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(57) Abstract: A machine-learned model can be trained on and applied to oligonucleotide data. The machine- learned model can
be, for example, a neural network, a random forest classifier, or a regression model, and can be trained in one or more stages. The
machine-learned model can be applied in design settings, for instance by being configured to predict biophysical effects corresponding
to oligonucleotides, by processing real-world experimental or laboratory data, and by retraining the machine-learned model in response
to the processed data.
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OLIGONUCLEOTIDE-BASED MACHINE LEARNING

SEQUENCE LISTING

[0001] The instant application contains a Sequence Listing which has been submitted via
EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on
March 31, 2021, 1s named 48385-SEQ LISTING ST25, and is 9 kilobytes in size.

BACKGROUND

[0002] Diagnostic genome sequencing is capable of revealing the genetic basis for rare,
ultra-rare, and even genetic diseases affecting single individuals. As the cost decreases and
availability increases of diagnostic genome sequencing along with other enhanced diagnostic
tools, the precise molecular intervention that would provide therapeutic benefit can be known.
This is true across therapeutic areas and disease demographics. However, traditional drug
discovery processes typically require over a decade of effort and tens to hundreds of millions of
dollars to go from therapeutic idea to new approved medicine. This fundamental inefficiency is
ultimately what drives the paucity of new drugs being approved in the US and globally, and the

increasingly exorbitant pricing of new precision medicines.

[0003] Oligonucleotide-based medicines (OBMs) are short nucleic acid polymers, such as
DNA or RNA, that are chemically synthesized and modified to confer them with better drug-like
properties in living tissues or to modify chemistries or other modifications for diagnostic use.
OBMs are designed to engage with native DNA or RNA sequences in the cell by Watson Crick
hybridization, and may lead to enzymatic recruitment post-hybridization to achieve the critical
mechanism-of-action or elicit biological effect through hybridization alone. In addition, aptamers
can be selected or designed to interact with proteins, nucleic acids or other cellular structures

through non-hybridization based mechanisms.

[0004] The traditional manner of identifying OBMs with desirable pharmacology or
chemistries is by trial-and-error screening of a large library of sequences designed against a
transcript sequence. The current process is both resource- and time- inefficient, and often lead to

sporadic failures at every stage of pre-clinical drug development, clinical drug development, or
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diagnostic development, where late state failures contributed disproportionately to the cost of

creating novel medicines or diagnostic modalities.

[0005] There are two foundational barriers preventing the rapid creation of new OBMs that
can be affordably engineered and provided to patients with the understanding that they will be
safe and effective. Currently, there are no methods that can adequately predict the pharmacology
of newly designed OBMs. This forces drug developers to rely on onerous screening processes
which are slow and expensive. Secondly, OBMs have limited capacity to reach several cell-
types, tissues and organ systems. OBMs have excellent pharmacology throughout a handful of
tissues such as the liver and kidney when systemically delivered, and some tissues such as the
brain and eye when direct local delivery is an option. However, many pathologies require gene

expression modulation in tissues and cells outside these ones.

[0006] There is a need for a cost-efficient method of engineering OBMs that are safe and
effective with high certainty, and a need to precisely target OBMs to specific tissues or cells.
There is also a need for cost-efficient and effective OBMs that can provide precise nucleic acid

interactions that underlay many foundational diagnostic instruments.

SUMMARY

[0007] Oligonucleotide-based medicine can be designed and tested in silico using a
machine-learned model trained on data representative of OBM structure, pharmacology, and
effectiveness.

[0008] Aspects of the present disclosure include methods for training a machine learned
model. Aspects of the present disclosure include methods for generating oligonucleotide-based
medicines. Aspects of the present disclosure include systems for carrying out the methods of the
present disclosure. Aspects of the present disclosure include a computer readable medium,
comprising instructions, that cause a processor to carry out the methods of the present disclosure.
[0009] Aspects of the present disclosure include a method for training a machined learned
model, comprising: initializing a machine-learned model configured to map an oligonucleotide
sequence to a probability of a biophysical effect using an initial oligonucleotide corresponding to
the biophysical effect; generating a first set of oligonucleotides based on the initial
oligonucleotide using the initialized machine-learned model; determining, for each

oligonucleotide of the first set of oligonucleotides, whether the oligonucleotide corresponds to
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the biophysical effect; generating a refined machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides corresponds to the
biophysical effect; and generating a final set of oligonucleotides using the refined machine-
learned model.

[0010] Aspects of the present disclosure include a method for generating oligonucleotide-
based medicines, comprising: initializing a machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect; generating a first set of oligonucleotides based on the
initial oligonucleotide using the initialized machine-learned model; determining, for each
oligonucleotide of the first set of oligonucleotides, whether the oligonucleotide corresponds to
the biophysical effect; generating a refined machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides corresponds to the
biophysical effect; and generating a final set of oligonucleotides using the refined machine-
learned model.

