»UK Patent Application «GB 2 373601 A

(43) Date of A Publication 25.09.2002

(21) Application No 0107139.8

(22) Date of Filing 21.03.2001

(71) Applicant(s)
Nokia OYJ
(Incorporated in Finland)
Keilalahdentie 4, 02150 Espoo, Finland

{72) Inventor(s)
Patrick Stickler

(74) Agent and/or Address for Service
Nokia IPR Department
Nokia House, Summit Avenue, Southwood,
FARNBOROUGH, Hampshire, GU14 ONG,
United Kingdom

(51) INTCL’

GO6F 17/30

(52) UK CL (Edition T)

G4A AUDB

{56) Documents Cited

US 5890176 A US 5499365 A

‘A metacomponent model to support the extensibility
and evolvability of networked applications’, Da
Silveira, G.E.; Meira, S.L., Technology of
Object-Oriented Languages and Systems, 2000.
TOOLS 34. Proceedings 34th International Conference
on , 2000, Page(s): 185 -194

*A difference-based version model for OODBMS",
Kuen-Fang Jea; Hwai-Bih Feng; Yang-Ren Yau;
Shih-Kung Chen; Jian-Cheng Dai, Software
Engineering Conference, 1998. Proceedings. 1998 Asia
Pacific , 1998, Page(s): 369 -376

*Generalized version control in an object-oriented
database’, Beech, D.; Mahbod, B., Data Engineering,
1988. Proceedings. Fourth International Conference
on , 1988 Page(s): 14 -22

(58) continued overleaf

(b4) Abstract Title

Management and distribution of electronic media

(57) A versioning method and system is described. Versioning information is stored as metadata associated
with data entities (35, 37, 39, 41). A hierarchical relationship between the entities 35, 37, 39, 41) allows the
definition of an editorial sequence and separate revisions within that sequence as well as relationships

between sequences in a self-contained format.

33

Media object

Media instance

Media Component

component

release
language
coverage
encoding
identifier

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Vv L09€ELEC 9D

(68) Field of Search
UK CL (Edition T) G4A AUDB
INT CL” GO6F 9/46 17/60
ONLINE: WP, EPODOC, PAJ, IEL

113

25

FIG. 2

2/3

i

! LAY

! [Y

i Jaynuapl PN

" “ dt

— P - - - H *

b pmmmmmmmmmmmmoossemoons .t .,

; i AN

P Buipoous PN T
A Y

P abeianod AN

. obenbue| TTeed

P asea|al o

. ;

1 ! |

1 i :

i ! H

1) * i

1 § * H

1 1 K '

! H -~ N 1

P h L

1 ! i H

i i i i

1] 1 :

1 ! i H

1 ! i h

] t i]

s 1 i :

1 4 : ;

1) 1 :

" s

H [4

i)

" !

!]

' L]

!]

! i

m lIlI+l\\j1. ——

n '

! 1

| i

] []

1

[}

A R R

B]

[]

1

t

r-----;
)

41

\
/
39

IR pUpR

\

N

/

37

FIG. 3

35

-

313

\4

527

~"49

10

15

20

25

30

1 2373601

Management and Distribution of Electronic Media

The present invention relates to the management and distribution of electronic

media particularly, although not exclusively, over a network.

With the advent of the computer and particularly the networking of computers,
the ability of organisations and individuals to rapidly generate, store, access
and process data has increased dramatically. in the case of many
organisations, the ability to manage and leverage data has become a central

aspect of their business.

Not surprisingly, considerable effort and development has occurred in those
computational and software fields related to the generation, storage,
accessibility and processing of data. Nevertheless, it has been the case that
as organisations have moved to a distributed architecture paralleling the
development of the Internet, the complexity involved in providing solutions
across different platforms and operating systems has become ever more
challenging. Consequently, developers have tended to concentrate on limited
solutions for preferred platforms and operating systems. Similarly,

organisations have sought to standardise the tools they use to leverage data.

Unfortunately, the pull exerted by those distributed computing models
currently finding favour is in direct contradiction to the solutions adopted by
the majority of developers and those responsible within organisations for the
selection of tools. Consequently, the management and distribution of data,
particular of high value media content remains problematic. In particular,
present techniques do not successfully address the need to be able to
manage and track the editorial lifecycle of data entities and be able to
differentiate between distinct yet related variants of a common body of

information.

10

15

20

25

30

Thus, according to one aspect of the invention, there is provided a content
repository system comprising a storage device for a plurality of persistent data
entities including metadata each entity having a predetermined level of scope
such that within a set of related data entities, the scope of an entity at a higher
level encompasses the scope of related entities at a lower level of scope,
wherein at least one entity includes metadata that identifies a sequential
relationship between one or more entities within the scope of said one entity,
each of said entities including metadata defining a position within said
sequential relationship.

Advantageously, the identification provided by the metadata of the at least
one entity corresponds to an indication of an editorial sequence or release
comprising those entities within its scope each of which include metadata
defining a position or version with the sequence. Preferably, where a
relationship exists between one or more such editorial sequences, then a
further entity indicative of a different release will contain within its metadata an
indication of the source of that release. Such an indication may identify a
particular revision within another release. Thus, the system seeks to
overcome a difficult present in known tree-based versioning models namely
their inability to explicitly define relationships between different releases.

According to a further aspect of the invention, there is provided a versioning
method for an object oriented programming environment comprising a set of
persistent data entities each having a predetermined level of scope wherein a
related set of data entities comprises a hierarchical plurality of levels such that
an entity at a higher level of scope encompasses the scope of related entities
at a lower level of scope, the method comprising associating metadata with an
entity indicative of a position within a sequence of one or more entities of
corresponding scope said sequence being identified by associating further
metadata with an entity whose scope encompasses said sequence of one or
more entities.

10

15

20

25

30

Such a method may be implemented on any suitable platform with any
suitable environment including a network comprising mobile and/or fixed
elements. By defining versioning information within metadata, it permits the
generation of a versioning model suited to a particular agent or user request.
Thus, by way of example, a tree-based versioning model may be generated
from the metadata albeit with explicit definition of the relationships between
releases. It will, of course, be apparent to those skilled in the art that other
versioning models may be generated.

Furthermore, according to yet another aspect of the invention, there is
provided a data modelling tool for an object oriented programming
environment comprising a set of persistent data entities each having a
predetermined level of scope wherein a related set of data entities comprises
a hierarchical plurality of levels such that an entity at a higher level of scope
encompasses the scope of related entities at a lower level of scope, the tool
comprising an interface operable to receive a request specifying a data model
in terms of relationships between sequences of entities and a processor
operable in response to said received request to generate a data model
utilising metadata associated with said entities, wherein at least one entity
includes metadata indicative of a position within a sequence of one or more
entities of corresponding scope said sequence being identified by further
metadata associated with an entity whose scope encompasses said

sequence of one or more entities.

Such a tool may be implemented within an agent which, because the physical
data is abstracted to metadata and manipulations of said metadata are
carried out through a predetermined language and semantics, permits the
agent to operate in different environments perhaps containing further agents.
Clearly, such a tool is equally applicable to environments made up of a single

machine or a distributed network,

Furthermore, because the agents within the system interact utilising the
predetermined language and semantics there is a reduced requirement for
knowledge of specialised configuration and implementation details of each

agent.

10

15

20

25

30

In order to understand the present invention more fully, a number of
embodiments thereof will now be described by way of example and with
reference to the accompanying drawings, in which:

Figure 1 is a block diagram of a network operating in accordance with a
framework of the invention;

Figure 2 is a schematic diagram illustrating the components of the framework
of Figure 1,

Figure 3 is a block diagram of an identity architecture of the framework of
Figure 1 and

Figure 4 is a block diagram of a registry service of the framework of figure 1.

It should be noted that in order to improve the readability of the specification,
portions of the description relating to the embodiment described below have
been included as Appendices | to V. Where appropriate, reference has been
made to a relevant Appendix. It will, of course, be understood by those skilled
in that art that that the Appendices are intended to form part of the present

disclosure.

A network 1 includes an HTTP web server 3 accessible 4 by production
clients 5 operating a number of operating systems on various platform and a
set of on-line distribution clients 7. Included amongst the on-line distribution
clients 7 is a wireless terminal 9 utilising Wireless Mark-up Language (WML).
As such, the terminal accesses 6 the HTTP web server 3 indirectly via a WAP
server 1, which provides the necessary translation 8 between HTTP and
WML. The HTTP web server 3 further provides a Common Gateway
interface (CGI). In addition to these physical elements of the network 1, data
exchanged with the HTTP web server 1 is also exchangeable 10 with an
Agent pool 13 made up of a number of core software components or agents
13a, 13b, 13c, 13d providing services which will be elaborated upon below.
Data exchanged 10 with the HTTP web server 3 by the Agent pool 13 may be
transferred 12 between agents 123b, 13c. The Agent pool 13 has additional

connections. Firstly, a connection 14 to a customer documentation server 15

10

15

20

25

30

capable of providing both on-line 17 and hard media 19 access to users and
secondly, a connection 16 to a set of one or more archives 21 which
themselves may be monitored and managed through an on-line connection 18
to a remote terminal 23,

Figure 2, illustrates on a conceptual level the relationships (indicated by
arrows in the Figure) existing between elements of the embodiment. Thus, a
Media Attributions and Reference Semantics (MARS) 25 provides a core
standard vocabulary and semantics utilising metadata for facilitating the
portable management, referencing, distribution, storage and retrieval of
electronic media. As will be further described below, MARS 25 is the common
language by which different elements of the embodiment communicate. A
Generalised Media Archive (GMA) 27 provides an abstract archival model for
the storage and management of data based solely on metadata defined by
MARS 25. At a physical level, a Portable Media Archive (PMA) 29 provides
an organisational model of a file system based data repository conforming to
and suitable for implementations of the Generalised Media Archive (GMA)
abstract archival model. Finally, a Registry Service Architecture (REGS) 31 is
provided which permits dynamic qQuery resolution by agencies including users
and software components or agents utilising MARS 25, thereby providing a
unified interface model for a broad range of search and retrieval tools.

As has been previously indicated, the Framework is based on a web server 3
running on a platform which provides basic command line and standard
input/output stream functionality. An agent 13 provides two interfaces: a
combined Hypertext Transfer Protocol (HTTP) and Common Gateway
interface (CGI), HTTP+CGI, and a Porable Operating System Interface
(POSIX) command line + standard input/output/error. In addition to these
interfaces, the agent may provide further interfaces based on Java method
invocation and/or Common Object Request Broker Architecture (CORBA)
method invocation. An agent (or other user, client, or process) is free to

choose among the available interfaces with which to communicate including

10

15

20

25

30

communication with another such agent 13. In addition, the framework allows
non-agent systems, processes, tools, or services which are utilised by an
agent 13 to be accessed via proprietary means if necessary or useful for any
operations or processes outside of the scope of the architecture. Thus, tools
and services intended for the architecture can co-exist freely with other tools

and services utilising the same resources.

in more detail, the protocols on which the framework is based include HTTP
which is an application-level protocol for distributed, collaborative, hypermedia
information systems. As a generic, stateless, protocol HTTP can be used for
many tasks beyond hypertext. Thus, it may also be used with name servers
and distributed object management systems, through extension of its request
methods, error codes and headers. A particularly useful feature of HTTP is
the typing and negotiation of data representation, allowing systems to be built
independently of the data being transferred.

CGl is a standard for interfacing external applications with information
servers, such as Web servers. CGl serves as the primary communication
mechanism between networked clients and software agents within the
framework.

POSIX is a set of standard operating system interfaces based on the UNIX
operating system. The POSIX interfaces were developed under the auspices
of the IEEE (Institute of Electrical and Electronics Engineers). The framework
adopts the POSIX models for command line arguments, standard input

streams, standard output streams, and standard error streams.

CORBA specifies a system which provides interoperability between objects in
a heterogeneous, distributed environment that is transparent to a database
programmer. lts design is based on the Object Management Group (OMG)
Object Model. Framework agents may utilise CORBA as one of several

means of agent intercommunication.

10

15

20

25

30

Java (Registered Trade Mark) is both a programming language and a
plattorm. Java is a high-level programming language intended to be
architecture-neutral, object-oriented, portable, distributed, high-performance,
interpreted, multithreaded, robust, dynamic, and secure. The Java platform is
a "virtual machine" which is able to run any Java program on any machine for
which an implementation of the Java virtual machine (JVM) exists. Most
operating systems commonly in use today are able to support an
implementation of the JUM. The core software components and agents
provided by the framework may be implemented in Java.

Metadata is held within the framework using a naming scheme which is
compatible across a broad range of encoding schemes, including, but not
limited to the following programming, scripting and command languages:

C, C++, Objective C, Java, Visual BASIC, Ada, Smalltalk, LISP, Emacs Lisp,
Scheme, Prolog, JavaScript/ECMAScript, Perl, Python, TCL, Bourne Shell, C
Shell, Z Shell, Bash, Korn Shell, POSIX, Win32, REXX, SQL.

The naming scheme is also compatible with but not limited to the following
mark-up and typesetting Languages:

SGML, XML, HTML, XHTML, DSSSL, CSS, PostScript, PDF.

Equally, the naming scheme is also compatible with but not limited to the
following file systems:

FAT (MS-DOS), VFAT (Windows 95/98), NTFS (Windows NT/2000), HFS
(Macintosh), HPFS (0S/2), HP/UX, UFS (Solaris), ext2 (Linux), ODS-2 (VMS),
NFS, ISO 9660 (CDROM), UDF (GDR/W, DVD).

10

15

20

25

30

In order to provide such compatibility, the naming scheme utilises an explicit,
bound, and typically ordinal set of values referred to hereinafter as a token.
The token may comprise any sequence of characters beginning with a
lowercase alphabetic character followed by zero or more lowercase
alphanumeric characters with optional single intervening underscore
characters. More specifically, any string matching the following POSIX

regular expression:

N[a-2)(_?[a-z0-9})*/

Examples:

abcd

ab_cd

al23

x2_3_4.5

here_is_a_very_long_token_value

By defining MARS metadata properties in a token format, an agent 13 or
other tool is able to operate more efficiently as a result of its processes being
based on controlled sets of explicitly defined values rather than those based
on arbitrary values.

A token provides the structure through which the framework is able to define
metadata in the form of a property, this property being representative of a
quality or attribute assigned or related to an identifiable body of information.

The property thus comprises an ordered collection of one or more values

sharing a common name. The name of the property represents the name of

10

15

20

25

30

10

the collection and the value(s) represent the realisation of that property. In
accordance with the token structure adopted in the framework, constraints are
placed on the values which may serve as the realisation of a given propenty.
A property set is thus any set of MARS 25 properties. Further details of the
property types allowed under MARS 25 are to be found in Appendix 11?7
Certain property values are also defined under MARS 25 and may also be
found in Appendix lI? These include the property value of count which may
be single meaning that at most there may be one value for a given property or
multiple meaning that there may be one or more values for a given property.
Another property value is range which for any given property may be bounded
or unbounded. In addition, the property value of ranking provides, for any
given property, the set of allowed values for that property may be ordered by
an implicit or explicit ordinal ranking, either presumed by all applications
operating on or referencing those values or defined. Some property value
types are ranked implicitly due to their type and subsequently the value
ranges of all properties of such types are automatically ranked examples of
such property types include Integer, Count, Date, Time and the like. Most
properties with ranked value ranges are token types having a controlled set of
allowed values which have a significant sequential ordering such as status,
release, milestone and the like.

Ranking, if it is applied, may be either strict or partial. With strict ranking, no
two values for a given property may share the same ranking. With partial
ranking, multiple values may share the same rank, or may be unspecified for
rank, having the implicit default rank of zero.

Ranked properties may only have single values. This is a special constraint
which follows logically from the fact that ranking defines a relationship
between objects having ranked values, and comparisons between ranked
values becomes potentially ambiguous if multiple values are allowed. E.g. if
the values x, y, and z for property P have the ranking 1, 2, and 3 respectively,
and object ‘foo’ has the property P(y) and object 'bar’ has the property P(x,z),

10

15

20

25

30

1

then a boolean query such as "foo.P < bar.P?" cannot be resolved to a single
boolean result, as y is both less than z and greater than X, and thus the query
is both true and false, depending on which value is chosen for bar.P (i.e.
foo.P(y) < bar.P(x) = False, while foo.P(y) < bar.P(z) = True).

Ranking for all property types other than token are defined implicitly by the
data type, usually conforming to fundamental mathematical or industry
standard conventions. Ranking for token property values are specified using
Ranking. In either case and as has already been stated, ranking may be strict
in the sense that the set of allowed values for the given property corresponds
to a strict ordering, and each value is associated with a unique ranking within
that ordering. Alternatively, ranking may be partial in the sense that the set of
allowed values for the given property corresponds to a partial ordering, and
each value is associated with a ranking within that ordering, defaulting to zero
if not otherwise specified. Finally, ranking may not be applied such that the
set of allowed values for the given property corresponds to a free ordering,

and any ranking specified for any value is disregarded.

With reference to Figure 3, the framework defines an Identity architecture 33
having a set of nested pre-determined definitions of specific scope each
utilising tokens to hold information. At the lowest level of scope, a Storage
ltem 35 corresponds to what would typically be stored in a single file or
database record, and is the physical representation of the data which the
framework is capable of manipulating. Thus, Iltems 35 are the discrete
computational objects which are passed from process to process, and which
form the building blocks from which the information space and the
environment used to manage, navigate, and manipulate it are formed.
Hence, an ltem 35 may embody content, content fragments, metadata,

revision deltas, or other information.

At the next highest level of scope, a Media Component 37 defines a particular

realisation of a defined token value. Thus, the Component 37 defines at an

10

15

20

25

30

12

abstract level properties and characteristics of one of the following non-
exhaustive content types, namely data, metadata, table of contents, index or
glossary. A data content type might include a language, area of coverage,
release or method of encoding. A component 37 is linked to one or more

storage item 35 which relates to the content at a physical level.

Immediately, above the level of scope of the Media Component 37 is a Media
Instance 39. The media instance 39 is made up of a number of media
components 37 each of which relate to a particular property of an identifiable
body of information. Thus, a particular Media Instance 39 will comprise a set
of properties 37 namely a specific release, language, area of coverage and
encoding method.

Finally, the highest level of scope is a Media Object 41 which represents an
body of information corresponding to a common organisational concept such
as a document, book, manual, chapter, section, sidebar, table, image, chart,
diagram, graph, photograph, video segment, audio stream or the like.
However, the body of information is abstract to the extent that no specification
is made of any particular language, coverage, encoding or indeed release.
Thus, depending on the presence, or otherwise of information at the lower
levels of scope, dictated ultimately by the existence or otherwise of a relevant
Storage Item 35, it may be possible to realise some, if not all, particular media

instances 39 corresponding to that media object 41.

In order to allow for referencing of specific content, namely a fragment within
a given item, component, instance, or object, MARS 25 adopts the Worldwide
Web Consortium (W3C) proposal for the XPointer standard for encoding such
content specific references in SGML, HTML, or XML content. A fragment will
be understood by those skilled in the art to be an identifiable linear sub-
sequence of the data content of a component 37, either static or reproducible,
which is normally provided where the full content is either too large in volume

for a particular application or not specifically relevant. Those skilled in the art

10

15

20

25

30

13

will also be aware of the W3C Xpointer proposal, however further details may
be found from the W3C website which is presently located at www.w3c.org.
XPointer is based on the XML Path Language (XPath). Through the selection
of various properties, such as element types, attribute values, character
content, and relative position, XPointer supports addressing within internal
structures of XML documents and allows for traversals of a document tree.
Thus, in place of structural references to data, the framework may provide
that explicit element ID values are used for all pointer references thereby
avoiding specific references to structural paths and data content. As a result,
the framework ensures the maximal validity of pointer values to all realisations
of a given media object, irrespective of language, coverage, encoding, or
partitioning. In additon to the Xpointer standard proposal, other
alternative/additional internal pointer mechanisms for other encodings may be

utilised.

In addition to the above-described architecture, the framework provides rules
which relate to the inheritance and versioning of the scoped definitions. Thus,
the framework provides that metadata defined at higher scopes is inherited by
lower scopes. This is provided for by ensuring that two rules are applied.
Firstly, that all metadata properties defined in higher scopes are fully visible,
applicable, and meaningful in all lower scopes, without exception. Secondly,
any property defined in a lower scope completely supplants any definition of
the same property that might exist in a higher scope. Consequently, all
metadata properties defined for a media object 41 are inherited by all
instances 39 of that object; and all metadata properties defined for a media

instance 39 or media object 41 are inherited by all of its components 37.

In relation to versioning, MARS 25 defines a versioning model using two
levels of distinction. A first level is defined as a release, namely a published
version of a media instance which is maintained and/or distributed in parallel
to other releases. By way of example, a release could be viewed as a branch

in a prior art tree based versioning model. A second level is defined as a

10

15

20

25

30

14

revision corresponding to a milestone in the editorial lifecycle of a given
release; or by way of example, a node on a branch of the prior art tree based
model. MARS 25 defines and maintains versioning for 'data’ storage item 35,

only,

In addition to the Identity architecture described above, MARS 25 provides a
management architecture which permits control of processes such as
retrieval, storage, and version management. Details of the properties defined
to provide such functionality might be found in Appendix Il MARS 25 also
provides affiliation properties which define an organisational environment or
scope where data is corrected and maintained. Examples of such properties
can also be found in Appendix . MARS 25 further provides content
properties which allow definition of data characteristics independent of the
production, application or realisation of that Data. Again, examples of such
properties can be found in Appendix Il. MARS 25 also provides encoding
properties defining special qualities relating to the format, structure or general
serialisation of data streams. These properties are, of course, of significance
to tools and processes operating on that data. Yet again, examples of such
properties can be found in Appendix Il. MARS 25 also provides association
properties which define relationships relating to the origin, scope or focus of
the content in relation to other data. Examples of such properties may be
found in Appendix II. Finally, MARS 25 provides role properties which specify
one or more actors who have a relationship with the data. An actor may be a
real user or a software application such as an agent. Examples of such
properties may be found in Appendix II.

As has been previously mentioned, a Generalised Media Archive (GMA) 27,
based on Media Attribution and Reference Semantics (MARS) 25 metadata
provides a uniform, consistent, and implementation independent model for the
storage, retrieval, versioning, and access control of electronic media. Further
details of the GMA may be found in Appendix IV. The GMA 27 and serves as

the common archival model for all managed media objects controlled,

10

15

20

25

30

15

accessed, transferred or otherwise manipulated by agencies operating with
the framework. Hence, the GMA 27 may serve as a functional interface to
wide range of archive implementations whilst remaining independent of
operating system, file system, repository ~ organisation, versioning
mechanisms, or other implementation details. This abstraction facilitates the
creation of tools, processes, and methodologies based on this generic model
and interface which are insulated from the internals of the GMA 27 compliant
repositories with which they interact.

The GMA 27 defines specific behaviour for basic storage and retrieval, access
control based on user identity, versioning, automated generation of variant
instances, and event processing. The identity of individual storage items 35 is.
based on MARS metadata semantics and all interaction between a client and
a GMA implementation must be expressed as MARS 25 metadata property
sets.

The GMA manages media objects 41 via media components 37 and is made
up of storage items 35. The GMA manages the operations of versioning,
storage, retrieval, access control, generation and events as will be further
described below. Examples of pseudocode corresponding to the above and
other managed operations carried out by the GMA may be found in Appendix
IV.

The GMA 27 operates solely on the basis of MARS 25 metadata and as a
result of its operation the GMA 27 acts on that same metadata. The metadata
operated on by the GMA 27 is restricted to management metadata rather than
content metadata. The former being metadata concerned with the history of
the physical data, such as retrieval and modification history, creation history,
modification and revision status, whereas the latter is concerned with the
qualities and characteristics of the information content as a whole,
independent of its management. Content metadata is stored as a separate

'meta’ component 37, not a ‘meta’ item 35, such that the actual specification

10

15

20

25

30

16

of the content metadata is managed by the GMA 27 just as any other media
component 37. The metadata that is of primary concern to a GMA 27, and
which a GMA accesses, updates, and stores persistently, is the metadata
associated with each component 37.

A GMA 27 manages media components 37, and the management metadata
for each media component 37 is stored persistently in the 'meta’ storage item
35 of the media component 37. A special case exists with regards to
management metadata which might be defined at the media instance 39 or
media object 41 scope, where that metadata is inherited by all sub-
components 37 of the higher scope(s) in accordance with the inheritance
rules set out above.

In order to provide the necessary functionality, the GMA 27 requires that the
certain metadata properties are defined in an input query and/or in respect of
any target data depending on the action being performed and which functional
units are implemented. These properties are set out in Appendix IV Section
4.1.2-4. In accordance with inheritance rules defined in MARS 25, retrieval of
metadata for a given media component scope includes all inherited metadata
from media object and media instance scopes. [n addition, the GMA 27 will
assume the default values as defined by the MARS 25 specification for all
properties which it requires but that are not specified explicitly. It is an error
for a required property to have neither a default MARS 25 value nor an
explicitly specified value. In addition to relying on existing metadata
definitions, the GMA 27 is responsible for defining, updating, and maintaining
the management metadata relevant for the 'data’ item 35 of each media
component 37, which is stored persistently as the 'meta’ item 35 of the
component 37.

The GMA 27 stores 'meta’ item 35, containing management metadata, in any
internal format; however the GMA must accept and return 'meta’ storage
items as XML (eXtensible Mark-up Language) instances. However, content

10

15

20

25

30

17

metadata constituting the data content of a 'meta’ component 37 and stored
as the 'data’ item 35 of the ‘meta’ component 37, must always be a valid XML
instance.

These two constraints ensure that an agent interacting with the GMA 27 is
able to retrieve from or store to the GMA 27 both content and management
metadata as needed. The GMA 27 is also able, as a consequence of these
constraints to resolve inherited management metadata from meta

components at higher scopes in a generic fashion.

In order to store and retrieve items, the GMA 27 associates electronic media
data streams to MARS 25 storage item identities and makes persistent,
retrievable copies of those data streams indexed by their MARS 25 identity.
The GMA 27 also manages the corresponding creation and modification of
time stamps in relation to those items. The GMA 27 organises both the
repository 21 of storage items 35 as well as the mapping mechanisms relating
MARS identity metadata to locations within that repository 21. The GMA 27
may be implemented in any particular technology including, but not limited to
common relational or object oriented database technology, direct file system

storage, or any number of custom and/or proprietary technologies.

in addition to the core storage and retrieval actions provided by the GMA 27,
the GMA 27 is capable of providing the functionality necessary to permit
operations by agents in relation to versioning, access control, generation,
and/or events. To the extent that such functionality is provided by the GMA
27, it will exhibit a pre-defined behaviour.

Thus, if the GMA 27 implements access control, then access control of media
components 37 is based on several controlling criteria as defined for the
environment in which the GMA resides and as stored in the metadata of
individual components managed by the GMA. Access control is defined for

entire components and never for individual items within a component. Access

10

15

20

25

30

18

control may also be defined for media objects 41 and media instances 39, in
which case subordinate media components 37 inherit the access
configuration from the higher scope(s) in the case that it is not defined
specifically for the component. The four controlling criteria for media access
are User identity, Group membership(s) of user, Read permission for user or
group and Write permission for user or group.

Accordingly, every user must have a unique identifier within the environment
in which the GMA operates, and the permissions must be defined according
to the set of all users and groups within that environment.

A user may be a human, but also can be a software application, process, or
system typically referred to as an agent 13. This is especially important for
both licensing as well as tracking operations performed on data by automated
software agents 13 operating within the GMA 27 environment. Furthermore,
any user may belong to one or more groups, and permissions may be defined
for an entire group, and thus for every member of that group. Consequently,
the maintenance overhead in environments with large numbers of users
and/or high user turnover many users coming and going is reduced. In a
manner similar to the inheritance rules applied by MARS 25, permissions
defined for expilicit user override permissions defined for a group of which the
user is a member. For example, if a group is allowed write permission to a
component 37, but a particular user is explicitly denied write permission for
that component 37, then the user may not modify the component 37.

The GMA 27 may also provides read permission such that a user or group
may retrieve a copy of the data. Where a lock marker is placed in relation to
data, it does not prohibit retrieval of data, merely modification of that data.

If access control is not implemented, and/or unless otherwise specified

globally for the GMA 27 environment or for a particular archive, or explicitly

10

15

20

25

30

19

defined in the metadata for any relevant scope, a GMA 27 must assume that

all users have read permission to all content.

Similarly, the GMA 27 may also provide Write permission which means that

the user or group may modify the data by storing a new version thereof.

The GMA 27 provides that write permission equates to read permission such
that every user or group which has write permission to particular content also
has read permission. This overrides the situation where the user or group is

otherwise explicitly denied read permission.

As in the case of read permission, the presence of a lock marker prohibits
modification by any user other than the owner of the lock, including the owner
of the component 32 if the lock owner and component owner are different.
Optionally, the GMA 27 provide a means to defeat locking as a reserved
action unavailable to general users. Should locking be defeated in this
manner then the GMA 27 logs the event and notifies the lock owner
accordingly.

Where access control is not implemented, then the GMA 27 applies the rule
that all users have write permission to all content. If access control is
implemented, and unless otherwise specified globally for the GMA 27
environment or for a particular archive or explicitly defined in the metadata for
any relevant scope, the GMA 27 must assume that no users have write
permission to any content.

Regardless of any other metadata defined access specifications not including
settings defined globally for the archive, the owner of a component 37 always

has write access to that component 32.

In addition to blanket access control, the GMA 27 may, if access control is

enabled provide a set of access levels which serve as convenience terms

10

15

20

25

30

20

when defining, specifying, or discussing the "functional mode" of a particular
GMA 27 with regard to read and write access control.

Access levels can be used as configuration values by GMA 27
implementations to specify global access behaviour for a given GMA 27
where the implementation is capable of providing multiple access levels. At
each level the read and write capability may be predefined subject to the
overriding rule that a read right may never fall below the corresponding write
right.

The GMA 27 may implement versioning. Through the implementation of
versioning, the GMA 22 facilitates the identification, preservation, and retrieval
of particular revisions in the editorial lifecycle of a particular discrete body of
data.

The versioning model used by the GMA 22 and further description in
Appendix IV section 4.5, in particular defines a release as a series of
separately managed and independently accessible sequences of revisions.
Revisions are defined as ’snapshots’ along a particular release. Where a
release is derived from another release then the GMA 27 updates a MARS 25
source property to identify from what release and revision the new release
stems. Within the above rules, the GMA 27 is responsible for linear
sequence of revisions within a particular release. The GMA 27 is responsive
to external agent 13 activities that are themselves responsible for the
automated or semi-automated creation or specification of new instances 39
relating to distinct releases. The GMA is also responsive tc agent 13 activity
relating to the retrieval of revisions not unique to a particular release.
Typically, the creation of new releases will be performed manually by a
human editor, including the specification of 'source’ and any other relevant
metadata values. Other tools, external to the GMA 27 may also exist to aid

users in performing such operations.

10

15

20

25

30

21

Versioning is performed by a GMA 27 for the 'data’ item 35 of a media
component 37 only and that sequence of revisions constitutes the editorial
history of the data content of the media component 37. The GMA 22 is also
responsible for general management and updating of creation, modification
and other time stamp metadata. Storage or update of items other than the
'data’ item 35 neither effect the status of management metadata stored in the
'meta’ item 35 of the component 37 unless the item 35 in question is in fact
the 'meta’ 35 item of the component 37, nor are reflected in the revision
history of the component 37. If a revision history or particular metadata must
be maintained for any MARS 25 identifiable body of content, then that content
must be identified and managed as a separate media component 37, possibly

belonging to a separate media instance 39.

Revisions are identified by positive integer values utilising MARS 25 property
type Count values. The scope of each media component 37 is unique and
revision values have significance only within the scope of each particular
media component 32. Revision sequences should begin with the value '1’
and proceed linearly and sequentially. The GMA 27 implementation is free to

internally organise and store past revisions in any fashion it chooses..

The GMA 22 may implement one or both of the following described methods
for storing past revisions of the content of a media component. However,
regardless of its internal organisation and operations, the GMA 22 must return

any requested revision as a complete copy.

One method which the GMA 27 may employ to store past revisions is to
generate snapshots. A snapshotis a complete copy of a given revision at a
particular point in time. As such snapshotting is straightforward to implement,
and possibly time consuming regeneration operations are not needed to
retrieve past revisions. The latter can be very important in an environment

where there is heavy usage and retrieval times are a concermn.

10

15

20

25

30

22

Alternatively or in conjunction with snapshots, the GMA 27 may store past
revisions through a reverse delta methodology. A delta is set of one or more
editorial operations which can be applied to a body of data to consistently
derive another body of data. A reverse delta is a delta which allows one to
derive a previous revision from a former revision. Rather than store the
complete and total content of each revision, the GMA 27 stores the
modifications necessary to derive each past revision from the immediately
succeeding later revision. To obtain a specific past revision, the GMA 27
begins at the current revision, and then applies the reverse deltas in
sequence for each previous revision until the desired revision is reached.

In a variant of the above, the GMA 27 utilises a forward delta methodology
where each delta defines the operations needed to derive the more recent
revision from the preceding revision.

The GMA 27 may also implement generation through the dynamically creating
datastreams from one or more existing storage items 35. By way of example,
this includes conversions from one encoding or format to another, extraction
of portions of a component's content, auto-generation of indices, tables of
contents, bibliographies, glossaries, and the like as new components 37 of a
media instance 39, generation of usage, history, and/or dependency reports
based on metadata values, generation of metadata profiles for use by one or

more registry services.

The GMA 27 also provides dynamic partitioning whereby a fragment of the
data content is returned in place of the entire 'data’ item, optionally including
automatically generated hypertext links to preceding and succeeding content,
and/or information about the structural/contextual qualities of the omitted
content, depending on the media encoding. Dynamic partitioning may be
implemented by the GMA 27 irrespective of whether static fragments exist.
Dynamic partitioning is controlled by one or possibly two metadata properties,

in addition to those defining the identity of the source data item. The required

10

15

- 20

25

30

23

property is size which determines the maximum number of bytes which the
fragment can contain starting at the beginning of the data item. Whereas the
second and optional property is pointer which defines the point within the data
item from which the fragment is extracted. Thus, the GMA 27 extracts the
requested fragment, starting either at the beginning of the data item, where no
pointer is defined or at the point specified by the pointer value which may be
at the start of the data item if the pointer value is zero. The GMA 27 collects
the largest coherent and meaningful sequence of content up to but not
exceeding the specified number of content bytes. What constitutes a
coherent and meaningful sequence will depend on the media encoding of the
data and possibly interpretations inherent in the GMA 27 implementation
itself.

A GMA 27 may implement event handling. Accordingly, for each storage item

35, media component 37, media instance 39, or media object 41, a set of one

or more MARS 25 property sets defining some operation(s) can be associated
with each MARS 25 action, such that when that action is successfully
performed on that item 35, component 37, instance 41, or object, the
associated operations are executed. Automated operations are thus defined
for the source data and not for any target data which might be automatically
generated as a result of an event triggered operation.

Each operation property set must specify the necessary metadata properties
to be executed correctly, such as the action(s) to perform and possibly
including the CGI URL of the agency which is to perform the action. The GMA
27 determines how a given operation is to be performed, and by which
software component or agent 13 if otherwise unspecified in the property
set(s).

In the case of a remove action, which will result in the removal of any events
defined at the same scope as the removed data, the GMA 27 will execute any

operations associated with the remove action defined at that scope, after

10

15

20

25

30

24

successful removal of the data, even though the operations themselves are
part of the data removed and will never be executed again in that context.

The most common type of operation for events is a compound 'generate
store’ action which generates a new target item from an input item and stores
it persistently in the GMA 27, taking into account all versioning and access
controls in force. By this operation, it is possible to automatically update
components such as the toc (Table of Contents) or index when a data
component 37 is modified, or generate static fragments of an updated data
component 37.

