PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 9/318 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/27536

31 July 1997 (31.07.97)

(21) International Application Number: PCT/US97/01221

(22) International Filing Date: 23 January 1997 (23.01.97)

(30) Priority Data:
60/010,527
643,984

us
Us

24 January 1996 (24.01.96)
7 May 1996 (07.05.96)

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 2550
Garcia Avenue, Mountain View, CA 94043-1100 (US).

(72) Inventors: O’CONNOR, James, Michael; 345 Ruth Avenue,
Mountain View, CA 94043 (US). TREMBLAY, Marc;
Apartment #3, 801 Waverly Street, Palo Alto, CA 94301
(US).

(74) Agents: GUNNISON, Forrest, E. et al.; Skjerven, Morrill,
MacPherson, Franklin & Friel, Suite 700, 25 Metro Drive,
San Jose, CA 95110 (US).

(81) Designated States: CN, JP, KR, European patent (AT, BE, CH,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 1o be republished in the event of the receipt of
amendments.

(54) Title: INSTRUCTION FOLDING FOR A STACK-BASED MACHINE

(57) Abstract

An instruction decoder (135, 1118) aliows the folding away
of JAVA virtual machine instructions pushing an operand onto
the top of a stack (e.g., 423, 155, 812) merely as a precursor
to a second JAVA virtual machine instruction which operates
on the top of stack operand. Such an instruction decoder
identifies foldable instruction sequences and supplies an execution
unit with a single equivalent folded operation thereby reducing
processing cycles otherwise required for execution of multiple
operations corresponding to the multiple instructions of the folded
instruction sequence. Instruction decoder embodiments described
herein provide for folding of two, three, four, or more instruction
folding. For example, in one instruction decoder embodiment
described herein, two load instructions and a store instruction
can be folded into execution of operation corresponding to an
instruction appearing therebetween in the instruction sequence.

1100

t
TO/FROM B
SECONDARY
STORAGE
_— 1130 |
INSTRUCTION o DATA
CACHE CONTROLLER [""| CACHE
i 118
INSTRUCTION
BUFFER
T
nstruction bytes 1118
* PIPELINE
INSTRUCTION |——Instr_dec GONTROL
DECODER |—instr_vaiig—
Hinstr_addr
T ™\
814
812 |
operand
OPTOP —{4 EXECUTION E
PTOP-1 — loperand univ
OPTOP-2 — — — —
. operand T < 1120
. r— result
VARS-3 —| J
vnng-z N
VARS.1 1]
VARS —{4 J
.
L]
813 ° N
- 810

AM
AT
AU
BB
BE
BF
BG
BJ

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 97/27536 PCT/US97/01221

INSTRUCTION FOLDING FOR A STACK-BASED MACHINE

REFERENCE TO APPENDIX |

A portion of the disclosure of this patent document including Appendix I, The JAVA Virtual
Machine Specification and Appendix A thereto, contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the
patent disclosure, as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise

reserves all copyright rights whatsoever.

TECHNICAL FIELD

The present invention relates to instruction decoders for a stack machine, and in particular, to

methods and apparati for folding a sequence of multiple instructions into a single folded operation.

BACKGROUND ART

Many individuals and organizations in the computer and communications industries tout the Internet
as the fastest growing market on the planet. In the 1990s, the number of users of the Internet appears to be
growing exponentially with no end in sight. In June of 1995, an estimated 6,642,000 hosts were connected to
the Internet; this represented an increase from an estimated 4,852,000 hosts in January, 1995. The number of
hosts appears to be growing at around 75% per year. Among the hosts, there were approximately 120,000
networks and over 27,000 web servers. The number of web servers appears to be approximately doubling

every 53 days.

In July 1995, with over 1,000,000 active Internet users, over 12,505 usenet news groups, and
over 10,000,000 usenet readers, the Internet appears to be destined to explode into a very large market for a

wide variety of information and multimedia services.

In addition, to the public carrier network or Internet, many corporations and other businesses are
shifting their internal information systems onto an intranet as a way of more effectively sharing information
within a corporate or private network. The basic infrastructure for an intranet is an internal network
connecting servers and desktops, which may or may not be connected to the Internet through a firewall. These
intranets provide services to desktops via standard open network protocols which are well established in the
industry. Intranets provide many benefits to the enterprises which employ them, such as simplified internal
information management and improved internal communication using the browser paradigm. Integrating
Internet technologies with a company's enterprise infrastructure and legacy systems also leverages existing
technology investment for the party employing an intranet. As discussed above, intranets and the Internet are
closely related, with intranets being used for internal and secure communications within the business and the

Internet being used for external transactions between the business and the outside world. For the purposes of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
2.

this document, the term "networks" includes both the Internet and intranets. However, the distinction between -

the Internet and an intranet should be born in mind where applicable.

In 1990, programmers at Sun Microsystems wrote a universal programming language. This language
was eventually named the JAVA programming language. (JAVA is a trademark of Sun Microsystems of
Mountain View, CA.) The JAVA programming language resulted from programming efforts which initially
were intended to be coded in the C++ programming language; therefore, the JAVA programming language
has many commonalities with the C++ programming language. However, the JAVA programming language
is a simple, object-oriented, distributed, interpreted yet high performance, robust yet safe, secure, dynamic,

architecture neutral, portable, and multi-threaded language.

The JAVA programming language has emerged as the programming language of choice for the
Internet as many large hardware and software companies have licensed it from Sun Microsystems. The JAVA
programming language and environment is designed to solve a number of problems in modern programming
practice. The JAVA programming language omits many rarely used, poorly understood, and confusing
features of the C++ programming language. These omitted features primarily consist of operator overloading,
muitiple inheritance, and extensive automatic coercions. The JAVA programming language includes
automatic garbage collection that simplifies the task of programming because it is no longer necessary to
allocated and free memory as in the C programming language. The JAV A programming language restricts the
use of pointers as defined in the C programming language, and instead has true arrays in which array bounds
are explicitly checked, thereby eliminating vulnerability to many viruses and nasty bugs. The JAVA

programming language includes objective-C interfaces and specific exception handlers.

The JAVA programming language has an extensive library of routines for coping easily with TCP/IP
protocol (Transmission Control Protocol based on Internet protocol), HTTP (Hypertext Transfer Protocol) and
FTP (File Transfer Protocol). The JAVA programming language is intended to be used in
networked/distributed environments. The JAVA programming language enabled the construction of

virus-free, tamper-free systems. The authentication techniques are based on public-key encryption.

DISCLOSURE OF INVENTION

A JAVA virtual machine is an stack-oriented abstract computing machine, which like a physical
computing machine has an instruction set and uses various storage areas. A JAVA virtual machine need not
understand the JAVA programming language; instead it understands a class file format. A class file includes
JAVA virtual machine instructions (or bytecodes) and a symbol table, as well as other ancillary information.
Programs written in the JAVA programming language (or in other languages) may be compiled to produce a

sequence of JAVA virtual machine instructions.

Typically, in a stack-oriented machine, instructions typically operate on data at the top of an operand

stack. One or more first instructions, such as a load from local variable instruction, are executed to push

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221

.3-

operand data onto the operand stack as a precursor to execution of an instruction which immediateiy follows
such instruction(s). The instruction which follows, e.g., an add operation, pops operand data from the top of
the stack, operates on the operand data, and pushes a result onto the operand stack, replacing the operand data

at the top of the operand stack.

A suitably configured instruction decoder allows the folding away of instructions pushing an operand
onto the top of a stack merely as a precursor to a second instruction which operates on the top of stack
operand. The instruction decoder identifies foldable instruction sequences (typically 2, 3, or 4 instructions)
and supplies an execution unit with an equivalent folded operation (typically a single operation) thereby
reducing processing cycles otherwise required for execution of multiple operations corresponding to the
multiple instructions of the folded instruction sequence. Using an instruction decoder in accordance with the
present invention, multiple load instructions and a store instruction can be folded into execution of an
instruction appearing therebetween in the instruction sequence. For example, an instruction sequence
including a pair of load instructions (for loading integer operands from local variables to the top of stack), an
add instruction (for popping the integer operands of the stack, adding them, and placing the result at the top of
stack), and an store instruction (for popping the result from the stack and storing the result in a local variable)
can be folded into a single equivalent operation specifying source and destination addresses in stack and local

variable storage which are randomly accessible.

In accordance with an embodiment of the present invention, an apparatus includes an instruction
store, an operand stack, a data store, an execution unit, and an instruction decoder. The instruction decoder is
coupled to the instruction store to identify a foldable sequence of instructions represented therein. The
foldable sequence includes first and second instructions, in which the first instruction is for pushing a first
operand value onto the operand stack from the data store merely as a first source operand for a second
instruction. The instruction decoder coupled to supply the execution unit with a single folded operation
equivalent to the foldable sequence and including a first operand address identifier selective for the first

operand value in the data store, thereby obviating an explicit operation corresponding to the first instruction.

In a further embodiment, if the sequence of instructions represented in the instruction buffer is not a
foldable sequence, the instruction decoder supplies the execution unit with an operation identifier and operand

address identifier corresponding to the first instruction only.

In another further embodiment, the instruction decoder further identifies a third instruction in the
foldable sequence. This third instruction is for pushing a second operand value onto the operand stack from
the data store merely as a second source operand for the second instruction. The single folded operation is
equivalent to the foldable sequence and includes a second operand address identifier selective for the second

operand value in the data store, thereby obviating an explicit operation corresponding to the third instruction.

In yet another further embodiment, the instruction decoder further identifies a fourth instruction in

the foldable sequence. This fourth instruction is for popping a result of the second instruction from the

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
-4 -

operand stack and storing the result in a result location of the data store. The single folded operation is
equivalent to the foldable sequence and includes a destination address identifier selective for the result

location in the data store, thereby obviating an explicit operation corresponding to the fourth instruction.

In still yet another further embodiment, the instruction decoder includes normal and folded decode
paths and switching means. The switching means are responsive to the folded decode path for selecting
operation, operand, and destination identifiers from the folded decode path in response to a fold indication
therefrom, and for otherwise selecting operation, operand, and destination identifiers from the normal decode

path.

In various further alternative embodiments, the apparatus is for a virtual machine instruction
processor wherein instructions generally source operands from, and target a result to, uppermost entries of an
operand stack. In one such alternative embodiment, the virtual machine instruction processor is a hardware
virtual machine instruction processor and the instruction decoder includes decode logic. In another, the virtual
machine instruction processor includes a just-in-time compiler implementation and the instruction decoder
includes software executable on a hardware processor. The hardware processor includes the execution unit.

In yet another, the virtual machine instruction processor includes a bytecode interpreter implementation and
the instruction decoder including software executable on a hardware processor. The hardware processor

includes the execution unit.

In accordance with another embodiment of the present invention, a method includes (a) determining
if a first instruction of a virtual machine instruction sequence is an instruction for pushing a first operand value
onto the operand stack from a data store merely as a first source operand for a second instruction; and if the
result of the (a) determining is affirmative, supplying an execution unit with a single folded operation
equivalent to a foldable sequence comprising the first and second instructions. The single folded operation
includes a first operand identifier selective for the first operand value, thereby obviating an explicit operation

corresponding to the first instruction.

In a further embodiment, the method includes supplying, if the result of the (a) determining is
negative, the execution unit with an operation equivalent to the first instruction in the virtual machine

instruction sequence.

In another further embodiment, the method includes (b) determining if a third instruction of the
virtual machine instruction sequence is an instruction for popping a result value of the second instruction from
the operand stack and storing the result value in a result location of the data store and, if the result of the (b)
determining is affirmative, further including a result identifier selective for the result location with the
equivalent single folded operation, thereby further obviating an explicit operation corresponding to the third
instruction. In a further embodiment, the method includes including, if the result of the (b) determining is

negative, a result identifier selective for a top location of the operand stack with the equivalent single folded

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
-5-

operation. In certain embodiments, the (a) determining and the (b) determining are performed substantially m

parallel.

In accordance with yet another embodiment of the present invention, a stack-based virtual machine
implementation includes a randomly-accessible operand stack representation, a randomly-accessible local
variable storage representation, and a virtual machine instruction decoder for selectively decoding virtual
machine instructions and folding together a selected sequence thereof to eliminate unnecessary temporary

storage of operands on the operand stack.

In various alternative embodiments, the stack-based virtual machine implementation (1) is a hardware
virtual machine instruction processor including a hardware stack cache, a hardware instruction decoder, and an
execution unit or (2) includes software encoded in a computer readable medium and executable on a hardware
processor. In the hardware virtual machine instruction processor embodiment, (a) the randomly-accessible
operand stack local variable storage representations at least partially reside in the hardware stack cache, and
(b) the virtual machine instruction decoder includes the hardware instruction decoder coupled to provide the
execution unit with opcode, operand, and result identifiers respectively selective for a hardware virtual
machine instruction processor operation and for locations in the hardware stack cache as a single hardware
virtual machine instruction processor operation equivalent to the selected sequence of virtual machine
instructions. In the software embodiment, (a) the randomly-accessible operand stack local variable storage
representations at least partially reside in registers of the hardware processor, (b) the virtual machine
instruction decoder is at least partially implemented in the software, and (c) the virtual machine instruction
decoder is coupled to provide opcode, operand, and result identifiers respectively selective for a hardware
processor operation and for locations in the registers as a single hardware processor operation equivalent to the

selected sequence of virtual machine instructions.

In accordance with still yet another embodiment of the present invention, a hardware virtual machine
instruction decoder includes a normal decode path, a fold decode path, and switching means. The fold decode
path is for decoding a sequence of virtual machine instructions and, if the sequence is foldable, supplying (a) a
single operation identifier, (b) one or more operand identifiers; and (c) a destination identifier, which are
together equivalent to the sequence of virtual machine instructions. The switching means is responsive to the
folded decode path for selecting operation, operand, and destination identifiers from the folded decode path in
response to a fold indication therefrom, and otherwise selecting operation, operand, and destination identifiers

from the normal decode path.

BRIEF DESCRIPTION OF DRAWINGS

The present invention may be better understood, and its numerous objects, features, and advantages

made apparent to those skilled in the art by referencing the accompanying drawings.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
-6-

Figure 1 is a block diagram of one embodiment of virtual machine hardware processor that includes

an instruction decoder for providing instruction folding in accordance with this invention.

Figure 2 is an process flow diagram for generation of virtual machine instructions that are used in one

embodiment of this invention.
Figure 3 illustrates an instruction pipeline implemented in the hardware processor of Figure 1.

Figure 4A is an illustration of the one embodiment of the logical organization of a stack structure
where each method frame includes a local variable storage area, an environment storage area, and an operand

stack utilized by the hardware processor of Figure 1.

Figure 4B is an illustration of an alternative embodiment of the logical organization of a stack
structure where each method frame includes a local variable storage area and an operand stack on the stack,

and an environment storage area for the method frame is included on a separate execution environment stack.

Figure 4C is an illustration of an alternative embodiment of the stack management unitfor the stack

and execution environment stack of Figure 4B.

Figure 4D is an illustration of one embodiment of the local variables look-aside cache in the stack

management unit of Figure 1.
Figure 5 illustrates several possible add-ons to the hardware processor of Figure 1.

Figure 6 is an illustration, in the context of a stack data structure, of data flows associated with a pair
of stack instructions, wherein the first stack instruction pushes a data item onto the top of the stack only to be
consumed by the second stack instruction which pops the top two stack entries off the stack and pushes their
sum onto the top of the stack.

Figure 7 is a contrasting illustration of folded execution of first and second stack instructions such as
those depicted in Figure 6, wherein the first (push data item onto the top of the stack) operation is obviated in

accordance with an exemplary embodiment of the present invention.

Figure 8 is a block diagram depicting relationships between operand stack, local variable storage, and
constant pool portions of memory storage together with register variables for access thereof in accordance

with an exemplary embodiment of the present invention.

Figures 9A-D illustrate an iload (integer load)/ iadd (integer add) istore (integer store) instruction
sequence operating on an operand stack and local variable storage. Figures 9A, 9B, 9C, and 9D, respectively
depict operand stack contents before iload instructions, after iload instructions but before an iadd instruction,

after the iadd instruction but before an istore instruction, and after the istore instruction. Intermediate stages

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
.7-

depicted in Figures 9B and 9C are eliminated by instruction folding in accordance with an exemplary

embodiment of the present invention.

Figures 10A, 10B and 10C illustrate an aload (object reference load)/ arraylength (integer add)
instruction sequence operating on the operand stack and local variable storage. Figures 9A, 9B, and 9C,
respectively depict operand stack contents before the load instruction, after the aload instruction but before an
arraylength instruction (without instruction folding), and after the arraylength instruction. The intermediate
stage depicted in Figure 10B is eliminated by instruction folding in accordance with an exemplary

embodiment of the present invention.

Figure 11 is a functional block diagram of a stack based processor including an instruction decoder

providing instruction folding in accordance with an exemplary embodiment of the present invention.

Figure 12 is a functional block diagram depicting an instruction decoder in accordance with an
exemplary embodiment of the present invention and coupled to supply an execution unit with a folded
operation, with operand addresses into an operand stack, local variable storage or a constant pool, and with a
destination address into the operand stack or local variable storage, wherein the single operation and addresses

supplied are equivalent to a sequence of unfolded instructions.

Figure 13 is a functional block diagram of an instruction decoder supporting instruction folding in

accordance with an exemplary embodiment of the present invention.

Figure 14 is a functional block diagram of a fold decode portion of an instruction decoder supporting

instruction folding in accordance with an exemplary embodiment of the present invention.

Figure 15 is a flow chart depicting an exemplary sequence of operations for identifying a foldable

instruction sequence in accordance with an exemplary embodiment of the present invention.

Figure 16 is a functional block diagram depicting component operand and destination address

generators of a fold address generator in accordance with an exemplary embodiment of the present invention.

Figure 17 is a functional block diagram depicting an exemplary structure for an operand address

generator in accordance with an exemplary embodiment of the present invention.

Like or similar features may be designated by the same reference numeral(s) throughout the

drawings.

MODES(S) FOR CARRYING OUT THE INVENTION

Figure 1 illustrates one embodiment of a virtual machine instruction hardware processor 100,

hereinafter hardware processor 100, that includes an instruction decoder 135 for folding a sequence of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
.8-

multiple instructions into a single folded operation in accordance with the present invention, and that directly
executes virtual machine instructions that are processor architecture independent. The performance of
hardware processor 100 in executing virtual machine instructions is much better than high-end CPUs, such as
the Intel PENTIUM microprocessor or the Sun Microsystems ULTRASPARC processor, (ULTRASPARC is a
trademark of Sun Microsystems of Mountain View, CA., and PENTIUM is a trademark of Intel Corp. of
Sunnyvale, CA.) interpreting the same virtual machine instructions with a software JAVA interpreter. or with
a JAVA just-in-time compiler; is low cost; and exhibits low power consumption. As a result, hardware
processor 100 is well suited for portable applications. Hardware processor 100 provides similar advantages for
other virtual machine stack-based architectures as well as for virtual machines utilizing features such as

garbage collection, thread synchronization, etc.

In view of these characteristics, a system based on hardware processor 100 presents attractive price
for performance characteristics, if not the best overall performance, as compared with alternative virtual
machine execution environments including software interpreters and just-in-time compilers. Nonetheless, the
present invention is not limited to virtual machine hardware processor embodiments, and encompasses any
suitable stack-based, or non-stack-based, machine implementations, including implementations emulating the
JAVA virtual machine as a software interpreter, compiling JAVA virtual machine instructions (either in batch
or just-in-time) to machine instruction native to a particular hardware processor, or providing hardware

implementing the JAVA virtual machine in microcode, directly in silicon, or in some combination thereof.

Regarding price for performance characteristics, hardware processor 100 has the advantage that
the 250 Kilobytes to 500 Kilobytes (Kbytes) of memory storage, e.g., read-only memory or random access
memory, typically required by a software interpreter, is eliminated. A simulation of hardware processor 100
showed that hardware processor 100 executes virtual machine instructions twenty times faster than a software
interpreter running on a variety of applications on a PENTIUM processor clocked at the same clock rate as
hardware processor 100, and executing the same virtual machine instructions. Another simulation of hardware
processor 100 showed that hardware processor 100 executes virtual machine instructions five times faster than
a just-in-time compiler running on a PENTIUM processor running at the same clock rate as hardware

processor 100, and executing the same virtual machine instructions.

In environments in which the expense of the memory required for a software virtual machine
instruction interpreter is prohibitive, hardware processor 100 is advantageous. These applications include, for
example, an Internet chip for network appliances, a cellular telephone processor, other telecommunications
integrated circuits, or other low-power, low-cost applications such as embedded processors, and portable

devices.

Instruction decoder 135, as described herein, allows the folding away of JAVA virtual machine
instructions pushing an operand onto the top of a stack merely as a precursor to a second JAVA virtual

machine instruction which operates on the top of stack operand. Such an instruction decoder identifies

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
9.

foldable instruction sequences and supplies an execution unit with a single equivalent folded opei’ation thereby
reducing processing cycles otherwise required for execution of muitiple operations corresponding to the
multiple instructions of the folded instruction sequence. Instruction decoder embodiments described herein
provide for folding of two, three, four, or more instruction folding. For example, in one instruction decoder
embodiment described herein, two load instructions and a store instruction can be folded into execution of

operation corresponding to an instruction appearing therebetween in the instruction sequence.

As used in herein, a virtual machine is an abstract computing machine that, like a real computing
machine, has an instruction set and uses various memory areas. A virtual machine specification defines a set
of processor architecture independent virtual machine instructions that are executed by a virtual machine
implementation, e.g., hardware processor 100. Each virtual machine instruction defines a specific operation
that is to be performed. The virtual computing machine need not understand the computer language that is
used to generate virtual machine instructions or the underlying implementation of the virtual machine. Only a
particular file format for virtual machine instructions needs to be understood. In an exemplary embodiment,
the virtual machine instructions are JAVA virtual machine instructions. Each JAVA virtual machine
instruction includes one or more bytes that encode instruction identfying information, operands, and any other

required information.

Appendix I, which is incorporated herein by reference in its entirety, includes an illustrative set of the
JAVA virtual machine instructions. The particular set of virtual machine instructions utilized is not an
essential aspect of this invention. In view of the virtual machine instructions in Appendix I and this
disclosure, those of skill in the art can modify the invention for a particular set of virtual machine instructions,

or for changes to the JAVA virtual machine specification..

A JAVA compiler JAVAC, (Fig. 2) that is executing on a computer platform, converts an
application 201 written in the JAVA computer language to an architecture neutral object file format encoding
a compiled instruction sequence 203, according to the JAVA Virtual Machine Specification, that includes a
compiled instruction set. However, for this invention, only a source of virtual machine instructions and
related information is needed. The method or technique used to generate the source of virtual machine

instructions and related information is not essential to this invention.

Compiled instruction sequence 203 is executable on hardware processor 100 as well as on any
computer platform that implements the JAVA virtual machine using, for example, a software interpreter or
Just-in-time compiler. However, as described above, hardware processor 100 provides significant

performance advantages over the software implementations.

In this embodiment, hardware processor 100 (Fig. 1) processes the JAVA virtual machine
instructions, which include bytecodes. Hardware processor 100, as explained more completely below,
executes directly most of the bytecodes. However, execution of some of the bytecodes is implemented via

microcode.

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

WO 97/27536 PCT/US97/01221
-10 -

One strategy for selecting virtual machine instructions that are executed directly by hardware
processor 100 is described herein by way of an example. Thirty percent of the JAVA virtual machine
instructions are pure hardware translations; instructions implemented in this manner include constant loading
and simple stack operations. The next 50% of the virtual machine instructions are implemented mostly, but
not entirely, in hardware and require some firmware assistance; these include stack based operations and array
instructions. The next 10% of the JAVA virtual machine instructions are implemented in hardware, but
require significant firmware support as well; these include function invocation and function return. The
remaining 10% of the JAVA virtual machine instructions are not supported in hardware, but rather are
supported by a firmware trap and/or microcode; these include functions such as exception handlers. Herein,
firmware means microcode stored in ROM that when executed controls the operations of hardware

processor 100.

In one embodiment, hardware processor 100 includes an 1/O bus and memory interface unit 110, an
instruction cache unit 120 including instruction cache 125, an instruction decode unit 130, a unified execution
unit 140, a stack management unit 150 inciuding stack cache 155, a data cache unit 160 including a data
cache 165, and program counter and trap control logic 170. Each of these units is described more completely

below.

Also, as illustrated in Figure 1, each unit includes several elements. For clarity and to avoid
distracting from the invention, the interconnections between elements within a unit are not shown in Figure 1.
However, in view of the following description, those of skill in the art will understand the interconnections

and cooperation between the elements in a unit and between the various units.

The pipeline stages implemented using the units illustrated in Figure 1 include fetch, decode, execute,
and write-back stages. If desired, extra stages for memory access or exception resolution are provided in

hardware processor 100.

Figure 3 is an illustration of a four stage pipeline for execution of instructions in the exemplary
embodiment of processor 100. In fetch stage 301, a virtual machine instruction is fetched and placed in
instruction buffer 124 (Fig. 1). The virtual machine instruction is fetched from one of (i) a fixed size cache

line from instruction cache 125 or (ii) microcode ROM 141 in execution unit 140.

With regard to fetching, aside from instructions tableswitch and lookupswitch, (See Appendix 1.)
each virtual machine instruction is between one and five bytes long. Thus, to keep things simple, at least forty

bits are required to guarantee that all of a given instruction is contained in the fetch.

Another alternative is to always fetch a predetermined number of bytes, for example, four bytes,
starting with the opcode. This is sufficient for 95% of JAVA virtual machine instructions (See Appendix 1).

For an instruction requiring more than three bytes of operands, another cycle in the front end must be tolerated

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
211 -

if four bytes are fetched. In this case, the instruction execution can be started with the first operands fetched

even if the full set of operands is not yet available.

In decode stage 302 (Fig. 3), the virtual machine instruction at the front of instruction buffer 124
(Fig. 1) is decoded and instruction folding is performed if possible. Stack cache 155 is accessed only if
needed by the virtual machine instruction. Register OPTOP, that contains a pointer OPTOP to a top of a
stack 400 (Fig. 4), is also updated in decode stage 302 (Fig. 3).

Herein, for convenience, the value in a register and the register are assigned the same reference
numeral. Further, in the following discussion, use of a register to store a pointer is illustrative only of one
embodiment. Depending on the specific implementation of the invention, the pointer may be implemented
using hardware register, a hardware counter, a software counter, a software pointer, or other equivalent
embodiments known to those of skill in the art. The particular implementation selected is not essential to the

invention, and typically is made based on a price to performance trade-off.

In execute stage 303, the virtual machine instruction is executed for one or more cycles. Typically, in
execute stage 303, an ALU in integer unit 142 (Fig. 1) is used either to do an arithmetic computation or to
calculate the address of a load or store from data cache unit (DCU) 160. If necessary, traps are prioritized and
taken at the end of execute stage 303 (Fig. 3). For control flow instructions, the branch address is calculated

in execute stage 303, as well as the condition upon which the branch is dependent.

Cache stage 304 is a non-pipelined stage. Data cache 165 (Fig. 1) is accessed if needed during
execution stage 303 (Fig. 3). The reason that stage 304 is non-pipelined is because hardware processor 100 is
a stack-based machine. Thus, the instruction following a load is almost always dependent on the value
returned by the load. Consequently, in this embodiment, the pipeline is held for one cycle for a data cache
access. This reduces the pipeline stages, and the die area taken by the pipeline for the extra registers and

bypasses.

Write-back stage 305 is the last stage in the pipeline. In stage 305, the calculated data is written back
to stack cache 155.

Hardware processor 100, in this embodiment, directly implements a stack 400 (Fig. 4A) that supports
the JAVA virtual machine stack-based architecture (See Appendix I). Sixty-four entries on stack 400 are
contained on stack cache 155 in stack management unit 150. Some entries in stack 400 may be duplicated on

stack cache 150. Operations on data are performed through stack cache 155.

Stack 400 of hardware processor 100 is primarily used as a repository of information for methods. At
any point in time, hardware processor 100 is executing a single method. Each method has memory space, i.e.,
a method frame on stack 400, allocated for a set of local variables, an operand stack, and an execution

environment structure.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221

-12 -

A new method frame, e.g., method frame two 410, is allocated by hardware processor 100 upon a
method invocation in execution stage 303 (Fig. 3) and becomes the current frame, i.e., the frame of the
current method. Current frame 410 (Fig. 4A), as well as the other method frames, may contain a part of or all

of the following six entities, depending on various method invoking situations:
1. Object reference;
2. Incoming arguments;
3. Local variables;
4. Invoker's method context;
5. Operand stack; and

6. Return value from method.

In Figure 4A, object reference, incoming arguments, and local variables are included in arguments
and local variables area 421. The invoker's method context is included in execution environment 422,
sometimes called frame state, that in turn includes: a return program counter value 431 that is the address of
the virtual machine instruction, e.g., JAVA opcode, next to the method invoke instruction; a return frame 432
that is the location of the calling method's frame; a return constant pool pointer 433 that is a pointer to the
calling method's constant pool table; a current method vector 434 that is the base address of the current

method's vector table; and a current monitor address 435 that is the address of the current method's monitor.

The object reference is an indirect pointer to an object-storage representing the object being targeted
for the method invocation. JAVA compiler JAVAC (See Fig. 2.) generates an instruction to push this pointer
onto operand stack 423 prior to generating an invoke instruction. This object reference is accessible as local
variable zero during the execution of the method. This indirect pointer is not available for a static method

invocation as there is no target-object defined for a static method invocation.

The list of incoming arguments transfers information from the calling method to the invoked method.
Like the object reference, the incoming arguments are pushed onto stack 400 by JAVA compiler generated
instructions and may be accessed as local variables. JAVA compiler JAVAC (See Fig. 2) statically generates
a list of arguments for current method 410 (Fig. 4A), and hardware processor 100 determines the number of
arguments from the list. When the object reference is present in the frame for a non-static method invocation,
the first argument is accessible as local variable one. For a static method invocation, the first argument

becomes local variable zero.

For 64-bit arguments, as well as 64-bit entities in general,, the upper 32-bits, i.e., the 32 most
significant bits, of a 64-bit entity are placed on the upper location of stack 400, i.e., pushed on the stack last.
For example, when a 64-bit entity is on the top of stack 400, the upper 32-bit portion of the 64-bit entity is on

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

WO 97/27536 PCT/US97/01221

-13 -

the top of the stack, and the lower 32-bit portion of the 64-bit entity is in the storage location immediately

adjacent to the top of stack 400.

