«» UK Patent Application «GB 2 281422 .. A

(43) Date of A Publication 01.03.1995

{21) Application No 94080165 {(51) INTCL®
GOG6F 9/38
(22) Date of Filing 22.04.1994
{62) UK CL (Edition N )
(30) Priority Data G4A APP
(31) 08112668 {32) 26.08.1993 (33) US
(56) Documents Cited
GB 1582815 A

(71) Applicant(s)

Intel Corporation (58) Field of Search
UK CL (Edition M) G4A APP
(Incorporated in USA - Delaware) INT CL® Go6F
2200 Mission College Boulevard, Santa Clara,
California 95052, United States of America (72) cont
Kris G Konigsfeld
(72) Inventor(s) Paul D. Madland
Jeffrey M Abramson
Haitham Akkary (74) Agent and/for Address for Service
Andrew F Glew Potts, Kerr & Co
Glenn J Hinton 15 Hamilton Square, BIRKENHEAD, Merseyside,

L41 6BR, United Kingdom

(64) Processor ordering consistency for a processor performing out-of-order instruction execution

(57) A method for processor ordering in a multiprocessor computer system, wherein a processor 22 snoops a
multiprocessor bus for an external store operation to the memory address of each executed and unretired load
memory instruction. The processor commits the result data value of each executed and unretired load
memory instruction to an architectural state in the sequential program order if the corresponding external
store operation is not detected. The processor discards the result data value of the executed and unretired load
memory instruction if the corresponding external store operation is detected, the processor then reexecuting
the instruction stream starting at the load memory instruction causing the external store snoop detect.

| A | Y : B
I N ExEcuTION |
A%} 14 CIRCUIT I
| 74 40
I 6 !
L/
I k_@ﬂ_ ’ !
i Y RESERVATION |A !
| ¥l AnppispatcH N\ !
R, CIRCUIT ,
28! 52 38 [
I BUS s !
Cﬁ INTERFACE 5 55—’ nj #58 I
30 i
1 A
| (‘ I
REORDER
| REGISTER | | 78 !
. o =y "
1 A 3 — N\ L !
1 | mNSTRUCTION ) v ]
FEICH & v .
Al e e T '
o™ L/ W 70 sl |52 RETIRE !
| CIRCUIT 1—A Tﬂslﬂs 58 LOGIC |
66
3 = ; !
|
o 70 68 RESTART REAL
] I“ 8?” R CIRCUTT REGISTER i
) 48 CIRCUIT "
! 44
e ——— i
Figure 2

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V ¢cv18c ¢ a9



1/12

[ a4ns1y

-

ve
YOSSID0dd

82”7

9z
WHLSASINS
AHdONWHN

£2
JOSSTDOdd

(44
YOSSHD0Ud




2/12

¥
LINOYUID 8¥ Vs
HALSIOTL LINDYUID o oL
VIY LAVIST | 89 ] pinouro Arulll oL
oL Aﬂ. HOLVIOTIV
9¥ %ﬁ@ 99 28
QIDOT 9L LINOYID
AULLIY e I oL of 087 ANSSI
0zl dO-0¥DIN
<d 3 HOLAJ
A|||| NOLLONYILSNI
e
oL o ve’ a%.wﬁo
v
>
4 LINDYID
wu TAIQHOTY YHLSIDEY
2L
o} 5§
8L Z6
—D 8¢ & P
LINDAID [
ﬂ HOLVASIA ONV
| NOLLVANASHY
1 %
Nc\,
o
LINOUID A Lo
NOLLNOIXH
B T 7

0
SN e—"
snd |



3/12

-
on—
— e — G-
--————_————————

<II R4 q4==
os— |E B |E
3l ... Bl I8
2Rl B & auns1y
o I
w [ o
N/
= /
& paTE ¢ 35pl i\
* L
: #1GVL SVITV SEISIOET pdrur 4spy ‘oas| |
TP TI8p ‘1018] ‘apoodo }
. |Am N
08— ¢ dour |
0 pdruz 0 95py “
: _
~ ~ °
1spd ‘ajar/zored |
AyLy1oas8d ‘apoado “
e nwEa . Xaq v&ﬁ ..-.mS Qs |
e <08 ‘1oas] ‘apoodo
1spd ‘ajax/zoasd 1" dour “
ajayyaasd ‘opooado Xdd |
1"dowd Xva paTw 35p[ Zo8] __
3.5 ‘opoodo
AJuyt21sd ‘apoddo \
0 dowd \
N g 7~ eV

e

-~ —



XK

4/12

.

AL AT

.

JIJING YIAIOHT

it |

b))

W\

».
\

= - £\
A ¢ pduw ‘g78p[ [
: | ,¥g
< T pdiur 7 98p] \ M(
A »

0 pdiw 0 35p] v/

N
Aumvm ‘AjLifgoasd ‘apryyoasd;] |\

¢-dowrd | __
Lce: : Lo
9spd ‘ayrxsgoasd ‘ayiypoasd| |
yag = T |
1T dowd 4y
ey \ Y
15pd ‘Ajuiyzoasd ‘ayaaspoisdl |
[4ct | = \
0" dowd v
T3y 7
- >\
hct. £78)8P ZOIS/TOI8 | \
VIT3AdI L1NVd ISAT NSV SOHVId VIVAIINSTd A : |
VL = > | g
T BJep gods/T1dIs | S ]
= W/
7 0 ejep goas/1aIs V7,
XY 1spd
A/j[nsax Af}ynsox
no
|||||||| e S p auansrg

— — — —
D At s G —— — o — — — — — — —— —-—




5/12

G aunsyy

oL 09

-

NOILLVLS NOLLVAYISHY
8

3.
W\
W\

NN N

b))

0Sy

aIdT 1Sdd @DdS/TO¥Sd A VILVd gDYS/IDYS HA0DdO QSﬂW
AULN

-~

P4

~\

€ BJep gdIs/ToIs
®

T B8P 2dI§/]018

— \
I\
| |
1 |
v
AV

/

0 ©)8p zoIs/[018

\/
r

18pd ‘Ajrx/zoasd
‘AJix/roisd ‘apoado

¢~ dowd

1spd ‘ajrxsgoasd
‘ajaa/raasd ‘apoodo

1 dowd

1spd ‘Ajrryzoasd
‘ajraroisd ‘apoodo

A
\,.
I
ml
i
[
_
Lo
I
U
\
|
— |
__§

o douwrd

\‘l/\\
(4



6/12

9 aunsgy

v
’ [
i3
I "\ %sp1 amsax
[ v AL HALSIOAY TVAH
1
I
| __ SOV
| | o
“ | H 987 ™
|
| | s v
|
}
“ | 1SPI “ynsex
y 1 T Xad
I X0H
l ] xad
__ “ Sp[ ‘}msa xvd
I
S b XL VLVa LINSad
/ \
N 89 e



.00

-— e ww dem | -
-zé
<~

zﬂ
' -7

Figure 7

— e S e e e G s G G s G GEE e e e

. T4 DATA 94 DTLB
A. _ V CACHE CIRCUIT AW CIRCUIT
| 106 104
|
90
[
_ 2 94
" V MEMORY
> ORDERING CIRCUIT
U 102
S
i
~N
~ 1
| 90
|
" opcode, srcl_data ADDRESS
I mnomlmmg.vmlm#_ca GENERATION CIRCUIT
100
|
|
I




. 8 dunsy

88 .EEEHDm avo'l
=
9L ug < oL~
& N
Sq'1 -
A Ippe d
m a1 967
e
ed1
appe1‘@epoodo — A:.umcnceealﬂovoo%
“ mmw 96
971
0q'1 pieA”appe—doous
‘xppe_doous
11 SSaEaav SSHUAAV AVANIT ISGd da0ddo e
2017 dOONS ALTTINOD TVOISAHd




9/12

N

(=3

=i
'

— — — — —— — — — — — —— ——— — — — — — o—

6 4n31y

(e

022

o[qeuy
dooug
ST s1d _r S83JppPY
SS3IppY reaur] [eatsiyqg apdwo) | A prEA
2 A
®
@
[
a[qeuy
dooug
\d! a1z’
9ez
Swﬁﬁq
ST1 s1g SS3JppY |
§SOIpPY Jeaur] | | reorsAyq ardwop PIEA
vz’ ora”

— — — —— — — — — — — t— —

. — — — — — ———— — ———— —— — — — —

— ——— —
. — — v—— — — "



(m

10/12

~~ A A &
263 =~
o] A oy 01 24n38,]

_ el L

| wplhlS

e Noge 262

T e e Bl e ettt N

| | |

| | wT 1 a._m

| =
2 V=

zo1- | 4 = i (= -

_ _.ll..ill..“._._.lll.

| o | 2 T Tt -

— — — c—— d— s o v | G, C— C— — GT—— —— "l ——— — — C— Gne— — — e —

| | —

N N 298, |

N (b 1 Inm. 208 MO
. el = =\ dooug

_ _ 20 1 t4 14 10 _
I 12¢ \_mu == sa @

B e = —GR 1Sad _

| I gge f.__w _

R (¢ |

rlllrllllllluuuuunuuuuH:- e

oL &L %8¢ 1887 8&1 aLe :.m 0L3

-——

————— w— ——
—

— ‘
— m——
— o

—
i Mmma G Sm—— CmE—— S—



11/12

s aunsi
YALSIOTY TVAY gl | Xdd
62 Xvd 08 9TdV.L SVITV H41SIDTd
vivad
L1NSTY s "
” x 0 LS X0d
Xvad | O (1144 JAMCE: 0 qg xa9
~ % 0<1) (Zr<Xxvd) | Xvd
28 xvi)) (O XXX v v=pul AJYY  YALNIOd
g94d0d x0d| o XXXX Iy q04
(e (ot | a
Xaa | 1 0003 seHy XV ‘X9d ‘00TX0 PI
.wamn._ A VIva L1nsay g B8\
e e ug1
¥8 1AV, NOLLV.LS NOLLVAYASTYH
s
XSH ﬂ
= S 00126 | ov | PI_|ve1
I I p 0v01 0001€ | ¥ Pl lea1
ola® O] @ 0<1) osy 21
& ® | @ D) ek
aig1 Isdd zZodsd A viva 0040 dI'TvA a1
10¥Sd Nomm:owa KULNE i %mm SNLVLS SSA4aav mmmmnmw. Isdd 300040
¥ = P11 ‘G ‘00TZE PI= 7 = PI G 0002 00T B »|dOONS "TdWO0D TVOISAHd HVINI




(s

12/12

P |
4 !
adng1
mmm.m 31t X0d N H .%..&
YAISIOTY TVHY (443 Xqd
622 | xvd
viva
vl 08 AIGVL SVI'TV HLLSIDTY
i po oy =1spd fs >
«——
T _ g 0 ge xad
qqJANg X0d 1| o XXXX 184CH: | v ‘TP ‘OF
YIqaodyd aInalx Adud mm%%mom
» -
-l
Xad | 1 0003 ceqy 7118)801 _
duzapuro
T ¥ . 88
ISa1_A___ vivdlinsad Aromaw — -
¥8 AIEVL, NOLLV.LS NOLLVANASHY L 1
Xbd
AIC A vt ootze | v | Pl lvaa
|5 o A 0%t 0001 | w | Pl |edt
a1
cg T 0008
v | @ Pl (© |osu 191
xx | 1 001 0a'1
aig1 1sad zo¥sd A vivd 4qoddo  drvA IIH SNIVLIS SSANAAV SSANAAV ISAdd A000d0
odsd COUS/TOUS A4LINA JOONS "TdIN0D TVOISAHd HUVANIT




10

15

20

25

2281422

PROCESSOR ORDERING CONSISTENCY FOR A PROCESSOR
PERFORMING QUT-OF-ORDER INSTRUCTION EXECUTION

BACKGROUND OF THE INVENTION

1 FIELD OF THE INVENTION:

The present invention pertains to the field of computer systems. More
particularly, this invention relates to maintaining processor ordering
consistency for a processor employing out of order instruction execution in a

multiprocessor computer system.

