(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199882366 B2
(10) Patent No. 738983

(54)

(51)8

(21)
(87)

(30)
(31)

(43)
(43)
(44)

(71)

(72)

(74)

(56)

Title

Networking systems

International Patent Classification(s)
HO4L o012/56

Application No: 199882366

WIPO No: W099/05826

Priority Data

Number (32) Date
08/900757 1997 07 .25
Publication Date : 1999 02 .16
Publication Journal Date 1999 g4 15
Accepted Journal Date : 2001 10 04

Applicant(s)
Nexabit Networks, LLC

Inventor(s)

(22) Application Date: 1998 07 21

(33) Country
us

Tim Wright: Peter Marconi; Richard Conlin; Zbigniew Opalka

Agent/Attorney

PHILLIPS ORMONDE and FITZPATRICK,367 Collins Street,MELBOURNE VIC 3000

Related Art
EP 692893
US 5513134
EP 569173

.

3

OPL DATE 16/02/99 APPLN. 1D

82366/98
| AOJP DATE 15/04/99 PCT NUMBER PCT/IB98/01117

v

LTI

(71) Applicant (for all designated States except US); NEXABIT
NETWORKS, LLC [US/US), Suite 390, 1700 W. Park
Drive, Westboro, MA 01581 (US).

(72) Inventors; and

(75) Inventors/Applicants (for. US only): WRIGHT, Tim [US/US];
77 Ouks Road, Framingham, MA 01701 {UUS), MARCONI,
Peter [US/US]; 5 Oak Tree Lane, Franklin, MA 01701 (US).
CONLIN, Richard [US/US}; 32 Eim Street, Franklin, MA
02038 (US). OPALKA, Zhigniew [US/US]; 25 Quarry Lane,
Harvard, MA 01451 (US).

(74) Agent: RINES, Robert, Harvey, MacLeod Allsop, Bledington
Grounds, Bledington, Gloucestershire OX7 §X1. (GB),

AU9BB2346)
_ L. PCT).
{51) Internationa) Patent Classification 6 : (1I) International Publication Number: WO 99/05826
HO4L 12/5 Al

O4L 12/56 (43) International Publication Date: 4 Rebruary 1999 (04.02.99)

(21) International Application Number: PCT/IB98/01117 ((81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 21 July 1998 (21.07.98) GH, HR; HU, IL, IS, IP, KR, KG, KP, KR, KZ, LC, LK,

LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,

NZ, PL, PT, RO, RU, SD, SE, 8G, 8], SK, SL, TJ, T™,

(30) Priority Data: TR, TT, UA, UG, US, UZ, YN, YU, ZW, ARIPO patent
08/900,757 25 July 1997 (25.07.97 us §

(GH, GM, KE, LS, MW, SD, 87, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DX, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CL,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
© - With international search report.

Before -the expiration of the vime limit for amending the

“claims and 1o be republished in the event of the receipt of

amendments.

(54) TFitle: NETWORKING SYSTEMS

(57) Abstract -
- b, ebdnbey
A novel networking architecture and technique for T
reducing system latency caused, at least in part, by e l O Moduer
access contention for usage of commeon bus and memory H *
facilities, wherein a separate data processing and queue M :
management forwarding engine and quene manager are N i
provided for each VO module to process packet/cell 8 .
control information and delivers queuing along a separate j . K .
path that eliminates contention with other resources and. | | |le=== | Fg;_ﬂ"ﬂ b4
is separate from the transfer of packet/cell data into and /
from the memory.] =-_
’ 'l E m
| 1]
-Bufilus i L
: .
i
i AN
i . wamcry
i - s sl
i 1O Modile #n
H Inham ’
-~ thar
1 | o H—
Ferwanding []
Erigine .
L
L]
Trargmh
Cuewea
="

WO 99/05826 PCT/IB98/01117

NETWORKING SYSTEMS

The present invention relates to networking systems and the forwarding and routing of
information therein, being more particularly directed to the problems of the latency of a system
occasioned by contention for access to shared memory and by the time taken to make forwarding andfot

routing decisions — the invention being directed, among other factors, to minimizing such latency.

CONFIRMATION COPY

WO 99/05826 PCT/IB98/01117

Background of Invention

Two of the primary factors and concerns driving the system performance in networking systems
generally are bandwidth capability and system operational latency. Bandwidih reflects the amount of
data that can be transfemred through the system; and latency involves the amount of time that data “stays”
within the system,

The present invention is concerned with minimizing latency. In co-pending U.S. Patent
application Serial No. 581,467, filed December 29, 1993, for High Perforrnance Universal Multi-Port
Intematly Cached Dynamic Random Access Memory System, Architecture and Method, of common
assignee herewith, a promising solution of maximizing bandwidth is provided.

