

Deutsches Patent- und Markenamt

⁽¹⁰⁾ DE 11 2018 005 379 B4 2021.12.23

(12)

Patentschrift

(51) Int Cl.:

H01S 5/32 (2006.01) H01S 5/323 (2006.01)

(21) Deutsches Aktenzeichen: 11 2018 005 379.2

(86) PCT-Aktenzeichen: PCT/EP2018/075384

(87) PCT-Veröffentlichungs-Nr.: WO 2019/057789 (86) PCT-Anmeldetag: 19.09.2018

(87) PCT-Veröffentlichungstag: 28.03.2019

(45) Veröffentlichungstag

der Patenterteilung: 23.12.2021

Innerhalb von neun Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Einspruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist eine Einspruchsgebühr in Höhe von 200 Euro zu entrichten (§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 1 Patentkostengesetz).

(66) Innere Priorität: 10 2017 122 032.1 22.09.2017	(72) Erfinder: Eichler, Chris Peter, Matthia	toph, Dr., 93093 Donaustauf, DE; is, Dr., 93055 Regensburg, DE;	
(73) Patentinhaber:	Wagner, Jan, Dr., 93093 Donaustauf, DE		
OSRAM OLED GmbH, 93055 Regensburg, DE			
	(56) Ermittelter Sta	nd der Technik:	
(74) Vertreter: Epping Hermann Fischer Patentanwaltsgesellschaft mbH, 80639 München, DE	DE US	10 2014 111 058 A1 2011 / 0 243 171 A1	

(54) Bezeichnung: Laserdiode

(57) Hauptanspruch: Laserdiode (10) mit einer Halbleiterschichtenfolge (12), die auf einem Nitridverbindungshalbleitermaterial basiert, umfassend

- eine n-Typ Mantelschicht (2),

- eine erste Wellenleiterschicht (3A), eine zweite Wellenleiterschicht (3B) und eine zwischen der ersten Wellenleiterschicht (3A) und der zweiten Wellenleiterschicht (3B) angeordnete aktive Schicht (4) zur Erzeugung von Laserstrahlung, und

- eine p-Typ Mantelschicht (6), wobei

- die p-Typ Mantelschicht (6) eine der aktiven Schicht (4) zugewandte erste Teilschicht (6A) und eine von der aktiven Schicht abgewandte zweite Teilschicht (6B) aufweist,

- die erste Teilschicht (6A) Al_{x1}Ga_{1-x1}N mit 0 ≤ x1 ≤ 1 oder Al_{x1}In_{y1}Ga_{1-x1-y1}N mit 0 ≤ x1 ≤ 1, 0 ≤ y1 < 1 und x1 + y1 ≤ 1 aufweist, wobei der Aluminiumgehalt x1 in einer von der aktiven Schicht (4) weg zeigenden Richtung abnimmt, so dass der Aluminiumgehalt an einer der aktiven Schicht (4) zugewandten Seite einen Maximalwert x1_{max} und an einer der aktiven Schicht abgewandten Seite (4) einen Minimalwert x1_{min} < x1_{max} aufweist, und

- die zweite Teilschicht (6B) $AI_{X2}Ga_{1-x2}N$ mit $0 \le x2 \le x1_{min}$ oder $AI_{x2}In_{y2}Ga_{1-x2-y2}N$ mit $0 \le x2 \le x1_{min}$, $0 \le y2 < 1$ und $x2 + y2 \le 1$ aufweist, und

- die Dotierstoffkonzentration in der zweiten Teilschicht (6B) zumindest bereichsweise höher ist oder auf einen höheren Wert ansteigt als in der ersten Teilschicht (6A).

Beschreibung

[0001] Die Anmeldung betrifft eine Laserdiode, insbesondere eine Kantenemitter-Laserdiode, die auf einem Nitridverbindungshalbleitermaterial basiert.

[0002] Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2017 122 032.1, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.

[0003] Die Halbleiterschichtenfolge einer Laserdiode weist typischerweise einen Wellenleiterbereich auf, der eine zwischen einer ersten Wellenleiterschicht und einer zweiten Wellenleiterschicht angeordnete aktive Schicht aufweist. Der Wellenleiterbereich ist in der Regel zwischen einer n-Typ Mantelschicht und einer p-Typ Mantelschicht angeordnet.

[0004] Um eine hohe Effizienz zu erreichen, sollten Laserdioden einen geringen Spannungsabfall aufweisen. Aufgrund der geringen Leitfähigkeit und der relativ großen Dicke spielt für den Spannungsabfall insbesondere die p-Typ Mantelschicht eine große Rolle. Bei auf Nitridverbindungshalbleitern basierenden Laserdioden wird die p-Typ Mantelschicht beispielsweise aus mit Magnesium dotiertem p-Typ Al-GaN hergestellt, da AlGaN einen geringeren Brechungsindex als GaN oder InGaN aufweist und somit zur Abschirmung der optischen Welle vom p-Kontakt geeignet ist. Jedoch nimmt mit zunehmendem Aluminiumgehalt auch die Aktivierungsenergie für den Dotierstoff Magnesium zu, und gleichzeitig sinkt die Löcherbeweglichkeit, sodass sich eine geringe elektrische Leitfähigkeit ergibt. Daher trägt die p-Typ Mantelschicht üblicherweise stark zum Serienwiderstand der Laserdiode bei.

[0005] Die Druckschrift US 2011 / 0 243 171 A1 beschreibt ein Nitrid-basiertes Halbleiterbauelement.

[0006] Die Druckschrift DE 10 2014 111 058 A1 betrifft ein Verfahren zur Herstellung eines optoelektronischen Bauelementes und ein optoelektronisches Bauelement mit einer aktiven Zone.

[0007] Eine zu lösende Aufgabe besteht somit darin, eine Laserdiode mit einer verbesserten p-Typ Mantelschicht anzugeben, welche einen verringerten Spannungsabfall aufweist.

[0008] Diese Aufgabe wird durch eine Laserdiode gemäß dem unabhängigen Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.