The local variable area on stack 400 (Fig. 4A) for current method 410 represents temporary variable
storage space which is allocated and remains effective during invocation of method 410. JAVA compiler
JAVAC (Fig. 2) statically determines the required number of local variables and hardware processor 100

allocates temporary variable storage space accordingly.

When a method is executing on hardware processor 100, the local variables typically reside in stack
cache 155 and are addressed as offsets from the pointer VARS (Figs. 1 and 4A), which points to the position
of the local variable zero. Instructions are provided to load the values of local variables onto operand

stack 423 and store values from operand stack into local variables area 421.

The information in execution environment 422 includes the invoker's method context. When a new
frame is built for the current method, hardware processor 100 pushes the invoker's method context onto newly
aliocated frame 410, and later utilizes the information to restore the invoker's method context before returning.
Pointer FRAME (Figs. 1 and 4A) is a pointer to the execution environment of the current method. In the
exemplary embodiment, each register in register set 144 (Fig. 1) is 32-bits wide. Operand stack 423 is
allocated to support the execution of the virtual machine instructions within the current method. Program
counter register PC (Fig. 1) contains the address of the next instruction, e.g., opcode, to be executed.
Locations on operand stack 423 (Fig. 4A) are used to store the operands of virtual machine instructions,
providing both source and target storage locations for instruction execution. The size of operand stack 423 is
statically determined by JAVA compiler JAVAC (Fig. 2) and hardware processor 100 allocates space for
operand stack 423 accordingly. Register OPTOP (Figs. 1 and 4A) holds a pointer to a top of operand
stack 423.

The invoked method may return its execution result onto the invoker's top of stack, so that the
invoker can access the return value with operand stack references. The return value is placed on the area

where an object reference or an argument is pushed before a method invocation.

Simulation results on the JAVA virtual machine indicate that method invocation consumes a
significant portion of the execution time (20-40%). Given this attractive target for accelerating execution of
virtual machine instructions, hardware support for method invocation is included in hardware processor 100,

as described more completely below.

The beginning of the stack frame of a newly invoked method, i.e., the object reference and the
arguments passed by the caller, are already stored on stack 400 since the object reference and the incoming
arguments come from the top of the stack of the caller. As explained above, following these items on

stack 400, the local variables are loaded and then the execution environment is loaded.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
214 -

One way to speed up this process is for hardware processor 100 to load the execution environment in
the background and indicate what has been loaded so far, e.g., simple one bit scoreboarding. Hardware
processor 100 tries to execute the bytecodes of the called method as soon as possible, even though stack 400 is
not completely loaded. If accesses are made to variables already loaded, overlapping of execution with
loading of stack 400 is achieved, otherwise a hardware interlock occurs and hardware processor 100 just waits

for the variable or variables in the execution environment to be loaded.

Figure 4B illustrates another way to accelerate method invocation. Instead of storing the entire
method frame in stack 400, the execution environment of each method frame is stored separately from the
local variable area and the operand stack of the method frame. Thus, in this embodiment, stack 400B contains
modified method frames, e.g. modified method frame 410B having only local variable area 421 and operand
stack 423. Execution environment 422 of the method frame is stored in an execution environment
memory 440. Storing the execution environment in execution environment memory 440 reduces the amount
of data in stack cache 155. Therefore, the size of stack cache 155 can be reduced. Furthermore, execution
environment memory 440 and stack cache 155 can be accessed simnultaneously. Thus, method invocation can
be accelerated by loading or storing the execution environment in parallel with loading or storing data onto
stack 400B.

In one embodiment of stack management unit 150, the memory architecture of execution
environment memory 440 is also a stack. As modified method frames are pushed onto stack 400b through
stack cache 155, corresponding execution environments are pushed onto execution environment memory 440.
For example, since modified method frames 0 to 2, as shown in Figure 4B, are in stack 400B, execution

environments (EE) 0 to 2, respectively, are stored in execution environment memory circuit 440.

To further enhance method invocation, an execution environment cache can be added to improve the
speed of saving and retrieving the execution environment during method invocation. The architecture
described more completely below for stack cache 155, dribbler manager unit 151, and stack control unit 152

for caching stack 400, can also be applied to caching execution environment memory 440.

Figure 4C illustrates an embodiment of stack management unit 150 modified to support both
stack 400b and execution environment memory 440. Specifically, the embodiment of stack management
unit 150 in Figure 4C adds an execution environment stack cache 450, an execution environment dribble
manager unit 460, and an execution environment stack control unit 470. Typically, execution dribble manager
unit 460 transfers an entire execution environment between execution environment cache 450 and execution

environment memory 440 during a spill operation or a fill operation.

/O Bus and Memory Interface Unit

/O bus and memory interface unit 110 (Fig. 1), sometimes called interface unit 110, implements an

interface between hardware processor 100 and a memory hierarchy which in an exemplary embodiment

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-15 -

includes external memory and may optionally include memory storage and/or interfaces on the same die as
hardware processor 100. In this embodiment, I/O controller 111 interfaces with external I/O devices and
memory controller 112 interfaces with external memory. Herein, external memory means memory external to
hardware processor 100. However, external memory either may be included on the same die as hardware
processor 100, may be external to the die containing hardware processor 100, or may include both on- and off-

die portions.

In another embodiment, requests to 1/0 devices go through memory controller 112 which maintains
an address map of the entire system including hardware processor 100. On the memory bus of this

embodiment, hardware processor 100 is the only master and does not have to arbitrate to use the memory bus.

Hence, alternatives for the input/output bus that interfaces with 1/O bus and memory interface
unit 110 include supporting memory-mapped schemes, providing direct support for PCI, PCMCIA, or other
standard busses. Fast graphics (w/ VIS or other technology) may optionally be included on the die with

hardware processor 100.

I/O bus and memory interface unit 110 generates read and write requests to external memory.
Specifically, interface unit 110 provides an interface for instruction cache and data cache controllers 121
and 161 to the external memory. Interface unit 110 includes arbitration logic for internal requests from
instruction cache controller 121 and data cache controller 161 to access external memory and in response to a
request initiates either a read or a write request on the memory bus to the external memory. A request from
data cache controller 121 is always treated as higher priority relative to a request from instruction cache

controller 161.

Interface unit 110 provides an acknowledgment signal to the requesting instruction cache
controller 121, or data cache controller 161 on read cycles so that the requesting controller can latch the data.
On write cycles, the acknowledgment signal from interface unit 110 is used for flow control so that the
requesting instruction cache controlier 121 or data cache controller 161 does not generate a new request when
there is one pending. Interface unit 110 also handles errors generated on the memory bus to the external

memory.

Instruction Cache Unit

Instruction cache unit (ICU) 120 (Fig. 1) fetches virtual machine instructions from instruction
cache 125 and provides the instructions to instruction decode unit 130. In this embodiment, upon a instruction
cache hit, instruction cache controller 121, in one cycle, transfers an instruction from instruction cache 125 to
instruction buffer 124 where the instruction is held until integer execution unit IEU, that is described more
completely below, is ready to process the instruction. This separates the rest of pipeline 300 (Fig. 3) in
hardware processor 100 from fetch stage 301. If it is undesirable to incur the complexity of supporting an

instruction-buffer type of arrangement, a temporary one instruction register is sufficient for most purposes.

SUBSTITUTE SHEET (RULE 26)

20

25

30

WO 97/27536 PCT/US97/01221
-16 -

However, instruction fetching, caching, and buffering should provide sufficient instruction bandwidth to

support instruction folding as described below.

The front end of hardware processor 100 is largely separate from the rest of hardware processor 100.

Ideally, one instruction per cycle is delivered to the execution pipeline.

The instructions are aligned on an arbitrary eight-bit boundary by byte aligner circuit 122 in response
to a signal from instruction decode unit 130. Thus, the front end of hardware processor 100 efficiently deals
with fetching from any byte position. Also, hardware processor 100 deals with the problems of instructions
that span multiple cache lines of cache 125. In this case, since the opcode is always the first byte, the design is
able to tolerate an extra cycle of fetch latency for the operands. Thus, a very simple de-coupling between the

fetching and execution of the bytecodes is possible.

In case of an instruction cache miss, instruction cache controller 121 generates an external memory
request for the misssd instruction to I/O bus and memory interface unit 110. If instruction buffer 124 is
empty, or nearly empty, when there is an instruction cache miss, instruction decode unit 130 is stalled, i.e.,
pipeline 300 is stalled. Specifically, instruction cache controller 121 generates a stall signal upon a cache miss
which is used along with an instruction buffer empty signal to determine whether to stall pipeline 300.
Instruction cache 125 can be invalidated to accommodate self-modifying code, e.g., instruction cache

controller 121 can invalidate a particular line in instruction cache 125.

Thus, instruction cache controller 121 determines the next instruction to be fetched, i.e., which
instruction in instruction cache 125 needs to accessed, and generates address, data and control signals for data
and tag RAMs in instruction cache 125. On a cache hit, four bytes of data are fetched from instruction

cache 125 in a single cycle, and a maximum of four bytes can be written into instruction buffer 124.

Byte aligner circuit 122 aligns the data out of the instruction cache RAM and feeds the aligned data
to instruction buffer 124. As explained more completely below, the first two bytes in instruction buffer 124
are decoded to determine the length of the virtual machine instruction. Instruction buffer 124 tracks the valid

instructions in the queue and updates the entries, as explained more completely below.

Instruction cache controlier 121 also provides the data path and control for handling instruction cache
misses. On an instruction cache miss, instruction cache controller 121 generates a cache fill request to I/O bus

and memory interface unit 110.

On receiving data from external memory, instruction cache controller 121 writes the data into
instruction cache 125 and the data are also bypassed into instruction buffer 124. Data are bypassed to
instruction buffer 124 as soon as the data are available from external memory, and before the completion of

the cache fill.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
217 -

Instruction cache controller 121 continues fetching sequential data until instruction buffer 124 is full
or a branch or trap has taken place. In one embodiment, instruction buffer 124 is considered full if there are
more than eight bytes of valid entries in buffer 124. Thus, typically, eight bytes of data are written into
instruction cache 125 from external memory in response to the cache fill request sent to interface unit 110 by
instruction cache unit 120. If there is a branch or trap taken while processing an instruction cache miss, only

after the completion of the miss processing is the trap or branch executed.

When an error is generated during an instruction cache fill transaction, a fault indication is generated
and stored into instruction buffer 124 along with the virtual machine instruction, i.e., a fault bit is set. The line
is not written into instruction cache 125. Thus, the erroneous cache fill transaction acts like a non-cacheable

transaction except that a fault bit is set. When the instruction is decoded, a trap is taken.

Instruction cache controller 121 also services non-cacheabie instruction reads. An instruction cache
enable (ICE) bit, in a processor status register in register set 144, is used to define whether a load can be
cached. If the instruction cache enable bit is cleared, instruction cache unit 120 treats all loads as non-
cacheable loads. Instruction cache controller 121 issues a non-cacheable request to interface unit 110 for non-
cacheable instructions. When the data are available on a cache fill bus for the non-cacheable instruction, the

data are bypassed into instruction buffer 124 and are not written into instruction cache 125.

In this embodiment, instruction cache 125 is a direct-mapped, eight-byte line size cache. Instruction
cache 125 has a single cycle latency. The cache size is configurable to 0K, 1K, 2K, 4K, 8K and 16K byte
sizes where K means kilo. The default size is 4K bytes. Each line has a cache tag entry associated with the

line. Each cache tag contains a twenty bit address tag field and one valid bit for the default 4K byte size.

Instruction buffer 124, which, in an exemplary embodiment, is a twelve-byte deep first-in, first-out
(FIFO) buffer, de-links fetch stage 301 (Fig. 3) from the rest of pipeline 300 for performance reasons. Each
instruction in buffer 124 (Fig. 1) has an associated valid bit and an error bit. When the valid bit is set, the
instruction associated with that valid bit is a valid instruction. When the error bit is set, the fetch of the
instruction associated with that error bit was an erroneous transaction. Instruction buffer 124 includes an
instruction buffer control circuit (not shown) that generates signals to pass data to and from instruction

buffer 124 and that keeps track of the valid entries in instruction buffer 124, i.e., those with valid bits set.

In an exemplary embodiment, four bytes can be received into instruction buffer 124 in a given cycle.
Up to five bytes, representing up to two virtual machine instructions, can be read out of instruction buffer 124
in a given cycle. Alternative embodiments, particularly those providing folding of multi-byte virtual machine
instructions and/or those providing folding of more than two virtual machine instructions, provide higher input
and output bandwidth. Persons of ordinary skill in the art will recognize a variety of suitable instruction
buffer designs including, for example, alignment logic, circular buffer design, etc. When a branch or trap is
taken, all the entries in instruction buffer 124 are nullified and the branch/trap data moves to the top of
instruction buffer 124.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
- 18 -

In the embodiment of Figure 1, a unified execution unit 140 is shown. However, in anot}]er
embodiment, instruction decode unit 120, integer unit 142, and stack management unit 150 are considered a
single integer execution unit, and floating point execution unit 143 is a separate optional unit. In still other
embodiments, the various elements in the execution unit may be implemented using the execution unit of
another processor. In general the various elements included in the various units of Figure 1 are exemplary
only of one embodiment. Each unit could be implemented with all or some of the elements shown. Again, the

decision is largely dependent upon a price vs. performance trade-off.

Instruction Decode Unit

As explained above, virtual machine instructions are decoded in decode stage 302 (Fig. 3) of
pipeline 300. In an exemplary embodiment, two bytes, that can correspond to two virtual machine
instructions, are fetched from instruction buffer 124 (Fig. 1). The two bytes are decoded in parallel to
determine if the two bytes correspond to two virtual machine instructions, e.g., a first load top of stack
instruction and a second add top two stack entries instruction, that can be folded into a single equivalent
operation. Folding refers to supplying a single equivalent operation corresponding to two or more virtual

machine instructions.

In an exemplary hardware processor 100 embodiment, a single-byte first instruction can be folded
with a second instruction. However, alternative embodiments provide folding of more than two virtual
machine instructions, e.g., two to four virtual machine instructions, and of multi-byte virtual machine
instructions, though at the cost of instruction decoder complexity and increased instruction bandwidth. In the
exemplary processor 100 embodiment, if the first byte, which corresponds to the first virtual machine

instruction, is a multi-byte instruction, the first and second instructions are not folded.

An optional current object loader folder 132 exploits instruction folding, such as that described above
and as well as in greater detail below in virtual machine instruction sequences which simulation resuits have
shown to be particularly frequent and therefore a desirable target for optimization. In particular, method
invocations typically load an object reference for the corresponding object onto the operand stack and fetch a
field from the object. Instruction folding allow this extremely common virtual machine instruction sequence

to be executed using an equivalent folded operation.

Quick variants are not part of the virtual machine instruction set (See Chapter 3 of Appendix I), and
are invisible outside of a JAVA virtual machine implementation. However, inside a virtual machine
implementation, quick variants have proven to be an effective optimization. (See Appendix A in Appendix I;
which is an integral part of this specification.) Supporting writes for updates of various instructions to quick
variants in a non-quick to quick translator cache 131 changes the normal virtual machine instruction to a quick
virtual machine instruction to take advantage of the large benefits bought from the quick variants. In
particular, as described in more detail in U.S. Patent Application. Serial No. 08/xxx,xxx, entitled “NON-
QUICK INSTRUCTION ACCELERATOR AND METHOD OF IMPLEMENTING SAME” naming Marc

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-19 -

Tremblay and James Michael O'Connor as inventors, assigned to the assignee of this application, and filed on
even date herewith with Attorney Docket No. SP2039 of which is incorporated herein by reference in its
entirety, when the information required to initiate execution of an instruction has been assembled for the first
time, the information is stored in a cache along with the value of program counter PC as tag in non-quick to
quick translator cache 131 and the instruction is identified as a quick-variant. In one embodiment, this is done

with self-modifying code.

Upon a subsequent call of that instruction, instruction decode unit 130 detects that the instruction is
identified as a quick-variant and simply retrieves the information needed to initiate execution of the instruction
from non-quick to quick translator cache 131. Non-quick to quick translator cache is an optional feature of

hardware processor 100.

With regard to branching, a very short pipe with quick branch resolution is sufficient for most
implementations. However, an appropriate simple branch prediction mechanism can alternatively be
introduced, e.g., branch predictor circuit 133. Implementations for branch predictor circuit 133 include

branching based on opcode, branching based on offset, or branching based on a two-bit counter mechanism.

The JAVA virtual machine specification defines an instruction invokenonvirtual, opcode 183,
which, upon execution, invokes methods. The opcode is followed by an index byte one and an index byte
two. (See Appendix 1.) Operand stack 423 contains a reference to an object and some number of arguments

when this instruction is executed.

Index bytes one and two are used to generate an index into the constant pool of the current class. The
item in the constant pool at that index points to a complete method signature and class. Signatures are defined

in Appendix I and that description is incorporated herein by reference.

The method signature, a short, unique identifier for each method, is looked up in a method table of
the class indicated. The result of the lookup is a method block that indicates the type of method and the
number of arguments for the method. The object reference and arguments are popped off this method's stack
and become initial values of the local variables of the new method. The execution then resumes with the first
instruction of the new method. Upon execution, instructions invokevirtual, opcode 182, and invokestatic,
opcode 184, invoke processes similar to that just described. In each case, a pointer is used to lookup a method
block.

A method argument cache 134, that also is an optional feature of hardware processor 100, is used, in
a first embodiment, to store the method block of a method for use, after the first call to the method, along with
the pointer to the method block as a tag. Instruction decode unit 130 uses index bytes one and two to generate
the pointer and then uses the pointer to retrieve the method block for that pointer in cache 134. This permits
building the stack frame for the newly invoked method more rapidly in the background in subsequent

invocations of the method. Alternative embodiments may use a program counter or method identifier as a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
220 -

reference into cache 134. If there is a cache miss, the instruction is executed in the normal fashidn and cache
134 is updated accordingly. The particular process used to determine which cache entry is overwritten is not

an essential aspect of this invention. A least-recently used criterion could be implemented, for example.

In an alternative embodiment, method argument cache 134 is used to store the pointer to the method
block, for use after the first call to the method, along with the value of program counter PC of the method as a
tag. Instruction decode unit 130 uses the value of program counter PC to access cache 134. If the value of
program counter PC is equal to one of the tags in cache 134, cache 134 supplies the pointer stored with that
tag to instruction decode unit 130. Instruction decode unit 139 uses the supplied pointer to retrieve the method
block for the method. In view of these two embodiments, other alternative embodiments wiil be apparent to

those of skill in the art.

Wide index forwarder 136, which is an optional element of hardware processor 100, is a specific
embodiment of instruction folding for instruction wide. Wide index forwarder 136 handles an opcode
encoding an extension of an index operand for an immediately subsequent virtual machine instruction. In this
way, wide index forwarder 136 allows instruction decode unit 130 to provide indices into local variable
storage 421 when the number of local variables exceeds that addressable with a single byte index without

incurring a separate execution cycle for instruction wide..

Aspects of instruction decoder 135, particularly instruction folding, non-quick to quick translator
cache 131, current object loader folder 132, branch predictor 133, method argument cache 134, and wide
index forwarder 136 are also useful in implementations that utilize a software interpreter or just-in-time
compiler, since these elements can be used to accelerate the operation of the software interpreter or just-in-
time compiler. In such an implementation, typically, the virtual machine instructions are translated to an
instruction for the processor executing the interpreter or compiler, e.g., any one of a Sun processor, a DEC
processor, an Intel processor, or a Motorola processor, for example, and the operation of the elements is
modified to support execution on that processor. The translation from the virtual machine instruction to the
other processor instruction can be done either with a translator in a ROM or a simple software translator. For
additional examples of dual instruction set processors, see U.S. Patent Application Serial No. 08/xxx,xxx,
entitled "A PROCESSOR FOR EXECUTING INSTRUCTION SETS RECEIVED FROM A NETWORK OR
SUPPLIED BY FROM A LOCAL MEMORY" naming Marc Tremblay and James Michael O'Connor as
inventors, assigned to the assignee of this application, and filed on even date herewith with Attorney Docket

No. SP2042, which is incorporated herein by reference in its entirety.

As explained above, one embodiment of processor 100 implements instruction folding to enhance the
performance of processor 100. In general, instruction folding in accordance with the present invention can be
used in any of a stack-based virtual machine implementation, including, e.g., in a hardware processor
implementation, in a software interpreter implementation, in a just-in-time compiler implementation, etc.

Thus, while various embodiments of instruction folding are described in the following more detailed

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221

221 -

description in terms of a hardware processor, those of skill in the art will appreciate, in view of this

description, suitable extensions of instruction folding to other stack-based virtual machine implementations.

Figure 7 illustrates folded execution of first and second stack instructions, according to the principles
of this invention. In this embodiment, a first operand for an addition instruction resides in top-of-stack (TOS)
entry 711a of stack 710. A second operand resides in entry 712 of stack 710. Notice that entry 712 is not
physically adjacent to top-of stack entry 711a and in fact, is in the interior of stack 710. An instruction stream
includes a load top-of-stack instruction for pushing the second operand onto the top of stack (see description
of instruction iload in Appendix I) and an addition instruction for operating on the first and second operands
residing in the top two entries of stack 710 (see description of instruction iadd in Appendix I). However, to
speed execution of the instruction stream, the load top-of-stack and addition instructions are folded into a
single operation whereby the explicit sequential execution of the load top-of-stack instruction and the
associated execution cycle are eliminated. Instead, a folded operation corresponding to the addition
instruction operates on the first and second operands, which reside in TOS entry 711a and entry 712 of stack
710. The result of the folded operation is pushed onto stack 710 at TOS entry 711b. Thus, folding according
to the principles of this invention enhances performance compared to an unfolded method for executing the

same sequence of instructions.

Without instruction folding, a first operand for an addition instruction resides in top-of-stack (TOS)
entry 611a of stack 610 (see Figure 6). A second operand resides in entry 612 of stack 610. A load to top-of-
stack instruction pushes the second operand onto the top of stack 610 and typically requires an execution
cycle. The push results in the second and first operands residing in TOS entry 611b and (TOS-1) entry 613,
respectively. Thereafter, the addition instruction operates, in another execution cycle, on the first and second
operands which properly reside in the top two entries, i.e., TOS entry 611b and (TOS-1) entry 613, of stack
610 in accordance with the semantics of a stack architecture. The result of the addition instruction is pushed
onto stack 610 at TOS entry 611c¢ and after the addition instruction is completed, it is as if the first and second
operand data were never pushed onto stack 610. As described above, folding reduces the execution cycles
required to complete the addition and so enhances the speed of execution of the instruction stream. More
complex folding, e.g., folding including store instructions and folding including larger numbers of

instructions, is described in greater detail below.

In general, instruction decoder unit 130 (Figure 1) examines instructions in a stream of instructions.
Instruction decoder unit 130 folds first and second adjacent instructions together and provides a single
equivalent operation for execution by execution unit 140 when instruction decoder unit 130 detects that the
first and second instructions have neither structural nor resource dependencies and the second instruction
operates on data provided by the first instruction. Execution of the single operations obtains the same result as
execution of an operation corresponding to the first instruction followed by execution an operation

corresponding to the second instruction, except that an execution cycle has been eliminated.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221

S20 .

As described above, the JAVA virtual machine is stack-oriented and specifies an instruétion set, a
register set, an operand stack, and an execution environment. Although, the present invention is described in
relation to the JAVA Virtual Machine, those of skill in the art will appreciate that the invention is not limited
to embodiments implementing or related to the JAVA virtual machine and, instead, encompasses systems,

articles, methods, and apparati for a wide variety of stack machine environments, both virtual and physical.

As illustrated in Figure 4A, according to the JAVA Virtual Machine Specification, each method has
storage allocated for an operand stack and a set of locai variables. Similarly, in the embodiment of Figure 8
(see also Figure 4A), a series of method frames e.g., method frame 801 and method frame 802 on stack 803,
each include an operand stack instance, local variable storage instance, and frame state information instance
for respective methods invoked along the execution path of a JAVA program. A new frame is created and
becomes current each time a method is invoked and is destroyed after the method completes execution. A
frame ceases to be current if its method invokes another method. On method return, the current frame passes
back the result of its method invocation, if any, to the previous frame via stack 803. The current frame is then
discarded and the previous frame becomes current. Folding in accordance with the present invention, as
described more completely below, is not dependent upon a particular process used to allocate or define

memory space for a method, such as a frame, and can, in general, be used in any stack based architecture.

This series of method frames may be implemented in any of a variety of suitable memory hierarchies,
including for example register/ cache/ memory hierarchies. However, irrespective of the memory hierarchy
chosen, an operand stack instance 812 (Figure 8) is implemented in randomly-accessible storage 810, i.e., at
least some of the entries in operand stack instance 812 can be accessed from locations other than the top most
locations of operand stack instance 812 in contrast with a conventional stack implementation in which only the
top entry or topmost entries of the stack can be accessed. As described above, register OPTOP stores a pointer
that identifies the top of operand stack instance 812 associated with the current method. The value stored in
register OPTOP is maintained to identify the top entry of an operand stack instance corresponding to the

current method.

In addition, local variables for the current method are represented in randomly-accessible storage
810. A pointer stored in register VARS identifies the starting address of local variable storage instance 813
associated with the current method. The value in register VARS is maintained to identify a base address of the

local variable storage instance corresponding to the current method.

Entries in operand stack instance 812 and local variable storage instance 813 are referenced by
indexing off of values represented in registers OPTOP and VARS, respectively, that in the embodiment of
Figure 1 are included in register set 144, and in the embodiment of Figure 8 are included in pointer registers
822. Pointer registers 822 may be represented in physical registers of a processor implementing the JAVA
Virtual Machine, or optionally, in randomly-accessible storage 810. In an exemplary embodiment, commonly

used offsets OPTOP-1, OPTOP-2, VARS+1, VARS+2, and VARS+3 are derived from the values in registers

SUBSTITUTE SHEET (RULE 26)

20

25

30

35

WO 97/27536 PCT/US97/01221
=23 -

OPTOP and VARS, respectively. Alternatively, the additional offsets could be stored in register§ of pointer

registers 822.

Operand stack instance 812 and local variable storage instance 813 associated with the current
method are preferably represented in a flat 64-entry cache, e.g., stack cache 155 (see Figure 1) whose contents
are kept updated so that a working set of operand stack and local variable storage entries are cached.
However, depending on the size of the current frame, the current frame including operand stack instance 812
and local variable storage instance 813 may be fully or partially represented in the cache. Operand stack and
local variable storage entries for frames other than the current frame may also be represented in the cache if
space allows. A suitable representation of a cache suitable for use with the folding of this invention is
described in greater detail in U.S. Patent Application Serial No. 08/xxx,xxx, entitled "METHODS AND
APPARATI FOR STACK CACHING" naming Marc Tremblay and James Michael O'Connor as inventors,
assigned to the assignee of this application, and filed on even date herewith with Attorney Docket No.
SP2037, the detailed description of which is incorporated herein by reference, and in U.S. Patent Application
Serial No. 08/xxx,xxx, entitled "METHOD FRAME STORAGE USING MULTIPLE MEMORY CIRCUITS"
naming Marc Tremblay and James Michael O'Connor as inventors, assigned to the assignee of this application,
and filed on even date herewith with Attomey Docket No. SP2038, the detailed description of which also is
incorporated herein by reference. However, other representations, including separate and/or uncached

operand stack and local variable storage areas, are also suitable.

In addition to method frames and their associated operand stack and local variable storage instances,
a constant area 814 is provided in the address space of a processor implementing the JAVA virtual machine
for commonly-used constants, e.g., constants specified by JAVA virtual machine instructions such as
instruction iconst. In some cases, an operand source is represented as an index into constant area 814. In the
embodiment of Figure 8, constant area 814 is represented in randomly-accessible storage 810. Optionally,

entries of constant area 814 could also be cached, e.g., in stack cache 155.

Although those of skill in the art will recognize the advantages of maintaining an operand stack and
local variable storage instance for each method, as well as the opportunities for passing parameters and results
created by maintaining the various instances of operand stack and local variable storage in a stack-oriented
structure, in the interest of clarity, the description which follows focuses on the particular instances (operand
stack instance 812 and local variable storage instance 813) of each associated the current method. Hereafter,
these particular instances of an operand stack and local variable storage are referred to simply as operand stack
812 and local variable storage 813. Despite this simplification for purposes of illustration, those of skill in the
art will appreciate that operand stack 812 and local variable storage 813 refer to any instances of an operand
stack and variable storage associated with the current method, including representations which maintain
separate instances for each method and representations which combine instances into a composite

representation.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
224 -

Operand sources and result targets for JAVA Virtual Machine instructions typically ideritify entries
of operand stack instance 812 or local variable storage instance 813, i.e., identify entries of the operand stack
and local variable storage for the current method. By way of example, and not limitation, representative
JAVA virtual machine instructions are described in Chapter 3 of The JAVA Virtual Machine Specification
which is included at Appendix 1.

JAVA virtual machine instructions rarely explicitly designate both the source of the operand, or
operands, and the result destination. Instead, either the source or the destination is implicitly the top of
operand stack 812. Some JAVA bytecodes explicitly designate neither a source nor a destination. For
example, instruction iconst_0 pushes a constant integer zero onto operand stack 812. The constant zero is
implicit in the instruction, although the instruction may actually be implemented by a particular JAVA virtual
machine implementation using a representation of the value zero from a pool of constants, such as constant
area 814, as the source for the zero operand. An instruction decoder for a JAVA virtual machine
implementation that implements instruction iconst_0 in this way could generate, as the source address, the

index of the entry in constant area 814 where the constant zero is represented.

Prior to considering the various embodiments of folding in accordance with the present invention, it
is informative to consider execution of JAVA virtual machine instructions, such as the iadd instruction and the
arraylength instruction, without the folding process. After the operations associated with typical execution of
JAVA virtual machine instructions are understood, the advantages of this invention will be more apparent.
Further, this understanding will assist those of skill in the art in extending the invention to other stack-based

architectures that do not rely upon the JAVA virtual machine instructions.

Focusing illustratively on operand stack and local variable storage structures associated with the
current method and referring now to Figures 9A-D, the JAVA virtual machine integer add instruction, iadd,
generates the sum of first and second integer operands, referred to as operandl and operand2, respectively,
that are at the top two locations of operand stack §12. The top two locations are identified, at the time of
instruction iadd execution, by pointer OPTOP in register OPTOP and by pointer OPTOP-1. The result of the
execution of instruction iadd, i.e., the sum of first and second integer operands, is pushed onto operand stack
812.

Figure 9A shows the state of operand stack 812 and local variable storage 813 that includes first and
second values, referred to as valuel and value2, before execution of a pair of JAVA virtual machine integer

load instructions iload. In Figure 9A, pointer OPTOP has the value AACOh.

