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(54) Abstract Title
Software fault tolerant computer system

(57) A software fault tolerant computer system inciudes a primary virtual machine and a secondary virtual
machine. The secondary virtual machine is operable to replicate the primary virtual machine by replicating
operations performed on the primary virtual machine. The primary and the secondary virtual machines are
further operable to test for equivalent operation of the primary and secondary virtual machines at
predetermined stages of operation. This provides software fault tolerance wherein both a unit of replication
and a component that implements the fault tolerance mechanisms is a virtual machine (VM). Since a VM as
used by the invention has full knowiedge of the semantics of application-leve! code, fault tolerance
mechanisms can be provided by the VMs without requiring any increase in application complexity.
Co-ordination of replicated states and computations is achieved with characteristics of both active and passive

replication.
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LIV IV

1

SOFTWARE FAULT TOLERANT COMPUTER SYSTEM

This invention relates to fault tolerant computing, and in particular to software fault

tolerant computing.

Many different approaches to fault-tolerant computing are known in the art. Fault
tolerant computing is typically based on providing replication of components and
ensuring for equivalent operation between the components. A brief outline of the

advantages and disadvantages of some of the known choices is given below.

A fault-tolerant mechanisms can be implemented by replicating hardware, for
example by providing multiple processors with the same software operating on each
of the processors. The replicated software is arranged to operate in lockstep during
normal operation and a mechanism is provided to detect a failure of lockstep. The
advantages of such an approach are fast detection and masking of failures, with fault-
tolerance which is transparent to software. There are also some disadvantages of such
systems. For example, they are difficult to develop and upgrade. Also, they inherently
have “wasted” hardware resources. Moreover, the system does not tolerate software
failures. Also, as very restricted knowledge about the software is available to the fault
tolerant mechanisms, this may cause some inefficiency, for example it is difficult to
know precisely which parts of memory have to be saved and/or restored with the
result that conservative decisions are made about the necessary actions to be

performed.

Similar advantages and disadvantages exist where fault tolerant mechanisms are
implemented within a hypervisor (a software layer between hardware and OS), or
even within an OS. Although more knowledge about software applications may be
available in these cases, it is still very restricted, and a fault at the application level
can still cause correlated failures of all the replicated units, which cannot be

detected/masked by the fault tolerant mechanisms.
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When the chosen fault tolerant mechanisms are placed in user-space, but below the
applications (for example, in libraries, daemons, etc.) they are easier to implement and
have increased coverage of software failures. There are disadvantages inherent in
such approaches as well. F or"exéfr'lpie, potential inefficiencies are related to failure
detection and masking. There are higher overheads in normal operation. Also, only
partial transparency for the applications is normally provided. The level of
transparency varies between different approaches. For example, they often force the
users to use a particular programming paradigm, which may not be the most

appropriate for some applications.

Fault tolerant mechanism can also be implemented in applications. This gives the
fault tolerant mechanisms full knowledge of the applications, but with the loss of any
transparency. Moreover, such mechanisms are not reusable, and it is hard to make

them efficient and reliable each time (for every specific application).

An example of a re-usable, user-level approach to software fault-tolerance is described
in an article entitled “TFT: A software system for Application Transparent Fault
Tolerance” by T. C. Bressoud from “The 28th Annual International Symposium on
Fault-Tolerant Computing, June 1998”. The article describes an arrangement of a
software layer (Transparent Fault Tolerance layer, or TFT layer) between an operating
system and applications that implements a fault tolerant mechanism. This is based on
an earlier work by the same author entitled “Building a Virtually Fault Tolerant
System”, PhD Cornell University, May 1996, where the same approach for fault-

tolerance was applied at the hypervisor level.

A TFT layer provides an interface that appears to an application to be identical to that
of the underlying OS. The TFT layer implements primary-backup replication,
resolves the input value non-determinism, asynchronous actions, and suppression of

duplicate outputs. Failure detection is based on message acknowledgements and
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3

time-outs. TFT does not attempt to integrate failure detection and masking with the
corresponding language-level constructs. The TFT layer intercepts system calls made
by the applications and asynchronous exceptions raised by the OS, and after some
processing, it decides whether to forward them to the OS or the application

respectively. The non-deterministic system calls are performed only by a primary

Areplica, which sends the results to the secondary replica. This solves the problem of

non-deterministic input values.

In order to solve the problem of asynchronous actions raised by the operating system,
TFT uses the concept of epochs. An epoch is a fixed-length sequence of actions
excluding asynchronous actions. Computations by both primary replica and the
backup replica are divided into the same sequence of epochs. The TFT layer is
responsible for dividing computations into epochs and for co-ordinating the epochs of
the primary replica and the backup replica. This is done using object code editing,
whereby application binaries are modified adding the code for incrementing an epoch

counter and for passing control to the TFT layer at epoch boundaries.

A similar technique for managing intervals of control flow is proposed in an article by
J.H. Sly and E.N. Elnozahy, entitled “Supporting Non-deterministic Execution in
Fault-tolerant Systems”, from a Report CMU-CS-96-120, School of Computer
Science Carnegie Mellon University, May 1996, and an article by J.H Sly and E.N.
Elnozahy entitled “Support for Software Interrupts in Log-Based Rollback-
Recovery”, from IEEE Transactions on Computers, Vol. 47, No. 10, October 1998.

Intercepted asynchronous actions are buffered locally by the primary replica, and are
forwarded to the secondary replica. They are delivered in the same order at both
primary and secondary and at the same points in the control flow, which is at the

epoch boundary.

The backup replica can detect that the primary replica has failed when either it does
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not receive the result of a non-deterministic system call, or it does not receive an end
of epoch message. In either case, the backup becomes the new primary and starts
performing the non-deterministic system calls and delivering asynchronous actions -
at the epoch boundaries. At the promotion point there is some uncertainty about how
far the old primary replica will have got in its computation before the failure
happened. It might have performed some output actions, or received some
asynchronous exceptions, and not have had time to communicate this to the backup.
This can cause problems, as the failure now becomes non-transparent to the
environment. In order to alleviate this problem the primary replica performs a
“stability query” immediately before performing any output action. This is a blocking
operation that allows the primary to continue only when it is known that the backup
has received all the previously sent messages. This however does not completely
solve the problem - there is still some uncertainty about the last output action, and
about possible asynchronous actions received by the old primary before it failed (note
that such an action was possibly an acknowledgement of a previous output action).
Depending on the semantics of the specific uncertain action, there may be a solution
in some cases (specifically for idempotent actions and those actions that allow TFT to
ask the environment about their status). In other cases the only solution is to return an
error code to the application which should indicate that there is uncertainty about the
action's execution status.
v

Another interesting approach for software fault tolerance can be found at:
Www.omg.org/techprocess/meetings/schedule/Fault_Tolerance__RFP.htmI. This
Internet site describes work in progress on a proposal for fault tolerant Corba
(ftCorba) that allows for several kinds of replication (passive warm, passive cold, and
active) for objects. Replicas are kept consistent and their state is updated despite
asynchrony and failures. Object invocations and responses are contained in multicast
mess.ages that are totally ordered in a model of virtual synchrony. Also contained in
these messages are state updates, failure notifications, and object group join and leave

events. Applications can receive fault reports from the Failure Notification Service,
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but integration with the language-level support for failure detection and recovery (i.e.,
with exceptions) is limited, since exceptions are in general not channelled through a

Failure Notification Service.

In passive replication, when the primary replica fails a new primary replica is elected
and the most recent saved state of the old primary is applied to it (in warm replication
this might have been done already). There is no support for virtualising and
unvirtualising the input/output values. Also in passive replication, the passive
replicas are dormant, if warm replication is used their state is updated, but otherwise

they do not perform any actions.