The GMA 27 may associate automated operations globally for any given
action provided the automated operations are defined in terms of MARS 25
property sets. Automated operation may also be applied within the scope of
the data being acted upon. The GMA 25 may also associate automated
operations with triggers other than MARS 25 actions, such as reoccurring
times or days of the week, for the purpose of removing expired data such as
via a ’locate remove’ compound action

The GMA 27 must also apply the following rules relating to the serialisation
and encoding of certain storage items. Thus, the GMA 27 provides that every
‘meta’ storage item which is presented to a GMA 27 for storage or returned by
a GMA 27 on retrieval must be a valid XML instance. Metadata property
values "contained" within 'meta’ storage items 35 need not be stored or
managed internally in the GMA 27 using XML, but every GMA 27
implementation must accept and return 'meta’ items as valid XML instances.
In the case of 'data’ Storage Items 35 within 'meta’ Media Components 37, the
serialisation of 'meta’ storage items 35 is also used to encode all 'data’
storage items 35 for all 'meta’ components 37. Although the GMA 27
persistently stores all 'data’ storage items 35 literally, it may also choose to
parse and extract a copy of the metadata property values defined within meta

10

15

20

25

30

25

component data items 35 to more efficiently determine inherited metadata
properties at specific scopes within the archive 27.

Every 'idmap’ storage item which is presented to a GMA 27 for storage or
returned by a GMA 27 on retrieval should be encoded as a Comma
Separated Value (CSV) data stream defining a table with two columns where
each row is a single mapping and where the first column/field contains the
value of the 'pointer’ property defining the symbolic reference and the second
column/field contains the value of the 'fragment’ property specifying the data

content fragment containing the target of the reference, for example:

#E1D284828,228
#EID192,12
#E1D9928,3281
#EID727,340

The mapping information "contained" within idmap’ storage items need not be
stored or managed internally in the GMA 27 in CSV format, but every GMA 27
implementation must accept and return 'idmap’ items as CSV formatted data

streams.

Finally, the GMA 27 must retumn the complete and valid contents of a given
'data’ storage item for a specified revision (if it exists), regardless how
previous revisions are managed intemally. Reverse deltas or other change
summary information which must be applied in some fashion to regenerate or
rebuild the desired revision must never be returned by a GMA 27, even if that
is all that is stored for each revision data item internally. Only the complete

data item is to be returned.

In order to implement the GMA 27 across a physical system 1, the concept of
a Portable Media Archive (PMA) 29 has already been introduced. The PMA

29 provides a physical organisational model of a file system based data

10

15

20

25

30

26

repository 21 conforming to and suitable for implementations of the
Generalised Media Archive (GMA) 27 abstract archival model. Appendix il
provides further details of the PMA 29

The PMA 29 defines an explicit yet highly portable file system organisation for
the storage and retrieval of information based MARS 35 metadata.
Accordingly, the PMA 29 uses the MARS Identity and Item Qualifier metadata
property values themselves as directory and/or file names. Where the GMA
27 utilises a physical organisation, model other than the PMA 29. The PMA 29
may nevertheless be employed by such an implementation as a data
interchange format between disparate GMA 27 implementations and/or as a

format for storing portable backups of a given archive 21.

The PMA 29 is structured physically as a hierarchical directory tree that
follows the MARS object/instance/component/item scoping model. Each
media object 41 comprises a branch in the directory tree, each media
instance 39 a sub-branch within the object branch 41, each media component
32 a sub-branch within the instance 39, and so forth. Only MARS Identity and
ltem Qualifier property values are used to reference the media objects 41 and
instances 39. All other metadata properties as well as Identity and Qualifier
properties are defined and stored persistently in 'meta’ storage items 35;
conforming to the serialisation and interchange encodings used by the GMA
27 and referred to above. Because Identity and Item Qualifier properties must
be either valid MARS tokens or integer values, it will be appreciated by more
skilled in the art that any such property value is likely to be an acceptable
directory or file name in all major file systems in use today.

More particularly, the media object scope is encoded as a directory path
consisting of a sequence of nested directories, one for each character in the

media object ‘identifier’ property value.

For example:

10

15

20

25

30

27

identifier="dn9982827172" gives d/n/9/9/8/2/8/2/7/1/2/

Identifier values are broken up in this fashion in order to support very large
numbers of media objects, perhaps up to millions or even billions of such
objects, residing in a given archive 21. By employing only one character per
directory, the PMA 29 ensures that there will be at most 37 child sub-
directories within any given directory level that is one possible sub-directory
for each character in the set [a-z0-9_] allowed in MARS token values.
Accordingly, the sub-directory structure satisfies the maximum directory
children constraints of most modem file systems. The media object 41 scope
may contain media instance 39 sub-scopes or media component 37 sub-
scopes; the latter defining information, metadata or otherwise, which is shared
by or relevant to all instances of the media object 41. The media instance 39
scope is encoded as a nested directory sub-path within the media object 41
scope and consisting of one directory for each of the property values for

'release’, 'language’, ‘coverage’, and ‘encoding’, in that order.

For example:

release="1" language="en" coverage="global" encoding="xhtml" gives
1/en/global/xhtml/

The media component 37 scope is encoded as a sub-directory within either
the media object 41 scope or media instance 39 scope and named the same
as the component 37 property value.

For example:

component="meta" gives meta/

10

15

20

25

30

28

The revision scope, grouping the storage items for a particular revision
milestone, is encoded as a directory sub-path within the media component 37
scope beginning with the literal directory 'revision’ followed by a sequence of
nested directories corresponding to the digits in the non-zero padded revision
property value.

For example:

revision="27" gives revision/2/7/

The 'data’ item 35 for a given revision must be a complete and whole
snapshot of the revision, not a partial copy or set of deltas to be applied to

some other revision or item. It must be fully independent of any other storage

item insofar as its completeness is concerned.

" The fragment scope, grouping the storage items for a particular static

fragment of the data component content, is encoded as a directory sub-path
within the media component 32 scope or revision scope and beginning with
the literal directory 'fragment’ followed by a sequence of nested directories
corresponding to the digits in the non-zero padded fragment property value.

For example:

fragment="5041" gives fragment/5/0/4/1/

The event scope, grouping action triggered operations for a particular
component 37, instance 39, or object 41, is encoded as a directory sub-path
within the media component 32 scope, media instance 39 scope, or media
object 41 scope and beginning with the literal directory 'events’ and containing
one or more files named the same as the MARS action property values, each
file containing a valid MARS XML instance defining the sequence of
operations as ordered property sets.

10

15

20

25

29

For example:

events/store
events/retrieve

events/unlock

The storage item 35 is encoded as a filename within the media component
37, revision, or fragment scope and named the same as the item property

value.

For example:

item="data" gives data

The PMA 29 does not have any minimum requirements on the capacities of
host file systems, nor absolute limits on the volume or depth of conforming
archives. However, it will be appreciated by those skilled in the art that an
understanding of the variables which may affect portability from one file
system to another is important if data integrity is to be maintained.
Nevertheless, the PMA 29 does define the following recommended minimal
constraints on a host file system, which should be met, regardless of the total

capacity or other capabilities of the file system in question:

File and Directory Name Length: 30
Directory Depth: 64
Number of Directory Children: 100

The above specified constraints are compatible with the following commonly
used file systems, which are therefore suitable for hosting an PMA 29 which

also does not exceed real constraints of the given host file system:

10

15

20

25

30

30

VFAT (Windows 95/98), NTFS (Windows NT/2000), HFS (Macintosh), HPFS
(0S/2), HP/UX, UFS (Solaris), ext2 (Linux), ISO 9660 Levels 2 and 3
(CDROM), and UDF (CDR/W, DVD).

These are but a representative sample of file systems which are suitable for
hosting a PMA 29. Appendix Ili provides an example of file system
organisation for a PMA 29,

Referring now to figure 4, in order to facilitate access by agents to the data
held within the framework, a ReGistry Service architecture (REGS) 31 is
defined which provides for dynamic query resolution agencies based on
MARS 25, thereby providing a unified interface model for a broad range of
search and retrieval tools. Appendix V provides further details of REGS.

REGS 31 provides a generic means to interact with any number of specialised
search and retrieval tools using a common set of protocols and interfaces
based on the Framework utilising MARS metadata semantics and either a
POSIX or CGI compliant interface. As with other Framewbrk components,
this allows for much greater flexibility in the implementation and evolution of
particular solutions while minimising the interdependencies between the tools
and their users be they human or software agents 13.

Being based on MARS 25 metadata allows for a high degree of automation
and tight synchronisation with the archival and management systems used in
the same environment, with each registry service deriving its own registry
database 43 directly from the metadata stored in and maintained by the
various archives 21 themselves; while at the same time, each registry service
43 is insulated from the implementation details of and changes in the archives
27 from which it receives 44 its information.

10

15

20

25

30

31

Referring to Figure 4, each variant of REGS 31 shares a common architecture
and fundamental behaviour, differing only in the actual metadata properties

required for its particular application.

A key feature of the Registry Database 43 architecture is the provision in
every case, of a profile or property set which, in addition to any non-identity
related properties, explicitly defines the identity of a specific media object,
media instance, media component, or storage item (possibly a qualified data

item).

Default values for unspecified Identity properties are not applied to a profile
and any given profile may not have scope gaps in the defined ldentity
properties (i.e. ‘item’ defined but not 'component’, etc.). Profiles must
unambiguously and precisely identify a media object, instance, component or
item.

in addition to identity, the retrieval location of the archive 21 or other
repository where that information resides must be specified either using the
'location’ or 'agency’ properties. If both are specified, they must define the

equivalent location.

The additional properties included in any given profile are defined by the
registry service operating on or returning the profile, and may not necessarily
contain any additional properties other than those defining identity and

location.

in order to access the content held within the framework, the agent 13 or
other user creates a search mask in the form of a query 46. The query 46 is a
particular variant of the above described profile set which defines a set of
property values which are to be compared to the equivalent properties in one

or more profiles. A query differs from a regular property set in that it may

10

15

20

25

30

32

contain values which may deviate from the MARS 25 specification in the
following ways:

Properties normally allowing only a single value may have multiple values
defined in a query 46.

The normal interpretation of multiple query values is to apply 'OR’ logic such
that the property matches if any of the query values match any of the target
values; however, a given registry service is permitted, depending on the
application, to apply "AND’ logic requiring that all query values match a target
value, and optionally that every target value is matched by a query value.
Accordingly, it must be clearly specified for a registry service if ’AND’ logic is
being applied to multiple query value sets. Furthermore, query values for
properties of MARS type String may contain valid POSIX regular expressions
rather than literal strings; in which case the property matches if the specified
regular expression pattern matches the target value. Query values may be
prefixed by one of several comparison operators, with one or more mandatory

intervening space characters between the operator and the query value.

The order of comparison for binary operators is:

query value {operator} target value

Not all comparison operators are necessarily meaningful for all property value
types, nor are all operators required to be supported by any given registry

service.

It must be clearly specified for every registry service which, if any, comparison

operators are supported in input queries.

In the rare case that a literal string value begins with a comparison operator

followed by one or more intervening spaces, the initial operator character

10

15

20

25

30

33

should be preceded by a backslash character \'. The registry service must
then identify and remove the backslash character before any comparisons.

Examples of some comparison operators are given below:

Negation "!"

The property matches if the query value fails to match the target value.

E.g. "! approved".

Less Than "<"

The property matches if the query value is less than the target value.

E.g. "< 2.5".

Greater Than ">"

The property matches if the query value is greater than the target value.
E.g. "> draft".
Less Than or Equal To "<="

The property matches if the query value is less than or equal to the target

value.

E.g. "<= 2000-09-22"

Greater Than or Equal To ">="

The property matches if the query value is greater than or equal to the target
value.

E.g. ">= 5000".

Wildcard Value Operator

10

15

20

25

30

34

Any property in a query may have specified for it the special value ",
regardless of property type, which effectively matches any defined value in
any target. The wildcard value does not however match a property which has
no value defined for it.

The wildcard value operator may be preceded by the negation operator.

The special wildcard operator is particularly useful for specifying the level of
Identity scoping of the returned profiles for a registry 43 which stores profiles
for multiple levels of scope. It is also used to match properties where all that is
of interest is that they have some value defined but it does not matter what
the value actually is. Alternatively, when combined with the negation operator,
to match properties which have no value defined. The latter is useful for
validation and quality assurance processes to isolate information which is
missing mandatory or critical metadata properties.

In the rare case that a literal string value equals the wildcard value operator,
the wildcard value operator must be preceded by a backslash character V'
The registry service must then identify and remove the backslash character
before any comparisons.

Each variant of REGS 31 has the following commonality of architecture which
is defined by the metadata properties it allows and requires in each profile, the
metadata properties it allows and requires in a given search query and
whether returned profiles are scored and ordered according to relevance.
These three criteria define the interface by which the registry service interacts

with all source archives and all users.

A particular registry service will extract from a given archive 27 or be provided
by or on behalf of the archive the profiles for all targets of interest which a
user may search on, and containing all properties defined for each target

which are relevant to the particular registry 43. There profiles are stored in

10

15

20

25

30

35

the database 43. Depending on the nature of the registry 43, this may include
profiles for both abstract media objects 41, media instances, and media
components 37 as well as physical storage items 35 or even qualified data
items. Some property values for a profile may be dynamically generated
specifically for the registry 43, such as the automated identification or
extraction of keywords or index terms from the data content, or similar
operations.

The profiles from several archives 21 may be combined by the registry service
into a single search space 43 for a given application or environment. The
location and/or agency properties serve to differentiate the source locations of

the various archives 21 from which the individual profiles originate.

All registry services 43 define and search over profiles, and those profiles
define bodies of information at either an abstract or physical scope; i.e. media
objects 41, media instances 39, media components 37, or storage items 35. A
given registry database might contain profiles for only a single level of scope
or for several levels of scope.

If a query 46 does not define any Identity propetrties, then the registry service
via a query resolution engine 45 must return 48 all matching profiles
regardless of scope; however, if the query 46 defines one or more ldentity
properties, then all profiles retumned 48 by the engine 45, must be of the same
level of scope as the lowest scoped Identity property defined in the search
query 46.

Note that a specific level of scope can be specified in a query 46 by using the
special wildcard value "** for the scope of interest (e.g. "component=meta
item=* .." to find all storage items within meta components which otherwise

match the remainder of the query).

10

15

20

25

30

36

Each set of profiles returned for a given search may be optionally scored and
ordered by relevance by the engine 45, according to how closely they match
the input query 46. The score must be returned as a value to the MARS
relevance’ property. The criteria for determining relevance is up to each
registry service 43, but it must be defined as a percentage value where zero
indicates no match whatsoever, 100 indicates a “perfect” match (however that
is defined by the registry service), and a value between zero and 100 reflects
the closeness of the match proportionally. The scale of relevance from zero to
100 is expected to be linear.

A registry service 43 can be directed by a user, or by implementation, to apply
two types of thresholds to constrain the total number of profiles 48 returned by
a given search 46. Both thresholds may be applied together to the same
search results. The MARS 'size’ property can be specified in the search query
(or applied implicitly by the registry setrvice) to define the maximum number of
profiles to be returned 48. In the case that profiles are scored and ordered by
relevance, the maximum number of profiles are to be taken from the highest
scoring profiles.

Similarly, the MARS ’relevance’ property can be specified in the search query
46 (or applied implicitly by the registry service) to define the minimum score
which must be equalled or exceeded by every profile returned. In this regard
specifying a minimum relevance of 100 requires that targets match perfectly,
allowing the user or agent to select between best match and absolute match.

All property sets (including profiles and queries) which are received/imported
by and returned/exported from a registry service via a data stream must be
encoded as XML instances conforming to the MARS DTD. This includes sets
of profiles extracted from a given archive 44, search queries received from
client applications 46, and sets of profiles returned as the results of a search
48.

10

15

20

25

30

37

If multiple property sets are defined in a MARS XML instance provided as a
search request 46, then each property set is processed as a separate query
46, and the results of each query 46 returned 48 in the order specified,
combined in a single XML instance. Any sorting or reduction by specified
thresholds is done per each query only 46. The results 48 from the separate
queries 46 are not combined in any fashion other than concatenated into the

single returned XML instance.

Every registry service may organise and manage its internal registry database
43 using whatever means is optimal for that particular service. It is not

required to utilise or preserve any XML encoding of the profiles.

Most registry services 43 will include an additional CGl or other web based

component 47 which provides a human-usable interface for a terminal 49

operable fan specifying queries 46 and accessing search results 48. This will

typically act as a specialised proxy to the general registry service, converting
the user specified metadata 50 to a valid MARS query 46’ and then mapping
the returned XML 48’ instance containing the target profiles to HTML 52 for
viewing and selection. The interface or proxy component 47 preferably

provides the following functionality in delivering results to the user.

The set of returned profiles should be presented as a sequence of links,

preserving any ordering based on relevance scoring.

Each profile link should be encoded as an (X)HTML 'a’ element within a block

element or other visually distinct element ('p’, Ii", 'td’, etc.).

The URL value of the 'href’ attribute of the 'a’ element should be constructed
from the profile, based on the ’location’ and/or "agency’ properties, which will

resolve to the content of (or access interface for) the target.

10

15

20

25

30

38

If the relevance’ property is defined in the profile, its value should begin the
content of the 'a’ element, differentiated clearly from subsequent content by
punctuation or structure such as parentheses, comma, colon, separate table
column, etc.

If the ‘title’ property is defined in the profile, its value should complete the
content of the 'a’ element. Otherwise, a (possibly partial) MRN should be

constructed from the profile and complete the content of the ‘a’ element.

Examples:

<html>

<body>

<p>

(98) Foo
</p>

<p>

(87) Bar
</p>

<p>

<a href:"http://xyz.com/GMA?action=retrieve&identifier=...">(37) Bas
</p>

</body>

</html>

<html>

<body>

<table>

<tr>
<th>Score</th>
<th>Target</th>
</tr>

10

15

20

25

30

39

<tr>

<td>98</td>

<td>Foo</td>
</tr>

<tr>

<td>87</td>

<td>Bar</td>
</tr>

<tr>

<td>37</td>

<td>Bas</td>
</tr>

</table>

</body>

</htmi>

In order to assist still further in understanding this aspect of the invention, a
number of different examples of REGS 31 suited to particular activities are set
out below. In each case, a brief description is provided, as well as a
specification of which metadata properties are required or allowed for profiles
and for queries. It is to be noted that the ’action’ property is required to be
specified with the value 'locate’ in all registry service queries, therefore it is not
included in the required query property specifications for each registry service.
Likewise, the 'relevance’ and ’size’ properties are allowed for all input queries
to all registry services, therefore they are also not explicitly listed in the

allowed query property specifications for each registry service.

Metadata Registry Service (META-REGS) provides for searching the

complete metadata property sets (including inherited values) for all identifiable

10

15

20

25

30

40

bodies of information, concrete or abstract; including media objects, media

instances, media components, storage items and qualified data items.

The results of a search are a set of profiles defining zero or more targets at
the lowest level of Identity scope for which there is a property defined in the
search query. All targets in the results will be of the same level of scope, even

if the registry database contains targets at all levels of scope.

The wildcard operator can be used to force a particular level of scope in the
results. E.g. to define media instance scope, only one instance property need
be defined with the wildcard Operator value (e.g. "language=*"); to define
media component scope, the component property can be defined with the
wildcard operator value (e.g. "component=""); etc. The registry service may
not require nor expect that any particular instance property be used, nor that
only one property be used. It is not permitted for two or more instance
properties to have both wildcard and negated wildcard operator values in a
given input query.

The default behaviour is to provide the best matches for the specified query;
however, by defining in the input query a value of 100 for the ’relevance’
property, the search results will only include those targets which match the
query perfectly. The former is most useful for general browsing and
exploration of the information space and the latter for collection and extraction

of specifically defined data.

Required profile properties for META-REGS include all Identity properties
required to uniquely identify the body of information in question, as well as
either the “location’ or 'agency’ property.

Allowed profile properties for META-REGS include any valid MARS property,
in this case being all defined MARS properties applicable to the body of

10

15

20

25

30

41

information in question. It is recommended that the ‘title’ property be defined

for all profiles, whenever possible.

There are no required query properties for META-REGS although at least one
property must be specified in the search query other than the 'action’ property.

Allowed query properties for META-REGS include any valid MARS property.

Content Registry Service (CON-REGS) provides for searching the textual
content of all media instances within the inciuded archives. it corresponds to a

traditional "free-text index" such as those employed by most web sites.

The results of a search are a set of profiles defining zero or more data

component data storage items or qualified data items.

Profiles are defined only for data storage items and qualified data items (e.g.
fragments) which belong to the data component of a media instance. Other
components and other items belonging to the data component are not to be
included in the search space of a CON-REGS registry service. Note that in
addition to actual fragment items, profiles for "virtual' fragments can be
defined using a combination of the 'pointer’ and (if needed) 'size’ properties,
where appropriate for the media type (e.g. for specific sections of an XML

document instance).

For each data item, the ’keywords’ property is defined as the unique, minimal
set of index terms for the item, typically corresponding to the morphological
base forms (linguistic forms independent of inflection, derivation, or other
lexical variation) excluding common "stop" words such as articles ("the", "a"),
conjunctions ("and", "whereas"), or semantically weak words ("is", "said"), etc.
It is expected that the same tools and processes for distilling arbitrary input
into minimal forms are applied both in the generation of the registry database

as well as for all relevant input query values.

10

15

20

25

30

42

The scope of the results, such as whole data items versus fragments, can be
controlled using the 'fragment’ property and the wildcard value operator "*" for
the scope of interest. E.g., "fragment="" will force the search to only return
profiles of matching fragments and not of whole data items; whereas
“fragment=!"" will only return profiles of matching whole data storage items. If
otherwise unspecified, all matching profiles for all items will be returned, which
may result in redundant information being identified.

A human user interface will likely hide the definition of the fragment’ property
behind a more mnemonic selection list or set of checkboxes, providing a
single field of input for the query keywords.

If a given value for the 'keywords’ property contains multiple words separated
by white space, then all of the words must occur adjacent to one another in
the order specified in the target content. Note that this is not the same as
multiple property values where each value contains a single word. The set of
all property values (string set) constitute an OR set, while the set of words in a
single property value (string) constitute a sequence (phrase) in the target.
White space sequences in the query property value can be expected to match
any white space sequence in the target content, even if those two sequences
are not identical (i.e. a space can match a newline or tab, etc.).

A human user interface 47 provides a mechanism for defining muitiple
'keywords’ property values as well as for differentiating between values having
a single word and values containing phrases or other white space delimited
sequences of words. In the interest of consistency across registry services,
when a single value input field is provided for the ’keywords’ or similar
property, white space is used to separate multiple values by default and multi-
word values are specially delimited by quotes to indicate that they constitute
the same value (e.qg. the field [a b "c1 ¢2 ¢3" d] defines four values, the third
of which has three words).

10

15

20

25

30

43

It is permitted for special operators or commands to CON-REGS to be
interspersed within the set of ’keywords’ values, such as those controlling
boolean logic, maximal or minimal adjacency distances, etc. It is up to the
registry service to ensure that no ambiguity arises between CON-REGS
operators and actual values or between REGS special operators and CON-
REGS operators. REGS special operators always take precedence over any
CON-REGS operators.

Required CON-REGS profile properties are all Identity and Qualifier properties
required to uniquely identify each data storage item or qualified data item in
question; either the ’location’ or 'agency’ property; and the ’keywords’ property

containing a unique, minimal set of index terms for the item in question.

Allowed CON-REGS profile properties are all required properties, as well as
the 'title’ property (recommended).

Required CON-REGS query properties are the 'keywords’ property containing
the set of index terms to search on which may need to be distilled into a

unique, minimal set of base forms by the registry service.

Allowed CON-REGS query properties are all required properties, as well as
the 'fragment’ property with either wildcard value or negated wildcard value

only.

Typological Registry Service (TYPE-REGS) provides for searching the set of
'class’ property values (including any inherited values) for all media instances
according to the typologies defined for the information contained in the

included archives.

The results of a search are a set of profiles defining zero or more media

instances.

10

15

20

25

30

44

In addition to the literal matching of property values, such as provided by
META-REGS, TYPE-REGS also matches query values to target values taking
into account one or more "IS-A" type hierarchies as defined by the typologies
employed such that a target value which is an ancestor of a query value also
matches (e.g. a query value of "dog" would be expected to match a target
value of "animal"). If only exact matching is required (such that e.g. "dog" only
matches "dog") then META-REGS should be used.

TYPE-REGS does not differentiate between classification values which
belong to different typologies nor for any ambiguity which may arise from a
single value being associated with multiple typologies with possibly differing
semantics. It is only responsible for efficiently locating all media instances
which have defined values matching those in the input query. If confiicts arise
from the use of multiple typologies within the same environment, it is
recommended that separate registry databases be generated and referenced
for each individual typology.

Required TYPE-REGS profile properties are those ldentity properties which
explicitly and completely define the media instance, one or more values
defined for the ‘class’ property, as well as either the location’ or ’agency’
property.

Allowed TYPE-REGS profile properties are all required properties, as well as
the 'title’ property (recommended).

Required TYPE-REGS query properties are the ‘class’ property containing the

set of classifications to search.

Allowed TYPE-REGS query properties are restricted to the ‘class’ property
which is the only property allowed in TYPE-REG search queries.

10

15

20

25

30

45

Dependency Registry Service (DEP-REGS) provides for searching the set of
Association property values (including any inherited values) which can be
represented explicitly using MARS Identity semantics for all bodies of

information in the included archives.

The results of a search are a set of profiles defining zero or more targets

matching the search query.

DEP-REGS is used to identify relationships between bodies of information
within a given environment such as a document which serves as the basis for
a translation to another language or a conversion to an alternate encoding, a
high level diagram which summarises the basic characteristics of a much
more detailed low level diagram or set of diagrams, a reusable documentation
component which serves as partial content for a higher level component, etc.
The ability to determine such relationships, many of which may be implicit in
the data in question, is crucial for managing large bodies of information where
changes to one media instance may impact the validity or quality of other

instances.

For example, to locate all targets which immediately include a given instance
in their content, one would construct a query containing the 'includes’ property
with a value consisting of a URI identifying the instance, such as an MRN.
DEP-REGS would then return profiles for all targets which include that
instance as a value of their ‘includes’ property. Similarly, to locate all targets
which contain referential links to a given instance, one would construct a

query containing the refers’ property with a value identifying the instance.

DEP-REGS can be seen as a specialised form of META-REGS, based only
on the minimal set of Identity and Association properties. Furthermore, in
contrast to the literal matching of property values such as performed by
META-REGS, DEP-REGS matches Association query values to target values
by applying on-the-fly mapping between all equivalent URI values when

10

15,

20

25

30

46

making comparisons; such as between an MRN and an Agency CGlI URL, or
between two non-string-identical Agency CGI URLs, which both define the
same resource (regardless of location). Note that if the META-REGS
implementation provides such equivalence mapping of URI values, then a
separate DEP-REGS implementation is not absolutely required; though one
may be still employed on the basis of efficiency, given the highly reduced
number of properties in a DEP-REGS profile.

Required DEP-REGS profile properties are the identity properties which
explicitly and completely define the body of information, all defined

Association properties, as well as either the "location’ or ‘agency’ property.

Allowed DEP-REGS profile properties are all required properties, as well as
the 'title’ property (recommended).

Required DEP-REGS query properties are one or more Association
propetrties.

Aliowed DEP-REGS query properties are one or more Association properties.

Process Registry Service (PRO-REGS) provides for searching over
sequences of state or event identifiers (state chains) which are associated
with specific components of or locations within procedural documentation or
other forms of temporal information.

The results of a search are a set of profiles defining zero or more targets
matching the search query.

PRO-REGS can be used for, among other things, “process sensitive help"

where a unique identifier is associated with each significant point in

10

15

20

25

30

47

procedures or operations defined by procedural documentation, and software
which is monitoring, guiding, and/or managing the procedure keeps a record
of the procedural states activated or executed by the user. At any time, the
running history of executed states can be passed to PRO-REGS as a query to
locate documentation which most closely matches that sequence of states or
events, up to the point of the current state, so that the user receives precise
information about how to proceed with the given procedure or operation
exactly from where they are. The procedural documentation would
presumably be encoded using some form of functional mark-up (e.g. SGML,
XML, HTML) and generation of the profiles identifying paths to states or steps
in the procedural documentation would be automatically generated based on
analysis of the data content, recursively extracting the paths of special state
identifiers embedded in the mark-up and producing a profile identifying a

qualified data item to each particular point in the documentation using the
‘pointer’ property.

Required PRO-REGS profile properties are the identity properties which
explicitty and completely define the body of information, the ’‘class’ property
defining the sequence of state identifiers up to the information in question, as
well as either the ’location’ or 'agency’ property.

Allowed PRO-REGS profile properties are all required properties, as well as
the ‘title’ property (recommended).

Required PRO-REGS query properties are the 'class’ property defining a

sequence of state identifiers based on user navigation history.

Allowed PRO-REGS query properties are restricted solely to the 'class’

property allowed in search queries.

48

Appendix |

Contents

T 3
2 OVEIVIBW oottt e 3
3 Related Documents, Standards, and SPECIICAHONS wovvvvovveeeeseee oot 4

3.1 Media Attribution and Reference Semantics (MARS) oot 4
3.2 Generalized Media Archive (GMA)

... 4
3.3 Portable Media Archive (PMA) oo 4
3.4 Registry Service Architecture (REGS) oot eeiieceensesssseeose s 4
35 HyperText Transfer Protocol (HITP) w....covcvecvrermemsosomsosoososssn 4
3.6 Common Gateway Interface (CCL) oo 5
3.7 Portable Operating System Interface (POSIX) oooreiirmecieieeeeeseseesee oo 5
38 CORBA ottt 5
3 TBVE et 5
3.10 'W3CTR REC-xml: XML (eXtensible Markup Language)oo.oooeeemvoomnro 5
3.11 'W3CTR rdf-syntax: RDF (Resource Description Framework) «..........oooovomveevvvoeooo 6
312 W3CTR rdf-schema: RDF SCHEMAS ovvv.covceeeerecronosssosososos 6

4 Koy Terms and CONCEPLS wcvomveiervtcnsonerscseensrsssmess oo 7
L ABEOE et 7
B 8

5 Framework ATCHIIECIUIEoooooeotrtetsoncssscessessenesee oo 9
3.1 Framework Protocols and IMEIfACES ...oo.vvecvoeerscvrrmrrsoososoossossnen 10

5.1.1 Media Attribution and Reference Semantics (MARS) oo 10
312 POSIX oottt 10
313 HITP o COL oottt 10
5.14 Java

49

217
5.1.5 CORBA .eivtiiieitriinssissssrssesss s s e 10
5.2 Agent INtErCOMMUIICAON wwvuurerueremsesrirmmssisinssssnssssessseeessssissssrssossts s s s 030 11
5.2.1 Property Set SPECIfICAtIONeeeuorierrsrisrssrissesreiis it st 11
5.2.2 Interpretation of Multiple Property Setscooivviimmmienniininiiinccisn e 12
5.2.3 Diagnostics and Error NOtfICation ...c..ccoeerevimiimiini e 13
5.2.3.1 Diagnostic Notification TYPES ...c.cecrurererrerecssommmimninininnimisistssss s s 13
5.2.3.2 Diagnostics in @ CGI ENVITONIMENE ..ccveveveveriniiinimmminiiisnressts s st 13
6 Framework COMPONENIS ...c.ovoireuiiererersrsisrsssssesesstststessessasts b saanssassarss s st st s s s 14
6.1 Media Attribution and Reference Semantics (MARS) .vvovieieniniiinnccn i 14
LS I D €., OO RO PO CUO TSP PO S S POPITPIPSTTPIEIS PRSP IO 14
6.1.2 XML DTD coroerieeeerecerresssseressssessesasssissasssnssasssrssesbessesstes s sei e sbstssa s es st et s s s sasanansasanas e 14
6.1.3 XML SChemMA ..ceeverieirviiieninnnnninsnsaeessiessnsanssnenieenes eeeteereeneerere et s ss e e sttt e s e areaeaes 15
6.1.4 RDF SChEIMA .oivvvevrieirirencciniiieensniers et sita s s sessnssnsssesbsasssssensons ererreeesre e s e aans 15
6.2 Generalized Media Archive (GMA) ..vereriiiiiiieiiiinrsaes s s s st sttt 15
6.3 Portable Media Archive (PMA) ..iiiiccvrecsriisiiiiriererrinnsssesss s ssstisnes sostasssnssssnssssansnnsssssssnos 16
6.4 Registry Service Architecture (REGS) eeeeesetsesaeseesasaseeeteraetenassesnseaensesssessrasasasesaesnensnes 1O
6.5 JavaSDK ... eeeaee R AR R R 16
6.5.1 MARS ooeeieiereriesiveeertseiteaisetesssessaaeaebes s te s e e e e e s et s iAo A SRR SRR e Sea e e ne st s e b e 17
6.5.2 AFEICY eovveeiecerieirersrniniiiistisae s st en st LSRR S R s 17
6.5.3 AZENL .ooriiiiiin e e eeereeeeseeeibsrnesestat et ae s aaae s rnatas 17
654 AGCIIPIOKY .ouerererresereceeseseemssssssmmsssessiessessssass st stustsmisesessssstsstistaiass s sss s ass s ittt e 17
6.5.5 AZENESEIVIEL oottt b S s 17
6.5.6 AFEIISEIVET .evuivemirerireiiiiinisisirinsnersssstbass s e e e e b st s S s e 17
6.57 AZENLCHEN c.veiiiieiririiireress et s s 17

50 3(17)

1 Scope

This document defines the Metia Framework for Electronic Media, a generalized metadata
driven framework for the management and distribution of electronic media.

2 Overview

The Metia Framework defines a set of standard, open and portable models, interfaces, and
protocols facilitating the construction of tools and environments optimized for the
management, referencing, distribution, storage, and retrieval of electronic media; as well as
a set of core software components (agents) providing functions and services relating to

archival, versioning, access control, search, retrieval, conversion, navigation, and metadata
management.

The Metia Framework is designed to embody the following qualities and characteristics:
open

The framework is based on open standards and proven technologies wherever possible,
and all framework specific properties and characteristics are fully documented.

scalable

Environments based on the framework should function equally well with both few and
many agents, on a single machine or across a distributed network, and on both small
and large systems; where performance issues are primarily tied to the properties and
capabilities of the individual agents and/or systems and network bandwidth, and not to
properties of the framework itself.

modular

All agents within a given environment interact efficiently and effectively with one
another with little to no specialized configuration and with no special knowledge of the
implementation details of particular agents.

portable

Agents conforming to the framework can be implemented on a broad range of
platforms using practically any tools, programming languages, or other means. The
core software components provided by the framework itself are implemented in Java,
providing maximal portability to different platforms and environments.

distributed

Agents are not limited to data or the services of other agents running on the same

machine, but may interact (often transparently) with agents running on any machine
which is accessible over the network.

reusable
The framework provides for maximal use and reuse of existing software components
and agents, where more complex agents are implemented using the services of more

specialized agents. This allows refinement and extension of processes with little to no
modification to any existing implementation.

extensible

Additional agents may be added to any environment based on the framework with little
to no impact to and/or reconfiguration of any existing agents.

51 417

3 Related Documents, Standards, and Specifications

3.1 Media Attribution and Reference Semantics (MARS)

Media Attribution and Reference Semantics (MARS), a component of the Metia
Framework, is a metadata specification framework and core standard vocabulary and
semantics facilitating the portable management, referencing, distribution, storage and
retrieval of electronic media.

httD://metia.nok.ia.com/soecifications/#MARS

3.2 Generalized Media Archive (GMA)

The Generalized Media Archive (GMA), a component of the Metia Framework, defines an
abstract archival model for the storage and management of data based solely on Media
Attribution and Reference Semantics (MARS) metadata; providing a uniform, consistent,

and implementation independent model for information storage and retrieval, versioning,
and access control.

http://metia.noki a.com/specificationsl#GMA

3.3 Portable Media Archive (PMA)

The Portable Media Archive (PMA), a component of the Metia Framework, is a physical
organization model of a file system based data repository conforming to and suitable for
implementations of the Generalized Media Archive (GMA) abstract archival model.

http://metia.nokia.com/specifications/#PMA

3.4 Registry Service Architecture (REGS)

The Registry Service Architecture (REGS), a component of the Metia Framework, is a
generic architecture for dynamic query resolution agencies based on the Metia Framework
and Media Attribution and Reference Semantics (MARS), providing a unified interface
model for a broad range of search and retrieval tools.

httn://rnetia.nokia.com/specifications/#REGS

3.5 HyperText Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems. It is a generic, stateless, protocol which can
be used for many tasks beyond its use for hypertext, such as name servers and distributed
object management systems, through extension of its request methods, error codes and
headers. A feature of HTTP is the typing and negotiation of data representation, allowing
systems to be built independently of the data being transferred.