Latency of a network system is determined by several factors, a primary one being the amount of
time it takes to make a forwarding or routing decision as a result of examining the controt information at
the beginning of a data packet or cell. The control information is different depending upon whether a
cell or a packet is involved. For a cell, a switching decision is made based upon the VCI/VPI information
which can be used to map the cell to an egress interface within the system. For a packet, on the other
hand, a routing decision is made based upon the destination address which can be used to map the packet
to an egress interface. Fora packet, furthermore, the source address can also be used to provide a level
of filtering based on source and destination address pairs in which a number of rules are set up to define
which soutcefdestination pairs are allowed to communicate. If a packel is received that does not adhere
1o such rules, then it is dropped. Typically, for example, the data is either 53 bytes for cells or 64 to 64K
bytes for packets in networks of this character.

In traditional systems, the processing of control information is done by a Centra! Processing Unit
(CPU) and can not begin until the entire cell/packet is received. The latency of'sﬁch asystem is
dependem upon the transfer of data from an VO port into memory, the accessing of the control

information located at the beginning of the data, the updating of that control information, and the transfer

of data from memory to an /O port. All of these accesses to the shared memory result in substantial bus

wo
99/05826 PCT/IB98/01117

and memory contention, which increases the latency. The latency is large in this kind of architecture
because the processing of the control information cannot begin unti! the entire packet/cell is received.
Other items that result in increasing latency include supporting Quality of Service (QOS) and muliicast.
QOS requires maintaining multiple queues for each /O port, thereby increasing the number of accesses
to an already overworked memory. Multicast requires sending the same packetcell to multiple 'O ports,
and again, this increases the number of accesses to an overworked memory.

Still another factar in the determining of the latency of a system is the throughput of the shared
memory. I the thronghput of the shared memory is not very high, then the latency is increased
accordingly. In general, to support full bandwidth, the memory throughput needs to be equal to two
times the port speed times the number of pons. This, however, does not account for all the other
accesses that must be performed to the same shared memory, thereby requiring the memory throughput to
be even higher to minimize latency and to achieve high bandwidth through the system. " As more ports are
added and the speed of each port is increased, moreover, the latency is increased proportionally.
Increasing the throughput of the shared memory system therefore becomes a very difficult problem.

As will subsequently be demaonstrated, most conventional networking systems operations
inherently forbid auaining zero or near-zero latency. In accordance with the present invention, on the
other hand, through use of a novel dual path data processing and management of packet/cell architecture,

optimally minimized latency can at last be achieved.

s mesd 48 &8
a s .

. v vew oss

. e &

« ms se_w

e wa

LYY

*
sa04 wea ee

10

15

20

25

30

Summary

According to one aspect of the present invention there is provided in a
CPU or similar data controller system wherein data is interfaced along a
common bus connected with common memory ard with a plurality of /O
modules receiving and writing into the memory and removing therefrom
packets/cells of data, a method of reducing memory and bus access contention
and resulting system latency, that includes, providing each /O module with a
corresponding forwarding engine and transmit queue facility and a separate
path for extracting control information from the packet/cell received by that 1/O
module and providing that control information to the forwarding engine;
processing the extracted packet/cell control information in the forwarding engine
for making switching, reuting and/or filtering decisions while the data thereof is
being written into the memory, passing the results of the forwarding engine
processing to a queue manager for enqueuing and dequeuing receive and
transmit queues of each packet/cell, and controlling, through the corresponding
/O module transmit queue facility, the interfacing with the appropriate egress
IO medule to which to transmit the packet/cell data, all without contention with
and independent of the transfer of packet/cell data into and from the memory.

According to a further aspect of the present invention there is provided
an apparatus for reducing memory and bus access contention and resulting
system latency in CPU or similar data controller systems wherein data is
interfaced along a common bus connected with common memory and with a
plurality of I/O modules receiving and writing into the memory and removing
therefrom packets/cells of data, said apparatus having in combination, a
plurality of forwarding engines and transmit queue facilities, one provided in
each I/0O module, together with a separate path for extracting control information
from the ﬁacketjcell received by their 11O module and for providing that control
information to the forwarding engine thereof; each forwarding engine processing
the extracted control information from the packet/cell received by its
corresponding 1/O module for making switching, routing and/or filtering
decisions while the data thereof is being written into the memory; means for

passing the results of the forwarding engine processing to a queue manager for
enqueuing and dequeuing receive and transmit queuses of each packet/cell and

58 2a sess s as

e .
+ wes sse
e

4 na

.
.
e tese we

ae
. .

aane

[X3

e

> ep v b B
. e »
" wwe

-

.

. a
dent ses s

10

15

20

25

30

5

interfacing with the appropriate egress I/O module to which to transmit the
packet/cell data, all without contention with and independent of the transfer of
packet/cell data into and from the memory,
Drawings

A preferred embodiment of the present invention will now be explained in
connection with the accompanying drawings in which

Fig. 1 is a block diagram of an exemplary packet/cell structure of prior art
and current networking systems;

Fig. 2 is a similar diagram of an illustrative typical prior art system in
networking;

Fig. 3 is a diagram showing how contention results in creating latency;

Fig. 4 illustrates a typical prior shared memory system with many /O ports;

Fig. & illustrates a modified shared memory system with *header” cache;

Fig. 6 is a similar diagram of typical distributed memory system in prior
and current networking;

Fig. 7 shows a typical crosshar system for use in networking;

Fig. 8 is a diagram of the preferred Dual Path Data Processing and
Management of Packets/Cells Architecture of this invention; and

Fig. 9 is a diagram showing how latency is reduced in accordance with
the invention.