[0011] In some embodiments, the initial oligonucleotide comprises an oligonucleotide that
causes the biophysical effect.

[0012] In some embodiments, the biophysical effect comprises one or more of: a biological
effect, a chemical effect, and a pharmacological effect.

[0013] In some embodiments, the biophysical effect is tolerability.

[0014] In some embodiments, the tolerability comprises membrane toxicity.
[0015] In some embodiments, tolerability comprises cytotoxicity.

[0016] In some embodiments, tolerability comprises immunotoxicity.

[0017] In some embodiments, tolerability comprises membrane toxicity. In some

embodiments, tolerability comprises an effect that inhibits membrane fluidity. In some
embodiments, tolerability comprises a membrane fusion and fission event. In some
embodiments, the membrane fusion and fission event result in loss of cellular signaling activity.
In some embodiments, the biophysical effect is one or more of: an effect that inhibits the normal
flux of ions and an effect that inhibits membrane fluidity. In some embodiments, the biophysical
effect is a membrane fusion and fission event that results in loss of cellular signaling activity.

[0018] Insome embodiments, the biophysical effect is an immune response.
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[0019] In some embodiments, the biophysical effect is a biological activity of the
oligonucleotide and comprises an on-target engagement of the oligonucleotide to a target.

[0020]  Insomeembodiments, the biophysical effect is one of inactivity of the oligonucleotide.
[0021] In some embodiments, the biophysical effect comprises an off-target engagement of
the oligonucleotide to non-target molecules. In some cases, the non-target is a non-target gene.
[0022]  In some embodiments, the on-target engagement causes the oligonucleotide to
perform an effective amount of one or more of: gene expression knock-down, RNA splicing
modulatory behavior, gene expression upregulation, gene-editing, RNA-editing, protein specific
targeting, receptor specific targeting, enzymatic substrate specific targeting, distribution and
uptake into tissues or cells, and interaction with a specific protein or receptor. In some
embodiments, the off-target engagement causes the oligonucleotide to perform an effective
amount of one or more of: non-target gene expression knock-down, non-target RNA splicing
modulatory behavior, non-target gene expression upregulation, non-target gene-editing, non-
target RNA-editing, non-target protein specific targeting, non-target receptor specific targeting,
non-target enzymatic substrate specific targeting, non-target distribution and uptake into tissues
or cells, and non-target interaction with a specific protein or receptor.

[0023] In some embodiments, the biophysical effect is a measure of absorption, distribution,
metabolism, or excretion of the oligonucleotide.

[0024] In some embodiments, the biophysical effect is a measure of pharmacokinetics or
pharmacodynamics, and comprises one or more of: substrate-target processing, dynamics,
accessibility, inter-cellular distribution, intra-cellular distribution, and time-dependent
availability.

[0025] In some embodiments, initializing the machine-learned model comprises initializing
a set of coefficients each representative of a correlation between n-grams of an oligonucleotide
sequence and a presence of the biophysical effect.

[0026] In some embodiments, at least one coefficient of the set of coefficients is
representative of a correlation between consecutive n-grams within the oligonucleotide and the
presence of the biophysical effect.

[0027] In some embodiments, the machine-learned model comprises one of’ an Ising model,
a Potts model, a hidden Markov model, a continuous random field model, and a directed acyclic

graphical model.
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[0028] In some embodiments, the machine-learned model comprises one of: a random forest
classifier, a logistic regression, a linear regression, a neural network, a sparsity-driven convex
optimization fit, and a support vector machine.

[0029] In some embodiments, the first set of oligonucleotides comprise n-gram mutations of

the initial oligonucleotide.

[0030] In some embodiments, the first set of oligonucleotides comprise gapped n-gram
mutations.
[0031] In some embodiments, each of the first set of oligonucleotides comprises a single or

double n-gram or gapped n-gram mutation of the initial oligonucleotide.

[0032] In some embodiments, the first set of oligonucleotides comprise a subset of all single
or double n-gram mutations of the initial oligonucleotide.

[0033] In some embodiments, the first set of oligonucleotides, when fitted by the initialized
machine-learned model, represent a range of probabilities of the biophysical effect.

[0034] In some embodiments, determining whether an oligonucleotide corresponds to the
biophysical effect comprises performing one or more of: in vitro, in vivo, ex vivo, in situ, and in
silico assays on the oligonucleotide.

[0035] In some embodiments, determining whether an oligonucleotide corresponds to the
biophysical effect comprises simulating, in silico, one or more of: in vitro, in vivo, ex vivo, and in
situ assays on the oligonucleotide.

[0036] In some embodiments, determining whether an oligonucleotide corresponds to the
biophysical effect comprises classifying the oligonucleotide using a synthetic model configured
to predict whether the oligonucleotide corresponds to the biophysical effect.

[0037] In some embodiments, generating the refined machine-learned model comprises
retraining the initialized machine-learned model using the first set of oligonucleotides and
whether each of the first set of oligonucleotides corresponds to the biophysical effect.