Figure 9B shows operand stack 812 after execution of the pair of instructions iload that load integer
values from local variable storage 813 onto operand stack 812, pushing (i.e., copying) values valuel and
value2 from locations identified by pointer VARS in register VARS and by pointer VARS+2 onto operand
stack 812 as operand] at location AAC4h and operand2 at location AAC8h, and updating pointer OPTOP in

the process to value AAC8h. Figure 9C shows operand stack 812 after instruction iadd has been executed.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
-25-

Execution of instruction iadd pops operands operand| and operand2 off operand stack 812, calculates the sum
of operands operand | and operand2, and pushes that sum onto operand stack 812 at location AAC4h. After
execution of instruction iadd, pointer OPTOP has the value AACOh and points to the operand stack 812 entry

storing the sum.

Figure 9D shows operand stack 812 after an instruction istore has been executed. Execution of
instruction istore pops the sum off operand stack 812 and stores the sum in the local variable storage 813

entry at the location identified by pointer VARS+2.

Variations for other instructions which push operands onto operand stack 812 and which operate on
values residing at the top of operand stack 812 will be apparent to those of skill in the art. For example,
variations for alternate operations and for data types requiring multiple operand stack 812 entries, e.g., long
integer values, double-precision floating point values, etc., will be apparent to those of skill in the art in view

of this disclosure.

The folding example of Figures 10A-C is analogous to that illustrated with reference to Figures 9A-
D, though with only load folding illustrated. Execution of JAVA virtual machine length of array instruction
arraylength determines the length of an array whose object reference pointer objectref is at the top of
operand stack 812, and pushes the length onto operand stack 812. Figure 10A shows the state of operand
stack 812 and local variable storage 813 before execution of JAVA virtual machine reference load instruction
aload that is used to load an object reference from local variable storage 813 onto the top of operand stack

812. In Figure 10A, pointer OPTOP has the value AACOh.

Figure 10B shows operand stack 812 after execution of instruction aload pushes, i.e., copies, object
reference pointer objectref onto the top of operand stack 812 and updates pointer OPTOP to AAC4h in the

process.

Figure 10C shows operand stack 812 after instruction arraylength has been executed. Execution of
instruction arraylength pops object reference pointer objectref off operand stack 812, calculates the length of
the array referenced thereby, and pushes that length onto operand stack 812. Suitable implementations of the
instruction arraylength may supply object reference pointer objectref to an execution unit, e.g., execution
unit 140, which subsequently overwrites the object reference pointer objectref with the value length. Whether
the object reference pointer objectref is popped from operand stack 812 or simply overwritten, after execution
of instruction arraylength, pointer OPTOP has the value AAC4h and points to the operand stack 812 entry

storing the value length.

Figure 11 illustrates a processor 1100 wherein loads, such as those illustrated in Figures 9A and 9B
and in Figures 1JA and 10B, are folded into execution of subsequent instructions, e.g., into execution of
subsequent instruction iadd, or instruction arraylength. In this way, intermediate execution cycles associated

with loading operands operand] and operand?2 for instruction iadd, or with loading pointer objectref for

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-26 -

instruction arraylength onto the top of operand stack 812 can be eliminated. As a result, single éycle
execution of groups of JAVA virtual machine instructions e.g., the group of instructions iload, iload, iadd,
and istore, or the group of instructions aload and arraylength, is provided by processor 1100. One
embodiment of processor 1100 is presented in Figure 1 as hardware processor 100. However, hardware
processor 1100 includes other embodiments that do not include the various optimizations of hardware
processor 100. Further, the folding processes described below could be implemented in a software interpreter
or a included within a just-in-time compiler. In the processor 1100 embodiment of Figure 11, stores such as
that illustrated in Figure 9D, are folded into execution of prior instructions, e.g., in Figure 9D, into execution

of the immediately prior instruction iadd.

The instruction folding is provided primarily by instruction decoder 1118. Instruction decoder 1118
retrieves fetched instructions from instruction buffer 1116 and depending upon the nature of instructions in the
fetched instruction sequence, supplies execution unit 1120 with decoded operation and operand addressing
information implementing the instruction sequence as a single folded operation. Unlike instructions of the
JAVA virtual machine instruction set to which the instruction sequence from instruction buffer 1116
conforms, decoded operations supplied to execution unit 1120 by instruction decoder 1118 operate on operand

values represented in entries of local variable storage 813, operand stack 812, and constant area 814.

In the exemplary embodiment of Figure 11, valid operand sources include local variable storage 813
entries identified by pointers VARS, VARS+1 , VARS+2, and VARS+3, as well as operand stack 812 entries
identified by pointers OPTOP, OPTOP-1, and OPTOP-2. Similarly, valid result targets include local variable
storage 813 entries identified by operands VARS, VARS+1 , VARS+2, and VARS+3. Embodiments in
accordance with Figure 11 may also provide for constant area 814 entries as valid operand sources as well as

other locations in operand stack 812 and local variable storage 813.

Referring now to Figures 11 and 12, a sequence of JAVA virtual machine instructions is fetched from
memory and loaded into instruction buffer 1116. Conceptually, instruction buffer 1116 is organized as a shift
register for JAVA bytecodes. One or more bytecodes are decoded by instruction decoder 1118 during each
cycle and operations are supplied to execution unit 1120 in the form of a decoded operation on instruction
decode bus instr_dec and associated operand source and result destination addressing information on
instruction address bus instr_addr. Instruction decoder 1118 also provides an instruction valid signal
instr_valid to execution unit 1120. When asserted, signal instr_valid indicates that the information on

instruction decode bus instr_dec specifies a valid operation.

One or more bytecodes are shifted out of instruction buffer 1116 to instruction decode unit 1118 each
cycle in correspondence with the supply of decoded operations and operand addressing information to
execution unit 1120, and subsequent undecoded bytecodes are shifted into instruction buffer 1116. For

normal decode operations, a single instruction is shifted out of instruction buffer 1116 and decoded by

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-27 -

instruction decode unit 1118, and a single corresponding operation is executed by execution unit 1120 during

each instruction cycle.

In contrast, for folded decode operations, multiple instructions, e.g., a group of instructions, are
shifted out of instruction buffer 1116 to instruction decode unit 1118. In response to the multiple instructions,
instruction decode unit 1118 generates a single equivalent folded operation that in turn is executed by

execution unit 1120 during each instruction cycle.

Referring illustratively to the instruction sequence described above with reference to FIGS. 9A-9D,
instruction decoder 1118 selectively decodes bytecodes associated with four JAVA virtual machine

instructions:
1. iload valuel;
2. iload value2;
3. iadd; and

4. istore,

that were described in the above description of Figures 9A-D. As now described, both instructions iload and
the instruction istore are folded by instruction decoder 1118 into an add operation corresponding to
instruction iadd. Although operation of instruction decoder 1118 is illustrated using a foldable sequence of
four instructions, those of skill in the art will appreciate that the invention is not limited to four instructions.
Foldable sequences of two, three, four, five, or more instructions are envisioned. For example, more than one
instruction analogous to the instruction istore and more than two instructions analogous to the instructions

iload may be included in foldable sequences.

Instruction decoder 1118 supplies decoded operation information over bus instr_dec and associated
operand source and result destination addressing information over bus instr_addr specifying that execution
unit 1120 is to add the contents of local variable storage 813 location 0, this is identified by pointer VARS,
and local variable storage 813 location 2, that is identified by pointer VARS+2, and store the result in local
variable storage 813 location 2, that is identified by pointer VARS+2. In this way, the two load instructions
are folded into execution of an operation corresponding to instruction iadd. Two instruction cycles and the
intermediate data state illustrated in Figure 9B are eliminated. In addition, instruction istore is also folded into
execution of the operation corresponding to instruction iadd, eliminating another instruction cycle, for a total
of three, and the intermediate data state illustrated in Figure 9C. In various alternative embodiments,
instruction folding in accordance with the present invention may eliminate loads, stores, or both loads and

stores.

Figure 13 depicts an exemplary embodiment of an instruction decoder 1118 providing both folded

and unfolded decoding of bytecodes. Selection of a folded or unfolded operating mode for instruction decoder

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.28 -

1118 is based on the particular sequence of bytecodes fetched into instruction buffer 1116 and suBsequentIy
accessed by instruction decoder 1118. A normal decode portion 1302 and a fold decode portion 1304 of
instruction decoder 1118 are configured in parallel to provide support for unfolded and folded execution,

respectively.

In the embodiment of Figure 13, fold decode portion 1304 detects opportunities for folding execution
of bytecodes in the bytecode sequence fetched into instruction buffer 1116. A detection of such a foldable
sequence triggers selection of the output of fold decode portion 1304, rather than normal decode portion 1302,
for provision to execution unit 1120. Advantageously, selection of folded or unfolded decoding is transparent
to execution unit 1120, which simply receives operation information over bus instr_dec and associated
operand source and result destination addressing information over bus instr_addr, and which need not know

whether the information corresponds to a single instruction or a folded instruction sequence.

Normal decode portion 1302 functions to inspect a single bytecode from instruction buffer 1116

during each instruction cycle, and generates the following indications in response thereto:

1. anormal instruction decode signal n_instr_dec, which specifies an operation, e.g., integer addition,

corresponding to the decoded instruction, is provided to a first set of input terminals of switch 1306;

2. anormal address signal n_adr, which makes explicit the source and destination addresses, e.g., first
operand address = OPTOP, second operand address = OPTOP-1, and destination address = OPTOP-1

for an instruction iadd, for the decoded instruction, is provided to a first bus input of switch 1310;

3. anet change in pointer OPTOP signal n_delta_optop, e.g., for the instruction iadd, net change = -1,
which in the embodiment of Figure 13 is encoded as a component of normal address signal n_adr;

and

4. an instruction valid signal instr_valid, which indicates whether normal instruction decode signal

n_instr_dec specifies a valid operation, is provided to a first input terminal of switch 1308.

In contrast with normal decode portion 802, and as discussed in greater detail below, fold decode
portion 804 of instruction decoder 618 inspects sequences of bytecodes from the instruction buffer 616 and
determines whether operations corresponding to these sequences (e.g., the sequence iload valuel from local
variable 0, iload value2 from local variable 2, iadd, and istore sum to local variable 2) can be folded together
to eliminate unnecessary temporary storage of instruction operands and/or results on the operand stack. When
fold decode portion 804 determines that a sequence of bytecodes in instruction buffer 616 can be folded

together, fold decode portion 804 generates the following indications:

1. afolded instruction decode signal f_instr_dec, which specifies an equivalent operation, e.g., integer
addition corresponding to the folded instruction sequence, is provided to a second set of input

terminals of switch 1306;

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
20 .

(%)

a folded address signal f_adr, which specifies source and destination addresses for the eﬁuivalem
operation, e.g., first operand address = VARS, second operand address = VARS+2, and destination

address = VARS+2, is provided to a second bus input of switch 1310;

3. anetchange in pointer OPTOP signal f_delta_optop, e.g., for the above sequence net change = 0,
which in the embodiment of Figure 13 is encoded as a component of normal address signal n_adr;

and

4. afolded instruction valid signal f_valid, which indicates whether folded instruction decode signal

f_instr_dec specifies a valid operation, is provided to a second input terminal of switch 1308.

Fold decode portion 804 also generates a signal on fold line f/nf which indicates whether a sequence of
bytecodes in instruction buffer 1116 can be folded together. The signal on fold line f/nf is provided to control
inputs of switches 1306, 1310 and 1308. If a sequence of bytecodes in instruction buffer 1116 can be folded
together, the signal on fold line f/nf causes switches 1306, 1310 and 1308 to select respective second inputs
for provision to execution unit 1120, i.e., to source folded instruction decode signal f_instr_dec, folded
address signal f_adr, and folded instruction valid signal f_valid from fold decode portion 804. If a sequence
of bytecodes in instruction buffer 1116 cannot be folded together, the signal on fold line f/nf causes switches
1306, 1310 and 1308 to select respective first inputs for provision to execution unit 1120, i.e., to source
normal instruction decode signal n_instr_dec, normal address signal n_adr, and normal instruction valid

signal n_valid from fold decode portion 804.

In some embodiments in accordance with the present invention, the operation of fold decode portion
1304 is suppressed in response to an active suppress folding signal suppress_fold supplied from outside
instruction decoder 1118. In response to an asserted suppress folding signal suppress_fold (see Figure 14),
the signal on fold line £/nf remains in a state selective for respective first inputs of switches 1306, 1310 and
1308 even if the particular bytecode sequence presented by instruction buffer 1116 would otherwise trigger
folding. For example, in one such embodiment, suppress folding signal suppress_fold is asserted when the
local variable storage 813 entry identified by pointer VARS is not cached, e.g., when entries in operand stack
812 have displaced local variable storage 813 from a stack cache 155. In accordance with the exemplary
embodiment described therein, a stack cache and cache control mechanism representing at least a portion of
operand stack 812 and local variable storage 813 may advantageously assert suppress folding signal
suppress_fold if fold-relevant entries of local variable storage 813 or operand stack 812 are not represented in

stack cache 155.

Figure 14 illustrates fold decode portion 1304 of instruction decoder 1118 in greater detail. A fold
determination portion 1404 selectively inspects the sequence of bytecodes in instruction buffer 1116. If the
next bytecode and one or more subsequent bytecodes represent a foldable sequence of operations (as discussed
below with respect to Figure 15), then fold determination portion 1404 supplies a fold-indicating signal on

fold line f/nf and a folded instruction decode signal f_instr_dec that specifies an equivalent folded operation.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
230 -

Folded instruction decode signal f_instr_dec is supplied to execution unit 1120 as the decoded instruction
instr_dec. In an exemplary embodiment, a foldable sequence of operations includes those associated with 2,
3, or 4 bytecodes from instruction decoder 1118 (up to 2 bytecodes loading operands onto operand stack 812,
a bytecode popping the operand(s), operating thereupon, and pushing a result onto operand stack 812, and a
bytecode popping the result from operand stack 812 and storing the result. The equivalent folded operation,
which is encoded by the folded instruction decode signal f_instr_dec, specifies an operation, that when
combined with folded execution addressing information obviates the loads to, and stores from, operand stack

812.

Alternative embodiments may fold only two instructions, e.g., an instruction iload into an instruction
iadd or an instruction istore back into an immediately prior instruction iadd. Other alternative embodiments
may fold only instructions that push operands onto the operand stack, e.g., one or more instructions iload
folded into an instruction iadd, or only instructions that pop results from the operand stack, e.g., an instruction
istore back into an immediately prior instruction iadd. Further alternative embodiments may fold larger
numbers of instructions that push operands onto the operand stack and/or instructions that pop results from the
operand stack instructions in accordance with instructions of a particular virtual machine instruction set. In
such alternative embodiments, the above described advantages over normal decoding and execution of

instruction sequences are still obtained.

Fold determination portion 1404 generates a series of fold address index composite signal f_adr_ind
including component first operand index signal first_adr_ind, second operand index signal second_adr_ind,
and destination index signal dest_adr_ind, which are respectively selective for a first operand address, a
second operand address, and a destination address for the equivalent folded operation. Fold determination
portion 1404 provides the composite signal f_adr_ind to fold address generator 1402 for use in supplying
operand and destination addresses for the equivalent folded operation. Fold determination portion 1404
asserts a fold-indicating signal on fold line f/nf to control the switches 1306, 1310 and 1308 (see Figure 13) to
provide the signals f_instr_dec, f_adr, and f_valid, as signals instr_dec, instr_adr, and instr_valid,
respectively. Otherwise respective signals are provided to execution unit 1120 from normal decode portion
1302.

The operation of fold determination portion 1404 is now described with reference to the flowchart of
Figure 15. At start 1501, fold determination portion 1404 begins an instruction decode cycle and transfers
processing to initialize index 1502. In initialize index 1502, an instruction index instr_index into instruction
buffer 1116 is initialized to identify the next bytecode of a bytecode sequence in instruction buffer 1116. In
an exemplary embodiment, instruction index instr_index is initialed to one (1) and the next bytecode is the
first bytecode in instruction buffer 1116 since prior bytecodes have already been shifted out of instruction
buffer 1116, although a variety of other indexing and instruction buffer management schemes would also be

suitable. Upon completion, initialize index 1502 transfers processing to first instruction check 1504.

SUBSTITUTE SHEET (RULE 26)

20

25

30

35

WO 97/27536 PCT/US97/01221
23] -

In first instruction check 1504, fold determination portion 1404 determines whether the instruction
identified by index instr_index, i.e., the first bytecode, corresponds to an operation that pushes a value, e.g.,
an integer value, a floating point value, a reference value, etc., onto operand stack 812. Referring illustratively
to a JAVA virtual machine embodiment, first instruction check 1504 determines whether the instruction
identified by index instr_index is one that the JAVA virtual machine specification (see Appendix 1) defines as
for pushing a first data item onto the operand stack. If so, first operand index signal first_adr_ind is asserted
(at first operand address setting 1506) to identify the source of the first operand value. In an exemplary
embodiment, first operand index signal first_adr_ind is selective for one of OPTOP, OPTOP-1, OPTOP-2,
VARS, VARS+1, VARS+2, and VARS+3, although alternative embodiments may encode larger, smaller, or
different sets of source addresses, including for example, source addresses in constant area 814. Depending
on the bytecodes which follow, this first bytecode may correspond to an operation which can be folded into
the execution of a subsequent operation. However, if the first bytecode does not meet the criteria of first
instruction check 1504, folding is not appropriate and fold determination portion 1404 supplies a nonfold-
indicating signal on fold line f/nf, whereupon indications from normal decode portion 1302 provide the

decoding.

Assuming the first bytecode meets the criteria of first instruction check 1504, index instr_index is
incremented (at incrementing 1508) to point to the next bytecode in instruction buffer 1116. Then, at second
instruction check 1510, fold determination portion 1404 determines whether instruction identified by index
instr_index, i.e., the second bytecode, corresponds to an operation that pushes a value, e.g., an integer value, a
floating point value, a reference value, etc., onto operand stack 812. Referring illustratively to a JAVA virtual
machine embodiment, second instruction check 1510 determines whether the instruction identified by index
instr_index is one that the JAVA virtual machine specification (see Appendix 1) defines as for pushing a first
data item onto the operand stack. If so, second operand index signal second_adr_ind is asserted (at second
operand address setting 1512) to indicate the source of the second operand value and index instr_index is
incremented (at incrementing 1514) to point to the next bytecode in instruction buffer 1116. As before,
second operand index signal second_adr_ind is selective for one of OPTOP, OPTOP-1, OPTOP-2, VARS,
VARS+1, VARS+2, and VARS+3, although alternative embodiments are also suitable. Fold determination
portion 1404 continues at third instruction check 1516 with index instr_index pointing to either the second or

third bytecode in instruction buffer 1116.

At third instruction check 1516, fold determination portion 1404 determines whether the instruction
identified by index instr_index, i.e., either the second or third bytecode, corresponds to an operation that
operates on an operand value or values, e.g., integer value(s), floating point value(s), reference value(s), etc.,
from the uppermost entries of operand stack 812, effectively popping such operand values from operand stack
812 and pushing a result value onto operand stack 812. Popping of operand values may be explicit or merely
a net effect of writing the result value to an upper entry of operand stack 812 and updating pointer OPTOP to
identify that entry as the top of operand stack 812. Referring illustratively to a JAVA virtual machine

embodiment, third instruction check 1516 determines whether the instruction identified by index instr_index

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

35

WO 97/27536 PCT/US97/01221
-32 -

corresponds to an operation that the JAVA virtual machine specification (see Appendix 1) defines as for
popping a data item (or items) from the operand stack, for operating on the popped data item(s), and for
pushing a result of the operation onto the operand stack. If so, index instr_index is incremented (at
incrementing 1518) to point to the next bytecode in instruction buffer 1116. If not, folding is not appropriate
and fold determination portion 1404 supplies a nonfold-indicating signal on fold line f/nf, whereupon normal

decode portion 1302 provides decoding.

At fourth instruction check 1520, fold determination portion 1404 determines whether the instruction
identified by index instr_index, i.e., either the third or fourth bytecode, corresponds to an operation that pops
a value from operand stack 812 and stores the value in a data store such as local variable storage 813.
Referring illustratively to a JAVA virtual machine embodiment, fourth instruction check 1520 determines
whether the instruction identified by index instr_index corresponds to an operation that the JAVA virtual
machine specification (see Appendix I) defines as for popping the result data item from the operand stack. If
so, index signal dest_adr_ind is asserted (at destination address setting 1522) to identify the destination of the
result value of the equivalent folded operation. Otherwise, if the bytecode at instruction buffer 1116 location
identified by index instr_index does not match the criterion of fourth instruction check 1520, index signal
dest_adr_ind is asserted (at destination address setting 1124) to identify the top of operand stack 812.
Referring illustratively to a JAVA virtual machine embodiment, if the instruction identified by index
instr_index does not match the criterion of fourth instruction check 1520, index signal dest_adr_ind is
asserted (at destination address setting 1124) to identify the pointer OPTOP. Whether the top of operand stack
812 or a store operation destination is selected, the folded instruction valid signal f_valid is asserted (at valid
fold asserting 1126) and a fold-indicating signal on line f/nf is supplied to select fold decode inputs of
switches 1306, 1308, and 1310 for supply to execution unit 1120. Fold determination portion 1404 ends an
instruction decode cycle at finish 1550.

As a simplification, an instruction decoder for hardware processor 100, e.g., instruction decoder 135,
may limit fold decoding to instruction sequences of two instructions and/or to sequences of single bytecode
instructions. Those of skill in the art will appreciate suitable simplifications to fold decode portion 1304 of

instruction decoder 1118.

Figure 16 shows fold address generator 1402 including three component address generators, first
operand address generator 1602, second operand address generator 1604, and destination address generator
1606, respectively supplying a corresponding first operand, second operand, and destination address based on
indices supplied thereto and pointer VARS and pointer OPTOP values from pointer registers 822. In an
exemplary embodiment, first operand address generator 1602, second operand address generator 1604, and
destination address generator 1606 supply addresses in randomly-accessible storage 810 corresponding to a
subset of operand stack 812 and local variable storage 813 entries. Alternative embodiments may supply
identifiers selective for storage other than random access memory, e.g., physical registers, which in a

particular JAVA virtual machine implementation provide underlying operand stack and local variable storage.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-33 -

First operand address generator 1602 receives first operand index signal first_adr_ind from fold
determination portion 1404 and, using pointer VARS and pointer OPTOP values from pointer registers 822,
generates a first operand address signal first_op_adr for a first operand for the equivalent folded operation.
The operation of second operand address generator 1604 and destination address generator 1606 is analogous.
Second operand address generator 1604 receives first operand index signal first_adr_ind and generates a
second operand address signal second_op_adr for a second operand (if any) for the equivalent folded
operation. Destination address generator 1606 receives the destination index signal dest_ad_ind and
generates the destination address signal dest_adr for the result of the equivalent folded operation. In the
embodiment of Figures 13, 14, and 16, first operand address signal first_op_adr, second operand address
signal second_op_adr, and destination address signal dest_adr are collectively supplied to switch 1310 as
fold address signal f_adr for supply to execution unit 1120 as the first operand, second operand, and

destination addresses for the equivalent folded operation.

Figure 17 illustrates an exemplary embodiment of first operand address generator 1602. Second
operand address generator 1604 and destination address generator 1606 are analogous. In the exemplary
embodiment of Figure 17, first operand address signal first_op_adr is selected from a subset of locations in
local variable storage 813 and operand stack 812. Alternative embodiments may generate operand and
destination addresses from a larger, smaller, or different subset of operand stack 812 and local variable storage
813 locations or from a wider range of locations in randomly-accessible storage 810. For example, alternative
embodiments may generate addresses selective for location in constant area 814. Suitable modifications to the
exemplary embodiment of Figure 17 will be apparent to those of skill in the art. first operand address
generator 1602, second operand address generator 1604, and destination address generator 1606 may
advantageously define differing sets of locations. For example, whereas locations in constant area 814 and in
the interior of operand stack 812 are valid as operand sources, they are not typically appropriate result targets.
For this reason, the set of locations provided by an exemplary embodiment of destination address generator
1606 is restricted to local variable storage 813 entries and uppermost entries of operand stack 812, although

alternative sets are also possible.

Referring to Figure 17, pointer OPTOP is supplied to register 1702, which latches the value and
provides the latched value to a first input of a data selector 1750. Similarly, pointer OPTOP is supplied to
registers 1704 and 1706, which latch the value minus one and minus two, respectively, and provide the latched
values to second and third inputs of data selector 1750. In this way, addresses identified by values OPTOP,
OPTOP-1, and OPTOP-2 are available for selection by data selector 1750. Similarly, pointer VARS is
supplied to a series of registers 1708, 1710, 1712 and 1714, which respectively latch the values VARS,
VARS+1, VARS+2, and VARS+3 for provision to the fourth, fifth, sixth, and seventh inputs of data selector
1750. In this way, addresses identified by values VARS, VARS+1, VARS+2, and VARS+3 are available for
selection by data selector 1750. In the exemplary embodiment described herein, offsets from pointer VARS

are positive because local variable storage 813 is addressed from its base (identified by pointer VARS) while

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
.34 -

offsets to pointer OPTOP are negative because operand stack 812 is addressed from its top (identi.ﬁed by
pointer OPTOP).

Data selector 1750 selects from among the latched addresses available at its inputs. In an
embodiment of fold determination portion 1404 in accordance with the Figure 17 embodiment of first operand
address generator 1602, load source addresses in local variable storage 813 other than those addressed by
values VARS, VARS+1, VARS+2, and VARS+3 are handled as unfoldable and decoded via normal decode
portion 1302. However, suitable modifications for expanding the set of load addresses supported will be
apparent to those of skill'in the art. Second operand address generator 1604 and destination address generator
1606 are of analogous design, although destination address generator 1606 does not provide support for

addressing into constant area 814.

In one embodiment in accordance with the present invention, signal RS1_D is supplied to the zeroth
input of data selector 1750. In this embodiment, additional decode logic (not shown) allows for direct supply
of register identifier information to support an alternate instruction set. Addition decode logic support for
such an alternate instruction set is described in greater detail in a U.S. Patent Application Serial No.
08/xxx,xxx, entitled "A PROCESSOR FOR EXECUTING INSTRUCTION SETS RECEIVED FROM A
NETWORK OR FROM A LOCAL MEMORY" naming Marc Tremblay and James Michael O'Connor as
inventors, assigned to the assignee of this application, and filed on even date herewith with Attorney Docket

No. SP2042, the detailed description of which is incorporated herein by reference.

Referring back to Figure 13, when fold determination portion 1404 of fold decode portion 1304
identifies a foldable bytecode sequence, fold determination portion 1404 asserts a fold-indicating signal on
line f/nf, supplies an equivalent folded operation as folded instruction decode signal f_instr_dec, and supplies,
based on load and store instructions from the foldable bytecode sequence, indices into latched addresses
maintained by first operand address generator 1602, second operand address generator 1604, and destination
address generator 1606. Fold decode portion 1304 supplies the addresses so indexed as folded address signal
f_adr. Responsive to the signal on line f/nf, switches 1306, 1308, 1310 supply decode information for the

equivalent folded operation to execution unit 1120.

Although fold decode portion 804 has been described above in the context of an exemplary four
instruction foldable sequence, it is not limited thereto. Based on the description herein, those of skill in the art
will appreciate suitable extensions to support folding of additional instructions and longer foldable instruction
sequences, e.g., sequences of five or more instructions. By way of example and not of limitation, support for
additional operand address signals, e.g., a third operand address signal, and/or for additional destination

address signals, e.g., a second destination address signal, could be provided.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

Integer Execution Unit

Referring again to Figure 1, integer execution unit IEU, that includes instruction decode unit 130,
integer unit 142, and stack management unit 150, is responsible for the execution of all the virtual machine
instructions except the floating point related instructions. The floating point related instructions are executed

in floating point unit 143.

Integer execution unit IEU interacts at the front end with instructions cache unit 120 to fetch
instructions, with floating point unit (FPU) 143 to execute floating point instructions, and finally with data
cache unit (DCU) 160 to execute load and store related instructions. Integer execution unit IEU also contains
microcode ROM 149 which contains instructions to execute certain virtual machine instructions associated

with integer operations.

Integer execution unit IEU includes a cached portion of stack 400, i.e., stack cache 155. Stack
cache 155 provides fast storage for operand stack and local variable entries associated with a current method,
e.g., operand stack 423 and local variable storage 421 entries. Although, stack cache 155 may provide
sufficient storage for all operand stack and local variable entries associated with a current method, depending
on the number of operand stack and local variable entries, less than all of local variable entries or less than all
of both local variable entries and operand stack entries may be represented in stack cache 155. Similarly,
additional entries, e.g., operand stack and or local variable entries for a calling method, may be represented in

stack cache 155 if space allows.

Stack cache 155 is a sixty-four entry thirty-two-bit wide array of registers that is physically
implemented as a register file in one embodiment. Stack cache 155 has three read ports, two of which are
dedicated to integer execution unit IEU and one to dribble manager unit 151. Stack cache 155 also has two

write ports, one dedicated to integer execution unit IEU and one to dribble manager unit 151.

Integer unit 142 maintains the various pointers which are used to access variables, such as local
variables, and operand stack values, in stack cache 155. Integer unit 142 also maintains pointers to detect
whether a stack cache hit has taken place. Runtime exceptions are caught and dealt with by exception

handlers that are implemented using information in microcode ROM 149 and circuit 170.

Integer unit 142 contains a 32-bit ALU to support arithmetic operations. The operations supported by
the ALU include: add, subtract, shift, and, or, exclusive or, compare, greater than, less than, and bypass. The
ALU is also used to determine the address of conditional branches while a separate comparator determines the

outcome of the branch instruction.

The most common set of instructions which executes cleanly through the pipeline is the group of
ALU instructions. The ALU instructions read the operands from the top of stack 400 in decode stage 302 and

use the ALU in execution stage 303 to compute the result. The result is written back to stack 400 in write-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-36 -

back stage 305. There are two levels of bypass which may be needed if consecutive ALU operatibns are

accessing stack cache 155.

Since the stack cache ports are 32-bits wide in this embodiment, double precision and long data
operations take two cycles. A shifter is also present as part of the ALU. If the operands are not available for
the instruction in decode stage 302, or at a maximum at the beginning of execution stage 303, an interlock

holds the pipeline stages before execution stage 303.

