
US 200701 86028A2

(19) United States (10) Pub. No.: US 2007/0186028 A2
(12) Patent Application Publication (43) Pub. Date: Aug. 9, 2007

Kissell REPUBLICATION

(54) SYNCHRONIZED STORAGE PROVIDING (60) Provisional application No. 60/499,180, filed on Aug.

(75)

(73)

(21)

(22)

(65)

(63)

MULTIPLE SYNCHRONIZATION
SEMANTICS

Inventor: Kevin Kissell, Le Bar Sur Loup (FR)

Correspondence Address:
HUFFMAN LAW GROUP, PC.
1900 MESAAVE.

COLORADO SPRINGS, CO 80906 (US)

Assignee: MIPS Technologies, Inc., Mountain
View, CA (US)

Appl. No.: 10/954,988

Filed: Sep. 30, 2004

Prior Publication Data

US 2005/025 1613 A1 Nov. 10, 2005

Related U.S. Application Data

Continuation-in-part of application No. 10/929.342,
filed on Aug. 27, 2004, which is a continuation-in
part of application No. 10/929,102, filed on Aug. 27.
2004, which is a continuation-in-part of application
No. 10/928,746, filed on Aug. 27, 2004, which is a
continuation-in-part of application No. 10/929,097,
filed on Aug. 27, 2007, which is a continuation-in
part of application No. 10/684.350, filed on Oct. 10,
2003, which is a continuation-in-part of application
No. 10/684,348, filed on Oct. 10, 2003, which is a
continuation-in-part of application No. 10/684.350.
filed on Oct. 10, 2003, which is a continuation-in-part
of application No. 10/684,348, filed on Oct. 10, 2003,
which is a continuation-in-part of application No.
10/684,350, filed on Oct. 10, 2003, which is a con
tinuation-in-part of application No. 10/684.348, filed
on Oct. 10, 2003, which is a continuation-in-part of
application No. 10/684,350, filed on Oct. 10, 2003,
which is a continuation-in-part of application No.
10/684,348, filed on Oct. 10, 2003, which is a con
tinuation-in-part of application No. 10/684.350, filed
on Oct. 10, 2003, which is a continuation-in-part of
application No. 10/684,348, filed on Oct. 10, 2003.

CPU:Data Storage interface

28, 2003, now expired. Provisional application N
60/502,358, filed on Sep. 12, 2003, now expire
Provisional application No. 60/502,359, filed on Se
12, 2003, now expired. Provisional application N
60/499,180, filed on Aug. 28, 2003, now expire
Provisional application No. 60/502,358, filed on Se
12, 2003, now expired. Provisional application N
60/502,359, filed on Sep. 12, 2003, now expire
Provisional application No. 60/499,180, filed on Au
28, 2003, now expired. Provisional application N
60/502,358, filed on Sep. 12, 2003, now expire
Provisional application No. 60/502,359, filed on Se
12, 2003, now expired. Provisional application N
60/499,180, filed on Aug. 28, 2003, now expire
Provisional application No. 60/502,358, filed on Se
12, 2003, now expired. Provisional application N
60/502,359, filed on Sep. 12, 2003, now expire
Provisional application No. 60/499,180, filed on Au
28, 2003, now expired. Provisional application N
60/502,358, filed on Sep. 12, 2003, now expire
Provisional application No. 60/502,359, filed on Se
12, 2003, now expired. Provisional application N
60/499,180, filed on Aug. 28, 2003, now expire
Provisional application No. 60/502,358, filed on Se
12, 2003, now expired. Provisional application N
60/502,359, filed on Sep. 12, 2003, now expired.

Publication Classification

(51) Int. Cl.
GITC 5/00 (2006.01)

(52) U.S. Cl. .. 711/1

(57) ABSTRACT

A shared resource access control system having a gating
storage responsive to a plurality of controls with each of the
controls derived from an instruction context identifying the
shared resource, the gating storage including a plurality of
sets of access method functions with each set of access
method functions including a first access method function
and a second access method function with the gating Storage
producing a particular one access method function from a
particular one set responsive to the controls; and a controller,
coupled to the gating storage, for controlling access to the
shared resource using the particular one access method
function.

100

A AddressiDatalCt
115 105 125 20

V / / V V /
Add Control to . WIEW Operation KTA directory A Buffers

TAG
b

110

Data TAGD E,

Retry Access

|TENJT ?I ??SS300\/ Áu?0}} ?

US 2007/0186028 A2 Patent Application Publication Aug. 9, 2007 Sheet 1 of 2

US 2007/0186028 A2 Aug. 9, 2007 Sheet 2 of 2 Patent Application Publication

SYNCHRONIZED STORAGE PROVIDING
MULTIPLE SYNCHRONIZATION SEMANTICS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation-in-part (CIP) of
the following co-pending Non-Provisional U.S. patent appli
cations, which are hereby expressly incorporated by refer
ence in their entireties for all purposes:

Ser. No.
(Docket No.) Filing Date Title

10,929,342 27 Aug. 2004 INTEGRATED MECHANISM FOR
MIPS.O189.01 US SUSPENSION AND DEALLOCATION OF

COMPUTATIONAL THREADS OF
EXECUTION IN A PROCESSOR

10/929,102 27 Aug. 2004 MECHANISMS FOR DYNAMIC
MIPS.O.193.OOUS CONFIGURATION OF VIRTUAL PROCESSOR

RESOURCES
10/928,746 27 Aug. 2004 APPARATUS, METHOD, AND INSTRUCTION
MIPS.O192.OOUS FOR INITIATION OF CONCURRENT

INSTRUCTION STREAMS INA
MULTITHREADING MICROPROCESSOR

10/929,097 27 Aug. 2004 MECHANISMS FOR SOFTWARE
MIPS.O194OOUS MANAGEMENT OF MULTIPLE

COMPUTATIONAL CONTEXTS

0002 This application is a continuation-in-part (CIP) of
the following co-pending Non-Provisional U.S. patent appli
cations, which are hereby expressly incorporated by refer
ence in their entireties for all purposes:

Ser. No.
(Docket No.) Filing Date Title

10/684,350 10 Oct. 2003 MECHANISMS FOR ASSURING QUALITY OF
MIPS.O188.01 US SERVICE FOR PROGRAMS EXECUTING ONA

MULTITHREADED PROCESSOR
10/684,348 10 Oct. 2003 INTEGRATED MECHANISMFOR
MIPS.O189.OOUS SUSPENSION AND DEALLOCATION OF

COMPUTATIONAL THREADS OF
EXECUTION INA PROCESSOR

0003. Each of the applications identified in Paragraph
001 is a continuation-in-part (CIP) of each of the following
co-pending Non-Provisional U.S. patent applications, which
are hereby expressly incorporated by reference in their
entireties for all purposes:

Ser. No.
(Docket No.) Filing Date Title

10/684,350 10 Oct. 2003 MECHANISMS FOR ASSURING QUALITY OF
MIPS.O188.01 US SERVICE FOR PROGRAMS EXECUTING ONA

MULTITHREADED PROCESSOR
10/684,348 10 Oct. 2003 INTEGRATED MECHANISMFOR
MIPS.O189.OOUS SUSPENSION AND DEALLOCATION OF

COMPUTATIONAL THREADS OF
EXECUTION INA PROCESSOR

Aug. 9, 2007

US 2007/01 86028 A2

0004 Each of the co-pending Non-Provisional U.S.
patent applications identified in Paragraph 001 and Para
graph 002 above claim the benefit of the following U.S.
Provisional Applications, which are hereby expressly incor
porated by reference in their entireties for all purposes:

Ser. No.
(Docket No.) Filing Date Title

Aug. 9, 2007

long memory latencies and waits due to synchronization.
The present invention addresses improvements to synchro
nization among threads in a multithreaded multiprocessing
environment, particularly when individual threads may be
active on one or more multiple processors, on a single

60/499,180 28 Aug. 2003 MULTITHREADING APPLICATION SPECIFIC
MIPS.O188.OOUS EXTENSION
60/502,358 12 Sep. 2003 MULTITHREADING APPLICATION SPECIFIC
MIPS.O188.02US EXTENSION TO A PROCESSOR

ARCHITECTURE
60/502,359
MIPS.O188.03US EXTENSION TO A PROCESSOR

ARCHITECTUR E

0005. This application is related to the following Non
Provisional U.S. patent applications:

12 Sep. 2003 MULTITHREADING APPLICATION SPECIFIC

processor but distributed among multiple thread contexts, or
resident in memory (virtualized threads).

Ser. No.