In a related proposal by Eternal Systems Inc. and Sun Microsystems Inc. entitled
“Proposal to OMG on Fault Tolerance”, September 1998, a strong assumption is
made that all application interactions with the application’s environment are done as
object invocations/responses, and that they all go through the multicast engine. All
the objects (their methods) are assumed to be deterministic. This model is generally
not appropriate for interactions between an application and the operating system or
various non-object-oriented libraries. Similarly, although the proposal does provide
suppression of duplicate invocations and responses, this is not enough if there are
interactions with non-Corba services. It can be seen that, despite their considerable
complexity, the ftCorba proposals, in general, do not cope with input non-

determinism, suppression of duplicate outputs, and asynchronous external actions.

The two reports entitled “Somersault Software Fault Tolerance”, Report HPL-98-06,
HP Laboratories Bristol, January 1998 and “Somersault: Enabling Fault Tolerant
Distributed Software Systems”, Report HPL-98-81, HP Laboratories Bristol, by P
Murray et al, describe Somersault, a library for providing increased availability to
those applications that are required to be fault-tolerant. The implementation is based
on a variant of primary-backup replication (the so-called primary-receiver secondary-

sender approach) and is relying on a reliable communication mechanism between the
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replicas.

In Somersault, the primary replica does the non-deterministic events and forces the
secondary replica to do them in the same way (with the same value, in the same
order). This is achieved by passing messages from primary replica to the secondary
replica through a log. Two kinds of events are distinguished: those initiated from
outside (e.g., message received, timer expired, thread scheduled), and those initiated
by the process (e.g., system calls). For the former, Somersault controls the order of
delivery of these events to applications. For the latter, Somersault captures the result
and injects it into the secondary replica. This is done with the application's help, that
is non-transparently. The only output actions allowed are message sends, and they

have to go via Somersault.

If the primary replica fails, this will result in the loss of input links (from clients to
primary replica) and some possible loss of messages that were in transit somewhere
on the path: client-primary-secondary. The recovery procedure is then that the
secondary replica has to reconnect and the remote side has to re-send (either of these
may be non-transparent to clients). If the secondary replica fails, this will result in the
loss of output links (from the secondary replica to client) and some possible loss of
output messages. The recovery procedure is then that the primary replica has to
recénnect and send messages from a re-send queue. Re-integration of a new
secondary replica is done by state transfer and transfer of output links from the
primary replica to the secondary replica. Applications provide save_state operations

that are invoked by Somersault. There is no support for virtualisation of values.

Y. Huang and C. Kintala, in a work entitled “Software Fault Tolerance in the
Application Layer”, chapter 10 in a book edited by M.R. Lyu entitled “Software Fault
Tolerance”, Trends in Software series (3), John Wiley & Sons, 1995, describes
support for software fault tolerance using primary-backup replication where a backup

is passive until there is a take-over. There is support for checkpointing process state,
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logging of process messages, and replicated disk files. The framework performs
failure detection using heartbeat messages. Recovery after a process failure consists
of restoring the process state using the-last checkpointed state, and replaying the

logged messages that are applicable to this state.

K.H. Kim, in a work entitled “The Distributed Recovery Block Scheme”, chapter 8 in
the book edited by M.R. Lyu-entitled “Software Fault Tolerance”, Trends in Software
series (3), John Wiley & Sons, 1995, describes distributed recovery blocks (DRB)
integrated with the technique known as “pair of self-checking processing nodes”
(PSP). This work has some similarities with TFT, but assumes that all input arrives in
the same order and with the same values, over a multicast network, to both primary
and backup. In DRB, a computation is done by repeating a cycle of: input/compute -
and - test/output (multiple inputs/outputs are allowed in a single input/output phase
respectively). The backup replica does not know what exactly a failed primary had
done before failing. The primary replica has as its primary choice the first branch of
the recovery block, while the backup replica has as its primary choice the second
branch of the recovery block. It has been shown by F. Cristian in a work entitled

“Exception Handling and Tolerance of Software Faults”, chapter 4 in the book edited
by M.R. Lyu entitled “Software Fault Tolerance”, Trends in Software series. (3), John
Wiley & Sons, 1995, that appropriately strengthened exception model can express the
recevery block structure. Also, unlike recovery blocks, exceptions are supported by

some of the main stream programming languages.

US patent 5,805,790 (Nota et. al.) describes a fault recovery method for a multi-
processor system including a number of real processors, a single host operating
system and shared memory. Multiple virtual machines (VMs) execute on the real
processors with the assignment of VMs to real processors being under the control of
the host operating system. Optionally the real processors are partitioned into logical
partitions by the host OS and are treated as independent computing units. The system

aims to recover a VM from a failure of a processor, of a partition, or of a VM itself.



However, to achieve this it requires the shared storage and a shared operating system
and further requires hardware support for fault-detection and recovery, including fault
recovery circuits. The method includes the setting of recovery attributes for failure of
each of the VM machines. The method also includes the storage in a real machine
5 save area of main storage by one of the fault recovery circuits of data and status
information on the occurrence of a fault, and the subsequent retrieval the data and

status information to recover from the fault.

An aim of the present invention is to provide an approach to fault tolerant computing

10 that mitigates at least some of the disadvantages of the prior art.
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Particular and preferred aspects of the invention are set out in the accompanying
independent and dependent claims. Combinations of features from the dependent
claims may be combined with features of the independent claims as appropriate and

not merely as explicitly set out in the claims.

In accordance with one aspect of the invention, there is provided a fault tolerant
computer system comprising a primary virtual machine (VM) and a secondary virtual
machine (VM). The secondary virtual machine is operable to replicate operations of
the primary virtual machine and the primary and the secondary virtual machines are

further operable, or co-operate, mutually to provide fault tolerance.

An embodiment of the invention thus provides a new approach to providing software
fault tolerance wherein both a unit of replication and a component that implements the
fault tolerance mechanisms is a virtual machine (VM). An embodiment of the
invention for providing transparent software fault tolerance can be described as “a
replicated virtual machine” and will be referred to hereinafter as an “rVM”. By
replicating operations performed on the primary VM, the secondary VM can provide a
rephica of the primary VM. The primary and the secondary VMs co-operate to
provide a mechanism for providing mutual fault tolerance (i.e. for providing fault
tolerance between each other). For example, they can each be operable to test for
equivalent operation of each other at predetermined stages of operation. With an
embodiment of the invention, it is not necessary to provide a separate level of control,
for example a common operating system with shared storage, to ensure fault tolerance
as this is achieved by the replicated VMs themselves. Since a VM as used by the
invention has full knowledge of the semantics of application-level code, fault
tolerance mechanisms can be provided by the VMs without requiring any increase in

application complexity.
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An embodiment of the invention can enable co-ordination of replicated states and
computations with some characteristics of both active and passive replication. Similar
to active replication, the VM replicas can perform the same computation in parallel.
However, the backup operations in the secondary VM replica can be delayed with

respect to primary's computation.

The present invention makes use of the high degree of integration with and knowledge
about application code in a VM such as, for example, a Java VM. Further information
about Java VM may be found, for example, in a book authored by T. Lindholm and F
Yellin and entitled “The Java Virtual Machine Specification”, Addison Wesley, The
Java Series 1999, the whole content of which is incorporated herein by reference.

Such a VM forms a general interpretation and execution engine for application code.

This execution engine has its instruction set and its own memory. It logically lies
directly under the application code itself (i.e., there is no operating system (OS), or
some other software layer between the application code and VM which executes this
code). An embodiment of the invention takes advantage of the fact that a virtual
machine has full knowledge of the semantics of application level code that is being
executed. This allows a tight integration between the fault tolerance mechanisms and
the application code. It also allows appropriate processing of the application -level
insteuctions that are related to input (reading from the environment), output (writing to
the environment) and control and management of external (synchronous and

asynchronous) actions.