The Metia Framework distributed collaboration model is based primarily on HTTP.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

57 517

3.6 Common Gateway Interface (CGI)

The Common Gateway Interface (CGI) is a standard for interfacing external applications
with information servers, such as Web servers. Within the new Metia Framework, CGI will

serve as the primary communication mechanism between networked clients and software
agents.

http://hoohoo.ncsa.ujuc.edu/cgi/overview.html

3.7 Portable Operating System Interface (POSIX)

POSIX (Portable Operating System Interface) is a set of standard operating system
interfaces based on the UNIX operating system. The POSIX interfaces were developed
under the auspices of the IEEE (Institute of Electrical and Electronics Engineers).

The Metia Framework adopts the POSIX models for command line arguments, standard
input streams, standard output streams, and standard error streams.

http:/standards.ieee.org/cataloe/olis/index.htmi

3.8 CORBA

CORBA specifies a system which provides interoperability between objects in a
heterogeneous, distributed environment and in a way transparent to the programmer. Its
design is based on OMG Object Model.

Metia Framework agents may utilize CORBA as one of several means of agent
intercommunication.

http://www.omg.org/technolosy/documents/new formal/corba.htm

3.9 Java

Java is both a programming language and a platform. Java is a high-level programming
language that claims to be simple, architecture-neutral, object-oriented, portable,
distributed, high-performance, interpreted, multithreaded, robust, dynamic, and secure. The
Java platform is a "virtual machine" which is able to run any Java program on any machine
for which an implementation of the Java virtual machine (JVM) exists, which is most
operating systems commonly in use today.

The core software components and agents provided by the Metia Framework are
implemented in Java.

hitp://java.sun.com/docs/index.html

3.10 W3C TR REC-xml: XML (eXtensible Markup Language)

The eXtensible Markup Language (XML) describes a class of data objects called XML
documents and partially describes the behavior of computer programs which process them.
XML is an application profile or restricted form of SGML, the Standard Generalized
Markup Language. By construction, XML documents are conforming SGML documents.

53 6(17)

XML is used for the serialization, interchange, and (typically) persistent storage of MARS
metadata property sets. The Metia Java SDK provides for the importation and exportation
of MARS XML encoded instances to and from MARS class instances.

http://www.w3.oreg/TR/REC-xml

3.11 W3C TR rdf-syntax: RDF (Resource Description Framework)

The Resource Description Framework (RDF) is a foundation for processing metadata; it

provides interoperability between applications that exchange machine-understandable
information in a distributed environment.

The Metia Framework uses RDF for defining the semantics of metadata properties.
http://www.w3.org/TR/REC-rdf-syntax/

3.12 W3C TR rdf-schema: RDF Schemas

RDF Schemas provides information about the interpretation of the statements given in an

RDF data model and may be used to specify constraints that should be followed by these
data models.

The Metia Framework uses RDF Schemas for relating metadata properties and values a to

disjunct but synonymous vocabularies such as Nokia Metadata for Documents and the
Dublin Core.

http://www.w?3.org/TR/rdf-schema/

54 7(17)

4 Key Terms and Concepts

4.1 Agent

An agent is a software application which conforms to the interface and protocol

requirements defined by this specification, and which provides one or more specific and
well defined services or operations.

Per the general qualities derived from the Metia Framework, every agent can be said to
exhibit the following two qualities:

modular

The implementation details of the agent are hidden behind the generic interfaces and
protocols of the framework, such that any other agent, user, client, or process can
interact with the agent without any privileged knowledge of its internal workings.

distributed
Every agent is accessible over the network from any system which has access to the
system on which the agent resides.
In addition to the above, an agent may also exhibit one or more of the following qualities:
intelligent
An agent may be sensitive to the environment, system, or particular context in which it
is operating, automatically adjusting its behavior accordingly.
replicating

An agent may create copies of itself to optimize processing of a given operation by

dividing portions of the task to each copy, which (depending on the underlying system)
may be executed in parallel.

persistent

An agent may remain in memory and function beyond the duration of a single
operation, maintaining information from previous operations which may optimize or
otherwise facilitate subsequent operations.

collaborative

An agent may utilize the services of other agents to perform an operation, and
management of available agents and their services may be handled by a specialized

"broker" agent with which available agents register. A collaborative agent is typically
also a persistent agent.

mobile

An agent may move from machine to machine (create a copy of itself on another
machine and then terminate), if needed to accomplish a given operation (such as

updating information in a variety of locations). A mobile agent is typically also a
persistent, replicating agent.

55 8(17)

4.2 Agency

An agency is a set of specific and well defined services and/or operations typically
implemented by a set of agents (or other software components, systems, or tools) which are
organized under and accessed via a single managing agent.

Technically, every agent can be viewed as an agency. The difference is primarily one of
perspective. An agency is the abstract functionality and behavior embodied in (or provided
via) an agent. The agent itself may be nothing more than a proxy to some other system or
service (such as an RDBMS application) which actually implements those services. Thus,
while the agent may essentially provide the full range of functionality defined for an
agency, it may not implement the full functionality of the agency itself.

56 9(17)

5 Framework Architecture

The Metia Framework architecture is based on a standard web server running on a platform

which provides the basic POSIX command line and standard input/output stream
functionality (see diagram on next page).

One of the goals of the framework is to be media neutral, such that the particular encoding
of any data is not relevant to storage by or interchange between agents. This does not mean
that specific encodings or other media constraints may not exist for any given environment
implementing the framework, depending on the operating system(s), tools, and processes
used, only that the framework itself aims not to impose any such constraints itself.

Every agent conforming to the framework must provide two interfaces: (1) HTTP+CGlI, and
(2) POSIX command line + standard input/output/error. In addition to these, an agent may
also provide interfaces based on (3) Java method invocation and/or (4) CORBA method
invocation. These interfaces are defined in greater detail below. Any given agent (or other
user, client, or process) is free to choose among the available interfaces provided by an
agent; whichever is most optimal for the particular context or application.

Non-agent systems, processes, tools, or services which are utilized by an agent can still be
accessed via proprietary means if necessary or useful for any operations or processes
outside of the scope of the framework. Thus, framework based tools and services can co-
exist freely with other tools and services utilizing the same resources.

Generalized Media Archives

?g% URL(s)

locadon

UEL
Query Profile(s)
) o e R P;cgi‘str'j
- L = Query | Query
REGS = Resolution Agent
‘ ' Registry

Profile(s)

57 10017

5.1 Framework Protocols and Interfaces

5.1.1 Media Attribution and Reference Semantics (MARS)

MARS is the language by which agents communicate and is the "heart" of the Metia
Framework. All other protocols and interfaces defined by the framework are merely a
means to transfer data streams which are defined, directed, and controlled by MARS
metadata. See section 6.1 and the separate MARS specification.

5.1.2 POSIX

The framework adopts the POSIX standard specifications for command line arguments,
standard input stream, standard output stream, and standard error stream as the primary
local (system internal) interface used for agent intercommunication and data interchange.

Every framework agent must provide a POSIX interface. See section 5.2.1 below regarding
MARS command line and standard input parameter encoding.
5.1.3 HTTP + CGI

The framework adopts HTTP+CGI as the primary distributed (network) interface used for
agent intercommunication and data interchange.

Every framework agent must provide an HTTP+CGI interface using the HTTP GET
method. See section 5.2.1 below regarding MARS CGI parameter encoding.

51.4 Java
Agents which are implemented using the Metia Framework SDK will provide for direct
method invocation according to the Agency Java interface, included in the SDK.

5.1.5 CORBA

Agents may provide for direct method invocation via a CORBA interface according to the
Agency IDL interface, included in the Media Framework SDK.

58 11 (17)

5.2 Agent Intercommunication

Agents communicate with one another, and with external clients and processes, using
MARS metadata semantics, encoded as a property set (a set of values associated with named

properties. MARS property sets are the only allowed means of communication, regardless
of the interface used.

5.2.1 Property Set Specification
MARS property sets can be passed to any agent in one of the following ways:

1. Command Line Arguments (multiple sets separated by the special argument '--')

Examples:

-identifier xyz123 -language en -encoding xhtml
-identifier abc -- -identifier def -- -identifier ghi

2. HTTP/CGI (multiple sets separated by the special valueless field '--")
Examples:

http://...&identifier=xyzl23&1anguage=en&encoding=xhtml
http://...&identifier:abc&--&identifier:def&-—&identifier:ghi

3. Standard Input, encoded as XML instance
Examples:

<?xml version='1.0'?>
<MARS>
<property sets
<identifiers<tokensxyz123</token></identifiers
<languages><l:en/></language>
<encoding><xhtml/></encoding>
</property set>
</MARS>

<?xml version='1.0'?>
<MARS>
<property_set>
<identifiers><tokensabc</token></identifiers
</property_sets>
<property set>
<identifiers<tokensdef</tokens></identifiers
</property set>
<property set>
<identifier><tokensghi</tokens</identifiers
</property_sets
</MARS>

59 12 (17)

4. Software method invocation (passing instantiated MARS object)
Examples:

myAgent .retrieve (myMARS) ;
myAgent .generate (sourceMARS, targetMARS) ;

Command Line/CGI arguments take precedence over standard input, and if specified,
standard input, if any, is treated only as an input data stream. Most interaction between
agents will specify operations via either command line or CGI arguments.

Every agent, regardless of implementation, must provide support for the first three
interfaces defined above (command line, CGI, and standard input). Agents implemented

using the Metia SDK must provide support for the fourth interface defined above (method
invocation).

5.2.2 Interpretation of Multiple Property Sets

If multiple property sets are specified, either via arguments or standard input, then they are
to be interpreted as follows:

1. The first property set must contain an action property value.

2. If only one property set is defined, then the single action is performed as specified by the
property set. ‘

3. If the action of the first property set is 'store', then either both the component property
must equal 'meta’ and the item property must equal 'data’ or the item property must equal
'meta’; in which case the second property set is taken to be a metadata property set to be

stored persistently. It is then an error for there to be more than two property sets in the
input.

4. If the action of the first property set is 'generate’, then the first property set is taken as
defining the target of the generation and the second property set is expected to define the
source of the generation which must be retrieved. Any subsequent property sets are taken
to be part of a compound action to be applied in succession to the results of the

generation. It is then an error for any subsequent property set not to have an action
defined.

5. If all property sets have an action defined, then the input is taken to be a compound
action, and each action is to be applied to the results of the previous action in succession.
If a preceding action returns a data stream, then the subsequent action is to take that

stream as input; otherwise, it is to retrieve the first item explicitly specified by a
preceding property set.

6. If the 'locate' action is included in a compound action sequence, then the chain of
subsequent actions following the locate action are applied in succession to gach of the
iterns identified by the locate action.

All other combinations of property sets are either invalid or left to the custom interpretation
of the particular agent.

It is not permitted for any Metia agent to apply an interpretation which conflicts with the
interpretation specified above.

60 13(17)

5.2.3 Diagnostics and Error Notification

All errors, warnings, cautions, and other notes output by an agent which are not part of a

result value must be output on the standard error port composed as an XML instance
conforming to the Metia Framework Diagnostics DTD:

http://metia.nokia.com/schemas/diagnostics/1.0/dtd/

5.2.3.1 Diagnostic Notification Types

The Metia Framework Diagnostics DTD provides for the following notification types:
Error

An error signals an occurance which prevents an agent from continuing a particular
process or task. The error condition may or may not be recoverable. Typically it is not.

Warning

A warning constitutes a condition or occurance which could cause loss or corruption of
information, damage to equipment, or failure of a critical service.

Caution

A caution constitutes a condition or occurance which could affect the efficiency of
equipment or of a service, or which may limit the effectiveness of a given process.

Note

A note constitutes any general information about equipment, a service, a process, or
data which is considered significant.

Debug

A debug notification is any general information about the operation of the agent as

regards its implementation and which might be meaningful to developers or maintainers
of the agent software.

The content of any given notification is free-form may consist of pre-formatted diagnostics
from legacy tools or systems, well formed XML markup, or any other textual data. By
default, any given agent receiving diagnostics from another agent is required only to be able
to recognize the particular notification type(s) and optionally display the literal
notification(s) content (including any markup) to an end-user. Particular agents, however,

may contract to use specific markup for notification content to facilitate specialized
processing and/or display of notifications.

5.2.3.2 Diagnostics in a CGI Environment

In the case of an agent operating in 2 CGI environment, which does not provide for
separate standard output and standard error streams, diagnostics may be returned either in
place of the return value (in the case of a fatal error) or as part of a multipart MIME stream
consisting first of the return value and secondly of the diagnostics instance.

61 14 (17)

6 Framework Components

The Metia Framework is comprised of a number of components, each defining 2 core area

of functionality needed in the construction of a complete production and distribution
environment.

Each framework component is defined separately by its own specification. This section only
summarizes the role of each component within the Metia Framework. Please consult the
specification for each framework component for more detailed information.

6.1 Media Attribution and Reference Semantics (MARS)

Media Attribution and Reference Semantics (MARS) is a metadata specification framework
and core standard vocabulary and semantics facilitating the portable management,
referencing, distribution, storage and retrieval of electronic media.

MARS is the common “language” by which the different Metia Framework agencies
communicate. e

MARS is designed specifically for the definition of metadata for use by automated systems
and for the consistent, platform independent communication between software components
storing, exchanging, modifying, accessing, searching, and/or displaying various types of
electronic media such as documentation, images, video, etc. It is designed with
considerations for automated processing and storage by computer systems in mind, not
particularly for direct consumption by humans; though mechanisms are provided for

associating with any given metadata property one or more presentation labels for use in user
interfaces, reports, forms, etc.

MARS aims to fulfill the following two goals:

1. To define a framework within which metadata can be explicitly defined and efficiently
and reliably processed by automated systems.

. To define a core metadata vocabulary of properties and values for automated systems
used for storing, exchanging, operating on, and/or displaying electronic media.

Utilizing a2 common abstract metadata vocabulary and semantics for all reference and
communication functions by all agents within the framework affords a considerable amount
of modularity, salability, and flexibility for any given set of agents, as each agent constitutes
a "black-box" and specific implementation details are irrelevant insofar as their interaction
with users and other agents is concerned, and new agents added to an environment are
immediately and transparently usable by existing processes. The core MARS vocabulary
also provides for an information rich environment enabling processes and operations not
possible using only simple identifiers such as filenames, URL's, DOI's, and similar.

6.1.1 XML

XML is used for the serialization, interchange, and (typically) persistent storage of MARS
metadata property sets. The Metia Java SDK provides for the importation and exportation
of MARS XML encoded instances to and from MARS class instances.

6.1.2 XML DTD

An XML DTD for the general framework and for the core properties defined by MARS is
defined as a component of the Metia Framework. The common tools and processes

62 15 (17)

operating on or directed by MARS metadata must support metadata property value sets
encoded as XML instances conforming to this DTD.

The defined DTD provides mechanisms by which additional properties and property values
are defined as needed by particular business units, product lines, processes, etc.

http://metia.nokia.com/schemas/mars/2.0/dtd/

6.1.3 XML Schema

An XML Schema for the general framework and for the core properties defined by MARS
is defined as a component of the Metia Framework, and the common tools and processes
operating on or directed by MARS metadata must support metadata property value sets
encoded as XML instances conforming to this Schema.

The XML Schema provides for more rigorous validation of MARS XML instances, and is
recommended over validation by DTD wherever possible.

The defined XML Schema provides mechanisms by which additional properties and

property values are defined as needed by particular business units, product lines, processes,
etc.

http://metia.nokia.com/schemas/mars/2.0/xsd/

6:1.4 RDF Schema

An RDF Schema for the core properties defined by MARS is defined as a component of the
Metia Framework, and which grounds their semantic interpretation of MARS in the Dublin
Core and Nokia Metadata for Documents, as well as provides a foundation for defining

additional semantic qualities of the core vocabulary and its relationships to other
vocabularies.

http://metia.nokia.com/schemas/mars/2.0/rdf/

6.2 Generalized Media Archive (GMA)

The Generalized Media Archive (GMA) is an abstract archival model for the storage and
management of data based solely on Media Attribution and Reference Semantics MARD
metadata; providing a uniform, consistent, and implementation independent model for
information storage and retrieval, versionin g, and access control.

The GMA is a central component of the Metia Framework and serves as the common
archival model for all managed media controlled and/or accessed by Metia Framewcork
agencies. It constitutes an Agency, which may be implemented as one or more Agents.

The GMA provides a uniform, generic, and abstract organizational model and functional
interface to a potentially wide range of actual archive implementations: independent of
operating system, file system, repository organization, or other implementation details. This
abstraction facilitates the creation of tools, processes, and methodologies based on this

generic model and interface which are insulated from the internals of the GMA compliant
repositories with which they interact.

The GMA defines specific behavior for basic storage and retrieval, access control based cr
user identity, versioning, and automated generation of variant encodings. The identity of
individual storage items is based on MARS and all interaction between a client and a GMA
implementation must be expressed as MARS metadata property sets.

63 16 (17)

6.3 Portable Media Archive (PMA)

The Portable Media Archive (PMA) is a physical organization model of a file system based

data repository conforming to and suitable for implementations of the Generalized Media
Archive (GMA) abstract archival model.

The PMA defines an explicit yet highly portable file system organization for the storage and
retrieval of information based on Media Attribution and Reference Semantics (MARS)
metadata. The PMA uses the MARS Identity and Item Qualifier metadata property values
themselves as directory and/or file names, avoiding the need for a secondary referencing
mechanism and thereby simplifying the implementation, maximizing efficiency, and
producing a mnemonic organizational structure.

Any GMA may use a physical organization model other than the PMA. The PMA physical
archival model is not a requirement of the GMA abstract archival model. However, the
PMA may nevertheless be employed by such implementations both as a data interchange
format between disparate GMA implementations as well as a format for storing portable
backups of a given archive.

6.4 Registry Service Architecture (REGS)

The Registry Service Architecture (REGS) is a generic architecture for dynamic query
resolution agencies based on the Metia Framework and Media Attribution and Reference
Semantics (MARS), providing a unified interface model for a broad range of search and

retrieval tools. A particular registry service constitutes an Agency, which may be
implemented as one or more Agents.

REGS provides a generic means to interact with any number of specialized search and
retrieval tools using a common set of protocols and interfaces based on the Metia
Framework; namely MARS metadata semantics and either a POSIX or CGI compliant
interface. As with other Metia Framework components, this allows for much greater
flexibility in the implementation and evolution of particular solutions while minimizing the
interdependencies between the tools and their users (human or otherwise).

Being based on MARS metadata allows for a high degree of automation and tight
synchronization with the archival and management systems used in the same environment,
with each registry service deriving its own registry database directly from the metadata
stored in and maintained by the various archives themselves; while at the same time, each
registry service is insulated from the implementation details of and changes in the archives
from which it receives its information.

Every registry service shares a common architecture and fundamental behavior, differing
primarily only in the actual metadata properties required for their particular application.

6.5 Java SDK

The Metia Java SDK (Software Development Kit) provides software components

implementing the core models and behavior defined by the Metia Framework and its
components.

The SDK is implemented in Java conforming to the Java 2 platform specification and
resides in the Java package com.nokia.ncde.

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

6.5.6

6.5.7

64 17 (17)

This section provides a general overview of the principle classes and interfaces defined in
the SDK. Consult the JavaDoc documentation for more information about these and other

classes and components.
MARS

MARS (com.nokia.ncde.MARS) is a Java class which provides a uniform container for
storing, accessing, defining, and passing MARS metadata property sets, including methods
for importing from and exporting to XML encoded instances conforming to the MARS

DTD.

Agency

Agency (com.nokia.ncde.Agency) is a Java interface which defines the common behavior
(methods) which are implemented and shared by all Framework agents.

Agent

Agent (com.nokia.ncde.Agent) is a Java abstract class which implements the Agency
interface and provides default methods for basic agent behavior and which is typically the
parent or ancestor class of specific agent implementations built using the Metia SDX.
AgentProxy

AgentProxy (com.nokia.ncde.AgentProxy) is a Java wrapper class which provides a
convenient mechanism for interacting with the network CGI interface of any Agency, as if
it were a local object within a Java application (typically an agent).

AgentServlet

AgentServlet (com.nokia.ncde.AgentServlet) is a Java wrapper class which provides Java
Servlet functionality to any class implementing the Agency interface.

AgentServer

AgentServer (com.nokia.ncde.AgentServer) is a Java wrapper class which provides CORB 4.
server functionality to any class implementing the Agency interface.

AgentClient

AgentClient (com.nokia.ncde.AgentClient) is a Java wrapper class which provides CORBA
client functionality to any class implementing the Agency interface.

65

Appendix i

Contents

1 SCODPE «veesererereeemseressasssssessse st es s 8 2R 7

D OVEIVIEW «eveeeuiersesssrasseressseseessasiasasainss e bes s s ahses s bbb LA I

3 Related Documents, Standards, and SPeCIficationso 8
3.1 Metia Framework for Blectronic MEdia ...owvcemimimmmmnmiinisissiisiis s 8
3.2 Generalized Media Archive (GMA) oot e 8
3.3 Portable Media Archive (PMA) ..o st 8
3.4 Registry Service Architecture (REGS) .oceiiisuisisiessmesmsimimsssiis st 8
35 Nokia Metadata fOT DOCUINENLS ..oueuuererirressesesesmsmsissimmimsssssssisestsstes sttt st 8
3.6 ThE DUDII COTE errerrreerereerrusitissmmnsressesstss st sts s h s s LSS 9
3.7 ISO 639: Language COES ...o.iueruivemrmesemstiitiirniissssss st 9
3.8 ISO 3166-1: COUNITY COAES ..ovuerrurrrurmriorsseseisetisissanss sttt e 9
3.9 ISO 8601: General Date and Time FOTMALS ..cc.ovniuvinimmmisminininrisisisiiininsts s s 9
3.10 W3C TR NOTE datetime: Specific Date and Time FOmMAts ...covcoimniiinnmimisnsecssssmninnes 9
3.11 RFC 2046: MIME (Multipurpose Internet Mail EXIENSIONS) trrrervereriisissiessnissnssssessersisssssesanses 10
3.12 W3C TR xptr: XML Pointer LANGUAZEovrirrmmmismsnmmiessmsmms st 10
3.13 Common Gateway Interface (CGI) ..ot 10
3.14 REC 2396: Uniform Resource Identifier (URI) ...oooovrnviimiinniciniininsnessssnns 10
3.15 RFEC 2141: Uniform Resource Name (URN) ..ot 10
3.16 REC 1738: Uniform Resource Locator (URL) .c..cumurusemismmmmssmmissesisssssssssisssisssssnsssnsscessss 11

66 2(74)

3.17 Unicode
3.18 POSIX Regular Expression SYNUAX oo 11

3.19 Metadata for Graphics in Customer Documentationo...ooovoovcomoeo 11
Key Terms and Concepts

.. 12
H1 PRODEILY ottt 12
D 12
4.5 MEdia OBJECt oottt 12
44 MEBAINSINCE oottt et eeeoseso 12
45 Media COMPORENt ..ottt sosssssse 12
48 SLOMAGEIEM wovvotrtoossoeereeeseoossssoe 13
47 Qualified Data HOM ...cooovrvoeerescnsnsmes oo 13

7.1 COMENLPOINET .oooovteonsceecsseneeeesosoe oo 13
4.7.2 Revision

.. 14
R 14
4.8 Inherifance of MEtadatavuvvoovcvseccceseerscossessssssosnsesoee e 14
.9 Versioning MOGEl .o....ocovvievsoocscseesenseresmeessoseos 14
Metadata Classification and Naming CONVentionsoooommvmvrooveeemmnmrnooooooo 15
31 PROPEItY NAME ovivtvnsotceesntcemsessosooss 15
2% PrOPEItY VAIE TYDE oot soscs oo 15
D2L T TOKED et 16
322 CBOL et 17
323 COURL ottt eseesesesossoee 17
228 DOOMAL ot 17
325 POICONAZE ottt 18
320 SUIG ottt 18
527 Date ... e oeseoe s 18
28 TIME ottt 18
229 RAIKING oottt 19
3210 ID e 20
T2 ACOT et 21
3212 AGEDCY ottt 21
2213 COMENETYD woooovtecsestee oo 21
2214 CRATBCIET St oottt 21
5213 BICOBINE ottt 21
32151 SIMPle ERCONG ..ot 21
32152 COMPIEX ECORINE ..coocvvvoooecenvscss oo 21
5.2.16 Universal Resource Identifier (URD) oo 21
5.2.17 Uniform Resource Locator (URL) et 22
5.2.18 Uniform Resource Name (URN) oo 22
5.2.19 Media Resource Name (MRN) e 22
33 Property Valle COURt .ottt 22
3L SINBLE et 22
532 MUPIE oottt 22
54 Property Value RANEEoocovioniotesessrscosmooe oo 23
41 BOUARA oo 23
042 UBDOUIGEA oottt oo 23
3.3 Property Value Ranking ..ot 23
23l SHCE T 24
532 PAMAL oot 24

5.53 None

67 3(74)

.. 25
6.1 TABTIEILY 1uorvenrseeeueeenresessssisenssassessseres s ms bt s 25
B.1.1 TABIEFIET ® toveverereeeeeriresessmsseecassss s e e a s 26
B.1.2 TEIBASE * cueveereesiseeseserseseeesseseesesees s bR L 27
.13 JANGUAZE cvrvvreemeriosoruasinsssrisassssesssoss s 27
6.1.3.1 TIOME evverereeererrenssnssnsresessresscsasnsass ettt s st s bbb S SheR b R reerrennrrenee w2
6.1.4 coverage *cocnnne rereestese et esta e et st e e nraaees teeerreeereessisbseebeessettaestrare s b e e bR e s e E e 28
6.1.4.1 global .oveiiiininee veeereeanens veereen reeereerareans eeetesesseeseeestesaresasessesaansteeeresnsaresbesiess 28
6.1.4.2 EUIOPE .eoveeerrirermumissssansssessessssassisasas s cthssasass s siasnsnses vevreeeeee s nanans veeeeererenrerees 28
6.1.4.3 north_americacco... e veesebenetestesesesebsesbesseeeessesEeereieebeieTaTeaneet et ettt e e 28
6.1.4.4 south_americaco... reeennrrates reevrseerareserranarnsasenane eeeeeriesreveseeetesssseseesaseaeneessesasaeseeiisran 29
6.1.4.5 africa ..ccerrerierenninennnnne, e eeeeeeerseeesveseessiabaenssensaaeestttereesae T et anae e e re s st eRe e s e e e e 29
6.1.4.6 middle_east e teeratestesesestessesseessesstesiresssesesteEesereIstat eI s 29
6.1.4.7 2S18_PACITIC woviiiiirirmiiresescreriis s e vreeresenerne e 29
6.1.5 encoding® ..cccveeiiinieinene prerreressrseteanae crreainenanes veereeenecans eeteei e et esrare s 29
B.1.5.1 DINATY tovvreeseesesemesemssssssnssssssess s s ssas s 30
6.1.6 component * e eutetaststetessestessesseesessesiEiEeTiessareEeILEEeSCILt et e Lt sttt 30
6.1.6.1 dataccceee. ereeeeeeeereseesessesiesearessbteeraeaeeseRssesRs s s e e st s reerrrreennrenaene reerrraraeearaes 30
6.1.6.2 meta vevrennnrernes rrveerersenerentasansane S eevveeeereesereaecsstesseisaaeeeaesettassarrrntaaaaas 30 .
6.1.6.3 TOC sovcerevrerenrmminsemesesserossnsssnansrnssssssssnes rerererereernee rteressieverereerrsaeesenneesenes rereeneerene vrverennes 30
6.1.6.4 Index .ecceerercnnniiinniniiienens crereeerereneereesnrenares eeeseeereteseteinbeeaseraeeeeaeeeianrerarents verereonee 31
6:1.6.5 glossaryceee. SRR rereeenearearane s erreessrnereiseene e naneeaes tereeriseeeeanesaesrennas w31
6.1.7 item* ... rereerrbreneeens eererennnes reerireneereereeneseanariaane reeeenersierrreceoisaarraeanassatsesiaasantes verveeens 31
6.1.7.1 datad ceeeeeeerineninnerennnee e TSRS rerrrererarreerense cererevernens teveeermeneterisressraaesaaesaseainens 31
6.1.7.2 meta .cciiiiiereeeneens vreerenres teveeeetestaeeesirasneereeesssstessetace reresesesesenreniasrrreestesesrarens veerenaes 31
6.1.7.3 1dmMEAD .cceerrrrreeerieernseneiaes rrerrrenreeeesseesarnes rvererebarerrtaat st sat s e anres rereennens veeerernenesaens 32
B.1.7.4 TOCK revereerersirerseessessressesesetsssras ssas s ses s bt sh s b st R s S s R e e rreeennerreertaens 32
6.2 Item Qualifier eerereserrarrrrnreestiareens revvenneeens vevennrereerneees USTRON rveenrareraea rreerreenrees 32
6.2.1 pointer * reeereetetsasareteberaraesreatebet s R R T b s e s s e s n e roreens v veereeeeeene i IRURUISORRRO.)
6.2.2 TevISIOnN ..ccvreriieeininnns reerressbeerrreeeestsranres rererreeeeeenes rervveenenreinnee reteeeentrnrerenereeasanesanes veeerreanee 32
6.2.3 fragmentcooevieieienninnini vrveriesnnrea vreereersreenaens vertererarnaeaeas Crerreeneeeesaesre s 33
6.3 Managementococueeiiiienn vrenerennes veeeeeenees creseee e tressseaseresssenasistresaatesasestssatsatesyrsatssatiies 34
6.3.1 aCHON § weeevvverrniiinieienininniennee rterereraenennieeenens teveeortrnt e aatstanan e st s ares revveernreennees reerenns 34
6.3.1.1 Store ...ecccerereennene reeereeeereaeee rreeereeseerraeaaeasneeen reessecesstesereesssneastETessaRses bt sssssRas OTsRaRebates 34
6.3.1.2 TEHEVE crerevverieereeserersrsssensmsssessarssssessssssssanansnnes veeereennees veereearennenanreanen v w3
6.3.1.3 generate ... s feeeeresresrerebestas e saane s saet s sh s R e e a s RS r bR W35
6.3.1.4 TEIMOVE .errereierermiereeriseemrenassnessssessans tetesereeaaatessesreeseseeeenreaesssasetstsiisbarabans vereeereeenns 35
6.3.1.5 QUANEY revermoreummusremsumrsesssss s smt 35
6.3.1.6 10CAE ..eovrriviiiierrreireneannes teereeresenstoaaeeereabaeeatserasearens ceeerrrereeeeeeras feeerresbeereeeneaeeniis 35
6.3.1.7 1OCK ovveeeemmreemuessssssssssserssesesessssesasa s h b S 35
6.3.1.8 UIIOCK veveveeveeemsensesaesssssssersceestesaesesebsssebe s cseacas s aaR R e s 35
632 BZENCY ¥ ruvveneerseessamaressssmeesiries s 36
.33 LOCAHON ¥ rveeeeevaeessessessssssesesssessssesas s s eSS 36
.34 SIZE wevvreereseessessaeess s st R 36
B.3.5 TEIEVALICE § wreveveevrresrersseeseessesessissesiss e sseae s b bbE 8484088 36
B.3.6 SLALUS wrvrvseeesrersenmsessssesacessessaesses s AR LR 37
B6.3.6.1 GIALL ceveeveisssesesssaecsseseees s 37
6.3.6.2 APPIOVEA rveruuimesimmannrssssssses s s 37
6.3.6.3 EXPITEA .eruevrrrercusiimseiassssssereas e 37

6.3.7 access ¥

63 4.(74)

6.3.8 TOVISION ¥ .oooooiin s e 38
6.3.9 " COMMENL Y oot 38
6.3.10 1001 ¥ oottt 38
6.3 11 CIBAIEA oot 39
6312 10CKEA oot 39
6.3.13 MOGHIEA oovvoooooer et 39
6314 EDPIOVEL oot 40
6315 TEVIBWEL w.oovooooeernineer oo 40
6.3.16 VAR oot 40
6307 SUIL POV woovvvrioescvntsisssessscseesesenssseesse e 40
6.3.18 ENAPOV ovvvvosereteeticsencocce et e 41
63,19 €XPITBHON wovoooeceereve oo seere st 41
6.320 TN § oot eese e oo 41
64 AFIHAHON oo e 42
41+ FUNCHON oottt 42
6411 FINANCE oot 42
OALZ SAES oottt 42
6413 MAKEHNG ooooooooevrrntssseccne et 42
6.4.1.4 research_and_developmentcuuvvvvceeeeuuereremsemmeomneosceesssoes oo oo 42
6415 DUMAN_TESOURCESoovotevvteevnrsceces et sniss oo oosiies 42
AL IEEEL oot 43
6.4.1.7 intellecttal_Property_HEhLSeeereerrmvreromssosscoresson 43
418 PUICRASING ooovoevevv et 43
6419 SOUICING vovtromoeeceenettst st 43
64110 PIOQUCHOD oottt 43
6.4.1.11 manufacturing technolo BY e 43
OALI2 QUALLY oot 43
6-4.1.13 information_MAnagementc..oocc.coocoveesermrrrosss oo 43
OAL14 IOBISHES oottt oo 44
OATLLS CUSIOMET_SEIVICE ...ovvvrrivrrsvorenrcscecceeneccssoos oo 44
6.4.1.16 business_adminiStration w......c...oeeeeescerersesesereossossesossssososs 44
642 OBAUZANON * oot oo 44
643 BUSINESS_URIL ¥ rooooesnree e 44
644 ProduCt_family * ...t 45
645 PIOGUCL® oottt 45
D 45
L 46
648 DIOCESS ® oot 46
649 MUIESIONS * oottt 46
63 COMEME oottt 47
6.5.1 PUBHSHET oot 47
6.52 MRS oo o 47
633 © CONAIAENUANLY ..ot 47
6.5.3. 1 PUBLC oo 47
e 48
6.533 CONMIARNLA] ..ovoooveevevininto et 48
6534 SECIEL oottt 48
654 HHE oo 48
6.5.5 ESCHPUON oottt 48
836 TYPE et 49

6.5.6.1 general

69 5(74)