2. BACKGROUND:

Inter-processor communication in a typical multiprocessor computer
system is modeled as information transfer between one or more producer
processor and one or more consumer processors. In a typical multiprocessor
computer system, the producer processor transfers information to the

consumer processors via messages stored in a shared memory subsystem.

Each processor in such a multiprocessor system usually must conform
to a common processor ordering model to ensure consistent information
flow to the consumer processors through the memory subsystem. A
processor ordering model requires that each consumer processor observe

stores from the producer processor in the same order.

For example, in a common inter-processor communication
transaction, the producer processor writes message data to the memory
subsystem, and then sets a message flag in the memory subsystem to indicate

valid message data. Each consumer processor reads the message flag, and



10

15

20

25

then reads the message data if the message flag indicates valid message data.
A processor ordering model that requires each consumer processor to observe
stores from the producer processor in the same order ensures that each
consumer processor observes the message data store before the messagc; flag
store. Such a processor ordering model causes each consumer processor to
read valid message data if the message data store occurs before the message

flag store.

Typical prior processors in a multiprocessor system implement in-
order instruction execution pipelines. Such an in-order processor usually
fetches an instruction stream, executes the instruction stream in a sequential
program order, and dispatches loads and stores in the sequential program
order. Such in-order processing of the instruction stream ensures that each
consumer processor in the multiprocessor system observe stores from the
producer processor in the same order because each consumer processor
executes load instructions to read the message flag and the message data in

the same order.

A processor may implement an out of order instruction execution
pipeline to improve instruction execution performance. Such an out of order
processor fetches an instruction stream and executes ready instructions in the

instruction stream ahead of earlier instructions that are not ready. A ready
instruction is typically an instruction having fully assembled source data and

having available execution resources.

Such out of order execution improves processor performance because

the instruction execution pipeline of the processor does not stall while



10

15

20

25

assembling source data for a non ready instruction. For example, a non ready
instruction awaiting source data from a floating-point operation does not stall

the execution of later instructions in the instruction stream that are ready to

execute.

A processor that implements an out of order instruction execution
pipeline generates out of order result data because the instructions in the
instruction stream are executed out of order. An out of order processor may
implement a reorder register file to impose the original program order on the

result data after instruction execution.

Out-of-order instruction execution by processors in a multiprocessor
system may cause violations of the processor ordering model. The consumer
processors that execute Joad instructions out of order may observe stores from

the producer processor in differing order.

For example, a consumer processor that executes a load instruction for
the message flag before a load instruction for the message data effectively
observes the producer processor stores to the message data and the message
flag in a different order than a consumer processor that executes a load

instruction for the message data before a load instruction for the message flag.

Such a violation of the processor ordering model may cause the
consumer processors to read differing message data. One of the consumer
processors may load the message data before the producer processor stores the
message data, and may load the message flag after the producer processor

stores the message flag. In such a case, the consumer processor loads invalid



message data and loads a message flag indicating valid message data. Asa

consequence, the consumer processor erroneously processes invalid message

data.



10

15

20

25

SUMMARY AND OBJECTS OF THE INVENTION

One object of the present invention is to maintain processor ordering
in a multiprocessor computer system for a processor having an out of order

instruction execution pipeline.

Another object of the present invention is to maintain processor
ordering for a processor having an out of order instruction execution
pipeline, wherein each consumer processor in the multiprocessor computer
system is required to observe memory stores from a producer processor in the

same order.

A further object of the present invention is to maintain processor
ordering in a multiprocessor computer system for a processor having an out
of order instruction execution pipeline by detecting external memory store
operations targeted for a memory address corresponding to an executed and

unretired load memory instruction.

These and other objects of the invention are provided by a method for
processor ordering in a multiprocessor computer system. A processor having
an out of order instruction execution pipeline fetches an instruction stream
from an external memory in a sequential program order. The instruction
stream includes load memory instructions, wherein each load memory
instruction specifies a load memory operation from a memory address over a

multiprocessor bus of the multiprocessor computer system.



10

15

20

25

The processor assembles at least one source data value for each load
memory instruction, such that the source data value specifies the memory
address for the corresponding load memory instruction. The processor
executes each load memory instruction after the corresponding source data
value is assembled regardless of the sequential program order of the load
memory instruction. Each executed load memory instruction generates a

result data value.

The processor snoops the multiprocessor bus for an external store
operation to the memory address of each executed load memory instruction.
The processor commits the result data value of each executed load memory
instruction to an architectural state in the sequential program order if the
external store operation to the memory address of the executed load memory

instruction is not detected.

The processor discards the result data value of each executed load
memory instruction if the external store operation to the memory address of
the executed load memory instruction is detected before the result data value
is committed to the architectural state. The processor then reexecutes the
instruction stream starting at the load memory instruction corresponding to

the discarded result data value.

Other objects, features and advantages of the present invention will be
apparent from the accompanying drawings, and from the detailed description

that follows below.



10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawings in which like

references indicate similar elements, and in which:

Figure 1 illustrates a multiprocessor computer system comprising a set

of processors and a memory subsystem;

Figure 2 is a block diagram of a processor in the multiprocessor

computer system;

Figure 3 illustrates the functions of the register alias circuit which

converts the logical micro-ops into corresponding physical micro-ops by

mapping the logical sources and destinations into physical sources and

destinations;

Figure 4 illustrates the reorder circuit which contains a reorder buffer
comprising a set of ROB entries (REO through REn) that buffer speculative

result data from the out of order speculative execution of physical micro-ops;

Figure 5 illustrates the reservation and dispatch circuit which contains

a reservation dispatch table comprising a set of reservation station entries RS0

‘through RSx for assembling and dispatching micro-ops;

Figure 6 illustrates the real register circuit which contains a set of

committed state registers that buffer committed result data values;



10

15

20

Figure 7 illustrates a load memory circuit which comprises an address
generation circuit, a memory ordering circuit, a data translate look-aside

buffer (DTLB) circuit, and a data cache circuit;

Figure 8 illustrates the memory ordering circuit which contains a load

buffer comprising a set of load buffer entries LBO through LBn;

Figure 9 illustrates the snoop detection circuitry in the memory
ordering circuit which includes a snoop detect circuit corresponding to each

load buffer entry LBO-LBn;

Figure 10 illustrates notification circuitry in the memory ordering

circuit that generates the memory ordering restart signals;

Figure 11 illustrates processing of a load micro-op ld 0x100, EBX, EAX

issued by the instruction fetch and micro-op issue circuit;
Figure 12 illustrates the dispatch and retirement of the linear load

memory micro-op 1d 32100, 42, lbid = 4 corresponding to the load micro-op 1d

0x100, EBX, EAX.

—8--



10

15

20

25

DETAILED DESCRIFTION

Figure 1 illustrates a multiprocessor computer system 20. The
multiprocessor computer system 20 comprises a set of processors 22 - 24, and a
memory subsystem 26. The processors 22 - 24 and the memory subsystem 26

communicate over a multiprocessor bus 28.

Each processor 22 - 24 fetches a stream of macro instructions from the
memory subsystem 26 over the multiprocessor bus 28. Each processor 22 - 24
executes the corresponding stream of macro instructions and maintains data

storage in the memory subsystem 26.

Figure 2 illustratés the processor 22. The processor 22 comprises a
front-end section including a bus interface circuit 30 and an instruction fetch
and micro-op issue circuit 32. The processor 22 also comprises a register
renaming section including a register alias circuit 34 and an allocator circuit
36. The processor 22 also comprises an out of order execution section
comprising a reservation and dispatch circuit 38, an execution circuit 40, a

reorder circuit 42, and a real register circuit 44.

The bus interface circuit 30 enables transfer of address, data and control
information over the multiprocessor bus 28. The instruction fetch and
micro-op issue circuit 32 fetches a stream of macro instructions from the
memory subsystem 26 over the multiprocessor bus 28 through the bus
interface circuit 30. The instruction fetch and micro-op issue circuit 32
implements speculative branch prediction to maximize macro-instruction

fetch throughput.



10

15

20

25

For one embodiment the stream of macro instructions fetched over the
multiprocessor bus 28 comprises a stream of Intel Architecture
Microprocessor macro instructions. The Intel Architecture Microprocessor
macro instructions operate on a set of architectural registers, including an

EAX register, an EBX register, an ECX register, and an EDX register, etc.

The instruction fetch and micro-op issue circuit 32 converts the macro-
instruction of the incoming stream of macro instructions into an in-order
stream of logical micro operations, hereinafter referred to as logical micro-
ops. The instruction fetch and micro-op issue circuit 32 generates one or
more logical micro ops for each incoming macro instruction. The logical
micro-ops corresponding to each macro instruction are reduced instruction
set micro operations that perform the function of the corresponding macro
instruction. The logical micro-op specify arithmetic and logical operations as

well as load and store operations to the memory subsystem 26.

The instruction fetch and micro-op issue circuit 32 transfers the in-
order stream of logical micro-ops to the register alias circuit 34 and the
allocator circuit 36 over a logical micro-op bus 50. For one embodiment, the
instruction fetch and micro-op issue circuit 32 issues up to four in-order
logical micro-ops during each clock cycle of the processor 22. Alternatively,
the in-order logical micro-ops may be limited to four during each clock cycle

to minimize integrated circuit die area for the processor 22.

The instruction fetch and micro-op issue circuit 32 contains a micro

instruction sequencer and an associated control store. The micro instruction

~10--



10

15

20

25

sequencer implements micro programs for performing a variety of functions
for the processor 22, including fault recovery functions and processor

ordering functions.