The instruction cache unit interface of integer execution unit IEU is a valid/accept interface, where
instruction cache unit 120 delivers instructions to integer decode unit 130 in fixed fields along with valid bits.
Instruction decoder 135 responds by signaling how much byte aligner circuit 122 needs to shift, or how many
bytes instruction decode unit 130 could consume in decode stage 302. The instruction cache unit interface
also signals to instruction cache unit 120 the branch mis-predict condition, and the branch address in execution
stage 303. Traps, when taken, are also similarly indicated to instruction cache unit 120. Instruction cache
unit 120 can hold integer unit 142 by not asserting any of the valid bits to instruction decode unit 130.
Instruction decode unit 130 can hold instruction cache unit 120 by not asserting the shift signal to byte aligner

circuit 122.

The data cache interface of integer execution unit IEU also is a valid-accept interface, where integer
unit 142 signals, in execution stage 303, a load or store operation along with its attributes, e.g., non-cached,
special stores etc., to data cache controller 161 in data cache unit 160. Data cache unit 160 can return the data
on a load, and control integer unit 142 using a data control unit hold signal. On a data cache hit, data cache

unit 160 returns the requested data, and then releases the pipeline.

On store operations, integer unit 142 also supplies the data along with the address in execution
stage 303. Data cache unit 165 can hold the pipeline in cache stage 304 if data cache unit 165 is busy, e.g.,

doing a line fiil etc.

Floating point operations are dealt with specially by integer execution unit IEU. Instruction
decoder 135 fetches and decodes floating point unit 143 related instructions. Instruction decoder 135 sends
the floating point operation operands for execution to floating point unit 142 in decode state 302. While
floating point unit 143 is busy executing the floating point operation, integer unit 142 halts the pipeline and

waits until floating point unit 143 signals to integer unit 142 that the result is available.

A floating point ready signal from floating point unit 143 indicates that execution stage 303 of the
floating point operation has concluded. In response to the floating point ready signal, the result is written back
into stack cache 155 by integer unit 142. Floating point load and stores are entirely handled by integer
execution unit IEU, since the operands for both floating point unit 143 and integer unit 142 are found in stack

cache 155.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-37 -

Stack Management Unit

A stack management unit 150 stores information, and provides operands to execution unit 140. Stack

management unit 150 also takes care of overflow and underflow conditions of stack cache 155.

In one embodiment, stack management unit 150 includes stack cache 155 that, as described above, is
a three read port, two write port register file in one embodiment; a stack control unit 152 which provides the
necessary control signals for two read ports and one write port that are used to retrieve operands for execution
unit 140 and for storing data back from a write-back register or data cache 165 into stack cache 155; and a
dribble manager 151 which speculatively dribbles data in and out of stack cache 155 into memory whenever
there is an overflow or underflow in stack cache 155. In the exemplary embodiment of F igure 1, memory
includes data cache 165 and any memory storage interfaced by memory interface unit 110. In general,
memory includes any suitable memory hierarchy including caches, addressable read/write memory storage,
secondary storage, etc. Dribble manager 151 also provides the necessary control signals for a single read port

and a single write port of stack cache 155 which are used exclusively for background dribbling purposes.

In one embodiment, stack cache 155 is managed as a circular buffer which ensures that the stack
grows and shrinks in a predictable manner to avoid overflows or overwrites. The saving and restoring of
values to and from data cache 165 is controlled by dribbler manager 151 using high- and low-water marks, in

one embodiment.

Stack management unit 150 provides execution unit 140 with two 32-bit operands in a given cycle.

Stack management unit 150 can store a single 32-bit result in a given cycle.

Dribble manager 151 handles spills and fills of stack cache 155 by speculatively dribbling the data in
and out of stack cache 155 from and to data cache 165. Dribble manager 151 generates a pipeline stall signal
to stall the pipeline when a stack overflow or underflow condition is detected. Dribbie manager 151 also
keeps track of requests sent to data cache unit 160. A single request to data cache unit 160 is a 32-bit

consecutive load or store request.

The hardware organization of stack cache 155 is such that, except for long operands (long integers
and double precision floating-point numbers), implicit operand fetches for opcodes do not add latency to the
execution of the opcodes. The number of entries in operand stack 423 (Fig. 4A) and local variable
storage 422 that are maintained in stack cache 155 represents a hardware/performance tradeoff. At least a few
operand stack 423 and local variable storage 422 entries are required to get good performance. In the
exemplary embodiment of Figure 1, at least the top three entries of operand stack 423 and the first four local

variable storage 422 entries are preferably represented in stack cache 155.

One key function provided by stack cache 155 (Fig. 1) is to emulate a register file where access to the

top two registers is always possible without extra cycles. A small hardware stack is sufficient if the proper

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-38-

intelligence is provided to load/store values from/to memory in the background, therefore preparing stack

cache 155 for incoming virtual machine instructions.

As indicated above, all items on stack 400 (regardless of size) are placed into a 32-bit word. This
tends to waste space if many small data items are used, but it also keeps things relatively simple and free of
lots of tagging or muxing. An entry in stack 400 thus represents a value and not a number of bytes. Long
integer and double precision floating-point numbers require two entries. To keep the number of read and
write ports low, two cycles to read two long integers or two double precision floating point numbers are

required.

The mechanism for filling and spilling the operand stack from stack cache 155 out to memory by
dribble manager 151 can assume one of several alternative forms. One register at a time can be filled or
spilled, or a block of several registers filled or spilled at once. A simple scoreboarded method is appropriate
for stack management. In its simplest form, a single bit indicates if the register in stack cache 155 is currently

valid. In addition, some embodiments of stack cache 155 use a single bit to indicate whether the data content

. of the repister is saved to stack 400, i.e., whether the register is dirty. In one embodiment, a high-water

mark/low-water mark heuristic determines when entries are saved to and restored from stack 400, respectively
(Fig. 4A). Alternatively, when the top-of-the-stack becomes close to bottom 401 of stack cache 155 by a
fixed, or alternatively, a programmable number of entries, the hardware starts loading registers from stack 400
into stack cache 155. For other embodiments of stack management unit 150 and dribble manager unit 151 see
U.S. Patent Application Serial No. 08/xxx,xxx, entitled "METHODS AND APPARATI FOR STACK
CACHING" naming Marc Tremblay and James Michael O'Connor as inventors, assigned to the assignee of
this application, and filed on even date herewith with Attorney Docket No. SP2037, which is incorporated
herein by reference in its entirety, and see also U.S. Patent Application Serial No. 08/xxx,xxx, entitled
"METHOD FRAME STORAGE USING MULTIPLE MEMORY CIRCUITS" naming Marc Tremblay and
James Michael O'Connor as inventors, assigned to the assignee of this application, and filed on even date

herewith with Attorney Docket No. SP2038, which also is incorporated herein by reference in its entirety.

In one embodiment, stack management unit 150 also includes an optional local variable look-aside
cache 153. Cache 153 is most important in applications where both the local variables and operand stack 423
(Fig. 4A) for a method are not located on stack cache 155. In such instances when cache 153 is not included
in hardware processor 100, there is a miss on stack cache 155 when a local variable is accessed, and execution
unit 140 accesses data cache unit 160, which in turn slows down execution. In contrast, with cache 153, the

local variable is retrieved from cache 153 and there is no delay in execution.

One embodiment of local variable look-aside cache 153 is illustrated in Figure 4D for method 0 to 2
on stack 400. Local variables zero to M, where M is an integer, for method 0 are stored in plane 421A_0 of
cache 153 and plane 421A_0 is accessed when method number 402 is zero. Local variables zero to N, where

N is an integer, for method 1 are stored in plane 421A_1 of cache 153 and piane 421A_1 is accessed when

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
-39.

method number 402 is one. Local variables zero to P, where P is an integer, for method 1 are stored in plane
421A_2 of cache 153 and plane 421A_2 is accessed when method number 402 is two. Notice that the various
planes of cache 153 may be different sizes, but typically each plane of the cache has a fixed size that is

empirically determined.

When a new method is invoked, e.g., method 2, a new plane 421A_2 in cache 153 is loaded with the
local variables for that method, and method number register 402, which in one embodiment is a counter, is
changed, e.g., incremented, to point to the plane of cache 153 containing the local variables for the new
method. Notice that the local variables are ordered within a plane of cache 153 so that cache 153 is effectively
a direct-mapped cache. Thus, when a local variable is needed for the current method, the variable is accessed
directly from the most recent plane in cache 153, i.e., the plane identified by method number 402. When the
current method returns, e.g., method 2, method number register 402 is changed, e.g., decremented, to point at

previous plane 421A-1 of cache 153. Cache 153 can be made as wide and as deep as necessary.

Data Cache Unit

Data cache unit 160 (DCU) manages all requests for data in data cache 165. Data cache requests can
come from dribbling manager 151 or execution unit 140. Data cache controller 161 arbitrates between these
requests giving priority to the execution unit requests. In response to a request, data cache controller 161
generates address, data and control signals for the data and tags RAMs in data cache 165. For a data cache hit,

data cache controlier 161 reorders the data RAM output to provide the right data.

Data cache controller 161 also generates requests to I/O bus and memory interface unit 110 in case of
data cache misses, and in case of non-cacheable loads and stores. Data cache controller 161 provides the data
path and control logic for processing non-cacheable requests, and the data path and data path control functions

for handling cache misses.

For data cache hits, data cache unit 160 returns data to execution unit 140 in one cycle for loads.
Data cache unit 160 also takes one cycle for write hits. In case of a cache miss, data cache unit 160 stalls the
pipeline until the requested data is available from the external memory. For both non-cacheable loads and
stores, data cache 161 is bypassed and requests are sent to I/O bus and memory interface unit 110. Non-

aligned loads and stores to data cache 165 trap in software.

Data cache 165 is a two-way set associative, write back, write allocate, 16-byte line cache. The cache
size is configurable to 0, 1, 2, 4, 8, 16 Kbyte sizes. The default size is 8 Kbytes. Each line has a cache tag
store entry associated with the line. On a cache miss, 16 bytes of data are written into cache 165 from external

memory.

Each data cache tag contains a 20-bit address tag field, one valid bit, and one dirty bit. Each cache

tag is also associated with a least recently used bit that is used for replacement policy. To support multiple

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

WO 97/27536 PCT/US97/01221
.40 -

cache sizes, the width of the tag fields also can be varied. If a cache enable bit in processor service register is

not set, loads and stores are treated like non-cacheable instructions by data cache controller 161.

A single sixteen-byte write back buffer is provided for writing back dirty cache lines which need to
be replaced. Data cache unit 160 can provide a maximum of four bytes on a read and a maximum of four
bytes of data can be written into cache 161 in a single cycle. Diagnostic reads and writes can be done on the

caches.

Memory Allocation Accelerator

In one embodiment, data cache unit 165 includes a memory allocation accelerator 166. Typically,
when a new object is created, fields for the object are fetched from external memory, stored in data cache 165
and then the field is cleared to zero. This is a time consuming process that is eliminated by memory allocation
accelerator 166. When a new object is created, no fields are retrieved from external memory. Rather, memory
allocation accelerator 160 simply stores a line of zeros in data cache 165 and marks that line of data cache 165
as dirty. Memory allocation accelerator 166 is particularly advantageous with a write-back cache. Since
memory allocation accelerator 166 eliminates the external memory access each time a new object is created,

the performance of hardware processor 100 is enhanced.

Floating Point Unit

Floating point unit (FPU) 143 includes a microcode sequencer, input/output section with input/output
registers, a floating point adder, i.e., an ALU, and a floating point multiply/divide unit. The microcode
sequencer controls the microcode flow and microcode branches. The input/output section provides the control
for input/output data transactions, and provides the input data loading and output data unloading registers.

These registers also provide intermediate result storage.

The floating point adder-ALU includes the combinatorial logic used to perform the floating point
adds, floating point subtracts, and conversion operations. The floating point multiply/divide unit contains the

hardware for performing multiply/divide and remainder.

Floating point unit 143 is organized as a microcoded engine with a 32-bit data path. This data path is
often reused many times during the computation of the result. Double precision operations require
approximately two to four times the number of cycles as single precision operations. The floating point ready
signal is asserted one-cycle prior to the completion of a given floating point operation. This allows integer
unit 142 to read the floating point unit output registers without any wasted interface cycles. Thus, output data

is available for reading one cycle after the floating point ready signal is asserted.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.41 -

Execution Unit Accelerators

Since the JAVA Virtual Machine Specification of Appendix I is hardware independent, the virtual
machine instructions are not optimized for a particular general type of processor, e.g., a complex instruction
set computer (CISC) processor, or a reduced instruction set computer (RISC) processor. In fact, some virtual
machine instructions have a CISC nature and others a RISC nature. This dual nature complicates the

operation and optimization of hardware processor 100.

For example, the JAVA virtual machine specification defines opcode 171 for an instruction
lookupswitch, which is a traditional switch statement. The data stream to instruction cache unit 120 includes
an opcode 171, identifying the N-way switch statement, that is followed zero to three bytes of padding. The
number of bytes of padding is selected so that first operand byte begins at an address that is a multiple of four.
Herein, datastream is used generically to indicate information that is provided to a particular element, block,

component, Or unit.

Foliowing the padding bytes in the datastream are a series of pairs of signed four-byte quantities.
The first pair is special. A first operand in the first pair is the default offset for the switch statement that is
used when the argument, referred to as an integer key, or alternatively, a current match value, of the switch
statement is not equal to any of the values of the matches in the switch statement. The second operand in the

first pair defines the number of pairs that follow in the datastream.

Each subsequent operand pair in the datastream has a first operand that is a match value, and a second
operand that is an offset. If the integer key is equal to one of the match values, the offset in the pair is added
to the address of the switch statement to define the address to which execution branches. Conversely, if the
integer key is unequal to any of the match values, the default offset in the first pair is added to the address of
the switch statement to define the address to which execution branches. Direct execution of this virtual

machine instruction requires many cycles.

To enhance the performance of hardware processor 100, a look-up switch accelerator 145 is included
in hardware processor 100. Look-up switch accelerator 145 includes an associative memory which stores
information associated with one or more lookup switch statements. For each lookup switch statement, i.e.,
each instruction lookupswitch, this information includes a lookup switch identifier value, i.e., the program
counter value associated with the lookup switch statement, a plurality of match values and a corresponding

plurality of jump offset values.

Lookup switch accelerator 145 determines whether a current instruction received by hardware
processor 100 corresponds to a lookup switch statement stored in the associative memory. Lookup switch
accelerator 145 further determines whether a current match value associated with the current instruction
corresponds with one of the match values stored in the associative memory. Lookup switch accelerator 145

accesses a jump offset value from the associative memory when the current instruction corresponds to a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.42 -

lookup switch statement stored in the memory and the current match value corresponds with one of the match

values stored in the memory wherein the accessed jump offset value corresponds with the current match value.

Lookup switch accelerator 145 further includes circuitry for retrieving match and jump offset values
associated with a current lookup switch statement when the associative memory does not already contain the
match and jump offset values associated with the current lookup switch statement. Lookup switch
accelerator 145 is described in more detail in U.S. Patent Application Serial No. 08/xxx,xxx, entitled "LOOK-
UP SWITCH ACCELERATOR AND METHOD OF OPERATING SAME" naming Marc Tremblay and
James Michael O'Connor as inventors, assigned to the assignee of this application, and filed on even date

herewith with Attorney Docket No. SP2040, which is incorporated herein by reference in its entirety.

In the process of initiating execution of a method of an object, execution unit 140 accesses a method
vector to retrieve one of the method pointers in the method vector, i.e., one level of indirection. Execution
unit 140 then uses the accessed method pointer to access a corresponding method, i.e., a second level of

indirection.

To reduce the levels of indirection within execution unit 140, each object is provided with a
dedicated copy of each of the methods to be accessed by the object. Execution unit 140 then accesses the
methods using a single level of indirection. That is, each method is directly accessed by a pointer which is
derived from the object. This eliminates a level of indirection which was previously introduced by the method
pointers. By reducing the levels of indirection, the operation of execution unit 140 can be accelerated. The
acceleration of execution unit 140 by reducing the levels of indirection experienced by execution unit 140 is
described in more detail in U.S. Patent Application Serial No. 08/xxx,xxx, entitled "REPLICATING CODE
TO ELIMINATE A LEVEL OF INDIRECTION DURING EXECUTION OF AN OBJECT ORIENTED
COMPUTER PROGRAM" naming Marc Tremblay and James Michael O'Connor as inventors, assigned to the
assignee of this application, and filed on even date herewith with Attorney Docket No. SP2043, which is

incorporated herein by reference in its entirety.

Getfield-putfield Accelerator

Other specific functional units and various translation lookaside buffer (TLB) types of structures may
optionally be included in hardware processor 100 to accelerate accesses to the constant pool. For example, the
JAVA virtual machine specification defines an instruction putfield, opcode 181, that upon execution sets a
field in an object and an instruction getfield, opcode 180, that upon execution fetches a field from an object.
In both of these instructions, the opcode is followed by an index byte one and an index byte two. Operand
stack 423 contains a reference to an object followed by a value for instruction putfield, but only a reference to

an object for instruction getfield.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

.43 -

Index bytes one and two are used to generate an index into the constant pool of the current class. The
item in the constant pool at that index is a field reference to a class name and a field name. The item is

resolved to a field block pointer which has both the field width, in bytes, and the field offset, in bytes.

An optional getfield- putfield accelerator 146 in execution unit 140 stores the field block pointer for
instruction getfield or instruction putfield in a cache, for use after the first invocation of the instruction, along
with the index used to identify the item in the constant pool that was resolved into the field block pointer as a
tag. Subsequently, execution unit 140 uses index bytes one and two to generate the index and supplies the
index to getfield-putfield accelerator 146. If the index matches one of the indexes stored as a tag, i.e., there is
a hit, the field block pointer associated with that tag is retrieved and used by execution unit 140. Conversely,
if a match is not found, execution unit 140 performs the operations described above. Getfield-putfield
accelerator 146 is implemented without using self-modifying code that was used in one embodiment of the

quick instruction translation described above.

In one embodiment, getfield-putfield accelerator 146 includes an associative memory that has a first
section that holds the indices that function as tags, and a second section that holds the field block pointers.
When an index is applied through an input section to the first section of the associative memory, and there is a
match with one of the stored indices, the field block pointer associated with the stored index that matched in

input index is output from the second section of the associative memory.

Bounds Check Unit

Bounds check unit 147 (Fig. 1) in execution unit 140 is an optional hardware circuit that checks each
access to an element of an array to determine whether the access is to a location within the array. When the
access is to a location outside the array, bounds check unit 147 issues an active array bound exception signal
to execution unit 140. In response to the active array bound exception signal, execution unit 140 initiates
execution of an exception handler stored in microcode ROM 141 that in handles the out of bounds array

access.

In one embodiment, bounds check unit 147 includes an associative memory element in which is
stored a array identifier for an array, e.g., a program counter value, and a maximum value and a minimum
value for the array. When an array is accessed, i.e., the array identifier for that array is applied to the
associative memory element, and assuming the array is represented in the associative memory element, the
stored minimum value is as a first input signal to a first comparator element, sometimes called a comparison
element, and the stored maximum value is a first input signal to a second comparator element, sometimes
called a comparison element. A second input signal to the first and second comparator elements is the value

associated with the access of the array's element.

If the value associated with the access of the array's element is less than or equal to the stored

maximum value and greater than or equal to the stored minimum value, neither comparator element generates

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-44 -

an output signal. However, if either of these conditions is false, the appropriate comparator element generates
the active array bound exception signal. A more detailed description of one embodiment of bounds check unit
147 is provided in U.S. Patent Application Serial No. 08/xxx,xxx, entitled "PROCESSOR WITH
ACCELERATED ARRAY ACCESS BOUNDS CHECKING" naming Marc Tremblay, James Michael
O'Connor, and William N. Joy as inventors, assigned to the assignee of this application, and filed on even date

herewith with Attorney Docket No. SP2041 which is incorporated herein by reference in its entirety.

The JAVA Virtual Machine Specification defines that certain instructions can cause certain
exceptions. The checks for these exception conditions are implemented, and a hardware/software mechanism
for dealing with them is provided in hardware processor 100 by information in microcode ROM 149 and
program counter and trap control logic 170. The alternatives include having a trap vector style or a single trap
target and pushing the trap type on the stack so that the dedicated trap handler routine determines the

appropriate action.

No external cache is required for the architecture of hardware processor 100. No translation

lookaside buffers need be supported.

Figure 5 illustrates several possible add-ons to hardware processor 100 to create a unique system.
Circuits supporting any of the eight functions shown, i.e., NTSC encoder 501, MPEG 502, Ethemet
controller 503, VIS 504, ISDN 505, 1/O controller 506, ATM assembly/reassembly 507, and radio link 508

can be integrated into the same chip as hardware processor 100 of this invention.

While the invention has been described with reference to various embodiments, it will be understood
that these embodiments are illustrative and that the scope of the invention is not limited to them. Claim terms
such as first instruction, second instruction, third instruction, etc. are for identification only and should not be
construed to require a particular ordering of instructions. Many variations, modifications, additions, and
improvements of the embodiments described are possible. For example, although the present invention has
been herein described with reference to exemplary embodiments relating to the JAVA programming language
and JAVA virtual machine, it is not limited to them and, instead, encompasses systems, articles, methods, and
apparati for a wide variety of stack machine environments (both virtual and physical). In addition, although
certain exemplary embodiments have been described in terms of hardware, suitable virtual machine
implementations (JAVA related or otherwise) incorporating instruction folding in accordance with the above
description include software providing a instruction folding bytecode interpreter, a just-in-time (JIT) compiler
producing folded operations in object code native to a particular machine architecture, and instruction folding
hardware implementing the virtual machine. These and other variations, modifications, additions, and

improvements may fall within the scope of the invention as defined by the claims which follow.

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-45 -

APPENDIX I

The JAVA Virtual Machine Specification

SU3STITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221

.46 -

©1993, 1994, 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This BETA quality release and related
documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of
this release or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if
any.

Portions of this product may be derived from the UNIX® and Berkeley
4.3 BSD systems, licensed from UNIX System Laboratories, Inc. and the
University of California, respectively. Third-party font software in this
release is protected by copyright and licensed from Sun's Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
United States Government is subject to the restrictions set forth in DFARS
252.227-7013 (c) (1) (ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more
U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the
Sun logo, the Sun Microsystems Computer Corporation logo, WebRunner, JAVA,
FirstPerson and the FirstPerson logo and agent are trademarks or
registered trademarks of Sun Microsystems, Inc. The "Duke" character is a
trademark of Sun Microsystems, Inc. and Copyright (c) 1992-1995 Sun
Microsystems, Inc. All Rights Reserved. UNIX® is a registered trademark
in the United States and other countries, exclusively licensed through
X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc.
All other product names mentioned herein are the trademarks of their
respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are
trademarks or registered trademarks of SPARC International, Inc.
SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC
trademarks are based upon an architecture developed by Sun Microsystems,
Inc.

The OPEN LOOK® and Sun® Graphical User Interfaces were developed by
Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of

visual or graphical user interfaces for the computer industry. Sun holds

SUBSTITUTE SHEET (RULE 26)

10

15

WO 97/27536 PCT/US97/01221
_47 -

a non-exclusive license from Xerox to the Xerox Graphical User Iﬁterface,
which license also covers Sun's licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun's written license agreements.

X Window System is a trademark and product of the Massachusetts
Institute of Technology.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR

NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
.48 -

preface

This document describes version 1.0 of the JAVA Virtual Machine and
its instruction set. We have written this document to act as a
specification for both compiler writers, who wish to target the machine,
and as a specification for others who may wish to implement a compliant
JAVA Virtual Machine.

The JAVA Virtual Machine is an imaginary machine that is implemented
by emulating it in software on a real machine. Code for the JAVA Virtual
Machine is stored in .class files, each of which contains the code for at
most one public class.

Simple and efficient emulations of the JAVA Virtual Machine are
possible because the machine's format is compact and efficient bytecodes.
Implementations whose native code speed approximates that of compiled C
are also possible, by translating the bytecodes to machine code, although
Sun has not released such implementations at this time.

The rest of this document is structured as follows:

Chapter 1 describes the architecture of the JAVA Virtual Machine;

Chapter 2 describes the .class file format;

Chapter 3 describes the bytecodes; and

Appendix A contains some instructions generatedinternally by Sun's

implementation of the JAVA Virtual Machine. While not
strictly part of the specification we describe these here so
that this specification can serve as a reference for our
implementation. As more implementations of the JAVA Virtual
Machine become available, we may remove Appendix A from future
releases.

Sun will license the JAVA Virtual Machine trademark and logo for use
with compliant implementations of this specification. If you are
considering constructing your own implementation of the JAVA Virtual
Machine please contact us, at the email address below, so that we can work
together to insure 100% compatibility of your implementation.

Send comments on this specification or gquestions about implementing

the JAVA Virtual Machine to our electronic mail address:JAVA@JAVA.sun.com.

1. JAVA Virtual Machine Architecture
1.1 Supported Data Types
The virtual machine data types include the basic data types of the

JAVA language:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221

-49 -
byte // 1-byte signed 2's complement integer
short // 2-byte signed 2's complement integer
int // 4-byte signed 2's complement integer
long // 8-byte signed 2's complement integer
float // 4-byte IEEE 754 single-precision float
double // B-byte IEEE 754 double-precision float
char // 2-byte unsigned Unicode character

Nearly all JAVA type checking is done at compile time. Data of the
primitive types shown above need not be tagged by the hardware to allow
execution of JAVA. Instead, the bytecodes that operate on primitive
values indicate the types of the operands so that, for example, the iadd,
ladd, fadd, and dadd instructions each add two numbers, whose types are
int, long, float, and double, respectively

The virtual machine doesn't have separate instructions for boolean
types. Instead, integer instructions, including integer returns, are used
to operate on boolean values; byte arrays are used for arrays of boolean.

The virtual machine specifies that floating point be done in IEEE
754 format, with support for gradual underflow. Older computer
architectures that do not have support for IEEE format may run JAVA
numeric programs very slowly.

Other virtual machine data types include:

object // 4-byte reference to a JAVA object
returnAddress // 4 bytes, used with jsr/ret/jsr w/ret_w
instructions

Note: JAVA arrays are treated as objects.

This specification does not require any particular internal
structure for objects. 1In our implementation an object reference is to a
handle, which is a pair of pointers: one to a method table for the object,
and the other to the data allocated for the object. Other implementations
may use inline caching, rather than method table dispatch; such methods
are likely to be faster on hardware that is emerging between now and the
year 2000.

Programs represented by JAVA Virtual Machine bytecodes are expected
to maintain proper type discipline and an implementation may refuse to
execute a bytecode program that appears to violate such type discipline.

While the JAVA Virtual Machines would appear to be limited by the
bytecode dednition to running on a 32-bit address space machine, it is

possible to build a version of the JAVA Virtual Machine that automatically

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-50 -

translates the bytecodes into a 64-bit form. A description of this
transformation is beyond the scope of the JAVA Virtual Machine

Specification.

1.2 Registers

At any point the virtual machine is executing the code of a single
method, and the pc register contains the address of the next bytecode to
be executed.

Each method has memory space allocated for it to hold:

a set of local variables, referenced by a vars register;

an operand stack, referenced by an optop register; and

a execution environment structure, referenced by a frame register.

All of this space can be allocated at once, since the size of the
local variables and operand stack are known at compile time, and the size
of the execution environment structure is well-known to the interpreter.

All of these registers are 32 bits wide.

1.3 Local Variables

Each JAVA method uses a fixed-sized set of local variables. They
are addressed as word offsets from the vars register. Local variables are
all 32 bits wide.

Long integers and double precision floats are considered to take up
two local variables but are addressed by the index of the first local
variable. (For example, a local variable with index containing a double
precision float actually occupies storage at indices n and n+l.) The
virtual machine specification does not require 64-bit values in local
variables to be 64-bit aligned. Implementors are free to decide the
appropriate way to divide long integers and double precision floats into
two words.

Instructions are provided to load the values of local variables onto
the operand stack and store values from the operand stack into local

variables.

1.4 The Operand Stack
The machine instructions all take operands from an operand stack,
operate on them, and return results to the stack. We chose a stack

organization so that it would be easy to emulate the machine efficiently

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221

-51] -

on machines with few or irregular registers such as the Intel 486
microprocessor.

The operand stack is 32 bits wide. It is used to pass parameters to
methods and receive method results, as well as to supply parameters for
operations and save operation results.

For example, execution of instruction iadd adds two integers
together. It expects that the two integers are the top two words on the
operand stack, and were pushed there by previous instructions. Both
integers are popped from the stack, added, and their sum pushed back onto
the operand stack. Subcomputations may be nested on the operand stack,
and result in a single operand that can be used by the nesting
computation.

Each primitive data type has specialized instructions that know how
to operate on operands of that type. Each operand requires a single
location on the stack, except for long and double operands, which require
two locations.

Operands must be operated on by operators appropriate to their type.
It is illegal, for example, to push two integers and then treat them as a
long. This restriction is enforced, in the Sun implementation, by the
bytecode verifier. However, a small number of operations (the dup opcodes
and swap) operate on runtime data areas as raw values of a given width
without regard to type.

In our description of the virtual machine instructions below, the
effect of an instruction's execution on the operand stack is represented
textually, with the stack growing from left to right, and each 32-bit word
separately represented. Thus:

Stack: ..., valuel, value2 » ..., value3
shows an operation that begins by having value2 on top of the stack with
valuel just beneath it. As a result of the execution of the instruction,
valuel and value2 are popped from the stack and replaced by value3, which
has been calculated by the instruction. The remainder of the stack,
represented by an ellipsis, is unaffected by the instruction's execution.

The types long and double take two 32-bit words on the operand
stack:

Stack: ... P ..., value-wordl,value-word2

This specification does not say how the two words are selected from
the 64-bit long or double value; it is only necessary that a particular

implementation be internally consistent.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536

PCT/US97/01221
-52 -

1.5 Execution Environment

The information contained in the execution environment is used to do

dynamic linking,

normal method returns, and exception propagation.

1.5.1 Dynamic Linking

The execution environment contains references to the interpreter

symbol table for

the current method and current class, in support of

dynamic linking of the method code. The class file code for a method

refers to methods to be called and variables to be accessed symbolically.

Dynamic linking translates these symbolic method calls into actual method

calls, loading classes as necessary to resolve as-yet-undefined symbols,

and translates variable accesses into appropriate offsets in storage

structures associated with the runtime location of these variables.

This late binding of the methods and variables makes changes in

other classes that a method uses less likely to break this code.

1.5.2 Normal Method Returns

If execution of the current method completes normally, then a value

is returned to the calling method. This occurs when the calling method

executes a return instruction appropriate to the return type.

The execution environment is used in this case to restore the

registers of the

caller, with the program counter of the caller

appropriately incremented to skip the method call instruction. Execution

then continues in the calling method's execution environment.