The Latency Limitations in Prior Art and Current Network Systems

As before explained, in a typical packet/cell configuration for use with
network systems, the control information is located at the beginning of the
packet or cell as schematicaily shown in Fig. 1. The switching decision for cells
is there shown based upon VCIAVPI information, used to map the cell to an
egress interface within the system as earier mentioned. The routing decision
for a packet is based upon the destination address, used to map the packet to
an egress interface.

In the traditional system of Fig. 2, a CPU interfaces through a common
bus, with memory access, with a plurality of data-receiving and removing /O
ports #1, #2, etc., with the various dotted and dashed lines showing the
interfacing paths and the shared memory, as is well known. As before pointed
out, the various accesses of the shared memory result in substantial contention,

increasing thehlatency, which is

WASPECIEZ388-88 dot:

WO 99/05826
PCT/IB98/01117

already substantial in this kind of architecture because the processing of the control information cannot
begin until the entire packet/ceil is received.

As can be seen from Fig. 3, furthermore, as the accesses 10 the shared memory are increased, so
is the contention; and as the contention is increased, this results in increasing the latency of the system.
In Fig. 3, (where the access time per read or write to the memory is equat to M, and the number of bits

for & memory access is W), the following functions are shown:

A. Write of data from the receive port #1 to shared memory. The time to transfer a packet or
cell is equal to {(B*8YW}*M, where B is equal to the number of bytes for the packet or cell.

As the packet gets larger so does the time to write it to memory.

B. Write of data from the receive port #2 to shared memory. The time to transfer a packet or
cell is equal to ((B*8)W)*M, where B is equal to the number of bytes for the packet or cell.

As the packet gets larger so does the time to weite it to memory.

C. Read of the control information- from the packet/cell just written to shared memory from
port #1. The amount of time this takes ‘'depends upon the amouat of control information to
be read. This is typically around 24 to 28 bytes for packets and five bytes for cells. The
number of bytes to read is equal to N; therefore the read time is ((M*8)/W)*M. As can be
seen, since other interfaces are contending for the same shared memory, this access takes
longer because port #2 is currently writing data into memory. This increases the latency of

the packet/cell that was just received on port #1.

D. Write buffer address of packet/cell just received from port #1 onto appropriate queve. This
is typically, eight to 12 bytes. The time to update the queve is ((P",‘B)fW)*M, where P is the
length of the queue information to be written into the appropriate queue. Since other
interfaces may be contending for the same shared memory, this access takes longer, agzin

increasing the latency of the packet/cell that was just received on port #1.

WO 99/05826 PCT/IB98/01117

E. This is reading the different queues to determine which queues have dota that is available to
be transmitted. This would consist of reading multiple queues until the buffer address of the
packeu/cell from port #1 is ready to be transmitted. Each queue entry read is, typically,
eight to 12 bytes. The time to update the queue is (Q+ 1)(((P*8)W)*M), where Q is the
number of queues read before the packet is finally dequeued. Again, since other interfaces
may be contending for the same shared memory, this access takes longer, once more

increasing the latency of the packet/cell that was just received on port #1.

E. Read of data from the shared memory to receive port #2. The time to transfer a packet or
cell is equal to ((B*8)/W)*M, where B is equal to the number of bytes for the packet or cell.
As the packet gets larger so does the time to read it from m;mory.

The geal of a system is, of course, to achieve zero-(or near zero) latency. Having zero latency
would result in having no time between writing a packet/cell into memory from the ingress interface and
reading it out of memory for the egress interface. In fact,a race condition could exist if the egress
interface could be determined and the buffer address dequeued before the packet/eell was completely
written into memory. The race conc;ition would result in starting to read out the data before it has been
completely written intoi memory, thereby transmitting incorrect datz. In the shared memory system, as
before explained, it is impossible to achieve zero latency since the pracessing of the control information
and queuing cannot begin until the packet/cell is completely written into memory.