[0038] In some embodiments, generating the refined machine-learned model comprises
performing a sparsity-constrained fit on the first set of oligonucleotides and whether each of the
first set of oligonucleotides corresponds to the biophysical effect.

[0039] In some embodiments, generating the refined machine-learned model comprises
generating a new machine-learned model using the first set of oligonucleotides and whether each

of the first set of oligonucleotides corresponds to the biophysical effect.
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[0040] In some embodiments, generating the refined machine-learned model comprises:
generating a first updated machine-learned model using the first set of oligonucleotides and
whether each of the first set of oligonucleotides corresponds to the biophysical effect, generating
a second set of oligonucleotides based on the first updated machine-learned model, each of the
second set of oligonucleotides comprising a mutation of the initial oligonucleotide; determining,
for each oligonucleotide of the second set of oligonucleotides, whether the oligonucleotide
corresponds to the biophysical effect; and generating a second updated machine-learned model
using the second set of oligonucleotides and whether each of the second set of oligonucleotides
corresponds to the biophysical effect.

[0041] In some embodiments, generating the refined machine-learned model further
comprises: generating a third set of oligonucleotides, each of the third set of oligonucleotides
comprising a generated oligonucleotide; determining, for each oligonucleotide of the third set of
oligonucleotides, whether the oligonucleotide corresponds to the biophysical effect; and
modifying the second updated machine-learned model using the third set of oligonucleotides and
whether each of the third set of oligonucleotides corresponds to the biophysical effect. In some
embodiments, the third set of oligonucleotides comprise a randomly or non-randomly generated
oligonucleotide.

[0042] In some embodiments, the third set of oligonucleotides further comprises
approximately equal portions of oligonucleotides predicted to correspond to the biophysical
effect and predicted to not correspond to the biophysical effect by the second updated machine-
learned model.

[0043] In some embodiments, generating an oligonucleotide in the second set of
oligonucleotides or the third set of oligonucleotides comprises: identifying an n-gram of an
oligonucleotide sequence that strongly corresponds to the biophysical effect; and generating an
oligonucleotide comprising a mutation of the identified n-gram of the oligonucleotide sequence.
[0044] In some embodiments, generating a refined machine-learned model further
comprises iteratively refining the machine-learned model using additional sets of
oligonucleotides until a stop condition is satisfied. In some embodiments, the stop condition
comprises one or more of: a number of iterations, a threshold predictive performance of the
machine-learned model, and a below-threshold increase in predictive performance of the

machine-learned model after a refining iteration.
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[0045] In some embodiments, generating the final set of oligonucleotides using the refined
machine-learned model comprises: receiving an identification of a biophysical function to be
performed by an oligonucleotide-based medicine (OBM) and an identification of a measure of
the biophysical effect; identifying a set of characteristics of an oligonucleotide associated with
the biophysical function; and generating, using the refined machine-learned model, a set of
oligonucleotides having one or more of the identified set of characteristics and corresponding to
the measure of the biophysical effect.

[0046] In some embodiments, the biophysical effect comprises one or more of: a biological
effect, a chemical effect, and a pharmacological effect.

[0047] In some embodiments, the biophysical effect is tolerability. In some embodiments,
tolerability comprises one or more of: cytotoxicity, membrane toxicity, and immunotoxicity. In
some embodiments, tolerability is cytotoxicity. In some embodiments, tolerability is membrane
toxicity. In some embodiments, tolerability is immunotoxicity.

[0048] In some embodiments, the biophysical effect is an immune response.

[0049] Insome embodiments, the biophysical function 1s a reduction of immune-mediated
inflammation.

[0050] In some embodiments, the biophysical function is increasing immune-mediated
responses.

[0051] In some embodiments, the biophysical function is an on-target engagement of the
oligonucleotide to a target.

[0052]  Insome embodiments, the on-target engagement causes the oligonucleotide to
perform an effective amount of one or more of’ gene expression knock-down, RNA splicing
modulatory behavior, gene expression upregulation, gene-editing, RNA-editing, protein specific
targeting, receptor specific targeting, enzymatic substrate specific targeting, and distribution and
uptake into tissues or cells.

[0053] Insome embodiments, the target is a gene product. In some embodiments, the gene
product is an mRNA, a splicing site on a pre-mRNA, a truncated transcript, an aborted
transcription product, or an antisense transcript.

[0054] In some embodiments, the biophysical effect is a measure of absorption, distribution,
metabolism, or excretion of the oligonucleotide within one or more of’ a tissue, cell, intracellular

spaces, and extracellular spaces.

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

[0055] In some embodiments, the intracellular space comprises blood or cerebrospinal fluid
(CSF).
[0056] In some embodiments, the measure of the biophysical effect comprises one or more

of: a threshold toxicity, a threshold biological activity or biological activity range, a threshold of
absorption or absorption range, a threshold distribution, a threshold metabolism, a threshold
excretion, a threshold measure of pharmacokinetics, and a threshold measure of
pharmacodynamics.