... 49
6.5.6.2 DPIOGUCE .eeovueririuiuissetiessessss e rniee s srts bt b s 49
6.5.6.3 PIOJECE 1orveverrieeureisimieasieseaessssssssres s b R S 49
6.5.6.4 DPIOCESS cuurrevrevesmrmuuiiursrssunssesies s sisses st e 49
6.5.6.5 MANAZEINENE .evuvrereerereaeisesesinrmsraresesesssssseoes s etie bt es e RS eEs b eus b s b ars0e 50
6.5.6.6 DUSINESS vveeerrreeririerissressssseesesesaaseeosessossessessssasssasasanesssdeas sis st st arso bt s e a s b ar s s b0 10 50
6.5.7 CLASS ™ 1rreeriseeesuieteestesieses e sesraessesa et e e R s b She e E RS e R eeE e e e e LS LSRR 50
6.5.8 KEYWOTAS # 1.vvoverceuemsiiastressesersss b s ees e bbb e b e 50
6.6 EIICOQUIE +.ovvureesersreereaneusessesasisssans s assss s b s bes bbb e 51
B.6.1 COMIENE_EYPE ¥ corvevreeseremsemininesiessssares it b st eSS 51
B.6.2 SUIFIX ® veereeieieeesrcrisresseesestisesasmseeseseaebebestas e b e e R e s se e b oS LSRR S AR LSRR s 51
6.6.3 SCHEIMA ® .oovviviereereieereeseseroseseatssaseresasassshasaassaneasaesen e baE o E AR s h SRR e e A S b et b 51
B.6.4 ASPECL® .oooireeriitiiuese s sseree e bR e 52
6.6.5 CHATACIET SEL +vivvereereiverrisisserersesesseeriesssstesbarsessasbasnbaaesoset s be bt shE LR e R e s e R e s bbb st st b s 52
6.6.6 TINE_AEIIMEIET .oiverirerreerereniimrisserrsereiresseresbe et e e st s s neasehsr s E s e s r s e b s e sbbh s bR 52
B.6.6.1 IE woreeeeeeee et et et e ae e s ben e AR E AR eh OSSR 53
B.6.6.2 CT svveerresereerssesesssesassssassensassasesasesrateashea s e e LS e s R e s LSRR eSS e 53
B.6.6.3 CTIF croveeeeeseeieeeretsteeieeesesesesetese s e e e et e ea e R e bR RS b R eSS bR s s 53
6.6.7 WIAth_in_MillIMEIETS .eieveerereruererisiiireeseesirns et saest et st 53
6.6.8 height_in_millIMELErS ...ccciiuiiiierniesern st e 53
6.6.9 WIdth_IN_DIXELS teriiimiiiermmrinrrretirtssiine ettt e 54
6.6.10 height_in_PIXEIS it .34
6.6.11 TESOIUHON uveevrirverreerseressssansessessesissssabansasssannmsssssanasssssssesssshissesiniabeaset s e s atsten s s asserssb s st sne 54
6.6.12 COMPIESSION uvurvrrverrurssimmmsssssssssessestessesessasssss st sras s st aE s e s eSS 54
6.6.13 COLOT_AEPHH vocviieimuiuiiinininrasiiessstses st st s e b 55
6.6.14 COIOT_SPACE .eevururumermmrererrisessisssssssissssesesstsesss bbbt s AR E s8R e 55
B.6.14.1 TED .oeieeeeeimeemmcemie et esbsae b st e 55
6.6.14.2 rgha .ccoovvrinnns etteeteseiaseeasreerasesseesistaeeetasaa A e eraeenahete s aasesaneressae s e s et e e A TR e s g e e b e a s e s 55
6.6.14.3 CINYK ceerueuseeinriseisanise e s s bs sttt st s s bR s 55
6.6.14.4 NISL wveererereeeresieeesieretesesesassessersseses e s s s a e R sh RS e R e et n e R RS ee kR s e 56
6.7 ASSOCIALOM .vevverveeesesersssesessressesseesscsiamsessrsssbeasssssatssssesssanatsssatsssrtoncasess assahsesan e s a st sa sttt 56
6.7.1 SOUITE * eveveeevireessseesessesssisesseseneesesesastosserennsestansasetasstontasasessosesnesisensbesssatatesssssssasasessasatance 56
6.7.2 TEEEIS ™ eeeveeeetiiresistetetesteiesasseessebab et s e s e s e h e a bbb SRR e st Re R e assae 56
6.7.3 SUPETSEAES ¥ .ovuvvuiurereirinssmsmnssisersssress s sessise bbb bR 56
6.7.4 SUITIINATIZES * oevevveveiriiereriereseeresesscresseinesnsaneetesssasastsssssteseseasten st sieesabeonbesasasanersatssaesaansenss 57
6.7.5 EXPANAS ¥ oocoevueicirriiuiesiesssse st 57
6.7.6 INCIIAES § * eovvrveivivrieerierneeeerterriesresersae s e s s r e s s e SRt e 57
6.8 ROIE weeveeeseeeeesresistssesesesisestesssssesassbs e s rere e e e s b e AR R R R R a RS e L 57
B.8.1 USET § ¥ oovivieiieeseeeesessessrnieseseuetstas et et AeE SRR h LR 57
B.8.2 CLEALOT ® corveeveeesemesessesesesessesseescseestas o aesess e as e b e b s ae b e b s e s ss bbb E b S E R s 58
B.83 OWIIET ® vrverveeeeeesieressiisssssessesssasssesseseseessae s saasassases e s as e b e e e e e r e s e ent e St e s et b s bt b s R e b e e b 58
G.8.4 TNOGITIET ® covovoeeeeeeeeeteseeteseseseseebes b essebe e s eb s e b e rer s s e b s s bbb e h et s 58
6.8.5 BDPPIOVET ® 1oeoreeieruscanisiesemmassaessssssessse bbb bbb RS 59
6.8.6 COMMTIDULOT # 1oviviiiesisesrerstessesesemeiesesitsrsassa e eresebesses s as st e as b s b e st eb e b s e b 59
6.8.7 TEVIEWET ® everireerireriseseesssesaessseseresesesemsoasane st et assehas e s et b bbb b s L bt s 59
6.8.8 AISIIDULION % .ouveviviverireesessesesescnmesenesssaesaeesssiebeebebe b e s s s ae et e et et ba bbb st 59

7 Serialization and VAlLAALHON ...cc.cccieererreeriiointene st s 61

§ MRN (Media Resource Name) SYNAX ..ovvierceeseenemeutiiiiiiisisimis sttt s 62

8.1 Media Instance Component Item MRIN ..o 62

8.2 Media Object Component Item MRN

70 ‘ 6 (74)

8.3 Qualified MRN

.. 63
9 APPENAICES oottt eeeeeeee oo 64
9.1 Language Property VAIUESc.cooomiririvereriisseieeseeee e seeee s e oo oo 64
9.2 Coverage Property VAIUESc.ceieeieeveeeeeicioeeieeeeeeeeeeese oo e ses e 66
9.3 MIME Derived Property VAIUESoveweivorierrvsseeeeieeseeeseesesessseesess s oeeoeoeeesooees 69
9.3.1 CONLENE TYDPES ...vuoeeeecieirrieerriessesesseessessessesse e ss s eeseseeesseee s s s oo eeoeeeeeoeeeeeeee oo 69
9.3.2 CRATACIET SELS o..ouiieevuiiirceaeieente ettt ttes et et eeeaerese e sse e e seeeeseeeee e eee oo 70

1 Scope

71 7 (74)

This document defines the Media Attribution and Reference Semantics (MARS), 2 metadata
specification framework and core standard vocabulary and semantics facilitating the
portable management, referencing, distribution, storage and retrieval of electronic media.

2 Overview

MARS is designed specifically for the definition of metadata for use by automated systems
and for the consistent, platform independent communication between software components
storing, exchanging, modifying, accessing, searching, and/or displaying various types of
information such as documentation, images, video, etc. It is designed with considerations
for automated processing and storage by computer systems in mind, not particularly for
direct consumption by humans; though mechanisms are provided for associating with any

given metadata property one or more presentation labels for use in user interfaces, reports,
forms, etc.

MARS aims to fulfill the following two goals:

1. To define a framework within which metadata can be explicitly defined and efficiently
and reliably processed by automated systems.

7 To define a core metadata vocabulary of properties and values for automated systems
used for storing, exchanging, operating on, and/or displaying electronic media.

Extensibility of the core vocabulary is of course of paramount importance, as MARS cannot
address all of the needs of all groups, systems, processes, products fully and still serve as a
manageable standard; nor can it foresee all possible needs and applications in the future;
however, it remains possible and beneficial both to define as rigorously as possible a
framework for metadata and a core vocabulary and then enable extensions and
enhancements to that core as needed, within the constraints of that framework.

It is important to note that the core vocabulary defined by MARS is data-centric and not
use-centric, in that the metadata properties defined therein apply primarily to characteristics
or attributes of the data itself, and not how, where, or by whom the data is used or
referenced. Processes such as for Product Data Management (PDM), Configuration
Management (CM), and Work Flow Management (WFM) are not directly addressed in the

core MARS vocabulary as these define uses of the data and not characteristics of the data
itself.

The core vocabulary is specifically designed to meet the needs of organization and
management processes applied to large volumes of technical and user documentation,

though the framework and most if not all of the core vocabulary is applicable to many other
applications as well.

72 8 ";'/‘4)

3 Related Documents, Standards, and Specifications

3.1 Metia Framework for Electronic Media

The Metia Framework is a generalized metadata driven framework for the management and
distribution of electronic media which defines a set of standard, open and portable models,
interfaces, and protocols facilitating the construction of tools and environments optimized
for the management, referencing, distribution, storage, and retrieval of electronic media.; as
well as a set of core software components (agents) providing functions and services relating

to archival, versioning, access control, search, retrieval, conversion, navigation, and
metadata management.

MARS is a component of the Metia Framework and serves as the common "language" by
which the different Metia Framework agents communicate.

http://metia.nokia.com/specifications/#Metia

3.2 Generalized Media Archive (GMA)

The Generalized Media Archive (GMA), a component of the Metia Framework, is an
abstract archival model for the storage and management of data based solely on Media
Attribution and Reference Semantics (MARS) metadata; providing a uniform, consistent,

and implementation independent model for information storage and retrieval, versioning,
and access control.

http://meti a.nokia.com/specifications/#GMA

3.3 Portable Media Archive (PMA)

The Portable Media Archive (PMA), a component of the Metia Framework, is a Physical
organization model of a file system based data repository conforming to and suitable for
implementations of the Generalized Media Archive (GMA) abstract archival model.

http://metia.nokia.com/specifications/#PMA

3.4 Registry Service Architecture REGS)

The Registry Service Architecture (REGS), a component of the Metia Framework, is a
generic architecture for dynamic query resolution agencies based on the Metia Framework
and Media Attribution and Reference Semantics (MARS), providing a unified interface
model for a broad range of search and retrieval tools.

http://metia.nokia.com/specifications/AREGS

3.5 Nokia Metadata for Documents

MARS is a derivative of Nokia Metadata for Documents. MARS deviates from that work =
some degree in order to meet the specific requirements of the Metia Framework: primarily
where identity and management properties and more rigorous data typing is required.

Within all systems and environments based on Metia Framework, MARS supersedes the
Nokia Metadata for Documents specification for all metadata related applications.

73 9 (74)

http://www.connecting.nokia.com/NOKIA/imweb/DM/DMdoc.nsf/0/9180d0deceaff53ec225
6723004327e3/$FILE/meta2.doc

3.6 The Dublin Core

The Dublin Core is a metadata element set intended to facilitate discovery of electronic
resources. Originally conceived for author-generated description of Web resources, it has
attracted the attention of formal resource description communities such as museums,
libraries, government agencies, and commercial organizations.

MARS can be viewed as a functional superset of the Dublin Core, and an RDF Schema for
MARS could be created which inherits directly from the Dublin Core RDF Schema, such
that any tools which are designed to operate on Dublin Core compliant metadata will also
be able to operate correctly on MARS compliant metadata.

http://purl.oclc.org/metadata/dublin_core/

3.7 ISO 639: Language Codes

ISO 639 specifies a set of two-letter codes represented by case-insensitive ASCII characters
which uniquely identify world languages.

MARS adopts ISO 639 language codes for the allowed values of certain property types.
http://www.iso.ch/

3.8 ISO 3166-1: Country Codes

ISO 3166-1 specifies a set of two-letter codes represented by case-insensitive ASCII
characters which uniquely identify countries.

MARS adopts ISO 3166-1 country codes for the allowed values of certain property types.
http://www.iso.ch/

3.9 ISO 8601: General Date and Time Formats
ISO 8601 specifies a number of standard methods for encoding date and time information,
for portability between different computer systems and applications.

MARS adopts a subset of ISO 8601 encodings for the allowed values of certain property
types. '

http://www.iso.ch/

3.10 W3C TR NOTE datetime: Specific Date and Time Formats

The datetime W3C TR note defines a profile of ISO 8601, the International Standard for the

representation of dates and times, restricting the supported formats to a smaller number
likely to satisfy most requirements.

MARS adopts a subset of the W3C datetime NOTE encodings for the allowed values of
certain property types.

http://www.w3.ore/TR/NOTE-datetime

74 10 (74)

3.11 RFC 2046: MIME (Multipurpose Internet Mail Extensions)

The IETF MIME standard defines a platform independent and portable media typing system
and defines an initial set of media types and general media encoding properties. The MIME
system is used by a broad range of internet and other systems, standards, and protocols.

MARS adopts RFC 2046 content type and character set identifiers for the allowed values of
certain property types.

http://www.ietf.org/rfc/rfc2046. txt Tnumber=2046

3.12 W3C TR xptr: XML Pointer Language

XPointer, which is based on the XML Path Language (XPath), supports addressing into the
internal structures of XML documents. It allows for traversals of a document tree and

choice of its internal parts based on various properties, such as element types, attribute
values, character content, and relative position.

MARS adopts W3C XPointer syntax for the allowed values of certain property types.
http://www.w3.org/TR/xptr

3.13 Common Gateway Interface (CGI)

The Common Gateway Interface (CGI) is a standard for interfacing external applications
with information servers, such as Web servers. Within the new Metia Framework, CGI will

serve as the primary communication mechanism between networked clients and software
agents,

The MARS Agency data type is comprised of a CGI URL prefix.
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

3.14 RFC 2396: Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI) is a compact string of characters for identifying an

abstract or physical resource. It serves as the general syntax by which URNs, URLs, and
other identifiers are defined.

MARS adopts RFC 2396 URIs for the allowed values of certain property types.
http://www.ietf.org/rfc/rfc2396.txt ?number=2396

3.15 RFC 2141: Uniform Resource Name (URN)

Uniform Resource Names (URNS) are intended to serve as persistent, location-independent,
resource identifiers and are designed to make it easy to map other namespaces (which share
the properties of URNSs) into URN-space. The URN syntax provides a means to encode

character data in a form that can be sent in existing protocols, transcribed on most
keyboards, etc.

MARS adopts RFC 2141 URNSs for the allowed values of certain property types.
hitp://www.ietf.org/rfe/rfe2141.txt7number=2141

75 11 (74)

3.16 RFC 1738: Uniform Resource Locator (URL)

A Uniform Resource Locator (URL) is a compact string of characters for identifying a

physical resource available via the Internet. It is the most common form of URI presently in
use on the web.

MARS adopts RFC 1738 URLs for the allowed values of certain property types.
http://www.ietf.org/rfc/rfc1738.txtInumber=1738

3.17 Unicode

The Unicode Standard is a fixed-width, uniform encoding scheme for written characters and
text. The repertoire of this international character code for information processing includes
characters for the major scripts of the world, as well as technical symbols in common use.

MARS adopts Unicode for the allowed values of string property types.

httD://www.unicode.org/unicode/standard/standard.html

3.18 POSIX Regular Expression Syntax

POSIX (Portable Operating System Interface) is a set of standard operating system
interfaces based on the UNIX operating system. The POSIX interfaces were developed
under the auspices of the IEEE (Institute of Electrical and Electronics Engineers) . Regular

expressions are used to recognize specific patterns within textual data. POSIX defines a
standard encoding for regular expressions. '

MARS expresses property value types using POSIX regular expression syntax.
http://standards.ieee.org/catalog/olis/index.html

3.19 Metadata for Graphics in Customer Documentation

Guidelines for the application of MARS metadata for the management of and access to
graphics media in the NET Customer Documentation Environment (NCDE).

http -//helns12/NCDE2001/AdvancedGraphics/specification

76 12 (74)

4 Key Terms and Concepts

4.1 Property

A property, for the purpose of this specification, is a quality or attribute which can be
assigned or related to an identifiable body of information, and is defined as an ordered
collection of one or more values sharing a common name. The name of the collection
represents the name of the property and the value(s) represent the realization of that

property. Typically, constraints are placed on the values which may serve as the realization
of a given property.

4.2 Property Set

A property set is any set of valid MARS metadata properties.

4.3 Media Object

Media objects represent abstract bodies of information about which We can communicate
and which correspond to common organizational concepts such as "document", "book",
“manual”, "chapter”, "section", "sidebar”, "table", "Image"”, "chart", "diagram", "graph",
"photo”, "video segment", "audio stream", etc.

They are, however, abstract and have no specification for any given language, coverage, or
encoding. The same media object can be realized in many languages, with many
geographical, regional, distributional, or other variations, and be encoded in a multitude of

formats, without affecting in the least the scope and qualities of the information that they
embody.

An abstract media object is given an identifier which is intended to be unique for the entire
known universe. So long as all media objects within a given environment follow the same
identification scheme, or any number of mutually exclusive schemes, then all will be well.

It is up to the tools and processes in use to ensure that media object identifiers remain
unique within any given environment. ‘

4.4 Media Instance

A media instance represents a particular realization of an abstract media object for a
particular language, coverage, encoding, and release. Every distinct combination of these
four properties constitutes a different instance of the media object. Some (in fact most)
instances of a given media object will be automatically generated, derived from some other
instance, particularly those differing in encoding. Similarly, instances in various languages
will typically all be derived from a single instance, representing the source language from
which all translations to other languages are made.

4.5 Media Component

Each media instance is comprised of a set of components, which are all intimately related to
that particular realization and inseparable from it. Most of these components are
automatically generated, or are accessed and modified only indirectly via one or more
storage and/or management systems. The only mandatory component for a media instance is

7 13 (74}

the data component. The existence and use of other components depends on the specific
needs, functions, requirements, Or processes comprising the environment within which that
data resides. MARS defines a bounded set of component types; though this may be
extended as needed as new requirements, processes, or methodologies arise.

Media objects may also contain components, in which case the components are taken to

represent properties or other characteristics inherited by or attributable to each instance of
that media object.

4.6 Storage Item

Storage items constitute the only actual physical entities within a MARS based
environment. Just as a media instance is comprised of one or more components, so a
component is comprised of one or more storage items.

Ttems correspond to what would typically be stored in a single file or database record, and
are the things which are actually created, encoded, modified, transferred, etc. Items may
embody content, content fragments, metadata, revision deltas, or other information needed
for the reliable storage, management, and processing of a given media component. Items are
the discrete computational objects which are passed from process to process, and which
form the building blocks from which the information space and the environment used to
manage, navigate, and manipulate it are formed.

’

4.7 Qualified Data Item

Any given 'data’ storage item for any component may be qualified in one or more of the
following ways:

4.7.1 Content Pointer

MARS provides for referencing (and hence defining an explicit identity for) specific
content within a given item, component, instance, or object; depending on the nature of the
reference. E.g., a particular element within an SGML, HTML, or XML entity can be
referenced by a unique element identifier, which would be valid for all of the above
mentioned scopes. Alternatively, the reference could be based on a particular path through
the structure of the entity, possibly specifying a given range of data content characters, in
which case it might be valid only for a particular component or item.

MARS adopts the W3C XPointer standard for encoding such content specific references in
SGML, HTML, or XML content, and it is up to a given application, process, Or
methodology to ensure the validity of references applied at a given scope. It is
recommended that wherever possible that explicit element ID values be used for all pointer
references and that structural paths and data content specific references be avoided if at all
possible; for the sake of maximal validity of pointer values to all realizations of a given
media object, irrespective of language, coverage, encoding, or partitioning.

Though XPointer is not yet a final Recommendation by the W3C, and some changes may
occur within the standard, it is presently a Candidate Recommendation and is expected 10
reach full Recommendation status in the very near future.

Future versions of MARS may adopt additional internal pointer mechanisms for other
encodings as needed and as available.

Content pointers are only defined for 'data’ storage items.

78 14 (74)

4.7.2 Revision

A revision is an identifiable editorial milestone for a 'data’ storage item within the scope of a

particular managed release. It is a snapshot in time, either static or reproducible, to which
one can return,

Revisions are only defined and maintained for 'data’ storage items.

4.7.3 Fragment

A fragment is an identifiable linear sub-sequence of the data content of a component, either
static or reproducible, which can be provided in cases where the full content is either too
large in volume for a particular application or not specifically relevant.

Fragments are only defined and maintained for 'data’ storage items.

4.8 Inheritance of Metadata

Metadata defined at higher scopes is inherited by lower scopes. There are two simple rules
governing the inheritance of metadata from higher scopes to lower scopes:

1. All metadata properties defined in higher scopes are fully visible, applicable, and
meaningful in all lower scopes, without exception.

2. Any property defined in a lower scope completely overrides, hides, shadows, replaces
any definition of the same property that might exist in a higher scope.

Thus, all metadata properties defined for a media object are inherited by all instances of that

object; and all metadata properties defined for a media instance (or media object) are
inherited by all of its components.

MARS does not define the mechanisms, algorithms or other procedures for affecting the
inheritance of metadata properties defined in higher scopes to operations performed in

lower scopes. It is the responsibility of the tools and processes to ensure that metadata is
inherited properly and reliably.

4.9 Versioning Model

MARS defines a simple, portable, and practical versioning model using only two levels of
distinction, corresponding to the concepts of 'release’ and 'revision'.

A release is a published version of a media instance which is maintained and/or distributed
in parallel to other releases. One could view a release as a branch in common tree based
versioning models. A revision is a milestone in the editorial lifec

ycle of a given release; or a
node on a branch.

In addition to release and revision, a particular coverage can be defined and applied to a

media instance to differentiate variant content intended for a particular application and/or
audience.

79 15 (74)

5 Metadata Classification and Naming Conventions

5.1 Property Name

All property names must be valid tokens (see formal specification in section 5.2.1).

Furthermore, all property name tokens for a given environment share the same lexical
scope.

The format for tokens was motivated by the desire to have a naming scheme which could be
used consistently across a very broad scope of encodings. This not only makes adoption and
application of such a standard easier in a heterogeneous environment but also simplifies the
construction of and interaction between common tools and processes.

Compatibility with a very broad set of encoding schemes allows for MARS metadata
property names and token values to be used as variables, symbols, names, tokens,
identifiers, directories, filenames, etc. in the various encoding schemes, allowing for
consistent semantics both for the metadata itself as well as for the systems, applications and
models storing, operating on, describing, and/or referencing that metadata.

Encodings for which the token format is known to be compatible include:
Programming/Scripting/Command Languages:

C, C++, Objective C, Java, Visual BASIC, Ada, Smalltalk, LISP, Emacs Lisp,
Scheme, Prolog, JavaScript ECMAScript, Perl, Python, TCL, Bourne Shell, C
Shell, Z Shell, Bash, Xorn Shell, POSIX, Win32, REXX, SQL.

Markup/Typesetting Languages:

SGML, XML, HTML, XHTML, DSSSL, CSS, PostScript, PDF.
File Systems:

FAT (MS-DOS), VFAT (Windows 95/98), NTFS (Windows NT/2000), HFS
(Macintosh), HPFS (08/2), HP/UX, UFS (Solaris), ext2 (Linux), ODS-2 (VMS),
NFS, ISO 9660 (CDROM), UDF (CDR/W, DVD).

Tt is likely that there exist many other encodings, in addition to those listed above, with
which the MARS token format is compatible.

5.2 Property Value Type

MARS defines a number of property value types which serve to constrain the format and
content of specific values. These data typing constraints simplify the construction of

software systems which operate on MARS metadata, and provide for more consistent and
uniform usage.

The total length or magnitude of property values, or sets of values, is only dependent on the

storage limitations of the systems and tools operating on the metadata. MARS itself imposes
no arbitrary restrictions.

Specific environments, processes, systems, or applications might restrict the magnitude of
one or more value types to satisfy storage, bandwidth, or other constraints. MARS property
value types may be constrained further (e.g. limiting Identity property token values to 30
characters, or limiting integers to the range 0..9999) but may not be relaxed in any fashion
(e.g. allowing tokens to have case distinction or include white space or colon characters,

80 16 (74)

etc.). It is up to each system and/or application to address the risk of data loss or corruption
when unable to support the magnitude of existing metadata property values.

Many property values are "Environment Dependent". This means that they may be specific
to a given system or LAN, or may be defined by an organization, business unit, product
line, etc. and thus not have global significance - nor guaranteed to be globally unique if two
previously disjunct environments are merged, where e.g. a token is used as the value for a
given property in both environments, but with different semantics.

In the property specifications below, properties which may have values which are
environment dependent are marked with an asterisk.

Although MARS defines only a core set of metadata properties, and one can extend MARS
with additional properties and allowed values for core MARS properties, it remains an
important goal to maintain as much uniformity and consistency between all applications of
MARS, and every possible effort should be made to publish and synchronize all MARS

extended property sets; with the addition of new properties and values to the core standard
where clearly justified by common usage.

5.2.1 Token

Any sequence of characters beginning with a lowercase alphabetic character followed by
zero or more lowercase alphanumeric characters with optional single intervening underscore
characters. More specifically, any string matching the following POSIX regular expression:

/la-z] (_?[a-20-9])*/
Examples:

abcd

ab_cd

alza3

x2_3_4 5
here_is_a_very_long_token_value

Most MARS metadata properties are of type token, particularly those which are controlled
sets. In fact, a token value type can usually be considered synonymous with an explicit,
bound, and typically ordinal set of values. The primary reasons for this are (1) information
management processes based on controlled sets of explicitly defined values are more robust
than those based on arbitrary values, and (2) that current and emerging tools and
technologies for modeling, encoding, and processing structured information such as
metadata provide special functionality for defining, validating, and processing bounded sets
of token like symbols, which are not available for arbitrary strings.

Furthermore, because MARS is intended for the management of very large documentation
sets (millions or even billions of managed objects), practical considerations must be taken
into account, and token values impose far less demands on storage than arbitrary strings in
most circumstances. Since presentation issues can be addressed separately from internal
representations, more concise and efficient token values can be utilized. Lon ger, more user-
friendly, and mnemonic labels may be associated with each property name and token value,
including different labels for various languages or other needs, which can be defined once
in a schema or similar specification and used wherever needed when presenting metadata
information to a human being; without unnecessarily burdening the systems storing,
operating on, or being directed/controlled by that metadata.

81 17 (74)

All defined token values must have an explicitly specified and fixed value for both ‘name’
(corresponding to the token itself) and a 'label’ (used for presentation purposes).

5.2.2 Integer

Any sequence of one or more decimal digit characters representing a signed integer value.
More specifically, any string matching the following POSIX regular expression:

/I\-\+12[0-9])+/

Examples:

12345

0
-9590728651
32

+32

5.2.3 Count

Any sequence of one or more decimal digit characters representing an unsigned (non-
negative) integer value. More specifically, any string matching the following POSIX regular
expression:

/(0-91+/

Examples:

12345

0
9590728691
32

5.2.4 Decimal

Any floating point numerical value in simple decimal notation. More specifically, any string
matching the following POSIX regular expression:

JIN-\+12?1[0-9]+\.[0-91+/

Examples:

12345.0
+0.02
5.9590728691
-32.23

- 18 (74)

5.2.5 Percentage

Any percentage value belonging to the integer value range from 0 to 100. More specifically,
any string matching the following POSIX regular expression

/(100) [({1-9]1[0-9]) | ([0-9])/

Examples:

15
3
73
100

Percentage values should not be prefixed or suffixed by a percent '%' si gn.

5.2.6 String

Any sequence of one or more Unicode character/glyph code points. The particular Unicode

conformant encoding (e.g. UTF-8, UTF-16, etc.) is system and application dependent and
not specified explicitly by MARS.

5.2.7 Date

A string conforming to ISO 8601 & W3C TR NOTE datetime-19980827, defining a
complete date:

YYYY-MM-DD

where:

YYYY =four-digit year
MM = two-digit month (01=January, etc.)
DD = two-digit day of month (01 through 31)
- = literal separator (hyphen)

Examples:

1966-03-31
2000-05-01
2193-12-31

5.2.8 Time

A string conforming to ISO 8601 & W3C TR NOTE datetime-19980827, defining a
complete date plus hours, minutes, and seconds in Universal Coordinated Time:
YYYY-MM-DDThh:mm:ssZ

where:

" 19(74)

YYYY = four-digit year

MM = two-digit month (01January, etc.)
DD = two-digit day of month (01 through 31)
T = literal separator indicating start of time component
hh = two digits of hour (00 through 23) (am/pm NOT allowed)
mm = two digits of minute (00 through 59)
ss = two digits of second (00 through 59)

Z =time zone designator for Universal Coordinated Time (UTC)
- = literal separator (hyphen)
: = literal separator (colon)

Examples:
1966-03-31T05:11:232

2000-05-01T22:54:082
2193-12-31T23:59:592

5.2.9 Ranking

A ranking value is a sequence of decimal separated integers. More specifically, any string
matching the following POSIX regular expression:

JIN-\+1210-91+(\.[\-\+1?[0-9)+)*/

Examples:

w 2
[

1

N
(-
NS

0 4

A ranking value defines a path in an ordered tree of nodes where the values for each dot
delimited field specifies the sort order of the node in the tree at that level of the path. The
root node of the tree is not defined explicitly. The first integer value thus defines the sort
order relating to the immediate children (level 1) of the implicit root, the next integer
defines the sort order relating to the children of the level 1 node, etc. This defines a tree
where the linear ordering of nodes is derivable by a depth first ordered traversal of the tree.
E.g. the token:ranking pairs foo:1, bar:2, bas:3, and boo:4 represent the following tree:

(root)/
1 (foo)
2 (bax)
3 (bas)
4 (boo)

defining the ordered set:

5.2.10

84 20 (74)

foo < bar < bas < boo

We can insert a token 'xxx' between 'foo' and 'bar' with the ranking '1.1":

(root)/
1(foo)/
1 {xxx)
2 (bar)
3 (bas)
4 (boo)

defining the ordered set:

foo < xxx < bar < bas < boo

and then insert another token 'yyy' between 'foo' and 'xxx' with the ranking '1.0"

(root)/
1(foo)/
0(yyy)
1 (xxx)
2 (bar)
3 (bas)
4 (boo)

defining the ordered set:

foo < yyy < xxx < bar < bas < boo

Ranking values are used to define the order of ranked token values, It is not allowed for any

two values defined for the same property in a given environment to have an identical
ranking (i.e. to define the same path in the ordered tree of nodes).

It is expected that ranked token sets are seldom extended, and that extensions would be
defined at the highest specification level possible, with all rank values normalized to simple
positive integer values. Nevertheless, the ranking value model defined here allows for

unlimited arbitrary insertion of new ranked token values into any existing sequence as
needed.

D

A token which serves as a unique identifier for a particular property within a given
environment. ID token values need not be unique across all properties.

5.2.11

5.2.12

5.2.13

5.2.14

5.2.15

85 21 (74)

Actor

A string which serves as a unique identifier for an actor within a given environment. An
actor is either a person or a software application which operates on, or has special
responsibility or interest in the data in question. The actor identifier method employed must
be supported by the user authentication processes in use within each particular environment.

Agency

A string comprising the URL prefix of the CGI interface to an Metia Framework agency, up
to and including the question mark; typically used to define the media object Archive or
other Metia Framework compliant archive where particular data resides. E.g.

"http://docserv.nokia.com/GMA?"

Content Type

A string containing a valid MIME Content Type. E.g.: "text/html", "text/xml", "image/gif",
"application/octet-stream”, etc.

Character Set

A string containing a valid MIME Character Set identifier. E.g. "us-ascii", "iso-8859-1",
natf-8", "utf-16", "gb2312 ", "is0-2022-jp", "shift_jis", "euc-kr", etc.

Encoding

An encoding is a complex data type representing a set of properties identified by a unique
token name. They represent configurations of syntactic and semantic characteristics which
are significant to the production or management of information in a given environment.
Only values for properties defined as part of the Encoding Module (see section 6.6) may be
defined for an encoding data type. Encodings are the required data type for the 'encoding’
property in the Identity Module in section 6.1.5.

As with tokens, each encoding must have defined for it a '‘name' and a 'label’. In addition,
every encoding must have defined for it a valid MIME 'content_type' value.

5.2.15.1 Simple Encoding

A simple encoding is one which has defined values only for the Encoding properties
'‘content_type' and (optionally) 'character_set’ and ‘'suffix’. Simple encodings are roughly
equivalent in resolution to MIME encodings.

5.2.15.2 Complex Encoding

A complex encoding is one which has defined values for at least one other Encoding

property other than those allowed in a simple encoding, such as 'schema’, 'line_delimitation’,
etc.

5.2.16 Universal Resource Identifier (URI)

Any valid Universal Resource Identifier (URI).

22 (74)
86

This may be a URL (Uniform Resource Locator), a URN (Uniform Resource Narne), or
some other form of URI.

5.2.17 Uniform Resource Locator (URL)
Any valid Uniform Resource Locator (URL).

A typical case is a URL referencing MARS classified data, consistin g of a string containing

the set of MARS metadata property name/value pairs formatted as a URL encoded string
prefixed by the value of the "archive" property. E. g.

"http://xml.nokia.com/GMA?action=retrieve&identifier:dn99278&...&..."

5.2.18 Uniform Resource Name (URN)
Any valid Uniform Resource Name (URN).

§.2.19 Media Resource Name (MRN)
Section 8 defines an explicit and compact URN syntax based on MARS Identity metadata
properties for encoding the identity of any given storage item as a single string value.

5.3 Property Value Count

5.3.1 Single

A single value count means that there can be at most one value for a given property.

5.3.2 Multiple

A multiple value count means that there can be one or more values for a given property.

The order of multiple values may or may not be significant, but nevertheless must be

preserved by any system or application storing, updating, accessing, or operating on the set
of values.

When encoded within a single string or field, multiple non-string values must be separated
by one or more white space characters. In the case of multiple string values, the individual
string values must be separated by line breaks. The line breaks are not included in any value
content, but all other white space is considered to be part of the value in which it occurs.

E.g.
"tokenl token2 token3"

*2000-02-19
2000-11-07"

"12 34 56 78 90"

"First string value.
Second string value.*

87 23 (74)

If a string value contains any line breaks, they must be immediately preceded by 2 backslash
\' character. The backslash is not included as part of the value content. E.g.

"Here is a string value)
with an embedded line break."

User interfaces which expect single values for particular string properties may choose to

map line breaks in user input to spaces rather than interpreting the input as a sequence of
multiple string values.

5.4 Property Value Range

For any given property, the set of allowed values for that property may either be bounded or
unbounded.

5.4.1 Bounded

The set of allowed values for the given property is finite and explicitly defined. Some
property value ranges are bounded by definition, being based on or derived from fixed
standards (e.g. language, coverage, format, etc.). Most properties with bounded value
ranges are token types having a controlled set of allowed values.

5.4.2 Unbounded

The set of allowed values for the given property is infinite, though perhaps otherwise
constrained by format or other characteristics as defined for the property value type.

5.5 Property Value Ranking

For any given property, the set of allowed values for that property may be ordered by an
implicit or explicit ordinal ranking, either presumed by all applications operating on or
referencing those values or defined explicitly in the schema declaration of those values.
Some property value types are ranked implicitly due to their type and subsequently the
value ranges of all properties of such types are automatically ranked (e.g. Integer, Count,
Date, Time, etc.). Most properties with ranked value ranges are token types having a

controlled set of allowed values which have a significant sequential ordering (e.g. status,
release, milestone, etc.).

Ranking may either be strict or partial. With strict ranking, no two values for a given
property may share the same ranking. With partial ranking, multiple values may share the
same rank, or may be unspecified for rank, having the implicit default rank of zero.

Ranked properties may only have single values. This is a special constraint which follows
logically from the fact that ranking defines a relationship between objects having ranked
values, and comparisons between ranked values becomes potentially ambiguous if multiple
values are allowed. E.g. if the values , y, and z for property P have the ranking 1, 2, and 3
respectively, and object ‘foo’ has the property P(y) and object ‘bar’ has the property P(x,2),
then a boolean query such as “foo.P < bar.P?" cannot be resolved to a single boolean result,
as y is both less than z and greater than x, and thus the query is both true and false,

depending on which value is chosen for bar.P (i.e. foo.P(y) < bar.P(x) = False, while
f00.P(y) < bar.P(z) = True).

88 24 (74)

Ranking for all property types other than token are defined implicitly by the data type,
usually conforming to fundamental mathematical or industry standard conventions.

Ranking for token property values are specified using Ranking values as defined in section
5.2.9.

5.5.1 Strict

The set of allowed values for the given property corresponds to a strict ordering, and each
value is associated with a unique ranking within that ordering.

5.5.2 Partial
The set of allowed values for the given property corresponds to a partial ordering, and each

value is associated with a ranking within that ordering, defaulting to zero if not otherwise
specified.

5.5.3 None

The set of allowed values for the given property .corresponds to a free ordering, and any
ranking specified for any value is disregarded.

29 25 (74)

6 Metadata Properties

MARS is made up of sets of metadata properties grouped into modules. Each module
corresponds to a particular function or purpose which the properties contained in that
module share. Modules are an organizational convenience and do not have any significance
to any of the processes or applications operating on MARS compliant metadata.
Applications are not expected to know of, nor required to provide any behavior relating to
modules. Note that modules do not represent individual namespaces or scopes; and thus no
two modules may have properties with the same name.

MARS specifies a set of core properties which are common to all processes and tools
operating within the Metia Framework, both for documentation production as well as
distribution. Additional properties can be defined and used as required by particular
processes or needs, and the methods used for defining, encoding, and validating metadata
support flexible extensibility of the metadata vocabulary.