Each logical micro-op generated by the instruction fetch and micro-op
issue circuit 32 comprises an op code, a pair of logical sources and a logical
destination. Each logical source may specify a register or provide an
immediate data value. The register logical sources and the logical
destinations of the logical micro-ops specify architectural registers of the
original macro instructions. In addition, the register logical sources and the
logical destinations of the logical micro-ops specify temporary registers for
microcode implemented by the micro instruction sequencer of the instruction

fetch and micro-op issue circuit 32.

The register alias circuit 34 receives the in-order logical micro-ops over
the logical micro-op bus 50, and generates a corresponding set of in-order
physical micro-ops by renaming the logical sources and logical destinations of
the logical micro-ops. The register alias circuit 34 receives the in-order logical
micro-ops over the logical micro-op bus 50, maps the logical sources and the
logical destination of each logical micro-op into physical sources and a
physical destination, and transfers the in-order physical micro-ops over a

physical micro-op bus 52.

Each physical micro-op comprises the opcode of the corresponding
logical micro-op, a pair of physical sources, and a physical destination. Each
physical source may specify a physical register or provide an immediate data

value. The register physical sources of the physical micro-ops specify physical

-11--



10

15

20

25

registers contained in the reorder circuit 42 and committed state registers
contained in the real register circuit 44. The physical destinations of the
physical micro-ops specify physical registers contained in the reorder circuit

42.

The register alias circuit 34 transfers the logical destinations of the
logical micro-ops over a logical destination bus 54. The logical destinations
transferred over the logical destination bus 54 identify the architectural
registers that correspond to the physical destinations on the physical micro-op

bus 52.

The allocator circuit 36 tracks the available resources in the reorder
circuit 42, the reservation and dispatch circuit 38, and the execution circuit 40.
The allocator circuit 36 assigns physical destinations in the reorder circuit 42
and reservation station entries in the reservation and dispatch circuit 38 to
the physical micro-ops on the physical micro-op bus 52. The allocator circuit
36 also assigns load buffer entries in a memory ordering buffer in the
execution circuit 40 to the physical micro-ops on the physical micro-op bus 52

that have an opcode specifying a load memory operation.

The allocator circuit 36 transfers allocated physical destinations to the
register alias circuit 34 over a physical destination bus 56. The allocated
physical destinations specify physical registers in the reorder circuit 42 for
buffering speculative results for the physical micro-ops. The allocated
physical destinations are used by the register alias circuit 34 to rename the

logical destinations of the logical micro-ops to physical destinations.

-12 --



10

15

20

25

The allocator circuit 36 allocates the physical registers of the reorder
circuit 42 to the physical micro-ops in the same order that logical micro-ops
are received over the logical micro-op bus 50. The allocator circuit 36
maintains an allocation pointer for allocating physical registers of the reorder
circuit 42. The allocation pointer points to a next set of consecutive physical
registers in the reorder circuit 42 for each set of logical micro-ops received
over the logical micro-op bus 50. The ordering of the physical registers
assigned to the physical micro-ops in the reorder circuit 42 reflects the

ordering of the original logical micro-ops.

The allocator circuit 36 specifies the reservation station entries for the
physical micro-ops on the physical micro-ops bus 52 by transferring
reservation station entry select signals to the reservation and dispatch circuit

38 over a reservation station select bus 66.

The allocator circuit 36 assigns a load buffer entries to each physical
micro-ops on the physical micro-ops bus 52 that specifies a load memory
opcode. The allocator circuit 36 assigns the load buffer entries by transferring
load buffer identifiers to the reservation and dispatch circuit 38 over a load

buffer ID bus 72.

The reservation and dispatch circuit 38 holds the physical micro-ops
awaiting execution by the execution circuit 40. The reservation and dispatch
circuit 38 receives the in-order physical micro-ops over the physical micro-op
bus 52, assembles the source data for the physical micro-ops, and dispatches

the physical micro-ops to the execution circuit 40.

~13--



10

15

20

25

The reservation and dispatch circuit 38 receives the physical micro-ops
over the physical micro-op bus 50 and stores the physical micro-ops in
available reservation station entries. The reservation and dispatch circuit 38
assembles source data for the physical micro-ops, and dispatches the physical
micro-ops to appropriate execution units in the execution circuit 40 when the

source data is assembled.

The reservation and dispatch circuit 38 receives the source data for the
pending physical micro-ops from the reorder circuit 42 and the real register
circuit 44 over a source data bus 58. The reservation and dispatch circuit 38
also receives source data for the pending physical micro-ops from the
execution circuit 40 over a result bus 62 during a write back of speculative

results from the execution circuit 40 to the reorder circuit 42.

The reservation and dispatch circuit 38 schedules the physical micro-
ops having completely assembled source data for execution. The reservation

and dispatch circuit 38 dispatches the ready physical micro-ops to the
execution circuit 40 over a micro-op dispatch bus 60. The reservation and
dispatch circuit 38 schedules execution of physical micro-ops out of order
according to the availability of the source data for the physical micro-ops, and
according to the availability of execution unit resources in the execution

circuit 40.

The execution circuit 40 writes back the speculative results from the
out of order execution of the physical micro-ops to the reorder circuit 42 over
the result bus 62. The writes back of speculative results by the execution

circuit 40 is out of order due to the out of order dispatching of physical micro-

—~14 --



10

15

20

25

ops by the reservation and dispatch circuit 38 and the differing number of
processor 22 cycles required for execution of the differing types of physical

micro-ops. )

For one embodiment, the execution circuit 40 comprises a set of five
execution units EUO-EU4. The reservation and dispatch circuit 38 dispatches
up to five physical micro-ops concurrently to the execution units EUO-EU4

over the micro-op dispatch bus 60.

The execution unit EUO performs arithmetic logic unit (ALU)
functions including integer multiply and divide as well as floating-point add,
subtract, multiply and divide micro-ops. The execution unit EU1 performs
ALU integer functions .and jump operations. The execution unit EU2
performs integer and floating-point load operations from memory as well as
load linear address functions and segment register operations. The execution
unit EU3 performs integer and floating-point store and segmentation register
operations. The execution unit EU4 performs integer and floating-point store

data operations.

The reorder circuit 42 contains the physical registers that buffer
speculative results for the physical micro-ops. Each physical register in the
reorder circuit 42 accommodates integer data values and floating-point data

values.

The real register circuit 44 contains committed state registers that

correspond to the architectural registers of the original stream of macro-

-15--



10

15

20

25

instructions. Each committed state register in the real register circuit 44
accommodates integer data values and floating-point data values.

For one embodiment, the committed state registers of the real register
circuit 44 comprise the EAX, EBX, ECX, and EDX registers, etc. of the Intel
Architecture Microprocessor, as well as architectural flags for the Intel
Architecture Microprocessor. The real register circuit 44 also contains
committed state registers for the microcode registers used by microcode

executing in the instruction fetch and micro-op issue circuit 32.

The reorder circuit 42 and the real register circuit 44 receive the
physical micro-ops over-the physical micro-op bus 52. The physical sources of
the physical micro-ops specify physical registers in the reorder circuit 42 and
committed state registers in the real register file 44 that hold the source data

for the physical micro-ops.

The reorder circuit 42 and the real register circuit 44 read the source
data specified by the physical sources, and transfer the source data to the
reservation and dispatch circuit 38 over a source data bus 58. Each physical
source of the physical micro-ops includes a real register file valid (RRFV) flag
that indicates whether the source data is contained in a physical register in the

reorder circuit 42 or a committed state register in the real register file 44.

The physical destinations of the physical micro-ops on the physical
micro-op bus 52 specify physical registers in the reorder circuit 42 for buffering
the speculative results of the out of order execution of the physical micro-ops.

The reorder circuit 42 receives the physical destinations of the physical micro-

~16--



10

15

20

25

ops over the physical micro-op bus 52, and clears the physical registers
specified by the physical destinations.

The reorder circuit 42 receives the logical destinations corresponding to
the physical micro-ops over the logical destination bus 54, and stores the
logical destinations into the physical registers specified by the physical
destinations of the physical micro-ops. The logical destinations in the
physical registers of the reorder circuit 42 specify committed state registers in

the real register circuit 44 for retirement of the physical micro-ops.

A retire logic circuit 46 imposes order on the physical micro-ops by
committing the speculative results held in the physical registers of the
reorder circuit 42 to an architectural state in the same order as the original

logical micro-ops were received. The retire logic circuit 46 causes transfer of

the speculative result data in the reorder circult 42 to corresponding
committed state registers in the real register circuit 44 over a retirement bus
64. For one embodiment, the retire logic circuit 46 retires up to four physical
registers during each cycle of the processor 22. For another embodiment, the
retire logic circuit 46 retires up to three physical registers during each cycle of

the processor 22 to minimize integrated circuit die space.

The retire logic circuit 46 also causes the reorder circuit 42 to transfer
the macro instruction pointer delta values for the retiring physical micro-ops

over a macro instruction pointer offset bus 120 during retirement.

The restart circuit 48 receives macro instruction pointer delta values

over the macro instruction pointer offset bus 120. The restart circuit 48

-17 --



10

15

20

calculates a committed instruction pointer value according to the macro

instruction pointer deltas for the retiring ROB entries.

The retire logic circuit 46 maintains a retirement pointer to the l;ahysical
registers in the reorder circuit 42. The retirement pointer points to sets of
consecutive physical registers for retirement. The retirement pointer follows
the allocation pointer through the physical registers in the reorder circuit 42
as the retire logic retires the speculative results of the physical registers to the
committed state. The retire logic circuit 46 retires the physical registers in
order because the physical registers were allocated to the physical micro-ops in

order.

The retire logic circuit 46 broadcasts the retirement physical
destinations specified by the retirement pointer over a retire notification bus
70. The memory ordering buffer in the execution circuit 40 receives the
retirement physical destinations, and issues a set of memdry ordering restart
signals 76. The memory ordering restart signals 76 indicate whether a
memory load operation corresponding to one of the retiring physical
destinations has caused a possible processor ordering violation. The memory
ordering restart signals 76 indicate which of the retiring physical destinations

has caused the possible processor ordering violation.

The memory ordering restart signals 76 are received by the restart
circuit 48. If the memory ordering restart signals 76 indicate a possible
processor ordering violation, the restart circuit 48 issues a reorder clear signal
78. The reorder clear signal 78 causes the reorder circuit 42 to clear the

speculative result data for the unretired physical micro-ops. The reorder clear

~18 --



10

15

20

25

signal 78 causes the reservation and dispatch circuit 38 to clear the pending
physical micro-ops that await dispatch to the execution circuit 40. The reorder
clear signal 78 also causes the allocator circuit 36 to reset the allocation pointer
for allocating the physical registers in the reorder circuit 42, and causes the

retire logic circuit 46 to reset the retirement pointer for retiring the physical

registers.