[0009] Gemäß zumindest einer Ausgestaltung umfasst die Laserdiode eine Halbleiterschichtenfolge, die auf einem Nitridverbindungshalbleitermaterial basiert. "Auf einem Nitridverbindungshalbleiter basierend" bedeutet im vorliegenden Zusammenhang, dass die Halbleiterschichtenfolge oder zumindest eine Schicht davon ein III-NitridVerbindungshalbleitermaterial, vorzugsweise $\ln_x Al_y Ga_{1-x-y} N$ umfasst, wobei $0 \le x \le 1, 0 \le y \le 1$ und $x + y \le 1$. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (In, Al, Ga, N), auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.

[0010] Laserdioden, die auf einem Nitridverbindungshalbleiter basieren, sind je nach Materialzusammensetzung insbesondere zur Emission von Strahlung im Spektralbereich des ultravioletten, blauen oder grünen Lichts geeignet.

[0011] Die Laserdiode umfasst gemäß einer Ausgestaltung eine n-Typ Mantelschicht, eine erste Wellenleiterschicht, eine aktive Schicht, eine zweite Wellenleiterschicht und eine p-Typ Mantelschicht. Diese Schichten sind insbesondere in der genannten Reihenfolge angeordnet, wobei dies nicht ausschließt, dass zwischen den genannten Schichten eine oder mehrere weitere Schichten angeordnet sind. Die aktive Schicht ist insbesondere zwischen der ersten Wellenleiterschicht und der zweiten Wellenleiterschicht angeordnet, wobei von der aktiven Schicht aus gesehen die erste Wellenleiterschicht der n-Typ Mantelschicht zugewandt ist und die zweite Wellenleiterschicht der p-Typ Mantelschicht zugewandt ist. Die erste Wellenleiterschicht, die aktive Schicht und die zweite Wellenleiterschicht bilden vorteilhaft einen Wellenleiterbereich aus, der von den Mantelschichten umschlossen wird, wobei die Mantelschichten einen geringeren Brechungsindex als die Wellenleiterschichten aufweisen und so eine Wellenführung der in der aktiven Schicht erzeugten Laserstrahlung in dem Wellenleiterbereich bewirken.

[0012] Die aktive Schicht kann zum Beispiel als pn-Übergang, als Doppelheterostruktur, als Einfach-Quantentopfstruktur oder Mehrfach-Quantentopfstruktur ausgebildet sein. Die Bezeichnung Quantentopfstruktur umfasst dabei jegliche Struktur, bei der Ladungsträger durch Einschluss (Confinement) eine Quantisierung ihrer Energiezustände erfahren. Insbesondere beinhaltet die Bezeichnung Quantentopfstruktur keine Angabe über die Dimensionalität der Quantisierung. Sie umfasst somit unter anderem Quantentröge, Quantendrähte und Quantenpunkte und jede Kombination dieser Strukturen.

[0013] Gemäß zumindest eine Ausgestaltung weist die p-Typ Mantelschicht eine der aktiven Schicht zugewandte erste Teilschicht und eine von der aktiven

Schicht abgewandte zweite Teilschicht auf. Die erste Teilschicht weist vorteilhaft $AI_{x1}Ga_{1-x1}N$ mit $0 \le x1$ \leq 1 oder Al_{x1}In_{y1}Ga_{1-x1-y1}N mit 0 < x1 \leq 1, 0 \leq y1 < 1 und x1 + y1 \leq 1 auf, wobei der Aluminiumgehalt x1 in der ersten Teilschicht in einer von der aktiven Schicht weg zeigenden Richtung abnimmt. Die erste Teilschicht weist mit anderen Worten einen Gradienten des Aluminiumgehalts x1 auf. Der Aluminiumgehalt nimmt vorzugsweise in der von der aktiven Schicht weg zeigenden Richtung kontinuierlich, beispielsweise linear, ab. Der Aluminiumgehalt kann in der ersten Teilschicht insbesondere streng monoton abnehmen. Der Aluminiumgehalt x1 der ersten Teilschicht weist an einer der aktiven Schicht zugewandten Seite einen Maximalwert $x\mathbf{1}_{max}$ und an einer an einer der aktiven Schicht abgewandten Seite einen Minimalwert x1_{min} < x1_{max} auf. Bei einer Ausgestaltung kann der Gradient des Aluminiumgehalts durch eine Schichtfolge von Teilschichten mit stufenweise abnehmendem Aluminiumgehalt realisiert werden, wobei die Einhüllende des Aluminiumsgehalts näherungsweise einem kontinuierlichen Gradienten entspricht.

[0014] Weiterhin weist die p-Typ Mantelschicht eine zweite Teilschicht auf, die von der aktiven Schicht aus gesehen der ersten Teilschicht nachfolgt. In der zweiten Teilschicht ist der Aluminiumgehalt geringer als in der ersten Teilschicht, insbesondere ist der Aluminiumgehalt in der gesamten zweiten Teilschicht geringer als in der ersten Teilschicht. Die zweite Teilschicht weist insbesondere Al_{x2}Ga_{1-x2}N mit 0 \leq x2 \leq x1_{min} oder Al_{x2}In_{y2}Ga_{1-x2-y2}N mit 0 \leq x2 \leq x1_{min}, 0 \leq y2 \leq 1 und x2 + y2 \leq 1 auf. Der Aluminiumgehalt in der zweiten Teilschicht kann insbesondere x2 = 0 sein, d.h. die zweite Teilschicht weist vorteilhaft GaN auf.

[0015] Falls die erste und/oder zweite Teilschicht einen Indiumgehalt aufweisen, ist dieser vorzugsweise nur sehr gering, beispielsweise $y1 \le 0.01$ und $y2 \le 0$, 01. Besonders bevorzugt weisen die erste Teilschicht und die zweite Teilschicht kein Indium auf, d.h. y1 = 0 und y2 = 0.