Nearly all properties are persistent, meaning that they are intended to be defined and stored
in some explicit encoding. Some properties, however, are not persistent, but are used only
for communication between software components operating within the Metia Framework.
In particular is the property 'action’ which specifies what operation is to be performed by the
agent receiving a particular MARS encoded query.

In the sections that follow, metadata properties whose values may be environment
dependent are marked with an asterisk "' and metadata properties which may not always be
persistent are marked with a section symbol ‘.

6.1 Identity

The properties defined in the Identity module are the heart of the MARS metadata model.

As the module name implies, these properties are use to encode the unique identity of data
entities, both abstract and concrete. The identity properties are scoping, meaning that they

define a hierarchy of levels, corresponding to Media Object, Instance, Component, and Item
(see diagram below).

“The “identifier" property identifies an abstract media object.

The four properties "release”, "language”, "coverage", and "encoding" together, along with
the "identifier" property, identify an abstract media instance.

The "component" property, together with the higher scoped properties, identifies an abstract
media component,

The "item" property, together with the higher scoped properties, identifies a concrete
storage item.

It is important to note that the Identity properties differ from all other properties in that
some value is required in order to fully identify any discrete body of data. Tools operating

on MARS metadata are permitted to presume that the specified default values are valid if no
other value is provided.

6.1.1

90 26 (74)

| MediaObject = SRR
1 Media Instance - 1

—‘—-————,———,—-—v—r——-,.———,-l

Filenames, URLs, and other system specific means of identification are typically fragile,
frequently non-portable, and do not necessarily follow any formal model or methodology,
hampering interoperability between disparate systems. Using sets of standard metadata
properties such as those defined in the MARS Identity module provides a platform, system,
and process independent means of defining the identity of documentation entities. It also
allows systems to operate on one or more levels of scope, such as media object or instance,

using user and/or environment information to resolve abstract references to physical data
items.

Identity properties may only have Single values. This is 2 special constraint and follows
logically from the fact that if multiple values are allowed, there is no way to ensure that the
same values are always used or that new values are not added, essentially changing the
identity of the data. To change an Identity value is to change the data's identity. It is similar
in effect to changing a filename in a file system.

identifier *

The unique identifier of an abstract media object.

Name identifier

Label Media Object Identifier
Type ID

Count Single

Range Unbounded

Ranking None

Values Any valid ID value as defined by this specification.

74
91 21(14)

6.1.2 release *

The numeric, sequential identifier for a published version of a media instance which is
maintained and/or distributed in parallel to other releases.

Name release

Label Release

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.
Default O

The date is the numeric, sequential identifier of the independently managed release. Release
values thus both differentiate between and also order different releases over.time. A release

with value '7' is considered to contain more current information than a release of the same
media object with value '4'".

Release values may typically coincide with (synchronize to) major version branch numbers
in a revision control system, corresponding to version branches directly connected to the
trunk; though this is not a requirement of MARS.

6.1.3 language

The primary language in which the data is written.

Name language
Label Language
Type Token

Count Single
Range Bounded
Ranking None

Values The token value 'none', or any ISO 639 two-letter language code.
Default none

Because some graphics, photos, or other data may contain no textual information and are
undefined with regards to language, the default language value is 'none’.

See Appendix 9.1 for a complete listing of allowed ISO 639 values.
6.1.3.1 none
The data is unspecified for language (presumably because it contains no textual content).

Name none
Label None

28 (74
92 (74)

6.1.4 coverage *

The geopolitical or application scope of the data, particularly relating to standards, policies,
units of measure and other regional aspects.

Name coverage
Label Coverage
Type Token

Count Single
Range Bounded
Ranking None

Values One of: global, europe, north_america, south_america, africa, middle_east,
asia_pacific, any ISO 3166-1 two-letter country code, or any valid Token value
as defined by this specification.

Default global

All ISO 3166-1 codes must be entered in lowercase to comply with the constraints of the
MARS Token format. ISO 3166-1 itself does not specify case as being significant, thus all
lowercase encoded values used in MARS metadata are fully compliant with ISO 3166-1.

Custom token values for the coverage property, such as those defining the scope of a
particular customer or application, may not supersede the semantics of either the values
defined by this specification nor the ISO 3166-1 country codes. ILe., it is not permitted to
define a custom value which has identical coverage t0 a MARS defined value, such as
‘world' as a synonym for 'global’ or 'france' as a synonym for 'fr', etc. The creation of ad-hoc
coverage scopes from existing defined scopes as a means of documenting current
application rather than overall relevance (e. g. 'fr_ge' for France plus Germany rather than

‘europe’) is highly discouraged. In general practice, one should use great constraint before
defining a new coverage vaiue.

See Appendix 9.2 for a complete listing of allowed ISO 3166-1 values.

6.1.4.1 global

Coverage is world-wide.

Name global
Label Global

6.14.2 europe

Coverage applies only to Western, Northern, Southern, and Eastern Europe.

Name europe
Label Europe

6.1.4.3 north_america

Coverage applies only to the United States, Canada, and Mexico.

93 29 (74)

Name north_america
Label North America

6.1.4.4 south_america

Coverage applies only to Central and South America, and the Caribbean.

Name south_america
Label South America

6.1.4.5 africa
Coverage applies only to Africa.

Name africa
Label Africa

.6.1.4.6 middle_east
Coverage applies only to the Middle East.

Name middle_east
Label Middle East

6.1.4.7 asia_pacific

Coverage applies only to Asia and the Pacific.

Name asia_pacific
Label Asia-Pacific

6.1.5 encoding *

The syntactic and semantic encoding of the data.

Name encoding

Label Media Encoding

Type Encoding

Count Single

Range Bounded

Ranking None

Values Either binary or any valid Encoding as defined by this specification.
Default binary

94 30 (74)

6.1.5.1 binary

Data has literal binary encoding which is not expected to be parsed in any fashion.

Name binary

Label Literal Binary Encoding
Content Type application/octet-stream
Suffix bin

6.1.6 component *

The abstract component of a media object or media instance.

Name component
Label Component
Type Token

Count Single

Range Bounded

Ranking None

VYalues One of: data, meta, toc, index, glossary; or other defined token value.
Default data

Typically, components belong to a media instance, though components can also be defined
for an abstract media object itself, defining properties and other characteristics shared by all
instances of that media object.

6.1.6.1 data

Represents the data content component.

Name data
Label Data Content
6.1.6.2 meta

Represents the metadata component.

Name meta
Label Metadata

6.1.6.3 toc

Represents the table of contents component.

Name toc
Label Table of Contents

95

6.1.6.4 index

Represents the index component.

Name index
Label Index

6.1.6.5 glossary

Represents the glossary component.

Name glossary
Label Glossary

6.1.7 item *

The concrete, physical item belonging to a media component.

Name item
Label Item
Type Token
Count Single
Range Bounded
Ranking None

Values One of: data, meta, idmap, or lock.

Default data

31 (74)

Most item property values are significant only to the Generalized Media Archive. In nearly
all cases, end users will never specify nor concern themselves with item property values

directly, but will interact primarily with components.

6.1.7.1 data

Contains the actual data content of the component.

Name data
Label Data Content

6.1.7.2 meta

Management metadata for the data item of the same component.

Name meta
Label Metadata

96 32 (74)

6.1.7.3 idmap

Symbolic ID pointer to content fragment mapping table.

Name idmap
Label ID Pointer to Fragment Map

This item is mandatory for each data item which has statically partitioned data containing
internal cross reference targets and defines a mapping from each symbolic XPointer
reference to the number of the fragment containing that target (e.g. "#xyz" = "123").

6.1.7.4 lock
Marker preventing accidental collisions between concurrent management systems or
sessions.
Name lock

Label Modification Lock

The format and nature of the lock item is dependent on the GMA managing the component.

6.2 Item Qualifier

6.2.1 pointer *

A reference to a particular structural element or sequence of elements within the data

content, encoded as an XPointer string. Typically a pointer to an element ID value (e.g.
"#EID38281").

Name pointer

Label Content Pointer
Type String

Count Single

Range Unbounded
Ranking None

Values Any valid XPointer reference string.

6.2.2 revision

The number of a particular editorial revision milestone for the release.

Name revision

Label Editorial Revision

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined in this specification.

97 33 (74)

6.2.3 fragment

The number of a specific, static, linear sub-sequence of the data content of the component.

Name fragment

Label Data Content Fragment

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined in this specification.

98 34 (74)

6.3 Management

The properties defined within the Management module relate to the control of processes
operating on or directed by MARS metadata, such as retrieval, storage, change management
(also referred to as version management), etc.. It does not include metadata properties
which might be needed for other higher level management processes such as workflow
management, package/configuration management, or editorial process lifecycle

management. Such processes can be built on top of the functionality provided by this and
other modules.

6.3.1 action §

The action or operation which a particular Metia Framework Agent is to perform.

Name action

Label Action

Type Token

Count Multiple

Range Bounded

Ranking None

Values One of: store, retrieve, generate, remove, qualify, locate, lock, or unlock.

A software application must assume default values for unspecified Identity properties as
defined by this standard, and/or to apply values based on user and/or environment
configurations, in order to resolve any given query to a physical item.

Multiple actions can be specified at any given time, in which case they are to be applied in

the order specified to the data resulting from any preceeding actions, or otherwise to the
originally specified data.

This permits the convenient specification of compound actions such as 'generate store', 'lock
retrieve', 'store unlock’, or locate remove'.
6.3.1.1 store

Store a data stream, associating it with the item defined by the Identity property values
otherwise provided in the same query.

Name " store
Label Store Data

6.3.1.2 retrieve

Retrieve the data stream associated with the item defined by the Identity property values
otherwise provided in the same query.

Name retrieve
Label Retrieve Data

4
99 35 (74)

6.3.1.3 generate

Generate a new data stream, possibly derived from an input data stream, associating it with
the item defined by the Identity property values otherwise provided in the same query.

Name generate
Label Generate Data

6.3.1.4 remove

Remove (delete/destroy) the data defined by the Identity property values otherwise provided
in the same query.

Name remove
Label Remove Data

6.3.1.5 qualify

Return a boolean value indicating the existence, validity, or other status of the data defined
by the Identity property values otherwise provided in the same query.

Name qualify
Label Qualify Data

6.3.1.6 locate

Return one or more complete item property value sets for all items matching in some
fashion the set of properties provided in the query.

Name locate
Label Locate Data

6.3.1.7 lock

Set the modification lock for the item defined by the Identity property values otherwise
provided in the same query.

Naine lock
Label Set Modification Lock

6.3.1.8 unlock

Release the modification lock for the item defined by the Identity property values otherwise
provided in the same query.

Name unlock
Label Release Modification Lock

6.3.2 agency *

100 36 (74)

The CGI URL prefix to the Metia Framework Agency where the data resides; typically to a

Generalized Media Archive.

Name agency

Label Agency CGI URL

Type Agency

Count Single

Range Unbounded

Ranking None

Values Any valid Agency value as defined by this specification.

6.3.3 location *

A URL from which the data can be retrieved; typically a combination of the agency CGI
prefix, the action 'retrieve’, and the Identity properties of the data.

Name
Label
Type
Count
Range
Ranking
Values

6.3.4 size

location
Location
URL
Single
Unbounded
None

Any valid URL value as defined by this specification.

The total number of bytes of data. Can be used as a simple checksum for data transfers or
other operations.

Name
Label
Type
Count
Range
Ranking
Values

6.3.5 relevance §

size

Size

Count

Single

Unbounded

Strict

Any valid Count value as defined by this specification.

The relevance of the data with regards to the ideal target of a search query or similar form
of comparison to other data. A value of zero indicates no relevance. A value of 100
indicates full relevance or a "perfect match".

Name

relevance

101 37 (74)

Label Relevance

Type Percentage

Count Single

Range Bounded

Ranking Strict

Values Any valid Percentage value as defined by this specification.

The relevance property is used almost exclusively as a transient value whenever a score or
other proximity value must be specified in relation to a search query or other similar
operation. It is not intended to be stored persistently, as its meaning is highly contextual and
typically valid only within the scope of the results from a particular action by an agent.

6.3.6 status

The general lifecycle status of the data; typically indicating the maturity of the content and
controlling release to specific audiences.

Name status

Label Status

Type Token

Count Single

Range Bounded

Ranking Strict

Values One of: draft, approved, or expired.

6.3.6.1 draft

The content either has not been created yet or is currently being created or modified and is
not likely to be fully valid for its intended purpose.

Name draft
Label Draft
Rank 1

6.3.6.2 approved

The content has been verified as correct and valid for its intended purpose.

Name approved
Label Approved
Rank 2

6.3.6.3 expired

The content is no longer valid for its intended purpose and/or is no longer maintained.

Name expired

102 38 (74)

Label Expired
Rank 3

6.3.7 access *

Corresponds to one or more user and/or group identifiers specifying users having rights to
modify content.

Name access

Label Access

Type String

Count Multiple

Range Unbounded

Ranking None

Values Any valid String value as defined by this specification, and which conforms to
the access control mechanisms in use in the given environment.

6.3.8 revision *

The sequential editorial milestone identifier for a particular revision of the data item of a

media component, incremented with each store action following modifications to the data
content.

Name revision

Label Revision

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.

6.3.9 comment §

6.3.10

A note or comment documenting an operation performed on the data (e.g. the change note
for a given modification).

Name comment
Label Comment
Type String

Count Single
Range Unbounded
Ranking None

Values Any valid String value as defined by this specification.

tool *

A full description of the name and version of the tool used to create or last modify the data.

6.3.11

6.3.12

6.3.13

Name
Label
Type
Count
Range
Ranking
Values

created

39 (74
103 79

tool

Tool Description

String

Single

Unbounded

None

Any valid String value as defined by this specification.

The time when the data was first created.

Name
Label
Type
Count
Range
Ranking
Values

locked

created

Time Created

Time

Single

Unbounded

Strict

Any valid Time value as defined by this specification.

The time when the data was locked.

Name
Label
Type
Count
Range
Ranking
Values

modified

locked

Time Locked

Time

Single

Unbounded

Strict

Any valid Time value as defined by this specification.

The time when the data was last modified.

Name
Label
Type
Count
Range
Ranking
Values

modified

Time Last Modified

Time

Single

Unbounded

Strict

Any valid Time value as defined by this specification.

6.3.14 approved

6.3.15 reviewed

6.3.16 validated

6.3.17

104 40 (74)

The time when the data was approved.

Name
Label
Type
Count
Range
Ranking
Values

approved

Time Approved

Time

Single

Unbounded

Strict

Any valid Time value as defined by this specification.

The time when the data was last reviewed.

Name
Label
Type
Count
Range
Ranking
Values

reviewed

Time Last Reviewed

Time

Single

Unbounded

Strict

Any valid Time value as defined by this specification.

The time when the data was last validated.

Name
Label
Type
Count
Range
Ranking
Values

start_pov

validated

Time Last Validated

Time

Single

Unbounded

Strict

Any valid Time value as defined by this specification.

The date after which the content is valid.

Name
Label
Type
Count
Range
Ranking
Values

start_pov

Start of Period of Validity

Date

Single

Unbounded

Strict

Any valid Date value as defined by this specification.

105 41(74)

6.3.18 end_pov

6.3.19

6.3.20

The date up to which the content is valid.

Name end_pov
Label End of Period of Validity
Type Date

Count Single

Range Unbounded

Ranking Strict

Values Any valid Date value as defined by this specification.

expiration

The date after which the data no longer need be stored or managed and can be discarded
(after optional archival).

Name expiration
Label Expiration Date
Type Date

Count Single

Range Unbounded

Ranking Strict

Values Any valid Date value as defined by this specification.

mrn §

A Media Resource Name (MRN) derived from the set of Identity and Qualifier properties as
defined by this specification.

Name mrn
Label Media Resource Name
Type MRN

Count Single
Range Unbounded
Ranking None

Values Any valid MRN value as defined in this specification.

Values for the 'mrn' property are typically not stored statically with the property set of a
given object or instance, but are a convenience mechanism used by particular Metia

Framework agents for internally defining and referencing storage items via single string
index keys.

If an MRN value is stored in any fashion by any Agency, it is the responsibility of that
Agency to maintain absolute synchronization between the MRN value and all of its
component values from which the MRN is derived.

6.4 Affiliation

106 42 (74)

Affiliation properties define the organizational environment or scope where data is created
and maintained.

6.4.1 function

The business function primarily responsible for the creation, validation, and maintenance of
the data content.

Name
Label
Type
Count
Range
Ranking
Values

6.4.1.1 finance

Name
Label

6.4.1.2 sales

Name
Label

function

Business Function

Token

Single

Bounded

None

One of: management, finance, sales, marketing, research_and_development,
human_resources, legal, intellectual_property_rights, purchasing, sourcing,
production, manufacturing_technology, quality, information_management,

logistics, customer_service, or business_administration, or
business_management.

finance
Finance

sales
Sales

6.4.1.3 marketing

Name
Label

marketing
Marketing

6.4.1.4 research_and_development

Name
Label

research_and_development
Research and Development

6.4.1.5 human_resources

107
Name human_resources
Label Human Resources
6.4.1.6 legal
Name legal
Label Legal
6.4.1.7 intellectual_property_rights
Name intellectual_property_rights

Label Intellectual Property Rights

6.4.1.8 purchasing

Name purchasing
Label Purchasing

6.4.1.9 sourcing

Name sourcing
Label Sourcing

6.4.1.10 production
Name production
Label Production
6.4.1.11 manufacturing_technology
Name manufacturing_technology
Label Manufacturing Technology
6.4.1.12 quality
Name quality

Label Quality

6.4.1.13 information_management

43 (74)

Name information_management
Label Information Management

6.4.1.14 logistics

Name logistics
Label Logistics

6.4.1.15 customer_service

Name customer_service
Label Customer Service

6.4.1.16 business_administration

Name business_administration
Label Business Administration

6.4.2 organization *

The top-level organization to which the data belongs.

Name organization

Label Organization

Type Token

Count Single

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

6.4.3 business_unit *

The business unit to which the data belongs.

Name business_unit

Label Business Unit

Type Token

Count Multiple

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

109

45 (74)

The values for this property must be defined separately by each individual organization for

all business units within that organization.

6.4.4 product_family *

The product family to which the data belongs.

Name product_family

Label Product Family

Type Token

Count Multiple

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

The values for this property must be defined separately by each individual organization or

business unit for all product families within that organization and/or business unit.

6.4.5 product *

The product to which the data belongs.

Name product
Label Product
Type Token
Count Multiple
Range Bounded
Ranking None

Values Any valid Token value as defined by this specification.

The values for this property must be defined separately by each individual organization,
business unit, or product line for all products within that organization, business unit, and/or

product line.

6.4.6 product_release *

The product release to which the data belongs.

Name product_release
Label Product Release
Type Token

Count Multiple

Range Bounded

Ranking Strict

Values Any valid Token value as defined by this specification.

The values for this property must be defined separately by each individual organization,

business unit, or product line for all product releases within a given product.

110 46 (74)

6.4.7 project ¥

The project to which the data belongs.

Name project
Label Project
Type Token

Count Multiple

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

The values for this property must be defined separately by each individual organization,

business unit, or product line for all projects within that organization, business unit, and/or
product line.

6.4.8 process *

The process to which the data belongs.

Name process

Label Process

Type Token

Count Multiple

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

The values for this property must be defined separately by each individual organization,

business unit, or product line for all processes within that organization, business unit, and/or
product line.

6.4.9 milestone *

A symbolic milestone with which the data is associated.

Name milestone

Label Milestone

Type Token

Count Multiple

Range Bounded

Ranking Strict

Values Any valid Token value as defined by this specification.

The values for this property must be defined separately by each individual organization,
business unit, or product line for all processes within that organization, business unit, and/or
product line.

6.5 Content

111 47 (74)

Content properties define characteristics about data, often irrespective of its production,
application, or realization.

6.5.1 publisher

The entity responsible for making the data available. Typically the organization owning the

data.

Name
Label
Type
Count
Range
Ranking
Values

6.5.2 rights

publisher

Publisher

String

Single

Unbounded

None

Any valid String value as defined by this specification.

Information about rights held in and over the data. Typically a copyright notice.

Name
Label
Type
Count
Range
Ranking
Values

rights

Rights

String

Single

Unbounded

None

Any valid String value as defined by this specification.

6.5.3 confidentiality

The level of permitted access to the data.

Name
Label
Type
Count
Range
Ranking
Values

6.5.3.1 public

confidentiality

Confidentiality

Token

Single

Bounded

Strict

One of: public, company, confidential, or secret.

Access to the data is unrestricted.

Name
Label

public
Public

112 48 (74)

Rank 1

6.5.3.2 company

Access to the data is restricted to company personnel.

Name company
Label Company Confidential
Rank 2

6.5.3.3 confidential

Access to the data is restricted to those who are entitled by virtue of their duties.

Name confidential
Label Confidential
Rank 3

' 6.5.3.4 secret

Access to the data is restricted to the owner and to individuals named by the owner.

Name secret

Label Secret

Rank 4
6.5.4 title

The name given to the data, usually by the creator.

Name title
Label Title
Type String

Count Single
Range Unbounded
Ranking None

Values Any valid String value as defined by this specification.

6.5.5 description

A textual description of the data content.

Name description
Label Description
Type String
Count Single

113 49 (74)

Range Unbounded
Ranking None
Values Any valid String value as defined by this specification.

6.5.6 type
The content type represented by the data.
Name type
Label Content Type
Type Token
Count Single
Range Bounded
Ranking None
Values One of: general, product, project, process, management, or business.

6.5.6.1 general

Content is used for general purposes.

Name general
Label General Content

6.5.6.2 product

Content is used for product related purposes.

Name product
Label Product Related Content

6.5.6.3 project

Content is used for project related purposes.

Name project
Label Project Related Content

6.5.6.4 process

Content is used for process related purposes.

Name process
Label Process Related Content

114

6.5.6.5 management

Content is used for management related purposes.

Name management
Label Management Related Content

6.5.6.6 business

Content is used for business related purposes.

Name business
Label Business Related Content
6.5.7 class *

One or more topical, scope, typing, application, or other classificatory identifiers.

Name class

Label Classification

Type Token

Count Multiple

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

50 (74)

The values for this property must be defined separately by each individual organization,

business unit, or product line in accordance with their classification needs.

6.5.8 keywords *

One or more keywords (or terms or phrases) used to classify the general content of the data.

Name keywords

Label Keywords

Type String

Count Multiple

Range Unbounded

Ranking None

Values Any valid String value as defined by this specification.

This property is intended to be used when the values defined for the ‘class' property are not
fully sufficient for the classification needed or when classification must be based on
identifiers which are not valid Tokens. Care should be taken to ensure that it is not used in

lieu of the 'class' property when the latter property offers one or more suitable values.

6.6 Encoding

115 51(74)

Encoding properties define special qualities relating to the format, structure, or general
serialization of data streams which are significant to tools and processes operating on that

data.

6.6.1 content_type *
The MIME content type of the data.

Name
Label
Type
Count
Range
Ranking
Values
Default

content_type

MIME Content Type

String

Single

Bounded

None

Any valid MIME content type value.
"application/octet-stream”

The default MIME content type value corresponds to an otherwise unspecified stream of
binary data, and coincides with the default values for the 'encoding' and 'suffix' properties.
See Appendix 9.3 for a listing of the most commonly used MIME content type values.

6.6.2 suffix *

The filename suffix associated with a particular encoding.

Name
Label
Type
Count
Range
Ranking
Values
Default

suffix

Filename Suffix
String

Single
Unbounded
None

Any valid String value as defined in this specification.
llbinll

The default suffix value corresponds to an otherwise unspecified stream of binary data, and
coincides with the default values for the ‘encoding' and 'mime’ properties.

6.6.3 schema *

The identifier for a DTD, XML Schema, or other like mechanism defining the
syntactic/structural model of the data (if any).

Name
Label
Type

Count
Range

schema
Schema
String
Single
Unbounded

Ranking None

Values

116 52 (74)

Any valid String value as defined by this specification.

The structure and interpretation of schema string values is environment and system

dependent.

6.6.4 aspect *

Selection criteria for inclusion of the data within a given context, process, scope, or other
conditional application.

Name
Label
Type
Count
Range
Ranking
Values

aspect
Aspect
String
Single
Unbounded
None

Any valid String value as defined by this specification.

Aspect values are typically defined within structured document instances and seldom stored
as persistent metadata externally.

6.6.5 character_set

The MIME character set identifier for the primary or base character set in which textual
content is encoded.

Name
Label
Type
Count
Range
Ranking
Values

character_set

MIME Character Set

String

Single

Bounded

None

Any valid MIME character set identifier.

6.6.6 line_delimiter

The line delimiter character or character sequence for textual content.

Name
Label
Type
Count
Range
Ranking
Values

line_delimiter

Line Delimiter

Token

Single

Bounded

None

One of If, cr, crlf, or any valid Token value as defined by this specification.

117 53 (74)

6.6.6.1 If

Lines of content are delimited by line feed (If) characters (also called newline characters).
This is the line delimitation method for Unix, Linux, Windows NT/2000, and most POSIX
compliant operating systems.

Name If
Label Line Feed
6.6.6.2 cr

Lines of content are delimited by carriage return (cr) characters. This is the line delimitation
method for the Macintosh operating system.

Name cr
Label Carriage Return
6.6.6.3 crif

Lines of content are delimited by an ordered adjacent pair of carriage return and line feed
characters. This is the method for MS-DOS and Windows 95/98 operating systems.

Name crif
Label Carriage Return + Line Feed

6.6.7 width_in_millimeters

Absolute width dimension in millimeters.

Name width_in_millimeters

Label Width in Millimeters

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.

6.6.8 height_in_millimeters

Absolute height dimension in millimeters.

Name height_in_millimeters
Label Height in Millimeters
Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.

118 54 (74)

6.6.9 width_in_pixels

Absolute width dimension in pixels.

Name width_in_pixels
Label Width in Pixels
Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification,

6.6.10 height_in_pixels

Absolute height dimension in pixels.

Name height_in_pixels

Label Height in Pixels

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.

6.6.11 resolution

Resolution of an image or the desired rendering resolution in dots per inch (dpi) for
graphical data encodings.

Name resolution
Label Resolution (dpi)
Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.

6.6.12 compression

The method used for compression of graphical data encodings.

Name compression
Label Compression
Type Token

Count Single

Range Bounded

Ranking None

Values Any valid Token value as defined by this specification.

119 55(74)

6.6.13 color_depth

The total number of bits per pixel (bpp) used to encode individually displayable colors in
graphical data encodings.

Name color_depth

Label Color Depth (bpp)

Type Count

Count Single

Range Unbounded

Ranking Strict

Values Any valid Count value as defined by this specification.

6.6.14 color_space
The color space (model) used for graphical data encodings.
Name color_space

Label Color Space
Type Token

Count Single

Range Unbounded

Ranking None

Values One of rgb, rgba, cmyk, hsl; or any valid Token value as defined by this
specification.

6.6.14.1 rgb
Red/Green/Blue (RGB).
Name rgb

Label Red/Green/Blue (RGB)

6.6.14.2 rgba
Red/Green/Blue/Alpha (RGBA).

Name rgba.
Label Red/Greern/Blue/Alpha (RGBA)

6.6.14.3 cmyk :
Cyan/Magenta/Yellow/blacK (CMYK).

Name cmyk
Label Cyan/Magenta/Yellow/blacK (CMYK)

6.6.14.4 hsl

5
120 6 (74)

Hue/Saturation/Lightness (HSL).

Name
Label

6.7 Association

hsl
Hue/Saturation/Lightness (HSL)

Association properties define special relationships relating to the origin, scope, and/or focus
of the content in reference to other data. Values may be any valid URI, though it is
recommended that wherever possible, MRNs be used.

6.7.1 source *

Resource(s) from which the data is derived.

Name
Label
Type
Count
Range
Ranking
Values

6.7.2 refers *

source
Source

.URI

Multiple
Unbounded
None

Any valid URI value as defined by this specification.

Resource(s) to which the data refers.

Name
Label
Type
Count
Range
Ranking
Values

refers
Refers To
URI
Multiple
Unbounded
None

Any valid URI] value as defined by this specification.

6.7.3 supersedes *

Resource(s) which the data supersedes or replaces.

Name
Label
Type
Count
Range
Ranking
Values

supersedes

Supersedes

URI

Multiple

Unbounded

None

Any valid URI value as defined by this specification.

121 57 (74)

6.7.4 summarizes ¥

Resource(s) which the data summarizes.

Name summarizes

Label Summarizes

Type URI

Count Multiple

Range Unbounded

Ranking None

Values Any valid URI value as defined by this specification.

6.7.5 expands*

Resource(s) which the data expands.

Name expands

Label Expands

Type URI

Count Multiple

Range Unbounded

Rapking None

Values Any valid URI value as defined by this specification.

6.7.6 includes § *

Resource(s) which are included as partial content for the data as a whole.

Name includes

Label Includes

Type URI

Count Multiple

Range Unbounded

Ranking None

Values Any valid URI value as defined by this specification.
6.8 Role

Role properties specify one or more actors who have a special relationship wit
actor is usually a person, but can also be a software application.

6.8.1 user §*

Identifier of actor performing operation on or currently having modification r

g

h the data. An

ohts to data.

122 58 (74)

Name user
Label User
Type Actor

Count Single

Range Unbounded

Ranking None

Values Any valid Actor value as defined by this specification.

This property value is required to be persistent only when a modification lock is in force.
Otherwise, it is typically transient for any given operation.

6.8.2 creator *

Identifier of actor who created the original data.

Name creator
Label Creator
Type Actor

Count Single

Range Unbounded

Ranking None

Values Any valid Actor value as defined by this specification.

6.8.3 owner *

Identifier of actor who has primary rights and responsibilities for the data,

Name owner
Label Owner
Type Actor

Count Single

Range Unbounded
Ranking None
Values Any valid Actor value as defined by this specification.

6.8.4 modifier *

Identifier of actor who last modified the data.

Name modifier
Label Modifier
Type Actor
Count Single

Range Unbounded
Ranking None
Values Any valid Actor value as defined by this specification.

123

6.8.5 approver *

Identifier(s) of actor(s) responsible for the quality and correctness of the data.

Name approver

Label Approver

Type Actor

Count Multiple

Range Unbounded

Ranking None

Values Any valid Actor value as defined by this specification.

6.8.6 contributor *

Identifier(s) of actor(s) having contributed to the data.

Name contributor
Label Contributor
Type Actor

Count Multiple

Range Unbounded

Ranking None

Values Any valid Actor value as defined by this specification. -

6.8.7 reviewer *

59 (74)

Identifier(s) of actor(s) responsible for evaluating the quality and correctness of the data.

Name reviewer

Label Reviewer

Type Actor

Count Multiple

Range Unbounded

Ranking None

Values Any valid Actor value as defined by this specification.

6.8.8 distribution *

Identifier(s) of actor(s) having a key interest in the data and are typically notified in some

fashion regarding changes in the content or status of the data.

Name distribution
Label Distribution
Type Actor

Count Multiple
Range Unbounded
Ranking None

Values Any valid Actor value as defined by this specification.

124 60 (74)

INTENTION &\,\,\,@ BLaNK

125 61 (74)

7 Serialization and Validation

Because MARS is strictly a metadata specification framework and vocabulary, there is no
required method for encoding MARS metadata property values or rules governing their
validity. However, the Generalized Media Archive (GMA) specification defines a
serialization for MARS property value sets based on XML which is suitable for both data

interchange as well as persistent storage, and provides a DTD and other mechanisms for
validation and processing.

196 62 (74)

8 MRN (Media Resource Name) Syntax

This specification defines a URN syntax for MARS item references which is made up of the
ordered concatenation of Identity properties, and optionally Item Qualifier properties,
separated by colons. The ordered sequence is identifier, release, language, coverage,
encoding, component, item, [revision, fragment, pointer].

All MRNs share the common fixed prefix 'urn:mars:' in accordance with RFC 2141.
Note that the case of this prefix is not significant, but the case of the remainder of the URN
is significant. Le., 'URN:MARS: ', 'urn:mars: ', and 'UrN:MaRs:' are all equivalent.
It is recommended, however, that the prefix be all in lowercase, as shown in the examples,
for the sake of consistent readability across systems and environments.

There are two forms of MRN: (1) media instance component items (the typical case), and
(2) media object component items (for inherited or defining information).

In addition, either form of MRN may be qualified for revision, fragment, and/or pointer.

MRNs provide an explicit, concise, unique, consistent, and information rich identity string
value in cases where such a single identity string is needed.

MRNs identify only storage items, and not higher level abstract entities such as
components, instances or objects. Note though, that the Metia Framework Java API

provides for the notion of an MRN pattern, which can be employed to represent metadata-
related sets of items defined by valid MRNs.

8.1 Media Instance Component Item MRN

A media instance component item MRN is required to have valid property values for every
Identity property. E.g.:

"urn:mars:dnB823942931891:2:en:global :xhtml :meta:data
"urn:mars:dn823942931891:2:fi:fi:neutral_mu:toc:data"
"urn:mars:tan82819:0:none:global:cgm_2:data:data"
"urn:mars:x928bks212_u:1l:ch:asia:word:data:meta"

8.2 Media Object Component Item MRN

Media object component item MRNGs all share the same fixed sub-sequence ' :+:%:% ;% ; ¢
between the identifier and component property values, and are required to have valid
property values for every identifier, component and item property. E.g.:

"urn:mars:dn823942931891:*:*:*.:* :meta:data"
"urn:mars:dnB823942931891:*: % * . * . toc:data"
"urn:mars:tan82819:*:*:*.*.data:data’

The sequence ':*:*:%.*:" signifies that the defined items have global scope over all
instances, regardless of release, language, coverage, or encoding.

Note that MARS does not define how global information that is defined for media objects is
to be applied to instances, nor which components may be defined for any given media
object, nor their interpretation. MARS simply defines how those storage items are named
and organized using MARS metadata properties. In a typical environment, the only

127 63 (74) !

components defined for media objects would be a meta component for global metadata
shared by all instances and possibly a data component containing a template or general
document or abstract defining the content and/or structure shared by all instances.

8.3 Qualified MRN

A qualified MRN has three additional fields suffixed to an unqualified MRN, corresponding
to the property values for revision, fragment, and pointer; in that order. If any Qualifier
property is undefined, its field must contain an asterisk '*'. All three fields are mandatory.
E.g:

vurn:mars:tan82819:0:none:global:cgm_2 :data:data:3:*: %"
nurn:mars:x928bks212 u:ll:ch:asia:word:data:meta: *:234 %"
vurn:mars:dn823942931891 ik x ko x :data:data:*:*:#EID22821"

Combinations of values for both revision and fragment may only be meaningful if the
revision number corresponds to the latest revision (in which case the revision number is
superfluous) or if the fragment can be reliably regenerated based solely on the fragment
number, as it is expected that static fragments are typically maintained only for the latest
revision.

9 Appendices

9.1 Language Property Values

The following table lists all allowed token values for the

128

their presentation labels, as defined in ISO 639.

64 (74)

“language” property, along with

Name Label Name Label

aa Afar Iv Latvian, Lettish
ab Abkhazian mg Malagasy

af Afrikaans mi Maori

am Ambaric mk Macedonian
ar Arabic ml Malayalam

as Assamese mn Mongolian

ay Aymara mo Moldavian

az Azerbaijani mr Marathj

ba Bashkir ms Malay

be Byelorussian mt Maltese

bg Bulgarian my Burmese

bh Bihari na Naury

bi Bislama ne Nepali

bn Bengali; Bangla nl Dutch

bo Tibetan no Norwegian

br Breton oc Occitan

ca Catalan om (Afan) Oromo
co Corsican or Oriya

cs Czech pa Punjabi

cy Welsh pl Polish

da Danish ps Pashto, Pushto
de German pt Portuguese

dz Bhutani qu Quechua

el Greek rm Rhaeto-Romance
en English m Kirundi

eo Esperanto o Romanian

es Spanish ru Russian

et Estonian ™ Kinyarwanda
eu Basque sa Sanskrit

fa Persian sd Sindhi

fi Finnish sg Sangro

fj Fiji sh Serbo-Croatian
fo Faeroese si Singhalese

fr French sk Slovak

fy Frisian s] Slovenian

ga Irish sm Samoan

gd Scots Gaelic sn Shona

el Galician 50 Somahi

gn Guarani sq Albanian

129

65 (74)

Name

Label Name Label W
gu Gujarati st Serbian
ha Hausa $s Siswati
hi Hindi st Sesotho
hr Croatian su Sundanese
hu Hungarian sV Swedish
hy Armenian sW Swahili
ia Interlingua ta Tamil
ie Interlingue te Tegulu
ik Inupiak tg Tajik
in Indonesian th Thai
is Icelandic ti Tigrinya
it Italian tk Turkmen
iw Hebrew tl Tagalog
ja Japanese tn Setswana
ji Yiddish to Tonga
jw Javanese tr Turkish
ka Georgian ts Tsonga
kk Kazakh tt Tatar
kl - Greenlandic tw Twi
km Cambodian uk Ukrainian
kn Kannada ur Urdu
ko Korean uz Uzbek
ks Kashmiri vi Vietnamese
ku Kurdish Vo Volapuk
ky Kirghiz wo Wolof
la Latin xh Xhosa
In Lingala yo Yoruba
lo Laothian zh Chinese
It Lithuanian Zu Zulu

9.2 Coverage Property Values

130

66 (74)

The following table lists the allowed token values for the “coverage” property, adopted from
ISO 3166-1, along with their presentation labels.

