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Source Separation Method

Field of the invention

[0001] The present invention relates to methods for separating
contributions from two or more different sources in a common
set of measured signals representing a wavefield, particularly
of seismic sources and of sets of recorded and/or processed

seismic signals.

Description of related art

[0002] A common and long-standing problem in physical
wavefield experimentation is how to separate recorded signals
from two or more simultaneously emitting sources. 1In
particular, for more than a decade, the simultaneous source
problem has (arguably) been the most pertinent problem to
solve to efficiently acquire data for 3D reflection seismic

imaging of complex Earth subsurface structures.

[0003] Modern digital data processing of wavefields (or
signals) uses a discretized version of the original wavefield,
say g, that is obtained by sampling g on a discrete set. The
Nyguist—-Shannon sampling theorem shows how g can be recovered
from its samples; for an infinite number of equidistant
samples and given sample rate ks, perfect reconstruction is
guaranteed provided that the underlying signal was bandlimited
to |k| <ky =ks/2 (Shannon, 1949; Nyquist, 1928), where ky is the
so-called Nyquist wavenumber. The Nyquist-Shannon sampling
theorem is equally relevant both to signals generated from a
single source being recorded on multiple receivers (receiver-
side sampling) as well as signals generated from multiple
sources and recorded at a single receiver (source-side

sampling) .



[0004] Assume that the wavefield g is measured at a specific
recording location for a source that is excited at different
source positions along an essentially straight line. The
sampling theorem then dictates how the source locations must
be sampled for a given frequency of the source and phase
velocity of the wavefield. One aspect of the sampling problem
addressed in the current invention is as follows. 1Instead of
using one source, we want to use two (or more) sources to for
instance increase the rate at which data can be acquired. The
second source is triggered simultaneously or close in time
with the first source while moving along another arbitrarily
oriented line to excite the wavefield h. At the recording
location the wavefields interfere and the sum of the two
wavefields, f=g+h, is now measured. There is no known
published exact solution to perfectly separate the wavefields
g and h that were produced from each source from the combined
measurement f (e.g., see Ikelle, 2010; Abma et al., 2015; Kumar
et al, 2015; Mueller et al., 2015).

[0005] It may therefore be seen as an object of the invention,
to present new and/or improved methods for generating source-
separated data. It may also be seen as an object of the
present invention to extend such methods into fields, where
they have not been applied before, such as estimation and

removal of seismic interference.

Brief summary of the invention

[0006] A method for separating wavefields generated by two or
more source contributing to a common set of measured or
recorded signals are provided suited for seismic applications
and other purposes, substantially as shown in and/or described
in connection with at least one of the figures, and as set

forth more completely in the claims.

[0007] Advantages, aspects and novel features of the present

invention, as well as details of an illustrated embodiment



thereof, may be more fully understood from the following

description and drawings.

Brief Description of the Drawings

[0008] In the following description reference is made to the

attached figures, in which:

Figs. 1A,B illustrate how in a conventional marine
seismic survey all signal energy of sources typically
sits inside a “signal cone” bounded by the propagation
velocity of the recording medium and how this energy
can be split in a transform domain by applying a

modulation to a second source;

Fig. 2 shows jointly recorded wavefield data from two

sources measured at a stationary receiver;

Fig. 3 shows time delays as applied to the second

source 1n the data of Fig. 2;

Figs. 4 A - 4 C show the original and the reconstructed
wavefield of the first source in the data of Fig. 2 and
the reconstruction error when reconstructing the
wavefield of the source after applying the separation
method;

Fig. 5 shows the relative time delays between two

sources as used in another example;

Figs. 6A,B illustrate the construction and separate
reconstruction of the wavefields of two sources in the

example of Fig. b5;



Detailed Description

[0009] The following examples may be better understood using a

theoretical overview as presented below.

[0010] The slowest observable (apparent) velocity of a signal
along a line of recordings in any kind of wave experimentation
is 1dentical to the slowest physical propagation velocity in
the medium where the recordings are made. As a result, after
a spatial and temporal Fourier transform, large parts of the
frequency-wavenumber (wk) spectrum inside the Nyquist
frequency and wavenumber tend to be empty. In particular, for
marine reflection seismic data (Robertsson et al., 2015), the
slowest observable velocity of arrivals corresponds to the

propagation velocity in water (around 1500m/s).