[0016] Durch den im Vergleich zur restlichen p-Typ Mantelschicht vergleichsweise hohen Aluminiumgehalt an der der aktiven Schicht zugewandten Seite der p-Typ Mantelschicht ist der Brechungsindex an dieser Seite vergleichsweise gering, so dass eine gute Wellenführung in dem Wellenleiterbereich erzielt wird. Die sich im Wellenleiterbereich ausbreitende Laserstrahlung dringt somit nur geringfügig in die p-Typ Mantelschicht ein und wird so von dem stärker absorbierenden p-Typ Halbleitermaterial abgeschirmt. Auf diese Weise können eine verringerte Absorption, eine höhere Steilheit der Laserkennlinie und eine erhöhte Betriebsstromstärke erzielt werden. Durch den Gradienten des Aluminiumgehalts in der ersten Teilschicht der p-Typ Mantelschicht, bei dem sich der Aluminiumgehalt in Wachstumsrichtung gesehen verringert, erhöht sich durch den piezoelektrischen Effekt vorteilhaft die Ladungsträgerdichte, was zu einer verbesserten Leitfähigkeit führt.

[0017] Der Aluminiumgehalt x1_{max} der ersten Teilschicht an einer der aktiven Schicht zugewandten Seite beträgt vorteilhaft mindestens 0,05, bevorzugt mindestens 0,08 und besonders bevorzugt mindestens 0,12. Je größer der Aluminiumgehalt ist, desto größer ist die elektronische Bandlücke und desto geringer ist vorteilhaft der Brechungsindex des Halbleitermaterials. Ein hoher Aluminiumgehalt bewirkt deshalb eine gute Ladungsträgerbarriere und eine gute optische Wellenführung. Andererseits sollte der Aluminiumgehalt nicht zu hoch sein, da mit zunehmendem Aluminiumgehalt des Al_{x1}Ga_{1-x1}N-Halbleitermaterials die Aktivierungsenergie für einen p-Dotierstoff wie insbesondere Magnesium zunimmt und gleichzeitig die Löcherbeweglichkeit sinkt, so dass sich die Leitfähigkeit verringern würde. Vorteilhaft beträgt der Aluminiumgehalt x1_{max} an einer der aktiven Schicht zugewandten Seite der ersten Teilschicht nicht mehr als 0,35, bevorzugt nicht mehr als 0,25 und besonders bevorzugt nicht mehr als 0,20.

[0018] Bei einer vorteilhaften Ausgestaltung weist die erste Teilschicht der p-Typ Mantelschicht an einer der aktiven Schicht zugewandten Seite einen Aluminiumgehalt $0.05 \le x1_{max} \le 0.35$ auf, bevorzugt $0.08 \le x1_{max} \le 0.25$ und besonders bevorzugt $0.12 \le x1_{max} \le 0.20$.

[0019] An einer der aktiven Schicht abgewandten Seite weist die erste Teilschicht der p-Typ Mantelschicht einen geringeren Aluminiumgehalt als an der der aktiven Schicht zugwandten Seite auf. Gemäß zumindest einer Ausgestaltung weist die erste Teilschicht an einer der aktiven Schicht abgewandten Seite einen Aluminiumgehalt $0 \le x1_{min} \le 0.30$ auf, bevorzugt $0.03 \le x1_{min} \le 0.15$ und besonders bevorzugt $0.05 \le x1_{min} \le 0.10$.

[0020] Der ersten Teilschicht der p-Typ Mantelschicht folgt an der von der aktiven Schicht abgewandten Seite eine zweite Teilschicht nach und grenzt insbesondere direkt an die erste Teilschicht an. Die zweite Teilschicht weist vorteilhaft $Al_{x2}Ga_{1-x2}N$ mit $0 \le x2 \le 0,1$ auf, wobei bevorzugt $0 \le x2 \le 0,05$ und besonders bevorzugt $0 \le x2 \le 0,01$ gilt.

[0021] Die zweite Teilschicht ist bei einer vorteilhaften Ausgestaltung frei von Aluminium. Insbesondere weist die zweite Teilschicht GaN auf oder besteht daraus. Die zweite Teilschicht mit dem geringeren Aluminiumgehalt oder sogar gar keinem Aluminiumgehalt hat den Vorteil, dass ein niedriger Serienwiderstand und eine geringe optische Absorption erzielt werden kann. **[0022]** Gemäß einer Ausführungsform ist die erste Teilschicht weniger als 300 nm dick. Eine geringe Dicke der ersten Teilschicht ist vorteilhaft, da diese aufgrund des höheren Aluminiumgehalts stärker zum Serienwiderstand beiträgt. Bevorzugt ist die erste Teilschicht weniger als 150 nm und besonders bevorzugt weniger als 100 nm dick.

[0023] Die zweite Teilschicht ist bevorzugt dicker als die erste Teilschicht. Insbesondere kann die erste Teilschicht Aluminuum aufweisen und die zweite Teilschicht frei von Aluminium sein, wobei die Aluminium-freie zweite Teilschicht dicker als die erste Teilschicht ist. Durch einen hohen Anteil des Aluminium-freien Teils an der Gesamtdicke der p-Typ Mantelschicht wird die Absorption vorteilhaft verringert. Die Dicke der zweiten Teilschicht der p-Typ Mantelschicht kann beispielsweise 100 nm bis 2000 nm betragen, bevorzugt 200 nm bis 1000 nm und besonders bevorzugt 300 nm bis 900 nm.

[0024] Gemäß einer Ausführungsform ist eine transparente leitfähige Oxidschicht an einer der aktiven Schicht abgewandten Seite der p-Typ Mantelschicht angeordnet. Die transparente leitfähige Oxidschicht kann direkt an die zweite Teilschicht der p-Typ Mantelschicht angrenzen. Es ist aber auch möglich, dass eine weitere Schicht, insbesondere eine p-Kontaktschicht mit einer höheren Dotierstoffkonzentration als in der zweiten Teilschicht, zwischen der zweiten Teilschicht und der transparenten leitfähigen Oxidschicht angeordnet ist. Die transparente leitfähige Oxidschicht enthält vorzugsweise ITO oder ZnO. Die transparente leitfähige Oxidschicht zeichnet sich durch eine gute elektrische Leitfähigkeit aus und ermöglicht auf diese Weise eine vorteilhaft dünne p-Typ Mantelschicht.