(Docket No.)
(Client Ref.) Filing Date Title

10/955,231 30 Sep. 2004. A SMART MEMORY BASED
MIPS.0196.OOUS SYNCHRONIZATION CONTROLLER FORA

MULTI-THREADEDMULTIPROCESSOR SOC

0006 All of the above-referenced related patent applica
tions and priority patent applications are hereby expressly
incorporated by reference in their entireties for all purposes.

FIELD OF THE INVENTION

0007. The invention relates generally to multiprocessing
systems and more specifically to multiple thread synchro
nization activities on one or more processing elements (real,
virtual, or otherwise).

BACKGROUND OF THE INVENTION

0008 Multiprocessing systems continue to become
increasingly important in computing systems for many
applications, including general purpose processing systems
and embedded control systems. In the design of Such mul
tiprocessing systems, an important architectural consider
ation is scalability. In other words, as more hardware
resources are added to a particular implementation the
machine should produce higher performance. Not only do
embedded implementations require increased processing
power, many also require the seemingly contradictory
attribute of providing low power consumption. In the con
text of these requirements, particularly for the embedded
market, solutions are implemented as "Systems on Chip’ or
“SoC.” The assignee of the present application, MIPS Tech
nologies, Inc., offers abroad range of Solutions for Such SoC
multiprocessing systems.

0009. In multiprocessing systems, loss in scaling effi
ciency may be attributed to many different issues, including

0010) Synchronization in a multithreaded system refers
to the activities and functions of such a multiplicity of
threads that coordinate use of shared system resources (e.g.,
system memory and interface FIFOs) through variables
storing 'state' bits for producer/consumer communication
and mutual exclusion (MUTEX) tasks. Important consider
ations for implementing any particular synchronization
paradigm include designing and implementing structures
and processes that provide for deadlock-free operation while
being very efficient in terms of time, system resources, and
other performance measurements.
0011) Details regarding the MIPS processor architecture
are provided in the following document, which is incorpo
rated by reference in its entirety for all purposes: D. Sweet
man, See MIPS Run, Morgan Kaufmann Publishers, Inc.
(1999).
0012. The difficulty of finding a hardware synchroniza
tion solution for a RISC processor is compounded by the
nature of the RISC paradigm. A CISC paradigm is easier, in
Some ways, to adapt hardware resources to particular prob
lems because the instruction set may be extended virtually
without limit as instructions and operands in an instruction
pipeline may be of variable length. A designer that wants to
implement a special hardware synchronization instruction
set is able to add new synchronization instructions easily as
many CISC instruction sets already contemplate extensions
to basic instruction sets. However, that solution is generally
not available to designers working with RISC instruction
sets. Most instructions sets are filled or nearly filled with
vacancies judiciously filled after many factors are exten
sively considered and evaluated. What is needed is a system

US 2007/01 86028 A2

for extending or enhancing existing instruction sets, with
such a solution particularly useful in the RISC environment,
but not exclusively useful as the CISC environment may
also benefit from instruction set extension.

SUMMARY OF THE INVENTION

0013 The present invention has been made in consider
ation of the above situation, and has as an object to provide
a system, method, computer program product, and propa
gated signal which efficiently, in a specific embodiment,
enables inter-thread synchronization among a plurality of
threads that may be active on one or more of multiple
processors, on a single processor but distributed among
multiple thread contexts, and/or resident in memory (virtu
alized threads) without deadlock. In a more generalized
description of the preferred embodiment, a system, method,
computer program, and propagated signal which efficiently
enables extension of instructions and classes of instructions.

0014) A preferred embodiment of the present invention
includes a shared resource access control system having a
gating storage responsive to a plurality of control bits with
the control bits derived from an access reference identifying
the shared resource, the gating storage including a plurality
of sets of views with each set of views including a first view
and a second view with the gating storage producing a
particular view from a particular one set responsive to the
control bits; and a controller, coupled to the gating storage,
for controlling access to the shared resource using the
particular one view.
0015. Another preferred embodiment of the present
invention includes a shared resource access control method,
the method applying an access instruction for the data
storage location to a memory system, the memory system
including a plurality of data storage locations, each the data
storage location associated with a set of views including a
first view and a second view with the memory system
producing a particular one view from a particular one set of
views associated with the data storage location responsive to
a set of control bits derived from an address identifying the
data storage location; producing the particular one view
from the particular one set of views; and controlling access
to the data storage location using the particular one view.
0016 Preferred embodiments of the present also include
both a computer program product having a computer read
able medium carrying program instructions for accessing a
memory when executed using a computing system, the
executed program instructions executing a method, as well
as a propagated signal on which is carried computer-execut
able instructions which when executed by a computing
system performs a method, the method including applying
an access instruction for the data storage location to a
memory system, the memory system including a plurality of
data storage locations, each the data storage location asso
ciated with a set of views including a first view and a second
view with the memory system producing a particular one
view from a particular one set of views associated with the
data storage location responsive to a set of control bits
derived from an address identifying the data storage loca
tion; producing the particular one view from the particular
one set of views; and controlling access to the data storage
location using the particular one view.
0017. An alternate preferred embodiment includes an
apparatus for extending a load/store instruction having a

Aug. 9, 2007

target address, the apparatus including a memory system
having a view associated with a data storage location
identified by a tag derived from the target address, the data
storage location associated with the load/store instruction,
the memory system responsive to the target address to
produce a particular view for the load/store instruction from
the memory system; and a controller, coupled to the data
storage location and to the memory system, for implement
ing a an load/store method for the load/store instruction
using the particular view.
0018. Other preferred embodiments include a method,
and both a computer program product and a propagated
signal carrying computer-executable instructions for extend
ing an instruction using an instruction rule when executed by
a computing system, the computer-executable instructions
implementing a method. This method including producing,
responsive to the target address, a particular view for the
load/store instruction from a memory system, the memory
system having a view associated with a data storage location
identified by a tag derived from the target address, the data
storage location associated with the load/store instruction;
and implementing a load/store method for the load/store
instruction using the particular view.

BRIEF DESCRIPTION OF THE DRAWINGS

0019 FIG. 1 is a schematic block diagram of a preferred
embodiment for a gating storage system; and
0020 FIG. 2 is a schematic diagram illustrating a pre
ferred implementation for an example of a bit assignment of
the data elements shown in FIG. 4.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

0021. The present invention relates to multiple thread
synchronization activities on one or more processing ele
ments. The following description is presented to enable one
of ordinary skill in the art to make and use the invention and
is provided in the context of a patent application and its
requirements. Various modifications to the preferred
embodiment and the generic principles and features
described herein will be readily apparent to those skilled in
the art. Thus, the present invention is not intended to be
limited to the embodiment shown but is to be accorded the
widest scope consistent with the principles and features
described herein.

0022 Data-driven programming models map well to
multithreaded architectures. For example, threads of execu
tion are able to read data from memory-mapped I/O FIFOs,
and may be suspended for as long as it takes for a FIFO to
fill, while other threads continue to execute. When the data
is available, the load completes, and the incoming data may
be processed directly in the load destination register without
requiring any I/O interrupt service, polling, or software task
scheduling.

0023. However, many architecture models have no pro
vision for restartably interrupting a memory operation once
a memory management unit has processed it. It would thus
be impossible for a thread context of a blocked thread to be
used by an exception handler, or for an operating system to
Swap out and re-assign Such a thread context. The preferred
embodiment of the present invention therefore introduces a

US 2007/01 86028 A2

specific implementation of a concept of “Gating Storage' -
memory (or memory-like devices) that are tagged in the
TLB (with extended bits or direct physical decode) as
potentially requiring abort and restart of loads or stores. The
abort/restart capability may require explicit Support from the
processor/memory interface protocols. It should be noted
that in some implementations the memory is not tagged in a
memory management unit; rather the memory may be direct
mapped or otherwise identified.
0024. The gating storage, as described herein, is a special
case of a more generalized concept. As described herein, the
gating storage may be conceptualized as a physical address
Subspace with special properties. In the specific examples
described above and as set forth in more detail below, this
gating storage serves as an Inter-Thread Communication
(ITC) storage for enabling thread-to-thread and thread-to
I/O synchronization, particularly for load/store instructions.
Each 64-bit location or “cell within this gating storage
space appears at multiple consecutive addresses, or “views.
distinguished by “view’’ bits (e.g., bits 6:3 though other
implementations may use more, fewer, or different bits) of
the load/store target address. Each view may have distinct
semantics for the same instruction. A fundamental property
of the gating storage is that loads and stores may be precisely
view-referenced by the load or store. Any blocked loads and
stores resume execution when the actions of other threads of
execution, or possibly those of external devices, result in the
completion requirements being satisfied. As gating Storage
references, blocked ITC loads and stores can be precisely
aborted and restarted by systems software.
0025. This structure has several motivations:
0026 1. Issue bandwidth is a critical resource on
multithreaded processors. Whereas spinning on a lock
in a true multiprocessor system wastes only the issue
bandwidth of the processor waiting on the resource, in
a multithreaded processor, the act of polling the lock on
the resource consumes issue bandwidth needed by the
program thread holding the lock, and further delays the
release of the resource. A thread blocked waiting on a
value in gating storage consumes no issue bandwidth
until the value is produced or consumed.