If the memory ordering restart signals 76 indicate a possible processor
ordering violation, the restart circuit 48 uses the macro instruction pointer
delta values received over the macro instruction pointer offset bus 120 to
calculate a restart instruction pointer value. The restart instruction pointer
value specifies the macro instruction corresponding to the physical micro-op
that caused the possible memory ordering violation. The restart circuit 48
transfers the restart instruction pointer value to the instruction fetch and

micro-op issue circuit 32 over a restart vector bus 122.

The instruction fetch and micro-op issue circuit 32 receives the restart
instruction pointer value over a restart vector bus 122. The reorder clear
signal 78 causes the micro-instruction sequencer of the instruction fetch and
micro-op issue circuit 32 to reissue the in order stream of logical micro-ops
that were cleared from the reorder circuit 42 before retirement. The
instruction fetch and micro-op issue circuit 32 reissues the logical micro-ops
by fetching a macro instruction stream starting at the macro instruction
address specified by the restart instruction pointer value, and by converting
the macro instruction stream into logical micro-ops, and by transferring the

logical micro-ops over the logical micro-op bus 50.

—-19 --



10

15

20

25

If the memory ordering restart signals 76 do not indicate a possible
processor ordering violation, then the retirement of the physical registers
specified by the retiring physical destinations proceeds. The reorder circuit 42
tests the valid flags for the retiring physical destinations. The reorder circuit
42 retires the speculative result data for each retiring physical register if the
valid flag of the retiring physical register indicates valid speculative data. The
reorder circuit 42 retires a physical register by causing transfer of the
speculative result data to the committed state registers in the real register

circuit 44 specified by the logical destinations of the physical register.

The register alias circuit 34 and the allocator circuit 36 receive the
retiring physical destinations over a retire notification bus 70. The register
alias circuit 34 accordinély updates the register alias table to reflect the
retirement. The allocator circuit 36 marks the retired physical registers in the

reorder circuit 42 as available for allocation.

Figure 3 is a diagram that illustrates the functions of the register alias
circuit 34. The register alias circuit 34 receives logical micro-ops in order over
the logical micro-op bus 50, converts the logical micro-ops into corresponding
physical micro-ops by mapping the logical sources and destinations into
physical sources and destinations, and then transfers the physical micro-ops

in order over the physical micro-op bus 52.

The register alias circuit 34 implements a register alias table 80. The
register alias table 80 performs logical to physical register renaming by
mapping the logical sources and destinations of the logical micro-ops to the

physical sources and destinations of the corresponding physical micro-ops.

-0 --



10

15

20

25

The physical sources and destinations of the physical micro-ops specify
physical registers in the reorder circuit 42 and committed state registers in the

real register circuit 44.

The entries in the register alias table 80 correspond to the architectural
registers of the original macro instruction stream. For one embodiment, the
EAX, EBX, ECX, and EDX entries of the register alias table 80 correspond to the
EAX, EBX, ECX, and EDX registers of the Intel Architecture Microprocessor.

Each entry in the register alias table 80 contains a reorder buffer (ROB)
pointer. The ROB pointer specifies a physical register in the reorder circuit 42
that holds the speculative result data for the corresponding architectural
register. Each entry in t.he register alias table 80 also contains a real register
file valid (RRFV) flag that indicates whether the speculative result data for
the corresponding architectural register has been retired to the appropriate

committed state register in the real register circuit 44.

The register alias circuit 34 receives a set of in order logical micro-ops
(Imop_0 through Imop_3) over the logical micro-op bus 50. Each logical
micro-op comprises an op code, a pair of logical sources lsrcl and lIsrc2, a
logical destination 1dst, and a macro instruction pointer delta mipd. The
logical sources Isrcl and Isrc2 and the logical destination ldst each specify an

architectural register of the original stream of macro-instructions.
The register alias circuit 34 also receives a set of allocated physical
destinations (alloc_pdst_0 through alloc_pdst_3) from the allocator circuit 36

over the physical destination bus 56. The physical destinations alloc_pdst_0

~21--



10

15

20

through alloc_pdst_3 specify newly allocated physical registers in the reorder
circuit 42 for the logical micro-ops Imop_0 through Imop_3. The physical
registers in the reorder circuit 42 specified by the physical destinations _
alloc_pdst_0 through alloc_pdst_3 will hold speculative result data for the
physical micro-ops corresponding to the logical micro-ops Imop_0 through

Imop_3.

The register alias circuit 34 transfers a set of in order physical micro-ops
(pmop_0 through pmop_3) over the physical micro-op bus 52. Each physical
micro-op comprises an op code, a pair of physical sources psrcl and psrc2 and
a physical destination pdst. The physical sources psrcl and psrc2 each specify a
physical register in the reorder circuit 42 or a committed state register in the
real register circuit 44. The physical destination pdst specifies a physical
register in the reorder circuit 42 to hold speculative result data for the

corresponding physical micro-op.

The register alias circuit 34 generates the physical micro-ops pmop_0
through pmop_3 by mapping the logical sources of the logical micro-ops
Imop_0 through Imop_3 to the physical registers of the reorder circuit 42 and
the committed state registers specified of the real register circuit 44 as specified
by the register alias table 80. The register alias circuit 34 merges the physical
destinations alloc_pdst_0 through alloc_pdst_3 into the physical micro-ops

pmop_0 through pmop_3.

The opcodes of the physical micro-ops pmop_0 through pmop_3 are

the same as the corresponding opcodes of the logical micro-ops Imop_0

—-22--



10

15

20

25

through lImop_3. For example, the register alias circuit 34 generates pmop_0
such that the op code of pmop_0 equals the opcode of Imop_0.

For example, the register alias circuit 34 generates the physical source
psrcl for the physical micro-op pmop_0 by reading the register alias table 80
entry specified by the logical source lsrcl of the lmop_0. If the RRFV flag of
the specified registet alias table 80 entry is not set, then the register alias circuit
34 transfers the ROB pointer from the specified register alias table 80 entry
along with the RRFV flag over the physical micro-op bus 52 as the physical
source psrcl for the pmop_0. If the RRFV bit is set, then the register alias
circuit 34 transfers a pointer to the committed state register in the real register
circuit 44 that corresponds to the logical source Isrcl along with the RRFV flag

over the physical micro-op bus 52 as the physical source psrcl for the pmop_0.

The register alias circuit 34 generates the physical source psrc2 for the
physical micro-op pmop_0 by reading the register alias table 80 entry that
corresponds to the logical source Isrc2 of the Imop_0. If the RRFV flag is not
set, then the register alias circuit 34 transfers the ROB pointer from the
specified register alias table 80 entry along with the RRFV flag over the
physical micro-op bus 52 as the physical source psrc2 for the pmop_0. If the
RREV bit is set, then the register alias circuit 34 transfers a pointer to the
committed state register in the real register circuit 44 that corresponds to the
logical source Isrc2 along with the RRFV flag over the physical micro-op bus

52 as the physical source psrc2 for the pmop_0.

The register alias circuit 34 stores the physical destination alloc_pdst_0

into the ROB pointer field of the register alias table 80 entry specified by the

-3 --



10

15

20

25

logical destination 1dst of the Imop_0, and clears the corresponding RRFV bit.
The clear RRFV bit indicates that the current state of the corresponding
architectural register is speculatively held in the physical register of the
reorder circuit 42 specified by the corresponding ROB pointer.

The register alias circuit 34 transfers a set of logical destinations 1dst_0
through ldst_3 and corresponding macro instruction pointer deltas mipd_0
through mipd_3 over the logical destination bus 54. The logical destinations
1dst_0 through 1dst_3 are the logical destinations 1dst of the logical micro-ops

Imop_0 through Imop_3.

The macro instruction pointer deltas mipd_0 through mipd_3 are the
macro instruction pointer deltas mipd of the logical micro-ops Imop_0
through Imop_3. The macro instruction pointer delta mipd_0 is the logical
destination Idst of the Imop_0, the macro instruction pointer delta mipd_1 is
the logical destination 1dst of the Imop_1, etc. The macro instruction pointer
deltas mipd_0 through mipd_3 identify the original macro instructions

corresponding to the physical micro-ops pmop_0 through pmop_3.

Figure 4 illustrates the reorder circuit 42. The reorder circuit 42

implements a reorder buffer 82 comprising a set of ROB entries (REO through
REn). The ROB entries REQ through REn are physical registers that buffer
speculative result data from the out of order execution of physical micro-ops.
For one embodiment, the ROB entries REO through REn comprise a set of 64
physical registers. For another embodiment, the ROB entries RE0 through

REn comprise a set of 40 physical registers.

-24 -



10

15

20

Each ROB entry comprises a valid flag (V), a result data value, a set of
flags, a flag mask, a logical destination (LDST), fault data, and an instruction
pointer delta (IPDELTA). )

The valid flag indicates whether the result data value for the
corresponding ROB entry is valid. The reorder circuit 42 clears the valid flag
for each newly allocated ROB entry to indicate an invalid result data value.
The reorder circuit 42 sets the valid flag when speculative result data is

written back to the ROB entry from the execution circuit 40.

The result data value is a speculative result from the out of order
execution of the corresponding physical micro-op. The result data value may
be either an integer data value or a floating-point data value. For one
embodiment, the result data value field of each ROB entry REO through REn

comprises 86 bits to accommodate both integer and floating-point data values.

The flags and flag mask provide speculative architectural flag
information. The speculative architectural flag information is transferred to

the architectural flags of the real register circuit 44 upon retirement of the

corresponding ROB entry.

The logical destination LDST specifies a committed state register in the
real register circuit 44. The result data value of the corresponding ROB entry
is transferred to the committed state register specified by LDST during

retirement of the ROB entry.

-5 --



10

15

20

The fault data contains fault information for the fault processing
microcode executing in the instruction fetch and micro-op issue circuit 32.
When a fault occurs, the fault handing microcode reads the fault data to

determine the cause of the fault.

The IPDELTA is a macro instruction pointer delta value that identifies

the macro instruction corresponding to the physical register.

The reorder circuit 42 receives the physical micro-ops pmop_0 through
pmop_3 over the physical micro-op bus 52. The reorder circuit 42 reads the
source data specified by the physical micro-ops pmop_0 through pmop_3
from the reorder buffer 82. The reorder circuit 42 transfers the result data
values and the valid flags from the ROB entries specified by the physical
sources psrcl and psrc2 of the physical micro-ops to the reservation and

dispatch circuit 38 over the source data bus 58.

For example, the result data values and valid flags from the ROB

entries specified by the physical sources psrcl and psrc2 of the pmop_0 are

transferred as source data srcl/src2 data_0 over the source data bus 58. The
source data srcl/src2 data_0 provides the source data specified by the physical
sources psrcl and psrc2 of the pmop_0 if the corresponding valid flags

indicate valid source data.