Name Label Name Label

ad Andorra Ic Saint Lucia

ae United Arab Emirates I Liechtenstein
af Afghanistan 1k Sri Lanka

ag Antigua and Barbuda Ir Liberia

ai Anguilla Is Lesotho

al Albania 1t Lithuania

am Armenia lu Luxembourg
an Netherlands Antilles Iv Latvia

ao Angola ly Libya

aq Antarctica ma Morocco

ar Argentina me Monaco

as American Samoa md Moldavia

at Austria mg Madagascar
au Australia mh Marshall Islands
aw Aruba mk Macedonia

az Azerbaidjan ml Mali

ba Bosnia-Herzegovina mm Myanmar

bb Barbados mn Mongolia

bd Bangladesh mo Macau

be Belgium mp Northern Mariana Islands
bf Burkina Faso mq Martinique (French)
bg Bulgaria mr Mauritania

bh Bahrain ms Montserrat

bi Burundi mt Malta

bj Benin mu Mauritius

bm Bermuda my Maldives

bn Brunei Darussalam mw Malawi

bo Bolivia mx Mexico

br Brazil my Malaysia

bs Bahamas mz Mozambique
bt Bhutan na Namibia

by Bouvet Island ne New Caledonia (French)
bw Botswana ne Niger

by Belarus net Network

bz Belize nf Norfolk Island
ca Canada ng Nigeria

cc Cocos (Keeling) Islands ni Nicaragua

cf Central African Republic nl Netherlands
cg Congo no Norway

ch Switzerland np Nepal

ci Ivory Coast (Cote D'Ivoire) nr Nauru

ck Cook Islands nt Neutral Zone

131 67 (74)

Name Label Name Label

cl Chile nu Niue

cm Cameroon nz New Zealand

cn China om Oman

co Colombia pa Panama

cr Costa Rica pe Peru

cs Former Czechoslovakia pf Polynesia (French)

cu Cuba Pg Papua New Guinea

cv Cape Verde ph Philippines

cX Christmas Island pk Pakistan

cy Cyprus pl Poland

cz Czech Republic pm Saint Pierre and Miquelon
de Germany pn Pitcaim Island

dj Djibouti pr Puerto Rico

dk Denmark pt Portugal -y
dm Dominica pw Palau

do Dominican Republic py Paraguay

dz Algeria qa Qatar

ec Ecuador re Reunion (French)

ee . Estonia o Romania

eg Egypt m Russian Federation

eh Western Sahara ™w Rwanda

er Eritrea sa Saudi Arabia

es Spain sb Solomon Islands

et Ethiopia sC Seychelles

fi Finland sd Sudan

fj Fiji se Sweden

fk Falkland Islands sg Singapore

fm Micronesia sh Saint Helena

fo Faroe Islands si Slovenia

fr France sj Svalbard and Jan Mayen Islands
fx France (European Territory) sk Slovak Republic

ga Gabon sl Sierra Leone

gb Great Britain sm San Marino

gd Grenada sn Senegal

ge Georgia S0 Somalia

gf French Guyana st Suriname

gh Ghana st Saint Tome (Sao Tome) and Principe
ai Gibraltar su Former USSR

gl Greenland sV El Salvador

gm Gambia sy Syria

gn Guinea sz Swaziland

g Guadeloupe (French) tc Turks and Caicos Islands
£q Equatorial Guinea td Chad

or Greece tf French Southern Territories
gs S. Georgia & S. Sandwich Isls. tg Togo

gt Guatemala th Thailand

gu Guam (USA) tj Tadjikistan

132 68 (74)
Name Label Name Label
gw Guinea Bissau tk Tokelau
gy Guyana tm Turkmenistan
hk Hong Kong tn Tunisia
hm Heard and McDonald Islands to Tonga
hn Honduras tp East Timor
hr Croatia tr Turkey
ht Haiti tt Trinidad and Tobago
hu Hungary tv Tuvalu
id Indonesia tw Taiwan
ie Ireland tz Tanzania
il Israel ua Ukraine
in India ug Uganda
io British Indian Ocean Territory uk United Kingdom
iq Irag um USA Minor Outlying Islands
ir Iran us United States
is Iceland uy Uruguay
it Italy uz Uzbekistan
jm Jamaica va Vatican City State
jo Jordan ve Saint Vincent & Grenadines
ip Japan ve Venezuela
ke Kenya vg Virgin Islands (British)
kg Kyrgyzstan vi Virgin Islands (USA)
kh Cambodia vn Vietnam
ki Kiribati v Vanuatu
km Comoros wf Wallis and Futuna Islands
kn Saint Xitts & Nevis Anguilla WS Samoa
kp North Korea ye Yemen
kr South Korea yt Mayotte
kw Kuwait yu Yugoslavia
ky Cayman Islands za South Africa
kz Kazakhstan zm Zambia
la Laos 2r Zaire
lb Lebanon w Zimbabwe

69 (74
133 (7

9.3 MIME Derived Property Values

The following are the most commonly used MIME content types and character sets which
are expected to be most frequently used; although any valid MIME content type or character
set is permitted (though not all may be supported by the tools and/or processes of a given
environment). They are provided here only for convenient reference.

9.3.1 Content Types

"application/http"
"application/msword"
vapplication/octet-stream”
"application/pdf"
napplication/postscript"
"application/xrtf"
"application/sgml"
napplication/sgml-open-catalog"
"application/vnd.lotus-notes"
vgpplication/vnd.mif"
"application/vnd.ms-excel“
"application/vnd.ms-powerpoint"
vapplication/vnd.ms-project”
napplication/vnd.visio"
"application/vnd.wap.sic"
napplication/vnd.wap.slc"
vapplication/vnd.wap.wbxml”
rapplication/vnd.wap.wmlc"
"application/vnd.wap.wmlscriptc"
"application/xml"
"image/cgm!

"image/gif"

"image/jpeg"

" image/png u

"image/tifE"

vimage/vnd.dwg"
"image/vnd.dxf"

*model/vrml"

"text/csst

"text/enriched"

teext/html"

"text/plain"

ttext/rtf"

"gext/sgml"

"text/uri-list™®
"rext/vnd.wap.si”
vtext/vnd.wap.sl”
ntext/vnd.wap.wml"
"text/vnd.wap.wnlscript"
"rext/xml"

"video/mpeg"
1video/quicktime"

134 70 (74)

9.3.2 Character Sets

"us-asciit
"iso-8859-1"
"utf-ge
"ytf-16n
"gb2312"
"is0-2022-jp"
"shift_jis"
Yeuc-krt

135 71 (74)

10 Changes from version 1.0 to 2.0

» Name changed from DORS to MARS

The name of this specification was changed from Document Object Reference Semantics
(DORS) to Media Attribution and Reference Semantics (MARS) in conjunction with the
naming changes applied to all components of the Metia (NCDE) Framework.

» Added Item Qualifier concept and Property Module

Added the concept of an Item Qualifier and created a new property module named Qualifier
containing the properties ‘revision', ‘fragment’, and 'pointer’. See section 6.2. Removed the

item token values 'data_s####, 'revisions', and 'revision_##' as these are now handled by
item qualifiers.

> Added explicit definition of MARS Versioning Model

See section 4.9. '

» Added explicit definition of MARS Metadata Inheritance Behavior

See section 4.8.
» Release property Type now a simple Count value

Changing the release property to type Count preserves the ability for a system to
automatically sort releases and obtain the latest release while removing the confusion of
using Dates -- the attraction of dates was that it gave a linear progression value that had
some relation to real time and actual production lives, but the confusion about the date
being that of the creation of the release (branch) rather than the "release date” of the final

approved version seemed too problematic to resolve on the large scale MARS is intended
for.

The specification of release as a Count value also is closer to many traditions of product or
system release (e.g. T9, T10, Java 2, DOM 1, DOM 2, CGM 1/2/3/4, etc.) where the

editorial version is a separate property from the release identifier -- as is now the case with
MARS.

» New 'encoding' property; previous 'format’ property renamed to 'content_type'

While adopting MIME encoding strings as the value for encoding (format) properties
seemed a good idea, both because we were adopting an existing standard as well as giving
high status to a property that plays a central role in a distributed Web environment -- it is
clear that the level of resolution provided by MIME encoding values is insufficient and that
rather than append additional information to the MIME string, increasing the processing
burden, or adding yet another Identity property, it seemed best to revert back to the original
model for encoding (format) properties as symbolic tokens defined for a given environment

for those encodings which are significant to the production and management processes and
needs of that environment.

It is not enough to say "text/xml" or "image/cgm”". We need to differentiate between
different instances of a media object which all share the same MIME type but have different

136 72 (74)

specific encodings, such as Neutral-MU, Online, DocBook, CGM 1, CGM 3, etc. Likewise,
some encodings have a very broad range of possibilities where we wish to limit to only a

few options, such as TIFF for low, medium, and high resolution, or GIF at 72 and 600 dpi,
etc.

Symbolic token values thus allow for defining sets of encoding and format properties in a
single value which is significant for defining the identity of an instance; e.g. neutral_mu,
cgm_3, tiff low, gif89a_600dpi, etc.

The name of the property was changed from 'format' to 'encoding’ both to be more accurate
(the property now indicates both syntactic and semantic encoding, not just raw "format")
and to make more conspicuous the change in data type.

The MIME encoding identifier string will still be provided for, in the new 'content_type'
property defined in the Encoding module. The allowed values for this property are the same
as the former format property, namely any valid MIME identifier. In a sense, we have really
renamed the format property 'content_type' and moved it out of the Identity module, and

created a new property 'encoding’ to indicate a finer resolution of syntactic and semantic
encoding.

It is anticipated that in the XML Schema(s) for MARS, there will be defined an Encoding
element class, which will provide required attributes for defining the MIME, schema,
resolution, filename suffix, and other fixed properties of particular symbolic encoding token
values. These can then be referenced by any system to automatically propagate them to their
relevant MARS property values as needed, and for validation purposes (i.e. tests that ensure

that e.g. the MARS content_type property can't be set to "text/sgml" for an instance with
encoding 'meutral_mu', etc.).

» Default language value is now 'none'

Since graphics with no text have no actual "language”, the default language value must be
‘none'.

This places the burden on tools such as NED to get user or environment defined defaults for
language, and may also have implications for query tools to "match" retrieval queries with a
defaulted specified language to instances with language values equal to 'none'. L.e., in some
retrieval applications, all other language property values may be seen as being equivalent to
'none’, all other criteria withstanding.

» Media Resource Name (MARS Identity) URN syntax defined

This will be the required format for all cases where a single string identifier is needed for
any given physical storage item. See section 8.

> Percentage data type defined
See section 5.2.5.
» Ranking data type defined, and token rank value now of type Ranking

See section 5.2.9.

137 73 (74)

» Removed source mapping and references to legacy metadata vocabularies

The source and synonym mapping table and references to Nokia internal legacy metadata
vocabularies were important when grounding the initial version of MARS to prior or
existing systems and environments; however, further reference to them in later versions of
the MARS specification is not necessary for understanding or application of later versions
of the standard; and maintaining the mappings of any new MARS properties to all prior or
existing vocabularies is a burdensome task which can fairly be seen as outside the scope of
the specification itself. Version 1.0 of the MARS specification will be maintained and can
be referenced when there are questions regarding the historical mappings from which that
original version was derived. There may also be other documents maintained which define
and track the synonymous intersections of various vocabularies in use within Nokia.

» Added Encoding module and properties

Based on work done primarily by the Graphics SIG, a set of new properties for specifying
graphics and other data encoding qualities was defined, and the results of that work have
been incorporated into the MARS specification.

» Version renamed to Revision and changed from String to Count

In order to define an explicit, uniform revision identification scheme, incremental editorial
revisions are numbered by simple sequential integers. The property was named 'revision' so
that 'version' could be used elsewhere as a process or system specific value, possibly the
combination of release and revision values, separated by a decimal, to represent major and
minor branches; or as some other value as needed. Within the Metia Framework, and
particularly within a GMA, only the revision value is authoritative and reliable. Any other
specified properties such as a process specific or other custom ‘version' identifier are only
informational, and should not be the basis for generic Metia Framework tools or processes.

» Added the data types Content Type, Character Set, and Encoding

See section 6.6.
» Removed sections discussing specific serialization and encoding methods

Serialization methods such as XML, XML DTD's, XML Schemas, RDF, RDF Schemas,
etc. are more properly addressed in the Framework and GMA specifications and are not

within the scope of MARS, which is only a vocabulary and vocabulary specification
framework.

» Multivalue separator changed from semicolon ';' to white space
The method for differentiating between multiple values encoded in a single string has been
changed from semicolon to white space (spaces for non-string value types, line break for
string values). This follows common Internet and WWW practice and provides for a more
consistent user interface in web browser based applications (which is the case for all current

Metia Framework applications).

» Added relevance property

See section 6.3.5.

138 74 (74)

» Order of multiple values is now preserved

The order of multiple values is significant for compound actions, i.e. a sequence of actions
to be performed on the same data in succession, e.g. 'generate store', 'lock retrieve’, locate

remove', etc. Therefore it is now manditory that the order of multiple values be preserved
by all agents operating on MARS metadata.

> Action property count changed to Multiple

Certain agent operations are greatly simplified if multiple, sequential actions can be
specified for the same data; therefore, the action property now may have mulitple values.

» Changed 'keywords' property to type String

This is necessary to support a broad range of registry services as well as to allow the
definition of terms and compound names as keywords.

It is expected that the 'class' property be used to define classifications based on one or more
controlled vocabularies of class labels and that the 'keywords' property be used for a variety
of purposes, including ad-hoc classification labels assigned by content producers and/or
managers, index term sets for various registry services, and for input to various queries.

» Added 'includes' property to Association module

The ‘includes' property is used to define separately managed instances which are included
inline as the content of another instance. It is also utilized by DEP-REGS (the Dependency
Relation Registry Service) for profiles and queries relating to reusable components and their
occurrence within higher level instances. See section 6.7.6.

139

Appendix i

Contents
1 SCOPE .uirerrrrnriresisenisiineiiastsnsnins verrerenrenens BT vreeessnrenan veresesneneaeenaeens e 2
2 Overview ... verernnenies cerereereasaniens e veereersraenees vreenrenerae rrebrateeerbeesaeraees st e et saeaas 2
3 Related Documents, Standards, and Specifications vervoseennias cererreersrr s rervese e 3
3.1 Metia Framework for Electronic Media tressesssnmmsesaresserassianesitsstassettseasaenisanaases veeseerrnens 3
3.2 Media Attribution and Reference Semantics (MARS) e trerbeeeeseereatesae e s e ns s aaae s e ereennaeeans 3
3.3 Generalized Media Archive (GMA)covveveennee ervernnneneanes teeereeaesresiarersterebrataraseeteeesessnne ORI |
4 General Architecture vesvesrenirenaee veeveseereene veeessaranaes cvererasinees vevreereesesi s eenaeaense creerenrenenh
4,1 Media Object Scope SRR rervreeeeraens SO SO PPP PR e 4
4.2 Media Instance SCOPEc.ccourrunes veeaeerernaens vreseenres ceeereeaare veeobennie ciresaresaniaeane reerete e saeaas 4
43 Media Component SCOPEccoes Ceeseesentrnreane et sstsas e aasenne st e n et sy asas vevsssassanssnsssenarnenes e
44 Revision Scope ...cccene veeeesreaea e erea s veereeereas ceerreeene s verrreseereseanrennees ceererenenee s
4.5 Fragment Scope veveerereeane vessrsrsmsinsasssansrennanaseas JRRORRRRN PuNehoEaaasaanaaanessanneanauanats wd
4.6 EventScope veeraeeeennr s veerenrnrene veereseneeeneens cvesesreenrnes vererers e e et 5
47 StorageItem OO P UPPPOO PO SRR vereerrrrranaraeas vererens ST 5
5 Host File System Requirementsccoeeeeees rrseer e veveessreanne cerreeses e ees crereeir e 6
6 Example Archive File Systemccccoo.ee. Leereereene s es crerrereennnens creverrsren s es ceeesr s 7

140 | 2(9)

1 Scope

This document defines the Portable Media Archive (PMA), a physical organization model
of a file system based data repository conforming to and suitable for implementations of the
Generalized Media Archive (GMA) abstract archival model.

The PMA model is a component of the Metia Framework for Electromic Media. A basic

understanding of the Metia Framework, the GMA, and MARS is presumed by this
specification.

2 Overview

The PMA defines an explicit yet highly portable file system organization for the storage and
retrieval of information based on Media Attribution and Reference Semantics (MARS)
metadata. The PMA uses the MARS Identity and Item Qualifier metadata property values
themselves as directory and/or file names, avoiding the need for a secondary referencing
mechanism and thereby simplifying the implementation, maximizing efficiency, and
producing a mnemonic organizational structure.

This specification only defines the physical organization of a file system, and not the
processes or algorithms for accessing, manipulating, or otherwise interacting with or
operating on that file system. Different GMA implementations based on the PMA model
may interact with the data in different ways.

Any GMA may use a physical organization model other than the PMA. The PMA physical
archival model is not a requirement of the GMA abstract archival model. However, the
PMA may nevertheless be employed by such implementations both as a data interchange
format between disparate GMA implementations as well as a format for storing portable
backups of a given archive.

141

3 Related Documents, Standards, and Specifications

3.1 Metia Framework for Electronic Media

3(9)

The Metia Framework is 2 generalized metadata driven framework for the management and
distribution of electronic media which defines a set of standard, open and portable models,
interfaces, and protocols facilitating the construction of tools and environments optimized
for the management, referencing, distribution, storage, and retrieval of electronic media.; as
well as a set of core software components (agents) providing functions and services relating
to archival, versioning, access control, search, retrieval, conversion, navigation, and

metadata management.

httg://metia.nokia,com/speciﬁcations/#Metia

3.2 Media Attribution and Reference Semantics (MARS)

Media Attribution and Reference Semantics (MARS), a component of the Metia
Framework, is a metadata specification framework and core standard vocabulary and
semantics facilitating the portable management, referencing, distribution, storage and
retrieval of electronic media.

httn://rnetia.ndkia.com/speciﬁcations/#MARS

3.3 Generalized Media Archive (GMA)

The Generalized Media Archive (GMA), a component of the Metia Framework, is an
abstract archival model for the storage and management of data based solely on Media
Attribution and Reference Semantics (MARS) metadata; providing a uniform, consistent,
and implementation independent model for information storage and retrieval, versioning,
and access control.

htto://rnetia.nokia.com/soeciﬁcations/#GMA

4 General Architecture

The physical structure of a PMA is organized as a hierarchical directory tree that follows
the MARS object/instance/component/item scoping model.

Each media object comprises a branch in the directory tree, each media instance a sub-
branch within the object branch, each media component a sub-branch within the instance,
and so forth,

Only MARS Identity and Item Qualifier property values are used.

All other metadata properties (as well as Identity and Qualifier properties) are defined and
stored persistently in 'meta’ storage items; conforming to the serialization and interchange
encodings defined by the GMA specification.

Because Identity and Item Qualifier properties must either be valid MARS tokens or integer
values, any such property value is an acceptable directory or file name in all major file
systems in use today.

4.1 Media Object Scope

The media object scope is encoded as a directory path consisting of a sequence of nested
directories, one for each character in the media object 'identifier' property value. Eg.

identifier="dn9982827172" = d/n/9/9/8/2/8/2/7/l/2/

Identifier values are broken up in this fashion in order to support very large numbers of
media objects, possibly millions or billions, residing in a given archive. If the identifiers
were used as complete directory names, most file systems would support only several
hundred to several thousand media objects, depending on the file system.

Using only one character per directory ensures that there will be at most 37 child sub-
directories within any given directory level (one possible sub-directory for each character in
the set [a-z0-9_] allowed in MARS token values), further satisfying the maximum directory
children constraints of most modern file systems (see below).

The media object scope may contain either media instance sub-scopes or media component
sub-scopes; the latter defining information (metadata or otherwise) which is shared by or
relevant to all instances of the media object.

4.2 Media Instance Scope

The media instance scope is encoded as a nested directory sub-path within the media object
scope and consisting of one directory for each of the property values for 'release’, Tanguage',
‘coverage', and 'encoding’, in that order. E. g.:

release="1" language="en" coverage="global" encoding="xhtml"
= 1/en/global/xhtml/

4.3 Media Component Scope

The media component scope is encoded as a sub-directory within either the media object
scope or media instance scope and named the same as the component property value. E.g.:

component="meta = meta/

143
509)

4.4 Revision Scope

The revision scope, grouping the storage items for a particular revision milestone, is
encoded as a directory sub-path within the media component scope beginning with the
literal directory 'revision' followed by a sequence of nested directories corresponding to the
digits in the non-zero padded revision property value. E.g.:

revision="27" = revision/2/7/

The 'data’ item for a given revision must be a complete and whole snapshot of the revision,
not a partial copy or set of deltas to be applied to some other revision or item. It must be
fully independent of any other storage item insofar as its completeness is concerned.

4.5 Fragment Scope

The fragment scope, grouping the storage items for a particular static fragment of the data
component content, is encoded as a directory sub-path within the media component scope or
revision scope and beginning with the literal directory 'fragment’ followed by a sequence of
nested directories corresponding to the digits in the non-zero padded fragment property
value. E.g.: '

fragment="5041" = fragment/5/0/4/1/

4.6 Event Scope

The event scope, grouping action triggered operations for a particular component, instance,
or object, is encoded as a directory sub-path within the media component scope, media
instance scope, or media object scope and beginning with the literal directory 'events' and
containing one or more files named the same as the MARS action property values, each file
containing a valid MARS XML instance defining the sequence of operations as ordered
property sets. E.g.:

" events/store
events/retrieve
events/unlock

4.7 Storage Item

The storage item is encoded as a filename within the media component, revision, or
fragment scope and named the same as the item property value. E.g.:

item="data" = data

144 6 (9)

5 Host File System Requirements

This specification does not set minimum requirements on the capacities of host file systems,
nor absolute limits on the volume or depth of conforming archives. However, an
understanding of the variables which may affect portability from one file system to another
is important if data integrity is to be maintained.

This specification does, however, define the following recommended minimal constraints
on a host file system, which should be met, regardless of the total capacity or other
capabilities of the file system in question:

File and Directory Name Length: 30
Directory Depth: 64
Number of Directory Children: 100

The above specified constraints are compatible with the following commonly used file
systems, which are therefore suitable for hosting an PMA (which also does not exceed real
constraints of the given host file system):

VFAT (Windows 95/98), NTFS (Windows NT/2000), HFS (Macintosh), HPFS
(0S/2), HP/UX, UFS (Solaris), ext2 (Linux), ISO 9660 Levels 2 and 3
(CDROM), and UDF (CDR/W, DVD).

There are likely many other file systems in addition to those listed above which are suitable
for hosting an PMA.

Note that FAT (MS-DOS, Windows 3.x) and ISO 9660 Level 1 file systems are not suitable
for hosting an PMA. ISO 9660 Level 1 plus Joliet or Rock Ridge extensions may be
suitable in some cases, but this is not generally recommended.

145
7(9)

6 Example Archive File System

The following is a fragment of an example file system organization for a Portable Media
Archive. The location of the directory paths with respect to the root directory is not
specified. The directory separator is illustrative only, and will conform to each particular
file system in which a given archive is stored.

Media object scope path segments are highlighted in blue, media instance scope segments in
red, media component scope segments in green, revision scope segments in violet, fragment
scope segments in orange, event scope segments in crimson, and storage items in black.

d/n/9/9/8/2/8/2/7/1/2/meta/data
d/n/9/9/8/2/8/2/7/1/2/meta/meta
d/n/9/9/8/2/8/2/7/1/2/meta/revision/l/data
d/n/9/9/8/2/8/2/7/1/2/meta/revision/1/meta
d/n/9/9/8/2/8/2/7/1/2/meta/revision/2fdata s
d/n/9/9/8/2/8/2/7/1/2/meta/revision/2/meta
d/n/9/9/8/2/8/2/7/1/2/meta/revision/3/data
d/n/9/9/8/2/8/2/7/1/2/meta/revision/3/meta
d/n/9/9/8/2/8/2/7/1/2/meta/revision/é/data
d/n/9/9/8/2/8/2/7/1/2/meta/revision/4/meta
d/n/9/9/8/2/8/2/7/1/2/meta/revision/5/data
d/n/9/9/8/2/8/2/7/1/2/meta/revision/s/meta
d/n/9/9/8/2/8/2/7/1/2/meta/events/generate
d/n/9/9/8/2/8/2/7/1/2/1/en/global/docbook/meta/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/docbook/meta/meta
d/n/9/9/8/2/8/2/7/1/2j1/en/global/docbook/meta/revision/l/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/docbook/meta/revisicn/l/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/globa1/docbook/meta/revisionlz/data
d/n/9/9/8/2/8/2/7/1/2/1/en/global/docbook/meta/revision/2/meta
d/n/9/9[8/2/8/2/7/1/2/1/en/global/docbook/toc/data
d/n/9/9/8/2/8/2/7/1/2/1/en/globa1/docbook/toc/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/globa1/docbook/index/data
d/n/9/9/8/2/8f2/7/1/2/1/en/globa1/docbook/index/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/global/docbook/glossary/data
d/n/9/9/8/2/8/2/7/1/2/1/en/global/docbook/glossary/meta
d/n/9/9f8/2/8/2/7/1/2/1/en/global/docbook/data/data
d/n[9/9/8/2/8/2/7fl/z/1/en/global/docbook/data/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/global/docbook!data!revision/l/data
dfn/9!9/8/2/8/2/7/1/2f1ien/global/docbook/data/revisicn/ljmeta
d/n/9/9/8/258/2/7/lf2/lfen/global/docbook/data/revision/2/data
d!ni9/9/8/2f8i2/7/1!2/1/en/global/docbook/data/revisionfzjmeta
d/n/9/9/8/2/8/2/7/1/2j1!en]globa1/docbook/data/revision/B/data
d[n/Qf9/8/2/852/7/1iZf1feniglobal/docbook!data/revision!3/meta
dfn/9/9f8!2!8!2f7jlf2!1jenfglobal/docbook!data/revisicnfé/data
d;n;9f9/8f2/8!2f7/1!2f1fenfglobalfdocbookfdatafrevision/4fmeta
dfn/9/9}8f2i8f2/7f1’2}1/en/global!docbookidata/revisicnf...
dfn59i9f8f2f8f2f7flf2fljenfglobaljdocbookfdatafrevisionizflfdata
dfnf9f9f8i2£8!2i7f1f2fljeniglobalidocbook/data!revisicnfz/lfmeta
dfnf9f9f8!2f8f2f7flfzilien!global/docbookfdata/eventsfstore
djnj9j9f8f2f8%2/7f1f2flfenjglobal/docbookfdata/eventsfremove

146 8(9)

d/n/s/9/8/2/8/2/7/1f2/1/en/global/xhtml/meta/data
d/n/9/9/8/2/8/2/7/1/2/l/en/globalthtml/meta/meta
d/n/9f9!8/2/8/2/7/1/2/1/en/global/xhtml/meta/revisionfl/data
dfn/9/9/8/2/8/2/7ilf2/1fen/globaljxhtml/metafrevision/lfmeta
d/n/9/9f8/2/8/2/7/1/2/1/en/global/xhtml/data/revision/...
d/n/9/9/8/2/8/2/7/1[2/l/en/global/xhtml/meta/revision/9/data
d/n/9/9/8/2/8/2/7/1/2f1/en/global/xhtml/meta/revisicn/9/meta
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/toc/data
d/n/9/9/8/2/B/2/7/1/2/l/en/global/xhtml/toc/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/index/data
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/index/meta
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/glossary/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/glossary/meta
dfn/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/data
d/n/s/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/meta
d/n/9/9/8/2/8/2/7/lf2/1/en/global/xhtml/data/idmap
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragment/o/data
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtm1/data/fragment/o/meta
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/l/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/l/meta
d/g/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/z/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/:/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragment/3/data
d/n/9/9/8/2/8/2/7/l/2/l/en/global/xhtml/data/fragment/...
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragment/9/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/B/meta
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragment/1/O/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/l/O/meta
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/...
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragment/S/S/data
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragmenc/s/slmeta
d/n/9/9/8/2/8/2/7/1/2/1/en/global/xhtml/data/fragmant/...
d/n/9/9/8/2/8/2/7/1/2fl/en/global/xhtml/data/fragman:/S/Q/E/Z/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/fragment/s/s/s/zfmeta
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/revision/O/data
d/n/9/9/8/2/8/2/7/1/2/l/en/global/xhtml/data/revision/o/meta
d/n/9/9/8/2/8/2/7/1/2[1/en/global/xhtml/data/revision/0/...
d/n/9/9/8/2/8/2/7/l/2/l/en/global/xhtml/data/revision!...
dfn/s/9/8/2/8/2/7/1/2/l/en/globalthtml/data/revision/3/4/data
d/n/9/9/8/2/8{2!7/lf2fl/enfglobal/xhtml/data/revision/3/4/meta
d/n/9/9/8f2!8f2f7/1/2/l/en/global/xhtml/data/revision/3/4/idmap
djn/9;9/8/2/8!2!7/1/2!lfen!global/xhtml/datafrevision/s/4££r‘ z/¢/data
d/nf9/9f8f2/8/2f7fl/2fl/en/global!xhtml/data/revisicnfB/4[€
d!n/9i9/8/2£8/2f7flf2!l/en!global/xhtmlfdata/revisionf3/4/
d/n/9f9/8£2f8!2f7!li2;l/enfglobaljxhtmlfdata/revisionf3/4f
d!nfsfsfs52/8f2/751!2ilfenfglobalthtml/datafrevisicnfB/4;: f37%/ 7 ‘meta
d4/n/2/4/8/27/0/5/3/meta/data

d/n/2/4/8/2/0/5/3/meca/meta

dfnfz/4f8X2f0js/3;metafrevisicn/...
dfnfzf4/8f2ﬁ0f5£3f8ieniglobal/cgm_4fmetafdata

147
99

d/n/2/4/8/2/0/5/3/8/en/global/cgm_4/meta/meta
d/n/2/4/8/2/0/5!3/8/enfglobal/cgm_é/metairevision/...
d/n/2/4/8/2/0/5/3/8/en/global/cgm_4/index/data
d/n/2/47/8/2/0/5/3/8/en/global/cgm_4/index/meta
d/n/2/4/8/2/0/5/3/8/en/global/cgm 4/data/data
d/n/2/4/8/2/0/5/3/8/en/global/cgm_4/data/meta
d/n/2/4/8/2/0/5/3/8/en/global/cgm_4/data/revision/1/data
d/n/2/4/8/2/0/S/3/8/en/globa1/cgm_4/data/revision/l/meta
d/n/2/4/8/2/0/5/3/8/enjglobal/cgm_4/data/revision/...
d/n/z/4/8/2/0/5/3/8fen/global/cgm_é/data/revision/l/?/data
d/n/2/4/8/2/0/5/3/8/en/global/cgm_4/data/revision/l/7/meta

148

Appendix IV

Contents
L SC0PR ottt e eeeeeeee oo 3
2 OVEIVIBW oottt ettt e oeeseeeeeeeeoeoe . 3
3 Related Documents, Standards, and SPecificationsc..oovvermereemmsoooooosoooooooooooo 4
3.1 Metia Framework for Electronic Mediaoovvueveevoeeeereerereeeeesmsooooooooooooooooooo 4
3.2 Media Attribution and Reference Semantics (MARS) e, 4
3.3 Portable Media Archive (PMA)oocuveumireemimuiriesseneeeeeneseeeees oo 4
3.4 Registry Service Architecture (REGS) ..c.evveeumuereuereeseeeeernseeeseeeseoooeeooeoooooooooeooooeooooe 4
4 General ATCHItECIUTEccouirimiriiieicieiccci et oeeees oo 5
4.1 Management -BY- MEtadataccvvueereeereenecurnssnesessee e seosseeesesesose oo 6
4.1.1 Content versus Management MEtadataoo..voeeeveevoonseerommssooosoooooooooooooo 6
4.1.2 MARS Properties Required by GMAuovevuruevoereereeeeeeeeeeesoeoeoeoosooooooooooo o 6
4.1.3 MARS Properties Used by GMAccccommmirmmunmmmrmerioeeeeeoeeeneeessoeosoooooooeoooooeooo 7
4.14 Default PrOPerty VEIUEScucveeeeereecrniisieeiseseoeeeseoneeeeseesseesseoes oo 7
4.2 Management -OF- MEtadataocuuuueecererioneesnesesiesesiniseeeeoseeseessosos oo oo 8
4.2.1 PErSIStNt SIOTAZEvvvvsreriisieeeienneaecesseenesssssess e esaese s s oo g
4.22 Inheritance and SCOPEvuvumvvumeeeeeceerecesneesneaessese e eeeeeeesseesssessees s oo 8
4.3 Storage and REMrEValcooooviuiueiciceceeenecees s eeeteeese oo 8
4.4 ACCESS COMIOL oooeeiriniiniiiiiniti ettt s oo 9
441 USEITACNULY .oovvuieviiieti ettt et 9
442 Group MEMBEISHIDcoovveversrssseeseerreeeeeesees e eeeeeoeeeeeeeneoo oo oo 9
4.43 Read PEMMUSSION .vooorviceniiimiiciicicieeeres st s e oo 9
4.4.4 Write PEIMISSION ...cvvouiiiimmiiiiiiicceccrienes st sese s 10
445 ACCESS LEVELS oottt 10

4.5 VEISIONINE ovuiiieiieireisiesiisisisriscsse st et se e s 11
4.5.1 Revision Numbering Scheme

149 2(27)

4.5.2.1 Snapshotting

... 13
4.52.2 REVETSE DEILAS ..ouieiiiiiiiereeerietei ettt st e s s 13
4.6 GEIETALION .vivveeveereeriereeeereitiessastesaseestearesaseanrasenreasasscsbemaessae e b s ek s s b e aaaa s e beae e ser st seobssu b b s b 14
4.6.1 Dynamic PartitiONINg ..c.cccoverviiiiiiiiiiniieisie it s b 14
47 Events ... e rereene e s ceeevesieerreseest et re e n et r e ee e e bR S sh SR b ehn e R Reana sEnees e ees b aes 15
ACHONS eveeieccevrviriirenecne ressessetsrisnesits LT RS et TR S E SRR R O e P aeeS 4 S bsRERS LS RLARINS S ITIR N VRN LS ae 80 R e R ISRESRTS OS 16
51 qualify e ettt ene reeee et cerrre 16
52 TEITIEVE .cceivcnriiiinienniennesn e eeereeeeteent e eesteeae e s et e e teb e sanebe et s et be e b e aene e 17
5.3 SLOIE eeevvrvirereeersiiiirniiciniiniirnesnesesssaenses e eeeerteeereeeeteseeeesesenasereeareerneeteaa s et e ba e e e st et e s n e nne s 19
54 TEMOVE ...cccovreenrienns treereeeresibessresesraseserEesEeRETesEEeSsNO btesteebNte L e s ie R RS e et e R eSO R T e s R b e s b be e et S s et b s sa 21
55 locate ...cceveeennne eetee et a e eresbeeneas rerrese s e dreereenrenaas crersnene 22
56 lock .evveneeiniieiiinnnn vreereesne saeesesteestsesestsIestrorenTs TaTns TR e naae e b AU L AL LARSARIRESNS SO RE RO RSO OR SR n R ar T s veerereen23
5.7 unlock ..iniiiininnn, teetersereebestatea e tatar e e e ra et et bs b et et s sE S oo b AR e R e s R e a e et n e saasensoaties R
5.8 generateoeeeenne vevsrasernestiarteNetNE NI IR S E SRS R LTS E SRS SReSH S A SRR SH A4 SRS SR T SO e SRRt S0 RS SR 0e 24
Serialization and Encoding of Specialized Storage Itemsocooviriiniiieminiinnni .26
6.1 'meta’ Storage IemS .c.cccceeienviciiiiictii rerteebent et saaae 26
6.2 'data’ Storage Items within 'meta’ Media Components eberrea bbbttt en e sttt ene 26
6.3 ‘idmap' Storage Itemsccccvvviiriniirninn e s Creereeseete st s res rveneraes 26

6.4 'data' Storage Items for a specific Revision rreeresarere e e reseae crreeesaeee s aeranas 27

150 327)

1 Scope

This document defines the Generalized Media Archive (GMA), an abstract archival model
based solely on Media Attribution and Reference Semantics (MARS) metadata; providing a
uniform, consistent, and implementation independent model for the storage, retrieval,
versioning, and access control of electronic media.

