( in this case 
heat ) can be controlled by the heater 555 . 
[ 0083 ] FIG . 6 depicts a simplified heterogenous neural 
network 600 that may be used to model behaviors of the 
simplified physical system of FIG . 5. In some embodiments , 
areas of the structure are represented by neurons that are 
connected with respect to the location of the represented 
physical structure . The neurons are not put in layers , as in 
other types of neural networks . Further , rather than being 
required to determine what shape the neural network should 
be to best fit the problem at hand , the neural network 
configuration is , in some embodiments , determined by a 
physical layout ; that is , the neurons are arranged topologi 
cally similar to a physical structure that the neural net is 
simulating . 
[ 0084 ] For example , Wall 1 505 is represented by neuron 
605. This neuron 605 is connected by edges 660 to neurons 
representing Zone 1 620 , Wall 2 610 , and Zone 2 630. This 
mirrors the physical connections between Wall 1 505 , Zone 
1 525 , Wall 2 510 , and Zone 2 530. Similarly , the neurons 
for Zone 1 620 , Wall 2 610 , and Zone 2 630 are connected 
by edges to the neuron representing Wall 3 615. The neuron 
representing Wall 3 515 is connected by edges to the neurons 
representing Zone 3 635 and Zone 4 640. Those two neurons 
635 , 640 are connected by edges to the neuron representing 
Wall 3 620. Even though only one edge is seen going from 
one neuron to another neuron for clarity in this specific 
figure , a neuron may have multiple edges leading to another 
neuron , as will be discussed later . Neurons may have edges 
that reference each other . For example , edge 660 may be 
two - way . 
[ 0085 ] In some implementations , the edges have inputs 
that are adjusted by activation functions within neurons . 
Some inputs may be considered temporary properties that 
are associated with the physical system , such as temperature . 
In such a case , a temperature input represented in a neural 
network 600 may represent temperature in the correspond 
ing location in the physical system 500 , such that a tem 
perature input in Neuron Zone 1 620 can represent the 
temperature at the sensor 545 in Zone 1 525. In this way , the 
body of the neural net is not a black box , but rather contains 
information that is meaningful ( in this case , a neuron input 
represents a temperature within a structure ) and that can be 
used . 
[ 0086 ] In some implementations , inputs may enter and 
exit from various places in the neural network , not just from 
an input and an output layer . This can be seen with inputs of 
type 1 , which are the dashed lines entering each neuron . 
Inputs of type 2 are the straight lines . In the illustrative 
example , each neuron has at least one input . For purposes of 
clarity not all inputs are included . Of those that are , inputs 
of type 2 are marked with a straight line , where inputs of 
type 1 are marked with a dashed line . Input 665 is associated 
with the neuron that represents Wall 1 605 , while input 652 
is associated with the neuron that represents Wall 3 615 . 
Signals , ( or weights ) passed from edge to edge , and trans 
formed by the activation functions , can travel not just from 
one layer to the layer in a lock - step fashion , but can travel 
back and forth between layers , such as signals that travel 
along edges from Zone 1 620 to Wall 2 610 , and from there 
to Zone 2 630. Further , there may be multiple inputs into a 
single neuron , and multiple outputs from a single neuron . 

on . 