Similarly, the reorder circuit 42 transfers the result data values and
valid flags from the appropriate ROB entries as the source data srcl/src2
data_1 through source data src1/src2 data_3 over the source data bus 58 for

the physical micro-ops pmop_1 through pmop_3.

~26--



10

15

20

25

The reorder circuit 42 clears the valid bits of the ROB entries specified
by the physical destinations pdst the physical micro-ops pmop_0 through
pmop_3 received over the physical micro-op bus 52. The reorder circuit 42
clears the valid bits to indicate that the corresponding result data value is not
valid because the physical micro-ops pmop_0 through pmop_3 that generate

the result data value are being assembled in the reservation and dispatch

circuit 38.

The reorder circuit 42 receives the logical destinations 1dst_0 through
1dst_3 and the macro instruction pointer deltas mipd_0 through mipd_3
over the logical destination bus 54. The reorder circuit 42 stores the logical
destinations 1dst_0 through ldst_3 into the LDST fields of the ROB entries
specified by the physical destinations pdst the physical micro-ops pmop_0
through pmop_3. The reorder circuit 42 stores the macro instruction pointer
deltas mipd_0 through mipd_3 into the IPDELTA fields of the ROB entries
specified by the physical destinations pdst the physical micro-ops pmop_0
through pmop_3.

For example, the reorder circuit 42 stores the 1dst_0 and the mipd_0
into the LDST and the IPDELTA of the ROB entry specified by the physical
destination pdst of the pmop_0. The logical destination in the LDST field of a
ROB entry specifies a committed state register in the real register circuit 44 for
retirement of the corresponding ROB entry. The macro instruction pointer
delta in the IPDELTA field of a ROB entry specifies the original macro

instruction of the corresponding ROB entry.

-27 -



10

15

20

25

The reorder circuit 42 receives write back speculative result
information from the execution circuit 40 over the result bus 62. The write
back speculative result information from the execution units EU0 through

EU4 comprises result data values, physical destinations pdst and fault data.

The reorder circuit 42 stores the write back speculative result
information from the execution units EUO through EU4 into the ROB entries
specified by the physical destinations pdst on the result bus 62. For each
execution unit EUO through EU4, the reorder circuit 42 stores the result data
value into the result data value field, and stores the fault data into the fault

data field of the ROB entry specified by the physical destination pdst.

The result data values from the executions circuit 40 each include a
valid flag. Each valid flag is stored in the valid flag field of the ROB entry
specified by the physical destination pdst. The execution units EUO through
EU4 set the valid flags to indicate whether the corresponding result data

values are valid.

The reorder circuit 42 receives the retirement physical destinations
over the retire notification bus 70. The retirement physical destinations cause
the reorder circuit 42 to commit the speculative result data values in the ROB
entries REO through REn to architectural state by transferring the speculative

result data values to the real register circuit 44 over the retirement bus 64.

The retirement bus 64 carries the speculative results for a set of

retirement micro-ops rm_0 through rm_4. Each retirement micro-op rm_0

- 28 --




10

15

20

25

through rm_4 comprises a result data value and a logical destination ldst

from one of the ROB entries RE0 through REn.
The retirement physical destinations from the retire logic circuit 46 also
cause the reorder circuit 42 to transfer the macro instruction pointer deltas for

the retiring ROB entries to the restart circuit 48 over the macro instruction

pointer offset bus 120.

The reorder circuit 42 receives the reorder clear signal 78 from the
restart circuit 48. The reorder clear signal 78 causes the reorder circuit 42 to

clear all of the ROB entries.

Figure 5 illustrates the reservation and dispatch circuit 38. The
reservation and dispatch circuit 38 implements a reservation dispatch table 84
comprising a set of reservation station entries RS0 through RSx. The
reservation and dispatch circuit 38 receives and stores the physical micro-ops

pmop_0 through pmop_3 into available reservation station entries RS0

through RSx, assembles the source data for the physical micro-ops into the
reservation station entries RSO through RSx, and dispatches the ready
physical micro-ops to the execution circuit 40. A physical micro-op is ready
when the source data is fully assembled in a reservation station entry RSO

through RSx.

Each reservation station entry RS0 through RSx comprises an entry
valid flag, an op code, a pair of source data values (SRC1/SRC2 DATA) and
corresponding valid flags (V), a pair of physical sources (PSRC1/PSRC2), a
physical destination (PDST), and a load buffer identifier (LBID).

-29 ..



10

15

20

25

The entry valid flag indicates whether the corresponding reservation

station entry RS0 through RSx holds a physical micro-op awaiting dispatch.

The op code specifies an operation of the execution unit circuit 40 for
the physical micro-op in the corresponding reservation station entry RS0

through RSx.

The SRC1/SRC2 DATA fields of the reservation station entries RS0
through RSx hold the source data values for the corresponding physical
micro-ops. The corresponding valid flags indicate whether the source data

values are valid.

The physical sources PSRC1/PSRC2 of each reservation station entry
RS0 through RSx specify the physical destinations in the reorder circuit 42
that hold the source data for the corresponding physical micro-op. The
reservation and dispatch circuit 38 uses the physical sources PSRC1/PSRC2 to
detect write back of pending source data from the execution circuit 40 to the

reorder circuit 42.

The physical destination PDST of each reservation station entry RS0
through RSx specifies a physical destination in the reorder circuit 42 to hold
the speculative results for the corresponding physical micro-op.

The load buffer identifier LBID of each reservation station entry RS0

through RSx ispecifies a load buffer entry in the memory ordering circuit in

-30--



10

15

20

25

the execution circuit 40. The load buffer entry is valid if the corresponding
reservation station entry holds a load memory physical micro-op.

The reservation and dispatch circuit 38 receives the physical mic—ro-ops
pmop_0 through pmop_3 over the physical micro-op bus 52. The
reservation and dispatch circuit 38 also receives the reservation station entry
select signals 66 from the allocator circuit 36. The reservation station entry

select signals 66 specify the new reservation station entries.

The reservation and dispatch circuit 38 stores the opcode and physical
sources psrcl and psrc2 for each physical micro-op pmop_0 through pmop_3
into the new reservation station entries RS0 through RSx specified by the
reservation station entr); select signals 66. The reservation and dispatch

circuit 38 sets the entry valid flag for each new reservation station entry.

The reservation and dispatch circuit 38 receives load buffer identifiers
for load memory physical micro-ops over the load buffer ID bus 72 from the
allocator circuit 36. The reservation and dispatch circuit 38 stores the load
buffer identifiers into the appropriate LBID fields of the new reservation

station entries RS0 through R5x.

The reservation and dispatch circuit 38 receives the source data values
and corresponding valid flags specified by the physical sources psrcl and psrc2
of the physical micro-ops pmop_0 through pmop_3 from the reorder circuit
42 and the real register circuit 44 over the source data bus 58. The reservation

and dispatch circuit 38 transfers the source data values and valid flags into the

—-31 --



10

15

20

25

SRC1/SRC2 DATA fields and valid flags of the new reservation station
entries corresponding to the physical micro-ops pmop_0 through pmop_3.
If the entry valid flags indicate that one or both of the source dat;
values for a reservation station table entry RS0 through RSx is invalid, then
the reservation and dispatch circuit 38 waits for the execution circuit 40 to
execute previously dispatched physical micro-ops and generate the required

source data values.

The reservation and dispatch circuit 38 monitors the physical
destinations pdst on the result bus 62 as the execution circuit 40 writes back
result data values to the reorder circuit 42. If a physical destination pdst on
the result bus 62 corresponds to the physical destination of pending source
data for a reservation station table entry RSO through RSx, then the
reservation and dispatch circuit 38 receives the result data value over the
result bus 62 and stores the result data value into the corresponding
SRC1/SRC2 DATA fields and valid flags. The reservation and dispatch circuit
38 dispatches the pending physical micro-ops to the execution circuit 40 if

both source data values are valid.

Figure 6 illustrates the real register circuit 44. The real register circuit
44 implements a real register file 86. The real register file 86 comprises a set of
committed state registers that hold committed result data values. The
committed state registers buffer committed results for the architectural
registers of the original stream of macro-instructions fetched by the

instruction fetch and micro-op issue circuit 32.

—-32 -




10

15

20

25

The result data value in each committed state register may be either an
integer data value or a floating-point data value. For one embodiment, the
result data value field of each committed state register comprises 86 bits to

accommodate both integer and floating-point data values.

For one embodiment, the committed state registers comprise the EAX,
EBX, ECX, and EDX committed state registers, etc. that correspond to the
architectural registers of the Intel Architecture Microprocessor. The real
register file 86 also comprises committed state flags that correspond to the
architectural flags of the Intel Architecture Microprocessor. The real register
file 86 also comprises microcode registers used by microcode executing in the

instruction fetch and micro-op issue circuit 32.

The real register circuit 44 receives the physical micro-ops pmop_0
through pmop_3 over the physical micro-op bus 52. The real register circuit
44 reads the result data values from the committed state registers specified by
the physical sources psrcl and psrc2 of the physical micro-ops pmop_0
through pmop_3 from the real register file 86 if the RRFV flags indicate that

the physical sources are retired.

The real register circuit 44 transfers the result data values from the
committed state registers specified by the physical sources psrcl and psrc2 of
the physical micro-ops to the reservation and dispatch circuit 38 over the
source data bus 58 if the RRFV flags indicate that the physical sources are
retired in the real register file 86. The real register circuit 44 always sets the

source data valid flags while transferring source data to the reservation and

~33--



10

15

20

dispatch circuit 38 over the source data bus 58 because the result data in the
committed state registers is always valid.

. For example, the result data value from the committed state register
specified by the physical source psrcl of the pmop_0 is transferred as source
data srcl data_0 over the source data bus 58 if the RRFV flag for the physical
source psrcl of the pmop_0 is set. The result data value from the committed
state register specified by the physical source psrc2 of the pmop_0 is
transferred as source data src2 data_0 over the source data bus 58 if the RRFV

flag for the physical source psrc2 of the pmop_0 is set.

Similarly, the rea'l register circuit 44 transfers source data srcl/src2
data_1 through source data src1/src2 data_3 over the source data bus 58 to
provide source data for the physical micro-ops pmop_1 through pmop_3 if
the appropriate RRFV flags of the physical micro-ops pmop_1 through

pmop_3 are set.

The real register circuit 44 receives the retirement micro-ops rm_0
through rm_3 from the reorder circuit 42 over the retirement bus 64. Each
retirement micro-op rm_0 through rm_3 contains speculative results from

one of the ROB entries RE0 through REn in the reorder buffer 82.

Each retirement micro-op rm_0 through rm_3 comprises a result data
value and a logical destination ldst. The real register circuit 44 stores the
result data values of the retirement micro-ops rm_0 through rm_3 into the
committed state registers of the real register file 86 specified by the logical

destinations ldst the retirement micro-op rm_0 through rm_3.