[0025] Bei einer weiteren bevorzugten Ausgestaltung ist eine Elektronenbarriereschicht zwischen der zweiten Wellenleiterschicht und der p-Typ Mantelschicht angeordnet. Die Elektronenbarriereschicht weist Al_zGa_{1-z}N auf, wobei der Aluminiumgehalt z größer ist als der Aluminiumgehalt x1_{max} der ersten Teilschicht an einer der Elektronenbarriereschicht zugewandten Seite. Der Aluminiumgehalt z der Elektronenbarriereschicht beträgt vorteilhaft zwischen 0, 05 und 0,4, bevorzugt zwischen 0,1 und 0,3 und besonders bevorzugt zwischen 0,15 und 0,25. Auf diese Weise wird erreicht, dass die Elektronenbarriereschicht eine große Bandlücke aufweist. Dies hindert Elektronen daran, den Wellenleiterbereich zu verlassen. Weiterhin resultiert aus der großen Bandlücke ein geringer Brechungsindex, der vorteilhaft klein im Vergleich zu den Wellenleiterschichten ist. Dies verbessert die Wellenführung im Wellenleiterbereich.

[0026] Gemäß zumindest einer Ausführungsform weisen die erste Wellenleiterschicht und/oder die zweite Wellenleiterschicht InGaN auf. Durch den In-

diumanteil in den Wellenleiterschichten vermindert sich die Bandlücke und vergrößert sich der Brechungsindex. Dies ist vorteilhaft, um einen hohen Brechungsindexkontrast zu den Mantelschichten zu erzielen. Der Indiumanteil sollte andererseits nicht zu groß sein, um die Materialqualität nicht zu beeinträchtigen. Die erste und/oder die zweite Wellenleiterschicht können insbesondere In_yGa_{1-y}N mit 0, 005 ≤ $y \le 0,1$ aufweisen, bevorzugt In_yGa_{1-y}N mit 0,02 ≤ y $\le 0,07$ und besonders bevorzugt In_yGa_{1-y}N mit 0,03 $\le y \le 0,05$.

[0027] Die Laserdiode wird im Folgenden anhand von Ausführungsbeispielen im Zusammenhang mit den **Fig. 1** bis **Fig. 9** näher erläutert.

[0028] Es zeigen:

Fig. 1A eine schematische Darstellung eines Querschnitts durch eine Laserdiode gemäß einem Ausführungsbeispiel,

Fig. 1B eine schematische Darstellung des Verlaufs der Bandlücke Eg in der Halbleiterschichtenfolge des Ausführungsbeispiels der Laserdiode gemäß **Fig. 1A**,

Fig. 1C eine schematische Darstellung des Verlaufs der Dotierstoffkonzentration C_{Mg} des p-Dotierstoffs Magnesium in der Halbleiterschichtenfolge des Ausführungsbeispiels der Laserdiode gemäß **Fig. 1A**,

Fig. 2 bis **Fig. 9** jeweils eine schematische Darstellung der Bandstruktur bei weiteren Ausführungsbeispielen der Laserdiode.

[0029] Gleiche oder gleich wirkende Bestandteile sind in den Figuren jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.

[0030] In **Fig. 1A** ist ein Ausführungsbeispiel der Laserdiode im Querschnitt dargestellt. Die Laserdiode **10** weist eine Halbleiterschichtenfolge **12** auf, die in einer Wachstumsrichtung z auf ein Substrat **1** aufgewachsen ist.

[0031] Die Halbleiterschichtenfolge **12** basiert auf einem Nitridverbindungshalbleiter, d.h. die Halbleiterschichten der Halbleiterschichtenfolge **12** weisen insbesondere $\ln_x Al_y Ga_{1-x-y} N$ auf, wobei $0 \le x \le 1$, $0 \le y \le 1$ und $x + y \le 1$. Das Substrat **1** ist ein zum Aufwachsen von Nitridverbindungshalbleitern geeignetes Substrat, vorzugsweise ein GaN-Substrat.

[0032] Zur Erzeugung von Laserstrahlung enthält die Laserdiode **10** eine aktive Schicht **4**, die vorzugsweise als Einfach- oder Mehrfach-Quantentopfstruktur ausgebildet ist. Die aktive Schicht **4** kann mehrere Teilschichten, insbesondere eine Abfolge von Barriereschichten und einer oder mehreren Quantentopfschichten aufweisen, die in **Fig. 1A** zur Vereinfachung nicht einzeln dargestellt sind.

[0033] Die aktive Schicht 4 ist zwischen einer ersten Wellenleiterschicht 3A und einer zweiten Wellenleiterschicht 3B angeordnet, wobei die erste Wellenleiterschicht 3A an der n-Seite und die zweite Wellenleiterschicht 3B an der p-Seite an die aktive Schicht 4 angrenzt. Zusätzlich kann bei einer möglichen Ausgestaltung eine weitere Wellenleiterschicht 3C vorgesehen sein, die beispielsweise in Wachstumsrichtung vor der ersten Wellenleiterschicht 3A angeordnet ist. Die aktive Schicht 4 und die Wellenleiterschichten 3A, 3B, 3C bilden einen Wellenleiterbereich 3 aus. Die Laserdiode 10 ist als Kantenemitter-Laserdiode ausgeführt, welche Laserstrahlung senkrecht zur Wachstumsrichtung z, d.h. parallel zur Schichtebene der aktiven Schicht 4, emittiert.

[0034] Der Wellenleiterbereich 3 ist zwischen einer n-Typ Mantelschicht 2 und einer p-Typ Mantelschicht **6** angeordnet. Zur Führung der Laserstrahlung in dem Wellenleiterbereich 3 weisen die n-Typ Mantelschicht 2 und die p-Typ Mantelschicht **6** einen geringeren Brechungsindex als die Wellenleiterschichten **3A**, **3B**, **3C** auf. Dies wird beispielsweise dadurch realisiert, dass die Mantelschichten **2**, **6** zumindest bereichsweise einen höheren Aluminiumgehalt und/ oder geringeren Indiumgehalt als die Wellenleiterschichten **3A**, **3B**, **3C** aufweisen, woraus eine größere elektronische Bandlücke und ein geringerer Brechungsindex resultiert.