The primary virtual machine can be operated on a first processing engine and the
secondary virtual machine can be operated on a second processing engine. An
exchange of data is provided between the processing engines via a link. Each of the
primary and secondary virtual machines is operable to send a heartbeat message to the
other of the primary and secondary virtual machines at intervals via the link. The

heartbeat message indicates that virtual machine which sends the heartbeat message is
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alive, and additionally can include status information.

A test for liveliness could be performed following receipt of a heartbeat message.

Alternatively, or in addition, a test for liveliness can be performed in response to an
input action. Alternatively, or in addition, a test for liveliness is performed at an
epoch boundary, wherein an epoch boundary forms a boundary between sections of

code executed by the virtual machines.

A virtual machine, which is found to be in a fault state, can be terminated. The
primary virtual machine can be operable to initiate a new secondary virtual machine
where an existing secondary virtual machine is found to be in a fault state. Where an
existing primary VM is found to be in a fault state, a secondary VM is promoted to

become the new primary.

It should be noted that an embodiment of the invention may have more than one

backup VM.

The invention also provides a computer program product operable when run on a
computer to provide a virtual machine for a redundant fault tolerant virtual machine
architecture that includes a second virtual machine. The virtual machine is operable
to ferm a replica of the other virtual machine by replicating operations performed on
the other virtual machine. The virtual machine is further operable to test for
equivalent operation of the other virtual machine at predetermined stages of operation.
The computer program product can be provided on a carrier medium, for example a
computer readable medium (e.g., a disc or tape or other computer readable storage or
memory medium) or a data transmission medium (e.g., a telephone line,

electromagnetic signal or other transmission medium).

The invention also provides a method of providing software fault tolerance

comprising the provision of replicated virtual machines including at least a primary
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and a secondary virtual machine, wherein the secondary virtual machine replicates
operations performed on the primary virtual machine, and the primary and the

secondary virtual machines co-operate so as mutually to provide fault tolerance.

In an embodiment of the invention, transparent fault tolerance can be provided for
applications executed by an rVM. The interface between applications and the rVM

can be identical to the interface between the applications and a non-replicated VM.

Support can be provided for both applications that require strong internal and external
consistency, and for applications with relaxed consistency requirements. Internal
consistency requires that the states of the replicas are the same, or appear to be the
same as seen from their environment. Relaxed internal consistency applies this rule to
some part of the state of the replicas. External consistency requires that the
interactions between the replicas and their environment appear as if performed by a
non-replicated entity. Relaxed external consistency applies this rule to a subset of the
interactions between the replicas and their environment. An embodiment of the
invention can be suitable for applications that require some critical actions to be
performed even in the presence of component failures. It is to be noted that such
applications could not use a technique such as a transaction mechanism, e.g.,
transactions that are based on: detect failure, abort action, do backward recovery.

Although it is sometimes suggested that a transaction mechanism provides fault
tolerance, in fact it provides concurrency control (it can allow multiple read/write
operations to proceed in parallel with the effects being equivalent to a serial execution
of the operations), and guarantees that the results of the operations/transactions persist
(on disk or similar). A transaction mechanism does not actually tolerate failures, but

simply detects failures and rolls back to a previous consistent state of data.

The failure detection and masking mechanisms in an example of an rVM in
accordance with the invention can be integrated with corresponding application-level

language constructs. For example, language constructs such as exceptions (e.g., try-
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catch-throw in Java) are used in an embodiment of the invention. Transparent
detection and recovery for some failures can be provided. However, an application
may want to do some application specific processing of some failure notifications, and
some failures allow only application-level recovery. Implementing the fault tolerance
mechanisms at the VM level makes it possible to co-ordinate the tasks performed at

this level with the similar tasks performed at the application level.
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Exemplary embodiments of the present invention will be described hereinafter, by
way of example only, with reference to the accompanying drawings in which like

reference signs relate to like elements and in which:

Figure 1 is a schematic overview of a system in which an embodiment of the

invention may be implemented for providing software fault tolerance;

Figure 2 is a schematic representation of a hardware configuration for a node of the

system;

Figure 3 is a schematic representation of a software configuration of a node of the

system;

Figure 4 is a representation of a message transfer between nodes at synchronisation

points;

Figure 5 is a representation of relationships between classes; and

Figures 6 to 22 are flow diagrams representing operations performed at the primary

and secondary virtual machine replicas.
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An embodiment of the invention aims to provide transparent software fault tolerance.
By transparent software fault tolerance is meant that a number of software

components (in an embodiment of the invention, a number of virtual machines) can

detect and recover from faults that are not masked by the underlying software and

hardware environment, making these faults transparent to the higher layers of

software.

As mentioned above, an embodiment of the invention for providing transparent
software fault tolerance can be described as “a replicated virtual machine” and is
referred to hereinafter as an “rVM”. This provides a new approach in which both a
unit of replication and a component that implements the fault tolerance mechanism is
a virtual machine (VM). When seen as a “black box”, a typical VM takes as inputs
application code and the values and events that originate from the VM environment
(e.g., values read from some external registers, software or hardware interrupts,
exceptions and traps). External events trigger VM actions. The same typical VM
produces as outputs the values written to the VM environment and actions which may
initiate some activities in this environment (e.g., values written to some external
registers, VM actions which initiate some IO processing). In addition to inputs and
outputs that come from executing application code, a VM can internally generate

some inputs and outputs. An example of a virtual machine is a Java VM.

An implicit characteristic of a VM is that it has full knowledge of the semantics of the
application-level code. In particular, it knows for each application-level statement the
category to which that statement belongs. For example, it can bélong to one of the
action categories shown in Figure 5. A VM also knows the application-level model of
exceptions and the statements that are related thereto. A VM performs a mapping
between this application-level view of exceptions, and the underlying OS model of ,

traps and signals (i.e., synchronous and asynchronous external actions), using an r'VM
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model of external actions as an intermediate view. The processing of external actions
takes into account the semantics of both the higher, application-level, view and the
lower, OS-level, view of external actions. An embodiment of the invention takes
advantage of these intrinsic aspects of a VM. For example, since a VM as used by the
invention has full knowledge of the semantics of application-level code, fault
tolerance mechanisms can be provided by the VMs without requiring any increase in

application complexity.

Fault tolerance requires redundancy, which can be either of a state or computation,
and can be either in space or in time. Redundancy introduces the problem of co-
ordinating replicated states and computations, and there are a number of known ways
of doing this. In active replication, all the replicas are equal, perform the same steps,
and appear as a single entity to their environment. It is assumed that all the steps in
such computations are either deterministic, or that any non-deterministic choices (e.g.,
input values, or order of external interrupts) are resolved in identical deterministic
way by all the replicas. The details of how this is done depend on each specific
algorithm for active replication. In passive replication there is a distinguished or
primary replica and the other replicas are backups or secondaries. The primary
resolves the non-deterministic choices and informs the backups about its decisions.

The state of the backups can be more or less tightly synchronised with the state of the
primary, but the backups are always behind the primary. Again, the details depend on

each specific algorithm for passive replication.

An rVM forming an embodiment of the invention can have some characteristics of
both active and passive replication. Similar to active replication, the VM replicas of
an rVM perform the same computation which may be configured to run in parallel
(with some exceptions), but may also be configured so that backups are delayed with
respect to primary's computation. The existence of a primary VM replica lends an
rVM a characteristic of passive replication. The basic operation of an example of an

rVM can be summarised as follows:
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- The primary and backup VM replicas start in identical states. The next action
executed by the primary VM replica and the next action executed by the backup VM

replica are identical for the corresponding positions in their respective computations.