0027 2. Using hardware synchronization reduces the
overhead of inter-thread control and data exchanges
and makes finer grained parallel computations eco
nomical. A well-behaved algorithm running on an
optimal implementation may pass values between
threads at a cost of a single pipelined load or store cycle
for each thread.

Aug. 9, 2007

0028. 3. It allows a “push model of multiprocessor/
multithread data flow to be implemented in a near
optimal way.

0029. For example, in some views, cells within gating
storage space may be “Empty' or “Full'. A load from a cell
that is Empty causes the thread issuing the load to be
suspended until the cell is written to by a store from another
thread. A store to a cell, when Full, causes the thread issuing
the store to be suspended until a previous value has been
consumed by a load.
0030) Such gating storage may define independent Empty
and Full conditions, rather than a single Empty/Full bit, in
order to allow for FIFO buffered gating storage. In a
classical Empty/Full memory configuration, Empty would
simply be the negation of Full. A FIFO cannot be both
Empty and Full, but it is able to be neither Empty nor Full
when it contains some data, but could accept more.
0031. It is possible that one view in an implementation is
a standard empty/full Synchronization construct for produc
ers and consumers. Another view may implement classical
“P/V semaphores by blocking loads even of “full” cells
when the value of the cell is zero. Other views might
implement atomic semaphore 'get' and 'put', or fetch-and
increment or fetch-and-decrement operations without block
ing, among other types, variations, and implementations of
synchronization constructs.

0032. As discussed above, a load/store target address
may designate gating storage through a direct decode or use
of special TLB entries. References to virtual memory pages
whose TLB entries are tagged as gating storage resolve not
to standard memory, but to a store with special attributes.
Each page maps a set of 1-64 64-bit storage locations, called
“cells’, each of which may be accessed in one of a multi
plicity of ways, called “views’ using standard load and store
instructions. The view is encoded in the low order (and
untranslated) view bits of a generated virtual address for the
load/store target address. As included in the preferred
embodiment of the present invention, a fundamental prop
erty of the gating storage is that it synchronizes executions
streams. Loads and stores to/from a memory location in
gating storage, as implemented, block until the state of the
cell corresponds to the required conditions for completion in
the selected view. A blocked load or store may be precisely
aborted when necessary, and restarted by the controlling
operating system when appropriate.

0033 Each cell of the gating storage has Empty and Full
Boolean states associated with it. The cell views are then
defined as follows.

TABLE I

CELL VIEW DEFINITIONS

Address Bits 6:3
View BIT Walue Gating Storage Behavior

Bypass: Loads/Stores do not block, and do not affect Empty/Full
Control: Read or Write of Statusf Control Information. The bit
layout described below is guaranteed valid only when the Control
view is referenced via LWSW or LDSD instructions

Data
Bits Meaning
O When set, cell is Empty and will block on an attempt

to load as Synchronized storage

US 2007/01 86028 A2

TABLE I-continued

CELL VIEW DEFINITIONS

Address Bits 6:3
View BIT Walue Gating Storage Behavior

Aug. 9, 2007

1 When set, cell is Full and will block on an attempt to
store as Synchronized storage

15:2 Reserved for future architectural definition
63:16 Implementation Dependent State

2#OO10

is the complement of the Full bit.
2#OO11

store succeeds or fails.
2#01OO

2#0101

Empty Full Synchronized view. Loads cause the issuing thread to
block when cell is Empty, and set the Empty state on returning
he last available load value. Stores block when the cell is Full,
and set the Full state on accepting the last possible store value.
Minimally, a cell contains a single value, such that the Empty bit

Empty/Full Storage “Try” view. Loads return a value of zero
when cell is Empty, regardless of actual data contained.
Otherwise Load behavior is same as in Empty/Full Synchronized
view. Normal Stores to Full locations through the E/F Try view
ail silently to update the contents of the cell, rather than block
he thread. SC (Store Conditional) instructions referencing the
E/F Try view indicate success or failure based on whether the ITC

PV Synchronized view. Loads and stores do not modify the
Empty and Full bits, both of which should be cleared as part of
cell initialization for PV semaphore use. Loads return the current
cell data value when the value is non-zero, and cause an atomic
post-decrement of the value. When the cell value is zero, loads
block until the cell takes a non-zero value. Stores cause an atomic
increment of the cell value, up to a maximal value at which they
saturate. The width of the incremented decremented field within
he ITC cell need not be the full 32 or 64-bit width of the cell. It
preferably, however, implements at least 15 bits of unsigned value
PV Storage “Try” view. Loads and stores do not modify the
Empty and Full bits, both of which should be cleared as part of
cell initialization for PV semaphore use. Loads return the current
cell data value, even when zero. When the load value is non-zero,
an atomic post-decrement is performed of the value. Stores cause
a Saturating atomic increment of the cell value, as described for
the PV Synchronized view, and cannot fail
Architecturally Reserved View 0
Architecturally Reserved View 1
Application or Implementation Specific View 0
Application or Implementation Specific View X
Application or Implementation Specific View 7 2#1111

0034). Each storage cell could thus be described by the C
Structure:

struct {
uinté4 bypass cell
uinto4 ctl cell
uinté4 ef sync cell;
uinté4 ef try cell;
uinté4 pv Synch cell;
uinté4 pv try cell;
uinté4 res arch2
uinté4 imp dep8

ITC cell;

0035) where all sixteen of the elements reference the
same sixty-four bits of underlying storage data. References
to this storage may have access types of less than sixty-four
bits (e.g. SW/LW, SH/LH SB/LB), with the same Empty/
Full protocol being enforced on a per-access basis. Store/
Load pairs of the same data type to a given ITC address will
always reference the same data, but the byte and halfword
ordering within words, and the word ordering within 64-bit
doublewords, may be implementation and endianness-de

pendent, i.e. a SW followed by a LB from the same ITC
address is not guaranteed to be portable. While the design of
ITC storage allows references to be expressed in terms of C
language constructs, compiler optimizations may generate
sequences that break ITC protocols, and great care must be
taken if ITC is directly referenced as “memory” in a high
level language.
0036) Systems that do not support 64-bit loads and stores
need not implement all 64 bits of each cell as storage. When
only 32 bits of storage are instantiated per cell, it must be
visible in the least significant 32-bit word of each view,
regardless of the endianness of the processor, while the
results of referencing the most significant 32-bits of each
view are implementation-dependent. Ignoring the 22 bit of
the address on each access can satisfy this requirement. In
this way a C language cast from a unit 64 to a unit 32
reference will acquire the data on both big-endian and
little-endian CPU configurations. When more than 32 bits of
Control view information are required in a 32-bit ITC store,
the additional control bits should be referenced using one of
the implementation-dependent views. Empty and Full bits
are distinct so that decoupled multi-entry data buffers, such
as FIFOs can be mapped into ITC storage.

US 2007/01 86028 A2

0037. The gating storage may be saved and restored by
copying the bypass cell, ctl cell pair to and from general
storage. While the full data width, 64 or 32 bits, of bypass
cell must be preserved, strictly speaking, only the least

significant bits of the ef state need to be manipulated. In the
case of multi-entry data buffers (e.g. FIFOs), each cell must
be read using an Empty/Full view until the Control view
shows the cell to be Empty to drain the buffer on a copy. The
FIFO state can then be restored by performing a series of
Empty/Full stores to an equivalent FIFO cell starting in an
Empty state. Implementations may provide depth counters
in the implementation-specific bits of the Control view to
optimize this process. Software must ensure that no other
accesses are made to ITC cells during the save and restore
processes.

0038. The “physical address space' of gating storage may
be made global across all VPEs and processors in a multi
processor system as shown and described above, such that a
thread is able to synchronize on a cell on a different VPE
from the one on which it is executing. Global gating Storage
addresses could be derived from a CPUNum field of an
EBase register of each VPE. CPUNum includes ten bits that
correspond to the ten significant bits of storage address into
the gating storage. Processors or cores designed for unipro
cessor applications need not export a physical interface to
the gating storage, and may treat the gating storage as a
processor-internal resource.