[0035] Der Verlauf der elektronischen Bandlücke Eg in der Halbleiterschichtenfolge ist schematisch in **Fig. 1B** dargestellt. Bei der Laserdiode **10** weist die p-Typ Mantelschicht **6** vorteilhaft eine erste Teilschicht **6A** und eine zweite Teilschicht **6B** auf. Die erste Teilschicht **6A** weist vorteilhaft $AI_{x1}Ga_{1-x1}N$ auf, wobei der Aluminiumgehalt x1 einen Gradienten aufweist. Der Aluminiumgehalt x1 nimmt in der ersten Teilschicht **6A** in der von der aktiven Schicht weg zeigenden Richtung, d.h. in der Wachstumsrichtung z der Halbleiterschichtenfolge **12**, ab. Der Aluminiumgehalt x1 und entsprechend die Bandlücke Eg nehmen kontinuierlich, insbesondere linear, ab. Der Aluminiumgehalt x1 ist in der ersten Teilschicht **6A** insbesondere streng monoton fallend.

[0036] Der Aluminiumgehalt x1 weist in der ersten Teilschicht **6A** an der der aktiven Schicht **4** zugewandten Seite einen Maximalwert x1_{max} und an der der aktiven Schicht abgewandten Seite einen Minimalwert x1_{min} auf. Vorteilhaft gilt 0,05 \leq x1_{max} \leq 0,35, bevorzugt 0,08 \leq x1_{max} \leq 0,25 und besonders bevorzugt 0,12 \leq x1_{max} \leq 0,20. Für den Minimalwert x1_{min} an der der aktiven Schicht **4** abgewandten Seite gilt vorteilhaft 0 \leq x1_{min} \leq 0,30, bevorzugt 0,03 \leq x1_{min} \leq 0,15 und besonders bevorzugt 0,05 \leq x1_{min} \leq 0,10. **[0037]** Die erste Teilschicht **6A** ist vorzugsweise eine dünne Schicht, die eine Dicke von weniger als 300 nm, vorzugsweise von weniger als 150 nm und besonders bevorzugt von weniger als 100 nm aufweist. Der abnehmende Aluminiumgehalt und die geringe Dicke haben den Vorteil, dass sich die Ladungsträgerdichte aufgrund des Piezoeffekts erhöht und die Absorption gering ist. Weiterhin ist die Barrierewirkung für Löcher nur gering, wodurch sich eine gute Injektionseffizienz und ein geringer Spannungsabfall ergeben. Die Steilheit der Kennlinie der Laserdiode **10** kann sich dadurch erhöhen.

[0038] Die zweite Teilschicht **6B** der p-Typ Mantelschicht **6** kann insbesondere direkt an die erste Teilschicht **6A** angrenzen und weist einen Aluminiumgehalt auf, der nicht größer ist als der Aluminiumgehalt x_{min} der ersten Teilschicht **6A** an der von der aktiven Schicht **4** abgewandten Seite. Die zweite Teilschicht **6A** weist insbesondere Al_{x2}Ga_{1-x2}N mit $0 \le x2 \le 0,1$ auf, wobei bevorzugt $0 \le x2 \le 0,05$ und besonders bevorzugt $0 \le x2 \le 0,01$ gilt. Vorzugsweise weist die zweite Teilschicht **6B** kein Aluminium auf. Die zweite Teilschicht **6B** kann insbesondere eine GaN-Schicht sein. Die Dicke der zweiten Teilschicht **6B** ist vorzugsweise größer als die Dicke der ersten Teilschicht **6A**.

[0039] Der zweiten Teilschicht der p-Typ Mantelschicht 6 folgt an der von der aktiven Schicht 4 abgewandten Seite eine p-Kontaktschicht 7 nach. Bei der p-Kontaktschicht 7 kann es sich insbesondere um eine GaN-Schicht oder um eine InGaN-Schicht handeln. Die p-Kontaktschicht 7 ist eine p-dotierte Schicht, die vorteilhaft hoch dotiert ist. Die Dotierstoffkonzentration in der p-Kontaktschicht 7 beträgt vorteilhaft mindestens 5 * 10¹⁹ cm⁻³, bevorzugt mindestens 1 * 10²⁰ cm⁻³. Die p-Kontaktschicht 7 kann sich von der zweiten Teilschicht 6B der p-Typ Mantelschicht 6 insbesondere dadurch unterscheiden, dass sie eine höhere Dotierstoffkonzentration aufweist. Es ist aber möglich, dass die zweite Teilschicht 6B der p-Typ Mantelschicht und die p-Kontaktschicht 7 abgesehen von der unterschiedlichen Dotierstoffkonzentration das gleiche Halbleitermaterial aufweisen, beispielsweise jeweils GaN.

[0040] Es ist möglich, dass an die p-Kontaktschicht 7 unmittelbar eine p-Anschlussschicht 9 angrenzt, die beispielsweise ein Metall oder eine Metalllegierung aufweist und zur Herstellung eines elektrischen Kontakts dient. Weiterhin weist die Laserdiode **10** eine n-Anschlussschicht 11 auf, beispielsweise an einer Rückseite des Substrats. Die n-Anschlussschicht 11 kann beispielsweise ein Metall oder eine Metalllegierung aufweisen.

[0041] Bei einer bevorzugten Ausgestaltung ist, wie in **Fig. 1A** dargestellt, zwischen der p-Kontaktschicht 7 und der p-Anschlussschicht 9 eine transparente leitfähige Oxidschicht **8** angeordnet. Die transparente leitfähige Oxidschicht **8** kann insbesondere Indium-Zinn-Oxid (ITO) oder Zinkoxid (ZnO) aufweisen. Durch die transparente leitfähige Oxidschicht **8** wird insbesondere die Leitfähigkeit erhöht und der Brechungsindex verringert, wodurch es ermöglicht wird, die p-Typ Mantelschicht **6** vorteilhaft dünn auszuführen und die Absorption auf diese Weise zu verringern.

