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ACOUSTIC PROCESSING UNIT 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This application claims the benefit of U.S. Provi 
sional Patent Application No. 61/577,595, filed Dec. 19, 
2011, titled “Senone Scoring Unit” and U.S. Provisional 
Patent Application No. 61/589,113, filed Jan. 20, 2012, titled 
“HW/SW Architecture for Speech Recognition,” both of 
which are incorporated herein by reference in their entireties. 

BACKGROUND 

0002 1. Field 
0003 Embodiments of the present invention generally 
relate to speech recognition. More particular, embodiments of 
the present invention relate to the implementation of an 
acoustic modeling process on a dedicated processing unit. 
0004 2. Background 
0005 Real-time data pattern recognition is increasingly 
used to analyze data streams in electronic systems. On a 
vocabulary with over tens of thousands of words, speech 
recognition systems have achieved improved accuracy, mak 
ing it an attractive feature for electronic systems. For 
example, speech recognition systems are increasingly com 
mon in consumer markets targeted to data pattern recognition 
applications such as, for example, the mobile device, server, 
automobile, and PC markets. 
0006) Despite the improved accuracy in speech recogni 
tion systems, significant computing resources are dedicated 
to the speech recognition process, in turn placing a significant 
load on computing systems such as, for example, multiuser/ 
multiprogramming environments. Multiprogramming com 
puting systems concurrently process data from various appli 
cations and, as a result, the load placed on these computing 
systems by the speech recognition process affects the speed at 
which the computing systems can process incoming Voice 
signals as well as data from other applications. Further, for 
handheld devices that typically include limited memory 
resources (as compared to desktop computing systems), 
speech recognition applications not only place significant 
load on the handheld devices computing resources but also 
consume a significant portion of the handheld device's 
memory resources. The above speech recognition system 
issues of processing capability, speed, and memory resources 
are farther exacerbated by the need to process incoming Voice 
signals in real-time or Substantially close to real-time. 

SUMMARY 

0007. Therefore, there is a need to improve the load that 
speech recognition systems place on the processing capabil 
ity, speed, and memory resources of computing systems. 
0008. An embodiment of the present invention includes a 
senone scoring unit (SSU). The SSU can include a SSU 
control module, a distance calculator, and an addition mod 
ule. The SSU control module can be configured to receive a 
feature vector. The distance calculator can be configured to 
receive a plurality of Gaussian probability distributions via a 
data bus having a width of at least one Gaussian probability 
distribution (e.g., 768 bits) and the feature vector from the 
SSU control module. The distance calculator can include a 
plurality of arithmetic logic units (ALUs) and an accumula 
tor. Each of the ALUs can be configured to receive a portion 
of the at least one Gaussian probability distribution and to 
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calculate a dimension distance score between a dimension of 
the feature vector and a corresponding dimension of the at 
least one Gaussian probability distribution. The accumulator 
can be configured to Sum the dimension distance scores from 
the plurality of ALUs to generate a Gaussian distance score. 
Further, the addition module can be configured to Sum a 
plurality of Gaussian distance scores corresponding to the 
plurality of Gaussian probability distributions to generate a 
senone score. The SSU can also include a feature vector 
matrix module configured to store a scaling factor for the 
dimension of the feature vector. 

0009. Another embodiment of the present invention 
includes a method for acoustic modeling. The method can 
include the following: receiving a plurality of Gaussian prob 
ability distributions via a data bus having a width of at least 
one Gaussian probability distribution and a feature vector 
from an external computing device; calculating a plurality of 
dimension distance scores based on a plurality of dimensions 
of the feature vector and a corresponding plurality of dimen 
sions of the at least one Gaussian probability distribution; 
Summing the plurality of dimension distance scores to gen 
erate a Gaussian distance score for the at least one Gaussian 
probability distribution; and, Summing a plurality of Gauss 
ian distance scores corresponding to the plurality of Gaussian 
probability distributions to generate a Senone score. 
0010. A further embodiment of the present invention 
includes a system for acoustic modeling. The system can 
include a memory module and a Senone scoring unit (SSU). 
The memory module can be configured to interface with an 
external computing device to receive a feature vector. The 
SSU can include a distance calculator and an addition mod 
ule, where the distance calculator includes a plurality of arith 
metic logic units (ALUs) and an accumulator. Each of the 
ALUs can be configured to receive a portion of the at least one 
Gaussian probability distribution and to calculate a dimen 
sion distance score between a dimension of the feature vector 
and a corresponding dimension of the at least one Gaussian 
probability distribution. The accumulator can be configured 
to Sum the dimension distance scores from the plurality of 
ALUs to generate a Gaussian distance score. Further, the 
addition module can be configured to sum a plurality of 
Gaussian distance scores corresponding to the plurality of 
Gaussian probability distributions to generate a Senone score. 
The memory module and SSU can be integrated on the same 
chip. 
0011 Further features and advantages of embodiments of 
the invention, as well as the structure and operation of various 
embodiments of the present invention, are described in detail 
below with reference to the accompanying drawings. It is 
noted that the invention is not limited to the specific embodi 
ments described herein. Such embodiments are presented 
herein for illustrative purposes only. Additional embodiments 
will be apparent to persons skilled in the relevant art based on 
the teachings contained herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0012. The accompanying drawings, which are incorpo 
rated herein and form a part of the specification, illustrate 
embodiments of the present invention and, together with the 
description, further serve to explain the principles of the 
invention and to enable a person skilled in the relevant art to 
make and use the invention. 
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0013 FIG. 1 is an illustration of an exemplary flowchart of 
a speech recognition process according to an embodiment of 
the present invention. 
0014 FIG. 2 is an illustration of a conventional speech 
recognition system. 
0015 FIG. 3 is an illustration of a conventional speech 
recognition system with speech recognition processes per 
formed by an individual processing unit. 
0016 FIG. 4 is an illustration of an embodiment of speech 
recognition processes performed by an Acoustic Processing 
Unit (APU) and a Central Processing Unit (CPU). 
0017 FIG. 5 is an illustration of an embodiment of a 
Peripheral Controller Interface (PCI) bus architecture for a 
speech recognition system. 
0.018 FIG. 6 is an illustration of an embodiment of an 
Advanced Peripheral Bus (APB) architecture for a speech 
recognition system. 
0.019 FIG. 7 is an illustration of an embodiment of a Low 
Power Double Data Rate (LPDDR) bus architecture for a 
speech recognition system. 
0020 FIG. 8 is an illustration of an embodiment of a 
system-level architecture for a speech recognition system. 
0021 FIG. 9 is an illustration of an embodiment of a 
method for data pattern analysis. 
0022 FIG. 10 is an illustration of an embodiment of a 
system-level architecture for a speech recognition system 
with an integrated Application-Specific Integrated Circuit 
(ASIC) and memory device. 
0023 FIG. 11 is an illustration of an embodiment of a 
system-level architecture for a speech recognition system 
with an integrated Application-Specific Integrated Circuit 
(ASIC), volatile memory device, and non-volatile memory 
device. 
0024 FIG. 12 is an illustration of an embodiment of a 
system-level architecture for a speech recognition system 
with a System-On-Chip that includes an Application-Specific 
Integrated Circuit (ASIC) and a Central Processing Unit 
(CPU). 
0.025 FIG. 13 is an illustration of another embodiment of 
a system-level architecture for a speech recognition system 
with a System-On-Chip that includes an Application-Specific 
Integrated Circuit (ASIC) and a Central Processing Unit 
(CPU). 
0026 FIG. 14 is an illustration of an embodiment of an 
Acoustic Processing Unit (APU). 
0027 FIG. 15 is an illustration of an embodiment of a 
Senone Scoring Unit (SSU) controller for an Acoustic Pro 
cessing Unit (APU). 
0028 FIG. 16 is an illustration of an embodiment of a 
distance calculator for an Acoustic Processing Unit (APU). 
0029 FIG. 17 is an illustration of an embodiment of a 
method of an acoustic modeling process for an Acoustic 
Processing Unit (APU). 
0030 FIG. 18 is an illustration of an embodiment of an 
arithmetic logic unit, according to an embodiment of the 
present invention. 
0031 FIG. 19 is an illustration of an embodiment of the 
arithmetic logic unit shown in FIG. 18, according to an 
embodiment of the present invention. 
0032 FIG. 20 is an illustration of an embodiment of a 
computational unit, according to an embodiment of the 
present invention. 
0033 FIG. 21 is an illustration of an embodiment of a 
method for computing a one-dimensional distance score. 
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0034 FIGS. 22 and 23 are illustrations of embodiments of 
an acoustic processing System. 
0035 FIG. 24 is an illustration of an embodiment of a 
hardware accelerator. 
0036 FIG.25 is a block diagram illustrating an APU soft 
ware stack. 
0037 FIG. 26 is an illustration of an embodiment of con 
current processing. 
0038 FIG. 27 is an illustration of an embodiment of a 
method of acoustic processing. 
0039 FIG. 28 is an illustration of an embodiment of an 
example computer system in which embodiments of the 
present invention, or portions thereof, can be implemented as 
computer readable code. 

DETAILED DESCRIPTION 

0040. The following detailed description refers to the 
accompanying drawings that illustrate exemplary embodi 
ments consistent with this invention. Other embodiments are 
possible, and modifications can be made to the embodiments 
within the spirit and scope of the invention. Therefore, the 
detailed description is not meant to limit the scope of the 
invention. Rather, the scope of the invention is defined by the 
appended claims. 
0041. It would be apparent to a person skilled in the rel 
evantart that the present invention, as described below, can be 
implemented in many different embodiments of software, 
hardware, firmware, and/or the entities illustrated in the fig 
ures. Thus, the operational behavior of embodiments of the 
present invention will be described with the understanding 
that modifications and variations of the embodiments are 
possible, given the level of detail presented herein. 
0042. This specification discloses one or more embodi 
ments that incorporate the features of this invention. The 
disclosed embodiments merely exemplify the invention. The 
scope of the invention is not limited to the disclosed embodi 
ments. The invention is defined by the claims appended 
hereto. 
0043. The embodiments described, and references in the 
specification to “one embodiment”, “an embodiment”, “an 
example embodiment, etc., indicate that the embodiments 
described may include a particular feature, structure, or char 
acteristic, but every embodiment may not necessarily include 
the particular feature, structure, or characteristic. Moreover, 
Such phrases are not necessarily referring to the same 
embodiment. Further, when a particular feature, structure, or 
characteristic is described in connection with an embodi 
ment, it is understood that it is within the knowledge of one 
skilled in the art to effect such feature, structure, or charac 
teristic in connection with other embodiments whether or not 
explicitly described. 

1. SPEECH RECOGNITION PROCESS 

0044 FIG. 1 is an illustration of an exemplary flowchart of 
a speech recognition process 100 according to an embodi 
ment of the present invention. Speech recognition process 
100 includes a signal processing stage 110, an acoustic mod 
eling stage 120, a phoneme evaluation stage 130, and a word 
modeling stage 140. 
0045. In signal processing stage 110, an analog signal 
representation of an incoming voice signal 105 can be filtered 
to eliminate high frequency components of the signal that lie 
outside the range of frequencies that the human ear can hear. 
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The filtered signal is then digitized using sampling and quan 
tization techniques well known to a person skilled in the 
relevant art. One or more parametric digital representations 
(also referred to herein as “feature vectors 115°) can be 
extracted from the digitized waveform using techniques such 
as, for example, linear predictive coding and fast fourier 
transforms. This extraction can occur at regular time inter 
vals, or frames, of approximately 10 ms, for example. 
0046. In acoustic modeling stage 120, feature vectors 115 
from signal processing stage 110 are compared to one or more 
multivariate Gaussian probability distributions (also referred 
to herein as “Gaussian probability distributions') stored in 
memory. The one or more Gaussian probability distributions 
stored in memory can be part of an acoustic library, in which 
the Gaussian probability distributions represent senones. A 
Senone refers to a sub-phonetic unit for a language of interest, 
as would be understood by a person skilled in the relevant art. 
An individual Senone can be made up of, for example, 8 
components, in which each of the components can represent 
a 39-dimension Gaussian probability distribution. 
0047 Acoustic modeling stage 120 can process over 1000 
Senones, for example. As a result, the comparison of feature 
vectors 115 to the one or more Gaussian probability distribu 
tions can be a computationally-intensive task, as thousands of 
Gaussian probability distributions, for example, can be com 
pared to feature vectors 115 every time interval or frame (e.g., 
10 ms). A set of scores for each of the senones represented in 
the acoustic library (also referred to herein as “senone 
scores') results from the comparison of each of feature vec 
tors 115 to each of the one or more Gaussian probability 
distributions. Acoustic modeling stage 120 provides Senone 
scores 125 to phoneme evaluation stage 130. 
0048. In phoneme evaluation stage 130, Hidden Markov 
Models (HMMs) can be used to characterize a phoneme as a 
set of States and an a priori set of transition probabilities 
between each of the states, where a state is associated with a 
Senone. For a given observed sequence of Senones, there is a 
most-likely sequence of states in a corresponding HMM. This 
corresponding HMM can be associated with an observed 
phoneme. A Viterbialgorithm can be used to find the likeli 
hood of each HMM corresponding to a phoneme. 
0049. The Viterbialgorithm performs a computation that 
starts with a first frame and then proceeds to Subsequent 
frames one-at-a-time in a time-synchronous manner A prob 
ability score is computed for each senone in the HMMs being 
considered. Therefore, a cumulative probability score can be 
Successively computed for each of the possible Senone 
sequences as the Viterbi algorithm analyzes sequential 
frames. Phoneme evaluation stage 130 provides the phoneme 
likelihoods or probabilities 135 (also referred to herein as a 
“phoneme score') to word modeling stage 140. 
0050. In word modeling stage 140, searching techniques 
are used to determine a most-likely string of phonemes and 
Subsequent words, over time. Searching techniques such as, 
for example, tree-based algorithms can be used to determine 
the most-likely string of phonemes. 