Typical systems today will try to decrease latency in the system by providing higher throughput
of the system, which provides incremental gains in decreasing latency. Providing a higher throughput
within the system can only be done, however, at the expense of cost and complexity. The bottom line is
that as data rates and density of /O ports are increased, the latencies of this sysiem do not scale and in

fact they are increased.

wo
99/05826 PCT/IB98/01117

The Type of Networking of Fig. 4

Typical networking equipments such as switches, routers, bridges, hubs, routing switch,
switching router, etc., interconnect multiple networks, such as ATM, Token Ring, FDDI, Ethemet, Sonet,
etc. as shown in Fig. 4. Interconnecting these networks requires the CPU or Forwarding Engine (FE) to
took at each packet or cell that the system receives and determine out of which port the packet/cell
should be transmitted. As discussed earlier, the CPU/FE must access the beginning of each packet/cqll to
determine what type of data it is and where it is destined. As the data rates and I/O ports increase, so
does the contention for the same memory resource, which increases the fatency of the system, as before
explained. The only solution to reduce the latency is to decrease the memory access time, but this results
in higher costs and complexity. For shared memory systems, the performance of the memory system, at a
minimurmn, has to be greater than two times the bandwidth qf all the ports. For example, if a system had N
ports and each port had & data rate of V, then the total bandwidth of the memory system has to be >2NV.
It has to be greater than 2NV because the memory system must also support lookups and n;odiﬁcalions of
the control information as well as possible queue management, routing table lookups, etc. Since the
memory system has to be >2NV, this inhibits its scalability in performance which resubts in limiting its
scalability in reducing latency.

When providing QOS, which requires maintaining a lot of queses per port, this architecture
results in increased latency due to increased contention to access the queues. This, of course, then
requires higher memory throughput, which again increases the cost and complexity.

When providing multicast support, this also dramatically increases the number of accesses to the
shared memory, increasing the contention and latency significantly, and requirin‘g' the memory system to
be designed with an even higher throughpult.

In this type of system, it lS also impossible to achieve zero latency since the processing of the

conttol information and quening cannot begin until the packet/cell is completely written into memory.

WO 99/05826 PCT/IB93/01117

The Type of Networking of Fig. 5

Fig. 5 is similar to Fig. 4 but adds a Header Cache in front of the CPU/FE. As packet/cells are
transmitted/received on each intetface, they are read/written into the shared memory structure, but now
the first 64 bytes of the packet are “mirtored” within the Header Cache. Since the first 64 bytes are
copied into the Header Cache and a cell is 53 bytes, this architecture is only applicable to a packet-baséd
system. When the CPU/FE accesses the control information of the packet, it actually retrieves the data
from the Header Cache and not from the shared memory. This reduces contention to the shared memory
but only for accesses to the control information. This architecture thus provides incremental
improvement over the previous architecture example of Fig. 4. -

As with the previous architecture, however, the memory system stiil needs to be greater than
twice the throughput for each port. It is still a sequential set of accesses of writing data into the shared
memory, processing the control informatien, setting up and maintaining the queues for each port and
reading the data from the shared memory. As ports and data rates are increased, the memory throughput
again needs to scale accordingly to provide the same latency. This can only be done by increasing cost
and complexity which reaches a point where it is cost prohibitive to implement.

When providing QOS, which requires maintaining a lot of queues per port, this architecture
results in increased latency due to increase contention to access the queues - again requiring higher
memory throughput which increases the cost and complexity.

When providing multicast support, this also increases the number of accesses to the shared
memory, increasing the contention and latency significantly and requiring the memory system to be
designed with an even higher throughput.

In this systemn, also, it is impossible to achieve zeso latency since the processing of the control

information and quening again cannot begin until the packet/cell is completely written into memory.

WO 99/05826 PCT/IBS8/01117

The Type of Networking Fig. 6

This system operates similarly to the system of Fig. 4. Within this system of Fig. 6, as
packets/cells are received, they are stored within the memory on each /O module as well as the CPU/FE
memory. Once the data has been received in the memaory accessible by the CPU/FE, it reads the control
information to determine the port for which the data it is destined. Once determined, it will write to each
VO module to indicate whether it should either drop or keep the data. While this architecture therefore
does alleviate some of the contention for accesses to the CPU/FE memory, thereby reducing some of the
latency, it, in turm, generates a lot of contention in the main system bus since each YO module has to
transmit data for the other ¥O module whether it needs it or not. As pofts and data rates are increased,
the memory throughput of the CPU/FE module has to be greater than the speed of all the ports in the
system. While this reduces the cost and complexity of the memory system compared to the previous two
examples of Fig. 4 and 5, it requires 2 more complex and costly *module” interconnection bus and
memory on every YO Module, which increases cost and complexity of the overall system. Another factor
that increases cost and complexity is that every I/O Module has to have enough memory to be zble to
receive data from every other /O module. Typically, the memory throughput on the 'O module only has
to support twice the data rate of its port(s}, as before explained, and the managing of its queues. In this
architecture, it also has to suppott twice the data rate of its ports and the managing of its queues, and, in
addition, the data rate of all the other ports within the system and the managing of additional receive
queues For this data. As the ports and data rates are increased, the throughput of the memory system on
every /O Module and CPU/FE Module must be increased accordingly, limiting the scalability of (_his

type of architecture.

When providing QOS, which requires maintaining a lot of queues per port, this architecture also

results in increased latency due to increased contention to access the queves.