0039 FIG. 1 is a schematic block diagram of a preferred
embodiment for a gating storage system 100 including a
view directory 105. View directory 105 contains the view as
discussed above for load/store instructions implementing
synchronization methods through use of system 100. A data
memory 110 includes an associated data block for any gating
storage data. An address decoder 115 generates the tag, from
an instruction or an instruction operand, as an address offset
of a block within a page. An instruction that potentially
references the gating storage space causes view directory
105 to be cycled at the tag generated from the operand of the
instruction. Any gating storage operation is aborted when
decoder 115 resolves the virtual address translation to non
gating system 100. When the instruction is a load/store
instruction, the operand is a target address within gating
storage system 100, the operand-identified function is one of
the views (e.g., EF Synchronization View), and when the
instruction operation is not blocked, i.e. a load from a
non-Empty cell or a store to a non-Full cell, a data transfer
is performed relative to data memory 110 on a subsequent
cycle. Otherwise, the instruction is recorded in a thread
operation buffer 120 and the thread is suspended. Changes
in gating storage system 100 that may affect Suspended
threads are retried. For example, each change of an empty/
full state of a location in data memory 110 causes the
affected address to be broadcast to thread operation buffers
120, where it is compared against the addresses of blocked
operations. Those operations that become unblocked are
retried against the new tag state, and when they succeed, the
content of the particular thread operation buffer 120 is
de-allocated and the associated thread unblocked by comple
tion of the GS instruction operation. A control logic function
125 arbitrates between retries and new requests.
0040. This style of implementation allows a gating stor
age system “hit' where data memory 110 is already in the
state desired, to have the same timing as a cache hit, but it

Aug. 9, 2007

presupposes tight integration with an instruction generation
Source, for example with a processor core. Less closely
coupled implementations of gating storage system 100,
where the gating storage block is instantiated more like a
scratchpad RAM or an I/O device Supporting a gating
storage protocol, would be less core-intrusive, but may also
stall the pipeline even on a “hit”.
0041 FIG. 2 is a schematic diagram illustrating a pre
ferred implementation for a bit assignment of the data
elements shown in FIG. 1. For example, when the applicable
instruction is a load/store instruction targeting a memory
location within data memory 110, the instruction operand
includes a target address 200. In a preferred embodiment
address 200 is sixty-four bits long, with a subset of bits of
low order, e.g., untranslated bits 6:3) of the target address
and a Subset of bits of high order used as the tag or index.
Other implementations may vary Some, all, or none of these
values. As a generalization, an operand (i.e., a target
address) of a load/store instruction into gating storage 100 is
Sometimes referred to herein as an access reference. Con
trols derived from this access reference include the tag, and
the view, though in other implementations, the access ref
erence and the controls may have different constructions
and/or configurations from these preferred implementations.
0042 View directory 105 is a special memory for views,
also referred to herein as access method functions. An entry
of directory 105 includes a view memory entry 210. An
entry of memory 110, also referred to herein as a data storage
location, holds data at an address derived from target address
200 and may include entry controls/flags/tags 220. As shown
in FIG. 2, each entry 205 includes data 215 and one or more
entry controls (e.g., bits or flags) 220. Entry controls may
include constructs such as a write-protect bit, a validity bit,
control flag bit(s) discussed above that may modify opera
tion of control logic 125 (e.g., a number of times to spin
prior to an abort/exception), and/or other tags bits.
0043. Each entry 210 includes a multiplicity of eight-byte
views, any particular one of which is selectable by the value
of the view bits 6:3) of the instruction operand. Further
discussion of these views appears below, however for now
it is sufficient to understand that each of the views is used to
alter/enhance/modify the affect of the operand and/or the
affect of an instruction upon its operand, or the method by
which a processor operates upon the instruction and the
instruction operand. In the example set forth herein, the
instruction is a load/store instruction, the instruction operand
is a memory location decoded into gating storage 100 Such
that sixteen views are available to redefine some aspect of
the operation of the load/store instruction relative to this
memory location. Specifically in the preferred embodiment,
the views define possible synchronization constructs, func
tions, or methods that may be used accessing the particular
memory location, Such as using an Empty/Full primitive or
a P/V semaphore. An inter-thread communication control
unit (ITU), e.g., control logic 125 or the ITU as described in
the incorporated patent application, accesses a memory
location consistent with the desired synchronization con
struct selected by the appropriate view. In other cases, the
constructs, functions, or methods maybe other than synchro
nization-related for load/store instructions. In some cases,
other instructions may be processed through a memory
system having access method functions applied dependent
upon an associated operand.

US 2007/01 86028 A2

0044) Gating storage is an attribute of memory which
may optionally be Supported by processors implementing
embodiments of the present invention. The user-mode load/
store semantics of gating storage are identical with those of
normal memory, except that completion of the operation
may be blocked for unbounded periods of time. The distin
guishing feature of gating storage is that outstanding load or
store operations can be aborted and restarted. Preferably it is
a TLB-mediated property of a virtual page whether or not a
location is treated as gating storage (though other mecha
nisms may be implemented to identify gating storage loca
tions).
0045 When a load or store operation is performed on
gating storage, no instructions beyond the load/store in
program order are allowed to alter software-visible states of
the system until a load result or store confirmation is
returned from storage. In the event that an exception is taken
using the thread context of an instruction stream which is
blocked on a load/store to gating Storage, or in the event
where such a thread is halted by setting a ThreadStatus.H bit
of the associated thread context, the pending load/store
operation is aborted.
0046) When a load or store is aborted, the abort is
signaled to the storage Subsystem, such that the operation
unambiguously either completes or is abandoned without
any side effects. When a load operation is abandoned, any
hardware interlocks on the load dependence are released, so
that the destination register may be used as an operand
source, with its preload value.
0047. After an aborted and abandoned load/store, a pro
gram counter as seen by the exception program counter
register and the branch delay state as seen by a Cause.BD bit
are set so as that an execution of an exception return (ERET)
by the instruction stream associated by the thread context, or
a clearing of the thread context halted State, causes a re-issue
of the gating load/store. Gating storage accesses are never
cached, and multiple stores to a gating storage address are
never merged by a processor.
0.048 While the preceding description provides a com
plete description of a specific implementation of a gating
storage for inter-thread communication in the synchroniza
tion of load/store instructions, the present invention has a
broader implementation as well. In the more generalized
case, gating storage provides a simple and efficient mecha
nism to extend an instruction set (particularly advantageous
to processors implementing RISC instruction sets). This
aspect of the present invention uses an operand of an
instruction to modify, enhance, Substitute, or otherwise
affect an instruction using hardware features. In the load/
store example used throughout this discussion, the gating
storage adds multiple load/store commands to the basic
instruction set, each of the added commands a variant of the
basic command but including a hardware-managed instruc
tion that implements a wide variety of synchronization
constructs in the process of completing a load or a store.
Normal loads/stores are still available by not including an
operand within the gating storage. However, by modifying
an instruction by use of special memory having special
instruction functions/methods triggered from the operand
may be implemented to extend many types of instructions in
many different ways.
0049. The inherently restricted number and complexity
of instruction operand encodings in a “RISC instruction set

Aug. 9, 2007

is augmented by adding computational Semantics to basic
instructions (e.g., RISC storage access instructions such as
loads and stores), by using an instruction context (e.g., a
portion of the storage address of the load or store as an
opcode extension) to express a calculation or control func
tion to be executed. This provides that an instruction may
have a default instruction method and one or more variations
that are implemented responsive to the instruction context.
The preferred embodiment of the present invention
described above provides for a standard load/store instruc
tion to be extended using specifically chosen synchroniza
tion functions to be used instead of the standard instruction
method when the target address is a data storage location in
the gating storage. The preferred embodiment implements
many “flavors” of the alternate synchronizing instruction
method through the views (which may be referred to as
access method functions) that tune a particular synchroniz
ing load/store using the desired synchronization method.

0050 A problem addressed by this “extension” aspect of
the present invention is that some implementations of MIPS
Technologies, Inc. processors required a range of synchro
nizing operations that could not reasonably be directly
encoded in an extension to the MIPS32/MIPS64 instruction
set. The present invention uses a memory-like space for
designated interthread communication storage (ITC) that
allowed a potentially very large number of synchronized,
shared variables. A number of operations were to be avail
able for each location: Synchronized loads/stores, semaphore
operations, bypass accesses to data and control information,
etc., and it was desirable for synchronized loads and stores
to be available for the full range of memory data types
supported by the MIPS32/MIPS64 architecture: byte, half
word, word, and doubleword.