- The state of the VM is the same, at both primary and backup VM replicas, after

executing the same action in the same starting state.

- Some types of actions (read from the environment, write to the environment,
asynchronous actions from the environment) require additional processing by the
replicas in order to resolve non-deterministic choices, and to maintain both internal

and external consistency of the VM replicas.

- After a failure of the primary VM replica is detected, a backup VM replica is
promoted to become the new primary VM replica. After a backup VM replica is lost,
a new backup VM replica is created and is re-integrated with the primary VM replica.

Figure 1 is a schematic overview of a particular embodiment of the invention, in
which first and second VM replicas are executed on first and second nodes 12 and 14
of a multi-computer network 10. One of the first and second VM replicas is operable
as a primary VM replica and the other is operable as the backup, or secondary VM
replica. In addition, each of the replica VMs regularly send a heartbeat to the other of
the VM replicas in order that the VM replicas can monitor the correct operation of

each other.

It should be noted that although, for the present embodiment, only first and second
nodes and first and second replica VMs are described, another embodiment of the
invention could employ more than two nodes and two VMSs. The nodes 12 and 14 are
linked by a network connection 16, and optionally via an additional connection 18.
An additional connection 18 can be provided, in particular, where the main network

connection, which could be a bus a serial or parallel connection, does not have a high
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enough capacity to enable the rapid exchange of information between the nodes 12
and 14. Another reason for having redundant links is the assumption made by this
invention that system partitioning cannot happen (the case when both nodes are
functioning but cannot talk to each other). Since another assumption is that there can
be a maximum of a single failure at a time, redundant links mean that partitioning is

not possible.

Each of the nodes 12 and 14 could be implemented as a conventional computer.
Figure 2 is a schematic illustration of one possible configuration for such a node. A
bus 20 interconnects various system components. The units connected to the bus 20
include one or more central processing units (CPU) 22, read only memory 24, random
access memory 26 and a storage interface 28 for storage 29. An optional display
adapter 30 can provide for the connection of a display device 32. Also, an optional
interface adapter 34 can provide for the connection of input devices such as a
keyboard 36 and a mouse 38. A network interface 40 can provide for the connection
to the network interconnection 16 via a line 42. An optional additional interface 44
can provide a connection to the direct link 18. A further interface 46 can provide a
modem or digital interconnection to an external line 48. It will be appreciated that the
configuration shown in Figure 2 is merely illustrative of a possible configuration for a
node and that many alternative configurations are possible.
v

Figure 3 represents the software configuration at a node 12/14. As shown in Figure 3,
an operating system 50 runs on the hardware 49 of the node 12/14. A virtual machine
52 operates in turn on the operating system 50 and includes fault tolerance
components 56. One or more applications 54 operate on the virtual machine 52. It is
the combination of the virtual machine 52, including the fault tolerance component(s)
56, on each of the nodes 12 and 14 that provide an example of a rVM according to the

present invention.

Transparent fault tolerance can be provided for applications executed by an rVM
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according to the invention. An application can choose whether or not to use the fault
toierance mechanisms of the rVM. If these are not used, the application should not
have a significant extra cost compared to execution on a non-replicated VM. The
interface between applications and the rVM is identical to the interface between the
applications and a non-replicated VM. Ideally there should be no penalty, but some
exceptions will exist (e.g., applications running on an rVM will be slower due to extra
processing) and a management interface may be provided that will make the fault

tolerance features of the rVM visible to some applications.

Support can be provided for both applications that require strong internal and external
consistency, and for applications with relaxed consistency requirements. Internal
consistency requires that the states of the replicas are the same, or appear to be the
same as seen from their environment. Relaxed internal consistency applies this rule to
some part of the state of the replicas. External consistency requires that the
interactions between the replicas and their environment appear as if performed by a
non-replicated entity. Relaxed external consistency applies this rule to a subset of the
interactions between the replicas and their environment. An rVM should be suitable
for those applications, which require some critical actions to be performed even in the
presence of component failures. Such applications cannot use some other existing
techniques, e.g., transactions that are based on: detect failure, abort action, do

backward recovery.

The failure detection and masking mechanisms in an rVM can be integrated with
corresponding application-level language constructs. The chosen language constructs
in the present example of an rVM are exceptions (e.g., try-catch-throw in Java). An
rVM provides transparent detection and recovery for some failures. However, an
application may want to do some application specific processing of some failure
notifications, and some failures allow only application-level recovery. Implementing
the fault tolerance mechanisms at the VM level makes it possible to co-ordinate the

tasks performed at this level with the similar tasks performed at the application level.
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For example if an application issues a request to allocate some memory and receives
the “out of memory” response, the application may want to catch this and do some
application-specific recovery. Another application may want the rVM to treat this as
a replica's failure followed by a switch over to a new replica. There are instances
when the rVM processing must be co-ordinated with the application-level processing.
For example, the r'VM may decide to order some asynchronous actions in a specific
way or to deliver them at some specific point. However, this should take into account
that the application may be sensitive to both the exact point of delivery for these

actions and to their order of delivery.

Before describing an example of an rVM forming an embodiment of the invention,
there follows a description of some assumptions on which the example of an rVM is

based.

Various characteristics of a VM are taken into account. For example, the interface
between the VM and applications is typically a well-defined set of instructions. The
VM executes the actions associated with these instructions either by passing them to
the underlying layers or by doing some additional instruction-specific processing.

The set of instructions a VM itself can execute is typically well defined, as well as the
interface between the VM and the underlying layers (e.g., between the VM and 09S).

Eaoh rVM action belongs to one of the pre-defined classes of actions (e.g., internal or

external, IO or non-10, synchronous or asynchronous) illustrated in Figure 5.

As mentioned above with reference to Figure 1, the present rVM runs on a distributed
computing system with each VM replica 52/56 running on a different node 12 or 14,
and with each node 12 or 14 running its own operating system (OS) 50. All the nodes
must provide the same OS interface to the r'VM. Some nodes may have some other
fault tolerance mechanisms implemented in hardware or other lower software layers,
but they are considered independent from the rVM mechanism. An exception to this

is that a failure detector from a lower layer can be used by the r'VM in some instances.
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Communication delays and processor execution time must have known maximum
values because the rVM uses time-outs (among other things) to detect a failure of a

replica VM.

A reliable transport mechanism is provided between the nodes because VM replicas
themselves are not arranged to cope with lost messages or with re-ordered messages
(note that a lost message can cause detection of a replica failure, because rVM
assumes that the underlying transport mechanism guarantees reliable transfer of
messages). In some instances this could be provided by a bus or network connection
16 between the processing nodes 12 and 14. However, in other instances a dedicated
additional high capacity connection 18 could be provided as shown in Figure 1. The
reliable transport mechanism between the nodes provides for global ordering of
messages. Where there are only two 2 VM replicas as in the instance shown in Figure
1, FIFO ordering can be provided for inter-replica communication. The FIFO
ordering can typically be done in software, by a communications protocol that runs
within or outside the operating system. It could, however, be done by the interface

44, or by a separate FIFO mechanism.

Either all the VM replicas can read from and write to the same entities in the system
enwironment or these environment entities themselves are replicated with a sufficient
level of consistency (sufficient for the intended applications). This means that, for
example, when the replicas are acting as a server, either all the replicas can
communicate with the same clients (the clients in this case belong to the system
environment), or the clients themselves are replicated and each server replica

communicates with some client replica.

The semantics of the VM actions at the application interface do not depend on the
execution time (e.g., exact start time or exact duration) of an action. Otherwise, some

actions would have different meaning when run on the rVM since they will take
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longer to execute. If several application-level threads of control can simultaneously
be active in an rVM, it is up to the applications to ensure (e.g., by using the language's
synchronisation primitives) that such multiple active threads are correctly
synchronised among themselves. The rVM does not control the way in which the
application threads are scheduled on the available processors (such assignment of
threads to processors can depend on the speed of the processors, OS scheduling

policies, etc.).