[0042] Bei dem Ausführungsbeispiel der **Fig. 1A** und **Fig. 1B** ist weiterhin zwischen der zweiten Wellenleiterschicht **3B** und der ersten Teilschicht **6A** der p-Typ Mantelschicht **6** eine optionale Elektronenbarriereschicht **5** angeordnet. Die Elektronenbarriereschicht **5** weist vorzugsweise einen noch größeren Aluminiumgehalt und dementsprechend eine noch größere Bandlücke als die erste Teilschicht **6A** der p-Typ Mantelschicht **6** auf. Der Aluminiumgehalt in der Elektronenbarriereschicht **5** kann insbesondere gleich groß oder größer sein als der Aluminiumgehalt x1_{max} der ersten Teilschicht **6A** der p-Mantelschicht **6** an der der aktiven Schicht **4** zugewandten Seite.

[0043] Die Elektronenbarriereschicht **5** kann insbesondere Al_zGa_{1-z}N aufweisen, wobei der Aluminiumgehalt z zwischen 0,05 und 0,4, bevorzugt zwischen 0,1 und 0,3 und besonders bevorzugt zwischen 0, 15 und 0,25 beträgt. Insbesondere ist $z \ge x1_{max}$. Die Elektronenbarriereschicht weist eine größere Bandlücke Eg als die angrenzende zweite Wellenleiterschicht **3B** auf. Dies hindert Elektronen daran, den Wellenleiterbereich 3 zu verlassen. Weiterhin resultiert aus der großen Bandlücke ein geringer Brechungsindex, der vorteilhaft klein im Vergleich zu den Wellenleiterschichten ist. Dies verbessert die Wellenführung im Wellenleiterbereich 3.

[0044] Die erste Wellenleiterschicht **3A** und die zweite Wellenleiterschicht **3B**, welche direkt an die aktive Schicht **4** angrenzen, weisen jeweils GaN oder vorzugsweise InGaN auf. Durch einen Indiumanteil in den Wellenleiterschichten **3A**, **3B** vermindert sich die Bandlücke und vergrößert sich der Brechungsindex. Die erste und die zweite Wellenleiterschicht können insbesondere In_yGa_{1-y}N mit 0, 005 ≤ y ≤ 0,1 aufweisen, bevorzugt In_yGa_{1-y}N mit 0,02 ≤ y ≤ 0,07 und besonders bevorzugt In_yGa_{1-y}N mit 0,03 ≤ y ≤ 0,05.

[0045] In der **Fig. 1C** ist der Verlauf der Dotierstoffkonzentration C_{Mg} des p-Dotierstoffs Magnesium in der Halbleiterschichtenfolge des Ausführungsbeispiels der Laserdiode gemäß **Fig. 1A** schematisch dargestellt. Die Dotierstoffkonzentration in der Elektronenbarriereschicht **5** beträgt vorzugsweise mindestens 5*10¹⁸ cm⁻³, besonders bevorzugt mindestens 2*10¹⁹ cm⁻³. Die Dotierstoffkonzentration in der ersten Teilschicht **6A** der p-Typ Mantelschicht **6** ist vorteilhaft niedriger als in der Elektronenbarriereschicht **5**, um die Absorption gering zu halten. Sie beträgt vorzugsweise zwischen 1*10¹⁸ cm⁻³ und 5*10¹⁸ cm⁻³. Die Dotierstoffkonzentration in der zweiten Teilschicht **6B** ist höher oder steigt innerhalb der zweiten Teilschicht auf einen höheren Wert an als in der ersten Teilschicht **6A**. Beispielsweise beträgt die Dotierstoffkonzentration in der zweiten Teilschicht **6B** zumindest bereichsweise zwischen 5*10¹⁸ cm⁻³ und 2*10¹⁹ cm⁻³, bevorzugt zwischen 1*10¹⁹ cm⁻³ und 2*10¹⁹ cm⁻³. Die p-Kontaktschicht 7 weist vorzugsweise eine noch höhere Dotierstoffkonzentration auf, beispielsweise mehr als 7*10¹⁹ cm⁻³ und bevorzugt mehr als 1*10²⁰ cm⁻³.

[0046] In den folgenden **Fig. 2** bis **Fig. 9** ist jeweils der Verlauf der elektronischen Bandlücke Eg in der Halbleiterschichtenfolge bei Abwandlungen des ersten Ausführungsbeispiels gezeigt. Die Anordnung der Schichten und weitere vorteilhafte Ausgestaltungen des Schichtsystems entsprechen jeweils, sofern nicht anders angegeben, dem Ausführungsbeispiel der **Fig. 1A**, **Fig. 1B** und **Fig. 1C**.

[0047] Bei dem Ausführungsbeispiel der **Fig. 2** weist die zweite Teilschicht **6B** der p-Typ Mantelschicht **6** einen Aluminiumgehalt $x^2 > 0$ auf. Die Bandlücke Eg in der zweiten Teilschicht **6B** ist in diesem Fall größer als in der p-Kontaktschicht 7, die bei dem Ausführungsbeispiel GaN aufweist.

[0048] Es ist möglich, dass die p-Typ Mantelschicht **6** mehr als nur zwei Teilschichten **6A**, **6B** aufweist. Bei dem Ausführungsbeispiel der **Fig. 3** weist die zweite Teilschicht **6B** der p-Typ Mantelschicht **6** einen Aluminiumgehalt $x^2 = 0$ auf. Darauf folgt eine dritte Teilschicht **6C**, die einen Aluminiumgehalt $x^2 > 0$ aufweist.

[0049] Bei dem Ausführungsbeispiel der **Fig. 4** weisen sowohl die erste Teilschicht **6A** als auch die zweite Teilschicht **6B** der p-Typ Mantelschicht **6** jeweils einen Gradienten des Aluminiumgehalts auf, wobei der Aluminiumgehalt jeweils in der von der aktiven Schicht **4** weg zeigenden Richtung, d.h. in Wachstumsrichtung z, abnimmt. Zwischen der ersten Teilschicht **6B** weisen der Aluminiumgehalt und somit die Bandlücke Eg eine Stufe auf.