1.5.3 Exception and Error Propagation

An exceptional condition, known in JAVA as an Error or Exception,

which are subclasses of Throwable, may arise in a program because of:

a dynamic linkage failure, such as a failure to find a needed class

file;

a run-time

error, such as a reference through a null pointer;

an asynchronous event, such as is thrown by Thread.stop, from

another thread; and

the program using a throw statement.

When an exception occurs:

A list of catch clauses associated with the current method is

examined.

Each catch clause describes the instruction range for

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-53-

which it is active, describes the type of exception that it is to
handle, and has the address of the code to handle it.

An exception matches a catch clause if the instruction that
caused the exception is in the appropriate instruction range, and
the exception type is a subtype of the type of exception that the
catch clause handles. If a matching catch clause is found, the
system branches to the specified handler. If no handler is found,
the process is repeated until all the nested catch clauses of the
current method have been exhausted.

The order of the catch clauses in the list is important. The
virtual machine execution continues at the first matching catch
clause. Because JAVA code is structured, it is always possible to
sort all the exception handlers for one method into a single list
that, for any possible program counter value, can be searched in
linear order to find the proper (innermost containing applicable)
exception handler for an exception occuring at that program counter
value.

If there is no matching catch clause then the current method
is said to have as its outcome the uncaught exception. The
execution state of the method that called this method is restored
from the execution environment, and the propagation of the exception

continues, as though the exception had just occurred in this caller.

1.5.4 Additional Information
The execution environment may be extended with additional

implementation-specified information, such as debugging information.

1.6 Garbage Collected Heap

The JAVA heap is the runtime data area from which class instances
(objects) are allocated. The JAVA language is designed to be garbage
collected - it does not give the programmer the ability to deallocate
objects explicitly. The JAVA language does not presuppose any particular
kind of garbage collection; various algorithms may be used depending on

system requirements.

1.7 Method Area
The method area is analogous to the store for compiled code in

conventional languages or the text segment in a UNIX process. It stores

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
.54 -

method code (compiled JAVA code) and symbol tables. 1In the current JAVA
implementation, method code is not part of the garbage-collected heap,

although this is planned for a future release.

1.8 The JAVA Instruction Set

An instruction in the JAVA instruction set consists of a one-byte
opcode specifying the operation to be performed, and zero or more operands
supplying parameters or data that will be used by the operation. Many
instructions have no operands and consist only of an opcode.

The inner loop of the virtual machine execution is effectively:

do {

fetch an opcode byte
execute an action depending on the value of the opcode

} while (there is more to do);

The number and size of the additional operands is determined by the
opcode. If an additional operand is more than one byte in size, then it
is stored in big-endian order - high order byte first. For example, a
16-bit parameter is stored as two bytes whose value is:

first byte * 256 + second_byte

The bytecode instruction stream is only byte-aligned, with the
exception being the tableswitch and lookupswitch. instructions, which force
alignment to a 4-byte boundary within their instructions.

These decisions keep the virtual machine code for a compiled JAVA
program compact and reflect a conscious bias in favor of compactness at

some possible cost in performance.

1.9 Limitations

The per-class constant pool has a maximum of 65535 entries. This
acts as an internal limit on the total complexity of a single class.

The amount of code per method is limited to 65535 bytes by the sizes
of the indices in the code in the exception table, the line number table,
and the local variable table.

Besides this limit, the only other limitation of note is that the

number of words of arguments in a method call is limited to 255.

2. Class File Format

This chapter documents the JAVA class (.class) file format.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
.55-

Each class file contains the compiled version of either a JAVA class
or a JAVA interface. Compliant JAVA interpreters must be capable of
dealing with all class files that conform to the following specification.

A JAVA class file consists of a stream of 8-bit bytes. All 16-bit
and 32-bit quantities are constructed by reading in two or four 8-bit
bytes, respectively. The bytes are joined together in network
(big-endian) order, where the high bytes come first. This format is
supported by the JAVA JAVA.io.DataInput and JAVA.io.DataOutput interfaces,
and classes such as JAVA.io.DataInputStream and JAVA.io.DataOutputStream.

The class file format is described here using a structure notation.
Successive fields in the structure appear in the external representation
without padding or alignment. Variable size arrays, often of variable
sized elements, are called tables and are commonplace in these structures.

The types ul, u2, and u4 mean an unsigned one-, two-, or four-byte
quantity, respectively, which are read by method such as readUnsignedByte,
readUnsignedShort and readInt of the JAVA.io.DataInput interface.

2.1 Format
The following pseudo-structure gives a top-level description of the

format of a class file:

ClassFile ({
u4 magic;
u2 minor_ version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool [constant_pool count - 1];
u2 access_flags;
u2 this_class;
u2 super_ class;
u2 interfaces_count;
u2 interfaces[interfaces_count] ;
u2 fields_count;
field_info fields[fields_count];
u2 methods_ count;
method_info methods{methods_count] ;
u2 attributes_count;

attribute_info attributes[attribute_count};

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.56 -

magic

This field must have the value 0xCAFEBABE.
minor version, major version

These fields contain the version number of the JAVA compiler that
produced this class file. An implementation of the virtual machine will
normally support some range of minor version numbers 0-n of a particular
major version number. If the minor version number is incremented the new
code won't run on the old virtual machines, but it is possible to make a
new virtual machine which can run versions up to n+l.

A change of the major version number indicates a major incompatible
change, one that requires a different virtual machine that may not support
the old major version in any way.

The current major version number is 45; the current minor version
number is 3.
constant pool count

This field indicates the number of entries in the constant pool in
the class file.
constant pool

The constant pool is a table of values. These values are the
various string constants, class names, field names, and others that are
referred to by the class structure or by the code.

constant_pool [0] is always unused by the compiler, and may be used
by an implementation for any purpose.

Each of the constant_pool entries 1 through constant_pool count-1 is
a variable-length entry, whose format is given by the first "tag" byte, as
described in section 2.3.
access_flags

This field contains a mask of up to sixteen modifiers used with
class, method, and.field declarations. The same encoding is used on
similar fields in field info and method_info as described below. Here is

the encoding:

Flag Name Value Meaning Used By
ACC_PUBLIC 0x0001 Visible to everyone Class,
Method,
Variable
ACC_PRIVATE 0x0002 Visible only to the Method,
defining class Variable
ACC_PROTECTED 0x0004 Visible to subclasses Method,
Variable

SUBSTITUTE SHEET (RULE 26)

10

15

WO 97/27536 PCT/US97/01221

-57 -
ACC_STATIC 0x0008 | variable or method is Method,
static Variable
ACC_FINAL 0x0010 No further subclassing, Class,
overriding, or assignment | Method,
after initialization Variable

ACC_SYNCHRONIZED | 0x0020 | Wrap use in monitor lock Method

ACC_VOLATILE 0x0040 Can't cache Variable
ACC_TRANSIENT 0x0080 | Not to be written or read | Variable
by a persistent object
manager
ACC_NATIVE 0x0100 Implemented in a language | Method
other than JAVA
ACC_INTERFACE 0x0200 Is an interface Class
ACC_ABSTRACT 0x0400 | No body provided Class,
Method
this_class

This field is an index into the constant pool; constant_pool
(this_class] must be a CONSTANT class.
super_ class

This field is an index into the constant pool. If the value of
super_class is nonzero, then constant_pool [super class] must be a class,
and gives the index of this class's superclass in the constant pool.

If the value of super_class is zero, then the class being defined
must be JAVA.lang.Object, and it has no superclass.
interfaces_count

This field gives the number of interfaces that this class
implements.
interfaces

Each value in this table is an index into the constant pool. 1If a
table value is nonzero (interfaces[i] != 0, where 0 <= i
<interfaces_count), then constant_pool [interfaces([i]] must be an

interface that this class implements.

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 97/27536 PCT/US97/01221
-58 -

fields count

This field gives the number of instance variables, both static and
dynamic, defined by this class. The fields table includes only those
variables that are defined explicitly by this class. It does not include
those instance variables that are accessible from this class but are
inherited from superclasses.
fields

Each value in this table is a more complete description of a field
in the class. See section 2.4 for more information on the field info
structure.
methods count

This field indicates the number of methods, both static and dynamic,
defined by this class. This table only includes those methods that are
explicitly defined by this class. It does not include inherited methods.
methods

Each value in this table is a more complete description of a method
in the class. See section 2.5 for more information on the method_info
structure.
attributes_count

This field indicates the number of additional attributes about this
class.
attributes

A class can have any number of optional attributes associated with
it. Currently, the only class attribute recognized is the "SourceFile"
attribute, which indicates the name of the source file from which this
class file was compiled. See section 2.6 for more information on the

attribute_info structure.

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 97/27536

PCT/US97/01221

-59.

2.2 Signatures

A signature is a string representing a type of a method,

array.

field or

The field signature represents the value of an argument to a

function or the value of a variable.

the following grammar:

It is a series of bytes generated by

<field signature> ::= <field type>

<field type>

: :=<base_type>|<object types|

<array_type>

<base_type> ::= B|C|D|F|I|J|S|2Z

<object type> ::= L<fullclassnames;

<array_type>

<optional_size> i:= [0-9]

::=[<optional_size><field_type>

The meaning of the base types is as follows:

B byte

C char

D double
F float

I int

J long
L<fullclassnames>; ...

S short

Z boolean

[<field sig>

signed byte

character

double precision IEEE
float

single precision IEEE
float

integer

long integer

an object of the given
class

signed short

true or false

array

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 97/27536 PCT/US97/01221
-60 -
A return-type signature represents the return value from a ﬁethod.
It is a series of bytes in the following grammar:
<return_signature> ::= <field type> | V
The character V indicates that the method returns no value.
Otherwise, the signature indicates the type of the return value.
An argument signature represents an argument passed to a method:
<argument_ signature> 1:= <field type>
A method signature represents the arguments that the method expects,
and the value that it returns.
<method_signature> ::= (<arguments_signatures)
<return_ signature>

<arguments_signature> ::= <argument_signature>*

2.3 Constant Pool
Each item in the constant pool begins with a 1-byte tag:. The table

below lists the valid tags and their values.

Constant Type Value

CONSTANT_ Class 7
CONSTANT_Fieldref 9
CONSTANT Methodref 10
CONSTANT InterfaceMethodref 11
CONSTANT_String 8
CONSTANT Integer 3
CONSTANT_Float 4
CONSTANT Long 5
CONSTANT_Double 6
CONSTANT NameAndType 12
CONSTANT Utf8 1
CONSTANT_ Unicode 2

Each tag byte is then followed by one or more bytes giving more

information about the specific constant.

2.3.1 CONSTANT Class
CONSTANT Class is used to represent a class or an interface.

CONSTANT_Class_info {

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
_61 -

ul tag;
u2 name_index;

}

tag

The tag will have the value CONSTANT Class

name_index

constant_pool [name_index] is a CONSTANT Utf8 giving the string
name of the class.

Because arrays are objects, the opcodes anewarray and multianewarray
can reference array "classes" via CONSTANT Class items in the constant
pool. In this case, the name of the class is its signature. For example,
the class name for

int[] []
is

[[1
The class name for

Thread{]
is

" [LJAVA. lang.Thread; "

2.3.2 CONSTANT {Fieldref,Methodref, InterfaceMethodref}
Fields, methods, and interface methods are represented by
similar structures.
CONSTANT_Fieldref info {
ul tag;
u2 class_index;
u2 name_and_type_index;
}
CONSTANT_Methodref_info {
ul tag;
u2 class_index;
u2 name_and type index;
}
CONSTANT_InterfaceMethodref info {
ul tag;
u2 class_index;

u2 name_and type_ index;

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-62 -

tag

The tag will have the value CONSTANT Fieldref, CONSTANT Methodref,
or CONSTANT InterfaceMethodref.
class_index

constant_pool [class_index] will be an entry of type CONSTANT Class
giving the name of the class or interface containing the field or method.

For CONSTANT_Fieldref and CONSTANT Methodref, the CONSTANT Class
item must be an actual class. For CONSTANT InterfaceMethodref, the item
must be an interface which purports to implement the given method.
name_and type index

constant_pool [name_and_type index] will be an entry of type
CONSTANT NameAndType. This constant pool entry indicates the name and

signature of the field or method.

2.3.3 CONSTANT String
CONSTANT_String is used to represent constant objects of the
built-in type String.
CONSTANT String_info ({
ul tag;

u2 string_index;

tag
The tag will have the value CONSTANT String
string index
constant_pool {string_index] is a CONSTANT_ Utf8 string giving the

value to which the String object is initialized.

2.3.4 CONSTANT Integer and CONSTANT Float
CONSTANT_Integer andCONSTANT Float represent four-byte constants.
CONSTANT Integer info {

ul tag;
u4 bytes;
}
CONSTANT Float_info {
ul tag;
u4 bytes;

tag

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221

-63 -

The tag will have the value CONSTANT Integer or CONSTANT Float

bytes

For integers, the four bytes are the integer value. For floats,

they are the IEEE 754 standard representation of the floating point value.

These bytes are in network (high byte first) order.

2.3.5 CONSTANT Long and CONSTANT Double

CONSTANT_Long andCONSTANT Double represent eight-byte constants.

CONSTANT Long_info {
ul tag;
u4 high bytes;
u4 low_bytes;

}

CONSTANT Double_info {
ul tag;
u4 high bytes;
u4 low _bytes;

}

All eight-byte constants take up two spots in the constant pool.

this is the n"™" item in the constant pool, then the next item will be
numbered n+2.
tag

The tag will have the value CONSTANT Long or CONSTANT Double.
high bytes, low_bytes

For CONSTANT Long, the 64-bit value is (high bytes << 32)
+low_bytes.

For CONSTANT Double, the 64-bit value,high bytes and low_bytes
together represent the standard IEEE 754 representation of the

double-precision floating point number.

2.3.6 CONSTANT NameAndType

If

CONSTANT NameAndType is used to represent a field or method, without

indicating which class it belongs to.
CONSTANT_NameAndType_info {
ul tag;
u2 name_index;

u2 signature_index;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

WO 97/27536 PCT/US97/01221
.64 -

tag
The tag will have the valueCONSTANT NameAndType.
name_index
constant pool [name_index] is a CONSTANT_Utf8 string giving the name
of the field or method.
signature_index
constant_pool ([signature_index] is a CONSTANT Utf8 string giving the

signature of the field or method.

2.3.7 CONSTANT Utf8 and CONSTANT Unicode

CONSTANT Utf8 andCONSTANT Unicode are used to represent constant
string values.

CONSTANT Utf8 strings are "encoded" so that strings containing only
non-null ASCII characters, can be represented using only one byte per
character, but characters of up to 16 bits can be represented:

All characters in the range 0x0001 to 0x007F are represented by a
single byte:

ot ok T TR TR e
|0|7bits of data]
B Rr S r TR

The null character (0x0000) and characters in the range 0x0080 to
0x07FF are represented by a pair of two bytes:

ottt tmt bt b=t bttt -+-+
|1|1}0} 5 bitst | |1]|0| 6 bits |
Feodobmb—t—t—t—t—+ d-d—F -ttt -t-+

Characters in the range 0x0800 to OxFFFF are represented by three

bytes:

-4ttt -d-t b=ttt d-t-t bttt -Ft-+-+
|1|1}1]0|4 bits | |1]|0| 6 bits | 11l0] 6 bits
o=ttt mt—F ot =t Fotmdmbotmd—b—t-t Fot-t-F-t-t-+-F-+

There are two differences between this format and the "standard"
UTF-8 format. First, the null byte (0x00) is encoded in two-byte format
rather than one-byte, so that our strings never have embedded nulls.
Second, only the one-byte, two-byte, and three-byte formats are used. We
do not recognize the longer formats.

CONSTANT Utf8_info {

ul tag;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221

-65 -

u2 length;
ul bytes[length] ;
}
CONSTANT Unicode_ info {
ul tag;
u2 length;
u2 bytes [length];

tag
The tag will have the value CONSTANT Utf8 or CONSTANT Unicode.
length
The number of bytes in the string. These strings are not null
terminated.
bytes

The actual bytes of the string.

2.4 Fields

The information for each field immediately follows the field count
field in the class file. Each field is described by a variable length
field info structure. The format of this structure is as follows:

field_info ({

u2 access_flags;

u2 name_index;

u2 signature_index;

u2 attributes_ count;

attribute_info attributes[attribute count];

}
access_flags

This is a set of sixteen flags used by classes, methods, and fields
to describe various properties and how they many be accessed by methods in
other classes. See the table "Access Flags" which indicates the meaning
of the bits in this field.

The possible fields that can be set for a field are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL, ACC_VOLATILE, and
ACC_TRANSIENT.

At most one of ACC_PUBLIC, ACC_PROTECTED, and ACC_PRIVATE can be set
for any method.

name_index

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
.66 -

constant_pool [name_index] is a CONSTANT Utf8 string which is the
name of the field.
signature_index

constant_pool [signature_index] is a CONSTANT Utf8 string which is
the signature of the field. See the section "Signatures" for more
information on signatures.
attributes count

This value indicates the number of additional attributes about this
field.
attributes

A field can have any number of optional attributes associated with
it. Currently, the only field attribute recognized is the "ConstantValue"
attribute, which indicates that this field is a static numeric constant,
and indicates the constant value of that field.

Any other attributes are skipped.

2.5 Methods

The information for each method immediately follows the method count
field in the class file. Each method is described by a variable length
method info structure. The structure has the following format:

method_info {

u2 access_flags;

u2 name_index;

u2 signature_index;

u2 attributes_count;

attribute_info attributes [attribute_count];

}
access_flags

This is a set of sixteen flags used by classes, methods, and fields
to describe various properties and how they many be accessed by methods in
other classes. See the table "Access Flags" which gives the various bits
in this field.

The possible fields that can be set for a method are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL, ACC_SYNCHRONIZED,
ACC_NATIVE, and ACC_ABSTRACT.

At most one of ACC_PUBLIC, ACC_PROTECTED, and ACC_PRIVATE can be set
for any method.

name_index

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
.67 -

constant_pool [name_index] is a CONSTANT Utf8 string giving the name
of the method.
signature_index

constant_pool [signature_index] is a CONSTANT Utf8 string giving the
signature of the field. See the section "Signatures" for more information
on signatures.
attributes_ count

This value indicates the number of additional attributes about this

field.
attributes

A field can have any number of optional attributes associated with
it. Each attribute has a name, and other additional information.

Currently, the only field attributes recognized are the "Code" and
"Exceptions" attributes, which describe the bytecodes that are executed to
perform this method, and the JAVA Exceptions which are declared to result
from the execution of the method, respectively.

Any other attributes are skipped.

2.6 Attributes

Attributes are used at several different places in the class format.
All attributes have the following format:

GenericAttribute_info {

u2 attribute_name;
u4 attribute_ length;
ul infolattribute_length];

}

The attribute name is a 16-bit index into the class's constant pool;
the value of constant_pool [attribute name] is a CONSTANT Utf8 string
giving the name of the attribute. The field attribute length indicates
the length of the subsequent information in bytes. This length does not
include the six bytes of the attribute name and attribute length.

In the following text, whenever we allow attributes, we give the
name of the attributes that are currently understood. In the future, more
attributes will be added. Class file readers are expected to skip over

and ignore the information in any attribute they do not understand.

2.6.1 SourceFile

The "SourceFile" attribute has the following format:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-68 -

SourceFile_attribute {
u2 attribute_name_index;
u4 attribute length;
u2 sourcefile index;
}
attribute name_index
constant_pool [attribute_name_index] is the CONSTANT Utf8 string
“"SourceFile".
attribute length
The length of a SourceFile_attribute must be 2.
sourcefile_index
constant_pool [sourcefile_index] is a CONSTANT Utf8 string giving

the source file from which this class file was compiled.

2.6.2 ConstantValue
The "ConstantValue" attribute has the following format:
ConstantValue_attribute
u2 attribute name_index;
u4 attribute length;
u2 constantvalue_index;
}
attribute_name_ index
constant_pool [attribute name_index] is the CONSTANT Utf8 string
"ConstantValue".
attribute_length
The length of a ConstantValue_attribute must be 2.
constantvalue index
constant_pool [constantvalue_index] gives the constant value for
this field.
The constant pool entry must be of a type appropriate to the field,

as shown by the following table:

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

WO 97/27536 PCT/US97/01221

- 69 -
long CONSTANT Long
float CONSTANT Float
double CONSTANT Double
int, short, char, byte, boolean CONSTANT_ Integer

2.6.3 Code
The "Code" attribute has the following format:
Code_attribute {
u2 attribute_name_index;
ud4 attribute length;
u2 max_stack;
u2 max_locals;
u4 code_length;
ul code[code_length];
u2 exception_table_length;
{ u2 start_pc;
uz end pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes_count;
attribute info attributes [attribute count];
}
attribute name_index
constant_pool [attribute _name_index) is the CONSTANT Utf8 string
“"Code" .
attribute length
This field indicates the total length of the "Code" attribute,
excluding the initial six bytes.
max_stack
Maximum number of entries on the operand stack that will be used
during execution of this method. See the other chapters in this spec for
more information on the operand stack.
max locals
Number of local variable slots used by this method. See the other
chapters in this spec for more information on the local variables.

code_length

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221

-70 -

The number of bytes in the virtual machine code for this meﬂhod.
code

These are the actual bytes of the virtual machine code that
implement the method. When read into memory, if the first byte of code is
aligned onto a multiple-of-four boundary the tableswitch and tablelookup
opcode entries will be aligned; see their description for more information
on alignment requirements.
exception table length

The number of entries in the following exception table.
exception_table

Each entry in the exception table describes one exception handler in
the code.
start _pc, end pc

The two fieldsstart_pc and end_pc indicate the ranges in the code at
which the exception handler is active. The values of both fields are
offsets from the start of the code.start_pc is inclusive.end pc is
exclusive.
handler pc

This field indicates the starting address of the exception handler.
The value of the field is an offset from the start of the code.
catch type

If catch_type is nonzero, then constant_pool [catch_type] will be
the class of exceptions that this exception handler is designated to
catch. This exception handler should only be called if the thrown
exception is an instance of the given class.

If catch_type is zero, this exception handler should be called for
all exceptions.
attributes count

This field indicates the number of additional attributes about code.
The "Code" attribute can itself have attributes.
attributes

A "Code" attribute can have any number of optional attributes
associated with it. Each attribute has a name, and other additional
information. Currently, the only code attributes
defined are the "LineNumberTable" and "LocalVariableTable," both of which

contain debugging information.
2.6.4 Exceptions Table

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
271 -

This table is used by compilers which indicate which Exceptibns a
method is declared to throw:
Exceptions_attribute {
u2 attribute name_index;
u4 attribute length;
u2 number_ of exceptions;
u2 exception_index_table [number of ex-ceptions];
}
attribute name index
constant_pool [attribute name_index] will be the CONSTANT Utf8
string "Exceptions".
attribute_length
This field indicates the total length of the Exceptions_attribute,
excluding the initial six bytes.
number of exceptions
This field indicates the number of entries in the following
exception index table.
exception index table
Each value in this table is an index into the comstant pool. For
each table element (exception_index_table [i] != 0, where 0 <= i
<number_of_exceptions), then constant_pool [exception_index+table ([il]] is

a Exception that this class is declared to throw.

2.6.5 LineNumberTable

This attribute is used by debuggers and the exception handler
to determine which part of the virtual machine code corresponds to a given
location in the source. The LineNumberTable_attribute has the following
format:

LineNumberTable attribute {

u2 attribute_ name_index;

u4 attribute length;

u2 line_number_table_length;

{ u2 start_pc;

u2 line_number;

} line_number_table[line_ number table length] ;

}

attribute name_index

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
ST

constant_pool [attribute name_index] will be the CONSTANT_UEfB
string "LineNumberTable" .
attribute length

This field indicates the total length of the
LineNumberTable_attribute, excluding the initial six bytes.
line number_ table length

This field indicates the number of entries in the following line
number table.
line_number_ table

Each entry in the line number table indicates that the line number
in the source file changes at a given point in the code.
start_pc

This field indicates the place in the code at which the code for a
new line in the source begins. source_pc <<SHOULD THAT BEstart pc?>> is
an offset from the beginning of the code.
line number

The line number that begins at the given location in the file.

2.6.6 LocalVariableTable
This attribute is used by debuggers to determine the value of a
given local variable during the dynamic execution of a method. The format
of the LocalVariableTable_ attribute is as follows:
LocalvariableTable_ attribute
u2 attribute name_index;
u4 attribute_length;
u2 local_variable_table length;

{ w2 start_pc;

u2 length;
u2 name_index;
u2 signature_index;
u2 slot;
} local_variable_table([local_ variable_table length] ;

}

attribute name_index
constant_pool [attribute name_index] will be the CONSTANT Utfs
string "LocalVariableTable".

attribute_ length

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-73 -

This field indicates the total length of the
LineNumberTable_attribute, excluding the initial six bytes.
local_variable table_ length

This field indicates the number of entries in the following local
variable table.
local variable table

Each entry in the local variable table indicates a code range during
which a local variable has a value. It also indicates where on the stack
the value of that variable can be found.
start pc, length

The given local variable will have a value at the code between
start_pc andstart_pc + length. The two values are both offsets from the
beginning of the code.
name_index, signature_index

constant_pool [name_index] and constant_pool [signature_index] are

CONSTANT _Utf8 strings giving the name and signature of the local variable.

slot

The given variable will be the slot™ local variable in the method's
frame.
3. The Virtual Machine Instruction Set

3.1 Format for the Instructions

JAVA Virtual Machine instructions are represented in this document
by an entry of the following form.
instruction name

Short description of the instruction

Syntax:
opcode=number
operandl
operand2
Stack:, valuel, value2 » ..., value3

A longer description that explains the functions of the instruction
and indicates any exceptions that might be thrown during execution.
Each line in the syntax table represents a single B8-bit byte.
Operations of the JAVA Virtual Machine most often take their

operands from the stack and put their results back on the stack. As a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
_74 -

convention, the descriptions do not usually mention when the stack is the
source or destination of an operation, but will always mention when it is
not. For instance, instruction iload has the short description "Load
integer from local variable." Implicitly, the integer is loaded onto the
stack. Instruction iadd is described as "Integer add"; both its source
and destination are the stack.

Instructions that do not affect the control flow of a computation
may be assumed to always advance the virtual machine program counter to
the opcode of the following instruction. Only instructions that do affect
control flow will explicitly mention the effect they have on the program

counter.
3.2 Pushing Constants onto the Stack

bipush

Push one-byte signed integer

Syntax:
bipush=16
bytel
Stack: ...=> ..., value

bytel is interpreted as a signed 8-bitvalue. This value is expanded

to an integer and pushed onto the operand stack.

sipush

Push two-byte signed integer

Syntax:
sipush=17
bytel
byte2
Stack: ...=> ..., item

bytel and byte2 are assembled into a signed 16-bit value. This

value is expanded to an integer and pushed onto the operand stack.

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 97/27536 PCT/US97/01221
-75 -

ldcl

Push item from constant pool

Syntax:
ldecl=18
indexbytel
Stack: c..=> ..., item

indexbytel is used as an unsigned 8-bit index into the constant pool
of the current class. The item at that index is resolved and pushed onto
the stack. If a String is being pushed and there isn't enough memory to
allocate space for it then an OutOfMemoryError is thrown.

Note: A String push results in a reference to an object.

ldc2

Push item from constant pool

Syntax:
ldec2=19
indexbytel
indexbyte2
Stack: ...=> ..., item

indexbytel and indexbyte2 are used to construct an unsigned 16-bit
index into the constant pool of the current class. The item at that index
is resolved and pushed onto the stack. If a String is being pushed and
there isn't enough memory to allocate space for it then an
OutOfMemoryError is thrown.

Note: A String push results in a reference to an object.

ldc2w

Push long or double from constant pool

Syntax:
ldc2w=20
indexbytel
indexbyte2
Stack: ...=> ..., constant-wordl, constant-word2

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.76 -

indexbytel and indexbyte2 are used to construct an unsigned 16-bit
index into the constant pool of the current class. The two-word constant

that index is resolved and pushed onto the stack.

aconst_null
Push null object reference

Syntax:

aconst_null=1l

Stack: ...=> ...,null

Push the null object reference onto the stack.

iconst ml ‘
Push integer constant -1

Syntax:

iconst_ml=2

Stack: ce.=> .., 1

Push the integer -1 onto the stack.

iconst_<n>
Push integer constant

Syntax:

iconst_,<n>

Stack: ve.=> ..., <O>
Forms: iconst O = 3, iconst_1 = 4, iconst_2 = 5, icomnst_3 = 6,
iconst_4 = 7, iconst_5 = 8

Push the integer <n> onto the stack.

lconst_<1>
Push long integer constant

Syntax:

lconst <l1>

Stack: vee=> ..., <l>-wordl, <l>-word2

Forms: lconst_0 = 9, lconst_1 = 10

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

277 -

Push the long integer <l> onto the stack.

fconst <f£>

Push single float

Syntax:

fconst <£>

Stack: ce.=> ..., <f>
Forms: fconst_0 = 11, fconst_1 = 12, fconst 2 = 13

Push the single-precision floating point number <£f> onto the stack.

dconst_<d>

lload

Push double float
Syntax:

dconst_<d>

Stack: ...=> ..., <d>-wordl, <d>-word2
Forms: dconst_0 = 14, dconst_1 = 15

Push the double-precision floating point number «<d> onto the stack.

Loading Local Variables Onto the Stack

Load integer from local variable

Syntax:
iload=21
vindex
Stack: ...=> ..., value

The value of the local variable at vindex in the current JAVA frame

is pushed onto the operand stack.

iload_

<n>
Load integer from local variable

Syntax:

iload <n>

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.78 -

Stack: ...=> ..., value

Forms: iload_0 = 26, iload_1 = 27,iload 2 = 28, iload 3 = 29

The value of the local variable at <n> in the current JAVA frame is
pushed onto the operand stack.

This instruction is the same as iload with a vindex of <n>, except

that the operand <n> is implicit.

iload

Load long integer from local variable

Syntax:
iload = 22
vindex
Stack: ... => ..., value-wordl, value-work2

The value of the local variables at vindex and vindex+l in the

current JAVA frame is pushed onto the operand stack.

lload_<n>
Load long integer from local variable

Syntax:

iload <n>

Stack: ...=> ..., value-wordl, value-word2

Forms: lload 0 = 30, lload_ 1 = 31, lload 2 = 32, lload_3 = 33

The value of the local variables at <n> and <n>+1 in the current
JAVA frame is pushed onto the operand stack.

This instruction is the same as lload with a vindex of <n>, except
that the operand <n> is implicit.
fload

Load single float from local variable

Syntax:
fload = 23
vindex
Stack: ...=> ..., value

The value of the local variable at vindex in the current JAVA frame

is pushed onto the opera and stack.