—34 -



10

15

20

Figure 7 illustrates a load memory circuit in the execution circuit 40.
The load memory circuit comprises an address generation circuit 100, a

memory ordering circuit 102, a data translate look-aside buffer (DTLB) circuit

104, and a data cache circuit 106.

The address generation circuit 100 receives dispatched load memory
physical micro-ops from the reservation and dispatch circuit 38 over the
mivro-op dispatch bus 60. Bach dispatched load memory physical micro-op on
the micro-op dispatch bus 60 comprises an opcode, a pair of source data values

srcl_data and src2_data, a physical destination pdst, and a load buffer

identifier 1bid.

The address generation circuit 100 determines a linear address for each
dispatched load memory physical micro-op according to the source data
values srcl_data and src2_data. The linear address may also be referred to as
a virtual address. For one embodiment, the address generation circuit 100
implements memory segment registers and generates the linear address

according to the memory segmentation of Intel Architecture Microprocessors.

The address generation circuit 100 transfers linear load memory micro-
ops to the memory ordering circuit 102 over a linear operation bus 90. Each
linear load memory operation on the linear operation bus 90 corresponds to a
dispatched load memory physical micro-op received over the micro-op
dispatch bus 60. Each linear load memofy micro-op comprises the opcode of
the corresponding load memory physical micro-op, the linear address I_addr

determined from the corresponding source data values srcl_data and

—~35--



10

15

20

25

src2_data, the corresponding physical destination pdst, and the corresponding
load buffer identifier Ibid.

The memory ordering circuit 102 contains a load buffer. The mémory
ordering circuit 102 receives the linear load memory micro-ops over the
linear operation bus 90. The memory ordering circuit 102 stores the linear
load memory micro-ops in the load buffer according to the corresponding
load buffer identifier Ibid. The memory ordering circuit 102 dispatches the
linear load memory micro-ops from the load buffer to the DTLB circuit 104

over the linear operation bus 90.

The DTLB circuit 104 receives the dispatched linear load memory
micro-ops from the memory ordering circuit 102 over the linear operation
bus 90. The DTLB circuit 104 provides a physical address to the data cache
circuit 106 over a read bus 94 for each linear load memory micro-op received

from the memory ordering circuit 102.

The DTLB circuit 104 converts the corresponding linear address 1_addr
into a physical address for the memory subsystem 26. The DTLB circuit 104
maps the linear address 1_addr of each linear load memory micro-op into a

physical address according to a predetermined memory paging mechanism.

The DTLB circuit 104 transfers the mapped physical address
corresponding linear address 1_addr of each linear load memory micro-op to
the memory ordering circuit 102 over a physical address bus 96. The memory
ordering circuit 102 stores the physical addresses for each linear load memory

micro-op in the corresponding load buffer entry. For one embodiment, the

—36--



10

15

20

25

memory ordering circuit 102 stores a portion of the physical addresses for each

linear load memory micro-op in the corresponding load buffer entry.

The data cache circuit 106 reads the data specified by the physical‘
address on the read bus 94. If the physical address causes a cache miss, the
data cache circuit 106 fetches the required cache line from the memory
subsystem 26. The data cache circuit 106 receives cache lines from the
memory subsystem 26 over an interface bus 74 through the bus interface

circuit 30 which is coupled to the multiprocessor bus 28.

The data cache circuit 106 transfers the read result data, a corresponding
valid bit, and fault data for the read access to the reorder circuit 42 and the
reservation and dispatch circuit 38 over the result bus 62. The result bus 62

also carries the physical destination from the corresponding load buffer in the

memory ordering circuit 102.

The memory ordering circuit 102 senses or "snoops" bus cycles on the
multiprocessor bus 28 through the bus interface circuit 30 over the interface
bus 74. The memory ordering circuit 102 "snoops" the multiprocessor bus 28
for an external store or read for ownership operation by one of the processors
23 - 24 that may cause a processor ordering violation for one of the dispatched
linear load memory micro-ops. The memory ordering circuit 102 "snoops”
the multiprocessor bus 28 for an external store operation targeted for the
physical address of an already dispatched linear load memory micro-op stored

in the load buffer.

~37 -



10

15

20

25

During retirement of each load memory physical micro-op, the
memory ordering circuit 102 generates the memory ordering restart signals 76
to indicate a possible processor ordering violation according to the snoop

detection.

Figure 8 illustrates the memory ordering circuit 102. The memory
ordering circuit 102 implements a load buffer 88 comprising a set of load
buffer entries LB0 through LBn. Each load buffer entry LBO through LBn

holds a linear load memory micro-op from the address generation circuit 100.

Each buffer entry LBO through LBn comprises an opcode, a physical
destination (PDST), a linear address, a physical address, a load status, and a

snoop hit flag.

The memory ordering circuit 102 receives the linear load memory
micro-ops over the micro-op dispatch bus 60. The memory ordering circuit
102 stores each linear load memory micro-op into a load buffer entry LBO

through LBn specified by the corresponding load buffer identifier 1bid.

The memory ordering circuit 102 sets a "valid" status for each new
linear load memory micro-op in the load buffer 88. The "valid" status
indicates that the corresponding load buffer entry LBO through LBn holds an

unretired load memory micro-op.

The memory ordering circuit 102 stores the opcode, the physical
destination pdst, and the linear address 1_addr of each linear load memory

micro-op into the corresponding fields of the load buffer entry LB0O through

~38 -




10

15

20

LBn specified by the load buffer identifier Ibid of the linear load memory
micro-op.-

The memory ordering circuit 102 receives the physical addresses-
p_addr corresponding to the linear load memory micro-ops from the DTLB
circuit 104 over the physical address bus 96. The memory ordering circuit 102
stores the physical address for each linear load memory micro-op into the

physical address field of the corresponding load buffer entry LBO through LBn.

For one embodiment, the physical addresses on the physical address
bus 96 comprise bits 12 through 19 of the physical address generated by the

DTLB circuit 104 for the corresponding linear load memory micro-ops.

The memory ordering circuit 102 dispatches the linear load memory
micro-ops from the load buffer entries LBO through LBn over the linear
operation bus 90 according to the availability of resources in the DTLB circuit
104. The memory ordering circuit 102 sets a "complete” status for each linear

load memory micro-op dispatched to the DTLB circuit 104.

The memory ordering circuit 102 "snoops" the multiprocessor bus 28
for external store operations that may cause a processor ordering violation.
The memory ordering circuit 102 "snoops” the multiprocessor bus 28 for
external stores to one of the physical addresses specified the load buffer entries
LBO through LBn having "complete” status. The memory ordering circuit 102
senses an external physical address snoop_addr and a corresponding

snoop_addr_valid signal from the multiprocessor bus 28 over the interface

-39 -



10

15

20

25

bus 74. The snoop_addr_valid signal specifies a valid address for a store

operation on the multiprocessor bus 28.

For one embodiment, the physical address on the multiprocessor bus

comprises 40 bits (bits 0 through 39). Bits 0 through 11 of the linear address

for a linear load memory micro-op equal bits 0 through 11 of the
corresponding physical address. The memory ordering circuit 102 detects a
processor ordering “snoop hit" by comparing bits 5 through 11 of the physical
address of external store operations on the multiprocessor bus 28 with bits 5
through 11 of the linear address of the load buffer entries LB0 through LBn
having "complete” status. The memory ordering circuit 102 also compares
bits 12 through 19 of the physical address of external store operations on the
multiprocessor bus 28 with the physical address bits 12 through 19 of the load
buffer entries LBO through LBn having "complete” status.

The memory ordering circuit 102 sets the snoop hit flag for the load
buffer entries LBO through LBn causing a processor ordering snoop hit. The
memory ordering circuit 102 does not set the snoop hit flag if the load buffer
entry LBO through LBn causing a processor ordering snoop hit holds the
oldest linear load memory micro-op in the load buffer 88. Snooping for the
oldest linear load memory micro-op in the load buffer 88 is disabled by

clearing a corresponding snoop enable flag the appropriate load buffer entry

LBO through LBn.

The memory ordering circuit 102 receives the retirement physical
destinations from the retire logic circuit 46 over the retire notification bus 70.

The memory ordering circuit 102 issues the memory ordering restart signals

- 40 --




10

15

20

25

76 to indicate a possible processor ordering violation if one of the load buffer
entries LBO through LBn specified by the retirement physical destinations has

the corresponding snoop hit flag set. )
Figure 9 illustrates the snoop detection circuitry in the memory
ordering circuit 102. The snoop detection circuitry includes a snoop

detect circuit corresponding to each load buffer entry LBO-LBn in the

memory ordering circuit 102.

For example, a snoop detect circuit 200 corresponds to the load
buffer entry LB0. The snoop detect circuit 200 comprises a valid register
210, complete register 214, a physical address register 216, a linear
address register 218, a snoop enable register 212, and a snoop hit register

222.

The valid register 210 contains the "valid” status indicating
whether the load buffer entry LBO contains a valid load memory
operation. The complete register 214 holds the "complete" status
indicating whether the load memory operation for the corresponding
load buffer entry LBO has dispatched. The physical address register 216
holds the physical address bits 19-12 corresponding to the load buffer
entry LBO. The linear address register 218 stores bits 11-5 of the linear
address for the load memory operation corresponding to the load
buffer entry LBO. The snoop enable register 212 holds a snoop enable
flag that enables or disables external store snooping for the load buffer

entry LBO.

~41 -



10

15

20

25

The physical address register 216 receives a set of snoop address
bits 230. The snoop address bits 230 comprise bits 19-12 of the
snoop_addr received over the interface bus 74. The physical address
register 216 asserts a physical address detect signal 236 if the physical )
address bits 230 equal the physical address bits 19-12 corresponding to

the load buffer entry LBO.

The linear address register 218 receives a set of physical address
bits 232. The physical address bits 232 comprise bits 11-5 of the
snoop_addr received over the interface bus 74. The linear address
register 218 generates a linear address detect signal 237 if the physical
address bits 232 equal bits 11-5 of the linear address corresponding to
the load buffer entry LBO.

A snoop_addr_valid signal 234 is received over the interface bus
74. The snoop_addr_valid signal 234 indicates that the snoop_addr on
the interface bus 74 corresponds to a valid external store operation.
The output of an AND gate 220 sets a snoop hit flag in the snoop hit
register 222 by combining the physical address detect signal 236, and the

linear address detect signal 237, the "complete” and the "valid" status,"

and the snoop enable flag.

Figure 10 illustrates notification circuitry in the memory
ordering circuit 102 that generates the memory ordering restart signals
76. The memory ordering circuit 102 contains a notification circuit for

each of the load buffer entries LBO-LBn.

-4 -



10

15

20

For example, the notification circuit 250 corresponds to the load
buffer entry LBO. The snoop hit register 222 contains the snoop hit flag
for the load buffer entry LB0. A physical destination (PDST) register 260
holds the physical destination corresponding to the load buffer entry
LBO.