[ 0081 ] Once a new demand curve is determined , the 
heterogenous model 305 is run again . If the goal state is 
reached 235 , then the last demand curve that was determined 
145 is determined to be the demand urve that satisfies the 
original comfort curve requirements . Once the demand 
curve has been determined , it can be used to determine how 
much state needs to be input into different zones in a 
structure at what times to meet the comfort curve needs . This 
method can save as much as 30 % of energy costs over 
adjusting the state when the need arises . If the goal state has 
not been reached , then the determine new simulation 
demand curve step 240 , the run neural network step 220 , the 
output simulation comfort curve step 225 , and compute cost 
function state 230 are iteratively performed , within incre 
mentally optimizes the comfort curve until the goal state 235 
is reached . 
[ 0082 ] FIG . 5 depicts a physical system 500 whose behav 
ior can be determined by using a neural network , which may 
be a heterogenous neural network . A portion of a structure 
500 is shown which comprises a Wall 1 505. This Wall 1 505 
is connected to a room which comprises Zone 1 525. This 
zone also comprises a sensor 545 which can determine state 
of the zone . Wall 2 510 is between Zone 1 525 and Zone 2 
530. Zone 2 does not have a sensor . Wall 3 515 is between 
the two zones 1 525 and 2 530 and the two zones Zone 3 535 
and Zone 4 540. Zone 3 and Zone 4 do not have a wall 
between them . Zone 4 has a sensor 550 that can determine 
state in Zone 4. Zones 3 535 and Zone 4 540 are bounded 
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For example , a system that represents a building may have 
several inputs that represent different states , such as tem 
perature , humidity , atmospheric pressure , wind , dew point , 
time of day , time of year , etc. These inputs may be time 
curves that define the state over time . A system may have 
different inputs for different neurons . In some embodiments , 
inputs may be time curves , which defines the state at a 
particular time , over a period of time . 
[ 0087 ] In some implementations , outputs are not found in 
a traditional output layer , but rather are values within a 
neuron within the neural network . These may be located in 
multiple neurons . These outputs for a run may be time 
curves . For example , the neuron associated with Zone 1 620 
may have a temperature value that can be looked at each 
timestep of a model run , creating temperature time curves 
that represent the temperature of the corresponding physical 
Zone 1 525 . 
[ 0088 ] In some embodiments , activation functions in a 
neuron transform the weights on the upstream edges , and 
then send none , some , or all of the transformed weights to 
the next neuron ( s ) . Not every activation function transforms 
every weight . Some activation functions may not transform 
any weights . In some embodiments , each neuron may have 
a different activation function . In some embodiments , some 
neurons may have similar functions . 
[ 0089 ] A heterogenous neural network may have many 
inputs and outputs . Each output may have its own comfort 
curve associated with it , so a heterogenous neural network 
may input many demand curves 302 and output many 
comfort curves 304 . 
[ 0090 ] FIG . 7 is a block diagram 700 describing possible 
inputs and outputs of neurons . Neural networks described 
herein may not have traditional input and output layers . 
Rather , neurons may have internal values that can be cap 
tured as output . Similarly , a wide variety of neurons , even 
those deep within a neural net can be used for input . For 
example , Chris's office may be in Zone 4 540. This zone 
may be represented by a neuron 640 that is somewhere in the 
middle of a neural network 600. A zone neuron 715 may 
have an activation function that is comprised of several 
equations that model state moving through the space . The 
space have inputs associated with it , e.g. , Layer 
Mass 732 , Layer Heat Capacity 735 , and Heat Transfer Rate 
737 , to name a few . For the purposes of this disclosure , we 
are calling these type 1 inputs 725 , 730. The neuron may 
also have temporary values that flow through the neural 
network , that may be changed by the neuron's activation 
function . These type 2 inputs 707 , 717 may be qualities such 
as Temperature 719 , Mass Flow Rate 721 , Pressure 723 , etc. 
Different neurons may have different values . For example a 
Wall Neuron 705 may have Type 1 inputs 725 such as 
Surface Area 727 , Layer Heat Capacity 728 , and Thermal 
Resistance 729 , as well as Type 2 inputs 707. A comfort 
curve output 304 of the neural network 600 may comprise a 
value gathered from among the variables in a neuron . For 
example , Chris's office may be zone 4 540 , which is 
represented by the neuron Zone 4 640. The output of the 
heterogenous model 305 may be a time series of the zone 
neuron temperature . 
[ 0091 ] A cost function can be calculated using these 
internal neural net values . A cost function ( also sometimes 
called a loss function ) is a performance metric on how well 
the neural network is reaching its goal of generating outputs 
as close as possible to the desired values . To create the cost 

function we determine the values we want from inside the 
neural network , retrieve them , then make a vector with the 
desired values ; viz : a cost C = ( y , 0 ) where y = desired values , 
and O = network prediction values . These desired values are 
sometimes called the “ ground truth . ” With reference to FIG . 
5 , Zone 1 525 has a sensor 545 which can record state within 
the zone . Similarly , Zone 4 540 has a sensor 550 which can 
also record state values . In some embodiments , desired 
values may be synthetic , that is , they are the values that are 
hoped to be reached . In some embodiments , the desired 
values may be derived from actual measurements . 
[ 0092 ] Continuing the example from FIG . 5 , there are two 
sensors that gather sensor data . The desired values are time 
series of the actual temperatures from the sensors . The 
network prediction values are not determined from a specific 
output layer of the neural network , as the data we want is 
held within neurons within the network . The zone neurons 
715 in our sample model hold a temperature value 719. The 
network prediction values to be used for the cost function 
are , in this case , the values ( temperature 719 ) within the 
neuron 620 that corresponds to Zone 525 ( where we have 
data from sensor 545 ) and the values ( temperature 719 ) 
within the neuron 640 that correspond to Zone 4 540 , with 
sensor 550 . 
[ 0093 ] When the model is run , a record of the temperature 
values from those zones can be accumulated from time to to 
tn ; and neuron 640 which may be another internal tempera 
ture from time to to tn or a different value . These are our 
network prediction values . In the instant example , the 
desired values are data from the sensors 545 and 550. Once 
the we have the network prediction values and the desired 
values , we can calculate the cost function , which quantifies 
the error between what the model predicts and the desired 
values and presents it as a value , a vector , or something else . 
[ 0094 ] The networks described herein may be heterog 
enous neural networks . Heterogenous neural networks com 
prise neural networks that have neurons with different 
activation functions . These neurons may comprise virtual 
replicas of actual or theoretical physical locations . The 
activation functions of the neurons may aprise multiple 
equations that describe state moving through a location 
associated with the neuron . In some embodiments , heterog 
enous neural networks also have neurons that comprise 
multiple variables that hold values that are meaningful 
outside of the neural network itself . For example , a value , 
such as a temperature value ( e.g. , 719 ) may be held within 
a neuron ( e.g. , 640 ) which can be associated with an actual 
location ( e.g. , 540 ) . 
[ 0095 ] In view of the many possible embodiments to 
which the principles of the disclosed invention may be 
applied , it should be recognized that the illustrated embodi 
ments are only preferred examples of the invention and 
should not be taken as limiting the scope of the invention . 
Rather , the scope of the invention is defined by the following 
claims . We therefore claim as our invention all that comes 
within the scope and spirit of these claims . 
We claim : 
1. A method of determining a demand curve implemented 