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
279 -

fload <n>

Load single float from local variable

Syntax:

fload <n>

Stack: ...=> ...,value

Forms: fload_0 = 34, fload 1 = 35, fload 2 = 36, fload 3 = 37

The value of the local variable at <n> in the current JAVA frame is
pushed onto the operand stack.

This instruction is the same as fload with a vindex of <n>, except

that the operand <n> is implicit.

dload

Load double float from local wvariable

Syntax:
dload = 24
vindex
Stack: ...=> ..., value-wordl, value-word2

The value of the local variables at vindex and vindex+l in the

current JAVA frame is pushed onto the operand stack.

dload <n>
Load double float from local variable

Syntax:

dload_<n>

Stack: ...=> ..., value-wordl, value-word2

Forms: dload_0 = 38, dload_l1 = 39, dload 2 = 40, dload_3 = 41

The value of the local variables at <n> and <n>+1 in the current
JAVA frame is pushed onto the operand stack.

This instruction is the same as dload with a vindex of <n>, except
that the operand <n> is implicit.
aload

Load object reference from local variable

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

-80 -
Syntax:
aload = 25
vindex
Stack: ...=> ..., value

The value of the local variable at vindex in the current JAVA frame

is pushed onto the operand stack.

aload <n>
Load object reference from local variable

Syntax:

aload <n>

Stack: ...=> ..., value

Forms: aload 0 = 42,aload 1 = 43, aload_2 = 44, aload 3 = 45

The value of the local variable at <n> in the current JAVA frame is
pushed onto the operand stack.

This instruction is the same as aload with a vindex of <n>, except

that the operand <n> is implicit.

3.4 Storing Stack Values into Local Variables

istore

Store integer into local variable

Syntax:

istore = 54

vindex

Stack: ..., value =>
value must be an integer. Local variable vindex in the current JAVA

frame is set to value.

istore_<n>
Store integer into local variable

Syntax:

istore_c<n>

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

- 81 -

Stack: ..., value => ...
Forms: istore_0 = 59, istore_1 = 60, istore_2 = 61, istore 3 = 62
value must be an integer. Local variable <n> in the current JAVA

frame is set to wvalue.

This instruction is the same as istore with a vindex of <n>, except

that the operand <n> is implicit.

latore

Store long integer into local variable

Syntax:

lstore = 55

vindex

Stack: ..., value-wordl, value-word2 => ...
value must be a long integer. Local variables vindex+l in the

current JAVA frame are set to value.

lstore_<n>

Store long integer into local variable

Syntax:

lstore_<n>

Stack: ..., value-wordl, value-word2 =>
Forms: 1store_0 = 63, lstore_l = 64, lstore_2 = 65, lstore 3 = 66
value must be a long integer. Local variables <n> and <n>+l1 in the

current JAVA frame are set to value.

This instruction is the same as lstore with a vindex of <n>, except

that the operand <n> is implicit.

fstore

Store single float into local variable

Syntax:

fstore =56

vindex

Stack: ee., value => ...

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536

-82 -

value must be a single-precision floating point number. Loca

variable vindex in the current JAVA frame is set to value.

fatore <n>

Store single float into local variable

Syntax:

fstore <n>

Stack: ees, value => ...

Forms: fstore_0 = 67, fstore_l = 68, fstore_2 = 69, fstore_3

value must be a single-precision floating point number. Loca

variable <n> in the current JAVA frame is set to value.

This instruction is the same as fstore with a vindex of <n>,

that the operand <n> is implicit.

dstore

Store double float into local variable

Syntax:
dstore = 57
vindex
Stack: ..., value-wordl, value-word2 => ...

value must be a double-precision floating point number. Loca

PCT/US97/01221

1

= 70
1

except

1

variables vindex and vindex+l in the current JAVA frame are set to value.

dstore <n>

value must be a double-precision floating point number.

variab

that t

astore

Store double float into local variable

Syntax:

dstore_<n>

Stack: ..., value-wordl, value-word2 => ...

Forms: dstore 0 = 71, dstore_l1 = 72, dstore 2 = 73, dstore_3
les <n> and <n>+1 in the current JAVA frame are set to value.

This instruction is the same as dstore with a vindex of <n>,

he operand <n> is implicit.

SUBSTITUTE SHEET (RULE 26)

= 74

Local

except

10

15

20

25

30

WO 97/27536 PCT/US97/01221
83 -

Store object reference into local variable

Syntax:

astore = 58

vindex

Stack: ..., value => ...
value must be a return address or a reference to an object. Local

variable vindex in the current JAVA frame is set to value.

astore_<n>

Store object reference into local variable

Syntax:

astore_<n>

Stack: ..., value => ...

Forms: astore_0 = 75, astore 1 = 76, astore_ 2 = 77, astore_3 = 78

‘value must be a return address or a reference to an object. Local
variable <n> in the current JAVA frame is set to value.

This instruction is the same as astore with a vindex of <n>, except

that the operand <n> is implicit.

iine

Increment local variable by constant

Syntax:

iine = 132

vindex

const

Stack: no change

Local variable vindex in the current JAVA frame must contain an
integer. 1Its value is incremented by the value const, where const is
treated as a signed 8-bit quantity.

3.5 Wider index for Loading, Storing and Incrementing

wide

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-84 -
Wider index for accessing local variables in load, store and

increment.

Syntax:

wide = 196

vindex2

Stack: no change

This bytecode must precede one of the following bytecodes: iload,
lload, fload, dload, aload, istore, lstore, fstore, dstore, astore, iinc.
The vindex of the following bytecode and vindex2 from this bytecode are
assembled into an unsigned 16-bit index to a local variable in the current
JAVA frame. The following bytecode operates as normal except for the use

of this wider index.

3.6 Managing Arrays

newarray

Allocate new array

Syntax:

newarray = 188

atype

Stack: ..., size => result

size must be an integer. It represents the number of elements in
the new array.

atype is an internal code that indicates the type of array to

allocate. Possible values for atype are as follows:

T_BOOLEAN 4
T_CHAR 5
T_FLOAT 6
T_DOUBLE 7
T_BYTE 8
T SHORT 9
T_INT 10
T_LONG 11

A new array of atype, capable of holding size elements, is

allocated, and result is a reference to this new object. Allocation of an

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221

.85 -

array large enough to contain size items of atype is attempted. All
elements of the array are initialized to zero.

If size is less than zero, a NegativeArraySizeException is thrown.
If there is not enough memory to allocate the array, anOutOfMemoryError is

thrown.

anewarray

Allocate new array of references to objects

Syntax:
anewarray = 189
indexbytel
indexbyte2
Stack: ..., 8ize => result

size must be an integer. It represents the number of elements in
the new array.

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The item at that index is resolved.
The resulting entry must be a class.

A new array of the indicated class type and capable of holding size
elements is allocated, and result is a reference to this new object.
Allocation of an array large enough to contain size items of the given
class type is attempted. All elements of the array are initialized to
null.

If size is less than zero, a NegativeArraySizeException is thrown.
If there is not enough memory to allocate the array, an OutOfMemoryError
is thrown.

anewarray is used to create a single dimension of an array of object
references. For example, to create

new Thread[7]
the following code is used:
bipush 7
anewarray <Class "JAVA.lang.Thread"s>

anewarray can also be used to create the first dimension of a
multi-dimensional array. For example, the following array declaration:

new int[6] [}

is created with the following code:

bipush 6

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-86-
anewarray <Class "[I">

See CONSTANT Class in the "Class File Format" chapter for

information on array class names.

multianewarray

Allocate new multi-dimensional array

Syntax:
multianewarray = 197
indexbytel
indexbyte2
dimensions
Stack: ..., sizel size2...sizen => result

Each size must be an integer. Each represents the number of
elements in a dimension of the array.
indexbytel and indaxbyte2 are used to construct an index into the
constant pool of the current class. The item at that index is resolved.
The resulting entry must be an array class of one or more dimensions.
dimensions has the following aspects:
It must be an integer ? 1.
It represents the number of dimensions being .created.
It must be £ the number of dimensions of the array class.
It represents the number of elements that are popped off
the stack. All must be integers greater than or equal to
zero. These are used as the sizes of the dimension. For
example, to create
new int (6] [3] []
the following code is used:
bipush 6
bipush 3
multianewarray <Class "[[[I"> 2
If any of the size arguments on the stack is less than zero, a
NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryError is thrown.
The result is a reference to the new array object.
Note: It is more efficient to use newarray or anewarray when

creating a single dimension.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.87 -

See CONSTANT_ Class in the "Class File Format" chapter for

information on array class names.

arraylength
Get length of array

Syntax:

arraylength = 190

Stack: ..., objectref => ..., length
objectref must be a reference to an array object. The length of the
array is determined and replaces objectref on the top of the stack.

If the objectref is null, a NullPointerException is thrown.

iaload
Load integer from array

Syntax:

iaload = 46

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of integers.index must be
an integer. The integer value at position number index in the array is
retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

laload

Load long integer from array

Syntax:

lacad = 47
Stack: ..., arrayref, index => ..., value-wordl, value-word2
arrayref must be a reference to an array of long integers. index

must be an integer. The long integer value at position number index in

the array is retrieved and pushed onto the top of the stack.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.88 -

If arrayref is null a NullPointerException is thrown. If index is

not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

faload

Load single float from array

Syntax:

faload = 48

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of single-precision
floating point numbers. index must be an integer. The single-precision
floating point number value at position number index in the array is
retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

daload
Load double float from array

Syntax:

daload = 49

Stack: ..., arrayref, index => ..., value-wordl, value-word2
arrayref must be a reference to an array of double-precision
floating point numbers. index must be an integer. The double-precision

floating point number value at position number index in the array is

retrieved and pushed onto the top of the stack.
If arrayref is null a NullPointerException is thrown. If index is

not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

aaload

Load object reference from array

Syntax:

aaload = 50

SUBSTITUTE SHEET (RULE 26)

10

25

35

WO 97/27536 PCT/US97/01221
.89 -

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of references to objects.
index must be an integer. The object reference at position number index
in the array is retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

baload
Load signed byte from array.

Syntax:

baload = 51

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of signed bytes. index
must be an integer. The signed byte value at position number index in the
array is retrieved, expanded to an integer, and pushed onto the top of the
stack.

If arrayref is null a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

caload
Load character from array

Syntax:

caload = 52

Stack: ..., arrayref, index => ...,value

arrayref must be a reference to an array of characters. index must
be an integer. The character value at position number index in the array
is retrieved, zero-extended to an integer, and pushed onto the top of the
stack.

If arrayref is null a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

saload

Load short from array

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-90 -
Syntax:
saload = 53
Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of short integers. index
must be an integer. The ;signed short integer value at position number
index in the array is retrieved, expanded to an integer, and pushed
onto the top of the stack.

If arrayref is null, a NullPointerException is thrown. If index is

not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

iastore
Store into integer array

Syntax:

iastore = 79

Stack: ..., arrayref, index, value => ...

arrayref must be a reference to an array of integers, index must be
an integer, and value an integer. The integer value is stored at position
index in the array.

If arrayref is null, a NullPointerException is thrown. If index is

not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

lastore
Store into long integer array

Syntax:

lastore = 80

Stack: ..., arrayref, index, value-wordl, value-word2 => ...
arrayref must be a reference to an array of long integers, index
must be an integer, and value a long
integer. The long integer value is stored at position index in the array.
If arrayref is null, a NullPointerException is thrown. If index is

not within the bounds of the array, an ArrayIndexOutOfBoundsException is

thrown.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-91 -
fastore

Store into single float array

Syntax:

fastore = 81

Stack: ..., arrayref, index, value => ...

arrayref must be an array of single-precision floating point
numbers, index must be an integer, and value a single-precision floating
point number. The single float value is stored at position index in the
array.

If arrayref is null, a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

dastore
Store into double float array

Syntax:

dastore = 82

Stack: ..., arrayref, index, value-wordl, value-word2=> ...

arrayref must be a reference to an array of double-precision
floating point numbers, index must be an integer, and value a
double-precision floating point number. The double float value is stored
at position index in the array.

If arrayref is null, a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

aastore
Store into object reference array

Syntax:

aagstore = 83

Stack: ..., arrayref, index, value => ...
arrayref must be a reference to an array of references to objects,
index must be an integer, and value a reference to an object. The object

reference value is stored at position index in the array.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
R

If arrayref is null, a NullPointerException is thrown. If ihdex is
not within the bounds of the array, an ArrayIndexOutOfBoundsException is
thrown.

The actual type of value must be conformable with the actual type of
the elements of the array. For example, it is legal to store an instance
of class Thread in an array of class Object, but not vice versa. Aan
ArrayStoreException is thrown if an attempt is made to store an

incompatible object reference.

bastore
Store into signed byte array

Syntax:

bastore = 84

Stack: ..., arrayref, index, value => ...

arrayref must be a reference to an array of signed bytes, index must
be an integer, and value an integer. The integer value is stored at
position index in the array. If value is too large to be a signed byte,
it is truncated.

If arrayref is null, a NullPointerException is thrown. If index is
not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.

castore
Store into character array

Syntax:

castore = 85

Stack: ..., arrayref, index, value => ...

arrayref must be an array of characters, index must be an integer,
and value an integer. The integer value is stored at position index in
the array. If value is too large to be a character, it is truncated.

If arrayref is null, a NullPointerException is thrown. If index is
not within the bounds of [the

array an ArrayIndexOutOfBoundsException is thrown.

sastore

Store into short array

SUBSTITUTE SHEET (RULE 26)

WO 97/27536

5 value an integer.

array.

Syntax:

Stack:

-93.
sastore = 86
..., array, index, value => ...

PCT/US97/01221

arrayref must be an array of shorts, index must be an integer, and

If value is too large to be an short,

The integer value is stored at position index in the

it is truncated.

If arrayref is null, a NullPointerException is thrown. If index is

not within the bounds of the array an ArrayIndexOutOfBoundsException is

thrown.
10
3.7 Stack Instructions
nop
Do nothing
15 Syntax:
nop = 0
Stack: no change
Do nothing.
20 pop
Pop top stack word
Syntax:
pop = 87
Stack: ..., any => ...
25 Pop the top word from the stack.
pop2
- Pop top two stack words
Syntax:
pop2 = 89
30
Stack: ..., any2, anyl => ...
Pop the top two words from the stack.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

.94 -
dup
Dupl:-::ze top stack word
Syntz:
dup = 89
Stack ..., any => ..., any,any
Dupl::z:ze the top word on the stack.
dup2
Dupl:::z:te top two stack words
Syntea:
dup2 = 92
Staci ..., any2,anyl => ..., any2, anyl,any2, anyl
Dupl-:-z:ze the top two words on the stack.
dup_x1
Dupl::=te top stack word and put two down
Syntea:
dup x1 = 90
Stactk ..., any2, anyl =>,.., anyl, any2, anyl
Dupl-.:zze the top word on the stack and insert the copy two words
down in the =:ack.
dup2 x1
Dupl:.:z=ze top two stack words and put two down
Syntea:
dup x1 = 93
Staci ..., any3, any2, anyl => ..., any2, anyl, any3, any2, anyl
Dupl::z:ze the top two words on the stack and insert the copies two
words down - the stack.
dup_x2
Dupl-_:=:ze top stack word and put three down

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-95 -
syntax:
dup x2 = 91
Stack: ..., any3, any2, anyl => ..., anyl, any3, any2, anyl

Duplicate the top word on the

down in the stack.

dup2 x2

Duplicate top two stack words

stack and insert the copy three words

and put three down

Syntax:
dup2_ x2 = 94
Stack: ..., any4, any3, any2, anyl => ..., any2, anyl, any4, any3,
any2, anyl
Duplicate the top two words on the stack and insert the copies three
words down in the stack.
swap
Swap top two stack words
Syntax:
swap = 95
Stack: ..., any2, anyl => ..., any2, anyl
Swap the top two elements on the stack.
3.8 Arithmetic Instructions
iadd
Integer add
Syntax:
iadd = 96
Stack: ..., valuel, value2 => ..., result

valuel and value 2 must be integers.

The values are added and are

replaced on the stack by their integer sum.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-906 -
ladd

Long integer add

Syntax:

ladd = 97

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2
valuel and value 2 must be long integers. The values are added and

are replaced on the stack by their long integer sum.

fadd
Single floats add

Syntax:

fadd = 98

Stack: ..., valuel, value2 => ..., result
valuel and value 2 must be single-precision floating point numbers.
The values are added and are replaced on the stack by their

single-precision floating point sum.

dadd
Double floats add

Syntax:

dadd = 99

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
a> ..., result-wordl, result-word2

valuel and value 2 must be double-precision floating point numbers.
The values are added and are replaced on the stack by their

double-precision floating point sum.

isub
Integer subtract
Syntax:

isub = 100

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-97 -

Stack: «e., valuel, value2 => ..., result
valuel and value 2 must be integers. wvalue2 is subtracted from
valuel, and both values are replaced on

the stack by their integer difference.

lsub
Long integer subtract

Syntax:

lsub = 101

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2

valuel and value 2 must be long integers. value2 is subtracted from
valuel, and both values are replaced

on the stack by their long integer difference.

fsub
Single float subtract

Syntax:

fsub = 102

Stack: ..., valuel, value2 => ..., result
valuel and value 2 must be single-precision floating point numbers.
value2 is subtracted from valuel, and both values are replaced on the

stack by their single-precision floating point difference.

dsub
Double float subtract
Syntax:

dsub = 103

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2

=> ..., result-wordl, result-word2
valuel and value 2 must be double-precision floating point numbers.
value2 is subtracted from valuel, and both values are replaced on the

stack by their double-precision floating point difference.

imul

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221

.98 -
Integer multiply
Syntax:
imul = 104
Stack: ««+s valuel, value2 => ..., result

valuel and value 2 must be integers. Both values are replaced on

the stack by their integer product.

lmul
Long integer multiply

Syntax:

imul = 105

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2

valuel and value 2 must be long integers. Both values are replaced
on the stack by their long integer

product.

fmul
Single float multiply
Syntax:

fmul = 106

Stack: ..., valuel, value2 => ..., result
valuel and value 2 must be single-precision floating point numbers.
Both values are replaced on the stack by their single-precision floating

point product.

dmul
Double float multiply
Syntax:

dmul = 107

Stack: ee., valuel-wordl, valuel-word2, value2-wordl, value2-word2

=> ..., result-wordl, result-word2

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
.99 .

valuel and value 2 must be double-precision floating point numbers .
Both values are replaced on the stack by their double-precision floating

point product.

idiv
Integer divide

Syntax:

idiv = 108

Stack: ..., valuel, value2 => ..., result

valuel and value 2 must be integers. valuel is divided by wvalue2,
and both values are replaced on the stack by their integer quotient.

The result is truncated to the nearest integer that is between it
and 0. An attempt to divide by zero results in a "/ by zero"

ArithmeticException being thrown.

ldiv
Long integer divide

Syntax:

ldiv = 109

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2

valuel and value 2 must be long integers. valuel is divided by
value2, and both values are replaced on the stack by their long integer
quotient.

The result is truncated to the nearest integer that is between it
and 0. An attempt to divide by zero results in a "/ by zero"

ArithmeticException being thrown.

fdiv
Single float divide
Syntax:

fdiv = 110

Stack: ..., valuel, value2 => ..., result

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-100 -

valuel and value 2 must be single-precision floating point nﬁmbers.
valuel is divided by value2, and both values are replaced on the stack by
their single-precision floating point quotient.

Divide by zero results in the quotient being NaN.

Double float divide

Syntax:

ddiv = 111

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2

valuel and value 2 must be double-precision floating point numbers.
valuel is divided by value2, and both values are replaced on the stack by
their double-precision floating point quotient.

Divide by zero results in the quotient being NaN.

irem
Integer remainder

Syntax:

irem = 112

Stack: ..., valuel, value2 => ..., result

valuel and value 2 must both be integers. valuel is divided by
value2, and both values are replaced on the stack by their integer
remainder.

An attempt to divide by zero results in a "/ by zero"

ArithmeticException being thrown.

lrem
Long integer remainder

Syntax:

lrem = 113

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2

=> ..., result-wordl, result-word2

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-101 -

valuel and value 2 must both be long integers. valuel is divided by
value2, and both values are replaced on the stack by their long integer
remainder.

An attempt to divide by zero results in a "/ by zero"

ArithmeticException being thrown.

frem
Single float remainder

Syntax:

frem = 114

Stack: ..., valuel, value2 => ..., result

valuel and value 2 must both be single-precision floating point
numbers. valuel is divided by value2, and the quotient is truncated to an
integer, and then multiplied by value2. The product is subtracted from
valuel. The result, as a single-precision floating point number, replaces
both values on the stack.
result = valuel - (integral_part(valuel/value2) *value2), where
integral_part() rounds to the nearest integer, with a tie going to the
even number.

An attempt to divide by zero results in NaN:

drem
Double float remainder

Syntax:

drem = 115

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2

valuel and value 2 must both be double-precision floating point
numbers. valuel is divided by value2, and the quotient is truncated to an
integer, and then multiplied by value2. The product is subtracted from
valuel. The result, as a double-precision floating point number, replaces
both values on the stack.
result = valuel - (integral_part(valuel/value2) * value2), where
integral_part() rounds to the nearest integer, with a tie going to the
even number.

An attempt to divide by zero results in NaN.

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

-102 -
ineg
Integer negate
Syntax:
ineg = 116
5
Stack: ..., value => ..., result
value must be an integer. It is replaced on the stack by its
arithmetic negation.
10 lneg

Long integer negate

Syntax:

lneg = 117

Stack: ..., value-wordl, value-word2 => ..., result-wordl,

15 result-word2

value must be a long integer. It is replaced on the stack by its

arithmetic negation.

fneg
20 Single float negate

Syntax:

fneg = 118

Stack: ee., value=> ..., result

value must be a single-precision floating point number. It is
25 replaced on the stack by its arithmetic

negation.

dneg
Double float negate

30 Syntax:

dneg = 119

Stack: .., value-wordl, value-word2 => ..., result-wordl,

result-word2

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221

-103 -

value must be a double-precision floating point number. It is

replaced on the stack by its arithmetic negation.

3.9

ishl

Logical Instructions

Integer shift left

Syntax:

ishl = 120

Stack: «+.,valuel, value2 => ..., result

valuel and value 2 must be integers. valuel is shifted left by the

amount indicated by the low five bits of value2. The integer result

replaces both values on the stack.

ishr

Integer arithmetic shift right

Syntax:

ishr = 122

Stack: ..., valuel, value2 => ..., result

valuel and value 2 must be integers. valuel is shifted right

arithmetically (with sign extension) by the amount indicated by the low

five bits of value2. The integer result replaces both values on the

stack.

iushr

Integer logical shift right
Syntax:

iushr = 124

Stack: ..., valuel, value2 => ..., result

valuel and value 2 must be integers. wvaluel is shifted right

logically (with no sign extension) by the amount indicated by the low five

bits of value2. The integer result replaces both values on the stack.

1lshl

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-104 -
Long integer shift left
Syntax:
1shl = 121
Stack: ..., valuel-wordl, valuel-word2, value2 => ...,

result-wordl, result-word2
valuel must be a long integer and value 2 must be an integer.
valuel is shifted left by the amount indicated by the low six bits of

value2. The long integer result replaces both values on the stack.

1shr
Long integer arithmetic shift right

Syntax:

1lshr = 123

Stack: esess valuel-wordl, valuel-word2, value2 => ...,
result-wordl, result-word2

valuel must be a long integer and value 2 must be an integer.
valuel is shifted right arithmetically (with sign extension) by the amount
indicated by the low six bits of wvalue2. The long integer result replaces

both values on the stack.

lushr
Long integer logical shift right
Syntax:

lushr = 125

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2

valuel must be a long integer and value 2 must be an integer.
valuel is shifted right logically (with no sign extension) by the amount
indicated by the low six bits of value2. The long integer result replaces

both values on the stack.
iand

Integer boolean AND
Syntax:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-105 -
iand = 126
Stack: «.., valuel, value2 => ..., result

valuel and value 2 must both be integers. They are replaced on the stack

by their bitwise logical and (conjunction).

land
Long integer boolean AND

Syntax:

land = 127

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2
valuel and value 2 must both be long integers. They are replaced on

the stack by their bitwise logical and (conjunction).

ior
Integer boolean OR

Syntax:

ior = 128

Stack: ..., valuel, value2 => ..., result
valuel and value 2 must both be integers. They are replaced on the

stack by their bitwise logical or (disjunction).

lox
Long integer boolean OR

Syntax:

lor = 129

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-word2
=> ..., result-wordl, result-word2
valuel and value 2 must both be long integers. They are replaced on

the stack by their bitwise logical or (disjunction).

ixor

Integer boolean XOR

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

- 106 -

Syntax:

ixor = 130

Stack: «e., valuel, value2 => ..., result

valuel and value 2 must both be integers. They are replaced on the

stack by their bitwise exclusive or (exclusive disjunction) .

1xor
Long integer boolean XOR

Syntax:

lxor = 131

Stack: ee., valuel-wordl, valuel-word2, value2-wordl, value2-word2

=> ..., result-wordl, result-word2

valuel and value 2 must both be long integers. They are replaced on

the stack by their bitwise exclusive or (exclusive disjunction).

3.10 Conversion Operations

i21

Integer to long integer conversion

Syntax:

121 = 133

Stack: ee., value => ..., result-wordl, result-word2

value must be an integer. It is converted to a long integer.

result replaces value on the stack.

i2f
Integer to single float

Syntax:

i2f = 134

Stack: ee., value => ..., result

The

value must be an integer. It is converted to a single-precision

floating point number. The result replaces value on the stack.

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

-107 -
i2d
Integer to double float
Syntax:
i2d = 135
5 Stack: ..., value => ..., result-wordl, result-word2

value must be an integer. It is converted to a double-precision

floating point number. The result replaces value on the stack.

123
10 Long integer to integer

Syntax:

12i = 136

Stack: ..., value-wordl, value-word2 => ..., result
value must be a long integer. It is converted to an integer by

15 taking the low-order 32 bits. The result replaces value on the stack.

12f

Long integer to single float

Syntax:
12f = 137
20
Stack: ..., value-wordl, value-word2 => ..., result
value must be a long integer. It is converted to a single-precision
floating point number. The result replaces value on the stack.
25 124

Long integer to double float
Syntax:

124 = 138

Stack: «ee, value-wordl, value-word2 => ..., result-wordl,

30 result-word2

value must be a long integer. It is converted to a double-precision

floéting point number. The result replaces value on the stack.

SUBSTITUTE SHEET (RULE 26)

20

25

30

WO 97/27536

f2i

PCT/US97/01221
-108 -
Single float to integer
Syntax:
£2i = 139
Stack: ..., value => ..., result

value must be a single-precision floating point number. It is

converted to an integer. The result replaces value on the stack.

f21

Single float to long integer

Syntax:

£21 = 140

Stack: e+«s, value => ..., result-wordl, result-word2

value must be a single-precision floating point number. It is

converted to a long integer. The result replaces value on the stack.

fad

Single float to double float

Syntax:

£2d = 141

Stack: ..., value => ..., result-wordl, result-word2

value must be a single-precision floating pcint number. It is

converted to a double-precision floating point number. The result

replaces value on the stack.

d2i

Double float to integer

Syntax:

2di = 142

Stack: ..., value-wordl, value-word2 => ..., result

value must be a double-precision floating point number. It is

converted to an integer. The result

replaces value on the stack.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221

-109 -
d21
Double float to long integer
Syntax:
d21 = 143
Stack: ..., value-wordl, value-word2 => ..., result-wordl,
result-word2

value must be a double-precision floating point number. It is

converted to a long integer. The result replaces value on the stack.

d2f
Double float to single float
Syntax:
2df = 144
Stack: ..., value-wordl, value-word2 => ..., result
value must be a double-precision floating point number. It is
converted to a single-precision floating point number. If overflow

occurs, the result must be infinity with the same sign as value. The

result replaces value on the stack.

int2byte
Integer to signed byte
Syntax:

int2byte = 157

Stack: ..., value => ..., result
value must be an integer. It is truncated to a signed 8-bit result,

then sign extended to an integer. The result replaces value on the stack.

int2char
Integer to char

Syntax:

int2char = 146

Stack: ce., Vvalue => ..., result

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-110 -
value must be an integer. It is truncated to an unsigned 16;bit

result, then zero extended to an integer. The result replaces value on

the stack.

5 int2short

Integer to short

Syntax:
int2short = 147
Stack: ..., value => ..., result
10 value must be an integer. It is truncated to a signed 16-bit

result, then sign extended to an integer. The result replaces value on

the stack.

3.11 Control Transfer Instructions

15
ifeq
Branch if equal to 0
Syntax:
ifeq = 153
branchbytel
branchbyte2
20 Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is
zero, branchbytel and branchbyte2 are used to construct a signed 16-bit
offset. Execution proceeds at that offset from the address of this
instruction. Otherwise execution proceeds at the instruction following

25 the ifeq.

ifnull
Branch if null

Syntax:

ifnull = 198

branchbytel

branchbyte2

30

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-111 -

Stack: ..., value => ...

value must be a reference to an object. It is popped from the
stack. If value is null, branchbytel and branchbyte2 are used to
construct a signed 16-bit offset. Execution proceeds at that offset from
the address of this instruction. Otherwise execution proceeds at the

instruction following the ifnull.

iflt
Branch if less than 0

Syntax:

iflt = 155

branchbytel

branchbyte2

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is
léss than zero, branchbytel and branchbyte2 are used to construct a signed
16-bit offset. Execution proceeds at that offset from the address of this
instruction. Otherwise execution proceeds at the instruction following

the iflt.

ifle
Branch if less than or equal to 0

Syntax:

ifle=158

branchbytel

branchbyte2

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is
less than or equal to zero, branchbytel and branchbyte2 are used to
construct a signed 16-bit offset. Execution proceeds at that offset from
the address of this instruction. Otherwise execution proceeds at the

instruction following the ifle.

ifne
Branch if not equal to 0
Syntax:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 97/27536 PCT/US97/01221
-112 -

ifne=154

branchbytel

branchbyte2

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is
not equal to zero, branchbytel and branchbyte2 are used to construct a
signed 16-bit offset. Execution proceeds at that offset from the address
of this instruction. Otherwise execution proceeds at the instruction

following the ifne.

ifnonnull

Branch if not null

Syntax:

ifnonnull=199

branchbytel

branchbyte2

Stack: ..., value a> ...

value must be a reference to an object. It is popped from the
stack. If value is notnull, branchbytel and branchbyte2 are used to
construct a signed 16-bit offset. Execution proceeds at that offset from
the address of this instruction. Otherwise execution proceeds at the

instruction following the ifnonnull.

ifgt
Branch if greater than 0

Syntax:

1€£t=157

branchbytel

branchbyte2

Stack: ..., value => ...
value must be an integer. It is popped from the stack. If value is
greater than zero, branchbytel and branchbyte2 are used to construct a

signed 16-bit offset. Execution proceeds at that offset from the address

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-113 -

of this instruction. Otherwise execution proceeds at the instruction

following the ifgt.

ifge
5 Branch if greater than or equal to 0
Syntax:
ifge=156
branchbytel
branchbyte2
Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is
10 greater than or equal to zero, branchbytel and branchbyte2 are used to
construct a signed 16-bit offset. Execution proceeds at that offset from
the address of this instruction. Otherwise execution proceeds at the

instruction following instruction ifge.