2. CONVENTIONAL SPEECH RECOGNITION 
SYSTEM 

0051 FIG. 2 is an illustration of a conventional speech 
recognition system 200. Speech recognition system 200 
includes an input device 210, a processing unit 220, a memory 
device 230, and a data bus 240, all of which are separate 
physical components. Memory device 230 can be, for 
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example, a Dynamic Random Access Memory (DRAM) 
device that is external to processing unit 220 and in commu 
nication with processing unit 220 via data bus 240. Input 
device 210 is also in communication with processing unit 220 
via data bus 240. Data bus 240 has a typical bus width of for 
example, 8 to 32 bits. 
0.052 Input device 210 is configured to receive an incom 
ing Voice signal (e.g., incoming Voice signal 105 of FIG. 1) 
and convert acoustical vibrations associated with the incom 
ing Voice signal to an analog signal. The analog signal is 
digitized using an analog to digital converter (not shown in 
FIG. 2), and the resulting digital signal is transferred to pro 
cessing unit 220 over data bus 240. Input device 210 can be, 
for example, a microphone. 
0053 Processing unit is configured to process the digital 
input signal in accordance with the signal processing stage 
110, acoustic modeling stage 120, phoneme evaluation stage 
130, and word modeler stage 140 described above with 
respect to FIG. 1. FIG. 3 is an illustration of speech recogni 
tion system 200 with speech recognition modules performed 
by processing unit 220. Processing unit includes signal pro 
cessing module 310, acoustic modeling module 320, pho 
neme evaluation module 330, and word modeling module 
340, which operate in a similar manner as signal processing 
stage 110, acoustic modeling stage 120, phoneme evaluation 
stage 130, and word modeler stage 140 of FIG. 1, respec 
tively. 
0054. In reference to FIG.3, signal processing module 310 
can convert a digital input signal representation of incoming 
voice signal 305 (e.g., from input device 210) into one or 
more feature vectors 315. Acoustic modeling module 320 
compares one or more feature vectors 315 to one or more 
Gaussian probability distributions stored in an acoustic 
library in memory device 230. That is, for each of the com 
parisons of one or more feature vectors 315 to the one or more 
Gaussian probability distributions, processing unit 220 
accesses memory device 230 via data bus 240. For an acoustic 
library with thousands of senones (in which each of the 
Senones is composed of a plurality of Gaussian probability 
distributions), not only are the comparisons performed by 
acoustic modeling module 320 computationally-intensive but 
the thousands of accesses to memory device 230 via data bus 
240 by acoustic modeling module 320 are also computation 
ally-intensive and time consuming. The thousands of 
accesses to memory device 230 is further exacerbated by the 
bus width of data bus 240 (e.g., typically 8 to 32 bits), in 
which multiple accesses to memory device 230 may be 
required by acoustic modeling module 320 to access each 
Gaussian probability distribution. Further, interconnect para 
sitics associated with data bus 240 may corrupt data transfer 
between memory device 230 and acoustic modeling module 
32O. 

0055 Phoneme evaluation module 330 receives senone 
scores 325 from acoustic modeling module 320. As discussed 
above with respect to speech recognition process 100 of FIG. 
1, HMMs can be used to characterize a phoneme as a set of 
states and an a priori set of transition probabilities between 
each of the states, where a state is composed of a sequence of 
Senones. The sets of states and a priori sets of transition 
probabilities used by phoneme evaluation module 330 can be 
stored in memory device 230. Phoneme evaluation module 
330 provides phoneme scores 335 to word modeling module 
340. 
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0056 Word modeling module 340 uses searching tech 
niques such as, for example, tree-based algorithms to deter 
mine a most-likely string of phonemes (e.g., most-likely pho 
neme 335), and subsequent words, over time. 
0057. An issue with conventional speech recognition sys 
tem 300 of FIG. 3, among others, is the significant load on 
processing unit 220 due to the acoustic modeling process. For 
example, for each comparison of one or more feature vectors 
315 to the one or more Gaussian probability distributions 
stored in memory device 220, memory device 220 is accessed 
by processing unit 220. As a result, significant computing 
resources are dedicated to the acoustic modeling process, in 
turn placing a significant load on processing unit 220. The 
load placed on processing unit 220 by the acoustic modeling 
process affects the speed at which processing unit 220 can 
process digital signals from input device 210 as well as data 
from other applications (e.g., where processing unit 220 can 
operate in a multiuser/multiprogramming environment that 
concurrently processes data from a plurality of applications). 
Further, for computing systems with limited memory 
resources (e.g., handheld devices), the acoustic modeling 
process not only places a significant load on processing unit 
220, but also consumes a significant portion of memory 
device 230 and bandwidth of data bus 240. These issues, 
among others, with processing capabilities, speed, and 
memory resources are further exacerbated by the need to 
process incoming Voice signals in real-time or Substantially 
close to real-time in many applications. 

3. SPEECH RECOGNITION SYSTEMS WITH AN 
ACOUSTIC PROCESSING UNIT 

0058 Embodiments of the present invention address the 
issues discussed above with respect to conventional speech 
recognition systems 200 and 300 of FIGS. 2 and 3, respec 
tively. In an embodiment, the acoustic modeling process is 
performed by a dedicated processing unit (also referred to 
hereinas an "Acoustic Processing Unit' or “APU”). The APU 
operates in conjunction with processing unit 220 of FIG. 3 
(also referred to herein as a “Central Processing Unit' or 
“CPU”). For example, the APU receives one or more feature 
vectors (e.g., feature vectors 315 of FIG. 3) from the CPU, 
calculates a senone score (e.g., senone score 325 of FIG. 3) 
based on one or more Gaussian probability distributions, and 
outputs the senone score to the CPU. In an embodiment, the 
one or more Gaussian probability distributions can be stored 
in the APU. Alternatively, in another embodiment, the one or 
more Gaussian probability distributions can be stored exter 
nally to the APU, in which the APU receives the one or more 
Gaussian probability distributions from an external memory 
device. Based on the architecture of the APU, which is 
described in further detail below, an accelerated calculation 
for the Senone score is achieved. 
0059 Although portions of the present disclosure is 
described in the context of a speech recognition system, a 
person skilled in the relevant art will recognize that the 
embodiments described herein are applicable to any data 
pattern recognition applications based on the description 
herein. These other data pattern recognition applications 
include, but are not limited to, image processing, audio pro 
cessing, and handwriting recognition. These other data pat 
tern recognition applications are within the spirit and Scope of 
the embodiments disclosed herein. 
0060 FIG. 4 is an illustration of an embodiment of a 
speech recognition process 400 performed by the APU and 
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CPU. In an embodiment, the CPU performs a signal process 
ing process 410, a phoneme evaluation process 430, and a 
word modeling process 440. The APU performs an acoustic 
modeling process 420. Signal processing process 410, acous 
tic modeling process 420, phoneme evaluation process 430, 
and word modeling process 440 operate in a similar manner 
as signal processing stage 110, acoustic modeling stage 120, 
phoneme evaluation stage 130, and word modeler stage 140 
of FIG. 1, respectively, except as otherwise described herein. 
0061. In reference to the embodiment of FIG. 4, feedback 
450 is an optional feature of speech recognition process 400, 
in which phoneme evaluation process 430 can provide an 
active Senone list to acoustic modeling process 420, accord 
ing to an embodiment of the present invention. The APU can 
compare one or more feature vectors to one or more Senones 
indicated in the active senone list. Such feedback 450 is 
further discussed below. 
0062. In another embodiment, acoustic modeling process 
420 can compare the one or more feature vectors to all of the 
Senones associated with an acoustic library. In this case, feed 
back 450 is not required, as phoneme evaluation process 430 
receives an entire set of Senone scores (e.g., "score all func 
tion) from the APU for further processing. 
0063 A. System Bus Architectures for Speech Recogni 
tion Systems with an Acoustic Processing Unit 
0064. In an embodiment, the APU and CPU can be in 
communication with one another over a Serial Peripheral 
Interface (SPI) bus, a Peripheral Controller Interface (PCI) 
bus, an Application Programming Interface (API) bus, an 
Advanced Microcontroller Bus Architecture High-Perfor 
mance Bus (AHB), an Advanced Peripheral Bus (APB), a 
memory bus, or any other type of bus. Example, non-limiting 
embodiments of system bus architectures for speech recog 
nition process 400 of FIG. 4 are described in further detail 
below. 
0065 FIG. 5 is an illustration of an embodiment of a bus 
architecture for a speech recognition system 500. Speech 
recognition system 500 includes an APU 510, a CPU 520, a 
processor/memory bus 530, a cache 540, a system controller 
550, a main memory 560, a plurality of PCI devices 570 
570, an Input/Output (I/O) bus 580, and a PCI bridge 590. 
Cache 540 can be, for example, a second-level cache imple 
mented on a Static Random Access Memory (SRAM) device. 
Further, main memory 560 can be, for example, a Dynamic 
Random Access Memory (DRAM) device. Speech recogni 
tion system 500 can be implemented as a system-on-chip 
(SOC), according to an embodiment of the present invention. 
0066. As illustrated in FIG. 5, APU 510 is communica 
tively coupled to I/O bus 580 through PCI bridge 590. I/O bus 
580 can be, for example, a PCI bus. Through PCI bridge 590 
and I/O bus 580, APU 510 is communicatively coupled to 
system controller 550 and CPU 520. In another embodiment 
(not illustrated in FIG.5), APU 510 can be directly coupled to 
processor/memory bus 530 and, in turn, communicatively 
coupled to CPU 520. 
0067 FIG. 6 is an illustration of another embodiment of a 
bus architecture for a speech recognition system 600. Speech 
recognition system 600 includes APU 510, CPU 520, cache 
540, an AHB 610, a system controller 620, a non-volatile 
memory device 630, a main memory 640, an APB bridge 650, 
an APB 660, and a plurality of devices 670-670. Non 
volatile memory device 630 can be, for example, a Flash 
memory device. Main memory 640 can be, for example, a 
DRAM device. CPU 520 can be, for example, an ARM pro 



US 2013/0158996 A1 

cessor (developed by ARM Holdings plc). Speech recogni 
tion system 600 can be implemented as an SOC, according to 
an embodiment of the present invention. 
0068. As illustrated in FIG. 6, APU 510 is communica 

tively coupled to system controller 620 through APB bridge 
650 and APB 660. System controller 620 is also communica 
tively coupled to CPU 520 through AHB 610. In turn, system 
controller 620 is communicatively coupled to CPU 520 
through AHB 610. 
0069 FIG. 7 is an illustration of another embodiment of a 
bus architecture for a speech recognition system 700. Speech 
recognition system 700 includes APU 510, CPU 520, cache 
540, AHB 610, system controller 620, non-volatile memory 
device 630, a Low Power Double Data Rate (LPDDR) inter 
face 710, LPDDR memory bus 720, and a main memory 730. 
Main memory 730 can be, for example, a DRAM device. 
CPU 520 can be, for example, an ARM processor (developed 
by ARM Holdings plc). Speech recognition system 700 can 
be implemented as an SOC, according to an embodiment of 
the present invention. 
0070. As illustrated in FIG. 7, APU 510 and main memory 
730 are communicatively coupled to LPDDR interface 710 
via LPDDR memory bus 720. APU 510 is also communica 
tively coupled to system controller 620 through LPDDR 
memory bus 720 and LPDDR interface 710. In turn, system 
controller 620 is communicatively coupled to CPU 520 via 
AHB 610. 
0071 B. System-Level Architectures for Speech Recog 
nition Systems with an Acoustic Processing Unit 
0072 FIG. 8 is an illustration of an embodiment of a 
system-level architecture for a speech recognition system 
800. Speech recognition system 800 includes an APU 810, a 
memory controller 820, a non-volatile memory device 830, 
and a volatile memory device 840. Memory controller 820 is 
communicatively coupled to APU 810 via a bus 815 and 
coupled to non-volatile memory device 830 and volatile 
memory device 850 via a bus 825 (which may represent two 
or more buses in certain embodiments). In an embodiment, 
APU 810 and memory controller 820 are integrated on a 
single chip. Alternatively, in an embodiment, APU 810 and 
memory controller 820 are integrated on separate chips. Non 
volatile memory device 830 can be a NAND memory module, 
a NOR memory module, or another type of non-volatile 
memory device. In an embodiment, Volatile memory device 
840 can be a DRAM device. Further, APU 810 can commu 
nicate with a CPU (not shown in FIG. 8) using, for example, 
one of the bus architectures described above with respect to 
FIGS. 5-7, according to an embodiment of the present inven 
tion. 
0073. Non-volatile memory device 830 can store an 
acoustic library to be used in a speech recognition process, in 
which the acoustic library can include over 1000 senones, 
according to an embodiment of the present invention. In an 
embodiment, when a Senone request is received by speech 
recognition system 800, memory controller 820 copies the 
acoustic library from non-volatile memory device 830 to 
volatile memory device 840 via bus 825. The acoustic library 
transfer process between the non-volatile and volatile 
memory devices can be implemented using, for example, a 
direct memory access (DMA) operation. 
0074. In an embodiment, speech recognition system 800 
can be powered on in anticipation of a Senone scoring request. 
After power up, the acoustic library from non-volatile 
memory device 830 is immediately copied to volatile 
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memory device 840. Once volatile memory device 840 has 
received the acoustic library, APU 810 is ready to begin 
processing Senone scoring requests (e.g., acoustic modeling 
process 420 of FIG. 4) using the acoustic library stored in 
volatile memory device 840. 
0075 When the senone scoring request is received by 
APU 810, a selected senone from the acoustic library is 
copied from volatile memory device 840 to APU 810 via 
memory controller 820. APU 810 calculates a senone score 
based on the selected Senone and a data stream received by 
APU 810 (e.g., one or more feature vectors 315 of FIG. 3). 
After completing the calculation, APU 810 transfers the 
Senone score to the requesting system (e.g., the CPU). 
0076. In an embodiment, after a predetermined time of 
inactivity (e.g., senone scoring inactivity by APU 810), vola 
tile memory device 840 can be powered down. As a result, 
power efficiency in speech recognition system 800 can be 
improved, as a periodic refresh of memory cells in volatile 
memory device 840 will not be required. Here, the acoustic 
library is still stored in non-volatile memory device 830 such 
that the acoustic library can be retained when volatile 
memory device 840 is powered down. As would be under 
stood by a person skilled in the art, when volatile memory 
device 840 is powered down, the contents stored therein (e.g., 
the acoustic library) will be lost. In an embodiment, when 
volatile memory device 840 is powered down, the other com 
ponents of speech recognition system 800 can be powered 
down as well. 