[0057] In some embodiments, the biophysical effect is selected to be beneficial for an
individual based on the individual’s genetics. In some embodiments, generating the set of
oligonucleotides comprises selecting one or more of: antisense oligonucleotides (ASO), anti-
gene oligonucleotides, CpG oligonucleotides, single-guide RNAs, dual-guide RNAs, targeter
RNAs, activator RNAs, and ribozymes.

[0058] In some embodiments, the threshold level of hepatotoxicity includes a threshold of
ALT and/or AST levels <100 U/L at 72 hours after administration of dosing can be trained as
“safe” and ALT and/or AST levels > 200 U/L as “toxic”.

[0059] In some embodiments, the final set of oligonucleotides comprises a set antisense

oligonucleotides (ASO).

[0060] In some embodiments, the final set of oligonucleotides comprises a set of anti-gene

oligonucleotides.

[0061] In some embodiments, the final set of oligonucleotides comprises a set CpG

oligonucleotides.

[0062] In some embodiments, the final set of oligonucleotides comprises a set single-guide

RNAs.

[0063] In some embodiments, the final set of oligonucleotides comprises a set dual-guide

RNAs.

[0064] In some embodiments, the final set of oligonucleotides comprises a set targeter

RNAs.

[0065] In some embodiments, the final set of oligonucleotides comprises a set activator

RNAs.

[0066] In some embodiments, the final set of oligonucleotides comprises a set of aptamers.
8
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[0067] In some embodiments, the final set of oligonucleotides comprises a set of steric-

blocking oligonucleotides.

[0068] In some embodiments, the final set of oligonucleotides comprises a set of ASOs to
harness RNase H.

[0069] In some embodiments, the final set of oligonucleotides comprises a set of tracr
RNAs.

[0070] In some embodiments, the final set of oligonucleotides comprises a set of RNA

interference (RNAi)-based oligonucleotides.

[0071] In some embodiments, the final set of oligonucleotides comprises a set of RNA
(ADAR)-guiding RNA (AD-gRNAs).

[0072] In some embodiments, the final set of oligonucleotides comprises a set of double
stranded RNA (dsRNA).

[0073] In some embodiments, the final set of oligonucleotides comprises a set of CRISPR
RNA (ctRNA).

[0074] In some embodiments, the biophysical effect is one or more of: cellular uptake and
trafficking of the aptamer, binding affinity to the OBM, OBM-aptamer interactions, folded
structures of the aptamer, electrostatic interactions, and hybridization energetics and biophysics.
[0075] In some embodiments, the folded structure comprises one or more of a bulge, an
apical loop, a stem-loop, a 3-way junction, a form helix, an internal loop, a pseudoknot, and a
hairpin.

[0076] In some embodiments, the final set of oligonucleotides comprises a set of
oligonucleotide-aptamer conjugates.

[0077] Aspects of the present disclosure include a method for generating oligonucleotide-
based medicines, comprising; initializing a probabilistic machine-learned model configured to
map an oligonucleotide sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect; generating a first set of oligonucleotides
by performing single n-gram mutations on the initial oligonucleotide to obtain oligonucleotides
mapped to a distributed range of probabilities by the initialized probabilistic machine-learned
model; determining, for each oligonucleotide of the first set of oligonucleotides, a first measure
of correlation between the oligonucleotide and the biophysical effect based on real-world

experimental determination; generating a first refined probabilistic machine-learned model based
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on the first set of oligonucleotides and the determined first measures of correlation; generating a
second set of oligonucleotides, each of the second set of oligonucleotides generated and mapped
to a distributed range of probabilities by the first refined probabilistic machine-learned model;
determining, for each oligonucleotide of the second set of oligonucleotides, a second measure of
correlation between the oligonucleotide and the biophysical effect based on real-world
experimental determination; generating a second refined probabilistic machine-learned model
based on the second set of oligonucleotides and the determined second measures of correlation;
and generating a final set of oligonucleotides using the second refined probabilistic machine-
learned model. In some embodiments, each of the second set of oligonucleotides is randomly or
non-randomly generated.

[0078] In some embodiments, the method further comprises: receiving a set of biophysical
requirements for an oligonucleotide-based medicine from a designer; and selecting a subset of
the generated final set of oligonucleotides that satisfy the set of biophysical requirements.
[0079] In some embodiments, the first set of oligonucleotides comprises 50 or fewer
oligonucleotides, between 50 and 100 oligonucleotides, between 100 and 150 oligonucleotides,
between 150 and 200 oligonucleotides, between 200 and 300 oligonucleotides, between 300 and
400 oligonucleotides, between 400 and 500 oligonucleotides, between 500 and 750
oligonucleotides, between 750 and 1000 oligonucleotides, between 1000 and 1500
oligonucleotides, between 1500 and 2000 oligonucleotides, between 2000 and 2500
oligonucleotides, between 2500 to 5000 oligonucleotides, or between 5000 to 10000
oligonucleotides.