10

WO 991
05826 PCT/IB98/01117

When providing multicast support, this architecture is better than the previous examples, in that
the same packel can be transferred to each /O Module simultaneously, but since the entire packet cannal
be transferred in one access, the latency is increased accordingly. Thus, while this architecture does
pravide some incremental reduction in latency, it does so at the expense of higher memory throughput,
and added cost and complexity per /O module.

Once more, in this system, it is impossible to achieve zero latency since the processing of the

control information and queuing cannot begin until the packet/cell is completely written into memory.

The Type of Networking Fig. 7

When using a crossbar as shown in Fig, 7, cells are typically précessed at the input and given a
aew internal header that allows the cell 1o be switched efficiently within the crossbar. The crossbar will
use the internal header to determine to which output port the cell should be switched. For multiple celis
destined for the same output, it may require additional buffering either at the output, within the crossbar,
or at the input. Most crossbar architectures are used with cells only, due to the fact that they typically
have blocking probiems due to several factors including multiple input ports destined for a single output
port, and multicast. When packets are used, which can var); in size from 64 bytes to 64,000 bytes, these
blocking issues become major problems and in general make the architecture unusable.

The initial Jackup at the input port still has the contention problems discussed with Fig. 4, and
must wait for the entire cell to be received before performing the lookup, again increasing the latency of
the system. Once the cell enters the swil;:h, the latency depends upon the type of crossbar that is
implemented; but, in general, consists of transversing many hops ina silicon based crossbar or
contending with shared memory in a memory based crossbar. Additional latency may occur if internal

blocking occurs within the crossbar.

11

WO 99/05826 PCT/ABIBA11LT

When providing QOS, queues are typically provided either at the input or output port. Since the
queues are not required for every port, contention and the number of queues to maintain is reduced,
which also reduces the latency.

When praviding multicast support, cells are typically duplicated within the crossbar, resulting in
blocking situations (and increased latency) internally or at the output port, and may also result in
backpressure to the input port, which would require the input port to provide additional buffer space. As
ports and data rates increase, this architecture does not scale because the multicast will grow the blocking
problem and increase the cost and complexity of the system even more.

In this system, once more, it is impossible to achieve zero latency since again the processing of

the control information and queuing cannot begin until the packet/cell is completely written into memory.

12

WO 99/05826
PCT/IBIS/A01117

Preferred Embodiment(s} of the Invention

The present invention, exemplary illustrated in Fig. 8, and unlike all these prior systems,
optimizes the networking system for minimal latency, and can indeed achieve zero latency even as data
rates and port densities are increased. It achieves this equally well, moreover, for either 53 byte cells or
64 byte to 64K bytes packets. This is achieved by extracting the control information from the packet/cell
as it is being written into memory, and providing the control information to a forwarding engine FE
which will make switching, routing and/or filtering decisions as the data is being written into memory.

After the forwarding engine FE has completed its tasks, the results are then given to a queue
manager QM for enqueuing and dequeuing these results. All this occurs, in accordance with the
invention, before the packet/cell is completely written into memory, theréby allowing the read of the data
to begin immediately after the packet/cell is completely written into memory. In fact, itis possible to
start reading out the packet before it has been completely wﬁttcn into memory which could not
heretofore be done when reading from memory, since incorrect data would be read from memory. A
synchronization S between the ingress and egress port is required to guarantee that the read of the
packet/cell does not begin too early, illustrated in Fig. 8, as achieved when the forwarding engine FE
detects that the last data is in memory, and then passes queuing address information to the queue manager
QM as to the intended egress port. This is an important distinction between the present invention and all
other networking architectures. With such other architectures, this race condition does not exist, and
therefore, as earlier pointed out, it is impossible to achieve zero latency with them.

To prevent the race condition, synchronization S between the ingress and egress ports is done at
the output of the forwarding engine -- the forwarding engine holding the results at its output until the
packet/cell is completely written into memory, and then the forwarding engine ean pass the results on to
the queue manager as indicated by the dash-dot flow line.

A separate or dual path i; thus used in this invention for the control information, allowing each

VO medule (#] - #n) to process data only forits ports, whether it is transmit or receive data, and thereby

13

WO 99/05826 PCT/IB98/01117

requiring less complex fogic, implementable more simpty and cheaply than cxisting systems today. As
noted earlier, most systems require the memory architectures that are used to store the control
information to support much greater than twice the data rate of every port within the system. The present
invention, on the other hand, reduces that reguirement to the data rate of every port on its /O Module -- a
significant reduction. It also allows the system to increase in ports and data rate without requiring costly
and complex solutions.

In most other architectures, the FE and Queuve Manager are required, as earlier shown, to access
the same memory that is used to store the packet or cell, resulting in increasing latency since the FE and
Queue Manager must contend with each part for memory accesses. With the present invention, however,
the FE and Queue Manager have a separate path P to process the control information, thereby allowing
these two entities to operate with maximum performance and without interference from the packet/cell
transfers to/from memory. This has to occur, indeed, in or_der to achieve zero latency.