[0011] Fig. 1(A) illustrates how all signal energy when
represented in or transformed into the frequency-wavenumber
(wk) domain sits inside a “signal cone” centered at k= 0 and

bounded by the propagation velocity of the recording medium.

[0012] In a wavefield experiment it may be that a source is
excited sequentially for multiple source locations along a
line while recording the reflected wavefield on at least one
receiver. The source may be characterized by its temporal
signature. In the conventional way of acquiring signals
representing a wavefield the source may be excited using the
same signature from source location to source location,
denoted by integer n. Next, consider the alternative way of
acquiring such a line of data using a periodic sequence of
source signatures: every second source may have a constant
signature and every other second source may have a signature
which can for example be a scaled or filtered function of the
first source signature. Let this scaling or convolution filter
be denoted by a(t), with frequency-domain transform A(w).
Analyzed in the frequency domain, using for example a receiver
gather (one receiver station measuring the response from a

sequence of sources) recorded in this way, can be constructed



from the following modulating function m(n) applied to a

conventionally sampled and recorded set of wavefield signals:

m(n) = [1+ (-] +34[1 - (-1)"],

which can also be written as

m@):%h+emﬂ+%Ah—emﬂ. (0.1)

[0013] By applying the function m in Eg. 0.1 as a modulating
function to data f(n) before taking a discrete Fourier
transform in space (over n), P(k)::T(fOO), the following result

can be obtained:

1+A

F(fmmm)) = =2F(k) +="F(k —ky),  (0.2)

which follows from a standard Fourier transform result

(wavenumber shift) (Bracewell, 1999).

[0014] Eg. 0.2 shows that the recorded data f will be mapped
into two places in the spectral domain as illustrated in Fig.

1(B) and as quantified in Tab. I for different choices of A(w).

A(w) H=(1-4)/2 | H, =1 +4)/2
1 0 1
-1 1 0
0 1/2 1/2
s 1/4 3/4
ein (1 _ ein)/Z (1 + ein)/Z
1+ ein _ein/Z 1+ ein/Z




TAB. I. Mapping of signal to cone centered at k=0 (H;) and
cone centered at k=ky (H_) for different choices of A(w) for

signal separation or signal apparition in Eqg. (0.2).

[0015] Part of the data will remain at the signal cone
centered around k=0 (denoted by H, in Fig. 1(b)) and part of
the data will be mapped to a signal cone centered around ky
(denoted by H_). It can be observed that by only knowing one
of these parts of the data it is possible to predict the

other.

[0016] A particular application of interest that can be solved
by using the result in Egq. (0.2) is that of simultaneous

source separation. Assume that a first source with constant
signature is moved along an essentially straight line with
uniform sampling of the source locations where it generates

the wavefield g. Along another essentially straight line a
second source is also moved with uniform sampling. Its
signature is varied for every second source location according
to the simple deterministic modulating sequence m(n),
generating the wavefield h. The summed, interfering data

f=g+h are recorded at a receiver location.

[0017] In the frequency-wavenumber domain, where the recorded
data are denoted by F=G+ H, the H-part is partitioned into
two components H, and H_with H=H,+ H_ where the H_-component
is nearly “ghostly apparent” and isolated around the Nygquist-
wavenumber [Fig. 1(B)], whereas G and H, are overlapping
wavefields around k=0. Furthermore, H_ is a known, scaled
function of H. The scaling depends on the chosen A(w) function
(Tab. I), and can be deterministically removed, thereby
producing the full appearance of the transformed wavefield H.
When H is found, thenG =F —H yielding the separate wavefields

g and h in the time-space domain.

[0018] The concept may be extended to the simultaneous
acquisition of more than two source lines by choosing

different modulation functions for each source.



[0019] Accuiring a source line where the first two source
locations have the same signature, followed by another two
with the same signature but modified from the previous two by
the function A(w) and then repeating the pattern again until
the full source line has been acquired, will generate

additional signal cones centered around xky/2.

[0020] This process may be referred to as “wavefield
apparition” or “signal apparition” in the meaning of “the act
of becoming visible”. 1In the spectral domain, the wavefield
caused by the periodic source sequence is nearly “ghostly

apparent” and isolated.