[0050] Bei dem Ausführungsbeispiel der **Fig. 5** weisen sowohl die erste Teilschicht **6A** als auch die zweite Teilschicht **6B** der p-Typ Mantelschicht **6** jeweils einen Gradienten des Aluminiumgehalts auf, wobei der Aluminiumgehalt jeweils in der von der aktiven Schicht **4** weg zeigenden Richtung, d.h. in Wachstumsrichtung z, linear abnimmt. Anders als bei dem Ausführungsbeispiel der **Fig. 4** weist der Aluminiumgehalt an der Grenzfläche zwischen der ersten Teilschicht **6A** und der zweiten Teilschicht **6B** keine Stufe auf, sondern verläuft kontinuierlich. Es ist möglich, dass dennoch eine Grenzfläche zwischen der ersten Teilschicht **6A** und der zweiten Teilschicht **6B** besteht, an der sich die Materialeigenschaften sprunghaft ändern. Beispielsweise kann die zweite Teilschicht **6B** eine höhere Dotierstoffkonzentration als die erste Teilschicht **6A** aufweisen.

[0051] Bei dem Ausführungsbeispiel der **Fig. 6** weisen sowohl die erste Teilschicht **6A** als auch die zweite Teilschicht **6B** der p-Typ Mantelschicht **6** jeweils einen Gradienten des Aluminiumgehalts auf, wobei der Aluminiumgehalt jeweils in der von der aktiven Schicht **4** weg zeigenden Richtung, d.h. in Wachstumsrichtung z, kontinuierlich abnimmt. Der Gradient ist anders als bei dem in **Fig. 5** dargestellten Ausführungsbeispiel kein linearer Gradient. Der Aluminiumgehalt in den Teilschichten **6A**, **6B** kann nach einer beliebigen Funktion, vorzugsweise kontinuierlich, abnehmen. Der Aluminiumgehalt weist insbesondere eine in Wachstumsrichtung z streng monoton fallende Funktion auf.

[0052] Bei dem Ausführungsbeispiel der **Fig. 7** weist nur die erste Teilschicht **6A** der p-Typ Mantelschicht **6** einen Gradienten des Aluminiumgehalts auf, wobei der Aluminiumgehalt gemäß einer nicht linearen Funktion kontinuierlich abnimmt. In der zweiten Teilschicht **6B** ist der Aluminiumgehalt gleich null, insbesondere ist die zweite Teilschicht eine GaN-Schicht. Vorzugsweise endet der Gradient des Aluminiumgehalts x1 in der ersten Teilschicht **6A** bei einem Wert x1 > 0, bevorzugt x1 ≥ 0,04. Es ist aber auch möglich, dass der Aluminiumgehalt in der ersten Teilschicht **6A** bis auf den Wert x1 = 0 fällt.

[0053] Bei dem Ausführungsbeispiel der Fig. 8 ist die aktive Schicht 4 zwischen einer ersten Wellenleiterschicht 3A und einer zweiten Wellenleiterschicht 3B angeordnet. Wei bei den vorherigen Ausführungsbeispielen ist zwischen der ersten Wellenleiterschicht 3A und der n-Typ Mantelschicht 6 eine weitere Wellenleiterschicht 3C angeordnet. Weiterhin ist zwischen der zweiten Wellenleiterschicht 3B und der Elektronenbarriereschicht 5 noch eine weitere Wellenleiterschicht 3D angeordnet. Der Wellenleiter ist somit auf beiden Seiten der aktiven Schicht 4 zweistufig ausgeführt. Es ist möglich, dass die n-Typ Mantelschicht 2 nur einen geringen Aluminiumgehalt oder sogar kein Aluminium aufweist. Beispielsweise kann die n-Typ Mantelschicht $Al_zG_{1-z}N$ mit $0 \le z \le 0,05$ aufweisen. Die Absorption kann auf diese Weise vorteilhaft vermindert werden. Insbesondere ist die n-Typ Mantelschicht 2 eine GaN-Schicht.

[0054] Bei dem Ausführungsbeispiel der **Fig. 9** ist die aktive Schicht **4** wie bei dem vorherigen Ausführungsbeispiel zwischen einer ersten Wellenleiterschicht **3A** und einer zweiten Wellenleiterschicht **3B** angeordnet, wobei zwischen der ersten Wellenleiterschicht **3A** und der n-Typ Mantelschicht **2** eine weitere Wellenleiterschicht **3C** und zwischen der zweiten Wellenleiterschicht **3B** und der Elektronenbarrie-

reschicht 5 noch eine weitere Wellenleiterschicht 3D angeordnet ist. Der Wellenleiter ist somit auf beiden Seiten der aktiven Schicht 4 mehrstufig ausgeführt. Bei den Wellenleiterschichten 3A, 3B, 3C, 3D handelt es sich vorteilhaft um InGaN- oder GaN-Schichten. Bei dem Ausführungsbeispiel der Fig. 9 ist der Wellenleiter bezüglich der aktiven Schicht 4 asymmetrisch ausgeführt. Insbesondere kann der Indiumgehalt auf der p-Seite der aktiven Schicht 4 größer sein als auf der n-Seite. Vorzugsweise weist die an der p-Seite an die aktive Schicht 4 angrenzende zweite Wellenleiterschicht 3B InGaN mit einem größeren Indiumgehalt auf als die an der n-Seite an die aktive Schicht 4 angrenzende erste Wellenleiterschicht 3A. Weiterhin ist es vorteilhaft, wenn die an der p-Seite an die zweite Wellenleiterschicht 3B angrenzende weitere Wellenleiterschicht 3D einen größeren Indiumgehalt aufweist als die an der n-Seite an die erste Wellenleiterschicht 3A angrenzende weitere Wellenleiterschicht 3C. Der vergleichsweise geringe Indiumgehalt der p-seitigen Wellenleiterschichten 3B, 3D hat den Vorteil, dass die Ladungsträgerinjektion in die aktive Schicht 4 verbessert wird.