As can be seen in Fig. 9, the latency of the system of the invention can be reduced to zero if the
processing of the control information and queuing are done independently of writing the data into
memory. In Fig. 9 (where again the access time per read or write to the memory is equal to M and the
number of bits for a memory access is W), the following occurs with the dual path processing of the
invention shown in Fig. 8, and as particularly contrasted from the A-E operations of Fig. 3, earlier

presented:

A. Write of data from the receive port #! to memory. The time to transfer a packet or cell
is equal to ((B*8)/W)*M, where B is equal to the number of bytes for the packet or cell.

As the packet gets larger so does the time to write it to memory.

B. Write of data from the receive port #2 to memory. The time to transfer a packet or cell
is equal to ((C*8)/W)*M, where C is equal to the number of bytes for the packet or cell.

As the packet gets larger so does the time to write it to memory.

14

WO 99/05826 PCT/IB98/01117

C. The control information is extracted from the packet or cell as it is being written into
memory. The processing of the control information begins immediately. The results
from this processing are given to the queue manager. Since the control information is
extracted from the header of the packet/cell, only the required information is extracted.
This is typically 4 to L0 bytes for either packets or cells. The amount of time it takes to
extract the control information depends upon the memory access time and width. The
time to extract the contrel information is (Y *8)/W)*M, where Y is the number of bytes
the control information spans within the header (typically, 4 to 24 bytes). As can be
seen, since the Forwarding Engine does not have to contend with any other devices, and
there are no delays in beginning to process the control information. This results in not

impacting the latency of the packet/cell just received.

D. Pass the buffer address of packet/cell just received from port #1 to the appropriate
egress /O Module. On the YO Module, the Queue Manager puts the buffer address on
the appropriate queue and will extract it when it appears at the top of the queue. The
forwarding results are typically 4 to 10 bytes. The time to pass the results to the Queue
Manager is ((Z*8)/R)*S, where Z is the length of the forwarding results, R is the width
of the bus used to send the results from the FE to the Queue Manager, and S is the clock
rate of the same bus. As can be seen, the transfer of packets/cells into/from memory

will not interfere with passing the forwarding results. This results in not impacting the

latency of the packet/cell just received.

E. This is reading the different queues to determine which queues have data that is
available to be transmitted. This consists of reading multiple queues until the buffer
address of the packet/cell from port #1 is ready to be transmitted. Each gueue entry
read is typically, 8 to 12 bytes. The time to update the queue is (F+1)(((P*8)/R)*S),

where F is the number of queues read before the packet is finally dequeved. The queues

15

WO 99/05826 PCT/IR98/01117

are distributed, and the number of queues to read is reduced to the number of queves to
support that particular 1/C Module (and not the total system). This reduces the amount
of time required to scan the different queues, thus assisting in achieving zero latency.
As can be seen, the transfer of packets/cells into/from memory will not interfere with
the dequeuing of the buffer address. This results in not impacting the latency of the

packet/cel] just received.

E. Read of data from the memory toreceive port #2. The time to transfer a packet or cell
is equal to ((B*8)/W)*M, where B is equal to the number of bytes for the packet or cell.
As the packet gets larger so does the time to read it from memory.

When providing QOS, which, as before explained, requires ma.intaining a tot of queues per port,
this archiieclure allows for the Queue Manager to be split into N independent sub-Queue Managers,
where each sub-Queue Manger is rgspunsiblc for processing the queues for its associated I/O module.
This allows a simpler and cheaper implementation that can scale as the ports and the data rate of the
system are increased, again allowing the system to achieve zero latency.

When providing multicast support, this architecture of the invention provides the optimal
solution in that it pass;:s the minimal amount of information required to make forwarding and queuing
decisions such that simple and inexpensive implementations can be used. Since the Queue Manager
conststs of “sub-Queue” Managers, the multicast information can be given to sach sub-Queue manager at
the same time, thereby eliminating contention and achieving zero latency.

The present invention thus provides for the optimal solution for minimizing latency, and a
solution that scales with an increase of ports and data rates, while only requiring simple and inexpensive
implementations. | '

The end result of the invention is that the forwarding engine does not have to contend with other

resources while processing the control information of each packet/cetl; in fact, since it only has to

process the data within its /O Module, it can be simpler and less complex. The Queue Manager also

16

WO 99/05826 PCT/IRY8/01117

does not have to contend with other resources while processing the receive and transmit queues of each
packet/cell; in fact, since it only has to process the data within its /O Module, it can also be simpler and
less complex.

With the invention, furthermore, there is no contention between the data and the controt
information, and, queues are handled efficiently as well as providing multicast support. The end result is
an architecture that dramatically reduces latency. When combined with the bandwidth optimizing
structure of said co-pending application, networks of optimum bandwidth and minimum latency are
attained.

Further modifications will occur to those skilled in this art, and such are considerad to fall within

the spirit and scope of the invention as defined in the appended claims. -

17

e
-

s sas
s %
*e -

e

e

sane
. e
.