by one or more computers comprising : 
receiving a neural network of a plurality of controlled 

building zones ; 
receiving a desired comfort curve for at least one of the 

plurality of controlled building zones ; 

itself may 

a 
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performing a machine learning process to run the neural 
network using a simulated demand curve as input and 
receiving a simulated comfort curve as output ; 

computing a cost function using the simulated comfort 
curve and the desired comfort curve ; 

using the cost function to determine a new simulated 
demand curve ; 

iteratively executing the performing , computing , and 
using steps until a goal state is reached ; and 

determining that the new simulated demand curve is the 
demand curve upon the goal state being reached . 

2. The method of claim 1 , wherein the simulated demand 
curve is a time series of zone energy inputs and the simulated 
comfort curve is a time series of zone state values . 

3. The method of claim 2 , wherein computing the cost 
function further comprises determining difference between 
the desired comfort curve and the simulated comfort curve . 

4. The method of claim 2 , wherein performing the 
machine learning process further comprises performing 
automatic differentiation backward through the neural net 
work producing a new simulated demand curve . 

5. The method of claim 1 , wherein the goal state com 
prises the cost function being minimized , the neural network 
running for a specific time , or the neural network running a 
specific number of iterations . 

6. The method of claim 5 , wherein the neural network 
comprises multiple activation functions within its neurons . 

7. The method of claim 6 , wherein performing the 
machine learning process comprises computing a gradient of 
the neural network by using automatic differentiation . 

8. The method of claim 7 , wherein performing the 
machine learning process further comprises optimizing the 
simulated demand curve using gradient descent , stochastic 
gradient descent , or mini - batch gradient descent . 

9. The method of claim 1 , wherein the neural network is 
a heterogeneous neural network . 

10. The method of claim 9 , wherein any neuron may be 
an output neuron . 

11. A demand curve creation system , the system compris 
ing : a processor , a memory in operable communication with 
the processor , and demand curve creation code residing in 
memory which comprises : receiving a neural network of a 
plurality of controlled building zones ; 

receiving a ground truth comfort curve for at least one of 
the plurality of controlled building zones ; 

performing a machine learning process to run the neural 
network using a simulated demand curve as input and 
receiving a simulated comfort curve as output ; 

computing a cost function using the simulated comfort 
curve and the ground truth comfort curve ; 

using the cost function to determine a new simulated 
demand curve ; 

iteratively executing the performing the machine learning 
process , computing the cost function , and using the cost 
function steps until a goal state is reached ; and 

determining that the simulated demand curve is the 
demand curve upon the goal state being reached . 

12. The demand curve creation system of claim 11 , 
wherein the machine learning process comprises using back 
propagation that computes a cost function gradient for 
values in the neural network , and then uses an optimizer to 
update the demand curve . 

13. The demand curve creation system of claim 12 , 
wherein the backpropagation that computes a cost function 
gradient uses automatic differentiation . 

14. The demand curve creation system of claim 12 , 
wherein the optimizer uses stochastic gradient descent or 
mini - batch gradient descent to minimize the cost function . 

15. The demand curve creation system of claim 11 , 
wherein the neural network is a heterogenous neural net 
work . 

16. The demand curve creation system of claim 15 , 
wherein the heterogenous neural network comprises neu 
rons , any of which may be inputs . 

17. The demand curve creation system of claim 16 , 
wherein any of the neurons may be outputs . 

18. A computer - readable storage medium configured with 
executable instructions to perform a method for creation of 
a demand curve upon receipt of a comfort curve , the method 
comprising : 

receiving a ground truth comfort curve for at least one of 
a plurality of controlled building zones ; 

performing a machine learning process to run a heterog 
enous neural network using a simulated demand curve 
as input and receiving a simulated comfort curve as 
output ; 

computing a cost function using the simulated comfort 
curve and the ground truth comfort curve ; 

using the cost function to determine a new simulated 
demand curve ; 

iteratively executing the performing the machine learning 
process , computing the cost function , and using the cost 
function steps until a goal state is reached ; and 

determining that the simulated demand curve is the 
demand curve upon the goal state being reached . 

19. The computer - readable storage medium of claim 18 , 
wherein the machine learning process comprises using auto 
matic differentiation to perform backpropagation . 

20. The computer - readable storage medium of claim 19 , 
wherein the machine learning process comprises using a 
gradient descent method to perform incremental optimiza 
tion of the simulated demand curve . 