The PDST register 260 receives a set of retirement physical
destinations 270-272 over the retire notification bus 70 indicating the
next set of retiring physical micro-ops. The PDST register 260 generates
a set of control signals 300-302. The control signals 300-302 indicate
whether any of the retirement physical destinations 270-272 match the
physical destination in _the load buffer entry LBO.

For example, the PDST register 260 generates the control signal
300 to indicate that the retirement physical destination 270 matches the

physical destination in load buffer entry LBO0. Similarly, the PDST
register 260 generates the control signal 301 to indicate that the

retirement physical destination 271 matches the physical destination in
load buffer entry LB0, and the control signal 302 to indicate that the
retirement physical destination 272 matches the physical destination in

load buffer entry LBO.

The memory ordering restart circuit 250 receives a set of
retirement physical destination valid flags 280-282 over the retire
notification bus 70. The retirement physical destination valid flags 280-
282 indicate whether the retirement physical destinations 270-272 are

valid.

—43 --



10

15

20

25

For example, the retirement physical destination valid flag 280
indicates whether the retirement physical destination 270 is valid.
Similarly, the retirement physical destination valid flag 281 indicates -
whether the retirement physical destination 271 is valid, and the
retirement physical destination valid flag 282 indicates whether the

retirement physical destination 272 is valid.

The control signals 300-302 and the retirement physical
destination flags 280-282 are combined with the snoop hit flag by a set
of AND gates 310-312. The outputs of the AND gates 310-312 are stored
in a register 262. The outputs of the register 262 are synchronized by a
clock signal 350. '

The register 262 stores the memory ordering restart flags for the
load buffer entry LB0. The outputs of the AND gates 320-322 control a
set of pull down transistors Q1, Q2 and Q3. The pull down transistors
Q1, Q2 and Q3 are coupled to a set of memory ordering restart signal
lines 290-292. The memory ordering restart signal lines 290-292 are also
coupled to a set of pull up transistors Q4, Q5 and Q6 which are
synchronized by the clock signal 350.

If the control signal 300 indicates that the retirement physical
destination 270 matches the physical destination in load buffer entry
LBO, and if the retirement physical destination valid flag 280 indicates
that the retirement physical destination 270 is valid, and if the snoop

hit flag for the load buffer entry LBO is set, then the output of the AND

—44 -



10

15

20

25

gate 320 switches on the transistor Q1. The transistor Q1 pulls down
the voltage on the memory ordering restart signal line 290 to indicate
that the physical micro-op specified by the retirement physical

destination 270 has caused a possible processor ordering violation.

Similarly, the memory ordering restart signal line 291 indicates
that the physical micro-op specified by the retirement physical
destination 271 has caused a possible processor ordering violation, and
the memory ordering restart signal line 292 indicates that the physical
micro-op specified by the retirement physical destination 272 has

caused a possible processor ordering violation.

Figure 11 illustrates a load micro-op issue by the instruction fetch and
micro-op issue circuit 32. The logical micro-op (Id 0x100, EBX, EAX) is
transferred by the instruction fetch and micro-op issue circuit 32 over the
logical micro-op bus 50. The logical micro-op 1d 0x100, EBX, EAX specifies a
load memory operation to the architectural register EAX from the memory
subsystem 26. The address is specified by the contents of the architectural

register EBX and offset 100 hex.

The allocator circuit 36 receives the logical micro-op 1d 0x100, EBX, EAX
over the logical micro-op bus 50, and generates a physical destination pdst
equal to 42. The allocator circuit 36 transfers the pdst 42 to the register alias

circuit 34 over the physical destination bus 56.

The register alias circuit 34 receives the physical destination pdst 42,

and translates the logical micro-op 1d 0x100, EBX, EAX into a physical micro-

—~45 --



10

15

20

25

op 1d 100, 35, 42. The argument 100 specifies that psrcl is a constant data value
equal to 100 hex. The argument 35 specifies that psrc2 is the RE35 entry in the
reorder buffer 82 according to the ROB pointer and the RRFV flag for the EBX

entry in the register alias table 80.

The register alias circuit 34 transfers the physical micro-op 1d 100, 35, 42
to the reservation and dispatch circuit 38, the reorder circuit 42, and the real

register circuit 44 over the physical micro-op bus 52.

The register alias circuit 34 stores the allocated pdst 42 for the physical
micro-op 1d 100, 35, 42 into the ROB pointer of the EAX entry in the register
alias table 80. The register alias circuit 34 also clears the RRFV bit for the EAX
entry in the register alias table 80 to indicate that the logical register EAX is

mapped to the reorder buffer 82 in a speculative state.

The reorder circuit 42 and the real register circuit 44 receive the
physical micro-op 1d 100, 35, 42 over the physical micro-op bus 52. The
reorder circuit 42 reads source data for the physical source psrc2 35 by reading
ROB entry RE35 of the reorder buffer 82. The ROB entry RE35 of the reorder
buffer 82 contains a result data value equal to 2000 and a valid bit set for the

current speculative state of the EBX architectural register.

The reorder circuit 42 transfers the result data value 2000 and the
constant data value 100 along with corresponding valid bits to the reservation
and dispatch circuit 38 over the source data bus 58 as a source data pair

srcl/src2 data.

— 46 --



10

15

20

25

The reorder circuit 42 receives the logical destination ldst EAX for the
physical micro-op 1d 100, 35, 42 over the logical destination bus 54. The
reorder circuit 42 stores the logical destination 1dst EAX into the LDST of the
entry RE42 of the reorder buffer 82. The reorder circuit 42 clears the valid flag
of the entry RE42 of the reorder buffer 82 to indicate that the corresponding

result data is not valid.

The reservation and dispatch circuit 38 receives the physical micro-op
physical micro-op 1d 100, 35, 42 over the physical micro-op bus 52. The
reservation and dispatch circuit 38 stores the opcode 1d into the opcode field
of the entry RS0 of the reservation station table 84 as specified by the allocator
circuit 36. The reservation and dispatch circuit 38 stores the physical
destination pdst 42 into the PDST of the reservation station table 84 entry RSO.
The reservation and dispatch circuit 38 stores the physical sources psrcl xxx
and psrc2 35 into the PSRC1/PSRC2 of the reservation station table 84 entry
RS0. The reservation and dispatch circuit 38 also sets the entry valid flag of

the reservation station table 84 entry RS0.

The reservation and dispatch circuit 38 receives the source data values
srcl/src2 data 100 and 2000 and corresponding valid flags over the source data

bus 58. The reservation and dispatch circuit 38 stores the source data values

srcl/src2 data 100 and 2000 and corresponding valid flags into the SRC1/5RC2

and V fields of the reservation station table 84 entry RS0.
The reservation and dispatch circuit 38 receives a load buffer identifier
Ibid = 4 for the physical micro-op 1d 100, 35, 42 from the allocator circuit 36

over the load buffer ID bus 72. The reservation and dispatch circuit 38 stores

—47 -



10

15

20

25

the load buffer identifier lbid = 4 into the LBID field of the reservation station
table 84 entry RSO.

The reservation and dispatch circuit 38 dispatches the load mem-ory
physical micro-op 1d 100, 2000, 42, Ibid = 4 to the address generation circuit 100
over the micro-op dispatch bus 60. The address generation circuit 100
converts the source data values 100, 2000 into a linear address 32100 according
to segment register values. The address generation circuit 100 then transfers a
corresponding linear load memory micro-op 1d 32100, 42, Ibid = 4 to the

memory ordering circuit 102 over the linear operation bus 90.

The memory ordering circuit 102 receives the linear load memory
micro-op 1d 32100, 42, Ibid = 4 over the linear operation bus 90. The memory
ordering circuit 102 stores the linear load memory micro-op 1d 32100, 42, Ibid
= 4 into entry LB4 of the load buffer 88 as specified by the corresponding load
buffer identifier Ibid = 4. The memory ordering circuit 102 sets "valid" load

status for load buffer entry LB4.

The memory ordering circuit 102 also contains an older linear load

memory micro-op Id 31000, 41 in entry LB3 of the load buffer 88 having a
“complete” status. The "complete" status indicates that the linear load
memory micro-op 1d 31000, 41 has been dispatched to the DTLB circuit 104 for
execution. The load buffer entry LB3 contains physical address bits 6 - 19 equal
to 1040 hex, which corresponds to a physical address equal to 41000 generated
by the DTLB circuit 104 for the linear address 31000.

— 48 --



10

15

20

25

Figure 12 illustrates the dispatch and retirement of the linear load
memory micro-op 1d 32100, 42, Ibid = 4. The memory ordering circuit 102
dispatches the linear load memory micro-op 1d 32100, 42 from the load buffer
entry LB4 to the DTLB circuit 104 over the linear operation bus 90. The-

memory ordering circuit 102 then sets "complete” status for the load buffer

entry LB4.

The DTLB circuit 104 generates a physical address equal to 42100 for the
linear address 32100 of the linear load memory micro-op 1d 32100, 42. The
DTLB circuit 104 performs a read access of the data cache circuit 106 at physical

address 42100 over the read bus 94.

The memory ordering circuit 102 receives the physical address bits 6 -
19 equal to 1084 corresponding to the linear load memory micro-op 1d 32100,
42 over the physical address bus 96. The memory ordering circuit 102 stores
the physical address bits 6 - 19 equal to 1084 into the physical address field of
the load buffer entry LB4.

The data cache circuit 106 transfers the result data value equal to 225 for
the read to physical address 42100, a corresponding valid bit, and fault data for
the read access to the reorder circuit 42 and the reservation and dispatch
circuit 38 over the result bus 62. The result bus 62 also carries the physical
destination 42 corresponding to the result data for the linear load memory

micro-op Id 32100, 42.

~49 .-



10

15

20

25

The reorder circuit 42 stores the result data equal to 225 and
corresponding valid bit into entry RE42 of the reorder buffer 82 as specified by
the physical destination 42 on the result bus 62.

The memory ordering circuit 102 senses a snoop hit on the
multiprocessor bus 28 for an external store having the physical address bits 6 -
19 equal to 1084. The physical address bits 6 - 19 equal to 1084 correspond to
entry LB4 of the load buffer 88. The memory ordering circuit 102 sets the
snoop hit flag for entry LB4 to indicate the processor ordering snoop hit.

The memory ordering circuit 102 also senses a snoop hit on the
multiprocessor bus 28 for an external store having the physical address bits 6 -
19 equal to 1040. The memory ordering circuit 102 does not set the snoop hit
flag for entry LB3 because the linear load memory micro-op 1d 31000, 41 is the

oldest linear load memory micro-op in the load buffer 88.

The memory ordering circuit 102 then receives a set of retirement
physical destinations 40, 41, 42 from the retire logic circuit 46 over the retire
notification bus 70. In response, the memory ordering circuit 102 issues the

memory ordering restart signals 76 to indicate a possible processor ordering

violation for the linear load memory micro-op 1d 32100, 42.