[0055] Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt.

Bezugszeichenliste

- 1 Substrat
- 2 n-Typ Mantelschicht
- 3A erste Wellenleiterschicht
- 3B zweite Wellenleiterschicht
- 3C weitere Wellenleiterschicht
- **3D** weitere Wellenleiterschicht
- 4 aktive Schicht
- 5 Elektronenbarriereschicht
- 6 p-Typ Mantelschicht
- 6A erste Teilschicht
- 6B zweite Teilschicht
- 6C dritte Teilschicht
- 7 p-Kontaktschicht
- 8 transparente leitfähige Oxidschicht
- 9 p-Anschlussschicht
- 10 Laserdiode
- 11 n-Anschlussschicht
- 12 Halbleiterschichtenfolge

Patentansprüche

1. Laserdiode (10) mit einer Halbleiterschichtenfolge (12), die auf einem Nitridverbindungshalbleitermaterial basiert, umfassend

- eine n-Typ Mantelschicht (2),

- eine erste Wellenleiterschicht (3A), eine zweite Wellenleiterschicht (3B) und eine zwischen der ersten Wellenleiterschicht (3A) und der zweiten Wellenleiterschicht (3B) angeordnete aktive Schicht (4) zur Erzeugung von Laserstrahlung, und

- eine p-Typ Mantelschicht (6), wobei

- die p-Typ Mantelschicht (6) eine der aktiven Schicht (4) zugewandte erste Teilschicht (6A) und eine von der aktiven Schicht abgewandte zweite Teilschicht (6B) aufweist,

- die erste Teilschicht (6A) Al_{x1}Ga_{1-x1}N mit 0 ≤ x1 ≤ 1 oder Al_{x1}In_{y1}Ga_{1-x1-y1}N mit 0 ≤ x1 ≤ 1, 0 ≤ y1 < 1 und x1 + y1 ≤ 1 aufweist, wobei der Aluminiumgehalt x1 in einer von der aktiven Schicht (4) weg zeigenden Richtung abnimmt, so dass der Aluminiumgehalt an einer der aktiven Schicht (4) zugewandten Seite einen Maximalwert x1_{max} und an einer der aktiven Schicht abgewandten Seite (4) einen Minimalwert x1_{min} < x1_{max} aufweist, und

- die zweite Teilschicht (6B) $AI_{X2}Ga_{1-x2}N$ mit $0 \le x2 \le x1_{min}$ oder $AI_{x2}In_{y2}Ga_{1-x2-y2}N$ mit $0 \le x2 \le x1_{min}$, $0 \le y2 \le 1$ und $x2 + y2 \le 1$ aufweist, und

- die Dotierstoffkonzentration in der zweiten Teilschicht (6B) zumindest bereichsweise höher ist oder auf einen höheren Wert ansteigt als in der ersten Teilschicht (6A).

2. Laserdiode nach Anspruch 1, wobei die erste Teilschicht (6A) an einer der aktiven Schicht (4) zugewandten Seite einen Aluminiumgehalt $0.05 \le x1_{max} \le 0.35$ aufweist.

3. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) an einer der aktiven Schicht (4) zugewandten Seite einen Aluminiumgehalt 0,08 $\leq x1_{max} \leq 0,25$ aufweist.

4. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) an einer der aktiven Schicht (4) zugewandten Seite einen Aluminiumgehalt $0,12 \le x1_{max} \le 0,20$ aufweist.

5. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) an einer der aktiven Schicht (4) abgewandten Seite einen Aluminiumgehalt $0 \le x 1_{min} \le 0.30$ aufweist.

6. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) an einer der aktiven Schicht (4) abgewandten Seite einen Aluminiumgehalt $0.03 \le x1_{min} \le 0.15$ aufweist.

7. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) an einer der aktiven Schicht (4) abgewandten Seite einen Aluminiumgehalt $0.05 \le x1_{min} \le 0.10$ aufweist.

8. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die zweite Teilschicht (6B) $AI_{x2}Ga_{1-x2}N$ mit 0 ≤ x2 ≤ 0,1 aufweist.

9. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die zweite Teilschicht (6B) GaN aufweist.

10. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) weniger als 300 nm dick ist.

11. Laserdiode nach einem der vorhergehenden Ansprüche, wobei eine transparente leitfähige Oxidschicht (8) an einer der aktiven Schicht (4) abgewandten Seite der p-Typ Mantelschicht (6) angeordnet ist.

12. Laserdiode nach einem der vorhergehenden Ansprüche, wobei eine Elektronenbarriereschicht (5) zwischen der zweiten Wellenleiterschicht (3B) und der p-Typ Mantelschicht (6) angeordnet ist, wobei die Elektronenbarriereschicht (5) Al_zGa_{1-z}N aufweist, und wobei der Aluminiumgehalt z größer ist als der Aluminiumgehalt x1_{max} der ersten Teilschicht (6A) an einer der Elektronenbarriereschicht (5) zugewandten Seite.

13. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Wellenleiterschicht (3A) und/oder die zweite Wellenleiterschicht (3B) In_{y} - $Ga_{1-y}N$ mit 0,005 $\leq y \leq 0,1$ aufweisen.

14. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Wellenleiterschicht (3A) und/oder die zweite Wellenleiterschicht (3B) In_{y} - $Ga_{1-y}N$ mit 0,02 $\leq y \leq$ 0,07 aufweisen.

15. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Wellenleiterschicht (3A) und/oder die zweite Wellenleiterschicht (3B) In_{y-} $Ga_{1-y}N$ mit 0,03 $\leq y \leq$ 0,05 aufweisen.

16. Laserdiode nach einem der vorhergehenden Ansprüche, wobei die erste Teilschicht (6A) weniger als 100 nm dick ist und die zweite Teilschicht (6B) eine GaN-Schicht ist.

Es folgen 6 Seiten Zeichnungen

Anhängende Zeichnungen

FIG 1A

FIG 1B

FIG 1C

FIG 2

FIG 6

DE 11 2018 005 379 B4 2021.12.23