15 if icmpeq

Branch if integers equal

Syntax:
if icmpeq=159
branchbytel
branchbyte2
Stack: ..., valuel, value2 => ...
20 valuel and value2 must be integers. They are both popped from the

stack. If valuel is equal to value2, branchbytel and branchbyte2 are used
to construct a signed 16-bit offset. Execution proceeds at that offset
from the address of this instruction. Otherwise execution proceeds at the
instruction following instruction if_ icmpegq.
25
if icmpne
Branch if integers not equal

Syntax:

if_icmpne=160

branchbytel

branchbyte2

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
114 -

Stack: ..., valuel, value2 => ...

valuel and value2 must be integers. They are both popped from the
stack. If valuel is not egual to value2, branchbytel and branchbyte2 are
used to construct a signed 16-bit offset. Execution proceeds at that
offset from the address of this instruction. Otherwise execution proceeds
at the instruction

following instruction if icmpne.

if icmplt

Branch if integer less than

Syntax:
if icmplt=161
branchbytel
branchbyte2
Stack: e+, valuel, value2 => ...

valuel and value2 must be integers. They are both popped from the
stack. If valuel is less than value2, branchbytel and branchbyte2 are
used to construct a signed 16-bit offset. Execution proceeds at that
offset from the address of this instruction. Otherwise execution proceeds

at the instruction following instruction if icmplt.

if icmpgt

Branch if integer greater than

Syntax:
if icmpgt=163
branchbytel
branchbyte2
Stack: ..., valuel, value2 => ...

valuel and value2 must be integers. They are both popped from the
stack. If valuel is greater than value2, branchbytel and branchbyte2 are
used to construct a signed 16-bit offset. Execution proceeds at that
offset from the address of this instruction. Otherwise execution proceeds

at the instruction following instruction if_ icmpgt.

if icmple
Branch if integer less than or equal to

Syntax:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
- 115 -

if icmple=164

branchbytel

branchbyte2

Stack: ..., valuel, value2 => ...

valuel and value2 must be integers. They are both popped from the
stack. If valuel is less than or equal to value2, branchbytel and
branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the address of this instruction. Otherwise

execution proceeds at the instruction following instruction if _icmple.

if icmpge
Branch if integer greater than or equal to

Syntax:

if icmpge=162

branchbytel

branchbyte2

Stack: ..., valuel, value2 => ...

valuel and value2 must be integers. They are both popped from the
stack. 1If valuel is greater than or equal to value2, branchbytel and
branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the address of this instruction. Otherwise

execution proceeds at the instruction following instruction if icmpge.

lemp
Long integer compare
Syntax:
lcmp=148
Stack: ..., valuel-wordl, valuel-word2,value2-wordl, value2-wordl
=> ..., result

valuel and value2 must be long integers. They are both popped from
the stack and compared. If valuel is greater than value2, the integer
valuel is pushed onto the stack. If valuel is equal to value2, the value
0 is pushed onto the stack. If valuel is less than value2, the value -1

is pushed onto the stack.
fempl

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-116 -

Single float compare (1 on NaN)

Syntax:

fcmpl=149

Stack: ..., valuel, value2=> ...,result

valuel and value2 must be single-precision floating point numbers.
They are both popped from the stack and compared. If valuel is greater
than value2, the integer value 1 is pushed onto the stack. If valuel is
equal to value2, the value 0 is pushed onto the stack. If valuel is less
than value2, the value -1 is pushed onto the stack.

If either valuel or value2 is NaN, the value -1 is pushed onto the

stack.
fcmpg
Single float compare (1 on NaN)
Syntax:
fcmpg=150
Stack: «..,valuel, value2=> ..., result

valuel and value2 must be single-precision floating point numbers.
They are both popped from the stack and compared. If wvaluel is greater
than value2, the integer value 1 is pushed onto the stack. If
valuel is equal to value2, the value 0 is pushed onto the stack. If
valuel is less than value2, the value -1 is pushed onto the stack.

If either valuel or value2 is NaN, the value 1 is pushed onto the

stack.

dempl
Double float compare (-1 on NaN)

Syntax:

dempl-151

Stack: «ee., valuel-wordl, valuel-word2, value2-wordl, value2-wordl=> ...,
result

valuel and value2 must be double-precision floating point numbers.
They are both popped from the stack and compared. If valuel is greater
than value2, the integer value 1 is pushed onto the stack. If valuel is
equal to value2, the value 0 is pushed onto the stack. If valuel is less

than value2, the value 1 is pushed onto the stack.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
S117-

If either valuel or value2 is NaN, the value 1 is pushed onto the

stack.

dcmpg
Double float compare (1 on NaN)

Syntax:

dcmpg=152

Stack: ..., valuel-wordl, valuel-word2, value2-wordl, value2-wordl
=> ..., result

valuel and value2 must be double-precision floating point numbers.
They are both popped from the stack and compared. If valuel is greater
than value2, the integer value 1 is pushed onto the stack. If valuel is
equal to value2, the value 0 is pushed onto the stack. If valuel is less
than value2, the value -1 is pushed onto the stack.

If either valuel or value2 is NaN, the value 1 is pushed onto the

stack.

if acmpegq

Branch if object references are equal

Syntax:
if acmpeqg=165
branchbytel
branchbyte2
Stack: ...,valuel,value2 =>

valuel and value2 must be references to objects. They are both
ropped from the stack. If the objects referenced are not the same,
branchbytel and branchbyte2 are used to construct a signed 16-bit offset.

Execution proceeds at that offset from the Address of this
instruction. Otherwise execution proceeds at the instruction following

the if_ acmpegq.

if acmpne
Branch if object references not equal

Syntax:

if acmpne=166

branchbytel

branchbyte2

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

WO 97/27536 PCT/US97/01221

-118 -

Stack: ..., valuel, value2 =>
valuel and value2 must be references to objects. They are both
popped from the stack. If the objects referenced are not the same,
branchbytel and branchbyte2 are used to construct a signed 16-bit offset.
Execution proceeds at that offset from the address of this
instruction. Otherwise execution proceeds at

the instruction following instruction if acmpne.

goto
Branch always

Syntax:

goto=167

branchbytel

branchbyte2

Stack: no change
branchbytel and branchbyte2 are used to construct a signed 16-bit
offset. Execution proceeds at that offset from the address of this

instruction.

goto_w
Branch always (wide index)

Syntax:

goto_w=200

branchbytel

branchbyte2

branchbyte3

branchbyte4

Stack: no change

branchbytel, branchbyte2, branchbyte3, and branchbyte4 are used to

construct a signed 32-bit offset.

Execution proceeds at that offset from the address of this

instruction.

jsr
Jump subroutine

Syntax:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 97/27536 PCT/US97/01221

-119-

jsr=168

branchbytel

branchbyte2

Stack: ...=> ..., return-address

branchbytel and branchbyte2 are used to construct a signed 16-bit
offset. The address of the instruction immediately following the jsr is
pushed onto the stack. Execution proceeds at the offset from the address

of this instruction.

jsr_w
Jump subroutine (wide index)

Syntax:

jsr_w=201

branchbytel

branchbyte2

branchbyte3

branchbyte4

Stack: ...=> ..., return-address

branchbytel, branchbyte2, branchbyte3, and branchbyte4 are used to
construct a signed 32-bit offset. The address of the instruction
immediately following the jsr_w is pushed onto the stack. Execution

proceeds at the offset from the address of this instruction.

ret
Return from subroutine

Syntax:

ret=169

vindex

Stack: no change

Local variable vindex in the current JAVA frame must contain a
return address. The contents of the local variable are written into the
pc.

Note that jsr'pushes the address onto the stack, and ret gets it out

of a local variable. This asymmetry is intentional.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221

-120 -

ret_w
Return from subroutine (wide index)

Syntax:

ret w=209

vindexbytel

vindexbyte2

Stack: no change

vindexbytel and vindexbyte2 are assembled into an unsigned 16-bit
index to a local variable in the current JAVA frame. That local variable
must contain a return address. The contents of the local variable

are written into the pc. See the ret instruction for more information.

3.12 Function Return

ireturn

Return integer from function

Syntax:

ireturn=172

Stack: ..., value => [empty]
value must be an integer. The value value is pushed onto the stack
of the previous execution environment. Any other values on the operand

stack are discarded. The interpreter then returns control to its caller.

lreturn
Return long integer from function

Syntax:

lreturn=173

Stack: ..., value-wordl, value-word2 => [empty]

value must be a long integer. The value value is pushed onto the
stack of the previous execution environment. RARny other values on the
operand stack are discarded. The interpreter then returns control to its

caller.

freturn
Return single float from function

Syntax:

freturn=174

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-121 -

Stack: ..., value=> [empty]

value must be a single-precision floating point number. The value
value is pushed onto the stack of the previous execution environment. Any
other values on the operand stack are discarded. The interpreter

then returns control to its caller.

dreturn
Return double float from function

Syntax:

dreturn=175

Stack: ..., value-wordl, value-word2 => [empty]

value must be a double-precision floating point number. The value
value is pushed onto the stack of the previous execution environment. Any
other values on the operand stack are discarded. The interpreter

then returns contreol to its caller.

aretura
Return object reference from function

Syntax:

areturn=176

Stack: ..., value => [empty]

value must be a reference to an object. The value value is pushed
onto the stack of the previous execution environment. Any other values on
the operand stack are discarded. The interpreter then returns control to

its caller.

return
Return (void) from procedure

Syntax:

return=177

Stack: ...a> [empty]
All values on the operand stack are discarded. The interpreter then

returns control to its caller.

breakpoint

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-122 -

Stop and pass control to breakpoint handler

Syntax:

breakpoint=202

Stack: no change

S
3.13 Table Jumping
tableswitch
Access jump table by index and jump
10 Syntax:

tableswitch=170

...0-3 byte pad...

default-offsetl

default-offset2

default-offset3

default-offset4

lowl

low2

low3

low4

highl

high2

high3

high4

«..jump offsets...

Stack: ..., indexe> ...

tableswitch is a variable length instruction. Immediately after the
tableswitch opcode, between zero and three 0's are inserted as padding so
15 that the next byte begins at an address that is a multiple of four. After
the padding follow a series of signed 4-byte quantities: default-offset,
low, high, and then high-low+1 further signed 4-byte offsets. The
high-low+1l signed 4-byte offsets are treated as a 0-based jump table.
The index must be an integer. If index is less than low or index is
20 gréater than high, then default-offset is added to the address of this

instruction. Otherwise, low is subtracted from index, and the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 97/27536 PCT/US97/01221
-123 -

index-low'th element of the jump table is extracted, and added to the

address of this instruction.

lookupswitch

Access jump table by key match and jump

Syntax:

lookupswitch=171

...0-3 byte pad..

default-offsetl

default-offaset2

default-offset3

default-offset4

npairsl

npairs2

npairs3

npairs4

...match-offset pairs...

Stack: ce., key=> ...

lookupswitch is a variable length instruction. Immediately after
the lookupswitch opcode, between zerc and three 0's are inserted as
padding so that the next byte begins at an address that is a multiple of
four.

Immediately after the padding are a series of pairs of signed 4-byte
quantities. The first pair is special. The first item of that pair is
the default offset, and the second item of that pair gives the number of
pairs that follow. Each subsequent pair consists of a match and an
offset.

The key must be an integer. The integer key on the stack is
compared against each of the matches. 1If it is equal to one of them, the
offset is added to the address of this instruction. If the key does not
match any of the matches, the default offset is added to the address of

this instruction.
3.14 Manipulating Object Fields

putfield

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

2124 -
Set field in object
Syntax:
putfield=181
indexbytel
indexbyte2
5 Stack: ..., objectref, value=> ...
OR
Stack: ..., objectref, value-wordl, value-word2=>

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant pool item will be a
10 field reference to a class name and a field name. The item is resolved to
a field block pointer which has both the field width (in bytes) and the
field offset (in bytes).
The field at that offset from the start of the object referenced by
object refwill be set to the value on the top of the stack.
15 This instruction deals with both 32-bit and 64-bit wide fields.
If object ref is null, aNullPointerException is generated.
If the specified field is a static field,

anIncompatibleClassChangeError is thrown.

20 getfield

Fetch field from object

Syntax:
getfield=180
indexbytel
indexbyte2
Stack: ..., objectref=> ...,value
25 OR

Stack: ..., objectref=> ..., value-wordl, value-word2
indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant pool item will be a
field reference to a class name and a field name. The item is resolved to
30 a field block pointer which has both the field width (in bytes) and the

field offset (in bytes).

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
-125 -

objectref must be a reference to an object. The value at offset
into the object referenced by objectref replaces objectref on the top of
the stack.

This instruction deals with both 32-bit and 64-bit wide fields.

If objectref is null, a NullPointerException is generated.

If the specified field is a static field, an

IncompatibleClassChangeError is thrown.

putstatic
Set static field in class

Syntax:

putstatic-179

indexbytel

indexbyte2

Stack: ..., value=> ...
OR

Stack: ..., value-wordl, value-word2=> ...

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant pool item will be a
field reference to a static field of a class. That field will be set to
have the value on the top of the stack.

This instruction works for both 32-bit and 64-bit wide fields.

If the specified field is a dynamic field, an

IncompatibleClassChangeError is thrown.

getstatic

Get static field from class

Syntax:
getstatic=178
indexbytel
indexbyte2
Stack: ..., => ..., value
OR
Stack: ..., => ..., value-wordl, value-word2

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-126 -

indexbytel and indexbyte2 are used to construct an index intﬁ the
constant pool of the current class. The constant pool item will be a
field reference to a static field of a class.

This instruction deals with both 32-bit and 64-bit wide fields.

If the specified field is a dynamic field, an

IncompatibleClassChangeError is generated.

3.15 Method Invocation
There are four instructions that implement method invocation.

invokevirtual Invoke an instance method of an object,
dispatching based on the runtime (virtual) type of
the object. This is the normal method dispatch in
JAVA.

invokencnvirtual Invoke an instance method of an object, dispatching
based on the compile-time (non-virtual) type of
the object. This is used, for example, when the
keywordsuper or the name of a superclass is used
as a method qualifier.

invokestatic Invoke a class (static) method in a named class.

invokeinterface Invoke a method which is implemented by an interface,
searching the methods implemented by the
particular run-time object to find the appropriate

method.

invokevirtual
Invoke instance method, dispatch based on run-time type

Syntax:

invokevirtual=182

indexbytel

indexbyte2

Stack: ..., objectref, [argl, {arg2 ...]1, ...=> ...

The operand stack must contain a reference to an object and some
number of arguments.indexbytel
and indexbyte2 are used to construct an index into the constant pool of
the current class. The item at that index in the constant pool contains
the complete method signature. A pointer to the object's method table is

retrieved from the object reference. The method signature is looked up in

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
127 -

the method table. The method signature is guaranteed to exactly hatch one
of the method signatures in the table.

The result of the lookup is an index into the method table of the
named class, which is used with the object's dynamic type to look in the
method table of that type, where a pointer to the method block for the
matched method is found. The method block indicates the type of method
(native, synchronized, and so on) and the number of arguments expected on
the operand stack.

If the method is marked synchronized the monitor associated with
objectref is entered.

The objectref and arguments are popped off this method's stack and
become the initial values of the local variables of the new method.
Execution continues with the first instruction of the new method.

If the object reference on the operand stack is null, a
NullPointerException is thrown. If during the method invocation a stack

overflow is detected, a StackOverflowError is thrown.

invokenonvirtual
Invoke instance method, dispatching based on compile-time type

Syntax:

invokenonvirtual = 183

indexbytel

indexbyte2

Stack: ..., objectref, [argl, [arg2 ...}], ... => ...

The operand stack must contain a reference to an object and some
number of arguments.indexbytel and indexbyte2 are used to construct an
index into the constant pool of the current class. The item at that index
in the constant pool contains a complete method signature and class. The
method signature is looked up in the method table of the class indicated.
The method signature is guaranteed to exactly match one of the method
signatures in the table.

The result of the lookup is a method block. The method block
indicates the type of method (native, synchronized, and so on) and the
number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with

objectref is entered.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-128 -

The objectref and arguments are popped off this method's stack and
become the initial values of the local variables of the new method.
Execution continues with the first instruction of the new method.

If the object reference on the operand stack is null, a
NullPointerException is thrown. If during the method invocation a stack

overflow is detected, a StackOverflowError is thrown.

invokestatic
Invoke a class (static) method

Syntax:

invokestatis = 184

indexbytel

indexbyte2

Stack: ..., [argl, [arg2 ...]], ... => ...

The operand stack must contain some number of arguments.indexbytel
and indexbyte2 are used to construct an index into the constant pool of
the current class. The item at that index in the constant pool contains
the complete method signature and class. The method signature is looked
up in the method table of the class indicated. The method signature is
guaranteed to exactly match one of the method signatures in the class's
method table.

The result of the lookup is a method block. The method block
indicates the type of method (native, synchronized, and so on) and the
number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with the
class is entered.

The arguments are popped off this method's stack and become the
initial values of the local variables
of the new method. Execution continues with the first instruction of the
new method.

If during the method invocation a stack overflow is detected, a

StackOverflowError is thrown.

invokeinterface
Invoke interface method

Syntax:

invokeinterface = 185 I

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221

-129 -

indexbytel

indexbyte2

nargs

reserved

Stack: ..., objectref, [argl, [arg2 ...]1, ... => ...

The operand stack must contain a reference to an object and nargs-1
arguments. indexbytel and indexbyte2 are used to construct an index into
the constant pool of the current class. The item at that index in the
constant pool contains the complete method signature. A pointer to the
object's method table is retrieved from the object reference. The method
signature is looked up in the method table. The method signature is
guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block
indicates the type of method (native, synchronized, and so on) but unlike
invokevirtual and invokenonvirtual, the number of available arguments
(nargs) is taken from the bytecode.

If the method is markedsynchronized the monitor associated with
objectref is entered.

The objectref and arguments are popped off this method's stack and
become the initial values of the local variables of the new method.
Execution continues with the first instruction of the new method.

If the objectref on the operand stack is null, a
NullPointerException is thrown. If during the method invocation a stack

overflow is detected, a StackOverflowError is thrown.

3.16 Exception Handling

athrow

Throw exception or error

Syntax:

athrow = 191

Stack: ..., objectref => [undefined]

objectref must be a reference to an object which is a subclass of
Throwable, which is thrown. The current JAVA stack frame is searched for
the most recent catch clause that catches this class or a superclass of

this class. If a matching catch list entry is found, the pc is reset to

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-130 -

the address indicated by the catch-list entry, and execution continues
there.

If no appropriate catch clause is found in the current stack frame,
that frame is popped and the object is rethrown. If one is found, it
contains the location of the code for this exception. The pc is reset to
that location and execution continues. If no appropriate catch is found
in the current stack frame, that frame is popped and the objectref is
rethrown.

If objectref is null, then a NullPointerException is thrown instead.
3.17 Miscellaneous Object Operations
new

Create new object

Syntax:

new = 187

indexbytel

indexbyte2

Stack: eee => ..., objectref

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The item at that index must be a
class name that can be resolved to a class pointer, class. A new instance
of that class is then created and a reference to the object is pushed on

the stack.

checkcast

Make sure object is of given type

Syntax:
checkcast = 192
indexbytel
indexbyte2
Stack: ..., objectref => ..., objectref

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The string at that index of the
constant pool is presumed to be a class name which can be resolved to a

class pointer, class. objectref must be a reference to an object.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
- 131 -

checkcast determines whether objectref can be cast to be a ieference
to an object of class class. A null objectref can be cast to any class.
Otherwise the referenced object must be an instance of class or one of its
superclasses. If objectref can be cast to class execution proceeds at the
next instruction, and the objectref remains on the stack.

If objectref cannot be cast to class, a ClassCastException is

thrown.

instanceof

Determine if an object is of given type

Syntax:
instanceof = 193
indexbytel
indexbyte2
Stack: ..., objectref => ..., result

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The string at that index of the
constant pool is presumed to be a class name which can be resolved to a
class
pointer, class. objectref must be a reference to an object.

instanceof determines whether objectref can be cast to be a
reference to an object of the class class. This instruction will
overwrite objectref with 1 if objectref is an instance of class or one of
its superclasses. Otherwise, objectref is overwritten by 0. If objectref

is null, it's overwritten by 0.

3.18 Monitors

monitorenter

Enter monitored region of code

Syntax:

monitorenter = 194

Stack: ..., objectref => ...

objectref must be a reference to an object.

The interpreter attempts to obtain exclusive access via a lock
mechanism to objectref. If another thread already has objectref locked,

than the current thread waits until the object is unlocked. 1If the

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-132 -

current thread already has the object locked, then continue execution. If
the object is not locked, then obtain an exclusive lock.

If objectref is null, then a NullPointerException is thrown instead.

5 monitorexit
Exit monitored region of code

Syntax:

monitorexit = 195

Stack: ..., objectref => ...
10 objectref must be a reference to an object. The lock on the object
released. If this is the last lock that this thread has on that object
(one thread is allowed to have multiple locks on a single object), then
other threads that are waiting for the object to be available are allowed
to proceed.

15 If objectref is null, then a NullPointerException is thrown instead.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
-133 -

Appendix A: An Optimization

The following set of pseudo-instructions suffixed by _quick are
variants of JAVA virtual machine instructions. They are used to improve
the speed of interpreting bytecodes. They are not part of the virtual
machine specification or instruction set, and are invisible outside of an
JAVA virtual machine implementation. However, inside a virtual machine
implementation they have proven to be an effective optimization.

A compiler from JAVA source code to the JAVA virtual machine
instruction set emits only non-_ quick
instructions. If the _quick pseudo-instructions are used, each instance
of a non-_quick instruction with a _quick variant is overwritten on
execution by its_quick variant. Subsequent execution of that instruction
instance will be of the quick variant.

In all cases, if an instruction has an alternative version with the
suffix_quick, the instruction references the constant pool. If the_quick
optimization is used, each non-_gquick instruction with a_quick variant
performs the following:

Resolves the specified item in the constant pool;

Signals an error if the item in the constant pool could not be
resolved for some reason;

Turns itself into the _quick version of the instruction. The
instructions putstatic, getstatic, putfield, and getfield each have
two _quick versions; and

Performs its intended operation.

This is identical to the action of the instruction without the
_quick optimization, except for the additional step in which the
instruction overwrites itself with its _quick variant.

The _quick variant of an instruction assumes that the item in the
constant pool has already been resolved, and that this resolution did not
generate any errors. It simply performs the intended operation on the
resolved item.

Note: some of the invoke methods only support a single-byte offset
into the method table of the object; for objects with 256 or more methods
gsome invocations cannot be "quicked" with only these bytecodes.

This Appendix doesn't give the opcode values of the

pseudo-instructions, since they are invisible and subject to change.

A.l Constant Pool Resolution

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-134 -

When the class is read in, an array constant_pool [] of size n
constants is created and assigned to a field in the class.constant_pool
[0] is set to point to a dynamically allocated array which indicates which
fields in the constant_pool have already been resolved.constant_pool [1]
through constant_pool [nconstants - 1] are set to point at the "type"
field that corresponds to this constant item.

When an instruction is executed that references the constant pool,
an index is generated, and constant pool [0] is checked to see if the index
has already been resolved. If so, the value of constant_pool [index) is
returned. If not, the value of constant_pool [index] is resolved to be
the actual pointer or data, and overwrites whatever value was already in

constant pool [index].
A.2 Pushing Constants onto the Stack (_quick variants)
ldcl_quick

Push item from constant pool onto stack

Syntax:

ldcl_quick

indexbytel

Stack: ...=>...,item
indexbytel is used as an unsigned 8-bit index into the constant pool

of the current class. The item at that index is pushed onto the stack.

ldec2_quick
Push item from constant pool onto stack

Syntax:

1dc2_quick

indexbytel

indexbyte2

Stack: ...=>...,item
indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant at that index is

resolved and the item at that index is pushed onto the stack.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/27536 PCT/US97/01221
-135-

ldc2w_quick

Push long integer or double float from constant pool onto stack

Syntax:
ldc2w_quick
indexbytel
indexbyte2
Stack: cee=>...,constant-wordl, constant-word2

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant at that index is pushed

onto the stack.

A.3 Managing Arrays (_quick variants)

anewarray_quick

Allocate new array of references to objects

Syntax:
anewarray_gquick
indexbytel
indexbyte2
Stack: ...,size=>result

size must be an integer. It represents the number of elements in
the new array.

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The entry must be a class.

A new array of the indicated class type and capable of holding size
elements is allocated, and result is a reference to this new array.
Allocation of an array large enough to contain size items of the given
class type is attempted. All elements of the array are initialized to
zero.

If size is less than zero, a NegativeArraySizeException is thrown.
If there is not enough memory to allocate the array, an OutOfMemoryError

is thrown.

multianewarray quick

Allocate new multi-dimensional array

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-136 -

Syntax:

multianewarray quick

indexbytel

indexbyte2

dimensions

Stack: ...,sizel,size2,...sizen=>result
Each size must be an integer. Each represents the number of

5 elements in a dimension of the array.
indexbytel and indexbyte2 are used to construct an index into the

constant pool of the current class. The resulting entry must be a class.

dimensions has the following aspects:
It must be an integer 31.

10 It represents the number of dimensions being created. It must
be £ the number of dimensions of the array class.

It represents the number of elements that are popped off the
stack. All must be integers greater than or equal to zero. These
are used as the sizes of the dimension.

15 If any of the size arguments on the stack is less than zerxo, a
NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryError is thrown.

The result is a reference to the new array object.

20 A.4 Manipulating Object Fields (_quick variants)

putfield quick

Set field in object

Syntax:

putfield2 quick

offset

unused

25
Stack: ...,objectref,value=>...
objectref must be a reference to an object. value must be a value
of a type appropriate for the specified field. offset is the offset for
the field in that object. wvalue is written at offset into the object.

30 Both objectref and value are popped from the stack.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 97/27536 PCT/US97/01221
-137 -

If objectref is null, a NullPointerException is generated.

putfield2 quick
Set long integer or double float field in object

Syntax:
putfield2 quick
offset
unused
Stack: ...,objectref,value-wordl,value-word2=>...

objectref must be a reference to an object. wvalue must be a value
of a type appropriate for the specified field. offset is the offset for
the field in that object. value is written at offset into the object.
Both objectref and value are popped from the stack.

If objectref is null, a NullPointerException is generated.

getfield quick

Fetch field from object

Syntax:
getfield2 quick
offset
unused
Stack: ...,objectref=>...,value

objectref must be a handle to an object. The value at offset into
the object referenced by objectref replaces objectref on the top of the
stack.

If objectref is null, a NullPointerException is generated.

getfield2 quick
Fetch field from object

Syntax:
getfield2 quick
offaset
unused
Stack: -..,0bjectref=>...,value-wordl, value-word2

SUBSTITUTE SHEET (RULE 26)

WO 97/2755: PCT/US97/01221
-138 -

or::zc-tref must be a handle to an object. The value at offset into
the objer: relerenced by objectref replaces objectref on the top of the
stack.

I =>jectref is null, a NullPointerException is generated.

putstat.: zuick
Se: =zzazic field in class

Symzx:

putstatic quick

indexbytel

indexbyte2

Stzza: ees,value=>...

o

inuzxbytel and indexbyte2 are used to construct an index into the
constan: :ccl of the current class. The constant pool item will be a
field reizrence to a static field of a class.value must be the type
appropr:::z:s ts that field. That field will be set to have the value

value.

putstati:i quick

Se: =tazic field in class

Sizizax;
putstatic2_ quick
indexbytel
indexbyte2
Stzz<: ...,value-wordl,value-word2=>...

inzaxbytel and indexbyte2 are used to construct an index into the
constan: zccl of the current class. The constant pool item will be a

field reizrence to a static field of a class. That field must either be a
the type z-oropriate to that field. That field will be set to have the

value vel-e.

getstat.:_guick

Ge: static field from class

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 97/27536 PCT/US97/01221

-139-
Syntax:
getstatic_ quick
indexbytel
indexbyte2
Stack: ...,=>...,value

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant pool item will be a
field reference to a static field of a class. The value of that field

will replace handle on the stack.

getstatic2 quick

Get static field from class

Syntax:
getstatic2 quick
indexbytel
indexbyte2
Stack: ...,=>...,value-wordl,value-word2

indexbytel and indexbyte2 are used to construct an index into the
constant pool of the current class. The constant pool item will be a
field reference to a static field of a class. The field must be a long
integer or a double precision floating point number. The value of that

field will replace handle on the stack
A.5 Method Invocation (_quick variants)
invokevirtual_quick

Invoke instance method, dispatching based on run-time type

Syntax:

invokevirtual quick

offset

nargs

Stack: ...,objectref, [argl, [arg2...]]1=>...
The operand stack must contain objectref, a reference to an object

and nargs-1 arguments. The method block at offset in the object's method

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 97/27536 PCT/US97/01221
- 140 -

table, as determined by the object's dynamic type, is retrieved. "The
method block indicates the type of method (native, synchronized, etc.).

If the method is marked synchronized the monitor associated with the
object is entered.

The base of the local variables array for the new JAVA stack frame
is set to point to objectref on the stack, making objectref and the
supplied arguments (argl,arg2,...) the first nargs local variables of the
new frame. The total number of local variables used by the method is
determined, and the execution environment of the new frame is pushed after
leaving sufficient room for the locals. The base of the operand stack for
this method invocation is set to the first word after the execution
environment. Finally, execution continues with the first instruction of
the matched method.

If objectref is null, a NullPointerException is thrown. If during
the method invocation a stack overflow is detected, a StackOverflowError

is thrown.

invokevirtualobject quick
Invoke instance method of class JAVA.lang.Object, specifically for
benefit of arrays

Syntax:

invokevirtualobject quick

offset

nargs

Stack: ...,objectref, [argl, [axrg2...]]l=>...

The operand stack must contain objectref, a reference to an object
or to an array and nargs-1 arguments. The method block at offset in
JAVA.lang.Object's method table is retrieved. The method block indicates
the type of method (native, synchronized, etc.).