Also, the semantics of the VM actions do not depend on the number or characteristics
of the real OS and hardware resources on a specific node (e.g., memory size or node
name). An application running on an rVM will have its replicas running on different
nodes, and such dependencies would cause the computations to diverge (however, an
rVM does allow relaxed consistency using local states and local actions, making this

restriction less significant).

It is assumed that hardware and software components can fail by crashing and this is
detectable with a sufficiently high probability. Omission and timing failures are
allowed, but Byzantine behaviour and system partitioning is disallowed. The present
rVM can recover from some specific failures in addition to crash, timing and
omission, but not from general Byzantine failures. The risk of system partitioning can
be avoided with the use of redundant node inter-connections as described above. The
allowed failures can be caused for example by design, coding, or integration faults.

Failures can result in particular from transient faults, which can be caused by

overload, timing, and various exceptional circumstances.

The present example is based on the two VM replicas, each operable on a separate
processing node, which allows only single point failures. However, this is not an
inherent restriction of a rVM, which could be generalised to include more than two

VM replicas as mentioned above.
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Support for exception handling is provided at the application level. There are some
language constructs that allow associating exception handlers with regions of code
(e.g., Java or C++ exceptions). Exception handling allows both backward and
forward error recovery. In rVM the exception model can be enhanced with some

additional properties to provide better support for recovery.

In order to resolve some kinds of non-determinism, an rVM uses the concept of
epochs (blocks of application code which have pre-defined lengths). The epoch
boundaries are observed, so that control is transferred to the rVM at these points. As
the fault tolerance mechanisms are implemented at the VM level, this requirement can
readily be satisfied, for example by using software instruction counters or by treating

some actions as enforced epoch boundaries.

There now follows a description of an embodiment of an example of an r'VM forming
an embodiment of the invention that takes account of the assumptions described
above. It should however be noted that other examples and embodiments of the
invention may be based on different sets of assumptions. In such cases consequential

changes may be required to the algorithms and/or logic employed by the VM replicas.

The present example of an rVM is derived from an existing Java VM (JVM) with

necessary additions and modifications.

A typical Java VM consists of the core VM (which can include a memory manager,
thread schedules, stack frame manager, interpreter, Just In Time compiler) and
standard Java libraries, which are used by the core VM (e.g.,: java.lang.*, java.io.*).

These Java libraries in turn use the native system libraries (e.g., those for file
interface, memory management, thread and signal management, socket interface). All
interactions between the VM (both core VM and standard Java libraries) on the one
hand, and the VM’s environment on the other hand (either native system libraries or

direct calls to the system’s OS) have to be identified, and the corresponding actions



10

15

20

25

30

24

categorised according to the rVM action hierarchy (internal, external, etc.). Examples

of such interactions are:

VM’s memory manager requests memory allocation when creating a new
object instance;

OS alarm clock signal arrives that drives the VM’s scheduler;

VM’s class loader reads a Java class file from network or from a local

system’s disk.

Once all such actions are identified, and their action categories determined (based on
the action semantics), there is some additional processing which rVM performs for
such actions - as compared to the processing which is done by the corresponding non-
replicated VM. The kind of additional processing which has to be done for each

specific kind of action is detailed hereinafter.
Failure detection in the present embodiment of the invention will now be described.

Both the primary and backup VM replicas test for a “failure detected” state (fd-state)

at a number of points in their executions. This state can be entered if one of the
following is true: if some condition related to heartbeat messages is fulfilled; if a
timE-out at one of the synchronisation points has expired; if a disagreement on an
output value has been detected; or if some external failure notification has been

received.

As mentioned earlier, both replicas periodically exchange heartbeat messages and this
can cause one of the replicas to enter an fd-state. Figure 4 is a schematic illustration
of the execution of the primary and secondary VM replicas, where a heartbeat
message (HBM) is sent periodically. Also shown in Figure 4 are synchronisation
points (SPs). A synchronisation point can coincide with an end of epoch, for

example. It should be noted that heartbeat messages are one-way messages. Thus, for
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example, a heartbeat message from the secondary to the primary replica (HB2) is not
sent in response to a heartbeat message from the primary to the secondary replica
(HB1), and vice versa. Also, it should be noted that, although the reference HB1 is
used for heartbeat messages from the primary replica to the secondary replica, and the
reference HB2 is used heartbeat messages from the secondary replica to the primary
replica, these references are used merely as labels according to the direction of the
messages, and do not indicate any similarity, or otherwise, of the messages
themselves. Indeed, each instance of a heartbeat message sent by a replica may be
different, as it can contain state variables. For example, each instance of HB1 may be

different.

In the present example of an rVM, the heartbeat messages can contain not just “I am
alive” information, but also state (or signature of state) information that can assist in
faster and more accurate failure detection. Such state information can include, for
example, a stack size, a number of threads, a state of each thread, etc. Each heartbeat
message can also contain an “incarnation number” field, which can be used to detect if
an old primary or backup VM replica unexpectedly reappears. An fd-state is entered if
a replica does not receive a certain number of heartbeat messages, or receives them
but they indicate that the other side has failed (or is not making progress, or does not
satisfy some other pre-defined correctness condition). The exact contents of the
hea¥ftbeat messages and the manner in which it is decided that a replica has failed can
be selected as required for a particular implementation and are not relevant for an

understanding of the present invention.

There are several possible synchronisation points in both the primary and backup VM
replica, and if a time-out expires at one of these points the fd-state is entered. Possible
synchronisation points are input actions and epoch boundaries. Also, the output
values of the replicas can optionally be compared under some conditions (if the epoch
skew between the replicas is set to 0). If this is done and a disagreement between the

replicas is detected, then again the fd-state is entered. Note that when the outputs are
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compared, the details of what is considered a disagreement (e.g., a value out of some
correctness interval), and the manner in which the winner/loser is decided, are action-
specific, can be selected as required for a particular implementation, and are not

relevant for an understanding of the present invention.

Additionally, fd-state can be caused by other, external to rVM events, for example as
result of a node, OS, or communication failure. Such external events can be delivered

to rVM by some external failure detector module.

Primary and backups check and process the fd-state at the epoch boundaries and at the
places where disagreement on output value or timed-out condition can occur. When
one of these failures is detected, applications do not need to be involved as the rVM
will recover from them. A management interface can be provided to monitor such
failures. Also, some applications may require notification about some of these
failures so that they can be processed in an application-specific way. For example, a

notification of “node failure” for the backup VM replica's node may be given to the

_application replica on the primary node, where it is processed by the catch clause of a

try statement.

When the primary VM replica detects it is in fd-state, a new backup VM replica can
be treated and a create message (with a “reintegrate” argument to distinguish this
from-a backup VM replica's cold start) can be sent to an appropriate node. The
algorithm for deciding where to create a new backup VM replica can be selected as
required for a particular implementation, and is not relevant for an understanding of
the present invention. The primary VM replica will then suspend its processing.

When the backup VM replica is created the primary VM replica will send its state to it
and continue its processing. The parts of the state that are sent can include a default-
virtualised and virtualised state, the latter being sent together with some control
information which will allow the backup VM replica to unvirtualise the values. The

rVM allows local or context dependent state and actions to exist at each VM replica.
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This creates a problem when a new backup VM replica is being re-integrated, in that
the backup VM replica's local state will be out of date, and the preceding local actions
will not be done, potentially leaving the backup VM replica's environment in an out of
date state. This problem can be alleviated by generating special “reintegration”
asynchronous action thus allowing appliéations to catch this and to re-initialise the
local state and local environment if this is what they want to do. Note that backup
VM replica's local state includes the VM's internal local state (not directly visible to
applications), but this state can be re-initialised by the VM replica, since it knows that

it is being re-integrated.