The GMA model is a component of the Metia Framework for Electronic Media. A basic
understanding of the Metia Framework and MARS is presumed by this specification.

2 Overview

The GMA is a central éomponent of the Metia Framework and serves as the common
archival model for all managed media objects controlled, accessed, transferred or otherwise
manipulated by Metia Framework agencies.

The GMA provides a uniform, generic, and abstract organizational model and functional
interface to a potentially wide range of actual archive implementations; independent of
operating system, file system, repository organization, versioning mechanisms, or other
implementation details. This abstraction facilitates the creation of tools, processes, and
methodologies based on this generic model and interface which are insulated from the
internals of the GMA compliant repositories with which they interact.

The GMA defines specific behavior for basic storage and retrieval, access control based on
user identity, versioning, automated generation of variant instances, and event processing.

The identity of individual storage items is based on MARS metadata semantics and all

interaction between a client and a GMA implementation must be expressed as MARS
metadata property sets.

151 4(27)

3 Related Documents, Standards, and Specifications

3.1 Metia Framework for Electronic Media

The Metia Framework is a generalized metadata driven framework for the management and
distribution of electronic media which defines a set of standard, open and portable models,
interfaces, and protocols facilitating the construction of tools and environments optimized
for the management, referencing, distribution, storage, and retrieval of electronic media.; as
well as a set of core software components (agents) providing functions and services relating

to archival, versioning, access control, search, retrieval, conversion, navigation, and
metadata management.

http://metia.nokia.com/speciﬁcations/#Metia

3.2 Media Attribution and Reference Semantics (MARS)

Media Attribution and Reference Semantics (MARS), a component of the Metia
Framework, is a metadata specification framework and core standard vocabulary and

semantics facilitating the portable management, referencing, distribution, storage and
retrieval of electronic media.

htgp://metia.nokia.com/speciﬁcations/#MARS

3.3 Portable Media Archive PMA)

The Portable Media Archive (PMA), a component of the Metia Framework, is a physical
organization model of a file system based data repository conforming to and suitable for
implementations of the Generalized Media Archive (GMA) abstract archival model.

httg://metia.nokia.com/sgeciﬁcations/#PMA

3.4 Registry Service Architecture (REGS)

The Registry Service Architecture (REGS), a component of the Metia Framework, is a
generic architecture for dynamic query resolution agencies based on the Metia Framework
and Media Attribution and Reference Semantics (MARS), providing a unified interface
model for a broad range of search and retrieval tools.

http://metia.nokia.com/specifications/#REGS

152 527)

4 General Architecture

A GMA manages media components and contains storage items.

The operation of a GMA can be divided into the following five functional units:

Storage and Retrieval of items is simply the act of associating electronic media data
streams to MARS storage item identities and making persistent, retrievable copies of those
data streams indexed by their MARS identity (either directly or indirectly), as well as the
management of creation and modification time stamps.

Access Control is based on several controlling criteria as defined for the environment in
which the GMA resides and as stored in the metadata of individual components managed by
the GMA. Access control is defined for entire components and never for individual items
within a component. Access control can also be defined for media objects and media
instances, in which case subordinate media components inherit the access configuration
from the higher scope(s) in the case that it is not defined specifically for the component.

Access control also includes the management of user identity and role metadata such as
creator, owner, contributor, etc.

Versioning is performed only for 'data’ items of a media component and constitutes the
revision history of the data content of the media component. It also includes general
management and updating of creation, modification and other time stamps. Storage or
update of items other than the 'data’ item neither effect the status of management metadata
stored in the 'meta’ item of the component (unless the item in question is in fact the 'meta’
item of the component) nor are reflected in the revision history of the component. If a
revision history or particular metadata must be maintained for any MARS identifiable body
of content, then that content must be identified and managed as a separate media
component, possibly belonging to a separate media instance.

Generation is the process of automatically producing an item either from another item or
from metadata, or both in response to a generation or retrieval request from some client
(possibly recursively from the GMA itself). The automatically produced item is typically

derived from the 'data’ item of a component as a variant encoding, a report of some form, a

fragment or subset of the original content, or some other derivative of the original data item.

153 6 (27)

Events concern the handling of events which may trigger other operations automatically in
conjunction with the client specified operations; typically the regeneration of items,

components or instances derived from content data and/or metadata when the content from
which they are derived changes.

Every GMA must implement the storage and retrieval functional unit in some fashion (it
need not be an explicit implementation unit), but may optionally omit any of the other
functional units, or allow for them to be disabled, depending on the needs of the given
application and/or environment. It is not permitted, however, for a GMA to only partially
implement a functional unit; or rather, a GMA cannot claim to include a functional unit

unless the behavior of the functional unit as defined in this specification is fully
implemented.

4.1 Management -BY- Metadata

A GMA relies on specific MARS metadata (and only that metadata) in order to operate, and
also defines or updates MARS metadata as part of its operation. Management and

manipulation of electronic media solely via metadata is a fundamental goal of the Metia
Framework and thus also of the GMA.

4.1.1 Content versus Management Metadata

’

It is important to make a clear distinction between content metadata and management
metadata. Content metadata describes the qualities and characteristics of the information
content as a whole, independent of how it is managed. Management metadata, on the other
hand, is specifically concerned with the history of the physical data, such as who may
retrieve or modify it, when it was created, whether a user is currently making modifications
to it, what the current revision identifier is, etc.

Content metadata is outside the scope of concern of a GMA, and typically is stored as a
separate 'meta’ component, not a ‘meta’ item, such that the actual specification of the content
metadata is managed by the GMA just as any other media component. The metadata that is
of primary concern to a GMA, and which a GMA accesses, updates, and stores persistently,
is the metadata associated with each component.

A GMA manages media components, and the management metadata for each media
component is stored persistently in the 'meta’ storage item of the media component.

A special case exists with regards to management metadata which might be defined at the
media instance or media object scope, where that metadata is inherited by all sub-
components of the higher scope(s). See section 4.2.2 for details.

4.1.2 MARS Properties Required by GMA

The following MARS metadata properties are required by a GMA to be defined in the input
query and/or for the target data, depending on the action being performed and which
functional units are implemented. See the pseudocode in section 5 for usage details.

The functional units are represented in the table as follows: Storage & Retrieval = 'SR/,
Versioning = 'V, Access Control ='A’, Generation = 'G’, and Events = 'E".

154 T(27)

Property Functional Unit Action

identifier, release, language, SR,V,A GE qualify, retrieve, store, remove,

coverage, encoding, component, generate

item

identifier, release, language, SR,AE lock, unlock

coverage, encoding, component

user, access A qualify, retrieve, store, remove,
lock

user A unlock

revision \" qualify, retrieve, store

fragment SR qualify, retrieve, store

pointer SR retrieve

comment v

store

size, pointer

Q

generate, retrieve

4.1.3 MARS Properties Used by GMA

The following MARS metadata properties are generated, updated, or otherwise modified by

a GMA for one or more actions, depending on which functional units are implemented. See
the pseudocode in section 5 for usage details.

Property Functional Unit Action
created, modified, size SR store

owner, creator, modifier, A store
contributor

user v lock

locked SR lock, unlock
revision v store
fragment G generate

4.1.4 Default Property Values

A GMA may assume the default values as defined by the MARS specification for all
properties which it requires but are not specified explicitly. It is an error for a required
property to have neither a default MARS value nor an explicitly specified value.

155 8 (27)

4.2 Management -OF- Metadata

In addition to relying on already defined metadata, a GMA is itself responsible for defining,
updating, and maintaining the management metadata relevant for the 'data’ item of each
media component, which is stored persistently as the 'meta’ item of the component. In fact,

most of the metadata produced by a GMA is later used by the GMA for subsequent
operations.

4,2.1 Persistent Storage

A GMA is free to store 'meta’ items, containing management metadata, in any internal

format; however every GMA must accept and return 'meta’ storage items as XML instances
as defined in section 6 of this specification.

Content metadata, however, constituting the data content of a 'meta’ component and stored

as the 'data’ item of the 'meta’ component, must always be a valid XML instance as defined
by this specification. .

These two constraints ensure that any software agent is able to retrieve from or store to a
GMA both content and management metadata as needed, as well as any GMA may resolve

inherited management metadata from meta components at higher scopes in a generic
fashion.

4.2.2 Inheritance and Scope

The MARS specification defines a set of simple rules for metadata property inheritance. In
short, properties defined at a given scope are visible at all lower scopes, and the definition
of a property at a lower scope takes precedence over any definition at a higher scope.

Management metadata may be defined at the media object or media instance scope,
applying to (being inherited by) all sub-component scopes.

It is the responsibility of the GMA to both retrieve and utilize all inherited metadata
properties of a component, as well as to differentiate inherited from component specific
properties when storing persistent metadata property sets, such that only component specific
properties are stored. This ensures that changes to inherited properties take effect on all
subsequent operations in the component scope. A GMA is free to "mirror" inherited
properties at the component scope SO long as absolute synchronization is maintained
between the mirrored properties and their inherited source.

A GMA may never include inherited properties in any 'meta’ storage item output as the
result of a retrieve action.

4.3 Storage and Retrieval

Storage and Retrieval of items is simply the act of associating electronic media data streams
to MARS storage item identities and making persistent, retrievable copies of those data
streams indexed by their MARS identity (either directly or indirectly), as well as the
management of creation and modification time stamps.

Every GMA must implement the core storage and retrieval functional unit. If versioning,
access control, generation, and/or event units are also implemented, then the storage and
retrieval operations may be augmented in one or more ways.

156 9(27)

A GMA is free to use any means to organize both the repository of storage items as well as
the mapping mechanisms relating MARS identity metadata to locations within that
repository. GMA implementations might employ common relational or object oriented
database technology, direct file system Storage, or any number of custom and/or proprietary
technologies. Regardless of the underlying implementation, a GMA must accept input and
provide output in accordance with this specification.

4.4 Access Control

A GMA implementation is not required to implement access control, but if access control is
provided, it must conform to the behavior defined in this specification.

Access Control of media components is based on several controlling criteria as defined for
the environment in which the GMA resides and as stored in the metadata of individual
components managed by the GMA. Access control is defined for entire components and
never for individual items within a component. Access control can also be defined for
media objects and media instances, in which case subordinate media components inherit the

access configuration from the higher scope(s) in the case that it is not defined specifically
for the component.

The four controlling criteria for media access are:
1. User identity
2. Group membership(s) of user
3. Read permission for user or group

4. Write permission for user or group

4.4.1 User Identity

Every user must have a unique identifier within the environment in which the GMA

operates, and the permissions must be defined according to the set of all users (and groups)
within that environment.

A user can be a human, but also can be a software application, process, or system. This is
especially important for both licensing as well as tracking operations performed on data by
automated software agents operating within the GMA environment.

4.4.2 Group Membership

Any user may belong to one or more groups, and permissions can be defined for an entire
group, and thus for every member of that group. This greatly simplifies the maintenance

overhead in environments with large numbers of users and/or high user turnover (many
users coming and going).

Permissions defined for an explicit user override permissions defined for a group of which
the user is a member. Thus, if a group is allowed write permission to a component, but a

particular user is explicitly denied write permission for that component, then the user may
not modify the component.

4.4.3 Read Permission

Read permission means that the user or group may retrieve a copy of the data.

157 10 (27)

The presence of a lock marker does not prohibit retrieval of data, only modification.

If access control is not implemented, and/or unless otherwise specified globally for the
GMA environment or for a particular archive, or explicitly defined in the metadata for any
relevant scope, a GMA must assume that all users have read permission to all content.

4.4.4 Write Permission

Write permission means that the user or group may modify (store a new version of) the
data.

Write permission equates to read permission such that every user or group which has write
permission to particular content also has read permission. This is true even if the user or
group is explicitly denied read permission otherwise.

The presence of a lock marker prohibits modification by any user other than the owner of
the lock, including the owner of the component if the lock owner and component owner are
different. It is permitted for a GMA to provide a means to break a lock, but. such an
operation should not be available to common users and should provide a means of logging
the event and ideally notifying the lock owner of the event.

If access control is not implemented, a GMA must assume that all users have write
permission to all content.

If access control is implemented, and unless otherwise specified globally for the GMA
environment or for a particular archive, or explicitly defined in the metadata for any
relevant scope, a GMA must assume that no users have write permission to any content.

Regardless of any other metadata defined access specifications (not including settings

defined globally for the archive), the owner of a component always has write access to that
component.

4.4.5 Access Levels

This specification defines a set of access levels which serve as convenience terms when

defining, specifying, or discussing the "functional mode" of a particular GMA with regard
to read and write access control. :

Access levels can be used as configuration values by GMA implementations to easily
specify global access behavior for a given GMA where the implementation is capable of
providing multiple access levels.

Level Read Write
1 * *
2 * X
3 * A
4 A A

* = no access control, public access
X = access prohibited globally
A = access control by user identity

158 1127

Note that because write permission subsumes, or includes read permission, it is not
meaningful (albeit possible) to define an access level where there is read access control but
no write access control. This is because giving global write permission to any user is the
same as giving global read permission, as write permission overshadows or overrides read
permission, and thus even if a particular user was denied read access for a given storage

item, they would still have implicit write permission, which includes read permission;
making the denial of read access ineffective.

A GMA implementation is not required to provide a particular level of access control;
however, it must be clearly stated for each implementation which level, if any, above level
1 is available. Furthermore, if access control above level 2 is provided, it must conform to
the behavior defined in this specification.

4.5 Versioning

A GMA implementation is not required to implement versioning, but if versioning is
provided, 1t must conform to the behavior defined in this specification.

Versioning relates to the identification, preservation, and retrieval of particular revisions
(editions) in the editorial lifecycle of some discrete body of data. A version is a snapshot in
time, and retrieving a past version is traveling back in time to the point when that snapshot

was taken. Sequences of snapshots may be related by sharing a common ancestry while
differing in one or more recent revisions.

Versioning is often modeled as a tree, where a sequences of shapshots is a path from the
root of the tree, along the branches and sub-branches, to the leaves. Sequences are related
by their shared portions in the tree, being the common trunk and branches which are part of
both paths from the root; up to the point where the two sequences differ in a given revision,
or separate/split into two distinct branches. Each branch is given a sequential identifier
(usually a positive integer), and each level of branches, sub-branches, sub-sub-branches, etc.
is separated by some distinct punctuation, typically a period. At any given point of
separation of two revision sequences (paths through the tree), the branch may either divide
equally, such that there become two sub-branches each of which receive a new numbering
level, or the main branch may simply "grow" a sub-branch where the revision number
sequence of the main branch continues onwards at the same level while the sub- branch's
revision number sequence gains an additional level.

The primary (almost exclusive) motivation for having many distinct branches is the
management and maintenance of concurrent yet variant instances of the data, which are
accessible and used in some fashion in parallel. A good example of this is software, where
one version is being used while the next version is being developed. Problems (bugs) arising
in the currently used version may not exist in the later version under development, yet one
must still make the necessary corrections to the current version. In such a case, the software
code revision sequence "branches", with the development process of the newer version
becoming a new sub-branch and the maintenance (bug-fix) process of the current version
remaining the main branch. Both branches share a common beginning (path from the root)
but have unique progressions thereafter. In some cases, two distinct branches (related or
otherwise) might merge at some point, making the resultant data model a graph in actuality,
but it is nevertheless still common to speak in terms of tree structures.

While providing a very useful and effective means to organize and manage related editorial
sequences as connected branches, the tree based versioning model has a number of
shortcomings. It allows arbitrarily deep trees, allowing (and in some cases encouraging) the

159 12 (27

fragmentation of editorial sequences which are not meaningful nor productive in practice. It
also allows for a plethora of incompatible interpretations applied to the various levels in the

tree, making the interchange of historical information difficult, and in many cases
impossible.

The MARS versioning model, which is used by every GMA, addresses the same needs
provided for in the tree based versioning model — namely (1) the need to make (and later
retrieve) snapshots along a sequence of editorial revisions, (2) the need to manage separate
parallel sequences of revisions, and (3) the need to relate sequences with shared history —
but does so in a much simpler and (most importantly) portable fashion.

Versioning is divided into two levels: (1) an individually managed and independently
accessible editorial sequences are called a 'release’ and corresponds to a branch in the tree
based versioning model; and (2) snapshots along an editorial sequence (release) are called
revisions and correspond to leaves in the tree based versioning model.

Each release is given a unique positive integer identifier. Likewise, each identified
(managed) revision within a release sequence is given a unique positive integer identifier,
and the revision numbering sequence begins anew for each release. Releases which are
derived from other releases (i.e. sub-branches growing out from parent branches) may
specify via the MARS 'source' property the particular release and revision from which they
come. These three pieces of information — release number, revision number, and source (if
any) — meet all three of the above defined versioning needs.

A GMA which implements versioning is responsible only for the linear sequence of
revisions within a media component.

A GMA implementation is not responsible for the automated or semi-automated creation or
specification of new instances relating to distinct releases (branching) nor retrieval of
revisions not unique to a particular release (paths in the tree up to the beginning of the
particular branch) from its source(s) (ancestor branches); though it is free to offer that
functionality if it so chooses. Typically, the creation of new releases (branching) will be
performed manually by a human editor, including the specification of 'source’ and any other
relevant metadata values. Other tools, external to the GMA may also exist to aid users in
performing such operations.

Versioning is performed by a GMA only for the 'data’ item of a media component and that
sequence of revisions constitutes the editorial history of the data content of the media
component. The GMA is also responsible for general management and updating of creation,
modification and other time stamp metadata. Storage or update of items other than the 'data’
item neither effect the status of management metadata stored in the ‘meta’ item of the
component (unless the item in question is in fact the 'meta’ item of the component) nor are
reflected in the revision history of the component. If a revision history or particular
metadata must be maintained for any MARS identifiable body of content, then that content
must be identified and managed as a separate media component, possibly belonging to 2
separate media instance.

4.5.1 Revision Numbering Scheme

Revisions are identified by positive integer values (MARS Count values). The scope of each
media component is unique and revision values have significance only within the scope of

each particular media component. Revision sequences should begin with the value '1' and
proceed linearly without gaps.

160 13 (27)

The revision value zero '0' is reserved for special use by future versions of the GMA model.
GMA implementations should neither permit nor generate revisions with a value of zero.

Doing so may result in data and/or tools which are incompatible with future versions of this
standard.

4.5.2 Storage and Retrieval of Past Revisions

A GMA implementation is free to internally organize and store past revisions in any fashion
it chooses.

This specification describes two recommended methods for storing past revisions of the
content of a media component: snapshotting and reverse deltas. In some cases, more than
one method might be applied by 2 GMA, depending on the nature of the media in question.

Regardless of its internal organization and operations, a GMA is required to return any
requested revision which is maintained and stored by the GMA as a complete copy.

4.5.2.1 Snapshotting

Snapshotting is simply the process of preserving a complete copy of every revision. One
takes a "snapshot" of the content at a given point in time and assigns a revision number to it.

Two clear benefits to snapshotting are that it is very easy to implement, and special
(possibly time consuming) regeneration operations are not needed to retrieve past revisions.

The latter can be very important in an environment where there is heavy usage and retrieval
times are a concern. :

A major drawback to snapshotting is that it places heavy storage demands on the system
hosting the archive. It is also very inefficient in that the differences between revisions is

typically very slight and therefore there is a large amount of redundant information being
stored in the archive.

It is permitted for a GMA implementation to limit the total number of past revisions that are
maintained (e.g. no more than 10) in cases where it is not practical or feasible to store every
past revision since the creation of the media component; in which case there is the
additional drawback that only a limited number of previous revisions are maintained and
data loss (of the earliest revisions) is inevitable.

4.5.2.2 Reverse Deltas

A delta is set of one or more editorial operations (modifications) which can be applied to a
body of data to consistently derive another body of data. A reverse delta is a delta which
allows one to derive a previous revision from a former revision.

Rather than store the complete and total content of each revision, as is done with
snapshotting, a GMA which uses reverse deltas simply stores the modifications necessary to
derive each past revision from the immediately succeeding (later) revision. A reverse delta
then can be seen as a single step backwards in time, along the sequence of editorial
milestones represented by each revision of data. To obtain a specific past revision, one must
simply begin at the current revision, and then apply the reverse deltas in order for each
previous revision until the desired revision is reached.

One could just as well have forward deltas, where the delta defines the operations needed to
derive the more recent revision from the preceding revision (and in fact the first revision
management systems using deltas worked this way). The drawback to forward deltas, is that

161 14 (27)

once a given editorial sequence becomes sufficiently long, containing many revisions, it
takes longer and longer to generate the most recent revision from the very first revision,
applying all of the deltas for all of the revisions over time. Typically, only the most current
revisions are ever of interest, therefore it is much more efficient to rather work backwards
in time to retrieve previous revisions from the most current.

The primary benefit to using reverse (or forward) deltas in a GMA implementation is a
dramatic reduction in storage demands. Since most revisions tend to differ from the
previous revision only sli ghtly, the GMA need only store the differences and not the entire
body of content for every revision. This can be particularly important in environments
where there are frequent but slight changes to large media objects (such as graphics or
video) or where the archive must be replicated (mirrored) to multiple sites where bandwidth
and/or disk space may be at a premiurm.

A drawback to using reverse deltas in a GMA implementation is that they can be difficult to

implement for some media types; especially for complex binary encodings employing
compression.

4.6 Generation

A GMA implementation is not required to implement generation, but if generation is
provided, it must conform to the behavior defined in this specification.

Generation involves the automated creation of data streams which are not maintained
statically as such in the GMA but are derived in one manner or another from one or more
existing storage items. This includes conversions from one encoding or format to another,
extraction of portions of a component's content, auto-generation of indices, tables of
contents, bibliographies, glossaries, etc. as new components of a media instance, generation
of usage, history, and/or dependency reports based on metadata values, generation of
metadata profiles for use by one or more registry services, etc.

The present version of this specification only addresses one particular type of generation in
detail; though it is expected that subsequent versions of the GMA standard will specify
additional constraints, methods, and guidelines relating to other forms of generation; -
including those mentioned above, as well as others.

4.6.1 Dynamic Partitioning

Dynamic partitioning is a special case of generation where a fragment of the data content is
returned in place of the entire 'data’ item, possibly with automatically generated hypertext
links to preceding and succeeding content, and/or information about the structural
(contextual) qualities of the omitted content, depending on the media encoding.

Dynamic partitioning can be implemented and used whether or not static fragments exist.
Typically, static fragments are created according to the most common usage, whereas
dynamic partitioning is relied upon for more specialized applications.

Dynamic partitioning is controlled by two metadata properties, in addition to those defining
the identity of the source data item: 'size' and (optionally) 'pointer'. The single determining
factor for a partition of data is the maximum number of bytes which the fragment can
contain. The point within the data item from which the fragment is extracted can be
specified by an optional 'pointer’ property value (if the encoding supports it).

162 15(27)

The GMA then extracts the requested fragment, starting either at the beginning of the data
itern or at the point specified by the pointer value, and collecting the largest coherent and
meaningful sequence of content up to but not exceeding the specified number of content
bytes. What constitutes a coherent and meaningful sequence will depend on the media

encoding of the data and possibly interpretations inherent in the GMA implementation
itself.

Any fragment of a data item must employ the same media encoding as the data item and be
a valid data stream according to the rules and constraints of that encoding.

4.7 Events

A GMA implementation is not required to implement event handling, but if event handling
1s provided, it must conform to the behavior defined in this specification.

The event handling functionality defined for a GMA is very simple, owing to the generic
and abstract model defined by MARS metadata.

For each storage item, media component, media instance, or media object, a set of one or
more MARS property sets defining some operation(s) can be associated with each MARS
action, such that when that action is successfully performed on that item, component,
instance, or object, the associated operations are executed. Automated operations are thus

defined for the source data and not for any target data which might be automatically
generated as a result of an event triggered operation.

Each operation property set must specify the necessary metadata properties to be executed
correctly, such as the action(s) to perform and possibly including the CGI URL of the
agency which is to perform the action. The GMA is free to employ customized mechanisms
for determining how a given operation is to be performed, and by which software

component or agent, if otherwise unspecified in the property set using standard MARS and
Metia Framework conventions.

In the case of a remove action, which will result in the removal of any events defined at the
same scope as the removed data, the GMA is still required to execute any operations
associated with the remove action defined at that scope, after successful removal of the data,

even though the operations themselves are part of the data removed and will never be
executed again in that context.

The most common type of operation for events is a compound 'generate store' action which
generates a new target item from an input item and stores it persistently in the GMA, taking
into account all versioning and access controls in force. This is useful for automatically
updating components such as the toc (Table of Contents) or index when a data component is
modified, or for generating static fragments of an updated data component.

A GMA is free to associate automated operations globally for any given action, such that
the operations are applied within the scope of the data being acted upon. A GMA is also
free to associate automated operations with triggers other than MARS actions, such as
reoccurring times or days of the week, for the purpose of removing expired data such as via
a 'locate remove' compound action, where the locate query defines the expiration based on a
comparison of the current date with the end_pov or modified properties. A GMA, however,
may only define automated operations in terms of MARS property sets.

163 16 (27)

5 Actions

The following sections provide pseudocode for the core GMA operations corresponding to
Metia Framework agent actions. .

Note that the pseudocode is intended to be illustrative and informal, and not a rigorous
specification of any particular implementation.

For every action, the significant metadata properties are identified. Properties which are
highlighted in italics will be assigned default values as specified in MARS if not otherwise
defined. Underlined properties may be optional in certain circumstances, depending on the
functional units implemented or active for the GMA.

Retrieval of metadata for a given media component scope includes all inherited metadata
from media object and media instance scopes.

5.1 qualify

Verify that a particular storage item (possibly qualified for revision or fragment) exists (has
an identity) in the archive; or, if read access control is active, that the item exists and the
user has read access for the item. The storage item may have zero content bytes. If read
access control is active, if the user does not have read access to the item, yet it exists, the
action will nevertheless return 'false'. This is a security feature to prevent unauthorized users
from determining which storage items exist, even if they cannot access them. -

Synonyms:
Verify, Check, Exists

Properties:

identifier, release, language, coverage, encoding, component, item, USEr, AcCESs,
revision, fragment

Pseudocode:

Boolean gqualify (MARS item)
{
Retrieve MRN from MARS item;
Resolve MRN to archive location for item;
if (item exists in archive)
{
if (Versioning and input item property is equal to ‘data')
{

Retrieve metadata for component;

Retrieve value of revision property from component metadata;
if (component revision not equal to input revision)

if (input revision cannot be retrieved or regenerated)
Return 'false’;

if (input fragment value specified)

{

164 17 (27)

if (fragment cannot be retrieved or regenerated)

{

return 'false’;

}

if (Read Access Control)

{

Retrieve metadata for component;
Retrieve value of access property from component metadata;
if (NOT (user has write access OR has read access))

{
}

Return 'false’;

}

Return ‘'true';

}

else

{

if (AutoGeneration
AND the item can be generated from
one or more other source items in the archive)

for each source item

{
if (self.qualify(source_item) equal to 'true')

{
}

Return 'true';

}

Return 'false’';

Comments:

Mapping the MARS property set to a MRN ensures that an actual storage item is
specified, and if any Identity properties were omitted in the input MARS property set,
the default values are applied. It also frees the GMA implementation from tracking any
changes in default values specified by the MARS standard.

5.2 retrieve
Synonyms:
Read, Open, Check Out
Properties:

identifier, release, language, coverage, encoding, component, item, user, access,
revision, frasment, pointer

Pseudocode:

165

DataStream retrieve (MARS item)

{

if (self.qualify(item) equal to tfalse')

{
}

Report error and Abort;

Retrieve MRN from MARS item;
Resolve MRN to archive location for item;
if (item does not exist in archive)

{

}

Determine best source item for requested target item;
Return self.generate(source_item, item) ;

if (input item property is equal to 'data')

{

if (Versioning)

{

Retrieve metadata for component;

18 (27)

Retrieve value of revision property from component metadata;

if (component revision not equal to input revision)

Set target revision to input revision;

}
else
{
Set target revision to current component revision;
}
if (input fragment value specified)
{

Retrieve or regenerate fragment for target revision;
elsif (input pointer specified
and pointer is single ID reference)

Retrieve idmap for component for target revision;
Resolve pointer to fragment number;
if (pointer resolves to fragment number)

{

Retrieve or regenerate fragment for target revision;

}

else

{

Retrieve or regenerate data item for target revision;

}

else

{

Retrieve or regenerate data item for target revision;

166 19 (27)

Return data item or fragment for revision as DataStream;

}

else

{
if (input fragment value specified)

{
}

elsif (input pointer specified and pointer is #ID reference)

{

Retrieve or regenerate specified fragment for data item;

Retrieve idmap for component;
Resolve pointer to fragment number;
if (pointer resolves to fragment number)

{
}
else

{
}

Retrieve or regenerate fragment;

Retrieve data item;

}

else

{
}

Return data item or fragment as DataStream;

Retrieve data item;

}
}
Return input specified item as DataStream;
Comments:

Verification of read access and existence of particular revision or fragment of a data
item is handled by the qualify() action, so the retrieve() action need not recheck these.

5.3 store
Synonyms:
Write, Save, Check In

Properties:

identifier, release, language, coverage, encoding, component, item, user, access,
revision, fragment, created, modified, owner, creator, modifier, contributor, comment

Pseudocode:

store (MARS item, DataStream input)

{

167 20 (27)

Retrieve MRN from MARS input;
if (lock item does not exist for component)

{
}

Retrieve metadata for component;
if (input item property is equal to 'data')

{

self.lock(item); // user must have write permission to succeed

if (data item exists)

{

if (Versioning)
if (input data item identical to current data item)
Notify user that revisions are identical;
self.unlock(item);
Exit;
Set comment in component metadata to input comment;
Store component metadata to meta item for component;
Move current data item under current revision;
Move current meta item under current revision;
if (Static Fragments)
Move current idmap item under current revision;
Move current fragments under current rev. (optional);
Increment revision number in component metadata;
Retrieve owner from component metadata;
Retrieve contributor from component metadata;
if (owner not equal to user and user not in contributor)

{

Add input user to contributor in component metadata;

}

else

{

if (Versioning)

{
'}

Set creator in component metadata to input user;
Set owner in component metadata to input user;
set created in component metadata to current time;

Set revision in component metadata to 'l‘;

}

set modifier in component metadata to input user;

Set modified in component metadata to current time;
Set size in component metadata to bytes in input item;
Store component metadata to meta item for component;

168 21 (27)

}

Store input DataStream to input specified item;
self.unlock (item) ;

}
Comments:

When storing a data item, the revision cannot be specified. The GMA must begin all
revision sequences from '1’ and increment each subsequent revision linearly.

5.4 remove

Remove one or more storage items defined for a given scope, including any events
associated with any actions at the specified scope.

Synonyms:
Delete
Properties:

identifier, release, language, coverage, encoding, component, item, user, access

Pseudocode:

remove (MARS property_set)

{

if (identifier property not defined)

{
}

MARS[] items = self.locate (property_set)
foreach item in items(]

{

Report error and Abort;

Retrieve MRN from MARS item;
if item = 'data' // only check each component once, by data item

{

Retrieve metadata for component;
if (Write Access Control)

{

Retrieve value of access property from component metadata;
if (user does not have write access)

{

Report error and Abort;

}

if (lock item exists for component)
{

Retrieve value of user property from component metadata;
if (input user not equal to component user)

Report error and Abort; // not lock owner

169 22 (27)

}
foreach item in items{]
{
Retrieve MRN from MARS item;
if (lock item does not exist for component)

{
}

Delete data stream associated with item from system;
self.unlock{item);

self.lock(item);

Comments:

5.5 locate

The input MARS property set to the retrieve action must define a media object, media
instance, media component, or storage item.

Any user who has write permission for a component can remove that component.

Any user who has write permission for all components of a media instance can remove
that media instance.

Any user who has write permission for all immediate components and all instances of a
media object can remove that media object.

The removal of any component, instance, or object includes the removal of all storage
iterns and associated events within or belonging to that scope.

Any events associated with the remove action which are valid for the scope of removed

data must be executed even though the specifications of those actions are removed
along with the other stored data.

Given a set of Identity properties, produce a listing of zero or more storage items which

match all specified properties; and if read access control is used, only include those iterns
for which the user has read access.

Synonyms:

Find, Search, List

Properties:

identifier, release, language, coverage, encoding, component, item, USer, access

Pseudocode:

MARS {1 locate (MARS query)
{
Remove and save 'user' property value from query, if defined;

MARS[] items = All storage items matching the MARS query;
if (Read Access Control)

170 23 (27)

foreach item in items []

Set user property in item to input user property value;
if (self.qualify(item) equal to 'false')

{
}

Remove item from items(]; // no read permission

}

Return items{]; // possibly an empty list

Comments:

The MARS property sets for each returned item are only required to contain values for
Identity properties, i.e. identifier, release, language, coverage, encoding, component,
and item. Any other included properties are optional and informative only. Applications
may not rely on any non-Identity properties being returned by any GMA.

MARS property sets which do not fully identify a unique storage item may NOT be
returned in the result list; i.e. every Identity property must have an explicit value

defined. Default implicit values should not be applicable to any property set returned by
the locate action.

5.6 lock

Lock a particular component in the archive. If write access control is used and the

component already exists, the user is required to have write access for the component. Fails
if a lock already exists for the component.

Synonyms:
Check out.
Properties:

identifier, release, language, coverage, encoding, component, user, access, locked
Pseudocode:

lock (MARS component)

{

if (lock item exists for component)

{
}

Retrieve metadata for component;
if (Write Access Control)

{

Report error and Abort;

Retrieve value of access property from component metadata;
if (user does not have write access)

{

Report error and Abort;

171 24 (27)

}

Create lock item for component;
Set user property in component metadata to input user;
Store component metadata to meta item for component;

5.7 unlock

Remove the lock on a given component. The user must be the owner of the lock, defined by
the user property in the component metadata. Fails if no lock exists.
Synonyms:
Check in, Release
Properties:
identifier, release, language, coverage, encoding, component, user

Pseudocode:

’ unlock (MARS component)

{

if (lock item does not exist for component)

{
}

Retrieve metadata for component;
Retrieve value of user property from component metadata;
if (input user not equal to component user)

{
}

Remove user property from component metadata;
Store component metadata to meta item for component;
Remove lock item for component;

Report error and Abort;

Report error and Abort; // not lock owner

5.8 generate

Generate the target item from the source item, if possible, and return it as a data stream.
Synonyms:

Transform, Convert, Produce, Extract
Properties:

identifier, release, language, coverage, encoding, component, item

Pseudocode:

172 25 (27)

DataStream generate (MARS source_item, MARS target item)
if (self.qualify(source_item) equal to 'false!')
Report error and Abort; // either no read access or item
// does not exist in archive...

}

Determine proper generation process from source to target;
if (generation is not possible)

{
}

Generate target from source and return as DataStream;

Report error and Abort;

Comments:

The generate action is often used in conjunction with the retrieve action when a given

item does not exist in the archive, such as the dynamic creation of a data fragment or
converting from one encoding to another.

It's up to the GMA to know how to determine if a given generation is possible, typically

employing the help of an external agent to resolve and perform the generation (such as
a conversion agent).