0051 Rather than invent new instructions that perform
distinct operations on the memory address expressed to the
instruction, the preferred embodiment treats loads and stores
to the designated ITC memory space as "load-plus-opera
tion' and “store-plus-operation' instructions, where the
“operation' is determined by decoding of a subset of the bits
of the effective address of the load or store instruction. In the
case of the preferred embodiment, this has evolved from
using a pair of bits (2**4 and 2**3) as a four-element
opcode space, performing Empty/Full synchronization,
“forcing”, “bypass', and “control operations on the ITC
variable referenced by the higher-order address bits, to the
current scheme where four bits, 2**6 through 2**3, are used
to create a 16-opcode space, in which the system defines
"bypass”, “control”. Empty/Full synchronization, Empty/
Full “try” operations, Blocking semaphore “P” and “V”
operations, and Semaphore “try' operations. This is but one
example of how an instruction may be extended using a
context of the instruction to determine an applicable instruc
tion method to be used. Other extensions are possible to
load/store instructions, other extensions are possible for
other instructions, particularly those having an associated
operand. However, other instructions may be extended by
using some other contextual information to differentiate
between instances in which a default instruction method is
to be used and when an alternate instruction method. In the
present context, instruction methods are the procedures
implemented by a processor in executing an instruction. The
extension aspect of the present invention provides for a
different set of procedures to be used when executing the

US 2007/01 86028 A2

same instruction when a context of the instruction indicates
that a different implementation should be used.

0.052 The invention described in this application may, of
course, be embodied in hardware; e.g., within or coupled to
a Central Processing Unit (“CPU”), microprocessor, micro
controller, System on Chip (“SOC), or any other program
mable device. Additionally, embodiments may be embodied
in Software (e.g., computer readable code, program code,
instructions and/or data disposed in any form, such as
Source, object or machine language) disposed, for example,
in a computer usable (e.g., readable) medium configured to
store the software. Such software enables the function,
fabrication, modeling, simulation, description and/or testing
of the apparatus and processes described herein. For
example, this can be accomplished through the use of
general programming languages (e.g., C, C++), GDSII data
bases, hardware description languages (HDL) including
Verilog HDL, VHDL, AHDL (Altera HDL) and so on, or
other available programs, databases, and/or circuit (i.e.,
schematic) capture tools. Such software can be disposed in
any known computer usable medium including semiconduc
tor, magnetic disk, optical disc (e.g., CD-ROM, DVD-ROM,
etc.) and as a computer data signal embodied in a computer
usable (e.g., readable) transmission medium (e.g., carrier
wave or any other medium including digital, optical, or
analog-based medium). As such, the Software can be trans
mitted over communication networks including the Internet
and intranets. Embodiments of the invention embodied in
software may be included in a semiconductor intellectual
property core (e.g., embodied in HDL) and transformed to
hardware in the production of integrated circuits. Addition
ally, implementations of the present invention may be
embodied as a combination of hardware and software.

0053. In the description herein, numerous specific details
are provided. Such as examples of components and/or meth
ods, to provide a thorough understanding of embodiments of
the present invention. One skilled in the relevant art will
recognize, however, that an embodiment of the invention
can be practiced without one or more of the specific details,
or with other apparatus, Systems, assemblies, methods, com
ponents, materials, parts, and/or the like. In other instances,
well-known structures, materials, or operations are not spe
cifically shown or described in detail to avoid obscuring
aspects of embodiments of the present invention.
0054. A "computer-readable medium' for purposes of
embodiments of the present invention may be any medium
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, system or device. The com
puter readable medium can be, by way of example only but
not by limitation, an electronic, magnetic, optical, electro
magnetic, infrared, or semiconductor system, apparatus,
system, device, propagation medium, or computer memory.

0055. A “processor or “process' includes any human,
hardware and/or Software system, mechanism or component
that processes data, signals or other information. A processor
may include a system with a general-purpose central pro
cessing unit, multiple processing units, dedicated circuitry
for achieving functionality, or other systems. Processing
need not be limited to a geographic location, or have
temporal limitations. For example, a processor may perform
its functions in “real time.'"offline,” in a “batch mode,' etc.

Aug. 9, 2007

Portions of processing may be performed at different times
and at different locations, by different (or the same) pro
cessing Systems.

0056 Reference throughout this specification to “one
embodiment”, “an embodiment’, or “a specific embodi
ment’ means that a particular feature, structure, or charac
teristic described in connection with the embodiment is
included in at least one embodiment of the present invention
and not necessarily in all embodiments. Thus, respective
appearances of the phrases "in one embodiment”, “in an
embodiment’, or “in a specific embodiment” in various
places throughout this specification are not necessarily refer
ring to the same embodiment. Furthermore, the particular
features, structures, or characteristics of any specific
embodiment of the present invention may be combined in
any suitable manner with one or more other embodiments.
It is to be understood that other variations and modifications
of the embodiments of the present invention described and
illustrated herein are possible in light of the teachings herein
and are to be considered as part of the spirit and scope of the
present invention.

0057 Embodiments of the invention may be imple
mented by using a programmed general purpose digital
computer, by using application specific integrated circuits,
programmable logic devices, field programmable gate
arrays, optical, chemical, biological, quantum or nanoengi
neered systems, components and mechanisms may be used.
In general, the functions of the present invention may be
achieved by any means as is known in the art. Distributed,
or networked systems, components and circuits may be
used. Communication, or transfer, of data may be wired,
wireless, or by any other means.
0058. It will also be appreciated that one or more of the
elements depicted in the drawings/figures may also be
implemented in a more separated or integrated manner, or
even removed or rendered as inoperable in certain cases, as
is useful in accordance with a particular application. It is
also within the spirit and scope of the present invention to
implement a program or code that may be stored in a
machine-readable medium or transmitted using a carrier
wave to permit a computer to perform any of the methods
described above.

0059 Additionally, any signal arrows in the drawings/
Figures should be considered only as exemplary, and not
limiting, unless otherwise specifically noted. Furthermore,
the term 'or' as used herein is generally intended to mean
“and/or unless otherwise indicated. Combinations of com
ponents or steps will also be considered as being noted,
where terminology is foreseen as rendering the ability to
separate or combine is unclear.
0060. As used in the description herein and throughout
the claims that follow, “a”, “an', and “the includes plural
references unless the context clearly dictates otherwise.
Also, as used in the description herein and throughout the
claims that follow, the meaning of “in” includes “in” and
“on” unless the context clearly dictates otherwise.
0061 The foregoing description of illustrated embodi
ments of the present invention, including what is described
in the Abstract, is not intended to be exhaustive or to limit
the invention to the precise forms disclosed herein. While
specific embodiments of, and examples for, the invention are

US 2007/01 86028 A2

described herein for illustrative purposes only, various
equivalent modifications are possible within the spirit and
Scope of the present invention, as those skilled in the
relevant art will recognize and appreciate. As indicated,
these modifications may be made to the present invention in
light of the foregoing description of illustrated embodiments
of the present invention and are to be included within the
spirit and scope of the present invention.
0062) Thus, while the present invention has been
described herein with reference to particular embodiments
thereof, a latitude of modification, various changes and
Substitutions are intended in the foregoing disclosures, and
it will be appreciated that in some instances some features of
embodiments of the invention will be employed without a
corresponding use of other features without departing from
the scope and spirit of the invention as set forth. Therefore,
many modifications may be made to adapt a particular
situation or material to the essential scope and spirit of the
present invention. It is intended that the invention not be
limited to the particular terms used in following claims
and/or to the particular embodiment disclosed as the best
mode contemplated for carrying out this invention, but that
the invention will include any and all embodiments and
equivalents falling within the scope of the appended claims.
0063. The above-described arrangements of apparatus
and methods are merely illustrative of applications of the
principles of this invention and many other embodiments
and modifications may be made without departing from the
spirit and scope of the invention as defined in the claims.
0064. These and other novel aspects of the present inven
tion will be apparent to those of ordinary skill in the art upon
review of the drawings and the remaining portions of the
specification. Therefore, the scope of the invention is to be
determined solely by the appended claims.

What is claimed is:
1. A data storage location access control system, com

prising:

a memory system including a plurality of data storage
locations, each said data storage location associated
with a set of views including a first view and a second
view with said memory system producing a particular
one view from a particular one set of views associated
with the data storage location responsive to a set of
control bits derived from an address identifying the
data storage location; and

a controller, coupled to said memory system, for control
ling access to the data storage location using said
particular one view.