[0080] Aspects of the present disclosure include a method for training a machine learned
model, comprising: initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect; generating a first refined probabilistic machine-learned
model by, until a first stop condition is satisfied, iteratively 1) generating an increasingly
complex set of oligonucleotide mutations based on the initial oligonucleotide, 2) determining a
real-world measure of correlation between the set of oligonucleotide mutations and the
biophysical effect, and 3) fitting the set of oligonucleotides and the determined real-world
measures of correlations to an increasingly refined probabilistic machine-learned model;

generating a second refined probabilistic machine-learned model by, until a second stop
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condition is satisfied, iteratively 1) generating a set of oligonucleotides, 2) selecting a subset of
the generated set of oligonucleotides such that approximately equal portions of the subset of the
generated set of oligonucleotides are predicted to correspond to the biophysical effect and are
predicted not to correspond to the biophysical effect, 3) determining a real-world measure of
correlation between the subset of oligonucleotides and the biophysical effect, and 4) fitting the
subset of oligonucleotides and the determined real-world measures of correlations to an
increasingly refined probabilistic machine-learned model; and generating a final set of
oligonucleotides using the second refined probabilistic machine-learned model. In some
embodiments, said generating comprises generating a random set of oligonucleotides.

[0081] Aspects of the present disclosure include a method for generating a oligonucleotide-
based medicines, comprising: initializing a probabilistic machine-learned model configured to
map an oligonucleotide sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect; generating a first refined probabilistic
machine-learned model by, until a first stop condition is satisfied, iteratively 1) generating an
increasingly complex set of oligonucleotide mutations based on the initial oligonucleotide, 2)
determining a real-world measure of correlation between the set of oligonucleotide mutations
and the biophysical effect, and 3) fitting the set of oligonucleotides and the determined real-
world measures of correlations to an increasingly refined probabilistic machine-learned model;
generating a second refined probabilistic machine-learned model by, until a second stop
condition is satisfied, iteratively 1) generating a set of oligonucleotides, 2) selecting a subset of
the generated set of oligonucleotides such that approximately equal portions of the subset of the
generated set of oligonucleotides are predicted to correspond to the biophysical effect and are
predicted not to correspond to the biophysical effect, 3) determining a real-world measure of
correlation between the subset of oligonucleotides and the biophysical effect, and 4) fitting the
subset of oligonucleotides and the determined real-world measures of correlations to an
increasingly refined probabilistic machine-learned model; and generating a final set of
oligonucleotides using the second refined probabilistic machine-learned model. In some
embodiments, said generating comprises generating a random set of oligonucleotides.

[0082] Aspects of the present disclosure include a system for training a machine learned
model, comprising: a hardware processor; and a non-transitory computer-readable storage

medium storing executable instructions that, when executed by the hardware processor, cause the
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system to perform steps comprising; initializing a machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect; generating a first set of oligonucleotides based on the
initial oligonucleotide using the initialized machine-learned model; determining, for each
oligonucleotide of the first set of oligonucleotides, whether the oligonucleotide corresponds to
the biophysical effect; generating a refined machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides corresponds to the
biophysical effect; and generating a final set of oligonucleotides using the refined machine-
learned model.

[0083] Aspects of the present disclosure include a system for generating oligonucleotide-
based medicines, comprising: a hardware processor; and a non-transitory computer-readable
storage medium storing executable instructions that, when executed by the hardware processor,
cause the system to perform steps comprising: initializing a machine-learned model configured
to map an oligonucleotide sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect; generating a first set of oligonucleotides
based on the initial oligonucleotide using the initialized machine-learned model; determining, for
each oligonucleotide of the first set of oligonucleotides, whether the oligonucleotide corresponds
to the biophysical effect; generating a refined machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides corresponds to the
biophysical effect; and generating a final set of oligonucleotides using the refined machine-
learned model.

[0084] Aspects of the present disclosure include a system for generating a machine learned
model, comprising: a hardware processor; and a non-transitory computer-readable storage
medium storing executable instructions that, when executed by the hardware processor, cause the
system to perform steps comprising; initializing a machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect; generating a first set of oligonucleotides based on the
initial oligonucleotide using the initialized machine-learned model; determining, for each
oligonucleotide of the first set of oligonucleotides, whether the oligonucleotide corresponds to
the biophysical effect; generating a refined machine-learned model using the first set of

oligonucleotides and whether each of the first set of oligonucleotides corresponds to the
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biophysical effect; and generating a final set of oligonucleotides using the refined machine-
learned model.

[0085] Aspects of the present disclosure include a non-transitory computer-readable storage
medium storing executable instructions that, when executed by a hardware processor, cause the
hardware processor to perform steps for generating oligonucleotide-based medicines, the steps
comprising: initializing a machine-learned model configured to map an oligonucleotide sequence
to a probability of a biophysical effect using an initial oligonucleotide corresponding to the
biophysical effect; generating a first set of oligonucleotides based on the initial oligonucleotide
using the initialized machine-learned model; determining, for each oligonucleotide of the first set
of oligonucleotides, whether the oligonucleotide corresponds to the biophysical effect;
generating a refined machine-learned model using the first set of oligonucleotides and whether
each of the first set of oligonucleotides corresponds to the biophysical effect; and generating a
final set of oligonucleotides using the refined machine-learned model.