173 26 (27)

6 Serialization and Encoding of Specialized Storage Items

Several storage items defined by MARS and central to the operation of any GMA must
conform to particular serialization and encoding requirements insofar as data interchange is
concerned. Actual internal storage, encoding, and management of these items is up to each
particular GMA implementation in some cases, but every GMA implementation must accept
and return the following storage items as defined by this specification.

6.1 'meta' Storage Items

Every 'meta’ storage item which is presented to a GMA for storage or returned by a GMA
on retrieval must be a valid XML instance conforming to the MARS 2.0 DTD:

http://metia.nokia.com/schemas/mars/2.0/dtd/

Metadata property values "contained” within ‘meta’ storage items need not be stored or

managed internally in the GMA using XML, but every GMA implementation must accept
and return 'meta’ items as valid XML instances.

6.2 'data' Storage Items within 'meta' Media Components

The same DTD defining the serialization of 'meta’ storage items is also used to encode all
‘data’ storage items for all ‘meta’ components. Although a GMA must persistently store all
'data’ storage items literally, it may also choose to parse and extract a copy of the metadata
property values defined within meta component data items to more efficiently determine
inherited metadata properties at specific scopes within the archive.

6.3 ‘'idmap' Storage Items

Every 'idmap' storage item which is presented to a GMA for storage or returned by a GMA
on retrieval must be encoded as a CSV (comma separated value) data stream defining a
table with two columns where each row is a single mapping and where the first
column/field contains the value of the 'pointer’ property defining the symbolic reference and
the second column/field contains the value of the 'fragment’ property specifying the data
content fragment containing the target of the reference. E.g.:

#EID284828,228
#EID192,12
#EID9928,3281
#EID727, 340

The mapping information "contained” within ‘idmap' storage itemns need not be stored or
managed internally in the GMA in CSV format, but every GMA implementation must
accept and return 'idmap' items as CSV formatted data streams.

174 27 (27)

6.4 'data' Storage Items for a specific Revision

The GMA must return the complete and valid contents of a given 'data' storage item for a
specified revision (if it exists), regardless how previous revisions are managed internally.
Reverse deltas or other change summary information which must be applied in some
fashion to regenerate or rebuild the desired revision must pever be returned by a GMA, even

if that is all that is stored for each revision data jtem internally. Only the complete data item
is to be returned.

175

Appendix V
Contents

1 SCOPE reueresiserssissenmscsessssssssases s e b SRR S L 3
D OVETVIEW cvreeereuiiresesseessesesessscusssesesssossasssessebensssantosessen s oh e s E e e oS0 e e eh e R e R LSS sh RS SRS St 3
3 Related Documents, Standards, and SpecifiCationscocoiiiiinini e 4
3.1 Metia Framework for Electronic MEdiacccieieeeieniensnnienini s 4
32 Media Attribution and Reference Semantics (MARS) ..o 4
33 Generalized Media Archive (GMA) oot 4
4 Key Terms and CONCEPLS ..ouurrmissereesiessssisestrmmsssssassassss st s 5
4.1 PIOPEITY .eovretrenrmiesnisesessstiossesstassses s er bbb eSS LR L 5
4.2 PLOPEILY SEL 1evviuiuerirrisrriiessssssss et s estobs s bbb A s e 5
4.3 PIOMIIE teoiererievesieseetesiesereresstasasseeneseesststiesssessshesnsasana s s s beas s b aE s LA RS T s ST e S h SR LTSRS st 5
B4 QUETY corrererreeseressstimssesaeisasssssbss s asses e o es e b A bE 148148 LR 5
4.4.1 MUMPIE VAIIES ..ocviiieriiriiessirrie ettt s e 5
4.4.2 Regular EXPIESSIONS ...iiiiereimsrsresersiesestittsiusitsia sttt e 6
4.43 COMPAriSON OPEIAOLS 1uverueersersersuserseusessisiisisiisrtsrsnrsssiss st st st st s bt 6
4.4.3.1 NEZAHOM "" 1ottt et 6
4.4.3.2 LESS TRAN "C" ooriiieeeieeseeeeecreseesisieiesr e e e sh s st s e s s h bbb e s et 6
4.4.3.3 Greatel THAN "D irieiereeerieieeieiitnts e e r s sttt a s e 6
4.43.4 Less Than or EQUal TO "S=" it 6
4.43.5 Greater Than or EQUal TO "S=" .o 6
444 Wildcard Valle OPEIAtOrcccivivriimiiieieienierneiet st b s e 7
5 General ATCHILECEUIE ..viveveeeriierrestrrererestsatesestntessearssese e s e st sseas et s s b e b e bR b b an e R e e dob sttt s 8
5.1 Defining Characteristics of a Registry SErVIiCe ... e 9
5.2 Generation of the Registry Databasecccieeeiverrerenersernnininiii sttt s 9
5.3 Resolution of SEarch RESUILS ..cccveeeriiiniiiiniiinrrieseisseste st s s s s s 9
54 Minimum and Maximum Thresholds ...ccvviiniiiiimnniiii e 10

54.1 Maximum Size

176 2(16)

3.4.2 MinimUm REIEVANCEoiiooceivveeireicoiesmaniseiosse oo oo 10
5.5 Serialization of INPUYOULPUL ..vvvvvvveceecvceesrvaneroecee oo 10
5.5.1 Human User Interface RECOMMENAALONS ovvvvv.vveo.oveee oo 10

6 COre REGISITY SEIVICES oriiivvvrivoireccececee e essssecoeees oo oooooessoessso 12
6.1 Metadata Registry Service (META-REGS)cucuuuuuvvveerreeeoseeocceeseomsomsosooes oo 12
6.1.1 Profile PrOEItESuuuvuuumuuiiuummumemseeesnensssssssssssssssseeeseeseeees oo sosseoe oo 12
6.1.2 QUETY PrOPETHES .ooovvvvvvvvevvvoeevceeenssissaenssmmeness s ceseeeeeee s oo oooooooosooe 13
6.2 Content Registry Service (CON-REGS) ..ccuuvvvreierrceseroeeeeeeeeseesesesoeeesooooooooeoeeo 13
6.2.1 Profile PIODEItES ...vceuvvivvvmmvesmmisrivssneeeeensenerecneenseesseesssssesessess s 14
6.2.2 QUEIY PrODETUES .ovvvrvrvrrreerseeotcveeceenseeese e eeeeeese oo 14
6.3 Typological Registry Service (TYPE-REGS) ...ooooovooooooveeeeoeeereoersonosssooooooe 14
6.3.1 PrOfIIE PIODETHES .voovvvvvrorerstemasesseeecensnsssssssssssseseeee oo 15
6.3.2 QUETY PIOPEItIES ..vvvvvrvveesiumivermvisvisesvceesneresessssnesesssssseeseeeseseeess s ooooesoo 15
6.4 Dependency Registry Service (DEP-REGS) .vcvvvvvvvereeroeeesosesorercesooooosooooo 15
6.4.1 Profile PIOPEITES ..vvvvuvuvvevevuvseeceeeveeeeeensssnesns s e ssoesesesossesseses oo oosoooooees 16
6.4.2 QUETY PIODEIHES .cvvcrvrvvsmsivimerinsivisrceeeessescenesssneesssssseseeeeseeeeene s oo oos oo 16
6.5 Process Registry Service (PRO-REGS) oottt eeceee e 16
6.5.1 Profile PrOPEITIES ...cooooosssoiiivvreeeenecenensssssosssses e 16

6.5.2 Query Properties

177 3(16)

1 Scope

This document defines the Registry Service Architecture (REGS), a generic architecture for
dynamic query resolution agencies based on the Metia Framework and Media Attribution

and Reference Semantics (MARS), providing a unified interface model for a broad range of
search and retrieval tools.

The REGS architecture is a component of the Metia Framework for Electronic Media. A
basic understanding of the Metia Framework and MARS is presumed by this specification.

2 Overview

REGS provides a generic means to interact with any number of specialized search and
retrieval tools using a common set of protocols and interfaces based on the Metia
Framework; namely MARS metadata semantics and either a POSIX or CGI compliant
interface. As with other Metia Framework components, this allows for much greater
flexibility in the implementation and evolution of particular solutions while minimizing the
interdependencies between the tools and their users (human or otherwise).

Being based on MARS metadata allows for a high degree of automation and tight
synchronization with the archival and management systems used in the same environment,
with each registry service deriving its own registry database directly from the metadata
stored in and maintained by the various archives themselves; while at the same time, each

registry service is insulated from the implementation details of and changes in the archives
from which it receives its information.

Every registry service shares a common architecture and fundamental behavior, differing
primarily only in the actual metadata properties required for their particular application.

178 4 (16)

3 Related Documents, Standards, and Specifications

3.1 Metia Framework for Electronic Media

The Metia Framework is a generalized metadata driven framework for the management and
distribution of electronic media which defines a set of standard, open and portable models,
interfaces, and protocols facilitating the construction of tools and environments optimized
for the management, referencing, distribution, storage, and retrieval of electronic media.; as
well as a set of core software components (agents) providing functions and services relating

to archival, versioning, access control, search, retrieval, conversion, navigation, and
metadata management.

http://metia.nokia.com/specifications/#Metia

3.2 Maedia Attribution and Reference Semantics (MARS)

Media Attribution and Reference Semantics (MARS), a component of the Metia
Framework, is a metadata specification framework and core standard vocabulary and

semantics facilitating the portable management, referencing, distribution, storage and
retrieval of electronic media.

http://metia.nokia.com/specifications/#MARS

3.3 Generalized Media Archive (GMA)

The Generalized Media Archive (GMA), a component of the Metia Framework, is an
abstract archival model for the storage and management of data based solely on Media
Attribution and Reference Semantics (MARS) metadata; providing a uniform, consistent,

and implementation independent model for information storage and retrieval, versioning,
and access control.

http://metia.nokia.com/specifications/#GMA

179 5(16)

4 Key Terms and Concepts

4.1 Property

A property, as defined by the MARS specification, is a quality or attribute which can be
assigned or related to an identifiable body of information, and is defined as an ordered
collection of one or more values sharing a2 common name. The name of the collection
represents the name of the property and the value(s) represent the realization of that

property. Typically, constraints are placed on the values which may serve as the realization
of a given property.

4.2 Property Set

A property set is any set of valid MARS metadata properties.

4.3 Profile

A profile is a property set which, in addition to any non-identity related properties,
explicitly defines the identity of a specific media object, media instance, media component,
or storage item (possibly a qualified data item).

Default values for unspecified Identity properties are not applied to a profile and any given
profile may not have scope gaps in the defined Identity properties (i.e. item' defined but not
‘component’, etc.). Profiles must unambiguously and precisely identify a media object,
instance, component or item.

In addition to identity, the retrieval location of the archive or other repository where that
information resides must be specified either using the location' or 'agency' properties. If
both are specified, they must define the equivalent location.

The additional properties included in any given profile are defined by the registry service
operating on or returning the profile, and may not necessarily contain any additional
properties other than those defining identity and location.

4.4 Query

A query is a special kind of property set which defines a set of property values which are to
be compared to the equivalent properties in one or more profiles. A query differs from a

regular property set in that it is allowed to contain values which may deviate from the
MARS specification in the following ways:

4.4.1 Multiple Values

Properties normally allowing only a single value may have multiple values defined in a
query.

The normal interpretation of multiple query values is to apply 'OR' logic such that the
property matches if any of the query values match any of the target values; however, a
given registry service is permitted, depending on the application, to apply 'AND' logic
requiring that all query values match a target value, and optionally that every target value is
matched by a query value.

180 6(16)

It must be clearly specified for a registry service if 'AND' logic is being applied to multiple
query value sets.

4.4.2 Regular Expressions

Query values for properties of MARS type String may contain valid POSIX regular
expressions rather than literal strings; in which case the property matches if the specified
regular expression pattern matches the target value.

4.4.3 Comparison Operators

Query values may be prefixed by one of several comparison operators, with one or more
mandatory intervening space characters between the operator and the query value.

The order of comparison for binary operators is:

query value {operator} target value

Not all comparison operators are necessarily meaningful for all property value types, nor
are all operators required to be supported by any given registry service.

It must be clearly specified for every registry service which, if any, comparison operators
are supported in input queries.

In the rare case that a literal string value begins with a comparison operator followed by one
or more intervening spaces, the initial operator character should be preceded by a backslash

character \'. The registry service must-then identify and remove the backslash character
prior to any comparisons.

4.43.1 Negation "!"

The property matches if the query value fails to match the target value.
Eg. "! approved".

4432 YLessThan "<"

The property matches if the query value is less than the target value.
Eg "< 2.5"

4433 Greater Than ">"

The property matches if the query value is greater than the target value.
E.g. "> draft”.

4.4.34 Less Than or Equal To "<="

The property matches if the query value is less than or equal to the target value.
Eg "<= 2000-09-22".

4.4.3.5 Greater Than or Equal To ">="

The property matches if the query value is greater than or equal to the target value.

181 7(16)

E.g.">= 5000".

4.4.4 Wildcard Value Operator

Any property in a query may have specified for it the special value "t regardless of
property type, which effectively matches any defined value in any target. The wildcard
value does nor however match a property which has no value defined for it.

The wildcard value operator may be preceded by the negation operator.

This special wildcard operator is particularly useful for specifying the level of Identity
scoping of the returned profiles for a registry which stores profiles for multiple levels of
scope (see section XXX). It is also used to match properties where all that is of interest is
that they have some value defined but it doesn't matter what the value actually is. Or, when
combined with the negation operator, to match properties which have no value defined. The
latter is useful for validation and quality assurance processes to isolate information which is
missing mandatory or critical metadata properties.

In the rare case that a literal string value equals the wildcard value operator, the wildcard
value operator must be preceded by a backslash character '\'. The registry service must then
identify and remove the backslash character prior to any comparisons.

182 8 (16)

5 General Architecture

Every registry service shares the following common features and qualities with regards to
its implementation and operation (see diagram below):

Generalized Media Archives

Al

Tecanion
URL

Query Profile(s)

3 Regisu-y o aril
Query

Registy
Profile(s)

« MARS metadata profiles are collected from one or more archives, and combined into an

optimized, specialized database for performing searches, according to the nature of the
particular registry service.

+ The internal organization and operation of the registry service is totally independent

from and ignorant of the internal organization and operation of each archive from which
it receives profiles.

- All registry services implement the MARS 'locate' action, and only that action, which
must be explicitly specified in every input query.

+ Users (human or otherwise) submit MARS metadata search queries to the registry
service and receive zero or more MARS metadata profiles matching the search query,
possibly scored and ordered by relevance.

+ The MARS metadata-based query interface completely hides the internal organization
and operation of the registry service from the user.

- The implementation of any registry service can be modified or even replaced entirely by
a different implementation with no impact to or dependency upon archives or users.

+ New archives can contribute profiles to a registry service with no special knowledge or
modification by the registry service.

183 9(16)

5.1 Defining Characteristics of a Registry Service

A registry service is defined by the following three characteristics:
1. the metadata properties it allows and requires in each profile
2. the metadata properties it allows and requires in a given search query
3. whether returned profiles are scored and ordered according to relevance

These three criteria define the interface by which the registry service interacts with all
source archives and all users.

All other criteria are hidden within and totally open to the particular implementation of the

registry service, so long as the implementation conforms to the general behavior and
operation otherwise defined for all registry services by this specification.

5.2 Generation of the Registry Database

A particular registry service will extract from a given archive (or be provided by or on
behalf of the archive) the profiles for all targets of interest which a user may search on, and
containing all properties defined for each target which are relevant to the particular registry.

Depending on the nature of the registry, this may include profiles for both abstract media
objects, media instances, and media components as well as physical storage items or even
qualified data items. Some property values for a profile may be dynamically generated
specifically for the registry, such as the automated identification or extraction of keywords
or index terms from the data content, or similar operations.

The profiles from several archives may be combined by the registry service into a single
search space for a given application or environment. The location and/or agency properties

serve to differentiate the source locations of the various archives from which the individual
profiles originate.

5.3 Resolution of Search Results

All registry services define and search over profiles, and those profiles define bodies of
information at either an abstract or physical scope; i.e. media objects, media instances,

media components, or storage items. A given registry database might contain profiles for
only a single level of scope or for several levels of scope.

If a query does not define any Identity properties, then the registry service must return all
matching profiles regardless of scope; however, if the query defines one or more Identity
properties, then all profiles returned by the registry service must be of the same level of
scope as the lowest scoped Identity property defined in the search query.

Note that a specific level of scope can be specified in a query by using the special wildcard
value "*" for the scope of interest (e.g. "component=meta item="* ..." t0 find all storage
itemns within meta components which otherwise match the remainder of the query).

Each set of profiles returned for a given search may be optionally scored and ordered by
relevance, according to how closely they match the input query. The score must be returned
as a value to the MARS 'relevance’ property. The criteria for determining relevance is up to
each registry service, but it must be defined as a percentage value where zero indicates no
match whatsoever, 100 indicates a "perfect" match (however that is defined by the registry

184 10 (16)

service), and a value between zero and 100 reflects the closeness of the match
proportionally. The scale of relevance from zero to 100 is expected to be linear.

5.4 Minimum and Maximum Thresholds

A regjstry service can be directed by a user, or by implementation, to apply two types of
thresholds to constrain the total number of profiles returned by a given search. Both
thresholds may be applied together to the same search results.

5.4.1 Maximum Size

The MARS 'size’ property can be specified in the search query (or applied implicitly by the
registry service) to define the maximum number of profiles to be returned.

In the case that profiles are scored and ordered by relevance, the maximum number of
profiles are to be taken from the highest scoring profiles.

5.4.2 Minimum Relevance

The MARS ‘relevance’ property can be specified in the search query (or applied implicitly

by the registry service) to define the minimum score which must be equaled or exceeded by
every profile returned.

Note that specifying a minimum relevance of 100 requires that targets match perfectly,
allowing one to choose between best match and absolute match.

5.5 Serialization of Input/OQutput

All property sets (including profiles and queries) which are received/imported by and
returned/exported from a registry service via a data stream must be encoded as XML
instances conforming to the MARS DTD. This includes sets of profiles extracted from a

given archive, search queries received from client applications, and sets of profiles returned
as the results of a search.

If multiple property sets are defined in 2a MARS XML instance provided as a search request,
then each property set is processed as a separate query, and the results of each query
returned in the order specified, combined in a single XML instance. Any sorting or
reduction by specified thresholds is done per each query only. The results from the separate

queries are not combined in any fashion other than concatenated into the single returned
XML instance.

Every registry service is free to organize and manage its internal registry database using

whatever means is optimal for that particular service. It is not required to utilize or preserve
any XML encoding of the profiles.

5.5.1 Human User Interface Recommendations

Most registry services will include an additional CGI or other web based component which
provides a human-usable interface for specifying queries and accessing search results. This
will typically act as a specialized proxy to the general registry service, converting the user
specified metadata to a valid MARS query and then mapping the returned XML instance
containing the target profiles to HTML for viewing and selection. Although such an
interface or proxy component is outside the scope of this specification proper, the following

185 11 (16)

recommendations, if followed, should provide for a certain degree of consistency between
various human user interfaces to registry services.

The set of profiles should be presented as a sequence of links, preserving any ordering
based on relevance scoring.

Each profile link should be encoded as an (X)HTML ‘2 element within a block element
or other visually distinct element ('p', 'li', 'td’, etc.).

The URL value of the 'href* attribute of the 'a' element should be constructed from the
profile, based on the 'location' and/or 'agency' properties, which will resolve to the
content of (or access interface for) the target.

If the 'relevance' property is defined in the profile, its value should begin the content of
the 'a' element, differentiated clearly from subsequent content by punctuation or structure
such as parentheses, comma, colon, separate table column, etc.

If the 'title' property is defined in the profile, its value should complete the content of the
'a' element. Otherwise, a (possibly partial) MRN should be constructed from the profile
and complete the content of the 'a’ element.

Examples:

<html>

<body>

<p>

(98) Foo
</p>

<p>

<a href="http://xyz.com/GMA?action=retrieve&identifiex=... "5(87) Bar
</p>

<p>

<a href-"http://xyz.com/GMA?action=retrieve&identifier=...">(37) Basc»
</p>

</body>

</html>

<html>

<body>

<table>

<tr>

<thsScorec</ths

<ths>Targete</th>

</trs>

<tIr>

<td»>98</td>

ctd>Foo</td>
</tr>

<tr>

<td>87</td>

<rd>Bar</td>
</tr>

<tr>

<td>37</td>

<td><a href:"http://xyz.com/GMA?accion=retrieve&identifier=...“>Bas</td>
</tr>

</table>

</body>

</html>

186 12 (16)

6 Core Registry Services

The following registry services are defined as sub-components of the Metia Framework. For
each registry service, a brief description is provided, as well as a specification of which
metadata properties are required or allowed for profiles and for queries. No discussion is
provided regarding the scoring and ordering of search results by relevance. Each registry

service is free to provide such functionality as needed and in 2 fashion optimal to the nature
of the particular registry service.

The ‘action’ property is required to be specified with the value ‘locate’ in all registry service
queries, therefore it is not included in the required query property specifications for each
registry service. Likewise, the 'relevance' and 'size' properties are allowed for all input
queries to all registry services, therefore they are also not explicitly listed in the allowed
query property specifications for each registry service.

6.1 Metadata Registry Service META-REGS)

META-REGS provides for searching the complete metadata property sets (including
inherited values) for all identifiable bodies of information, concrete or abstract; including
media objects, media instances, media components, storage items and qualified data items.

The results of a search are a set of profiles defining zero or more targets at the lowest level
of Identity scope for which there is a property defined in the search query. All targets in the

results will be of the same level of scope, even if the registry database contains targets at all
levels of scope.

The wildcard operator can be used to force a particular level of scope in the results. E.g. to
define media instance scope, only one instance property need be defined with the wildcard
operator value (e.g. "language=*"); to define media component scope, the component
property can be defined with the wildcard operator value (e.g. "component=*"); etc. The
registry service may not require nor expect that any particular instance property be used,
nor that only one property be used. It is not permitted for two or more instance properties to
have both wildcard and negated wildcard operator values in a given input query.

The default behavior is to provide the best matches for the specified query; however, by
defining in the input query a value of 100 for the ‘relevance' property, the search results will
only include those targets which match the query perfectly. The former is most useful for

general browsing and exploration of the information space and the latter for collection and
extraction of specifically defined data.

6.1.1 Profile Properties

Required: All Identity properties required to uniquely identify the body of information in
question, as well as either the 'location' or ‘agency' property.

Allowed: Any valid MARS property, presumably all defined MARS properties
applicable to the body of information in question. It is recommended that the
'title’ property be defined for all profiles, whenever possible.

187 13 (16)

6.1.2 Query Properties

Required: No specific properties required. At least one property must be specified in the
search query other than the 'action’ property.

Allowed: Any valid MARS property.

6.2 Content Registry Service (CON-REGS)

CON-REGS provides for searching the textual content of all media instances within the

included archives. It corresponds to a traditional "free-text index" such as those employed
by most web sites.

The results of a search are a set of profiles defining zero or more data component data
storage items or qualified data items.

Profiles are defined only for data storage items and qualified data items (e.g. fragments)
which belong to the data component of a media instance. Other components and other items
belonging to the data component are not to be included in the search space of a CON-REGS
registry service. Note that in addition to actual fragment items, profiles for "virtual"
fragments can be defined using a combination of the 'pointer' and (if needed) 'size’

properties, where appropriate for the media type (e.g. for specific sections of an XML
document instance).

For each data item, the 'keywords' property is defined as the unique, minimal set of index
terms for the item, typically corresponding to the morphological base forms (linguistic
forms independent of inflection, derivation, or other lexical variation) excluding common
"stop" words such as articles ("the", "a"), conjunctions ("and", "whereas"), or semantically
weak words ("is", "said"), etc. It is expected that the same tools and processes for distilling
arbitrary input into minimal forms are applied both in the generation of the registry
database as well as for all relevant input query values.

The scope of the results, such as whole data items versus fragments, can be controlled using
the ‘fragment’ property and the wildcard value operator "*" for the scope of interest. E.g.,
"fragment="*" will force the search to only return profiles of matching fragments and not of
whole data items; whereas "fragment=!*" will only return profiles of matching whole data
storage items. If otherwise unspecified, all matching profiles for all items will be returned,
which may result in redundant information being identified.

A human user interface will likely hide the definition of the ‘fragment’ property behind a

more mnemoric selection list or set of checkboxes, providing a single field of input for the
query keywords.

If a given value for the 'keywords' property contains multiple words separated by white
space, then all of the words must occur adjacent to one another in the order specified in the
target content. Note that this is not the same as multiple property values where each value
contains a single word. The set of all property values (string set) constitute an OR set, while
the set of words in a single property value (string) constitute a sequence (phrase) in the
target. White space sequences in the query property value can be expected to match any

white space sequence in the target content, even if those two sequences are not identical (i.e.
a space can match a newline or tab, etc.).

A human user interface will have to provide a mechanism for defining multiple 'keywords'
property values as well as for differentiating between values having a single word and
values containing phrases or other white space delimited sequences of words. In the interest

14 (1
188 (16)

of consistency across registry services, it is recommended that when a single value input
field is provided for the 'keywords' or similar property, white space is used to separate
multiple values by default and multi-word values are specially delimited by quotes to
indicate that they constitute the same value (e.g. the field [ab "cl ¢2 ¢3" d] defines four
values, the third of which has three words).

It is permitted for special operators or commands to CON-REGS to be interspersed within
the set of 'keywords' values, such as those controlling boolean logic, maximal or minimal
adjacency distances, etc. It is up to the registry service to ensure that no ambiguity arises
between CON-REGS operators and actual values nor between REGS special operators and

CON-REGS operators. REGS special operators always take precedence over any CON-
REGS operators.

6.2.1 Profile Properties

Required: All Identity and Qualifier properties required to uniquely identify each data
storage item or qualified data item in question; either the "location' or 'agency'

property; and the 'keywords' property containing a unique, minimal set of index
terms for the item in question.

Allowed: All required properties, as well as the 'title' property (recommended).

6.2.2 Query Properties

Required: The 'keywords' property containing the set of index terms to search on (may

need to be distilled into a unique, minimal set of base forms by the registry
service).

Allowed: All required properties, as well as the ‘fragment’ property with either wildcard
value or negated wildcard value only.

6.3 Typological Registry Service (TYPE-REGS)

TYPE-REGS provides for searching the set of 'class' property values (including any

inherited values) for all media instances according to the typologies defined for the
information contained in the included archives.

The results of a search are a set of profiles defining zero or more media instances,

In addition to the literal matching of property values, such as provided by META-REGS,
TYPE-REGS also matches query values to target values taking into account one or more
"IS-A" type hierarchies as defined by the typologies employed such that a target value
which is an ancestor of a query value also matches (e.g. a query value of "dog" would be
expected to match a target value of "animal"). If only exact matching is required (such that
e.g. "dog" only matches "dog") then META-REGS should be used.

TYPE-REGS does not differentiate between classification values which belong to different
typologies nor for any ambiguity which may arise from a single value being associated with
multiple typologies with possibly differing semantics. It is only responsible for efficiently
locating all media instances which have defined values matching those in the input query. If
conflicts arise from the use of multiple typologies within the same environment, it is

recommended that separate registry databases be generated and referenced for each
individual typology.

189 15 (16)

6.3.1 Profile Properties

Required: The Identity properties which explicitly and completely define the media
instance, one or morg values defined for the 'class' property, as well as either
the 'location’ or 'agency' property.

Allowed: All required properties, as well as the 'title’ property (recommended).

6.3.2 Query Properties

Required: The 'class' property containing the set of classifications to search on.
Allowed: Only the 'class' property is allowed in search queries.

6.4 Dependency Registry Service (DEP-REGS)

DEP-REGS provides for searching the set of Association property values (including any

inherited values) which can be represented explicitly using MARS Identity semantics for all
bodies of information in the included archives.

The results of a search are a set of profiles defining zero or more targets matching the
search query.

DEP-REGS is used to identify relationships between bodies of information within a given
environment such as a document which serves as the basis for a translation to another
language or a conversion to an alternate encoding, a high level diagram which summarizes
the basic characteristics of a much more detailed low level diagram or set of diagrams, 2
reusable documentation component which serves as partial content for a higher level
component, etc. The ability to determine such relationships, many of which may be implicit
in the data in question, is crucial for managing large bodies of information where changes to
one media instance may impact the validity or quality of other instances.

For example, to locate all targets which immediately include a given instance in their
content, one would construct a query containing the 'includes’ property with a value
consisting of a URI identifying the instance, such as an MRN. DEP-REGS would then
return profiles for all targets which include that instance as a value of their 'includes’
property. Similarly, to locate all targets which contain referential links to a given instance,

one would construct a query containing the 'refers' property with a value identifying the
instance.

DEP-REGS can be seen as a specialized form of META-REGS, based only on the minimal
set of Identity and Association properties. Furthermore, in contrast to the literal matching of
property values such as performed by META-REGS, DEP-REGS matches Association
query values to target values by applying on-the-fly mapping between all equivalent URI
values when making comparisons; such as between an MRN and an Agency CGI URL, or
between two non-string-identical Agency CGI URLs, which both define the same resource
(regardless of location). Note that if the META-REGS implementation provides such
equivalence mapping of URI values, then a separate DEP-REGS implementation is not
absolutely required; though one may be still employed on the basis of efficiency, given the
highly reduced number of properties in a DEP-REGS profile.

16 (16)
190

6.4.1 Profile Properties

Required: The Identity properties which explicitly and completely define the body of
information, all defined Association properties, as well as either the 'location’
or ‘agency' property.

Allowed: All required properties, as well as the 'title' property (recommended).

6.4.2 Query Properties
Required: One or more Association properties.

Allowed: One or more Association properties.

6.5 Process Registry Service (PRO-REGS)

PRO-REGS provides for searching over sequences of state or event identifiers (state chains)
which are associated with specific components of or locations within procedural
documentation or other forms of temporal information.

The results of a search are a set of profiles defining zero or more targets matching the
search query.

PRO-REGS can be used for, among other things, "process sensitive help" where a unique
identifier is associated with each significant point in procedures or operations defined by
procedural documentation, and software which is monitoring, guiding, and/or managing the
procedure keeps a record of the procedural states activated or executed by the user. At any
time, the running history of executed states can be passed to PRO-REGS as a query to
locate documentation which most closely matches that sequence of states or events, up to
the point of the current state, so that the user receives precise information about how to
proceed with the given procedure or operation exactly from where they are. The procedural
documentation would presumably be encoded using some form of functional markup (e.g.
SGML, XML, HTML) and generation of the profiles identifying paths to states or steps in
the procedural documentation would be automatically generated based on analysis of the
data content, recursively extracting the paths of special state identifiers embedded in the

markup and producing a profile identifying a qualified data item to each particular point in
the documentation using the 'pointer’ property.

6.5.1 Profile Properties

Required: The Identity properties which explicitly and completely define the body of
information, the ‘class' property defining the sequence of state identifiers up to
the information in question, as well as either the ‘location’ or ‘agency’' property.

Allowed: All required properties, as well as the 'title' property (recommended).

6.5.2 Query Properties

Required: The 'class' property defining a sequence of state identifiers based on user
navigation history.

Allowed: Only the ‘class' property is allowed in search queries.

10

15

20

25

30

191

Claims:

A content repository system comprising a storage device for a piurality
of persistent data entities including metadata each entity having a
predetermined level of scope such that within a set of related data
entities, the scope of an entity at a higher level encompasses the
scope of related entities at a lower level of scope, wherein at least one
entity includes metadata that identifies a sequential relationship
between one or more entities within the scope of said one entity, each
of said entities including metadata defining a position within said

sequential relationship.

A system as claimed in Claim 1, wherein a further entity includes, in
addition to metadata identifying a sequential relationship between one
or more entities within the scope of said further entity, metadata
identifying as a source of said sequential relationship, one of said

entities within the scope of said at least one entity.

A system as claimed in Claim 1 or Claim 2, wherein said storage

device is connected to a network.

A system as claimed in any one of Claims 1 to 3, including a plurality of

said storage devices.

A content repository system comprising a storage device for a plurality
of persistent data entities including metadata each entity having a
predetermined level of scope such that within a set of related data
entities, the scope of an entity at a higher level encompasses the
scope of related entities at a lower level of scope, wherein within the
scope of an entity at a higher level there exists at least one entity at an
intermediate level whose metadata identifies a sequential relationship

between one or more entities of a lower level and within the scope of

10

15

20

25

30

10.

192

said one entity, each of said entities at said lower level including

metadata defining a position within said sequential relationship.

A system as claimed in Claim 5, wherein a further entity at said
intermediate level includes, in additon to metadata identifying a
sequential relationship between one or more entities of a lower level
and within the scope of said further entity, metadata identifying as a
source of said sequential relationship, one of said entities at a lower

level within the scope of said one entity at said intermediate level,

A system as claimed in Claim 5 or Claim 6, wherein said storage
device is connected to a network.

A system as claimed in any one of Claims 5 to 7, including a plurality of
said storage devices.

A versioning method for an object oriented programming environment
comprising a set of persistent data entities each having a
predetermined level of scope wherein a related set of data entities
comprises a hierarchical piurality of levels such that an entity at a
higher level of scope encompasses the scope of related entities at a
lower level of scope, the method comprising associating metadata with
an entity indicative of a position within a sequence of one or more
entities of corresponding scope said sequence being identified by
associating further metadata with an entity whose scope encompasses

said sequence of one or more entities.

A method as claimed in Claim 9, wherein additional metadata is
associated with said further metadata identifying said sequence, said

additional metadata identifying a source of said sequence.

10

15

20

25

11.

12.

13.

14.

193

A method as claimed in Claim 10, wherein said additional metadata
comprises an identification of an entity included in another such

sequence of entities.

A computer program comprising executable code for execution when
loaded on a computer, wherein the computer is operable in accordance
with said code to carry out the method according to any one of Claims
9to 11.

A program as claimed in Claim 12, stored in a computer readable

medium.

A data modelling tool for an object oriented programming environment
comprising a set of persistent data entties each having a
predetermined level of scope wherein a related set of data entities
comprises a hierarchical plurality of levels such that an entity at a
higher level of scope encompasses the scope of related entities at a
lower level of scope, the tool comprising an interface operable to
receive a request specifying a data model in terms of relationships
between sequences of entities and a processor operable in response
to said received request to generate a data model utilising metadata
associated with said entities, wherein at least one entity includes
metadata indicative of a position within a sequence of one or more
entities of corresponding scope said sequence being identified by
further metadata associated with an entity whose scope encompasses

said sequence of one or more entities.

& (e -
& . The % "
. Pb ‘ 1 " . ¥ v
a ¥ h:.“\ Pid
¢ Office 2 o
fp/ ———— g INVESTOR IN PEOPLE
OQT . TY:‘ﬁBQ’
Application No: GB 0107139.8 19 H Examiner: Russell Maurice
Claims searched: all Date of search: 6 February 2002

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.T): G4A (AUDB)
Int Cl (Ed.7): GO6F(17/30, 9/46)
Other: Online WPI, EPODOC, PAJ, IEL

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

X | US 5890176 A Kish (see esp col 9, lines 14 et seq) 1,5,9&

14 at least

X | US 5499365 A Anderson (see esp col 5 lines 55 et seq) 1li 5, 19 &

at least

X ‘A metacomponent model to support the extensibility and evolvability of
networked applications’, Da Silveira, G.E.; Meira, S.L., Technology of
Object-Oriented Languages and Systems, 2000. TOOLS 34. Proceedings
34th International Conference on , 2000, Page(s): 185 -194 (see esp.
sections 2.1 & 2.2)

X ‘A difference-based version model for OODBMS’, Kuen-Fang Jea;
Hwai-Bih Feng; Yang-Ren Yau; Shih-Kung Chen; Jian-Cheng Dai, 1,5,9&
Software Engineering Conference, 1998. Proceedings. 1998 Asia Pacific | 14at least
, 1998, Page(s): 369 -376 (see esp. sections 3.2 & 3.3)

1,5,9&
14 at least

X ‘Generalized version control in an object-oriented database’, Beech, D.; 1598
Mahbod, B., Data Engineering, 1988. Proceedings. Fourth International | ;% jcaq:
Conference on , 1988 Page(s): 14 -22 (see esp. sections 5.2 & 5.3)

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date butbefore the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