10077 FIG. 9 is an illustration of an embodiment of a 
method 900 for data pattern analysis. Speech recognition 
system 800 of FIG. 8 can be used, for example, to perform the 
steps of method 900. In an embodiment, method 900 can be 
used to perform acoustic modeling process 420 of FIG. 4. 
Based on the description herein, a person skilled in the rel 
evant art will recognize that method 900 can be used in other 
data pattern recognition applications such as, for example, 
image processing, audio processing, and handwriting recog 
nition. 
0078. In step 910, a plurality of data patterns is copied 
from a non-volatile memory device (e.g., non-volatile 
memory device 830 of FIG. 8) to a volatile memory device 
(e.g., volatile memory device 840 of FIG. 8). In an embodi 
ment, the plurality of data patterns can be one or more Senones 
associated with an acoustic library. 
0079. In step 920, a data pattern from the volatile memory 
device is requested by a computational unit (e.g., APU 810 of 
FIG. 8) and transferred to the computational unit via a 
memory controller and bus (e.g., memory controller 820 and 
bus 825, respectively, of FIG. 8). In an embodiment, the 
requested data pattern is a Senone from an acoustic library 
stored in the volatile memory device. 
0080. In step 930, after receiving the requested data pat 
tern, the computational unit (e.g., APU 810 of FIG. 8) per 
forms a data pattern analysis on a data stream received by the 
computational unit. In an embodiment, the data pattern analy 
sis is a Senone score calculation based on a selected Senone 
and the data stream received by the computational unit (e.g., 
one or more feature vectors 315 of FIG. 3). After completing 
the data pattern analysis, the computational unit transfers the 
data pattern analysis result to the requesting system (e.g., the 
CPU). 
I0081. In step 940, the volatile memory device powers 
down. In an embodiment, the Volatile memory device powers 
down after a predetermined time of inactivity (e.g., inactivity 
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in the data pattern analysis by the computational unit). As a 
result, power efficiency can be improved, as a periodic refresh 
of memory cells in the volatile memory device will not be 
required. In an embodiment, when the Volatile memory 
device is powered down, the other components of the system 
(e.g., other components of speech recognition system 800) 
can be powered down as well. 
0082 FIG. 10 is an illustration of another embodiment of 
a system-level architecture for a speech recognition system 
1000. Speech recognition system 1000 includes an APU 
1010, a SOC 1040, a DRAM device 1060, a Flash memory 
device 1070, and an I/O interface 1080. In an embodiment, 
APU 1010 is an integrated chip that includes a memory 
device 1020 configured to store an acoustic library and an 
Application-Specific Integrated Circuit (ASIC) 1030 config 
ured to perform an acoustic modeling process (e.g., acoustic 
modeling process 420 of FIG. 4). In another embodiment, 
ASIC 1030 and memory device 1020 can be integrated on two 
separate chips. SOC 1040 includes a CPU 1050 configured to 
perform a signal processing process, a phoneme evaluation 
process, and a word modeling process (e.g., signal processing 
process 410, phoneme evaluation process 430, and word 
modeling process 440, respectively, of FIG. 4), according to 
an embodiment of the present invention. In an embodiment, 
APU 1010 and SOC 1040 are integrated on two separate 
chips. 
0.083 FIG. 11 is an illustration of another embodiment of 
a system-level architecture for a speech recognition system 
1100. Speech recognition system 1100 includes an APU 
1110, SOC 1040, DRAM device 1060, Flash memory device 
1070, and I/O interface 1080. In an embodiment, APU 1110 is 
an integrated chip that includes an ASIC 1120, a volatile 
memory device 1130, and a non-volatile memory device 
1140. In another embodiment, ASIC 1120, volatile memory 
device 1130, and non-volatile memory device 1140 can be 
integrated on two chips—e.g., ASIC 1120 and memory 
device 1130 on one chip with non-volatile memory device 
1140 on another chip; ASIC 1120 on one chip with volatile 
memory device 1130 and non-volatile memory device 1140 
on another chip; or, ASIC 1120 and non-volatile memory 
device 1140 on one chip with volatile memory device 1130 on 
another chip. In yet another embodiment, ASIC 1120, volatile 
memory device 1130, and non-volatile memory device 1140 
can each be integrated on a separate chip—i.e., three separate 
chips. 
0084. Non-volatile memory device 1140 can be config 
ured to store an acoustic model that is copied to volatile 
memory device 1130 upon power-up of APU 1110, according 
to an embodiment of the present invention. In an embodi 
ment, non-volatile memory device can be a Flash memory 
device and volatile memory device 1130 can be a DRAM 
device. Further, ASIC 1120 can be configured to perform an 
acoustic modeling process (e.g., acoustic modeling process 
420 of FIG. 4), according to an embodiment of the present 
invention. 

0085 FIG. 12 is an illustration of another embodiment of 
a system-level architecture for a speech recognition system 
1200. Speech recognition system 1200 includes DRAM 
device 1060, Flash memory device 1070, I/O interface 1080, 
a memory device 1210, and an SOC 1220. In an embodiment, 
SOC 1220 is an integrated chip that includes an ASIC 1230 
and a CPU 1240. ASIC 1230 can be configured to performan 
acoustic modeling process (e.g., acoustic modeling process 
420 of FIG. 4) and CPU 1240 can be configured to perform a 
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signal processing process, a phoneme evaluation process, and 
a word modeling process (e.g., signal processing process 410. 
phoneme evaluation process 430, and word modeling process 
440, respectively, of FIG. 4), according to an embodiment of 
the present invention. 
I0086 Memory device 1210 can be configured to storean 
acoustic library and to transfer one or more senones to ASIC 
1230 via an I/O bus 1215, according to an embodiment of the 
present invention. In an embodiment, memory device 1210 
can be a DRAM device or a Flash memory device. In another 
embodiment, the acoustic library can be stored in a memory 
device located within ASIC 1230 (not shown in FIG. 12) 
rather than memory device 1210. In yet another embodiment, 
the acoustic library can be stored in system memory for SOC 
1220 (e.g., DRAM device 1060). 
0087 FIG. 13 is another illustration of an embodiment of 
a system-level architecture for a speech recognition system 
1300. Speech recognition system 1300 includes DRAM 
device 1060, Flash memory device 1070, I/O interface 1080, 
a memory device 1210, and an SOC 1220. DRAM device 
1060 can be configured to store an acoustic library and to 
transfer one or more senones to ASIC 1230 via an I/O bus 
1315, according to an embodiment of the present invention. 

4. ACOUSTIC PROCESSING UNIT 
ARCHITECTURE 

0088 FIG. 14 is an illustration of an embodiment of an 
APU 1400. In an embodiment, APU 1400 is an integrated 
chip that includes a memory module 1420 and a Senone 
Scoring Unit (SSU) 1430. In another embodiment, memory 
module 1420 and SSU 1430 can be integrated on two separate 
chips. 
I0089 APU 1400 is in communication with a CPU (not 
shown in FIG. 14) via I/O signals 1410, in which APU 1400 
is configured to perform an acoustic modeling process (e.g., 
acoustic modeling process 420 of FIG. 4), according to an 
embodiment of the present invention. In an embodiment, I/O 
signals 1410 can include an input feature vector data line for 
feature vector information, an input clock signal, an input 
APU enable signal, an output Senone score data line for 
Senone score information, and other I/O control signals for 
APU 1400. APU 1400 can be configured to receive one or 
more feature vectors (calculated by the CPU) via the feature 
vector data line from the CPU and to transmit a senone score 
via the senone score data line to the CPU for further process 
ing, according to an embodiment of the present invention. In 
an embodiment, I/O signals 1410 can be implemented as, for 
example, an SPI bus, a PCI bus, an API bus, an AHB, an APB, 
a memory bus, or any other type of bus to provide a commu 
nication path between APU 1400 and the CPU (see, e.g., 
FIGS. 5-7 and associated description). An interface between 
APU 1400 and the CPU, as well as control signals for the 
interface, are described in further detail below. 
0090. In an embodiment, memory module 1420 and SSU 
1430 can operate in two different clock domains. Memory 
module 1420 can operate at the clock frequency associated 
with the input clock signal to APU 1400 (e.g., from I/O 
signals 1410) and SSU 1430 can operate at a faster clock 
frequency based on the input clock signal, according to an 
embodiment of the present invention. For example, if the 
clock frequency associated with the input clock signal is 12 
MHz, then SSU 1430 can operate at a clock-divided fre 
quency of 60 MHz five times faster than the clock fre 
quency associated with the input clock signal. Techniques 
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and methods for implementing clock dividers are known to a 
person skilled in the relevant art. As will be described in 
further detail below, the architecture of SSU 1430 can be 
based on the clock domain at which it operates. 
0091. In reference to FIG. 14, memory module 1420 
includes a bus controller 1422, a memory controller 1424, a 
memory device 1426, and a bridge controller 1428. Memory 
device 1426 is configured to store an acoustic model to be 
used in a speech recognition process. In an embodiment, 
memory device 1426 can be a non-volatile memory device 
Such as, for example, a Flash memory device. The acoustic 
library can be pre-loaded into the non-volatile memory device 
prior to operation of APU 1400 (e.g., during manufacturing 
and/or testing of APU 1400). 
0092. In another embodiment, memory device 1426 can 
be a volatile memory device such as, for example, a DRAM 
device. In an embodiment, when a Senone request is received 
by APU 1400, memory controller 1424 can copy the acoustic 
library from a non-volatile memory device (either integrated 
on the same chip as APU 1400 or located external to APU 
1400) to the volatile memory device. The acoustic library 
transfer process between the non-volatile and volatile 
memory devices can be implemented using, for example, a 
DMA operation. 
0093 Bus controller 1422 is configured to control data 
transfer between APU 1400 and an external CPU. In an 
embodiment, bus controller 1422 can control the receipt of 
feature vectors from the CPU and the transmission of senone 
scores from APU 1400 to the CPU. In an embodiment, bus 
controller 1422 is configured to transfer one or more feature 
vectors from the CPU to bridge controller 1428, which serves 
as an interface between memory module 1420 and SSU 1430. 
In turn, bridge controller 1428 transfers the one or more 
feature vectors to SSU 1430 for further processing. Upon 
calculation of a Senone score, the Senone score is transferred 
from SSU 1430 to memory module 1420 via bridge controller 
1428, according to an embodiment of the present invention. 
0094. In an embodiment, bus controller 1422 can receive a 
control signal (via I/O signals 1410) that provides an active 
Senone list. In an embodiment, the active Senone list can be 
transferred to APU 1400 as a result of the phoneme evaluation 
process performed by the CPU (e.g., phoneme evaluation 
process 430 of FIG. 4). That is, in an embodiment, a feedback 
process can occur between the acoustic modeling process 
performed by APU 1400 and the phoneme evaluation process 
performed by the CPU (e.g., feedback 450 of FIG. 4). The 
active Senone list can be used in Senone score calculations for 
incoming feature vectors into APU 1400, according to an 
embodiment of the present invention. 
0.095 The active senone list indicates one or more senones 
stored in memory device 1426 to be used in a senone score 
calculation. In an embodiment, the active Senone list can 
include a base address associated with an address space of 
memory device 1426 and a list of indices related to the base 
address at which the one or more Senones are located in 
memory device 1426. Bus controller 1422 can send the active 
senone list to SSU 1430 via bridge controller 1428, in which 
SSU 1430 is in communication with memory device 1426 
(via memory controller 1424) to access the one or more 
Senones associated with the active Senone list. 

0096. In another embodiment, bus controller 1422 can 
receive a control signal (via I/O signals 1410) that instructs 
APU 1400 to perform the senone score calculation using all of 
the Senones contained in the acoustic library (e.g., "score all 
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function). Bus controller 1422 sends the “score all instruc 
tion to SSU 1430 via bridge controller 1428, in which SSU 
1430 is in communications with memory device 1426 (via 
memory controller 1424) to access all of the Senones associ 
ated with the acoustic library. 
0097 Conventional speech recognition systems typically 
incorporate a feedback loop between acoustic modeling and 
phoneme evaluation modules (e.g., acoustic modeling mod 
ule 320 and phoneme evaluation module 330 of FIG. 3) 
within the CPU to limit the number of senones used in senone 
score calculations. This is because, as discussed above with 
respect to speech recognition system 300 of FIG. 3, signifi 
cant computing resources are dedicated to the acoustic mod 
eling process where thousands of Senones can be compared to 
a feature vector. This places a significant load on the CPU and 
the bandwidth of the data bus (e.g., data 240 of FIG. 3) 
transferring the Senones from the memory device (e.g., 
memory device 230 of FIG. 3) to the CPU. Thus, for conven 
tional speech recognition systems, active Senone lists are used 
to limit the impact of the acoustic modeling process on the 
CPU. However, the use active senone lists by the CPU can 
place limitations on the need to process incoming Voice sig 
nals in real-time or Substantially close to real time. 
(0098. The “score all function of APU 1400 not only alle 
viates the load on the CPU and the bandwidth of the data bus, 
but also provides processing of incoming Voice signals in 
real-time or Substantially close to real time. As discussed in 
further detail below, features of APU 1400 such as, for 
example, the bus width of data bus 1427 and the architecture 
of distance calculator 1436 of FIG. 14 provides a system for 
real-time or Substantially close to real time speech recogni 
tion. 
0099. In reference to FIG. 14, SSU 1430 includes an out 
put buffer 1432, an SSU control module 1434, a feature vector 
matrix module 1435, a distance calculator 1436, and an addi 
tion module 1438. SSU 1430 is configured to calculate a 
Mahalanobis distance between one or more feature vectors 
and one or more Senones stored in memory device 1426. 
according to an embodiment of the present invention. Each of 
the one or more feature vectors can be composed of N dimen 
sions, where N can equal, for example, 39. In an embodiment, 
each of the N dimensions in the one or more feature vectors 
can be a 16-bit mean value. 

0.100 Further, each of the one or more senones stored in 
memory device 1426 is composed of one or more Gaussian 
probability distributions, where each of the one or more 
Gaussian probability distributions has the same number of 
dimensions as each of the one or more feature vectors (e.g., N 
dimensions). Each of the one or more Senones stored in 
memory device 1426 can have, for example, 32 Gaussian 
probability distributions. 
0101. As discussed above, memory module 1420 and SSU 
1430 can operate in two different clock domains. In an 
embodiment, SSU control module 1434 is configured to 
receive a clock signal from memory module 1420 via bridge 
controller 1428. The frequency of the clock signal received by 
SSU control module 1434 can be the same or substantially the 
same as the clock frequency associated with the input clock 
signal to APU 1400 (e.g., input clock signal from I/O signals 
1410), according to an embodiment of the present invention. 
0102. In an embodiment, SSU control module 1434 can 
divide the frequency of its incoming clock signal and distrib 
ute that divided clock signal to other components of SSU 
1430—e.g., output buffer 1432, feature vector matrix module 
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1435, distance calculator 1436, and addition module 1438— 
Such that these other components operate at the clock-divided 
frequency. For example, if the clock frequency associated 
with the input clock signal (e.g., from I/O signals 1410) is 12 
MHz, then SSU control module 1434 can receive the same or 
Substantially the same clock signal from bridge controller 
1428 and divide that clock frequency using known clock 
dividing techniques and methods to a frequency of for 
example, 60 MHz. SSU control module 1434 can distribute 
this clock-divided signal to the other components of SSU 
1430 such that these other components operate at, for 
example, 60 MHz five times faster than the clock frequency 
associated with the input clock signal. 
0103 For simplicity purposes, the clock signals distrib 
uted from SSU control module 1434 to the other components 
of SSU 1430 are not illustrated in FIG. 14. For ease of refer 
ence, the frequency associated with this clock signal is also 
referred to herein as the “SSU clock frequency.” Further, for 
ease of reference, the frequency associated with the input 
clock signal to SSU control module 1434 is also referred to 
herein as the “memory module clock frequency.” 
0104 FIG. 15 is an illustration of an embodiment of SSU 
control module 1434. SSU control module 1434 includes an 
input buffer 1510 and a control unit 1520. SSU control mod 
ule 1434 is configured to receive one or more control signals 
from memory module 1420 via bridge controller 1428. In an 
embodiment, the one or more control signals can be associ 
ated with I/O signals 1410 and with control information asso 
ciated with a Gaussian probability distribution outputted by 
memory device 1426. The control signals associated with I/O 
signals 1410 can include, for example, an active Senone list 
and a "score all function. The control information associated 
with the Gaussian probability distribution can include, for 
example, address information for a Subsequent Gaussian 
probability distribution to be outputted by memory device 
1426. 