*e vees 4»
. -
.
.
.« 0 a
as sess wew

10

15

20

25

30

18
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. In a CPU or similar data controller system wherein data is interfaced
along a common bus connected with common memory and with a plurality of
IO modules receiving and writing into the memory and removing therefrom
packets/celis of data, a method of reducing memary and bus access contention
and resulting system latency, that includes, providing each I/O module with a
corresponding forwarding engine and transmit queue facility and a separate
path for extracting control information from the packet/cell received by that 1/Q
module and providing that control information to the forwarding engine;
processing the extracted packet/cell control information in the forwarding engine
for making switching, routing and/or filtering decisions while the data thereof is
being written into the memory; passing the results of the forwarding engine
processing to a queue manager for enqueuing and dequeuing receive and
transmit queues of each packet/cell, and controlling, through the corresponding
11O medule transmit queue facility, the interfacing with the appropriate egress
110 module to which to transmit the packet/cell data, all without contention with
and independent of the transfer of packet/cell data into and from the memory.
2. A method as claimed in claim 1 and in which the control information is
extracted from a header of the packet/cell, and buffer address information
thereof is processed by the queue manager.
3 A method as claimed in claim 2 and in which the forwarding engine
results are passed to the queue manager before the packet/cell data is
completely written into the memory, thereby allowing the reading out of the data
to begin immediately after the packet/cell data is completely written into the
memory.
4, A method as claimed in claim 2 and in which the starting of the reading
out of the packet/cell data commences before it has been completely written
into the memory,
5, A method as claimed in claim 4 and in which synchronization between
data ingress and egress is effected to insure that the reading out of the
packet/cell does not begin too early.
6. A method as claimed in claim 5 and in which the forwarding engine
passes its said results to the queue manager upon the detection that all the

% packet/cell data has been written into the memory.
=

|
ASPECNBZ266-08 doc
QQ'/)W

10.

WO 99/05826 PCT/IBY8/01117

A method as claimed in claim 2 and in which the buffer address of the received packet/cell is passed to the
appropriate egress I/O module.

A method as claimed in claim 7 and in which the queues are distributed, with the number of queues read by
the queue manager reduced to that number of queues required to support the particular VO medule and not
the total system.

A method as claimed in claim 7 and in which multiple queues are maintained for cach /O port and the
queue manager is divided into a plurality of independent sub-queue managers each processing the queues
of its associated I/O module.

A method as claimed in claim 9 and in which multicast information is supplied to each sub-queue manager

at the same time.

. Apparatus for reducing memory and bus access contention and resulting system latency in CPU or similar

darta controller systems wherein data is interfaced along a common bus connected with common memory
and with a plurality of I/O modules receiving and writing into the memory and removing therefrom
packets/cells of data, said apparatus having in combination, a plurality of forwarding enginesr and transmit
queue facilities, one provided in each I/O module, together with a separate path for extracting control
information from the packet/cell received by their IO module and for providing that control information to
the forwarding engine thereof; each forwarding engine processing the extracted ct.)ntrol information from
the packet/cell received by its comesponding VO module for making switching. routing andfer filtering
decisions while the data thereof is being written into the memory; means for passing the results of the
forwarding engine processing to a queue manager for enqueuing and dequening receive and transmit
queues of each packet/cell and controlling, through the corresponding I/0 module transmit queue facility,
the interfacing with the appropriate egress VO module to which to transmit the paékc!/cetl data, ail without

contention with and independent of the transfer of packet/cell data into and from the memory.

. Apparatus as claimed in claim ! wherein the control information is extracted from 2 header of the

packet/cel! data,

19

15,

16.

18.

15,

20.

WO 99/05826 PCT/ABY8/011L7

. Apparatus as claimed in claim 12 wherein the forwarding engine provides buffer address information to the .

queue manager.

. Apparatus as claimed in claim 13 wherein means is provided for passing the forwarding engine results to

the queue manager before the packet/cell data is completely written into the merory, thereby allowing the
reading out of the data to begin immediately after the packet/cell data is completely written into the
memory.

Apparatus as claimed in claim 13 wherein means is provided for starting the reading out of the packet/cell
data before it has been completely written into the memor:y.

Apparatus as claimed in claim 15 wherein means is provided for synchronizing data ingress and egress to

insure that the reading cut of the packet/cell does not begin too early. .

. Apparatus as claimed in claim 16 wherein means is provided for the forwarding engine to pass its said

results to the queue manager upon the determination that the last bit of the packet/cell data has been written

into the memory.

Apparatus as claimed in claim 13 wherein the buffer address of the received packet/cell is passed to the
appropriate egress IO module.

Apparatus as claimed in claim 18 and in which the queues are distributed, with the number of queues read
by the queue manager reduced to that number of queues required to support the particular VO module and
not the total system.

Apparatus as claimed in claim 18 and in which multiple queues are maintained for each /O port and the
queue manager is divided into a plurality of independent sub-queue managers each processing the queues

of its associated /O module.