[0021] Fig. 1(B) also illustrates a possible limitation of
signal apparition. The H, and H_ parts are separated within
the respective lozenge-shaped regions in Fig. 1(B). 1In the
triangle-shaped parts they interfere and may no longer be
separately predicted without further assumptions. In the
example shown in Fig. 1(B), it can therefore be noted that the
maximum unaliased frequency for a certain spatial sampling is
reduced by a factor of two after applying signal apparition.
Assuming that data are adequately sampled, the method
nevertheless enables full separation of data recorded in
wavefield experimentation where two source lines are acquired

simultaneously.

[0022] As is evident from Tab. I, the special case 4=1
corresponds to regular acquisition and thus produces no signal
apparition. Obviously, it is advantageous to choose A4
significantly different from unity so that signal apparition
becomes significant and above noise levels. The case where
A=—-1 (acquisition of data where the source signature flips
polarity between source locations) may appear to be the
optimal choice as it fullyshifts all energy from k=0 to ky
(Bracewell, 19299). Although this is a valid choice for
modeling, it is not practical for many applications (e.g., for
marine air gun sources, see Robertsson et al., 2015) as it
requires the ability to flip polarity of the source signal.

The case where A=0 (source excited every second time only)



may be a straightforward way to acquire simultaneous source
data but has the limitation of reduced sub-surface
illumination. A particularly attractive choice of A(w) for
wave experimentation seems to let every second source be
excited a time shift T later compared to neighbouring
recordings, that is, select A =etel

[0023] The above description assumes a simple modulating
sequence m(n), and thus generating the wavefield h.
Applications in which such a simple modulating sequence can be
applied may however be limited in practice. In practice it is
difficult to obtain perfectly periodic time shifts from a
measurement setup. It is for example common practice for
seismic vessels to shoot or trigger their sources at
predetermined (essentially equidistant) positions, and due to
practical variations (vessel velocity etc.) it will be
difficult to realize shots at both predetermined locations and

times.

[0024] In the following, there are therefore described
further methods accommodating applications in which the
modulation sequence includes variations or deviations, signal
dither, or, in extreme circumstances, gives rise to aperiodic
source signals. We refer herein to modulations sequences

including any such variations as non-periodic.

[0025] First are presented methods for treating simultaneous
source data using quasi-periodic time delays in the shots as
well as position variations. Quasi-periodic time delays can be
understood as delays with periodic carrying signal overlayed
with a non-periodic (for instance random) pattern. The
resulting combined variation can therefore be considered to be
non-periodic. In the case where the recorded data is band-
limited, and sufficiently densely sampled, this may provide a
way to conduct separation or deblending of two or more source
contributions for moderately sized non-periodic variations in
the time shift.



[0026] Let us start by recapitulating some one-dimensional

properties of the Fourier transform. We will use the notation

o= foerax

for the Fourier transform in one variable, and consequently

f(w, &) for the Fourier transform of two dimensional function

f(t,x) with a time (t) and spatial (x) dependence.

[0027] The Poisson sum formula
Y =) fw
k=—co k=—co

can be modified (by using the Fourier modulation rule) as

oo

i f (k)e~2mick = Z g:'(f(.)e—Zn'if’)(k): i f(§”+k).

[0028] By the standard properties of the Fourier transform it

is straightforward to show that

N ; 1« , K\ _omiv K
Z f (k A+ xo)e—2m(kAx+xo)f - Z f (f + _) e meoAx
Ay Ay

k=—c0 k=—o0

hold for the spatial sampling parameter A, and some fixed
spatial shift x3. Suppose that f; = fi(f,x) and f, = f,(f,x) are two
spatially bandlimited functions. By rescaling of units we can

thus assume that they satisfy

A A 1
(@8 =f(w8) =0, iflg]>2. (11

[0029] The recorded data is now modelled as a sum of the two

functions, but where one of them has been subjected to a
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periodic time shift. Denote the recorded data by d =d(t,x), this
blending can thus be described by

d(t, k) = fi(t, ) + fo(t —Ac (D5 k) = F ()6 k) + F* (folw, e 2V 20) (1, k),

where we assume that the data is spatially sampled at equally

spaced points x =k.