[0086] Aspects of the present disclosure include a system for training a machine learned
model, comprising: a hardware processor; and a non-transitory computer-readable storage
medium storing executable instructions that, when executed by the hardware processor, cause the
system to perform steps comprising: initializing a probabilistic machine-learned model
configured to map an oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect; generating a first set of
oligonucleotides by performing n-gram mutations on the initial oligonucleotide to obtain
oligonucleotides mapped to a distributed range of probabilities by the initialized probabilistic
machine-learned model; determining, for each oligonucleotide of the first set of oligonucleotides,
a first measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a first refined probabilistic machine-learned
model based on the first set of oligonucleotides and the determined first measures of correlation;
generating a second set of oligonucleotides, each of the second set of oligonucleotides generated
and mapped to a distributed range of probabilities by the first refined probabilistic machine-
learned model; determining, for each oligonucleotide of the second set of oligonucleotides, a
second measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a second refined probabilistic machine-

learned model based on the second set of oligonucleotides and the determined second measures
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of correlation; and generating a final set of oligonucleotides using the second refined
probabilistic machine-learned model. In some embodiments, each of the second set of
oligonucleotides is randomly or non-randomly generated. For example, when randomly
generated, the oligonucleotides can be selected randomly in a way that maps the oligonucleotides
to the distribution expected by the first iteration of the model.

[0087] Aspects of the present disclosure include a system for generating oligonucleotide-
based medicines, comprising: a hardware processor; and a non-transitory computer-readable
storage medium storing executable instructions that, when executed by the hardware processor,
cause the system to perform steps comprising: initializing a probabilistic machine-learned model
configured to map an oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect; generating a first set of
oligonucleotides by performing n-gram mutations on the initial oligonucleotide to obtain
oligonucleotides mapped to a distributed range of probabilities by the initialized probabilistic
machine-learned model; determining, for each oligonucleotide of the first set of oligonucleotides,
a first measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a first refined probabilistic machine-learned
model based on the first set of oligonucleotides and the determined first measures of correlation;
generating a second set of oligonucleotides, each of the second set of oligonucleotides generated
and mapped to a distributed range of probabilities by the first refined probabilistic machine-
learned model; determining, for each oligonucleotide of the second set of oligonucleotides, a
second measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a second refined probabilistic machine-
learned model based on the second set of oligonucleotides and the determined second measures
of correlation; and generating a final set of oligonucleotides using the second refined
probabilistic machine-learned model. In some embodiments, each of the second set of
oligonucleotides is randomly or non-randomly generated.

[0088] Aspects of the present disclosure include a non-transitory computer-readable storage
medium storing executable instructions that, when executed by a hardware processor, cause the
hardware processor to perform steps for generating oligonucleotide-based medicines, the steps
comprising: initializing a probabilistic machine-learned model configured to map an

oligonucleotide sequence to a probability of a biophysical effect using an initial oligonucleotide
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corresponding to the biophysical effect; generating a first set of oligonucleotides by performing
n-gram mutations (e.g., single, double, etc.) on the initial oligonucleotide to obtain
oligonucleotides mapped to a distributed range of probabilities by the initialized probabilistic
machine-learned model; determining, for each oligonucleotide of the first set of oligonucleotides,
a first measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a first refined probabilistic machine-learned
model based on the first set of oligonucleotides and the determined first measures of correlation;
generating a second set of oligonucleotides, each of the second set of oligonucleotides generated
and mapped to a distributed range of probabilities by the first refined probabilistic machine-
learned model; determining, for each oligonucleotide of the second set of oligonucleotides, a
second measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a second refined probabilistic machine-
learned model based on the second set of oligonucleotides and the determined second measures
of correlation; and generating a final set of oligonucleotides using the second refined
probabilistic machine-learned model. In some embodiments, each of the second set of
oligonucleotides are randomly or non-randomly generated.