0105. In reference to FIG.14, in an embodiment, whenbus 
controller 1422 receives an active senone list via I/O signals 
1410, the base address associated with the address space of 
memory device 1426 and list of indices related to the base 
address at which the one or more Senones are located in 
memory device 1426 can be stored in input buffer 1510 of 
FIG. 15. Control unit 1520 is in communication with input 
buffer 1510 to monitor the list of the senones to be applied by 
distance calculator 1436 of FIG. 14 in the senone score cal 
culation. 

0106 For example, the active senone list can contain a 
base address associated with an address space of memory 
device 1426 and 100 indices pointing to 100 senones stored in 
memory device 1426. As would be understood by a person 
skilled in the relevant art, the indices can refer to pointers or 
memory address offsets in reference to the base address asso 
ciated with the address space of memory device 1426. Fur 
ther, as discussed above, a Senone can be composed of one or 
more Gaussian probability distributions, where each of the 
one or more Gaussian probability distributions has the same 
number of dimensions as each of one or more feature vectors 
(e.g., N dimensions) received by APU 1400. For explanation 
purposes, this example will assume that each Senone stored in 
memory device 1426 is composed of 32 Gaussian probability 
distributions. Based on the description herein, a person 
skilled in the relevant art will understand that each of the 
Senones can be composed of more or less than 32 Gaussian 
probability distributions. 
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0107. In an embodiment, for the first senone in the active 
senone list, control unit 1520 communicates with memory 
controller 1424 of FIG. 14 to access the first senone in 
memory device 1426 based on the base address and the first 
index information contained in the active Senone list. The 
Senone associated with the first index can include memory 
address information of the first 2 Gaussian probability distri 
butions associated with that Senone, according to an embodi 
ment of the present invention. In turn, memory device 1426 
accesses two Gaussian probability distributions associated 
with the first Senone in, for example, a sequential manner. For 
example, memory device 1426 accesses the first Gaussian 
probability distribution and outputs this Gaussian probability 
distribution to distance calculator 1436 via data bus 1427. As 
memory device 1426 outputs the first Gaussian probability 
distribution, memory device 1426 can also access the second 
Gaussian probability distribution. 
0108. In an embodiment, the second Gaussian probability 
distribution can include memory address information for a 
third Gaussian probability distribution to be accessed by 
memory device 1426. Memory device 1426 can communi 
cate this memory address information to control unit 1520 of 
FIG. 15 via bridge controller 1428 of FIG. 14, Control unit 
1520, in turn, communicates with memory controller 1424 of 
FIG. 14 to access the third Gaussian probability distribution. 
In an embodiment, as the third Gaussian probability distribu 
tion is being accessed by memory device 1426, the second 
Gaussian probability distribution can be outputted to distance 
calculator 1436 via data bus 1427. This iterative, overlapping 
process of accessing a Subsequent Gaussian probability dis 
tribution while outputting a current Gaussian probability dis 
tribution is performed for all of the Gaussian probability 
distributions associated with the senone (e.g., for all of the 32 
Gaussian probability distributions associated with the 
Senone). A benefit, among others, of the iterative, overlapping 
(or parallel) processing is faster performance in Senone score 
calculations. 

0109 Control unit 1520 of FIG. 15 monitors the transfer 
process of Gaussian probability distributions from memory 
device 1426 to distance calculator 1436 Such that the memory 
access and transfer process occurs in a pipeline manner, 
according to an embodiment of the present invention. After 
the 32 Gaussian probability distributions associated with the 
first senone is outputted to distance calculator 1436 of FIG. 
14, control unit 1520 repeats the above process for the one or 
more remaining Senones in the active Senone list. 
0110. After the senones in the active senone list are used in 
the Senone score calculations for a current feature vector, 
memory module 1420 can receive a control signal via I/O 
signals 1410 that indicates that the active senone list from the 
current feature vector is to be used in Senone score calcula 
tions for a Subsequent feature vector, according to an embodi 
ment of the present invention. Upon receipt of the control 
signal from memory module 1420 via bridge controller 1428, 
SSU control module 1434 uses the same active senone list 
from the current feature vector in the Senone score calcula 
tions for the Subsequent feature vector. In particular, control 
unit 1520 of FIG. 15 applies the same base address and list of 
indices related to the base address stored in input buffer 1510 
to the subsequent feature vector. Control unit 1520 of FIG.15 
monitors the transfer process of Gaussian probability distri 
butions from memory device 1426 to distance calculator 1436 
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for the Subsequent feature vector in a similar manner as 
described above with respect to the active senone list 
example. 
0111. In another embodiment, memory module 1420 can 
receive a control signal via I/O signals 1410 that indicates a 
“score all operation. As discussed above, the “score all 
function refers to an operation where a feature vector is com 
pared to all of the Senones contained in an acoustic library 
stored in memory device 1426. In an embodiment, control 
unit 1520 of FIG. 15 communicates with memory controller 
1424 of FIG. 14 to access a first senone in memory device 
1426. The first senone can be, for example, located at a 
beginning memory address associated with an address space 
of memory device 1426. Similar to the active senone list 
example above, the first senone in memory device 1426 can 
include memory address information of the first 2 Gaussian 
probability distributions associated with that senone, accord 
ing to an embodiment of the present invention. In turn, 
memory device 1426 accesses two Gaussian probability dis 
tributions associated with the first Senone in, for example, a 
sequential manner. 
0112. In an embodiment, similar to the active senone list 
example above, the second Gaussian probability distribution 
can include memory address information on a third Gaussian 
probability distribution to be accessed by memory device 
1426. Memory device 1426 can communicate this memory 
address information to control unit 1520 of FIG. 15 via bridge 
controller 1428 of FIG. 14. Control unit 1520, in turn, com 
municates with memory controller 1424 of FIG. 14 to access 
the third Gaussian probability distribution. In an embodi 
ment, as the third Gaussian probability distribution is being 
accessed by memory device 1426, the second Gaussian prob 
ability distribution can be outputted to distance calculator 
1436 via data bus 1427. This iterative, overlapping process of 
accessing a Subsequent Gaussian probability distribution 
while outputting a current Gaussian probability distribution is 
performed for all of the Gaussian probability distributions 
associated with the Senone (e.g., for all of the 32 Gaussian 
probability distributions associated with the senone). 
0113 Control unit 1520 of FIG. 15 monitors the transfer 
process of Gaussian probability distributions from memory 
device 1426 to distance calculator 1436 such that the memory 
access and transfer process occurs in a pipeline manner, 
according to an embodiment of the present invention. After 
the Gaussian probability distributions associated with the first 
senone are outputted to distance calculator 1436 of FIG. 14, 
control unit 1520 repeats the above process for the one or 
more remaining Senones in the acoustic library. 
0114. In reference to FIG. 14, feature vector matrix mod 
ule 1435 is used for speaker adaptation in APU 1400. In an 
embodiment, feature vector matrix module 1435 receives a 
feature vector transform matrix (FVTM) from the CPU via 
I/O signals 1410. The FVTM can be loaded into feature vector 
matrix module 1435 periodically such as, for example, once 
per utterance. In an embodiment, the FVTM can be stored in 
a Static Random Access Memory (SRAM) device located 
within feature vector matrix module 1435. 

0115 Along with mean and variance values stored for 
each Senone in memory device 1426, an index can also be 
stored for each Senone, in which the index points to a row in 
the FVTM, according to an embodiment of the present inven 
tion. The number of rows in the FVTM can vary (e.g., 10, 50. 
or 100 rows) and can be specific to avoice recognition system 
implementing APU 1400. Each row in the FVTM can have an 
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equal number of entries as the N number of dimensions for a 
feature vector (e.g., 39), where each of the entries is a scaling 
factor that is multiplied to its corresponding feature vector 
dimension to produce a new feature vector, according to an 
embodiment of the present invention. The selected row from 
the FVTM (e.g., row of 39 scaling factors) is transferred to 
distance calculator 1436 via data bus 1439, in which distance 
calculator 1436 performs the multiplication operation togen 
erate the new feature vector, as will be described in further 
detail below. 
0116. In an embodiment, SSU control module 1434 pro 
vides a feature vector received from the CPU and an index 
associated with a Senone to feature vector matrix module 
1435. The index indicates a particular row in the FVTM for 
scaling the feature vector. For example, the FVTM can have 
100 rows and the index can be equal to 10. Here, for a feature 
vector with 39 dimensions, the 10th row of the FVTM con 
tains 39 Scaling factors, in which the row of scaling factors is 
transferred to distance calculator 1436 to generate the new 
feature vector. 
0117. In reference to FIG. 14, distance calculator 1436 is 
configured to calculate a distance between one or more 
dimensions of a Senone stored in memory device 1426 and a 
corresponding one or more dimensions of a feature vector. 
FIG. 16 is an illustration of an embodiment of distance cal 
culator 1436. Distance calculator 1436 includes a datapath 
multiplexer (MUX) 1610, a feature vector buffer 1620, arith 
metic logic units (ALUs) 1630-1630s, and an accumulator 
1640. 

0118 Datapath MUX 1610 is configured to receive a 
Gaussian probability distribution from memory device 1426 
of FIG. 14 via data bus 1427. In an embodiment, the width of 
data bus 1427 is equal to the number of bits associated with 
one Gaussian probability distribution. For example, if one 
Gaussian probability distribution is 768 bits, then the width of 
data bus 1427 is also 768 bits. Over a plurality of Gaussian 
probability distribution dimensions, the 768 bits associated 
with the Gaussian probability distribution can be allocated to 
a 16-bit mean value, a 16-bit variance value, and other 
attributes per Gaussian probability distribution dimension. As 
discussed above, the Gaussian probability distribution can 
have the same number of dimensions as a feature vector—e. 
g., 39 dimensions. In another embodiment, the width of data 
bus 1427 can be greater than 256 bits. 
0119 Further, in an embodiment, memory device 1426 
and distance calculator 1436 can be integrated on the same 
chip, where data bus 1427 is a wide bus (of the width dis 
cussed above) integrated on the chip to provide data transfer 
of the Gaussian probability distribution from memory device 
1426 to distance calculator 1436. In another embodiment, 
memory device 1426 and distance calculator 1436 can be 
integrated on two separate chips, where data bus 1427 is a 
wide bus (of the width discussed above) that is tightly coupled 
between the two chips such that degradation of data due to 
noise and interconnect parasitic effects are minimized. As 
will be discussed below, a benefit of a wide data bus 1427 (of 
the width discussed above), among others, is to increase 
performance of APU 1400 in the calculation of senone scores. 
I0120 Datapath MUX 1610 is also configured to receive 
one or more control signals and a feature vector from SSU 
control module 1434 via data bus 1437, as well as feature 
vector scaling factors from feature vector buffer 1620. In an 
embodiment, feature vector buffer 1620 can be configured to 
store scaling factors (associated with a selected row of the 
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FVTM) transferred from feature vector matrix module 1435 
via data bus 1439. In another embodiment, feature vector 
buffer 1620 can be configured to store the FVTM. Here, one 
or more control signals from SSU control module 1434 via 
data bus 1437 can be used to select the FVTM row. Datapath 
MUX 1610 outputs the feature vector, selected feature vector 
scaling factors from the FVTM, and Gaussian probability 
distribution information to ALUs 1630-1630s via data bus 
1612 for further processing. 
0121. In an embodiment, datapath MUX 1610 is also con 
figured to receive a Gaussian weighting factor from the one or 
more controls signals from SSU control module 1434 via data 
bus 1437. Datapath MUX 1610 is configured to output the 
Gaussian weighting factor to accumulator 1640 for further 
processing. 
0122) In reference to FIG. 16, each of ALUs 1630-1630s 