If the method is marked synchronized the monitor associated with
handle is entered.

The base of the local variables array for the new JAVA stack frame
is set to point to objectref on the stack, making objectref and the
supplied arguments (argl,arg2,...) the first nargs local variables of the
new frame. The total number of local variables used by the method is
determined, and the execution environment of-the new frame is pushed after

leaving sufficient room for the locals. The base of the operand stack for

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
- 141 -

this method invocation is set to the first word after the executién
environment. Finally, execution continues with the first instruction of
the matched method.

If objectref is null, a NullPointerException is thrown. If during
the method invocation a stack overflow is detected, a StackOverflowError

is thrown.

invokenonvirtual quick

Invoke instance method, dispatching based on compile-time type

Syntax:
invokenonvirtual quick
indexbytel
indexbyte2
Stack: ...,objectref, [argl, [arg2...]}=>...

The operand stack must contain objectref, a reference to an object
and some number of arguments. indexbytel and indexbyte2 are used to
construct an index into the constant pool of the current class. The item
at that index in the constant pool contains a method slot index and a
pointer to a class. The method block at the method slot index in the
indicated class is retrieved. The method block indicates the type of
method (native, synchronized, etc.) and the number of arguments (nargs)
expected on the operand stack.

If the method is marked synchronized the monitor associated with the
object is entered.

The base of the local variables array for the new JAVA stack frame
is set to point to objectref on the stack, making objectref and the
supplied arguments {(argl, arg2,...) the first nargs local variables of the
new frame. The total number of local variables used by the method is
determined, and the execution environment of the new frame is pushed after
leaving sufficient room for the locals. The base of the operand stack for
this method invocation is set to the first word after the execution
environment. Finally, execution continues with the first instruction of
the matched method.

If objectref is null, a NullPointerException is thrown. If during
the method invocation a stack overflow is detected, a StackOverflowError

is thrown.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

WO 97/27536 PCT/US97/01221
142 -

invokestatic_quick

Invoke a class (static) method

Syntax:
invokestatic_quick
indexbytel
indexbyte2
Stack: ..., [largl, [arg2...])=>...
The operand stack must contain some number of arguments. indexbytel

and indexbyte2 are used to construct an index into the constant pocl of
the current class. The item at that index in the constant pool contains a
method slot index and a pointer to a class. The method block at the
method slot index in the indicated class is retrieved. The method block
indicates the type of method (native, synchronized, etc.) and the number
of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with the
method's class is entered.

The base of the local variables array for the new JAVA stack frame
is set to point to the first argument on the stack, making the supplied
arguments (argl,arg2,...) the first nargs local variables of the new
frame. The total number of local variables used by the method is
determined, and the execution environment of the new frame is pushed after
leaving sufficient room for the locals. The base of the operand stack for
this method invocation is set to the first word after the execution
environment. Finally, execution continues with the first instruction of
the matched method.

If the object handle on the operand stack is null, a
NullPointerException is thrown. If during the method invocation a stack

overflow is detected, a StackOverflowError is thrown.

invokeinterface quick
Invoke interface method

Syntax:

invokeinterface_quick

idbytel

idbyte2

nargs

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 97/27536 PCT/US97/01221
2143 -

guess

Stack: ...,objectref, [argl, [arg2...]]}=>...

The operand stack must contain objectref, a reference to an object,
and nargs-1 arguments. idbytel and idbyte2 are used to construct an index
into the constant pool of the current class. The item at that index in
the constant pool contains the complete method signature. A pointer to
the object’'s method table is retrieved from the object handle.

The method signature is searched for in the object's method table.
As a short-cut, the method signature at slot guess is searched first. If
that fails, a complete search of the method table is performed. The
method signature is guaranteed to exactly match one of the method
signatures in the table.

The result of the lookup is a method block. The method block
indicates the type of method (native, synchronized, etc.) but the number
of available arguments (nargs) is taken from the bytecode.

If the method is marked synchronized the monitor associated with
handle is entered.

The base of the local variables array for the new JAVA stack frame
is set to point to handle on the stack, making handle and the supplied
arguments (argl,arg2,...) the first nargs local variables of the new
frame. The total number of local variables used by the method is
determined, and the execution environment of the new frame is pushed after
leaving sufficient room for the locals. The base of the operand stack for
this method invocation is set to the first word after the execution
environment. Finally, execution continues with the first instruction of
the matched methed.

If objectref is null, a NullPointerException is thrown. 1If during
the method invocation a stack overflow is detected, a StackOverflowError
is thrown.

guess is the last guess. Each time through, guess is set to the

method offset that was used.
A.6 Miscellaneous Object Operations (_quick variants)
new_quick

Create new object

Syntax:

SUBSTITUTE SHEET (RULE 26)

15

20

25

WO 97/27536 PCT/US97/01221
-144 -

new_quick

indexbytel

indexbyte2

Stack: . .=>...,objectref

indexbyte. znd indexbyte2 are used to construct an index into the
constant pool - the current class. The item at that index must be a
class. A new _z:tance of that class is then created and objectref, a

reference to tnn:: object is pushed on the stack.

checkcast quicr

Make sur: :z2ject is of given type

Syntax:
checkcast quick
indexbytel
indexbyte2
Stack: .. .,objectrefa>...,objectref

objectre: —ust be a reference to an object. indexbytel and
indexbyte2 are _s=2d to construct an index into the constant pool of the
current class. The object at that index of the constant pool must have
already been re::zlved.

checkcas: tnen determines whether objectref can be cast to a

reference to ar =dject of class class. A null reference can be cast to

any class, and -:herwise the superclasses of objectref's type are searched

for class. If :-_ass is determined to be a superclass of objectref's type,

or if objectrei -s null, it can be cast to objectref cannot be cast to

class, a ClassZ:s:zException is thrown.

instanceof quic:e
Determin: -Z object is of given type

Syntax:

instanceof_quick

indexbytel

indexbyte2

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
-145 -

Stack: ...,objectref=>...,result

objectref must be a reference to an object. indexbytel and
indexbyte2 are used to construct an index into the constant pool of the
current class. The item of class class at that index of the constant pool
must have already been resolved.

Instance of determines whether objectref can be cast to an object of
the class class. A null objectref can be cast to any clags, and otherwise
the superclasses of objectref's type are searched for class. If class is
determined to be a superclass of objectref's type, result is 1 (true).

Otherwise, result is 0 (false). If handle is null, result is 0 (false) .

SUBSTITUTE SHEET (RULE 26)

S O 0 NN bW N

s W N

WO 97/27536 PCT/US97/01221
- 146 -

WHAT IS CLAIMED IS:

1. In a virtual machine instruction processor wherein instructions generally source operands
from, and target a result to, uppermost entries of an operand stack, an apparatus comprising;

an instruction store;

an operand stack;

a data store;

an execution unit; and

an instruction decoder coupled to the instruction store to identify a foldable sequence of instructions
represented therein, the foldable sequence including first and second instructions, the first
instruction for pushing a first operand value onto the operand stack from the data store
merely as a first source operand for a second instruction, the instruction decoder coupled to
supply the execution unit with a single folded operation equivalent to the foldable sequence
and including a first operand address identifier selective for the first operand value in the

data store, thereby obviating an explicit operation corresponding to the first instruction.

2. An apparatus, as recited in claim 1, wherein the data store includes local variable storage.
3. An apparatus, as recited in claim 1, wherein the data store includes constant storage.
4. An apparatus, as recited in claim 1, wherein the operand stack and the data store are

represented in a storage hierarchy including a stack cache, and wherein the stack cache caches at least a

portion of entries in the operand stack and the data store.

5. An apparatus, as recited in claim 4,

wherein the instruction decoder selectively disables supply of the equivalent folded operation if the
first operand value is not represented in the stack cache portion of the storage hierarchy, and
instead supplies the execution unit with an operation identifier and operand address

identifier corresponding to the first instruction only.

6. An apparatus, as recited in claim 1, wherein if the sequence of instructions represented in the
instruction buffer is not a foldable sequence, the instruction decoder supplies the execution unit with an

operation identifier and operand address identifier corresponding to the first instruction only.

7. An apparatus, as recited in claim 1,
wherein the instruction decoder further identifies a third instruction in the foldable sequence, the third
instruction being for pushing a second operand value onto the operand stack from the data

store merely as a second source operand for the second instruction; and

SUBSTITUTE SHEET (RULE 26)

—_ L - ¥ e R N ~N N s W

A =T I - L T " VR 8]

WO 97/27536 PCT/US97/01221

- 147 -

wherein the single folded operation equivalent to the foldable sequence includes a second operand
address identifier selective for the second operand value in the data store, thereby obviating

an explicit operation corresponding to the third instruction.

8. An apparatus, as recited in claim 1,

wherein the instruction decoder further identifies a fourth instruction in the foldable sequence, the
fourth instruction being for popping a result of the second instruction from the operand stack
and storing the result in a result location of the data store; and

wherein the single folded operation equivalent to the foldable sequence includes a destination address
identifier selective for the result location in the data store, thereby obviating an explicit

operation corresponding to the fourth instruction.

9. An apparatus, as recited in claim 1,

wherein the instruction decoder further identifies third and fifth instructions in the foldable sequence,
the third and fifth instructions respectively being for pushing second and third operand
values onto the operand stack from the data store merely as a respective second and third
source operands for the second instruction; and

wherein the single folded operation equivalent to the foldable sequence includes second and third
operand address identifiers respectively selective for the second and third operand value in
the data store, thereby obviating explicit operations corresponding to the third and fifth

instructions.

10. An apparatus, as recited in claim 1,

wherein the instruction decoder further identifies fourth and sixth instructions in the foldable
sequence, the fourth and sixth instructions respectively being for popping first and second
results of the second instruction from the operand stack and storing the first and second
results in respective first and second result locations of the data store; and

wherein the single folded operation equivalent to the foldable sequence includes first and second
destination address identifiers respectively selective for the first and second result locations

in the data store, thereby obviating explicit operations corresponding to the fourth and sixth

instructions.

instructions.
11 An apparatus, as recited in claim 1, wherein the foldable sequence comprises two or more
12, An apparatus, as recited in claim 1, wherein the foldable sequence comprises four

instructions.

SUBSTITUTE SHEET (RULE 26)

o 0 3 N AW N —

—
(=]

WO 97/27536 PCT/US97/01221

- 148 -
13. An apparatus, as recited in claim 1, wherein the foldable sequence comprises five
instructions.
14. An apparatus, as recited in claim 1, wherein the foldable sequence comprises more than five
instructions.
15. An apparatus, as recited in claim 1, wherein the instruction decoder further comprises:

normal and folded decode paths; and

switching means responsive to the folded decode path for selecting operation, operand, and
destination identifiers from the folded decode path in response to a fold indication
therefrom, and for otherwise selecting operation, operand, and destination identifiers from

the normal decode path.

16. An apparatus, as recited in claim I, wherein the virtual machine instruction processor is a

hardware virtual machine instruction processor and the instruction decoder comprises decode logic.

17. An apparatus, as recited in claim 1, wherein the virtual machine instruction processor
includes a just-in-time compiler implementation and the instruction decoder comprises software executable on

a hardware processor, the hardware processor including the execution unit.

18. An apparatus, as recited in claim |, wherein the virtual machine instruction processor
includes a bytecode interpreter implementation and the instruction decoder comprises software executable on

a hardware processor, the hardware processor including the execution unit.

]9; A method for decoding virtual machine instructions in a virtual machine instruction
processor wherein generally source operands from, and target a result to, uppermost entries of an operand
stack, the method comprising:

(a) determining if a first instruction of a virtual machine instruction sequence is an instruction for
pushing a first operand value onto the operand stack from a data store merely as a first
source operand for a second instruction; and

if the result of the (a) determining is affirmative, supplying an execution unit with a single folded
operation equivalent to a foldable sequence comprising the first and second instructions, the
single folded operation including a first operand identifier selective for the first operand

value, thereby obviating an explicit operation corresponding to the first instruction.

SUBSTITUTE SHEET (RULE 26)

[}

(3]

o

[« N T O VS]

(= SV T L 2]

WO 97/27536 PCT/US97/01221

-149 -

20. A method as recited in claim 19, further comprising:
if the result of the (a) determining is negative, supplying the execution unit with an operation

equivalent to the first instruction in the virtual machine instruction sequence.

21 A method as recited in claim 19, further comprising;:

(b) determining if a third instruction of the virtual machine instruction sequence is an instruction for
popping a result value of the second instruction from the operand stack and storing the result
value in a result location of the data store; and

if the result of the (b) determining is affirmative, further including a result identifier selective for the
result location with the equivalent single folded operation, thereby further obviating an

explicit operation corresponding to the third instruction.

22. A method as recited in claim 21, further comprising:
if the result of the (b) determining is negative, including a result identifier selective for a top location

of the operand stack with the equivalent single folded operation.

23. A method as recited in claim 19, wherein the (a) determining inciudes:

(al) determining if the first instruction is for pushing the first operand value onto the operand stack
from the data store; and

(a2) determining if the second instruction is for operating on first operand value on operand stack and
pushing a result value of the second instruction onto the operand stack such the first operand

value is no longer represented in the uppermost entries of the operand stack.

24. A method as recited in claim 23, further comprising:

performing the (al) determining and the (a2) determining substantially in parallel.

25. A method as recited in claim 23, further comprising:

performing the (a) determining and the (b) determining substantially in parallel.

26. A stack-based virtuai machine impiementation comprising:

a randomly-accessible operand stack representation;

arandomly-accessible local variable storage representation; and

a virtual machine instruction decoder for selectively decoding virtual machine instructions and
folding together a selected sequence thereof to eliminate unnecessary temporary storage of

operands on the operand stack.

SUBSTITUTE SHEET (RULE 26)

O 00 NN N b W N

O 80 N N N RN - 0 NN N W bW

—
N - O

[V B

WO 97/27536 PCT/US97/01221
-150 -

27. A stack-based virtual machine implementation, as recited in claim 26, further comprising:
a hardware virtual machine instruction processor, including a hardware stack cache, a hardware
instruction decoder, and an execution unit;

wherein the randomly-accessible operand stack local variable storage representations at least partially reside in
the hardware stack cache, wherein the virtual machine instruction decoder comprises the hardware instruction
decoder coupled to provide the execution unit with opcode, operand, and result identifiers respectively
selective for a hardware virtual machine instruction processor operation and for locations in the hardware
stack cache as a single hardware virtual machine instruction processor operation equivalent to the selected

sequence of virtual machine instructions.

28. A stack-based virtual machine implementation, as recited in claim 26, further comprising:
software encoded in a computer readable medium and executable on a hardware processor;
wherein the randomly-accessible operand stack local variable storage representations at least partially reside in
registers of the hardware processor, wherein the virtual machine instruction decoder is at least partially
implemented in the software, and wherein the virtual machine instruction decoder is coupled to provide
opcode, operand, and result identifiers respectively selective for a hardware processor operation and for
locations in the registers as a single hardware processor operation equivalent to the selected sequence of

virtual machine instructions.

29. A hardware virtual machine instruction decoder comprising:

a normal decode path;

a fold decode path for decoding a sequence of virtual machine instructions and, if the sequence is
foldable, supplying:
a single operation identifier;
one or more operand identifiers; and
a destination identifier;

together equivalent to the sequence of virtual machine instructions; and

switching means responsive to the folded decode path for selecting operation, operand, and
destination identifiers from the folded decode path in response to a fold indication
therefrom, and for otherwise selecting operation, operand, and destination identifiers from

the normal decode path.

30. A hardware virtual machine instruction processor comprising:
an instruction cache unit including:

an instruction cache; and

an instruction buffer;

an integer execution unit including:

SUBSTITUTE SHEET (RULE 26)

e 9

10
1
12
13
14
15
16
17
18
19
20
21

WO 97/27536 PCT/US97/01221
- 151 -

an instruction decode unit comprising;

a normal decode path;

a fold decode path for decoding a sequence of virtual machine instructions from the
instruction buffer and, if the sequence is foldable, supplying a single
operation identifier, operand identifiers, and a destination identifier
together equivalent to the sequence of virtual machine instructions; and

a switch complex responsive to the folded decode path for selecting operation,
operand, and destination identifiers from the folded decode path in
response to a foldable sequence indication therefrom, and otherwise
selecting operation, operand, and destination identifiers from the normal
decode path;

an integer unit coupled to the switch complex for executing in accordance with operation,
operand and destination identifiers selected thereby; and

a stack management unit coupled to the integer execution unit for representing operand stack
and data store locations identified by the selected operand and destination

identifiers.

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

1/22 TO EXTERNAL MEMORY
‘ i
/11 1 /O BUS AND
1
VO CONTROLLER MEMORY INTERFACE UNIT !
¥ 32 |
125 P 170 |
W, 124 ,
121 ~N s |
INST. CACHE PROGRAM | !
CONTROLLER BYTE INST.
INSTR. ALIGNER| | BUF. COURNTER
CACHE t .
PREFETCH 122 TRAP CONTROL
™ LoGiC :
INSTRUCTION CACHE UNIT
A I
135 < ¥ 32 '
! 132
NON-QUICK | “ CURRENT METHOD | ., !
T0 OBJECT ARG. | 2™ 1439
QUICK LOADER CACHE |
INSTRUCTION| | TRANSLATOR FOLDER |
DECODER CACHE WIDE S
131 BRANCH INDEX
_| PREDICTOR FORWARDER |
133 136 .
INSTRUCTION DECODE UNIT
155~ 151~ * 2 |
mp— '
DRIBBLE | | LOCAL GETFIELD
stack | | MANAGER| | VARS MICROSODE | | pUTFIELD .
CACHE UNIT LOOK ACCEL. !
ASIDE C -
CACHE 141 146
EXEC STACK | | B % i
ENVIRON | | CONTROLTN 53
UNIT_ g,
STACK MANAGEMENT UNIT | | EXECUTION UNIT
3 150 140
|
i
- 1 A I

SUBSTITUTE SHEET (RULE 26) ,

WO 97/27536

2/22

DRAM CONTROLLER 1

1

=
—
o

$32

’/ 160

DATA CACHE
CONTROLLER

PREFETCH

L

161~

DATA CACHE |45

MEMORY T~ [+ —>
ALLOCATION [166
ACCELERATOR

DATA CACHE UNIT

~—145

LOOKUP
SWITCH
ACCELERATOR

[

147
.

BOUNDS
CHECK LIST

OPTOP

VARS| PC

FRAME | REGISTERS

INTEGER
UNIT

FLOATING POINT |

UNIT

\\144

|
142

11
\-143

FIG. 1B

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

100

FIG. 1A | FIG. 1B

FIG. 1

WO 97/27536 PCT/US97/01221

3/22

(APPLICATION 201
IN JAVA 1/
SOUCE

JAVA COMPILER
JAVAC

FIG. 2

JAVA VIRTUAL
MACHINE
INSTRUCTIONS
(BYTE CODES)

203

HARDWARE
PROCESSOR

L

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

4/22
CACHE
304
FETCH DECODE EXECUTE WRITE-BACK
301 302 303 305
300 /
FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536

5/22

S$S3daav
HOLINOW

<1 IN3HHND

sey

HOL03A

~T QGOHLIN

vey

AN3JHHND

100d

7| LNVISNOOD

(%97

NHN13y

< 3JNvHd

ety

NHN13d

\
ey

H3INNOD
~ AVH9O0Hd
NHNL3H

84

¢ 3NVHd
AOHL3NW

I 3NVH4
QOH13W

0 3ANVH4
AOH13N

3HOVO
NJVLS

£2p
L S0Ld0
MOVLS
aNVH3dO
(31VL1S 3NvH4) /
¢ey | INFWNOHIANT
\Ql 03Ix3 /
'4
T smavmva | Thvaa
V01
e |~ w \
_Nﬂ SINIWNOYY |/
~+SavA

/ 0op

10

1o

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536

6/22

dv Old

i\\[
~
T 233
2y
e 133 v
A 033 \ ~do1do ZaWvy4 |FHOVO
- MOVLS QOHLIN [MOVLS
v N - aNYH3dO 314100
1 1 awved
S31avIHVA dotian
w01 314I00N
A)
izy | SINIANNDHY \A P
SHvA QOHLIN
a3141IG0W

/ a00y

ast

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536

7/22

JHOVO v1iva
WOH4/01

-

v Ol

1INN TOHLINOD
AIVLS
EE!

LINN
INJNIOVNYIN
37841Ha
EE|

0S¥
3JHOVO
NOV1S
‘NOHIANT
o3x3

V0SE LINN INFWIOVYNVIN MOVLS

st
1INN TOHLNOD
NOV1S

1SF LINN
LINIWIOVNYI
3199140

(1]
3JHOVO
NIV1S

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221
8/22
153
» -
METHOD
#
’ METHOD#=0
________ LOCAL VARIABLE 0
LOCAL VARIABLE 1
. METHOD # = 1 ’
________ LOCAL VARIABLEE ____ | .
LOCALVARIABLE 1 | __]
""""""""""""""" VARIABLE M
>
METHZOD L . LOCAL VARIABLEO ___
) LOCALVARIABLE1 | ____ | N
.................................. 421A_0
) VARIABLE N
. \\ 421A_1
LOCAL VARIABLE P
~—421A_2

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536

9/22

208 //
1
ATENISSYIH
905~ /ATANISSY 808
_ WLY _
HITIOHLINOD NI
o 01avH
i o0 H3IAOON3
] NaSI ——»{ HOSS3IO0Hd 10§
50 JHYMQHVH SN
SIA 53dIN
L 1
— HITIOHLNOD
vos 13INH3HLT N\ 206

£09 \

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

10/22

610 613
611b
610‘\. 611a —\ /_ [610_\ /—611c

/ —~ /7108 /
T0S / 7 108-1 /708
f LOAD }J > ADD
OPERAND
612 —/

\———CYCLE1 T I CYCLE 2*—T
FIG. 6

710 1a 710 11b
[[

T0s /I 108 7/

LOAD/ADD

vy

 OPERAND

, CYCLE 1 T

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

11/22
/f——s1o
/— 822
L OPTOP—
OPERAND
STACK 812 - |
. VARS
METHOD . ; S—]
FRAME 1
801
LOCAL
VARIABLES 813
®
[]
[]
|
OPERAND
METHOD STACK 8124
FRAME 2
802 |
LOCAL
VARIABLES 8134
|
L]
L]
. — 803
— 814
CONSTANT POOL FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 97/27536

12/22
AACS
AAC4
(’AAco «—— OPTOP
812 <
®
®
®
N
LOCAL
VAL
VARIABLES UE2
813
VALUE1T —— VARS
. |
. TOWARDS
. BOTTOM OF
STACK
v
FIG. 9A [#e
' AAC4
AACO
812 <
.
LOCAL
VARIABLES
813

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221
OPERAND 2 f—— OPTOP
OPERAND |

[J
[J
[]
VALUE?
VALUEf ——— VARS
. |
. TOWARDS
BOTTOM OF
STACK
v

WO 97/27536

AACS
(" AAC4
AACO

LOCAL
VARIABLES
813

13/22
SUM e—— OPTOP
[J
®
[]
VALUE2
VALUE1 «—— VARS
. |
. TOWARDS
BOTTOM OF
STACK
v
FIG. 9C e
AAC4
(" AACO

(wea)

o
=
A

-

LOCAL
VARIABLES
813

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

«——— OPTOP
[]
[]
[J
VALUE3
VALUE! j—— VARS
. |
. TOWARDS
BOTTOM OF
STACK
v

WO 97/27536 PCT/US97/01221
14/22
AACS AACS
AAC4 (" AAC4 | OBJECTREF |«— OPTOP
(" AACO L OPTOP AACO
81
812 < 812 <
[] ®
[] []
[[]
_ &\
LOCAL LOCAL
VARIABLES VARIABLES
813 813
e VARS e—— VARS
° | Y |
. TOWARDS : TOWARDS
¢ BOTTOM OF BOTTOM OF
STACK STACK
v /
AACS
(" AAC4 LENGTH f——— OPTOP
AACO
812
@
®
L []
LOCAL
VARIABLES
813
e VARS
. |
S TOWARDS FIG 1OC
BOTTOM OF
STACK
v

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536
15/22
/—1100
TO/FROM
SECONDARY 5
STORAGE
1130 |
INSTRUCTION . 110 DATA
CACHE CONTROLLER CACHE
1116 4
INSTRUCTION
BUFFER
!
instruction bytes 1118
¥ | PIPELINE
INSTRUCTION |——instr_dec—— | CONTROL
DECODER ——instr_vald—,
—instr_addr—
_— 814
812]
operand v v
OPTOP —i» EXECUTION
OPTOP-1 — operand UNIT
OPTOP-2 -] L —
. r— result
VARS-2 —
VARS —» P
o
®
@
813 N—810

e ——————

SUBSTITUTE SHEET (RULE 26)

WO 97/27536

82

POINTER
REGS

OPERAND
STACK
RAM
812

LOCAL
VARIABLES
RAM
813

CONSTANT
AREA
RAM
814

VARS

OPTOP

16/22

INSTR. BUFFER
1116

INSTRUCTION BYTES

'

PCT/US97/01221

INSTRUCTION
DECODER
1118

INSTR_ADDR

EXECUTION
UNIT 1120

*ﬁ

SUBSTITUTE SHEET (RULE 26)

INSTR_VALID
———|

g

INSTR_DEC

FIG. 12

WO 97/27536 PCT/US97/01221
17/22
instruction bytes from
instruction instruction buffer 1116
decoder 118
n_adr. Normal Dec;)ggz I n valid
n_instr_dec (1306
D\
'3 o &)
f_instr_dec f
oo o
(< [1308
Fold Decode LN
—— f valid
CJf_adr 1304 ———"p I
1310 i _ :
'f/n ;
\ tinf
instr_valid
instr_addr . Execqtion
Unit 1100 LeNstr_dec

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536

18/22

vi Ol

SLLL
194ng uoidNAISy|

Plo}
ssaiddns dOldO SHVA
Y
salAqssul | ¥ovi ok
Jojeiausb IpeT}
——— UOljleululldlep p———» SSaippe —>
PlleA § plo} pul ipe p|O}

- 08p J1Sul™} m
\/
Juj

. Yo

SUBSTITUTE SHEET (RULE 26)

WO 97/27536 PCT/US97/01221

19/22
1501
START
FIG. 15A (Lsmar)
, 1502
i=instr_index =1 —

is instruction(i)
one that VM spec defines as for

NO

pushing a first data item onto the
top of the operand stack?

1506 ~ 1508 N

set first_adr_ind to the source
of the first data item

=i+

1510

is instruction(i)
NO one that VM spec defines as for
pushing a second data item onto
the top of the operand stack?

1512)

1514
N

set second_adr_ind to indicate the

source of the second data item | L=

Y

1516 o _

is instruction(i)
one that VM spec defines as for
popping a data item(or items),and for
pushing a result of the operation onto
the operand stack?

"~ SUBSTITUTE SHEET (RULE 26)

WO 97/27536

PCT/US97/01221
e ___20/2 e
1520 1524 \
is instruction(i)
one that VM spec defines as for indicate top of
popping the data item at the top stack (OPTOP)
stack entry? as destination
for result
YES
1522\ v 1526 ~ +
Provide indication of Assert
destination for result —> fold_valid END
of instruction(i). signal
1550
FIG.
15A
FIG.
15B
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 97/27536

1402

21/22

PCT/US97/01221

/»—— first_adr_ind

first_op_adr—
\ 1602
first op. add. gen
VARS OPTOP
second_op_adr——|
fold_adr \ 1604
< G second op. add. gen
VARS OPTOP
dest_adr —— .
\ 1606

1 second_adr_ind

dest add. gen

/# - adr_ind

1 dest_adr_ind

T

VARS OPTOP
VARS OPTOP
FIG. 16

SUBSTITUTE SHEET (RULE 26)

PCT/US97/01221

WO 97/27536

22/22

d01dO

SHVA

Ll

Old

— | e+suvA

+———— ¢t SHYA

¢——»{ |+ SHVA

SHVA

80L) —<
- d01dO

|

(e
n
N~
—

90L1 —<

I-d0LdO

Y/

w

SUBSTITUTE SHEET (RULE 26)

ipe do sy

d ISy

$0L | Wiajap pioj
WwoJ} "pur—Ipe ISy

/No

INTERNATIONAL SEARCH REPORT

Inte onal Application No

PCT/US 97/01221

CLASSIFICATION OF SUBJECT MATTER

TrC B GObF9/318

According to International Patent Classification (IPC) or to both natonal clasafication and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted dunng the intenational search (name of data basc and, where practcal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Catwgory * | Citation of document, with indication, where appropnate, of the relevant passages

1994

page 15, line 20

see the whole document

February 1993
see the whole document

see page 3, line 6 - page 4, line 16 ;
page 6, lines 5-17 ; page 14, line 14 -

A WO 94 27214 A (APPLE COMPUTER) 24 November 1,19,29,

30

A EP O 011 442 A (PANAFACOM LTD ;HIGH LEVEL 1,19,26
MACHINE CORP (JP)) 28 May 1980

A EP ©0 071 028 A (IBM) 9 February 1983 1,19,29,
30
see page 4, lines 7-29 ; page 9, lines
1-21
A US 5 187 793 A (KEITH JOHN M ET AL) 16 18,28

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Speaal categones of cited documents :

"A” document defining the general state of the art which is not
considered to be of particular relevance

“E” earlier document but published on or after the internatonal
filing date

"L" document which may throw doubts on prionity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the international filing date but
later than the pnority date clamed

“T" later document published after the international filing date
or prionity date and not in conflict with the appiication but
cited to understand the principle or theory underiying the
invention

“X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
invoive an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
gm'tlx‘u. such combination being obvious to a person skilled
in the art.

‘&" document member of the same patent family

Date of the actual completion of the internatonal search

6 May 1997

Date of mailing of the internatonal search report

0 5. 06.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Klocke, L

Form PCT/ISA/210 (second sheet) (July 1992)

Relevant to clam No.

INTERNATIONAL SEARCH REPORT

.nformation on patent family members

Inter onal Applicaton No

PCT/US 97/01221

Patent document Publication Patent family Publication
cited in search report date member(s) date .
WO 9427214 A 24-11-94 AU 6701594 A 12-12~-94
EP 0011442 A 28-05-80 JP 1136759 C 28-02-83

JP 55069855 A 26-05-80
JP 57025859 B 01-06-82
CA 1116755 A 19-01-82
US 4334269 A 08-06-82
EP 0071028 A 09-02-83 US 4439828 A 27-03-84
JP 1753609 C 23-04-93
JP 4029093 B 18-05-92
JP 58018754 A 03-02-83

Form PCT/ISA/210 (patent family annex) (July 1992}

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