The memory ordering restart signals 76 cause the restart circuit 48 to
issue the reorder clear signal 78. The reorder clear signal 78 causes the reorder
circuit 42 to clear the speculative result data for the unretired physical micro-
ops in the reorder buffer 82, and causes the reservation and dispatch circuit 38

to clear the pending physical micro-ops that await dispatch to the execution

—50--



10

15

20

circuit 40. The reorder clear signal 78 also causes the allocator circuit 36 to
reset the allocation pointer for allocating the physical registers in the reorder

circuit 42, and causes the retire logic circuit 46 to reset the retirement pointer

for retiring the physical registers.

The restart circuit 48 uses the macro instruction pointer delta values
received over the macro instruction pointer offset bus 120 to calculate a restart
instruction pointer value. The restart circuit 48 transfers the restart
instruction pointer value to the instruction fetch and micro-op issue circuit

32 over the restart vector bus 122.

The reorder clear signal 78 causes the micro-instruction sequencer of
the instruction fetch and micro-op issue circuit 32 to reissue the in order

stream of logical micro-ops that were cleared from the reorder circuit 42

before retirement.

In the foregoing specification the invention has been described with
reference to specific exemplary embodiments thereof. It will, however, be
evident that various modifications and changes may be made thereto without
departing from the broader spirit and scope of the invention as set forth in
the appended claims. The specification and drawings are accordingly to be

regarded as illustrative rather than a restrictive sense.

—51--



10

15

20

25

1 A method for processor ordering in a multiprocessor computer system,
comprising the steps of:

fetching a load memory instruction from an external memory in a
sequential program order, the load memory instruction specifying a load
memory operation from a memory address over a multiprocessor bus;

executing the load memory instruction and snooping the
multiprocessor bus for a processor ordering conflict at the memory address;

committing the load memory instruction to an architectural state in
the sequential program order if the external store operation to the memory
address is not detected;

reexecuting the load memory instruction if the external store operation

to the memory address is detected.

2. The method of claim 1, wherein the step of fetching a load memory
instruction comprises the step of fetching an instruction stream from the
external memory in the sequential program order, the instruction stream
comprising the load memory instruction, the load memory instruction
specifying a load memory operation from the memory address over the

multiprocessor bus.

3. The method of claim 2, wherein the step of executing the load memory

instruction comprises the steps of:

—~52--




10

15

20

25

assembling at least one source data value for the load memory
instruction, such that the source data value specifies the memory address for
the load memory instruction; _

executing the load memory instruction after the source data value for
the load memory instruction is assembled, the executed load memory

instruction generating a result data value.

4. The method of claim 3, wherein the step of snooping the
multiprocessor bus for a processor ordering conflict at the memory address
comprises the step of snooping the multiprocessor bus for an external store

operation to the memory address of the executed load memory instruction.

5. The method of claim 3, wherein the step of snooping the
multiprocessor bus for a processor ordering conflict at the memory address
comprises the step of snooping the multiprocessor bus for an external read for

ownership operation to the memory address of the executed load memory

instruction.

6. The method of claim 4, wherein the step of committing the load
memory instruction to an architectural state comprises the step of
committing the result data value to the architectural state in the sequential
program order if the external store operation to the memory address of the

executed load memory instruction is not detected.
7. The method of claim 6, wherein the step of reexecuting the load
memory instruction if the external store operation to the memory address is

detected comprises the steps of discarding the result data value, then

—53 -



10

15

20

25

reexecuting the instruction stream starting with the load memory instruction
corresponding to the discarded result data value if the external store
operation to the memory address of the executed load memory instruction is

detected before the result data value is committed to the architectural state.

8. The method of claim 7, wherein the step of executing the load memory
instruction after the source data value for the load memory instruction is
assembled comprises the steps of:

determining a linear memory address for the load memory instruction
from the source data value for the load memory instruction;

storing the load memory instruction and the linear memory address in
an available load buffer entry of a load buffer;

converting the li.near address of the load memory instruction into a
physical address, and storing the physical address into the load buffer entry;

performing a load memory operation from the physical address, and
setting a complete status for the load buffer entry, the load memory operation

generating the result data value.

9. The method of claim 8, wherein the step of snooping the
multiprocessor bus for an external store operation to the memory address of
the executed load memory instruction comprises the steps of:

snooping the multiprocessor bus for an external store operation to the
physical address stored in the load buffer entry if the load buffer entry
contains the complete status;

setting a snoop hit flag in the load buffer entry if the external store

operation to the physical address stored in the load buffer entry is detected.

-54--




10

15

20

25

10.  The method of claim 9, wherein the step of committing the result data
value to an architectural state in the sequential program order comprises the

steps of:

generating a retirement pointer in the sequential program order, such
that the retirement pointer specifies the result data value stored in a physical
register of a reorder buffer, and specifies the load buffer entry in the load
buffer;

committing the result data value in the physical register to the

architectural state if the snoop hit flag of the load buffer entry is not set.

11.  The method of claim 9, wherein the step of discarding the result data
value comprises the steps of:

generating a reﬁrement pointer in the sequential program order, such
that the retirement pointer specifies the result data value stored in a physical
register of a reorder buffer, and specifies the load buffer entry in the load
buffer;

clearing the result data value in the physical register if the snoop hit

flag of the load buffer entry is set.

12.  An apparatus for processor ordering in a multiprocessor computer
system, comprising:

means for fetching a load memory instruction from an external
memory in a sequential program order, the load memory instruction
specifying a load memory operation from a memory address over a

multiprocessor bus;
means for executing the load memory instruction and snooping the

multiprocessor bus for a processor ordering conflict at the memory address;

—~ 55 -



10

15

20

25

means for committing the load memory instruction to an architectural
state in the sequential program order if the external store operation to the

memory address is not detected;

means for reexecuting the load memory instruction if the external

store operation to the memory address is detected.

13.  The apparatus of claim 12, wherein the means for fetching a load
memory instruction comprises means for fetching an instruction stream
from the external memory in the sequential program order, the instruction
stream comprising the load memory instruction, the load memory
instruction specifying a load memory operation from the memory address

over the multiprocessor bus.

14. The apparatus of claim 13, wherein the means for executing the load
memory instruction comprises:

means for assembling at least one source data value fof the load
memory instruction, such that the source data value specifies the memory
address for the load memory instruction;

means for executing the load memory instruction after the source data
value for the load memory instruction is assembled, the executed load

memory instruction generating a result data value.

15.  The apparatus of claim 14, wherein the means for snooping the
multiprocessor bus for a processor ordering conflict at the memory address
comprises means for snooping the multiprocessor bus for an external store

operation to the memory address of the executed load memory instruction.

— 56 --



10

15

20

25

16. The apparatus of claim 14, wherein the means for snooping the
multiprocessor bus for a processor ordering conflict at the memory address
comprises means for snooping the multiprocessor bus for an external read for
ownership operation to the memory address of the executed load memory

instruction.

17.  The apparatus of claim 15, wherein the means for committing the load
memory instruction to an architectural state comprises means for committing
the result data value to the architectural state in the sequential program order
if the external store operation to the memory address of the executed load

memory instruction is not detected.

18. The apparatus of claim 17, wherein the means for reexecuting the load
memory instruction if the external store operation to the memory address is
detected comprises means for discarding the result data value, and means for
reexecuting the instruction stream starting with the load memory instruction
corresponding to the discarded result data value if the external store
operation to the memory address of the executed load memory instruction is

detected before the result data value is committed to the architectural state.

19. The apparatus of claim 18, wherein the means for executing the load
memory instruction after the source data value for the load memory

instruction is assembled comprises:

means for determining a linear memory address for the load memory
instruction from the source data value for the load memory instruction;
means for storing the load memory instruction and the linear memory

address in an available load buffer entry of a load buffer;

~57 -



10

15

20

25

means for converting the linear address of the load memory
instruction into a physical address, and storing the physical address into the
load buffer entry; -

means for performing a load memory operation from the physical
address, and setting a complete status for the load buffer entry, the load

memory operation generating the result data value.

20. The apparatus of claim 19, wherein the means for snooping the
multiprocessor bus for an external store operation to the memory address of
the executed load memory instruction comprises:

means for snooping the multiprocessor bus for an external store
operation to the physical address stored in the load buffer entry if the load
buffer entry contains the complete status;

means for setting a snoop hit flag in the load buffer entry if the external
store operation to the physical address stored in the load buffer entry is
detected.

21.  The apparatus of claim 20, wherein the means for committing the
result data value to an architectural state in the sequential program order
comprises:

means for generating a retirement pointer in the sequential program
order, such that the retirement pointer specifies the result data value stored
in a physical register of a reorder buffer, and specifies the load buffer entry in
the load buffer;

means for committing the result data value in the physical register to

the architectural state if the snoop hit flag of the load buffer entry is not set.

—~ 58 -

-



22, The apparatus of claim 20, wherein the means for discarding the result

data value comprises:

means for generating a retirement pointer in the sequential program
order, such that the retirement pointer specifies the result data value stored

in a physical register of a reorder buffer, and specifies the load buffer entry in

the load buffer;

means for clearing the result data value in the physical register if the

snoop hit flag of the load buffer entry is set.

23. A method for processor ordering in a multiprocessor computer

system, substantially as hereinbefore described.

24. An apparatus for processor ordering in a multiprocessor

computer system, substantially as hereinbefore described, with

reference to the accompanying drawings.

—~59 -



n!.’llll\ralvlvll 4111V WA

Patents ACL LJ7//
GB 9408016.5

Examiner’s report to the Comptroller under Section 17
(i/ Search report) — 0

Search Examiner

Relevant Technical Fields
M J DAVIS

() UK Cl (BA.M)  G4A (APP)
(i) Int Cl (Bd.5)  GOGF

Date of completion of Search
20 JUNE 1994

Documents considered relevant

Databases (see below)

(i) UK Patent Office collections of GB, EP, WO and US patent following a search in respect of
specifications. Claims :-

1-24
(i)

Categories of documents

Document published on or after the declared priority date

X: Document indicating lack of novelty or of inventive step. P:
but before the filing date of the present application.

Y: Document indicating lack of inventive step if combined with

one or more other documents of the same category. E: Patent document published on or after, but with priority date

earlier than, the filing date of the present application.

A: Document indicating technological background and/or state

of the art. &: Member of the same patent family; corresponding document.
Category Identity of document and relevant passages Relevant to
claim(s)
X GB 1582815 (SIEMENS) Whole document 1, 12 at least

Databases:The UK. Patent Office database comprises classified collections of GB, EP, WO and US patent specifications as outlined periodically in the Official Journal
(Patents). The on-line databases considered for search are also listed periodically in the Official Journal (Patents).

T8 - 8344 Page 1 of 1