is configured, per SSU clock cycle, to calculate a distance 
score between a dimension of a Gaussian probability distri 
bution received from datapath MUX 1610 and a correspond 
ing dimension of a feature vector, according to an embodi 
ment of the present invention. In an embodiment, ALUs 
1630-1630s can operate at the SSU clock frequency (e.g., 5 
times faster than the memory module clock frequency) Such 
that for every read operation from memory device 1426 of 
FIG. 14 (e.g., to transfera Gaussian probability distribution to 
distance calculator 1436), a distance score associated a Gaus 
sian probability distribution (also referred to hereinas “Gaus 
sian distance score') is outputted from distance calculator 
1436 to addition module 1438. 
0123. In an embodiment, datapath MUX 1610 is config 
ured to distribute feature vector information associated with 
one dimension, a mean value associated with a corresponding 
dimension of a Gaussian probability distribution, a variance 
value associated with the corresponding dimension of the 
Gaussian probability, and feature vector Scaling factors to 
each of ALU 1630-1630s. Based on the feature vector infor 
mation and the feature vector Scaling factors allocated to a 
respective ALU, each of ALUs 1630-1630s is configured to 
generate a new feature vector by multiplying dimensions of 
the feature vector by respective scaling factors. 
0.124. In an embodiment, the multiplication of the feature 
vector dimensions by the corresponding Scaling factors is 
performed “on-the-fly” meaning that the multiplication 
operation is performed during the calculation of the distance 
score. This is, in contrast, to the multiplication operation 
being performed for each of the rows in a FVTM and the 
results of the multiplication operation being stored in 
memory to be later accessed by each of ALUs 1630-1630s. A 
benefit of the “on-the-fly” multiplication operation, among 
others, is that memory storage is not required for the results of 
the multiplication operation associated with non-indexed (or 
non-selected) rows of the FVTM. This, in turn, results in a 
faster generation of the new feature vector since additional 
clock cycles are not required to store the feature vector Scal 
ing results associated with the non-indexed rows in memory 
and also results in a smaller die size area for ALUs 1630 
1630s. 
0125 Based on the new feature vector, the mean value, 
and the variance value for a respective ALU, each of ALUs 
1630-1630s is configured to calculate a distance score based 
on a feature vector dimension and a corresponding Gaussian 
probability distribution dimension per SSU clock cycle, 
according to an embodiment of the present invention. Cumu 
latively, in one clock cycle, ALUs 1630-1630s generate dis 
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tance scores for 8 dimensions (i.e., 1 dimension calculation 
per ALU). The architecture and operation of the ALU is 
described in further detail below. 
0.126 The number of ALUs in distance calculator 1436 
can be dependent on the SSU clock frequency and the 
memory module clock frequency discussed above Such that 
distance calculator 1436 outputs a distance score for one 
Gaussian probability distribution for every read access to 
memory device 1426, according to an embodiment of the 
present invention. For example, the memory module clock 
frequency can have an operating frequency of 12 MHZ, where 
memory device 1426 also operates at 12 MHZ (e.g., for a read 
access of approximately 83 ns). SSU 1430 can have an SSU 
clock frequency of, for example, 60 MHz to operate five times 
faster than the memory module cock frequency. With a fea 
ture vector of 39 dimensions and 8 ALUs, a Gaussian distance 
score for one Gaussian probability distribution can be calcu 
lated in 5 SSU clock cycles or 1 memory module clock cycle. 
Therefore, by design, the 5 SSU clock cycles is a predeter 
mined number of clock cycles that corresponds to 1 memory 
module clock cycle, where as one Gaussian probability dis 
tribution is read from memory device at 1 memory module 
clock cycle, a Gaussian distance score for another Gaussian 
probability distribution is calculated by accumulator 1640. 
I0127. In an embodiment, a portion of ALUs 1630-1630s 
can be activated on a rising edge of an SSU clock cycle, while 
the remaining portion of ALUs 1630-1630s can be activated 
on a falling edge of the SSU clock cycle. For example, ALUs 
1630-1630 can be activated on the rising edge of the SSU 
clock cycle and ALUs 1630s-1630s can be activated on the 
falling edge of the SSU clock cycle. As a result of staggering 
the activation of ALUs 1630-1630s, the peak current (and 
peak power) generated by distance calculator 1436 can be 
minimized, thus decreasing the susceptibility of reliability 
issues in distance calculator 1436. 
I0128 Based on the description herein, a person skilled in 
the relevant art will recognize that the architecture of distance 
calculator 1436 is not limited to the above example. Rather, as 
would be understood by a person skilled in the relevant art, 
distance calculator 1436 can operate at a faster or slower 
clock frequency of 60 MHz and that distance calculator 1436 
can include more or less than 8 ALUs. 

0129. In reference to FIG. 16, accumulator 1640 is con 
figured to receive the outputs from each of ALUs 1630 
1630s and the Gaussian weighting factor from datapath MUX 
1610 (via data bus 1614). As discussed above, in an embodi 
ment, for every SSU clock cycle, a distance score for a Gaus 
sian probability distribution dimension is outputted by each 
of ALUs 1630-1630s. These distance scores from each of 
ALUs 1630-1630s are stored and accumulated by accumu 
lator 1640 to generate a distance score for the Gaussian prob 
ability distribution dimension, or Gaussian distance score— 
e.g., accumulator 1640 adds respective distance scores 
calculated by ALUs 1630-1630s per SSU clock cycle. 
0.130. After the Gaussian distance scores associated with 
all of the Gaussian probability distribution dimensions are 
accumulated in accumulator 1640 (e.g., 39 dimensions), 
accumulator 1640 multiplies the total sum by the Gaussian 
weighting factor to generate a weighted Gaussian distance 
score. In an embodiment, the Gaussian weighting factor is 
optional, where accumulator 1640 outputs the Gaussian dis 
tance score. In another embodiment, the Gaussian weighting 
factor is specific to each Gaussian and is stored in memory 
device 1426. 
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0131 Addition module 1438 is configured to add one or 
more Gaussian distance scores (or weighted Gaussian dis 
tance scores) to generate a Senone score. As discussed above, 
each Senone can be composed of one or more Gaussian prob 
ability distributions, in which each Gaussian probability dis 
tribution can be associated with a Gaussian distance score. 
For a senone with a plurality of Gaussian probability distri 
butions (e.g., 32 Gaussian probability distributions), addition 
module 1438 Sums the Gaussian distance scores associated 
with all of the Gaussian probability distributions to generate 
the senone score. In an embodiment, addition module 1438 is 
configured to perform the Summation operation in the log 
domain to generate the Senone score. 
0132) Output buffer 1432 is configured to receive a senone 
score from addition module 1438 and transfer the senone 
score to bridge controller 1428. Bridge controller 1428, in 
turn, transfers the senone score to the external CPU via bus 
controller 1422. In an embodiment, output buffer 1432 can 
include a plurality of memory buffers such that, as a first 
senone score in a first memory buffer is being transferred to 
bridge controller 1428, a second Senone score generated by 
addition module 1438 can be transferred to a second memory 
buffer for a subsequent transfer to bridge controller 1428. 
0133 FIG. 17 is an illustration of an embodiment of a 
method 1700 for acoustic modeling. The steps of method 
1700 can be performed using, for example, APU 1400 of FIG. 
14. 
0134. In step 1710, a plurality of Gaussian probability 
distributions is received via a data bus having a width of at 
least one Gaussian probability distribution and a feature vec 
tor from an external computing device. The Gaussian prob 
ability distribution can be composed of, for example, 768 bits, 
where the width of the data bus is at least 768 bits. Further, 
APU 1400 of FIG. 14 can receive the feature vector from the 
external computing device (e.g., a CPU in communication 
with APU 1400 via I/O signals 1410 of FIG. 14). 
0135. In an embodiment, information associated with a 
plurality of dimensions of the feature vector, a plurality of 
mean values associated with the corresponding plurality of 
dimensions of the at least one Gaussian probability distribu 
tion, and a plurality of variance values associated with the 
corresponding plurality of dimensions of the at least one 
Gaussian probability distribution are distributed to, for 
example, arithmetic logic units (e.g., ALUs 1630-1630s of 
FIG. 16). 
0136. In step 1720, a plurality of dimension distance 
scores is calculated based on a plurality of dimensions of the 
feature vector and a corresponding plurality of dimensions of 
the at least one Gaussian probability distribution. In an 
embodiment, the distance score calculations are based on at 
least one Senone from an active Senone list. The active Senone 
list can include a base address associated with an address 
space of a memory device and one or more indices related to 
the base address at which the at least one Senone is located in 
the memory device. Further, a plurality of scaling factors for 
the plurality of dimensions of the feature vector are stored, 
where the plurality of scaling factors are applied to the plu 
rality of dimensions of the feature vector during the calcula 
tion of the plurality of dimension distance scores. Step 1720 
can be performed by, for example, distance calculator 1436 of 
FIG 14. 

0.137 In step 1730, the plurality of dimension distance 
scores are Summed to generate a Gaussian distance score for 
the at least one Gaussian probability distribution. In an 
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embodiment, the Gaussian distance score is generated over a 
predetermined number of senone scoring unit (SSU) clock 
cycles. The predetermined number of SSU clock cycles can 
equate to a read access time of the at least one Gaussian 
probability distribution from a memory device. Step 1730 can 
be performed by, for example, distance calculator 1436 of 
FIG 14. 
0.138. In step 1740, a plurality of Gaussian distance scores 
corresponding to the plurality of Gaussian probability distri 
butions is Summed to generate a Senone score. Step 1740 can 
be performed by, for example, distance calculator 1436 of 
FIG 14. 

0.139 Embodiments of the present invention address and 
Solve the issues discussed above with respect to conventional 
speech recognition system 200 of FIG. 3. In summary, the 
acoustic modeling process is performed by, for example, APU 
1400 of FIG. 14. The APU operates in conjunction with a 
CPU, in which the APU can receive one or more feature 
vectors (e.g., feature vectors 315 of FIG. 3) from the CPU, 
calculate a senone score (e.g., senone score 325 of FIG. 3) 
based on one or more Gaussian probability distributions, and 
output the senone score to the CPU. In an embodiment, the 
one or more Gaussian probability distributions can be stored 
in the APU. Alternatively, in another embodiment, the one or 
more Gaussian probability distributions can be stored exter 
nally to the APU, in which the APU receives the one or more 
Gaussian probability distributions from an external memory 
device. Based on embodiments of the APU architecture 
described above, an accelerated calculation for the Senone 
score is achieved. 

5. ARITHMETICLOGICUNITARCHITECTURE 

0140 FIG. 18 is a block diagram of an ALU 1800, accord 
ing to an embodiment of the present invention. In an embodi 
ment, one or more of ALUs 1630-1630s can be implemented 
according to the architecture shown in FIG. 18. ALU 1800 is 
configured to compute a one-dimensional distance score 
between a feature vector and a Gaussian probability distribu 
tion vector. For example, ALU 1800 can be configured to 
compute the one-dimensional distance score as, 

A (1) 
-- XM2, score = Mix (ln(vari) - C) + 
Varii 

where: 

As x -li, 

var, is the variance value of the i' dimension of the j" 
Gaussian probability distribution vector; 
M and M are scaling factors; 
C is a constant; 
X, is the value of the feature vector in the ith dimension; and 
Ll, is the mean value of the ith dimension of the jth Gaussian 
probability distribution vector. 
0.141. Thus, in an embodiment, for a given dimension and 
a given Gaussian probability distribution, the one-dimen 
sional distance score output by ALU 1800 is dependent on 
three variables: X, Li, and var. One technique for imple 
menting this equation in Software is to generate a look up 
table (LUT) that is indexed with these three variables. More 
over, because the score does not specifically depend on the 
values of x, and u, but rather the difference between them, 
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A this LUT can be further simplified into a dimensional 
LUT indexed by the A, and var. Thus, a two-dimensional 
LUT could be used to implement ALUs 1630-1630s. 
0142. A two-dimensional LUT, however, could have sub 
stantial drawbacks if used to implement ALUs 1630-1630s 
in the hardware implementation of FIG. 16. In particular, for 
example, because there are eight ALUs 1630-1630s that 
each compute a respective one-dimensional distance score, 
there would have to be eight copies of this two-dimensional 
LUT. In one embodiment, such a two-dimensional LUT is 
approximately 32 Kbytes, although other embodiments and 
applications may require larger LUTs. Thus, in Such an 
embodiment, eight copies of a 32 Kbyte LUT would be 
needed. If implemented in Such a mariner, a large amount of 
the total board space for the SSU would be allocated to only 
the eight two-dimensional LUTs. This problem would be 
exacerbated if larger LUTs were required or desired. 
0143. In an embodiment, ALU1800 overcomes this draw 
back of two-dimensional LUTs by implementing a scoring 
function using a combination of computational logic and a 
one-dimensional LUT. Importantly, Equation (1) can be split 
into two parts: an alu, part and a LUT, part, with each speci 
fied below. 

A 2 alutij = XM2 (2) 
vari 

LUT = MX (ln(varii) - C) (3) 

10144) Thus, ALU 1800 computes alu, and, in parallel with 
the computing, retrieves LUT. The alu, and LUT, are then 
combined to form the distance score. In particular, as shown 
in FIG. 18, ALU 1800 includes a computational logic unit 
1802 and a LUT module 1804. As described in further detail 
below, computational logic unit 1802 can compute value alu, 
and LUT module 1804 can be used to retrieve value LUT 
Moreover, ALU 1800 additionally includes a combination 
module 1806. Combination module 1806 combines the out 
puts of computational unit 1802 and LUT module 1804 and 
outputs the distance score. 
0145 Computational logic unit 1802 and LUT module 
1804 only receive the inputs that are needed to determine their 
respective value. Specifically, as described above, alu, 
depends on three variables: X, u, and var. Thus, as shown in 
FIG. 18, computational logic unit 1802 receives these three 
values as inputs. Moreover, the values retrieved from LUT 
module 1804 are indexed using value var, alone. Thus, as 
shown in FIG. 18, LUT module 1804 only receives value 
Var. 
0146 FIG. 19 shows a detailed Hock diagram of ALU 
1800, according to an embodiment of the present invention. 
In the embodiment of FIG. 19, computational logic unit 1802 
includes a subtraction module 1910, a squaring module 1912, 
a LUT 1914, a multiplier 1916, and a formatting module 
1918. Subtraction module 1910 computes the difference 
between X, and u, i.e., subtraction module 1918 computes 
A. Squaring module 1912 squares the difference output by 
Subtraction module 1910 generating an integer representing 
Af. 
0147 In an embodiment, LUT 1914 outputs a value that 
corresponds to 
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Multiplier 1916 computes a product of two terms: (1) the 
value retrieved from LUT 1914 and (2) the square output by 
squaring module 1912. Thus, the output of multiplier 1916 is 