In a more general version more general filtering operations
than time shifts can be applied. Let a, be filter operators
(acting on the time variable) where the k dependence is such it

only depends on if k is odd or even, i.e., that ax = Ggmodz)-

d(t, k) = fi(t, k) + axfo(t —a, (D)%, k)
=P (f)(6 k) + F* (folw, e 2D 2 ) (£,k).

[0030] Applying the result described above, it then follows
that a modulated sum of d over all even points (2k) in
combination with a one-dimensional Fourier transform in the

time variable yield the relation

f Z d (t, 2k)e~2mi(@RE+tw) gy

k=—o0
= %Zk:f (0.8 +3) + ta(@)fs (w8 +5) e2more.

[0031] A similar treatment of the odd terms (2k+1) gives

f Z d (t, 2k + 1)6—2ni((2k+1)$+tw) dt

(o]
k=—c0
(o]

S % > (fl (w,f + g) + 0, (0)f; (w,f + g) ezﬂiArw) (-1,

k=—c0

[0032] We now define Dj(w, &) as the sum that includes both odd
and even terms. It thus holds that
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Dy(w,§) = f_ ) Z d(t ke & gr = 3 fi(w,§+k)

OOk:—OO Kk=—co

ky 1 . .
+H I f (w,f+§)§(&0(w)e‘2"mf“’+(—1)"c’i1(w)ez’"Af“’) . (12)

[0033] Because of the support assumption (1.1), we see that if
| +1/2] <1/4, then most of the terms above vanish, and it is

therefore possible to obtain the values of f,(§) from

. . n 1
D(,) = (Go(@)e ™4 + (—1)*a (@)e?™ ), (w,¢ —5).

[0034] The values of ﬁ can be obtained in a similar fashion

by considering instead

k
Dz((,(), f) = f Z d (t +A, (_1)’(’ k)e—zn'i(kf+tw) dt,

and

. . A 1
Dy(©,8) = (Ap(@)e ™4 + (~1) 8, (@)e?™ ), (w6 - 3).

[0035] The role of the filtering operations @, and d; are thus
merely multiplicative, and for the sake of simplifying the
presentation we therefore satisfy with considering the case

where G4y =4; =1 for which it holds that

D, (w + %, f) = —isin(2m A, w) fyr(w, &).

and
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D, (w + %,f) = —isin(2m A, w)fy(w, &).

[0036] Like in the method above this procedure uses recovering
the respective function at the cones that shifted away from

the origin. While the values of ﬁ and_ﬂ can be obtained in a
very direct manner, the procedure is heavily relying on the
periodicity of the alternating shifts in sampling, and may

Lherefore be sensitive to perturbations of these time shifts.

[0037] It should be noted that a similar result can be
obtained by modulating the amplitude instead of the time. In
the most general case the modulation can be a filter with

frequency dependent amplitude and phase.

[0038] Another way to recover ﬁ and ﬁ is to consider the case

where|f|<i, for which (1.2) simplifies to

o K
f Z d (t, k)e 2mkE+t0) gt = £ (w, &) + fo(w, E)cosm Ay w),

and similarly for the shifted version

o k
f Z d (t +A, (DK, k)e=2mikE+to0) gt = £ (w, )cos(2m A w) + fr(w, &).

[0039] This implies that for each pair of values (w,§) (with
€] < 1/4 and w A€ Z), fl(w,f) and fz(w,f) can be obtained by

solving the linear system

Dy (w,$)

( 1 cos(2m A; w)) (ﬁ(w» f)) — (Dz(w, 5)) (1.3)

cos(2m A, w) 1 fo(w, &)

or

D,(w,§) — cos(2m A w)D,(w, &)
sin?(2m A w)

’

filw,§) =
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D, (w,§) — cos(Zm Ay w)Dy(w, §)
sin?(2m A, w) '

fa(w,§) =

[0040] In this way the function can thus be recovered by
considering the data in the central cone (e.g. as shown in Fig
1(B)) alone. The different formulations could have different

advantages, for instance in the presence of noise.