When the backup VM replica detects it is in fd-state it can do all the epochs until the
failure epoch is reached (the epoch within which the primary VM replica failed). It is
safe for the backup VM replica to do even the failure epoch, until a synchronisation
point is reached for which there is no synchronisation request from the primary VM
replica. This synchronisation point may be one of an input action, an output action, or
the end of epoch (depending on the specific configuration of rVM and on the specific
epoch). This synchronisation point is the take-over point - where the backup VM
replica becomes the new primary VM replica. The same replica will process its
queues of asynchronous and output actions (the latter queue contains asynchronous
output actions which require acknowledgements), delivering asynchronous actions (if
any of them is an acknowledgement then remove the corresponding output action
from its queue) and for the rest of the output queue returning “transient error”
completion status for the outstanding output actions. The rVM does not do things like
retry of idempotent output actions or any other output-specific recovery, such
recovery actions are left to applications. After the backup VM replica has been
promoted into the new primary VM replica it does re-integration of a new backup VM

replica, as described above.

The state of a VM replica consists of the values assigned to all of its variables; the

values may be stored in registers, memory, or on a disk. A part of the state may be
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“virtual”, that is be mapped to different values from the original values when these
were obtained from the VM environment. Such virtualised values can be exchanged
directly between the replicas (in order to keep the replicas consistent); replicas with
the virtual state will still satisfy the internal consistency requirement. This can be
used for example, to implement virtual file and process identifiers. Both replicas must

be able to translate from virtual values to their corresponding local values.

A part of the state can usually be exchanged between VM replicas without any
mapping, as these variables are not dependent on the local context. And finally a part
of the state may be dependent on the local context in such a way that it does not make
sense to copy it directly or even to copy it in some virtual form. This part of the
replica state has to be known to the rVM as such which will allow each replica to have
different values in this part of their state, (even with the existence of local state the
relaxed internal consistency is still satisfied). This part of the replica state can be
made known to the rVM at compile time, or be determined dynamically at run-time.
The manner in which it is made known to the rVM is not relevant for an

understanding of the present invention.

Thus, the state of a VM replica can consist of up to three disjoint parts, namely a
virtualised, default-virtualised, and local or context dependent part. Account has to be
takén to ensure that when a new backup VM replica is being re-integrated, the

resulting local state and local actions of the new replica are not out of date.

An action of a VM replica can modify the replica's state and write some value to the
replica’s environment. An action belongs to one of the several pre-defined action
classes that are represented in Figure 5. It is assumed that a VM replica can decide for

each of the actions the class to which the action belongs.

Internal actions are performed in the order determined by the control flow of a VM

replica (in the absence of external actions this order is deterministic). IO actions read
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from or write to the VM environment. All IO actions can result in some IO activity in
the VM environment. An input is constrained always to be atomic or indivisible (but
it may have some duration). An output action is either synchronous or asynchronous.

The latter returns when a request is sent that initiates an IO activity. When this
external activity is finished, optionally (this is output action-specific) an external
asynchronous action may be delivered to the same VM replica which initiated the
activity as an acknowledgement for the output action and will typically contain a
completion status for the output action (e.g., success, transient failure, unrecoverable
failure). A synchronous output requests an IO activity in the environment, and then
waits until some completion value is made available to the VM replica (roughly, it can

be seen as an output followed by an input, performed as an indivisible action).

External actions are performed by a VM replica when triggered by its environment.
These actions (or events that cause them) are sometimes called exceptions, but this
practice is not followed here since this term has specific meaning in some
programming languages. External actions or the corresponding events are also called:
signals, interrupts, traps. External actions can be synchronous or asynchronous with

respect to the normal control flow of the VM code, i.e., with respect to internal

- actions. It is assumed that the values (if any) and order of the external synchronous

20

25

30

actions are deterministic, while the values (if any) and order of- the external
asyhchronous actions are non-deterministic. An external action has a non-
deterministic value if a single instance of this action can be delivered to different
replicas with different value. An external action can be local (delivered to some but
not all the replicas) or global. In the rVM, an external action is either strictly global
(when it occurs it must occur at all the replicas), or weakly global (when it occurs it

may be either local or global).

Some external actions may be caught and handled by the application code. This
means that their point of delivery and order of delivery cannot be arbitrarily changed

by the VM (handling of external actions at the application level may depend on the
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Some examples of specific external actions are given below.

exception on “divide by zero” - synchronous strictly-global

exception “out of memory” - synchronous, can be local or global (after an
attempt to allocate memory)

signal “control-C” received - asynchronous, weakly-global or strictly-global
depending on the process model provided by
the underlying OS (occurs when a signal is
sent to kill a replica)

event “message received” - asynchronous, can be local or global,
depending on the underlying transport

mechanism.

External actions require some special processing to be done by rVM. More detail
about the rVM processing at the primary VM replica and backup VM replica is given
later. Note that some implementations of rVM may restrict the described state-action

model (e.g., may not support acknowledgements for asynchronous output actions).

As'an example, for each of the possible actions (instruction of rVM and external
events which can be delivered to rVM), the rVM can pre-define a descriptor, which
can be implemented as a bit-field, where each of the bits is a Boolean flag and their

meanings are shown below:
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Internal action descriptor

bit0=0

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7
bit 8

internal action indicator

non IO or IO action

non-input or input (meaningful only if IO)

non-output or output (meaningful only if 10O;

both input and output is illegal)

non suppressed at backup or suppressed at backup (i.e., local
action or non-local action)

value virtualised or not virtualised (can be virtualised only if
the action is suppressed at backup)

output values not compared or output values compared
(comparison done for faster failure detection)

synchronous output or asynchronous output

no acknowledgement or there is acknowledgement (for

asynchronous output)

External action descriptor

bit0=1
bit"

bit 2
bit 3

bit 4
bit 5

external action indicator

synchronous or asynchronous external action (an action cannot
be both)

weak global (local or global) or strict global

ignore or kill semantics (for weak global and suppressed at
backup)

not suppressed at backup or suppressed at backup

value virtualised or not virtualised (can be virtualised only if

the action is suppressed at backup)
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In the rVM, the usual try-catch statement of the exceptions model can optionally be

augmented as shown below:

Original: Becomes:

try { try {
save_object_state();
} catch (exception e) { } catch (exception e) {

restore_object_state();

This will allow easier use of exception handlers for backward recovery (e.g., in Java,
on entry into catch-clause only the synchronisation-related operations are
automatically undone, leaving the object in a potentially inconsistent state). The
above save and restore can be provided either by the applications themselves, or some
default or inherited save/restore may be used - in any case these functions are called

by the rVM but are not provided by the rVM.

Sothe interactions between the language constructs and the rVM can exist. F or
example, before the end of: try, catch, and finally block of the exceptions model an
“end of epoch” can be forced in order to allow any asynchronous actions received

within the block to be delivered within the same block.

In addition to the optional change in the semantics of the try statement, the r'VM may

introduce some new exceptions.

Multi-threading can potentially introduce non-determinism into replica computations.
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The rVM does not use or implement deterministic scheduling of threads, instead it
relies on applications, i.e., on their use of the standard synchronisation primitives, to
protect computations in different replicas from diverging. However, if several threads
have the same asynchronous action enabled, the decision as to which thread should
receive a specific instance of this action must be made by the thread package in a
deterministic manner. Some existing thread packages may need to be modified in

order to satisfy this requirement.