2 

XM2. 
vari 

This product value is received by formatting module 1918, 
which formats the result so that it can be effectively combined 
with the output of LUT module 1804. 
0.148. As shown in FIG. 19, LUT module 1804 includes a 
LUT 1920 and a formatting module 1922. LUT 1920 stores 
values corresponding to LUT, as expressed in Equation (3), 
and is indexed using var. The value retrieved from LUT 1920 
is received by formatting module 1922. Formatting module 
1922 formats the output of LUT 1920 so that it can be effec 
tively combined with the output of computational logic unit 
1802. 
014.9 The outputs from computational unit 1802 and LUT 
module 1804 are received at combination module 1806. 
Combination module 1806 includes an adder 1930, a shift 
module 1932, a rounding module 1934, and a saturation mod 
ule 1936. Adder 1930 computes the sum of the two received 
values and outputs the sum. Shift module 1932 is configured 
to remove the fractional portion of the sum output by adder 
1930. Rounding module 1934 is configured to round down 
the output of shift module 1934. Saturation module 1936 is 
configured to receive the rounded sum and saturate the value 
to a specific number of bits. Thus, the output of saturation 
module 1936 is a value having a specific number of bits that 
represents the one-dimensional distance score. 
0150 FIG. 20 is a block diagram of computational unit 
1802, according to another embodiment of the present inven 
tion. The embodiment shown in FIG. 20 is similar to the 
embodiment of FIG. 19, except that the embodiment of FIG. 
20 additionally includes a transform module 2002, an excep 
tion handling module 2012, a formatting module 2014, and a 
multiplexer 2018. 
0151. Transform module 2002 includes a multiplier 2020, 
a scale bit module 2022, and a saturation module 2024. As 
described above, values of feature vector can be transformed 
by respective entries in a feature vector transform matrix to, 
for example, account for learned characteristics of a speaker. 
In an embodiment, transform module 2002 can be configured 
to scale individual feature vector values X, by corresponding 
transform values C. Specifically, multiplier 2020 computes a 
product of the feature vector value X, and the corresponding 
transform value C, and outputs a value to scale bit module 
2022. Scale bit module 2022 shifts to the right and outputs the 
resulting integer to saturation module 2024. Saturation mod 
ule 2024 is similar to saturation module 1936, described with 
reference to FIG. 19, saturates the received value to a specific 
number of bits. Thus, the output of saturation module 2024 is 
a value that represents the scaled feature vector value. 
0152 Exception handling module 2012 and multiplexer 
2018 are configured to address specific errors present in LUT 
1914. For example, in an effort to save space, the size of LUT 
1914 can be reduced. This reduction in size can cause specific 
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values of LUT 1914 to have an error. In such an embodiment, 
exception handling module 2012 can recognize if the output 
of LUT 1914 will be one of those values, and output the 
correct value. Put another way, exception handling module 
2012 can act as a LUT that includes an entry for each entry of 
LUT 1914 that may have an error due to size restrictions. 
Because LUT 1914 is indexed based on var, exception han 
dling module 2012 can recognize whether the output of LUT 
1914 needs to be corrected based on the value of var. 
0153. In a further embodiment, exception handling mod 
ule 2012 can act as a two-dimensional LUT that also receives 
A. In such an embodiment, exception handling module 2012 
can output specific values of alu, (e.g., as opposed to the 
corresponding entry from LUT 1914). Because the number of 
these possible errors in LUT 1914 is relatively small, excep 
tion handling module 2012 does not occupy a significant 
amount of space, as would other, larger two-dimensional 
LUTs. Furthermore, by controlling multiplexer 2018 to out 
put the output of exception handling module 2012 instead of 
the output of sign bit module 1918, exception handling mod 
ule 2012 can ensure that the stored value for alu, rather than 
the value of alu, calculated using the incorrect output of LUT 
1914 is finally output to combination module 1806. 
0154 Formatting module 2014 receives the product com 
puted by multiplier 1916. In an embodiment, formatting mod 
ule 2014 is configured to reduce the number of bits in the 
result. While not necessary, this operation can save space and 
power by reducing the number of bits on the output. 
O155 Moreover, the embodiment of FIG. 20 shows sub 
traction module 1810 as including multiplexers 2004 and 
2006, comparison module 2008, and a subtractor 2010. In an 
embodiment, squaring module 1912 may be configured to 
square specifically positive values. Thus, the output of Sub 
traction module 1910 in such an embodiment must be posi 
tive. To achieve this result, the two operands, i.e., the feature 
vector value (optionally scaled with transform value o) and 
the mean value u, can be compared by comparison module 
2008. Comparison module 2008 then outputs a control signal 
to multiplexers 2004 and 2006 to ensure that the first operand 
into subtractor 2010 is at least as large as the than the second 
operand. 
0156 FIG. 21 is an illustration of an embodiment of a 
method 2100 for computing a one-dimensional distance 
score. The steps of method 2100 can be performed using, for 
example, ALU 1800 shown in FIG. 18. In step 2102, a feature 
vector dimension is scaled by a transform value. In step 2104, 
a first value is computed based on the feature vector value and 
a mean and a variance associated with a Gaussian probability 
distribution vector. In step 2106, a second value is retrieved 
based on the variance value. For example, in FIG. 19, LUT 
module 1804 can be used to retrieve variance value. In step 
2108, the first and second values are combined to generate the 
one-dimensional score. 

6. ACOUSTIC PROCESSING UNIT INTERFACE 

(O157 A. System Overview 
0158 FIG.22 is a block diagram of an acoustic processing 
system 2200, according to an embodiment of the present 
invention. Acoustic processing system includes a central pro 
cessing unit (CPU) 2210 and an acoustic processing unit 
(APU) 2220. Running on CPU 2210 are an application 2212. 
a voice recognition engine 2214, and an API 2216. Voice 
recognition engine 2214 is a process that includes at least two 
threads: a search thread 2250 and a distance thread 2260. 
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0159 APU 2220 includes an acoustic model memory 
2222, a first bus 2224, a memory buffer 2226, a second bus 
2228, and a senone scoring unit 2230. Acoustic model 
memory 2222 can be configured to store a plurality of senones 
that together form one or more acoustic models. First bus 
2224 is a wide bus that is configured to allow acoustic model 
memory to output an entire Gaussian probability distribution 
vector to memory buffer 2226. Senone scoring unit 2230 
scores a Senone score against a feature vector received from 
CPU 2210. Senone scoring unit 2230 can be implemented as 
described above. For example, Senone scoring unit can be 
implemented as shown in FIG. 15. For more information on 
senone scoring unit 2230, see Section 4, above. 
0160 Memory buffer 2226 can hold a Gaussian probabil 
ity distribution vector until senone scoring unit 2230 is ready 
to compute a Gaussian distance score for it. That is, if senone 
scoring unit 2230 is scoring a feature vector received from 
CPU 2210 against a Gaussian probability distribution vector 
q, memory buffer 2226 can hold the next Gaussian probability 
distribution vector to be scored, i.e., vector q+1. 
(0161. As shown in FIG. 22, the inputs to APU 2220 
include a reference to a specific Senone (Senone ii) and the 
feature vector. The senone it input addresses the stored vector 
information corresponding to that particular Senone in the 
acoustic model memory. The output of APU 2220 is the 
senone score, which represents the probability that the refer 
enced Senone emits the feature vector in a given time frame. 
In an embodiment, acoustic model memory 2222 utilizes a 
parallel read architecture and a very large internal bandwidth 
bus 2224. The number of bits read in parallel is greater than 
256 (e.g., 768 bits wide—sufficient to load an entire Gaussian 
probability distribution vector at once). The values read from 
the acoustic model memory 2222 are then latched into 
memory buffer 2226, using very large bandwidth bus 2224. 
Both of the output from memory buffer 2226 and the obser 
Vation vector information are input into Senone scoring unit 
2230 which performs the multiplications and additions 
required to compute the senone score. Bus 2228, over which 
memory buffer 2226 communicates with Senone scoring unit 
2230, is substantially similar to bus 2224. 
0162. As noted above, the senone score is computed by 
calculating the scores of the J Gaussian probability distribu 
tion vectors of dimension N, and by then Summing them 
together to get the total score. Some scoring algorithms, how 
ever, use only the most significant Gaussians in the calcula 
tion to increase the speed of the computation. When utilizing 
algorithms based on a partial set of Gaussians, only those bits 
associated with the required Gaussians need to be transferred 
from the acoustic model memory to Senone scoring unit 2230. 
In other words, the largest number of contiguous bits in 
memory which will always be required by Senone scoring unit 
2230 is equal to the number of bits used to store a single 
Gaussian probability distribution vector. The bandwidth 
requirements of the memory bus as well as the number of bits 
that need to be read in parallel with be minimized by trans 
ferring only those bits comprising a single Gaussian probabil 
ity distribution vector in each transfer. Using this number of 
bits per transfer, the power requirements of APU 2220 can be 
reduced and the transfer rate of the necessary data to Senone 
scoring unit 2230 will be increased, resulting in an improve 
ment of the overall system performance. Put another way, by 
reducing the number of bits per transfer, the power require 
ments of APU 2220 can be reduced and the transferrate of the 
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necessary data to Senone scoring unit 2230 can also be 
increased, resulting in an improvement of the overall system 
performance. 
0163 As discussed above, acoustic modeling is one of the 
major bottlenecks in many types of speech recognition sys 
tem (i.e., keyword recognition, or large Vocabulary continu 
ous speech recognition). Because of the large number of 
comparisons and calculations, high performance and/or par 
allel microprocessors are commonly used, and a high band 
width bus between the memory storing the acoustic models 
and the processors is required. In the embodiment of FIG. 22. 
the acoustic model memory 2222 can be incorporated into 
APU 2220, which is integrated into a single die with senone 
scoring unit 2230, with both of them connected using a wide, 
high bandwidth internal buses 2224 and 2228 to improve the 
data transfer rate. However, while increasing the number of 
bits per transfer does improve the data transferrate, it does not 
always improve the overall system performance. 
0164. The number of bits per transfer can also a function of 
the algorithms used for acoustic modeling. When scoring 
algorithms based on a partial set of Gaussians are used (i.e. 
Gaussian Selection) then the number of bits per transfer can 
be equal to the size of the Gaussian used by the algorithm. 
Fewer number of bits per transfer requires multiple cycles to 
transfer the data comprising the Gaussian, while greaternum 
bers of bits per transfer is inefficient due to data non-locality. 
0165. In an embodiment, anarchitecture is used for acous 

tic modeling hardware accelerators when scoring algorithms 
are used is at least partially based on a partial set of Gaussians 
(i.e., Gaussian Selection). This optimized architecture can 
result in a significant improvement in the overall system 
performance compared to other architectures. 
0166 FIG.23 is a block diagram of an acoustic processing 
system 2300, according to an embodiment of the present 
invention. Acoustic processing system 2300 includes a pro 
cessor 2310, a dedicated DRAM module 2302, a DRAM 
module 2304, and a non-volatile memory module 2306. Non 
Volatile memory module 2306 can be implementedas, e.g., an 
embedded FLASH memory block. Processor 2310 includes a 
CPU2312, a hardware accelerator 2314, and a memory inter 
face 2316. Hardware accelerator 2314 includes a senone scor 
ing unit 2320. Senone scoring unit 2320 can be implemented 
as described above. For example, Senone scoring unit can be 
implemented as shown in FIG. 15. 
(0167. In an embodiment, dedicated DRAM module 2302 
is dedicated to Senone scoring unit 2320 to, for example, store 
Senones. Thus, memory interface 2316 can couple Senone 
scoring unit 2320 to dedicated DRAM 2302. 
0168 FIG.24 is a block diagram of a hardware accelerator 
2400, according to an embodiment of the present invention. 
Hardware accelerator 2400 includes a processor 2402 and a 
dedicated DRAM module 2404. Processor 2402 includes a 
serial peripheral interface (SPI) bus interface module 2412, a 
Senone scoring unit 2414, and a memory interface 2416. 
Senone scoring unit 2414 can be implemented as described 
above (e.g., as shown in FIG. 15). As shown in FIG. 24. 
dedicated DRAM module 2404 stores one or more acoustic 
models. In an alternate embodiment, DRAM module 2404 
can instead be a non-volatile memory module, e.g., a FLASH 
memory module. In still another embodiment, DRAM mod 
ule 2404 can instead be a memory module that includes a 
volatile memory module (e.g., DRAM) and a non-volatile 
memory module (e.g., FLASH). In Such an embodiment, the 
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acoustic model can initially be stored in the non-volatile 
memory module and can be copied to the volatile memory 
module for Senone scoring. 
0169. SPI interface module 2412 can provide an interface 
to an SPI bus, which, in turn, can couple hardware accelerator 
2400 to a CPU. Memory interface 2416 couples senone scor 
ing unit 2414 to dedicated DRAM module 2404. In an 
embodiment, a Voice-recognition system can be implemented 
in a cloud-based solution in which the Senone scoring and 
processing necessary for Voice-recognition is performed in a 
cloud-based Voice-recognition application. 
(0170 B. Software Stack 
0171 FIG.25 is a block diagram illustrating an APU soft 
ware stack 2500, according to an embodiment of the present 
invention. Software stack 2500 can be used to conceptually 
illustrate the communications between components in an 
acoustic processing System, e.g., acoustic processing System 
2200 described with reference to FIG. 22. Stack 2500 
includes an application 2502, a Voice recognition engine 
2504, an application programming interface (API) 2550, an 
SPI bus controller 2512, an SPI bus 2514, and an APU 2516. 
API 2550 includes a Generic DCA 2506, a low level driver 
(LLD)2508, and a hardware abstraction layer(HAL) 2510. In 
an embodiment, application 2502, Voice recognition engine 
2504, API 2550, and APU 2516 can correspond to application 
2212, voice recognition engine 2214, API 2216, and APU 
2220 of FIG. 22, respectively. 
0172. In software stack 2500, application 2502 communi 
cates with voice recognition engine 2504, which in turn, 
communicates with Generic DCA 2506. In an embodiment, 
voice recognition engine 2504 is coupled to the Generic DCA 
2506 via a DCA API. Generic DCA 2506 can be coupled to 
LLD 2508 via a LLD API. LLD 2508 can be coupled to HAL 
2510 via an HAL API. HAL 2510 is communicatively 
coupled to SPI Bus Controller 2512 which is communica 
tively coupled to SPI bus 2514. APU 2516 is communica 
tively coupled to SPI bus 2514 and is communicatively 
coupled to the HAL 2510 via bus controller 2512 and SPI bus 
2514. 