[0041] Let us now consider a more general sampling setup. Let
t=(t;) and s=(sx) be two sequences and assume that data is

modelled by

[0042] d(t, k) = fi(t,se) +apfo(t +1tg,s.). (1.4)

[0043] In the case where

t, =A, (—1D* ands, =k, anda, =1, (1.5)

the setup of the previous section is obtained. Let us
introduce the operators Fy;, and Fy, by

thsf(tr Sk) = j j C"lk (w)erTEi(fSk+w(t+tk)) dwdf,
—co J—co

and

Frod(t k) = dp(w) Z ] d (¢ + ty, k)e2m@si+od ge

K=—oo

respectively. Note that (1.4) can now be written as
d(t, k) = Fosfr(t:si) + Fesfa(t, si)-
[0044] Note also that for instance ?megfzzjhgﬂif since the

two time shifts cancel out.

[0045] Given a support constraint similar to (1.1), we follow
the reconstruction procedure in a similar fashion as in the

previous section. The analogous system of equations becomes
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{ TO,STS,Sfl + TO,sTthfZ = TO,sdr (1 6)
TO,sTit,sfl + TO,STS,SfZ = T—t,sd-
[0046] Using a standard discretization in the frequency domain

(and time), the operators may be realized using standard FFT
in combination with shift operators in the case of equally
spaced sampling in the spatial variable, or by using
algorithms for unequally spaced FFT in the general case. The
linear system (1.6) can for instance be solved by using an
iterative solver. If (1.5) is approximately satisfied, the
solution (1.3) may be used as a preconditioner. This means
that a solution should be obtained in one iteration if (1.D5)
is satisfied and in case it is almost satisfied, only a few
iterations should be required. The formulation above can be
used in the case of irregular sampling in time; in space; or
for both of the at the same time. Perturbations that are
completely irregular (not following the tensor structure
indicated here) can also be dealt with using the same

framework.

[0047] For computational reasons it is important to be able to
use fast solvers when applicable. By a fast solver we mean a
method by which we can solve the problem of computing either
forward or inverse operators in a method with low time

complexity, for instance that of FFT.

[0048] The method set out above can be applied to various
cases 1n which a separation of sources may be considered as
advantageous. In the following the application of the problem

0of seismic interference cancellation is demonstrated.

[0049] Seismic interference (SI) occurs when two or more
different seismic crews are acquiring seismic data in vicinity
of each other. SI can be a major source of noise that can be
difficult to remove particularly if it is arriving in the
cross-line direction as the moveout of the signal is very
similar to that of the interfering signal which can also be

strong compared to deeper reflections that it may overlie. If
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the dominant azimuth of seismic interference is known, it is

possible to shift the acquired data so that it appears as far
as possible from the seismic interference noise in wk (e.g.,

noise centered at k=0 and signal at Kyyquist) . The application
requires real-time knowledge of exact firing times of the

interfering vessel.

[0050] Knowledge of the exact firing time is of course a major
limitation as a competing seismic crew likely will not want to
share this information. It may also be somewhat irregular if
the crew shoots on position and not time. However, using for
instance the quasi-periodic apparition method presented above
we can not only solve the simultaneous source problem (as
described above) but also that of seismic interference since
we do not need to know the exact firing times of the
interfering crew beforehand. As long as we utilize a periodic
or guasi-periodic acquisition sequence ourselves we will
record a data set where the interfering signal can be
apparated and removed from the acguired data. Once the data
have been recorded we can detect the exact arrival time of the
seismic interference in the data (this can be as simple as a

windowed autocorrelation/crosscorrelation process).

[0051] The interfering data will likely be shot on position
and therefore have a slight wvariation in arrival time from
shot to shot. However, all we have to do is to include these
estimated perturbations in arrival time of the seismic
interference to apparate (i.e., shift in wavenumber) the
seismic interference away from the acquired data. As a side
note we note that the interfering survey is likely also seeing
interference from the first crew using the apparition firing
sequence. The method applied gives the opportunity to generate

a separate set of data for the interfering survey.