Different application domains will place different emphasis on the various features of
VM (e.g., efficiency versus reliability). There are a number of rVM parameters
which can be set differently for each instance of the rVM, but in each case they will
have to be equal in the primary VM replica and backup VM replica(s) of a single rVM

instance. Some of these parameters are listed below.

Action attributes (with possible scope for each):

1. “(un)virtualise value” is required (for various sources of local non-
determinism; per input/output action)

2. “suppress action at backup” is required (i.e., local actions; per input/output
action; possibly can be made to depend on action's arguments)

3. “compare output values” is required (for faster failure detection; per output
action)

4. try/catch preserve state consistency (per try statement, or per object/class,

or per rVM)

5. various time-out values (per r'VM).
Additionally, there are two parameters related to epochs:
1. Maximum epoch length. This is given as number of certain application-level

instructions per epoch (the scope is rVM). Longer epochs mean less overhead at

epoch boundaries but also longer delays for deliveries of asynchronous actions. In the
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present rVM, epoch boundaries are enforced:

1. After an output action;
2. Before the end of a try-block, catch-block of the try-catch exception
statement (which exist at the application/language level);

When the maximum per epoch number of application’s internal actions

LI

has been reached without encountering any of the first two conditions.

The third condition above can be optimised, so that r'VM can count only some specific

internal actions, e.g. only the branch instructions.

2. Epoch skew between primary VM replica and backup VM replica. This is
given as a pair of numbers (d, D), where d is the number of epochs backup VM replica
is allowed to come close to primary VM replica in their executions, and D is the
number of epochs primary VM replica is allowed to move ahead of backup VM
replica in their executions. The case d = 0 is used for an “active replication”-like
behaviour of r'VM. D is bound from above by the space that is available at backup

VM replica for various queues.

A backup has to stop its processing when it comes too close to the primary (i.e., when
thelr distance in epochs is less than d) or when d is configured to be zero, and when

continuing with further processing at backup would mean going ahead of the primary.

The primary has to stop its processing when it attempts to move too far ahead from a
backup (i.e., when this distance in epochs would exceed D). This is checked at epoch

boundaries - once within an epoch the primary can execute it without further checks.

In the following the processing of the primary and backup VM replicas is
summarised. Processing related to local actions is not always shown in the diagrams.

Also, processing of the internal non-IO actions and of the synchronous output actions
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are not shown but are to be implemented based on the description above.

Figure 6 represents primary VM replica processing of an input action. Step S61
represents the primary VM replica getting the input value (e.g., reading the value from
a register that is used by both VM and its environment). The primary VM replica
performs the input action without changing the VM state (the value can be stored in a
temporary variable in the local state). In step S62, the input value is optionally sent to
the backup VM replica or logged locally, to be sent later. As indicated in step S63,
the input action can optionally be a synchronisation point (which requires the primary
to wait for the acknowledgement from the backup). In step S64, virtualisation of the
input value is done if it is required for a specific action. In step S65, the primary VM

replica updates the VM state with the input value.

Figure 7 represents the primary VM replica processing of an asynchronous output
action. In step S71, comparison of the value to be output is effected for faster failure
detection, if required for a specific action. The comparison requires that the primary
and backup replica VMs exchange their output values. Unvirtualising of the output
value is effected in step S72 if the same value was virtualised on input. The output
action is performed in step S73 and is optionally logged in step S74 (an asynchronous
output action is logged only if it is to be acknowledged). An output action at step S75

ends the current epoch.

Figure 8 represents the primary VM replica processing of an asynchronous external
action. The action is logged locally in step S81 and also sent to the backup VM
replica in step S82. No synchronisation is required at this point. Asynchronous

external actions are delivered at epoch boundaries.

Figure 9 represents the primary VM replica processing at an epoch boundary.
Optionally, in step 91, buffered input values can be output. In step S92, an end-of-

epoch message is sent to the backup VM replica and in step S93 a local switch to the
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next epoch is made. While doing this, asynchronous actions are disabled deferred
(i.e., the new asynchronous external actions that arrive while the switch to the next
epoch is being made will be processed as shown in Figure 8 once the new epoch is
entered). Then, before continuing with the next epoch, in step 94, the old epoch's
queue of asynchronous actions is processed (i.e., they are delivered to application

code).

Figure 10 represents the primary VM replica processing when a failure-detected state
has been entered. The primary decides where to start a new backup and sends a
request to that node (requesting reintegration) in step S101.. When this request is
acknowledged, the primary suspends its processing and sends its state to the newly
created backup (steps S102, S103, S104). When the state message is acknowledged,

the primary continues with its processing in step S105.

Figure 11 represents the primary VM replica processing of strictly global synchronous
external actions. The value (if any) of the action is optionally virtualised (S11 1) and

the processing is redirected to the appropriate handler (S112).

Figure 12 represents the primary VM replica processing of weakly global
synchronous external actions. The action is sent to the backup in step S121, and the
remfaining processing steps are the same as for the strictly global synchronous actions

(steps S122 and S123).

Figure 13 represents the backup VM replica processing at an epoch boundary. When
the end of epoch has been detected (step S131) and end of epoch message received
from the primary, this message is acknowledged in step S132. In step S133 the old
epoch’s queue of asynchronous actions is processed, and then in step S134, it

continues into the next epoch.

Figure 14 represents the backup VM replica processing of an input action. If the
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action is not suppressed, in step S141 the backup VM replica performs the action with
the value being entered into the local part of the backup VM replica's state.

Otherwise, the backup VM replica will accept the input value sent by the primary VM
replica (it can be temporary stored in the backup’s local state). In step S142, the input
value is virtualised, if this is required for a specific action. In step S143, the backup

simulates the input action using the received value, and updates the VM state.

Figure 15 represents the backup VM replica processing of an asynchronous output
action. Most output actions will be suppressed at the backup VM replica, in order to
have only primary VM replica's writes visible to the VM environment (but local
actions are not suppressed). If no comparison of the output values is done, then in
step S151 the backup VM replica optionally logs the output action (this is done only if
the output action requires an acknowledgement). An output action ends the current

epoch (S152).

Figure 16 represents the backup VM replica processing of an asynchronous external
action. Such actions will in most cases be ignored by the backup VM replica, unless
they are marked as “not suppressed by backup”. In step S161, the backup VM replica
receives such actions which are forwarded from the primary VM replica, and then in
step S162, such actions are processed at epoch boundaries.
v

Figure 17 represents the backup VM replica processing when a failure of the primary
has been detected and the backup is in the failure epoch and no further progress can be
made (S170). The backup replica processes the queue of output actions, and for each
action: find what is the corresponding acknowledgement asynchronous action,
initialise such an acknowledgement with value equal to “transient error”; and enqueue
the asynchronous action (acknowledgement) for later processing. This is done in step
S172; in step S173 the backup is promoted into primary, and in step S174 it re-

integrates a new backup.
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Figure 18 represents the backup VM processing performed during reintegration. The
backup uses the state received from the primary to initialise its own state (step S181).
Then, it sends an acknowledgement to the primary (S182), and continues processing

as the backup replica (S183).

Figure 19 represents the backup VM processing of strictly global synchronous
external actions. In step S191, if the action has value and if it is required to do so, the
value is virtualised. Then, in step S192, the backup’s processing is redirected to the

action handler.

Figure 20 represents the backup VM processing of weakly global synchronous
external actions. This is done at every point of the control flow at which a weakly
global synchronous action can be expected (S201). If the primary VM reported a
synchronous action for this point in the control flow (in $202), the value is optionally
virtualised (S203-1) and the processing is redirected to the action’s handler (S204-1).

Otherwise, if the primary VM has not reported a synchronous action for this point, but
a synchronous action has occurred locally (S203-2), this synchronous action is either
ignored, or will cause the backup replica to kill itself, reporting this to the primary
VM, the choice between ignore and kill itself is predefined and action specific (S204-
2).