0173. In an embodiment, software stack 2500 provides a 
software interface between APU 2516 and application 2502 
(e.g., an application that employs Voice recognition). In par 
ticular, application 2502 and voice recognition engine 2504 
can be “hardware agnostic.” That is, the application 2502 and 
Voice recognition engine 2504 can complete their respective 
operations without detailed knowledge about how the dis 
tance, or Senone, scoring is taking place. 
(0174 Generic DCA 2506, LLD layer 2508, and HAL 
layer 2510 include hardware-specific API calls. In an embodi 
ment, the API calls of HAL 2510 depend on the type of 
controller to which it is connected. In an embodiment, the bus 
interface for APU 2516 can be a different bus and controller 
combination, requiring a different HAL (with different API 
calls). 
(0175 Generic DCA 2506 is a distance computational API. 
The DCA can be defined by a software developer. In an 
embodiment, the DCA API is specifically defined to support 
a voice recognition engine. Such as voice recognition engine 
2504. Also, Generic DCA 2506 can be implemented specifi 
cally for APU 2516. Moreover, LLD 2508 can be a functional 
abstraction of the Senone scoring unit commands and can be 
a one-to-one mapping to the Senone scoring unit commands. 
As shown in FIG.25, low-level driver2508 is coupled to HAL 
251O. 
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(0176) The DCA API can include the following five func 
tions: Create, Close, Set Feature, Compute Distance Score, 
and Fill Scores. In an embodiment, the Create function speci 
fies which acoustic model is to be used. There can be one or 
more acoustic models stored in memory (e.g., one or more 
acoustic models for each language). For example, as dis 
cussed above with reference to FIG. 22, dedicated acoustic 
model memory 2222 of APU can store the acoustic model 
(e.g., Senone library(s)). Moreover, given an acoustic model 
(e.g., a library of Senones that stores the Gaussian distribution 
of the Sound corresponding to the various Senones) and a 
feature vector, the Create function can specify the number of 
dimensions in the feature vector. In an embodiment, for 
English the feature vector can have 39 dimensions. In another 
embodiment, for other languages, the feature vector can have 
another number of dimensions. More generally, the number 
of dimensions can vary depending on the specific spoken 
language selected for Voice recognition processing. Thus, the 
Create function specifies the acoustic model selected, number 
of dimensions, and number of Senones. The Close function is 
a function that ends delivery of feature vectors, audio sample 
portions, and Senone scoring requests to the hardware accel 
erator (e.g., APU 2516). 
0177. In an embodiment, the Set Feature function is used 
to set the Senone scoring requests into their respective frames 
by passing a specific framelD, a passID, and the feature 
vector. As noted above, the input audio signal can be broken 
up into frames (e.g., by Voice recognition engine 2504). An 
exemplary frame comprises spectral characteristics of a por 
tion of the audio input signal. In an embodiment, a frame can 
be 12 milliseconds (ms) long. The Set Feature function can 
convert each frame into 39 dimensions (e.g., 39 8-bit values). 
The Set Feature function can specify a particular frame's ID 
and the associated feature vector. 
0178. In an embodiment, the Distance Compute Score 
function calculates the Senone score (e.g., Gaussian probabil 
ity), which, as noted above, can be implemented as a distance 
calculation. This function can be used to begin and prepare 
the Senone scoring. For example, the feature vector can be 
input into APU 2516 and APU 2516 will score againstall the 
Senones stored in the acoustic model, or at least a selected 
portion of the senones. This score will then be given back to 
the upper layer. In an embodiment, the Distance Compute 
Score function can specify that a portion or the complete 
acoustic model will be used for the Senone scoring. 
0179. In an embodiment, the Fill Scores function takes the 
Senone scoring result and returns it to the upper Software 
layers, including application 2502 and Voice recognition 
engine 2504. 
0180. In an embodiment, voice recognition engine 2504 
can be used for any form of pattern recognition, e.g., pattern 
recognition forms that use a Hidden Markov model for pat 
tern recognition. In another embodiment, another form of 
pattern recognition also uses Gaussian calculations. 
Examples of pattern recognition can include, but are not 
limited to the above described senone scoring for speech 
recognition, image processing and handwritten recognition. 
0181. As noted above, application 2502 and voice recog 
nition engine 2504 are agnostic to any hardware used to 
determine the Senone score. In an embodiment, a particular 
APU can be swapped out for different hardware without 
application 2502 and voice recognition engine 2504 knowing 
or being effected. When application 2502 and voice recogni 
tion engine 2504 are agnostic to any type of hardware used for 
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the Senone scoring, a first hardware accelerator can be 
replaced with a second hardware accelerator of a different 
design without requiring any redesign of application 2502 
and Voice recognition engine 2504. In other words, as dis 
cussed herein, while the APU Library of calls are specific to 
the type and design of hardware accelerator used, the Generic 
DCA Library calls are not hardware specific. 
0182. In an embodiment, a software architecture, as illus 
trated in FIG. 25, can be described by describing a data and 
control flow through the software stack illustrated in FIG. 25. 
Application 2502 can be any application that uses the voice 
recognition engine. In an embodiment, Voice recognition 
engine 2504 is the Vocon Engine provided by Nuance, Inc. In 
alternate embodiments, other speech recognition engines or 
pattern recognition engines that make use of a Gaussian Mix 
ture Model (GMM) for probability estimation may be used. 
0183 In an embodiment, APU 2516 computes senone 
scores using the Gaussian Mixture Model. APU 2516 can 
compute these scores much faster (e.g., by an order of mag 
nitude) than an embedded processor (e.g., a cortex A8 embed 
ded processor) making speech recognition more practical in 
on-board speech recognition systems with APU 2516. Off 
loading the Senone scoring (or distance computation) to APU 
2516 not only improves the user experience (by reducing the 
computational latency) but also allows CPU 2210 to attend to 
other tasks in the system. The Software architecture plays an 
important role in reducing the CPU load and the latency. 
0184. In an embodiment, voice recognition engine 2504 is 
not directly aware of APU 2516. For example, voice recog 
nition engine 2504 can use Generic DCA API 2506 to com 
pute the distances (also referred to as Senone scores). The 
specific implementation of the Generic DCA library dis 
cussed here has been designed specifically to use APU 2516, 
with a plurality of function calls to the APU discussed below. 
This differs from a fully software implementation of the 
Generic DCA library. This specific implementation translates 
the Generic DCA library calls to a sequence of APU library 
calls. The details of the implementation are described below. 
The definition and implementation of the APU library is 
specific to the current implementation of the APU and is also 
described Below. 

0185. In an embodiment, Generic DCA 2506 operates as 
an interface layer between the voice recognition engine 2504 
and APU 2516. For example, voice recognition engine 2504 
can utilize generic API calls to the Generic DCA to request 
senone scoring. Generic DCA 2506 then utilizes an APU 
specific library of API calls, described further below, to direct 
the APU hardware accelerator to perform the requested 
Senone scoring. Because Voice recognition engine 2504 is not 
aware of APU 2516, voice recognition engine 2504 can take 
advantage of the following benefits. For example, Voice rec 
ognition engine 2504 may only need to know the message 
passing formats of APU 2516. Voice recognition engine 2504 
also does not need to know the tasks to be performed by APU 
2516. Moreover, there is a swap-out benefit. That is, APU 
2516 can be replaced or redesigned without requiring any 
redesign of voice recognition engine 2504. Only the interface, 
in this embodiment Generic DCA 2506, needs to have the 
hardware specific API calls to ensure the required interoper 
ability between voice recognition engine 2504 and APU 
2516. 
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0186. In one exemplary embodiment, a Generic DCA 
Library comprises the following list of functions: 
0187 Function name: distance computation create 
0188 input parameters: 
(0189 acoustic model. 
0.190 number of dimensions in the feature vector. 
(0191 total number of senones in the acoustic model. 

0.192 description: stores these parameters as part of the 
state of distance computation. 
0193 Function name: distance computation setfeature 
0194 Input parameters: 
(0195 Frame Id 
0196) feature vector 

0197) Description: store the feature vector corresponding 
to the frame Id. 
0198 Function name: distance computation com 
putescores 
(0199 Input parameters: 

0200 Frame Id 
0201 List of Senones to score 

0202 Description: specifies the senones to be scored for a 
given frame. 
0203 Function name: distance computation fillscores 
0204 Input parameters: 
0205 Buffer containing the scores 

0206. Description: store the senone scores in the buffer. 
0207 Function name: distance computation setfeature 
matrix 

0208 Input parameters: 
0209 pMatrix 

0210 Description: stores the feature vector transforma 
tion matrix given by “pMatrix” in APU. 
0211. The distance computation setfeaturematrix func 
tion is called between utterances to adapt the recognition to 
the specific speaker. The APU uses this matrix when comput 
ing the Senone scores for the next utterance. 
0212. In an embodiment, “distance computation com 
putescores' and “distance computation fillscores' can be 
implemented Such that the computational latency and the 
CPU load are minimized. For example, these functions can be 
implemented so as to achieve the concurrent operation 
embodied in FIG. 26. 
0213. In one exemplary embodiment, an APU Library 
Supports the following functions: 
0214 Function name: apu set acoustic model 

0215. Input parameters: 
0216 Acoustic model 

0217 Description: sets the acoustic model to be used 
for Senone scoring. 

0218 Function name: apu load feature vector 
0219. Input parameters: 
0220 Feature vector 

0221 Description: Loads the feature vector in to the 
APU. 

0222 Function name: apu score Senone chunk 
0223 Input parameters: 
0224 Senone list 

0225. Description: Loads the senone list in to the APU 
for scoring. 

0226 Function name: apu score range 
0227. Input parameters: 
0228 Range of senones specified by the first and last 
index 
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0229. Description: Instructs APU to score all the 
Senones in the range. 

0230 Function name: apu read Senone scores 
0231. Input parameters: 

0232) Number of scores to read 
0233. Destination buffer 

0234. Description: Reads the scores and stores in the 
destination buffer. 

0235 Function name: apu check score ready status 
0236. Input parameters: 
0237 none 

0238. Description: Checks if the scores are ready to be 
read form the APU. 

0239 Function name: apu read score length 
0240 Input parameters: 
0241 none 

0242. Description: Reads the status register to find the 
number of score entries available. 

0243 Function name: apu read status 
0244 Input parameters: 
0245 Register index 

0246 Description: Reads the status register specified by 
register index. 

0247 Function name: apu read configuration 
0248. Input parameters: 

0249 none 
0250. Description: Reads the configuration register. 

0251 Function name: apu write configuration 
0252 Input parameters: 
0253 Configuration data 

0254. Description: Writes to the configuration register. 
0255. In an embodiment, the APU can be used for scoring 
the Senones for each frame of a given utterance. The acoustic 
model of choice is communicated to the APU at the beginning 
as part of the function distance computation create. The fea 
ture vector for a given frame is passed to the APU via the 
function distance computation setfeature. The Senones to be 
scored for a given frame are passed to the APU via the func 
tion distance computation computescores. The actual 
scores computed by the APU can be passed back to the Voice 
Recognition Engine via the function distance computation 
fillscores. 
(0256 The control flows from top to bottom of stack 2500 
illustrated in FIG. 25. All the functions are synchronous and 
they complete before returning except for the function dis 
tance computation computescores. As noted below, the 
scoring can be implemented as a separate thread to maximize 
the concurrency of distance computation and the search as 
described above. This thread yields the CPU to the rest of 
voice recognition engine 2214 whenever it is waiting for APU 
2220 to complete the distance computation. This asynchro 
nous computation is important to minimize the latency as well 
as the CPU load. 
0257 C. Concurrent Search and Distance Score Compu 
tation 
0258. In one embodiment, a thread (e.g. an executable 
process) separate from a thread that is being executed by 
application 2502 or voice recognition engine 2504 can be 
created for APU 2516. For there to be separate threads, there 
must be no dependency (that a further action of a first actor is 
dependent upon the actions of a second actor). Breaking any 
dependency between application 2502 and voice recognition 
engine 2504 and APU 2516 allows application 2502 and 
voice recognition engine 2504 to operate in parallel with APU 
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2516. In one exemplary embodiment, a dependency between 
application 2502 and voice recognition engine 2504 on one 
hand and APU 2516 on the other can be avoided through the 
use of frames, e.g., lasting approximately 10-12 ms (although 
the invention is not limited to this embodiment). For example, 
while the application 2502 is using the senone score for frame 
n, APU 2516 can be performing a senone score for frame n+1. 
0259 More specifically, a voice recognition operation 
requires two discrete operations: scoring and searching. As 
described above, the scoring operation involves a comparison 
between Gaussian probability distribution vectors of a senone 
with the feature vector corresponding to a specific frame. In 
an embodiment, software stack 2500 can be configured such 
that these two operations occur in parallel. In particular, as 
shown in FIG. 22, Voice recognition engine 2214 can include 
search thread 2250 and distance thread 2260. Distance thread 
2260 can manage distance calculations completed on APU 
2220 and search thread 2250 can use the results of the dis 
tance calculations to determine which Sound was received 
(e.g., by searching a library of Senone scores to determine the 
best match). By setting distance thread 2260 to a higher 
priority than search thread 2250, distance thread 2260 can 
perform the operations needed to start the scoring operation 
on APU 2220. The distance thread 2260 can then be put to 
sleep. While asleep, search thread 2250 can be activated and 
can search using the results of the last distance operation. 
Because the length of time needed to complete a distance 
computation is relatively predictable, distance thread can be 
put to sleep for a predetermined amount of time. In alternative 
embodiments, distance thread 2260 can be put to sleep indefi 
nitely and an interrupt from APU 2220 can instead be used to 
wake up distance thread 2260. In doing so, APU 2220 can be 
used to compute a distance score for a frame n+1, while CPU 
2210 performs a searching operation using the previously 
calculated score for frame n. 
0260 For any given frame, the search can follow the dis 
tance computation as illustrated in FIG. 26. In particular, the 
distance computation for frame (i+1) can be performed while 
the search for frame i is being conducted. Thus, as shown in 
FIG. 26, the distance computation performed by the APU can 
be performed concurrently with the search function per 
formed by the CPU. In an embodiment, a call sequence to the 
DCA library is arranged to effect this operation. In a further 
embodiment, the Generic DCA is implemented so that the 
concurrency of the search computation and the distance com 
putation is maximized. In an embodiment, an implementation 
of the Generic DCA library uses the API proved by the APU 
library. 
0261 FIG. 27 is an illustration of an embodiment of a 
method 2700 for acoustic processing. The steps of method 
2700 can be performed using, for example, acoustic process 
ing system 2200, shown in FIG.22, along with software stack 
2500, shown in FIG. 25. 
0262. In step 2702, the received audio signal is divided 
into frames. For example, in FIG. 22, Voice recognition 
engine 2214 can divide a received audio signal into frames 
that are, for example, 10-12 ms in length. 
0263. In step 2704, a search thread and a distance compu 
tation thread are created. For example, in FIG. 22, voice 
recognition engine 2214 can create search thread 2250 and 
distance thread 2260. 
0264. In step 2706, a distance score is computed using an 
APU. For example, in FIG. 22, at the direction of distance 
thread 2260, senone scoring unit 2230 of APU 2220 can 
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compute a distance score between a feature vector corre 
sponding to a frame and a Gaussian probability distribution 
Vector. 
0265. In step 2708, a search operation is performed using 
the computed score for the frame. For example, in FIG. 22. 
search thread 2250 can use the distance score computed in 
step 2706 to search different senones to determine which 
Sound was included in the frame. 
0266. In step 2710, it is determined whether the frame was 
the last frame of the audio signal. If so, method 2700 ends. If 
not, method 2700 proceeds to step 2712. 
0267 In step 2712, concurrently with the search operation 
of step 2708 a distance score for the next frame is computing 
using the APU. For example, in FIG. 22, APU 2220 can be 
used to compute a distance score for a frame i+1 concurrently 
with search thread 2250 performing a search operation using 
the distance score for frame i. 