[0052] Synthetic data were computed using a finite-difference
solution of the wave equation for a typical two-dimensional
(2D) North Sea subsurface velocity and density model
consisting of sub horizontal sediment layers overlying rotated

fault blocks. The data consist of the waveforms recorded at a
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single stationary receiver (located on the seafloor) for shots
along a line. The data are shown in Fig. 2. The time shifts t
that have been applied to the second source are shown in Fig.
3, and the spatial sampling s is equidistant. An iterative
scheme (preconditioned conjugate gradient) has been applied to
the formulation using a preconditioner to obtain separated
reconstructions of the data originating from each of the two
sources. The data and the corresponding reconstruction and its
error for the first source are shown in Fig. 4, while the
counterparts for the second source (not shown) can be either
derived directly from the above method or by subtracting the
wavefield of the first source from the blended data. In this
case 20 iterations of the iterative scheme were used. In this
case the data were assumed to satisfy the bandlimit condition
(1.1), and it is clear from the Fig. 4 that the reconstruction

errors in this case can be made very small.

[0053] In the following variant of the method as described
above 1s focusing on the cases of quasi-periodic and or
pseudo-random timeshifts. Note, however, that the method can
also be applied to the case of quasi-periodic or pseudo-random
amplitude perturbations or to such perturbations of shot
positions or of frequency-dependent amplitude and phase
perturbations or arbitrary combinations thereof. This variant
of the method, in its most general form, applies to any known

(set of) modulation function(s).

[0054] Let d(n) represent some data acquired as a function of
a spatial coordinate x, i.e., at discrete locations x,. The
well-known convolution theorem states that the convolution in
space of the data d(n) with some spatial filter f(n) can be
computed by multiplication of the (discrete) Fourier
transforms of the data D(k)::T(dOO) and of the spatial filter,
P(k)::T(fOO), followed by inverse (discrete) Fourier transform,
i.e., f(M)*dm) =F Y(F (k) D). Here we exploit the lesser-known
dual of the convolution theorem, which states that
multiplication in the space domain of d(n) with a so-called
modulation function/operator m(n), corresponds to cyclic

convolution of the (discrete) Fourier transform of the data,
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D(k), with the (discrete) Fourier transform of the modulation
operator kﬂk):ﬂFOnOO), followed by inverse (discrete) Fourier
transform. Furthermore, we exploit the fact that cyclic
convolution can be expressed conveniently as a matrix

multiplication with a Toeplitz matrix.

[0055] Moreover, such a matrix multiplication can be rapidly
evaluated by means of fast solvers such as the FFT, since the
discrete Fourier matrices diagonalize cyclic matrices. This
property is not true for the inverse of Toeplitz matrices.
However, both Toeplitz matrices and their inverses have
displacement rank 2, which allows for rapid evaluation of the
application of these operators. The time complexity for these

operations are bounded by the complexity for FFT.

[0056] Without loss of generality, let’s assume that the data
have been acquired in the following manner: a first source, Si,
salling with a constant ground speed, fires with regular time
intervals, and a second source, S,, salling also with a
constant ground speed (and along the same line), fires
alternately at the same time as s; and at At, after s;, where At,
is drawn, e.g., from a normal distribution, N(umﬂ) with mean,

U, and variance, ag?.

Since s; and s; are fired at the same time
or shortly after each other, a recording of subsurface
reflected waves will comprise a superposition of waves due to

these two sources.

[0057] As shown below, we can formulate the separation of such
data as the (least-squares) solution of a system of equations
in the frequency-wavenumber domain. Let the N shots be
enumerated by n, and let T, denote the relative timing of the
n-th shots fired by s; and s,. Thus, according to the paragraph
above, T, =0for odd shots n=2-i+1 and T, =Af, for even shots
n=2'i+2 (i=01L12,..forn<N),. In the temporal frequency domain,
the effect of the timeshift is multiplication with

et where the sign depends on the choice of the definition of
the temporal Fourier transform. Thus, for a particular
frequency @' and shot n’ the time delay acts as a complex
modulation n(nﬁzzeﬂwTﬂ. As before, let kﬂk):ﬁFOnOQ) denote
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the spatial (discrete) Fourier transform of the modulation
function m(n). A cyclic convolution matrix € can be formed by
taking as the columns of €, circularly shifted versions of M,
with the circular shift increasing by one each column, and

having as many columns as number of points in M.