2. The data storage location access control system of
claim 1 wherein said address is an operand of a load/store
instruction for the data storage location.

3. The data storage location access control system of
claim 1 wherein said memory system is coupled to a
plurality of virtual processing elements (VPEs).

4. The data storage location access control system of
claim 1 wherein said set of control bits includes a first
control subset derived from a number N of high order bits of
said memory address and a second control Subset derived
from a number M of untranslated bits of said memory
address.

Aug. 9, 2007

5. The data storage location access control system of
claim 1 wherein said first view includes one or more
Empty/Full synchronization primitive state bits and said
second view includes one or more P/V semaphore synchro
nization primitive state bits.

6. The data storage location access control system of
claim 4 wherein first view includes one or more Empty/Full
synchronization primitive state bits and said second view
includes one or more P/V Semaphore synchronization primi
tive state bits.

7. The data storage location access control system of
claim 6 wherein said particular one set of views is selected
responsive to said first control subset and wherein said
particular one view is selected responsive to said second
control subset.

8. A data storage location access control method, com
prising:

a) applying an access instruction for the data storage
location to a memory system, said memory system
including a plurality of data storage locations, each said
data storage location associated with a set of views
including a first view and a second view with said
memory system producing a particular one view from
a particular one set of views associated with the data
storage location responsive to a set of control bits
derived from an address identifying the data storage
location;

b) producing said particular one view from said particular
one set of views; and

c) controlling access to the data storage location using
said particular one view.

9. The data storage location access control method of
claim 8 wherein said address is an operand of a load/store
instruction for the data storage location.

10. The data storage location access control method of
claim 8 wherein said memory system is coupled to a
plurality of virtual processing elements (VPEs).

11. The data storage location access control method of
claim 8 wherein said set of control bits includes a first
control subset derived from a number N of high order bits of
said address and a second control Subset derived from a
number M of untranslated bits of said memory address.

12. The data storage location access control method of
claim 8 wherein said first view includes one or more
Empty/Full synchronization primitive state bits and said
second view includes one or more P/V semaphore synchro
nization primitive state bits.

13. The data storage location access control method of
claim 11 wherein said first view includes one or more
Empty/Full synchronization primitive state bits and said
second view includes one or more P/V semaphore synchro
nization primitive state bits.

14. The data storage location access control method of
claim 13 further comprising selecting, responsive to said
first control Subset, said particular one set; and selecting,
responsive to said second control Subset, said particular one
view.

15. A computer program product comprising a computer
readable medium carrying program instructions for access
ing a data storage location when executed using a computing
system, the executed program instructions executing a
method, the method comprising:

US 2007/01 86028 A2

a) applying an access instruction for the data storage
location to a memory system, said memory system
including a plurality of data storage locations, each said
data storage location associated with a set of views
including a first view and a second view with said
memory system producing a particular one view from
a particular one set of views associated with the data
storage location responsive to a set of control bits
derived from an address identifying the data storage
location;

b) producing said particular one view from said particular
one set of views; and

c) controlling access to the data storage location using
said particular one view.

16. The computer program product of claim 15 wherein
said address is an operand of a load/store instruction for the
data storage location.

17. The computer program product of claim 15 wherein
said memory system is coupled to a plurality of virtual
processing elements (VPEs).

18. The computer program product of claim 15 wherein
said set of control bits includes a first control subset derived
from a number N of high order bits of said memory address
and a second control subset derived from a number M of
untranslated bits of said memory address.

19. The computer program product of claim 15 wherein
said first view includes one or more Empty/Full synchroni
Zation primitive state bits and said second view includes one
or more P/V semaphore synchronization primitive state bits.

20. The computer program product of claim 18 wherein
said first view includes one or more Empty/Full synchroni
Zation primitive state bits and said second view includes one
or more P/V semaphore synchronization primitive state bits.

21. The computer program product of claim 20 further
comprising selecting, responsive to said first control Subset,
said particular one set; and selecting, responsive to said
second control Subset, said particular one view.

22. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

a) applying an access instruction for the data storage
location to a memory system, said memory system
including a plurality of data storage locations, each said
data storage location associated with a set of views
including a first view and a second view with said
memory system producing a particular one view from
a particular one set of views associated with the data
storage location responsive to a set of control bits
derived from an address identifying the data storage
location;

b) producing said particular one view from said particular
one set of views; and

c) controlling access to the data storage location using
said particular one view.

23. The propagated signal of claim 22 wherein said
address is an operand of a load/store instruction for the data
storage location.

24. The propagated signal of claim 22 wherein said
memory system is coupled to a plurality of virtual process
ing elements (VPEs).

25. The propagated signal of claim 22 wherein said set of
control bits includes a first control subset derived from a

10
Aug. 9, 2007

number N of high order bits of said memory address and a
second control subset derived from a number M of untrans
lated bits of said memory address.

26. The propagated signal of claim 22 wherein said first
view includes one or more Empty/Full synchronization
primitive state bits and said second view includes one or
more P/V semaphore synchronization primitive state bits.

27. The propagated signal of claim 25 wherein said first
view includes one or more Empty/Full synchronization
primitive state bits and said second view includes one or
more P/V semaphore synchronization primitive state bits.

28. The propagated signal of claim 27 further comprising
selecting, responsive to said first control Subset, said par
ticular one set; and selecting, responsive to said second
control Subset, said particular one view.

29. A data storage location access control apparatus,
comprising:

means for applying an access instruction for the data
storage location to a memory system, said memory
system including a plurality of data storage locations,
each said data storage location associated with a set of
views including a first view and a second view with
said memory system producing a particular one view
from a particular one set of views associated with the
data storage location responsive to a set of control bits
derived from an address identifying the data storage
location;

means for producing said particular one view from said
particular one set of views; and

means for controlling access to the data storage location
using said particular one view

30. A method for controlling access to a data storage
location, comprising:

a) retrieving a particular one view from a memory system
including a plurality of data storage locations, each said
data storage location associated with a set of views
including one or more views with said memory system
producing said particular one view from a particular
one set of views associated with the data storage
location responsive to a set of control bits derived from
an address identifying the data storage location; and

b) accessing the data storage location using said particular
one view.

31. A computer program product comprising a computer
readable medium carrying program instructions for access
ing a data storage location when executed using a computing
system, the executed program instructions executing a
method, the method comprising:

a) retrieving a particular one view from a memory system
including a plurality of data storage locations, each said
data storage location associated with a set of views
including one or more views with said memory system
producing said particular one view from a particular
one set of views associated with the data storage
location responsive to a set of control bits derived from
an address identifying the data storage location; and

b) accessing the data storage location using said particular
one view.

32. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

US 2007/01 86028 A2

a) retrieving a particular one view from a memory system
including a plurality of data storage locations, each said
data storage location associated with a set of views
including one or more views with said memory system
producing said particular one view from a particular
one set of views associated with the data storage
location responsive to a set of control bits derived from
an address identifying the data storage location; and

b) accessing the data storage location using said particular
one view.

33. An apparatus for extending a load/store instruction
having a target address, the apparatus comprising:

a memory system having a view associated with a data
storage location identified by a tag derived from the
target address, said data storage location associated
with the load/store instruction, said memory system
responsive to the target address to produce a particular
view for the load/store instruction from said memory
system; and

a controller, coupled to said data storage location and to
said memory system, for implementing a an load/store
method for the load/store instruction using said par
ticular view.

34. The apparatus of claim 33 wherein said target address
is an operand of the load/store instruction for the data
storage location.

35. The apparatus of claim 33 wherein said particular
view facilitates said controller in using said load/store
method for the load/store instruction to said data storage
location.

36. The apparatus of claim 33 wherein said memory
system associates both a first view and a second view with
said data storage location and wherein said memory system
is responsive to the target address to select one of said first
view and said second view as said particular view.

37. The apparatus of claim 36 wherein each said view
includes one or more data structures for communicating one
or more synchronization primitives state bits.

38. A method for extending a load/store instruction having
a target address, the method comprising:

a) producing, responsive to the target address, a particular
view for the load/store instruction from a memory
system, said memory system having a view associated
with a data storage location identified by a tag derived
from the target address, said data storage location
associated with the load/store instruction; and

b) implementing a load/store method for the load/store
instruction using said particular view.

39. The method of claim 38 wherein said target address is
an operand of the load/store instruction for the data storage
location.

40. The method of claim 38 wherein said particular view
facilitates said controller to implement said load/store
method for said load/store instruction to said data storage
location.

41. The method of claim 38 further comprising control
ling, responsive to said particular view, access of said data
storage location by the load/store instruction using said
load/store method.