Figure 21 represents the backup VM processing of strictly global asynchronous
external actions. If such an action is suppressed at backup (S211) it is simply ignored
(8212-1). Otherwise, it is enqueued to be processed later at the end of epoch
(5212-2). When not suppressed, global asynchronous external actions can affect only

the local state of a replica.

Figure 22 represents the backup VM processing of weakly global asynchronous
external actions. It is action-specific, and it can be either simply ignore, or commit

suicide, but first inform the primary about this (S221).
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There has been described a virtual machine for a redundant fault tolerant virtual
machine architecture including a second virtual machine, wherein the virtual machine
comprises means for forming a replica of the second primary virtual machine by
replicating operations performed on the primary virtual machine and means for testing
for equivalent operation of the secondary virtual machine at predetermined stages of
operation. The combination of two virtual machines operating together provides a

replicated virtual machine architecture providing software fault tolerance.

The fault tolerant computer system includes a primary virtual machine and a
secondary virtual machine, wherein the secondary virtual machine is operable to
replicate the primary virtual machine by replicating operations performed on the
primary virtual machine, and wherein the primary and the secondary virtual machines
are further operable to test for equivalent operation of the primary and secondary

virtual machines at predetermined stages of operation.

A virtual machine for the fault tolerant computer system can be provided as a
computer program product operable when run on a computer to provide the virtual
machine for a redundant fault tolerant virtual machine architecture. The computer
program product can be provided on a carrier medium, for example a computer
readlable medium (e.g., a disc or tape or other computer readable storage or memory
medium), or a data transmission medium (e.g., a telephone line, electromagnetic

signal or other transmission medium).

It will be appreciated that although particular embodiments of the invention have been
described, many modifications/additions and/or substitutions may be made within the

spirit and scope of the present invention as defined in the appended claims.
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CLAIMS

A fault tolerant computer system comprising a primary virtual machine and a
secondary virtual machine, wherein the secondary virtual machine is operable
to replicate operations of the primary virtual machine, and wherein the primary
and the secondary virtual machines are further operable mutually to provide

fault tolerance.

The fault tolerant computer system of claim 1, wherein the primary and the
secondary virtual machines are operable to test for equivalent operation of
each other at predetermined stages of operation mutually to provide fault

tolerance.

The fault tolerant computer system of claim 1 or claim 2, comprising a first
processing engine on which the primary virtual machine is operated and a

second processing engine on which the secondary virtual machine is operated.

The fault tolerant computer system of any preceding claim, wherein each of
the primary and secondary virtual machines is operable to send a.heartbeat
message to the other of the primary and secondary virtual machines at

intervals.
The fault tolerant computer system of claim 4, wherein a heartbeat message
indicates that virtual machine which sends the heartbeat message is alive, and

additionally includes status information.

The fault tolerant computer system of claim 3 or claim 4, wherein a test for

equivalent operation is performed following receipt of a heartbeat message.

The fault tolerant computer system of any preceding claim, wherein a test for
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liveliness is performed in response to an input action.

The fault tolerant computer system of any preceding claim, wherein a test for
liveliness is performed at an epoch boundary, the epoch boundary forming a

boundary between sections of code executed by the virtual machines.

The fault tolerant computer system of any preceding claim, wherein a virtual

machine which is found to be in a fault state is terminated.

The fault tolerant computer system of any preceding claim, wherein the
primary virtual machine is operable to initiate a new secondary virtual
machine where an existing secondary virtual machine is found to be in a fault

state.

The fault tolerant computer system of any preceding claim, wherein the
secondary virtual machine is operable to be promoted to become a new
primary virtual machine when it is found that the old primary virtual machine

is faulty.

The fault tolerant computer system of any preceding claim, comprising at least

one further secondary virtual machine.

The fault tolerant computer system of any preceding claim, wherein each

virtual machine comprises a Java virtual machine.

A computer program product operable when run on a computer to provide a
virtual machine for a redundant fault tolerant virtual machine architecture
including a second virtual machine, wherein the virtual machine is operable to
form a replica .of the primary virtual machine by replicating operations

performed on the primary virtual machine and wherein the virtual machines is
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further operable to test for equivalent operation of the secondary virtual

machine at predetermined stages of operation.

The computer program product of claim 14, wherein the virtual machine is

operable to issue a heartbeat message at intervals to indicate that it is alive.

The computer program product of claim 15, wherein the virtual machine is
operable to perform a test for equivalent opération following receipt of a

heartbeat message.

The computer program product of claim 16, wherein a test for liveliness is

performed in response to an input action.

The computer program product of claim 17, wherein a test for liveliness is
performed at an epoch boundary, the epoch boundary forming a boundary

between sections of code executed by the virtual machine.

The computer program product of claim 18, wherein the virtual machine is
operable to cause the termination of another virtual machine that is found to be

in a fault state.

The computer program product of any one of claims 14 to 19, wherein the
primary virtual machine is operable to initiate a new secondary virtual
machine where an existing secondary virtual machine is found to be in a fault

state.

The computer program product of any one of claims 14 to 20, wherein the
secondary virtual machine can be promoted/become the new primary when it

is found that the old primary virtual machine is faulty.
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The computer program product of any one of claims 14 to 21, wherein each

virtual machine comprises a Java virtual machine.

The computer program product of any one of claims 14 to 22, comprising a

carrier medium for computer program code.

The computer program product of claim 23, wherein the carrier medium is a

computer readable medium.

The computer program product of claim 23, wherein the carrier medium is a

data transmission medium.

A virtual machine for a redundant fault tolerant virtual machine architecture
including another virtual machine, wherein the virtual machine comprises
means for forming a replica of the other virtual machine by replicating
operations performed on the other virtual machine and means for testing for
equivalent operation of the other virtual machine at predetermined stages of

operation.

A method of providing software fault tolerance comprising the provision of
replicated virtual machines including at least a primary and a secondary virtual
machine, wherein the secondary virtual machine replicates operations
performed on the primary virtual machine, and the primary and the secondary

virtual machines co-operate so as mutually to provide fault tolerance.
The method of claim 27, wherein the primary and the secondary virtual
machines test for equivalent operation of each other at predetermined stages of

operation mutually to provide fault tolerance.

The method of claim 27 or claim 28, wherein the primary virtual machine
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operates on a first processing engine and the secondary virtual machine

operates on a second processing engine.

The method of any one of claims 27 to 29, wherein each of the primary and
secondary virtual machines sends a heartbeat message to the other of the

primary and secondary virtual machines at intervals.

The method of any one of claims 27 to 30, wherein a heartbeat message
indicates that virtual machine which sends the heartbeat message is alive, and

additionally includes status information.

The method of claim 30 or claim 31, wherein a test for equivalent operation is

performed following receipt of a heartbeat message.

The method of any one of claims 27 to 32, wherein a test for liveliness is

performed in response to an input action.

The method of any one of claims 27 to 33, wherein a test for liveliness is
performed at an epoch boundary, the epoch boundary forming a boundary

between sections of code executed by the virtual machines.

The method of any one of claims 27 to 34, wherein a virtual machine which is

found to be in a fault state is terminated.

The method of any one of claims 27 to 35, wherein the primary virtual
machine initiates a new secondary virtual machine where an existing

secondary virtual machine is found to be in a fault state.

The method of any one of claims 27 to 36, wherein the secondary virtual

machine is promoted to become a new primary virtual machine when it is
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found that an old primary virtual machine is faulty.

The method of any one of claims 27 to 37, wherein at least one further

secondary virtual machine replicates the primary virtual machine.

The method of any one of claims 27 to 38, wherein each virtual machine

comprises a Java virtual machine.
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