[0058] Since the timeshifts are formulated as relative to the
§; times, the effective modulation function for the part of the
simultaneous data due to s; 1s constant equal to 1 for each s
shot and each frequency. Thus, the transform of the implied
modulation function for s; is a (discrete) delta function in
wavenumber (at zero wavenumber) and the corresponding cyclic

convolution matrix the identity matrix, I.

[0059] Consider without loss of generality that the number of
simultaneous source recorded traces N is even. Let Ax denote
the spatial (shot) sampling interval. Then the spatial Nyquist
wavenumber, Ky, is Ky =1/(2Ax), and the wavenumber resolution,
Ak, after a discrete Fourier transform over space is Ak=2Ky/N.
The discrete wavenumbers (after “FFT-shifting” the zero-
wavenumber component to the center of the spectrum by swapping
halves of the obtained decrete Fourier transform values) are
K(k)=—Ky+(k—1Ak (k=12,..,N). 1In this case, the index

. . N
corresponding to the zero wavenumber, kg, is ;4—1.

[0060] Let the unknowns be the data in the frequency
wavenumber domain due to sources s; and s, i.e. D;(k) and D,(k),
respectively, without relative timeshifts. Let Kkpin and Kpmax
denote the indices of the discrete wavenumbers closest to the
minimum and maximum wavenumbers K,,;, and Kp. to be inverted,
but smaller and larger, respectively. The data between —Ky and
Kpin and Kpue and Ky are assumed to be zero (i.e., the support
in the wavenumber domain of D;(k) and D,(k) is confined to Kpn

and Kpax) -

[0061] Thus, the (column) vector of unknowns can be denoted
D = [Dy(kmin: kmax)T Do(Kmin: Kmax)T]T where T denotes transpose and
the colon denotes all or part of a range. Note, however, that

because of the modulation function applied to s; data, the
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range of observed wavenumbers is not restricted to from K, to
Kpar - However, since the unknowns are restricted to that range,
the forward modelling operator should be similarly restricted
along the columns (i.e., on the model side) but not along the
rows (i.e., on the measurement side). Thus, the forward

modelling operator matrix G can be formed:

G = [1 (: s Kmin: kmax) C(: s Kmin® kmax)]

Thus, if we denote Dyy(k) the FFT-shifted (discrete) Fourier
transform of the observed aperiodic, (near-)simultaneous

source data d;;(m) we have the following system of equations:
GD = Dyot

And we can compute, e.g., the least-squares solution D

DY = (GHG + A2D™GHD,,,,

Where the stabilisation A2 is usually chosen to be a percentage
(e.g. 0.1%) of the maximum of GG and ¥ denotes complex-

conjugate (Hermitian) transpose.

[0062] As in the example above, this variant can be applied
successfully to the separation of a dataset to which two
sources have been contributing to with one of the sources

being modulated in such a manner.

[0063] In Fig. 5 and Fig. 6, the methodology described above
is illustrated. In Fig. 5, the relative time delays between
source 1 and source 2 are shown. Note that every other trace,
the relative time delay is zero. In Fig. 6A, the reference

data for source 1 and source 2 are shown (first and second
panel from the left). In the third and fourth panel from the
left, the modulated s, data and the simultaneous source data,
i.e., s;reference + s, modulated are shown. The latter represents the
input datady; for the method described above. The resulting

least-squares reconstruction of the data for s; and s; are
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shown in Fig. 6B. As can be seen, the two sources have been

separated correctly.

[0064] Note that the exactly the same methods can be used to
separate or approximately separate sources for which the
relative time delay varies non-periodically for every trace
(i.e., every shot). Such variations, if intentionally, can be

termed pseudo-random variations.

[0065] Note that the description above has focussed on the
separation of at least two simultaneous or near-simultaneous
sources. But the methods described herein can also be applied
to wavefields where one source is physical and a second source
is virtual as induced by the presence of a free surface which
is the subjected of a separate patent application. In such a
case the current invention allows for the separation of
recorded wavefields into ghost and ghost-free wavefields.
Further details to such an application can be found in the
patent application by the same applicant entitled “Method for
deghosting and redatuming operator estimation” and filed in
the United Kingdom at the same priority date as this

application.