[0089] Aspects of the present disclosure include a system for training a machine learned
model, comprising: a hardware processor; and a non-transitory computer-readable storage
medium storing executable instructions that, when executed by the hardware processor, cause the
system to perform steps comprising; initializing a probabilistic machine-learned model
configured to map an oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect; generating a first refined
probabilistic machine-learned model by, until a first stop condition is satisfied, iteratively 1)
generating an increasingly complex set of oligonucleotide mutations based on the initial
oligonucleotide, 2) determining a real-world measure of correlation between the set of
oligonucleotide mutations and the biophysical effect, and 3) fitting the set of oligonucleotides
and the determined real-world measures of correlations to an increasingly refined probabilistic
machine-learned model; generating a second refined probabilistic machine-learned model by,
until a second stop condition is satisfied, iteratively 1) generating a set of oligonucleotides, 2)
selecting a subset of the generated set of oligonucleotides such that approximately equal portions

of the subset of the generated set of oligonucleotides are predicted to correspond to the
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biophysical effect and are predicted not to correspond to the biophysical effect, 3) determining a
real-world measure of correlation between the subset of oligonucleotides and the biophysical
effect, and 4) fitting the subset of oligonucleotides and the determined real-world measures of
correlations to an increasingly refined probabilistic machine-learned model; and generating a
final set of oligonucleotides using the second refined probabilistic machine-learned model. In
some embodiments, said generating comprises generating a random set of oligonucleotides.
[0090] Aspects of the present disclosure include a system for generating oligonucleotide-
based medicines, comprising: a hardware processor; and a non-transitory computer-readable
storage medium storing executable instructions that, when executed by the hardware processor,
cause the system to perform steps comprising: initializing a probabilistic machine-learned model
configured to map an oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect; generating a first refined
probabilistic machine-learned model by, until a first stop condition is satisfied, iteratively 1)
generating an increasingly complex set of oligonucleotide mutations based on the initial
oligonucleotide, 2) determining a real-world measure of correlation between the set of
oligonucleotide mutations and the biophysical effect, and 3) fitting the set of oligonucleotides
and the determined real-world measures of correlations to an increasingly refined probabilistic
machine-learned model; generating a second refined probabilistic machine-learned model by,
until a second stop condition is satisfied, iteratively 1) generating a set of oligonucleotides, 2)
selecting a subset of the generated set of oligonucleotides such that approximately equal portions
of the subset of the generated set of oligonucleotides are predicted to correspond to the
biophysical effect and are predicted not to correspond to the biophysical effect, 3) determining a
real-world measure of correlation between the subset of oligonucleotides and the biophysical
effect, and 4) fitting the subset of oligonucleotides and the determined real-world measures of
correlations to an increasingly refined probabilistic machine-learned model; and generating a
final set of oligonucleotides using the second refined probabilistic machine-learned model. In
some embodiments, said generating comprises generating a random set of oligonucleotides.
[0091] Aspects of the present disclosure include a non-transitory computer-readable storage
medium storing executable instructions that, when executed by a hardware processor, cause the
hardware processor to perform steps for generating oligonucleotide-based medicines, the steps

comprising; initializing a probabilistic machine-learned model configured to map an
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oligonucleotide sequence to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect; generating a first refined probabilistic machine-learned
model by, until a first stop condition 1s satisfied, iteratively 1) generating an increasingly
complex set of oligonucleotide mutations based on the initial oligonucleotide, 2) determining a
real-world measure of correlation between the set of oligonucleotide mutations and the
biophysical effect, and 3) fitting the set of oligonucleotides and the determined real-world
measures of correlations to an increasingly refined probabilistic machine-learned model;
generating a second refined probabilistic machine-learned model by, until a second stop
condition is satisfied, iteratively 1) generating a set of oligonucleotides, 2) selecting a subset of
the generated set of oligonucleotides such that approximately equal portions of the subset of the
generated set of oligonucleotides are predicted to correspond to the biophysical effect and are
predicted not to correspond to the biophysical effect, 3) determining a real-world measure of
correlation between the subset of oligonucleotides and the biophysical effect, and 4) fitting the
subset of oligonucleotides and the determined real-world measures of correlations to an
increasingly refined probabilistic machine-learned model; and generating a final set of
oligonucleotides using the second refined probabilistic machine-learned model. In some
embodiments, said generating comprises generating a random set of oligonucleotides.

[0092] Aspects of the present disclosure include a method for training a machine-learned
model, comprising: generating a first set of oligonucleotides by performing n-gram mutations on
an initial oligonucleotide to obtain oligonucleotides mapped to a distributed range of
probabilities; creating a first training set comprising, for each oligonucleotide of the first set of
oligonucleotides, a first measure of correlation between the oligonucleotide and a biophysical
effect determined based on real-world experimental determination; training a machine-learned
model in a first stage using the first training set, the machine-learned model configured to map
an oligonucleotide sequence to a probability of a biophysical effect; generating a second set of
oligonucleotides mapped to a distributed range of probabilities by the machine-learned model;
creating a second training set comprising, for each oligonucleotide of the second set of
oligonucleotides, a second measure of correlation between the oligonucleotide and a biophysical
effect determined based on real-world experimental determination; and training the machine-
learned model in a second stage using the second training set.