7. EXEMPLARY COMPUTER SYSTEM 

0268 Various aspects of the present invention may be 
implemented in Software, firmware, hardware, or a combina 
tion thereof, FIG.28 is an illustration of an example computer 
system 2800 in which embodiments of the present invention, 
or portions thereof, can be implemented as computer-read 
able code. For example, the method illustrated by flowchart 
900 of FIG. 9, the method illustrated by flowchart 1700 of 
FIG. 17, the method illustrated by flowchart 2100 of FIG. 21, 
software stack 2500 illustrated in FIG. 25, and/or the method 
illustrated by flowchart 2700 of FIG. 27can be implemented 
in system 2800. Various embodiments of the present inven 
tion are described in terms of this example computer system 
2800. After reading this description, it will become apparent 
to a person skilled in the relevant art how to implement 
embodiments of the present invention using other computer 
systems and/or computer architectures. 
0269. It should be noted that the simulation, synthesis 
and/or manufacture of various embodiments of this invention 
may be accomplished, in part, through the use of computer 
readable code, including general programming languages 
(such as C or C++), hardware description languages (HDL) 
such as, for example, Verilog HDL, VHDL. Altera HDL 
(AHDL), or other available programming and/or schematic 
capture tools (such as circuit capture tools). This computer 
readable code can be disposed in any known computer-usable 
medium including a semiconductor, magnetic disk, optical 
disk (such as CD-ROM, DVD-ROM). As such, the code can 
be transmitted over communication networks including the 
Internet. It is understood that the functions accomplished 
and/or structure provided by the systems and techniques 
described above can be represented in a core (e.g., an APU 
core) that is embodied in program code and can be trans 
formed to hardware as part of the production of integrated 
circuits. 
0270 Computer system 2800 includes one or more pro 
cessors, such as processor 2804, Processor 2804 may be a 
special purpose or a general-purpose processor Such as, for 
example, the APU and CPU of FIG.4, respectively. Processor 
2804 is connected to a communication infrastructure 2806 
(e.g., a bus or network). 
0271 Computer system 2800 also includes a main 
memory 2808, preferably random access memory (RAM), 
and may also include a secondary memory 2810. Secondary 
memory 2810 can include, for example, a hard disk drive 
2812, a removable storage drive 2814, and/or a memory stick. 
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Removable storage drive 2814 can include a floppy disk 
drive, a magnetic tape drive, an optical disk drive, a flash 
memory, or the like. The removable storage drive 2814 reads 
from and/or writes to a removable storage unit 2818 in a 
well-known manner. Removable storage unit 2818 can com 
prise a floppy disk, magnetic tape, optical disk, etc. which is 
read by and written to by removable storage drive 2814. As 
will be appreciated by persons skilled in the relevant art, 
removable storage unit 2818 includes a computer-usable stor 
age medium having stored therein computer software and/or 
data. 
0272 Computer system 2800 (optionally) includes a dis 
play interface 2802 (which can include input and output 
devices such as keyboards, mice, etc.) that forwards graphics, 
text, and other data from communication infrastructure 2806 
(or from a frame buffer not shown) for display on display unit 
283O. 
0273. In alternative implementations, secondary memory 
2810 can include other similar devices for allowing computer 
programs or other instructions to be loaded into computer 
system 2800. Such devices can include, for example, a 
removable storage unit 2822 and an interface 2820. Examples 
of such devices can include a program cartridge and cartridge 
interface (such as those found in video game devices), a 
removable memory chip (e.g., EPROM or PROM) and asso 
ciated Socket, and other removable storage units 2822 and 
interfaces 2820 which allow software and data to be trans 
ferred from the removable storage unit 2822 to computer 
system 2800. 
0274 Computer system 2800 can also include a commu 
nications interface 2824. Communications interface 2824 
allows software and data to be transferred between computer 
system 2800 and external devices. Communications interface 
2824 can include a modem, a network interface (such as an 
Ethernet card), a communications port, a PCMCIA slot and 
card, or the like. Software and data transferred via commu 
nications interface 2824 are in the form of signals which may 
be electronic, electromagnetic, optical, or other signals 
capable of being received by communications interface 2824. 
These signals are provided to communications interface 2824 
via a communications path 2826. Communications path 2826 
carries signals and can be implemented using wire or cable, 
fiber optics, a phone line, a cellular phone link, a RF link or 
other communications channels. 

0275. In this document, the terms “computer program 
medium' and “computer-usable medium' are used to gener 
ally refer to media such as removable storage unit 2818, 
removable storage unit 2822, and a hard disk installed in hard 
disk drive 2812. Computer program medium and computer 
usable medium can also refer to memories, such as main 
memory 2808 and secondary memory 2810, which can be 
memory semiconductors (e.g., DRAMs, etc.). These com 
puter program products provide Software to computer system 
28OO. 

0276 Computer programs (also called computer control 
logic) are stored in main memory 2808 and/or secondary 
memory 2810. Computer programs may also be received via 
communications interface 2824. Such computer programs, 
when executed, enable computer system 2800 to implement 
embodiments of the present invention as discussed herein. In 
particular, the computer programs, when executed, enable 
processor 2804 to implement processes of embodiments of 
the present invention, such as the steps in the method illus 
trated by flowchart 900 of FIG.9 and flowchart 1700 of FIG. 
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17, the method illustrated by flowchart 2100 of FIG. 21, the 
method illustrated by flowchart 2700 of FIG. 27, and or the 
functions in software stack 2500 illustrated in FIG. 25 can be 
implemented in system 2800, discussed above. Accordingly, 
Such computer programs represent controllers of the com 
puter system 2800. Where embodiments of the present inven 
tion are implemented using Software, the Software can be 
stored in a computer program product and loaded into com 
puter system 2800 using removable storage drive 2814, inter 
face 2820, hard drive 2812, or communications interface 
2824. 

0277 Embodiments of the present invention are also 
directed to computer program products including Software 
stored on any computer-usable medium. Such software, when 
executed in one or more data processing device, causes a data 
processing device(s) to operate as described herein. Embodi 
ments of the present invention employ any computer-usable 
or-readable medium, known now or in the future. Examples 
of computer-usable mediums include, but are not limited to, 
primary storage devices (e.g., any type of random access 
memory), secondary storage devices (e.g., hard drives, floppy 
disks, CDROMS, ZIP disks, tapes, magnetic storage devices, 
optical storage devices, MEMS, nanotechnological storage 
devices, etc.), and communication mediums (e.g., wired and 
wireless communications networks, local area networks, 
wide area networks, intranets, etc.). 

8. CONCLUSION 

0278. It is to be appreciated that the Detailed Description 
section, and not the Summary and Abstract sections, is 
intended to be used to interpret the claims. The Summary and 
Abstract sections may set forth one or more but not all exem 
plary embodiments of the present invention as contemplated 
by the inventors, and thus, are not intended to limit the present 
invention and the appended claims in any way. 
0279 Embodiments of the present invention have been 
described above with the aid of functional building blocks 
illustrating the implementation of specified functions and 
relationships thereof. The boundaries of these functional 
building blocks have been arbitrarily defined herein for the 
convenience of the description. Alternate boundaries can be 
defined so long as the specified functions and relationships 
thereofare appropriately performed. 
0280. The foregoing description of the specific embodi 
ments will so fully reveal the general nature of the invention 
that others can, by applying knowledge within the skill of the 
relevant art, readily modify and/or adapt for various applica 
tions such specific embodiments, without undue experimen 
tation, without departing from the general concept of the 
present invention. Therefore. Such adaptations and modifica 
tions are intended to be within the meaning and range of 
equivalents of the disclosed embodiments, based on the 
teaching and guidance presented herein. It is to be understood 
that the phraseology or terminology herein is for the purpose 
of description and not of limitation, such that the terminology 
or phraseology of the present specification is to be interpreted 
by the skilled artisan in light of the teachings and guidance. 
0281. The breadth and scope of the present invention 
should not be limited by any of the above-described exem 
plary embodiments, but should be defined only in accordance 
with the following claims and their equivalents. 
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What is claimed is: 
1. A Senone scoring unit (SSU) comprising: 
an SSU control module configured to receive a feature 

vector; 
a distance calculator configured to receive a plurality of 

Gaussian probability distributions via a data bus having 
a width of at least one Gaussian probability distribution 
and the feature vector from the SSU control module, the 
distance calculator comprising: 
a plurality of arithmetic logic units (ALUs), wherein 

each of the ALUs is configured to receive a portion of 
the at least one Gaussian probability distribution and 
to calculate a dimension distance score between a 
dimension of the feature vector and a corresponding 
dimension of the at least one Gaussian probability 
distribution; and 

an accumulator configured to Sum the dimension dis 
tance scores from the plurality of ALUs to generate a 
Gaussian distance score; and 

an addition module configured to Suma plurality of Gaus 
sian distance scores corresponding to the plurality of 
Gaussian probability distributions to generate a Senone 
SCO. 

2. The Senone scoring unit of claim 1, further comprising: 
a feature vector matrix module configured to store a scaling 

factor for the dimension of the feature vector. 
3. The senone scoring unit of claim 1, wherein the SSU 

control module comprises an input buffer configured to store 
an active Senone list, wherein the active senone list comprises 
a base address associated with an address space of a memory 
device and one or more indices related to the base address at 
which one or more Senones are located in the memory device. 

4. The senone scoring unit of claim 1, wherein the SSU 
control module is configured to generate an SSU clock signal 
for the distance calculator and the addition module, wherein 
a frequency of the SSU clock signal is a clock-divided repre 
sentation of a frequency at which the at least one Gaussian 
probability distribution is read from a memory device. 

5. The senone scoring unit of claim 1, wherein the Gaussian 
probability distribution is 768 bits and the width of the data 
bus is 768 bits. 

6. The Senone scoring unit of claim 1, wherein the distance 
calculator further comprises: 

a datapath multiplexerconfigured to distribute information 
associated with the dimension of the feature vector, a 
mean value associated with the corresponding dimen 
sion of the at least one Gaussian probability distribution, 
and a variance value associated with the corresponding 
dimension of the at least one Gaussian probability dis 
tribution to the plurality of ALUs. 

7. The senone scoring unit of claim 1, wherein the plurality 
of ALUs and the accumulator are configured to generate the 
Gaussian distance score over a predetermined number of SSU 
clock cycles, wherein the predetermined number of SSU 
clock cycles equates to a read access time of the at least one 
Gaussian probability distribution from a memory device. 

8. A method for acoustic modeling, the method compris 
ing: 

receiving a plurality of Gaussian probability distributions 
via a data bus having a width of at least one Gaussian 
probability distribution and a feature vector from an 
external computing device; 

calculating a plurality of dimension distance scores based 
on a plurality of dimensions of the feature vector and a 
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corresponding plurality of dimensions of the at least one 
Gaussian probability distribution; 

Summing the plurality of dimension distance scores to 
generate a Gaussian distance score for the at least one 
Gaussian probability distribution; and 

Summing a plurality of Gaussian distance scores corre 
sponding to the plurality of Gaussian probability distri 
butions to generate a Senone score. 

9. The method of claim 8, wherein the receiving comprises 
distributing information associated with the plurality of 
dimensions of the feature vector, a plurality of mean values 
associated with the corresponding plurality of dimensions of 
the at least one Gaussian probability distribution, and a plu 
rality of variance values associated with the corresponding 
plurality of dimensions of the at least one Gaussian probabil 
ity distribution. 

10. The method of claim 8, wherein the calculating com 
prises: 

storing a plurality of Scaling factors corresponding to the 
plurality of dimensions of the feature vector; and 

applying the plurality of Scaling factors to the plurality of 
dimensions of the feature vector during the calculation 
of the plurality of dimension distance scores. 

11. The method of claim 8, wherein the calculating com 
prises calculating the plurality of dimension distance scores 
based on at least one Senone from an active Senone list, 
wherein the active Senone list comprises a base address asso 
ciated with an address space of a memory device and one or 
more indices related to the base address at which the at least 
one Senone is located in the memory device. 

12. The method of claim 8, wherein the summing the 
plurality of dimension distance scores comprises generating 
the Gaussian distance score over a predetermined number of 
Senone scoring unit (SSU) clock cycles, wherein the prede 
termined number of SSU clock cycles equates to a read access 
time of the at least one Gaussian probability distribution from 
a memory device. 

13. A system for acoustic modeling, the system compris 
ing: 

a memory module configured to interface with an external 
computing device to receive a feature vector; and 

a Senone scoring unit (SSU) comprising: 
a distance calculator configured to receive a plurality of 

Gaussian probability distributions from the memory 
module via a data bus having a width of at least one 
Gaussian probability distribution and the feature vec 
tor from the memory module, the distance calculator 
comprising: 
a plurality of arithmetic logic units (ALUs), wherein 

each of the ALUs is configured to receive a portion 
of the at least one Gaussian probability distribution 
and to calculate a dimension distance score 
between a dimension of the feature vector and a 
corresponding dimension of the at least one Gaus 
sian probability distribution; and 

an accumulator configured to Sum the dimension dis 
tance scores from the plurality of ALUs to generate 
a Gaussian distance score; and 

an addition module configured to Sum a plurality of 
Gaussian distance scores corresponding to the plural 
ity of Gaussian probability distributions to generate a 
SOSCO. 

14. The system of claim 13, wherein the memory module 
and SSU are integrated on the same chip. 
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15. The system of claim 13, wherein the memory module 
are SSU are configured to operate in two different clock 
domains, the SSU operating at a SSU clock frequency that is 
a clock-divided representation of a memory module clock 
frequency. 

16. The system of claim 13, wherein the memory module 
comprises a memory device configured to store an acoustic 
library that includes the plurality of Gaussian probability 
distributions. 

17. The system of claim 13, wherein the SSU further com 
prises: 

a feature vector matrix module configured to store a scaling 
factor for the dimension of the feature vector. 

18. The system of claim 13, wherein the SSU comprises an 
input buffer configured to store an active Senone list, wherein 
the active Senone list comprises a base address associated 
with an address space of the memory module and one or more 
indices related to the base address at which one or more 
Senones are located in the memory module. 

19. The system of claim 13, wherein the SSU is configured 
to generate an SS clock signal for the distance calculator and 
the addition module, wherein a frequency of the SSU clock 
signal is a clock-divided representation of a frequency at 
which the at least one Gaussian probability distribution is 
read from the memory module. 

20. The system of claim 13, wherein the plurality of ALUs 
and accumulator are configured to generate the Gaussian 
distance score over a predetermined number of SSU clock 
cycles, wherein the predetermined number of SSU clock 
cycles equates to a read access time of the at least one Gaus 
sian probability distribution from the memory module. 

k k k k k 