[0066] Throughout the description of the present invention we
have made use of Fouriler transforms to transform the data
separating and isolating wavefields. It will be appreciated
by those skilled in the art that other transforms such as
Radon transforms, tau-p transforms, etc., can also be used for
the same purpose. Furthermore, those skilled in the art may
also prefer to implement the methods presented directly in the
space and/or time domain. In such cases the transforms
presented herein are replaced by their respective
representations or mathematical equivalents in such domains,
which can take either explicit or approximated/truncated forms
and applied to the wavefield data representation in the

respective domain.

[0067] A bounded support in a domain is the well-known

mathematical generalisation of the better-known concept of
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being bandlimited (such as in equation (1.1)). Examples of

limited support are presented above.

[0068] While various embodiments of the present invention have
been described above, it should be understood that they have
been presented by way of example only, and not of limitation.
For example it should be noted that where filtering steps are
carried out in the frequency-wavenumber space, filters with

the equivalent effect can also be implemented in many other

domains such as tau-p or space-time.

[0069] Further, it should be understood that the wvarious
features, aspects and functionality described in one or more
of the individual embodiments are not limited in their
applicability to the particular embodiment with which they are
described, but instead can be applied, alone or in various
combinations, to one or more of the other embodiments of the

invention.
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Claims

1. Wavefield acquisition and/or processing method

including the steps of

(a)

Obtaining wavefield recordings based on the
simultaneous or near-simultaneous activation of at
least two sources having at least one parameter
selected from one or more of a group consisting of
source signal amplitude, source signal spectrum,
source activation time and source location at
activation time, varying non-periodically between the
sources from one activation to the following
activation along an activation line describing the
trajectory of the source in space or a temporal

sequence of activations of a line of sources. ;

Modelling the obtained wavefield using a model that
incorporates the non-periodic variation in the at
least one parameter as a sum of wavefields, generated
by the at least two sources individually, each
wavefield having bounded support in a transform

domain. ;

By means of the model inverting the obtained wavefield
recordings to separate a contribution of at least one
of the at least two sources to the obtained wavefield

recordings.

2. The method of claim 1 where the bounded support

consists of cone-shaped regions in the frequency

wavenumber domain.

3. The method of claim 2, wherein using the model

involves modelling the obtained wavefield recordings by

means of unequally spaced discrete Fourier transform

operators.
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4. The method of any of the preceding claims, where the
inverting step is carried out by solving a system of

equations.

5. The method of claim 4, where the system of equations

is solved iteratively.

6. The method of claim 5, where the system of equations

is solved iteratively including use of a preconditioconer.

7. The method of claim 6, where the preconditioner
includes a least-squares solution for periodic timing,
signal amplitude or signal spectrum variations and/or

regular activation locations.

8. The method of claim 1, wherein the variations include
source activation time, signal amplitude and or signal
spectrum and the use of a model that involves the
application of a cyclic convolution matrix and or its
corresponding inverse using the transform of a modulation

function associated with the parameter variations.

9. The method of claim 8, wherein the inverting involves
computing a least-squares solution of a system of

equations.

10. The method of any of the preceding claims, wherein at
least one of the at least two sources 1s not part of the
same survey and where the activation times of those

sources are approximately known.

11. The method of claim 10, wherein activation times are

determined from the acquired wavefield recordings.

12. The method of claim 10, wherein activation times are
determined from correlations of acquired wavefield

recordings.
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13. The method of any of the preceding claims, where the
at least one parameter is varying in a non-periodic

controlled manner.

14. The method of claims 1 to 12, where the at least one

parameter varying in a non-periodic uncontrolled manner.

15. The method of any of the preceding claims, where the
at least one parameter varying in a non-periodic manner
is composed of a periodic part overlain by non-periodic

fluctuations.

16. The method of any of the preceding claims, wherein as
part of the separation step the data are regularized onto

a regular sampling grid in time and or space.

17. The method of any of the preceding claims in which
the transformed domain is selected from one of a Fourier
transform domain, a Radon transform domain, a Gabor time-

frequency domain, and a tau-p transform domain.

18. The method of claims 17 in which the corresponding
transforms are replaced by their respective
representations or mathematical equivalents in
corresponding transformed domains in the space and or

time domain.

19. The method of any of the preceding claims in which
the computations in the modelling and or inversion steps

are done using fast solvers.
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