42. The method of claim 41 wherein said data storage
location is a memory shared among a plurality of concurrent
processes and said load/store method is a synchronization

11
Aug. 9, 2007

method for synchronizing accesses to said data storage
location by said plurality of concurrent processes.

43. The method of claim 38 further wherein said view
associated with said data storage location is a first view and
wherein said memory system has a second view associated
with said data storage location.

44. The method of claim 43 further comprising selecting,
responsive to a set of control bits derived from the target
address, one of said first and second views as said particular
view.

45. A computer program product comprising a computer
readable medium carrying program instructions for extend
ing a load/store instruction having a target address when
executed using a computing system, the executed program
instructions executing a method, the method comprising:

a) producing, responsive to the target address, a particular
view for the load/store instruction from a memory
system, said memory system having a view associated
with a data storage location identified by a tag derived
from the target address, said data storage location
associated with the load/store instruction; and

b) implementing a load/store method for the load/store
instruction using said particular view.

46. The computer program product of claim 45 wherein
said target address is an operand of the load/store instruction
for the data storage location.

47. The computer program product of claim 45 wherein
said particular view facilitates implementation of said load/
store method for said load/store instruction to said data
storage location.

48. The computer program product of claim 45 further
comprising controlling, responsive to said particular view,
access of said data storage location by the load/store instruc
tion using said load/store method.

49. The computer program product of claim 48 wherein
said data storage location is a memory shared among a
plurality of concurrent processes and said load/store method
is a synchronization method for synchronizing accesses to
said data storage location by said plurality of concurrent
processes.

50. The computer program product of claim 45 wherein
said view associated with said data storage location is a first
view and wherein said memory system has a second view
associated with said data storage location.

51. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

a) producing, responsive to the target address, a particular
view for the load/store instruction from a memory
system, said memory system having a view associated
with a data storage location identified by a tag derived
from the target address, said data storage location
associated with the load/store instruction; and

b) implementing a load/store method for the load/store
instruction using said particular view.

52. The propagated signal of claim 51 wherein said target
address is an operand of the load/store instruction for the
data storage location.

53. The propagated signal of claim 51 wherein said
particular view facilitates implementation of said load/store
method for said load/store instruction to said data storage
location.

US 2007/01 86028 A2

54. The propagated signal of claim 51 further comprising
controlling, responsive to said particular view, access of said
data storage location by the load/store instruction using said
load/store method.

55. The propagated signal of claim 54 wherein said data
storage location is a memory shared among a plurality of
concurrent processes and said load/store method is a syn
chronization method for synchronizing accesses to said data
storage location by said plurality of concurrent processes.

56. The propagated signal of claim 51 wherein said view
associated with said data storage location is a first view and
wherein said memory system has a second view associated
with said data storage location.

57. A shared resource access control system, comprising:
a storage structure responsive to a plurality of control

references with each said control reference derived
from an access reference identifying the shared
resource, said storage structure including a plurality of
sets of access method functions at least one set asso
ciated with each of a plurality of shared resources, with
each said set of access method functions including a
first access method function and a second access
method function with said storage structure producing
a particular one access method function from a par
ticular one set associated with the shared resource
responsive to said control references; and

a controller, coupled to said storage structure, for con
trolling access to the shared resource using said par
ticular one access method function.

58. A shared resource access control method, comprising:
a) applying an access instruction for a shared resource

identified by an access reference to a storage structure
that includes said shared resource, said storage struc
ture responsive to a plurality of control references with
each said control reference derived from said access
reference, said storage structure including a plurality of
sets of access method functions at least one set asso
ciated with each of a plurality of shared resources, with
each said set of access method functions including a
first access method function and a second access
method function;

b) producing a particular one access method function
from a particular one set associated with the shared
resource responsive to said control references; and

c) controlling access to the shared resource using said
particular one access rule function.

59. A computer program product comprising a computer
readable medium carrying program instructions for access
ing a shared resource when executed using a computing
system, the executed program instructions executing a
method, the method comprising:

a) applying an access instruction for a shared resource
identified by an access reference to a storage structure
that includes said shared resource, said storage struc
ture responsive to a plurality of control references with
each said control reference derived from said access
reference, said storage structure including a plurality of
sets of access method functions at least one set asso
ciated with each of a plurality of shared resources, with
each said set of access method functions including a
first access method function and a second access
method function;

Aug. 9, 2007

b) producing a particular one access method function
from a particular one set associated with the shared
resource responsive to said control references; and

c) controlling access to the shared resource using said
particular one access rule function.

60. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

a) applying an access instruction for a shared resource
identified by an access reference to a storage structure
that includes said shared resource, said storage struc
ture responsive to a plurality of control references with
each said control reference derived from said access
reference, said storage structure including a plurality of
sets of access method functions at least one set asso
ciated with each of a plurality of shared resources, with
each said set of access method functions including a
first access method function and a second access
method function;

b) producing a particular one access method function
from a particular one set associated with the shared
resource responsive to said control references; and

c) controlling access to the shared resource using said
particular one access rule function.

61. A method for selectively extending an instruction
having a default instruction method, the method comprising:

a) determining whether the instruction is to be extended
through use of an alternate instruction method for the
instruction responsive to a context of the instruction
wherein said alternate instruction method differs from
the default instruction method; and

b) using said alternate instruction method for the instruc
tion when the instruction is to be extended.

62. The method of claim 61 wherein said context includes
an operand associated with the instruction.

63. The method of claim 62 wherein said alternate instruc
tion method uses an instruction method function.

64. The method of 63 wherein said instruction method
function includes one or more state bits stored in a data
structure associated with a resource used in said alternate
instruction method.

65. The method of claim 62 wherein the instruction is a
memory access instruction with a target address included in
said operand, the instruction providing for the default
instruction method to access a first memory location iden
tified by said operand, wherein said alternate instruction
method includes implementation of a synchronizing
memory access with respect to a second memory location
identified by said operand; and wherein a particular instruc
tion method to be implemented is determined by said
operand.

66. The method of claim 64 wherein the instruction is a
memory access instruction with a target address included in
said operand and said resource is a memory storage location
in a memory system identified by said target address, the
instruction providing for the default instruction method to
access a first memory location, wherein said alternate
instruction method includes implementation of a synchro
nizing memory access with respect to a second memory
location identified by said operand; and wherein a particular
instruction method to be implemented is determined by said

US 2007/01 86028 A2

operand with said operand selecting said one or more state
bits from said data structure when said particular instruction
method is said alternate instruction method.

67. The method of claim 61 wherein said alternate instruc
tion method includes a plurality of alternate implementa
tions for each said context wherein a particular one alternate
implementation is selected for said alternate instruction
method responsive to said context.

68. The method of claim 67 wherein said context includes
an operand associated with the instruction and said particu
lar one alternate implementation is selected for said alternate
instruction method responsive to said operand.

69. The method of claim 68 wherein said alternate imple
mentations use a plurality of alternate instruction method
functions, at least one function for each implementation.

70. The method of 69 wherein each said instruction
method function for each context includes one or more state
bits stored in a common data structure associated with said
operand and wherein a particular set of said one or more
state bits is selected from said data structure responsive to
said operand.

71. The method of claim 67 wherein the instruction is a
memory access instruction with a target address included in
said operand, the instruction providing for the default
instruction method to access a first memory location iden
tified by said operand, wherein said alternate instruction
method includes different implementations of a synchroniz
ing memory access with respect to a second memory loca
tion identified by said operand; and wherein a particular
instruction method to be implemented is determined by said
operand.

72. The method of claim 70 wherein the instruction is a
memory access instruction with a target address included in
said operand and said resource is a memory storage location
in a memory system identified by said target address, the
instruction providing for the default instruction method to
access a first memory location, wherein said alternate
instruction method includes different implementation of a
synchronizing memory access with respect to a second
memory location identified by said operand; and wherein a
particular instruction method to be implemented is deter
mined by said operand with said operand selecting said one
or more state bits of said particular set from said data
structure when said particular instruction method is said
alternate instruction method.

73. A computer program product comprising a computer
readable medium carrying program instructions for selec
tively extending an instruction having a default instruction
method when executed using a computing system, the
executed program instructions executing a method, the
method comprising:

a) determining whether the instruction is to be extended
through use of an alternate instruction method for the
instruction responsive to a context of the instruction
wherein said alternate instruction method differs from
the default instruction method; and

b) using said alternate instruction method for the instruc
tion when the instruction is to be extended.

74. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

a) determining whether the instruction is to be extended
through use of an alternate instruction method for the

Aug. 9, 2007

instruction responsive to a context of the instruction
wherein said alternate instruction method differs from
the default instruction method; and

b) using said alternate instruction method for the instruc
tion when the instruction is to be extended.

75. An apparatus, comprising:

means for determining whether the instruction is to be
extended through use of an alternate instruction method
for the instruction responsive to a context of the
instruction wherein said alternate instruction method
differs from the default instruction method; and

means for using said alternate instruction method for the
instruction when the instruction is to be extended.

76. An apparatus for selectively extending an instruction
having a default instruction method, comprising:

a context evaluator for determining whether the instruc
tion is to be extended through use of an alternate
instruction method for the instruction responsive to a
context of the instruction wherein said alternate instruc
tion method differs from the default instruction method;
and

a controller using said alternate instruction method for the
instruction when the instruction is to be extended.

77. A method for selectively extending a memory load/
store instruction having a default instruction method, the
method comprising:

a) determining whether the instruction is to be extended
through use of a synchronizing instruction method
applied to the instruction responsive to an operand of
the instruction, said operand including a target address
identifying a target memory location in a memory
system, said target memory location different for the
default instruction method and said synchronizing
instruction method with at least of a portion of said
target address selecting a particular set of one or more
synchronization primitive data bits from a data struc
ture associated with said target memory location appro
priate for the desired synchronization instruction
method to be applied; and

b) using said synchronizing instruction method for the
instruction when the instruction is to be extended so
that said particular set of synchronization primitive data
bits influence the memory load/store instruction rela
tive to said target memory location wherein the default
instruction method is not influenced by any synchro
nization primitive data bits.

78. A computer program product comprising a computer
readable medium carrying program instructions for selec
tively extending an instruction having a default instruction
method when executed using a computing system, the
executed program instructions executing a method, the
method comprising:

a) determining whether the instruction is to be extended
through use of a synchronizing instruction method
applied to the instruction responsive to an operand of
the instruction, said operand including a target address
identifying a target memory location in a memory
system, said target memory location different for the
default instruction method and said synchronizing
instruction method with at least of a portion of said

US 2007/01 86028 A2 Aug. 9, 2007
14

target address selecting a particular set of one or more to an operand of the instruction, said operand including
synchronization primitive data bits from a data struc- a target address identifying a target memory location in
ture associated with said target memory location appro- a memory system, said target memory location different
priate for the desired synchronization instruction for the default instruction method and said synchroniz
method to be applied; and ing instruction method with at least of a portion of said

- - - target address selecting a particular set of one or more
b) using said synchronizing instruction method for the 9. jung a p synchronization primitive data bits from a data struc instruction when the instruction is to be extended so ture associated with said target memory location appro that said particular set of synchronization primitive data priate for the desired synchronization instruction

bits influence the memory load/store instruction rela- --- method to be applied; and tive to said target memory location wherein the default
instruction method is not influenced by any synchro- a controller using said synchronizing instruction method
nization primitive data bits. for the instruction when the instruction is to be

79. A propagated signal on which is carried computer- extended so that said particular set of synchronization
executable instructions which when executed by a comput- primitive data bits influence the memory load/store
ing system performs a method, the method comprising: instruction relative to said target memory location

wherein the default instruction method is not influenced
a) determining whether the instruction is to be extended

through use of a synchronizing instruction method
applied to the instruction responsive to an operand of
the instruction, said operand including a target address
identifying a target memory location in a memory
system, said target memory location different for the
default instruction method and said synchronizing
instruction method with at least of a portion of said
target address selecting a particular set of one or more
synchronization primitive data bits from a data struc
ture associated with said target memory location appro
priate for the desired synchronization instruction
method to be applied; and

b) using said synchronizing instruction method for the
instruction when the instruction is to be extended so
that said particular set of synchronization primitive data
bits influence the memory load/store instruction rela
tive to said target memory location wherein the default
instruction method is not influenced by any synchro
nization primitive data bits.

80. An apparatus, comprising:

means for determining whether the instruction is to be
extended through use of a synchronizing instruction
method applied to the instruction responsive to an
operand of the instruction, said operand including a
target address identifying a target memory location in
a memory system, said target memory location different
for the default instruction method and said synchroniz
ing instruction method with at least of a portion of said
target address selecting a particular set of one or more
synchronization primitive data bits from a data struc
ture associated with said target memory location appro
priate for the desired synchronization instruction
method to be applied; and

means for using said synchronizing instruction method for
the instruction when the instruction is to be extended so
that said particular set of synchronization primitive data
bits influence the memory load/store instruction rela
tive to said target memory location wherein the default
instruction method is not influenced by any synchro
nization primitive data bits.

by any synchronization primitive data bits.
82. A method for selectively extending a load/store

instruction having a default load/store method, the method
comprising:

a) determining whether the load/store instruction is to be
extended through use of a synchronizing load/store
method for the load/store instruction responsive to a
target address of the load/store instruction wherein said
synchronizing load/store method differs from the
default load/store method; and

b) using said synchronizing load/store method for the
load/store instruction when the load/store instruction is
to be extended.

83. A computer program product comprising a computer
readable medium carrying program instructions for selec
tively extending an instruction having a default instruction
method when executed using a computing system, the
executed program instructions executing a method, the
method comprising:

a) determining whether the load/store instruction is to be
extended through use of a synchronizing load/store
method for the load/store instruction responsive to a
target address of the load/store instruction wherein said
synchronizing load/store method differs from the
default load/store method; and

b) using said synchronizing load/store method for the
load/store instruction when the load/store instruction is
to be extended.

84. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

a) determining whether the load/store instruction is to be
extended through use of a synchronizing load/store
method for the load/store instruction responsive to a
target address of the load/store instruction wherein said
synchronizing load/store method differs from the
default load/store method; and

b) using said synchronizing load/store method for the
load/store instruction when the load/store instruction is

81. An apparatus for selectively extending an instruction to be extended.
having a default instruction method, comprising: 85. An apparatus for selectively extending an instruction

having a default instruction method, comprising: a context evaluator for determining whether the instruc- 9. p 9.
tion is to be extended through use of a synchronizing a context evaluator for determining whether the load/store
instruction method applied to the instruction responsive instruction is to be extended through use of a synchro

US 2007/01 86028 A2

nizing load/store method for the load/store instruction
responsive to a target address of the load/store instruc
tion wherein said synchronizing load/store method dif
fers from the default load/store method; and

a controller using said synchronizing load/store method
for the load/store instruction when the load/store
instruction is to be extended.

86. An apparatus for selectively extending an instruction
having a default instruction method, comprising:

means for determining whether the load/store instruction
is to be extended through use of a synchronizing
load/store method for the load/store instruction respon
sive to a target address of the load/store instruction
wherein said synchronizing load/store method differs
from the default load/store method; and

means for using said synchronizing load/store method for
the load/store instruction when the load/store instruc
tion is to be extended.

87. A data storage system responsive to a load/store
instruction having a target address, comprising:

a data memory having a plurality of data storage loca
tions, said data memory identifying a particular data
storage location responsive to the target address; and

a view directory storing a view associated with each data
storage location of said plurality of storage locations,
said view directory identifying a particular one view
responsive to the target address.

88. A data storage method responsive to a load/store
instruction having a target address, the method comprising:

a) identifying, responsive to the target address, a particu
lar data storage location from a data memory having a
plurality of data storage locations; and

b) identifying, responsive to the target address, a particu
lar one view from a view directory storing a view

Aug. 9, 2007

associated with each data storage location of said
plurality of storage locations.

89. A computer program product comprising a computer
readable medium carrying program instructions for produc
ing data responsive to a load/store instruction having a target
address when executed using a computing system, the
executed program instructions executing a method, the
method comprising:

a) identifying, responsive to the target address, a particu
lar data storage location from a data memory having a
plurality of data storage locations; and

b) identifying, responsive to the target address, a particu
lar one view from a view directory storing a view
associated with each data storage location of said
plurality of storage locations.

90. A propagated signal on which is carried computer
executable instructions which when executed by a comput
ing system performs a method, the method comprising:

a) identifying, responsive to the target address, a particu
lar data storage location from a data memory having a
plurality of data storage locations; and

b) identifying, responsive to the target address, a particu
lar one view from a view directory storing a view
associated with each data storage location of said
plurality of storage locations.

91. A data storage apparatus responsive to a load/store
instruction having a target address, comprising:
means for identifying, responsive to the target address, a

particular data storage location from a data memory
having a plurality of data storage locations; and

means for identifying, responsive to the target address, a
particular one view from a view directory storing a
view associated with each data storage location of said
plurality of storage locations.

k k k k k