20

T
.

10

21 .
21. A method of reducing memory and bus access contention substantially
as herein described with reference to the accompanying drawings.
22. Apparatus for reducing memory and bus access contention substantially
as herein described with reference to the accompanying drawings.

DATED : 19 September, 2000
PHILLIPS ORMONDE & FITZPATRICK

Attorneys For:
NEXABIT NETWORKS, LLC

ASPECI\82366-98 .aoc

WO 99/05826

Packet or Cell

Contro!
Intormalion

Cell

Migg, Ctet Inlo

— Vel

Data

Fig. 1

cPU

Memory
- Butfers

- RCV Queues
- XMT Queues

Fig.2

1/6

OR

VP

Mise, Ciri tnloy

Packet

Mise, Cir Inta
Source Addrais

Castinilion Addnkss

Mise. Ciit info

PCT/IB98/01117

¢ Dats is received and put nlo
memery
Data is removad from memary and 3

iransmitled

ol Pt

v #

Port

iz

-

WO 99/05826

bus
actj:nty

conlantion

PCT/IBI8/O1117

xmt data
on port

rov data , info G
onport Heete
i | G]
l
rcv data
on port #2
¥ time
Fig.)
¢ Dala Is tecoived and pul Into.
‘memary
Dat Is removad Irom momory and 3
) lransmittad
GPU o = el —
Forwarding [|
Engine . .eie. - FODI
B y
b ————
— I
L YR | I .
Memory Pl N .
- Buflers — . .
- ACVY Queuss - hd
- XMT Queues
. ATM >
Fig. 4

2/6

WO 99/05826

PCT/IB93/01117

E Daa is iecaived and put into.
mamory
Data Is removad hom mamory and 3
Iransmittad

- ... 00
Y- Heaad n A LTI EE LR R
CPUor == Gache [= s B T
Forwarding .- § il
Engine] A
o, Al A Port
=%
L R rd #2
”~
Memory DR i :
- Buflers (= 1 :
-RCVQuedes |~ _ _-———-d1 .
- XMT Queves
" . Port ‘
¥ n
Fig. 5
Dalaly uu::c-l :::: putintoths 3 Crossbar Dsta Iy recolvad om Lha crosabar
Switch (e T e
PV e
W Interface
#1 3] —
—" Intertace R Interface
#2 — Y #2 o
[[]
[] []
- []
[] []
Interface \ J Intertace
#n v #n l—
Fig. 7

3/6

WO 99/05826 PCT/IBY8/01117

¢ Oata I3 recuived and put into -

memory

Dala is removed rom fnemary and 5
feansmeied .

T § 1oModuesr] ...,
PR)| Interace
S —— ¢
Y] #1
Al 4 Interface
. RN i T 2 i
| l—4 BustoBus 4
N Intarface fr— B *
: : .
: : o
CPU Module : .
- ~r : 8 Memory A
cPuar | 1 R I 1l J Interface
Forwarding K- . g4 “i| -xmiOueues y #n "
Engine =i] BustoBus C:—A N
T Interface i
Memory - s : L
- Buters —1 - :
-ACV Ousues [#---.. .17 N é
.
£y S : »
. [] ¢ Data i3 received and oul inta
: mamory
' Dals is removod from memory and 3
T transmited
1110 Madule #n
: " J Interface
H M M (3]
: A J Interface
. v y #
» M 2
* - BustoBus |, A '
T Inter: b= Y ! ®
i »
HIk [
S .
Momory (47" 1!
» Buliers v Y /
- ACY Quevesf— — '— — To A Intartace
-Xmi Queues r vl #n

Fig. 6

WO 95405826 PCT/BY8/01117

¢ Data i raceived and put inte
mamory

Data is ramaved from memary and 3
iransmeisg

10 Medule 81 T ...,
P pevent 5 5 Interface N
......... aelereem HIS ¢ " t b
\} Interface N
. Y #2 v
Fas s -‘
| .
i FE _I [
e ehah b Farwarding ~ *
H Engina ~—"| .
/ A5 ?
i J Interface N
,' #n " 4
. .| Transmit
| Queues
Memory i
~ Buffers ' <>
\ -
\ .
\. . ¢ Data Is receivad and put into
\ . tvemory
| transmdled
'1 10 Module #n i1
. J Interface N
| Y # "
. Intert
——) | 4 Interface N
!' T ——— w2 i
! FE -
| Forwarding L
" Engine L
! .
.
- *" ." -+ P Transmit
i % i Queves J Interface N
8 S #n v
:: g TIIH ; !
BEE iE
Queus Manager
- ACV Qusues
am
Fig. g

WO 99/05826

bus
activity

A

update
queue™

process —
control
info

schedule
data

i
e

oh port
#1

xmt data
on port

o

®

rcv data

1

Py
rev data
on port #2

PCT/B98/01117

> time

Fig. 9

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