[0093] Aspects of the present disclosure include an oligonucleotide, generated according to
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the methods described herein. Aspects of the present disclosure include an oligonucleotide-

based medicine, generated according to the methods described herein.
BRIEF DESCRIPTION OF THE DRAWINGS

[0094] FIG. 1 shows a graphical representation of all possible OBMs. The white circles in
each column are the full alphabet space, 1.e., all possibilities at each position (row), where the
position is along the OBM. For example, for a DNA sequence of length 16 represented in dimer
space, there are 15 columns in this graph corresponding to the start position of the dimer in the
sequence. There are 16 rows, for 4 x 4 possible dimer “alphabet” composed of A; C; G; T,
namely, [AA; AC; : : :; GT; TT]. A particular realization of a sequence is a unique set of black
nodes, connected by solid black directed edges (arrows). Every node can connect to a subset of
all possible nodes in the next row, and these edges are represented by dashed black lines, and for
clarity only shown for one node (the black node in the top left corner) in the above graph. The
constraint in edge connection is simply consistency in composition of units—in the sequence
example, AC dimer can only connect to a dimer starting with C because the dimer representation
is overlapping by one base. In general, the representation is not limited to sequences, and can

include arbitrary finite chemical space. The solid gray edges are weighted and represent

“desirable” paths in this graph to emulate a desirable pharmacology, such as “safe” OBMs.

[0095] FIG. 2 shows the factor graph representation of FIG. 1, called sequence graph. The
black and white nodes were described in FIG. 1. The boxes (and corresponding dashed lines) are
the factors corresponding to the constraints on which monomer at a position can be composed
with which monomer at the next position. The triangles (and corresponding solid lines) are the
factors capturing both independent and correlated components of the contribution of the

monomers to the probability distribution of outcome.

[0096] FIG. 3 depicts a process of generating one or more OBMs using machine learning,

according to various embodiments.

[0097] FIG. 4 depicts a balanced data set of ASOs generated according to the processes
described herein, relative to a traditional approach of generated ASOs. In particular, using a non-
adaptive sequence graph and a demanding scenario created by a cytotoxicity simulator for which®

100 random (realistic ENCODE PWMs) protein-binding events all independently can lead to
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cyto-toxicity, the processes described herein can create balanced data-sets by learning to predict
measurements. In the traditional approach, screening 1000 ASOs may produce roughly 100
‘safe’ ASOs, while the processes described herein can produce more than 600 ‘safe’ ASOs. It
should be noted that in this example, ‘safe’ ASOs are enriched by several fold within the first

few feedback loop steps of the processes described herein (such that every dot is a step).

[0098] FIG. 5 shows a schematic of how CAT-TAC (Creyon Aptamers for Targeting
Tissues and Cells) powers the creation of precision targeted OBMs. A target structure is selected
from the library of aptamer structures created in Example2. Using the engine described herein, a
sequence and chemistry modified version of the aptamer is created that shares the structural,
biophysical properties of the parent structure. The resulting aptamer is engineered to be
compatible with the “payload” OBM and optimized to be well tolerated. The newly engineered
aptamer is then synthesized as an extension to the “payload” OBM which is engineered using the
engine described herein. This process is scalable to enable the rapid creation of novel gene-
expression modulating OBMs that can be programmed to selectively affect specific cells and

tissues.

[0099] FIG. 6 depicts an overview of the CAT-TAC aptamer optimization method. Starting
with a random pool of aptamer sequences (upper left), an animal or in vitro system is dosed with
a mixture of OBM:aptamer compounds. The OBM is the same for all aptamers and targets a
ubiquitously expressed reporter (e.g. Malat1). Using single nuclei sequencing methods adapted
to only amplify aptamers, reporter gene and a few marker genes, the relative molecular
abundance of each aptamer is tracked at a single cell level, and the relative knockdown and
various cell marker attributes (cell health, state, etc.) are observed. Optionally, Shape-seq
reagents can be applied prior to sequencing to allow for adding structural constraints if needed.
Aptamer sequences found in nuclei are clustered by shape and pharmacology. These identified
structures are then selected for refinement with randomization added to regions of interest as

determined by the search algorithm(s) described herein.

[00100]  FIG. 7 shows the controller and algorithmic methodology to integrate disparate
biophysical, computational and experimental information on 3D structure, topology and
sequence relationships of productive aptameric classes, enabling efficient search and robust
design criteria for CAT-TAC batches of sequential experimental selection for tissue- and/or cell-

type specific aptameric libraries. The topology-structure space described herein is a low-
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dimensional encoding of the very high-dimensional (and therefore, intractable) sequence space
of aptamer-OBM conjugates and is aware of robust classes of structural and sequence motifs
mapped to functional outcomes, example of structural motifs are shown in the left panel. The
aptamer classes created are defined by the set of sequence mutations or structural perturbations
that do not affect aptamer function. CAT-TAC iterations build these classes informed by direct
in vivo readouts of both two-point interactions and accessibility profile of aptamer monomers
(right panel), as well as rich computational tools in the RNA folding and topological analysis
(center panel). For example, the genus of aptamer ‘rainbow-diagram’ corresponding to contact
map, and persistence of genus (persistent homology) across length-scales and sequence

compositions is one such feature. The central panel illustrates a ‘rainbow-diagram’ with genus 1.

[00101]  FIG. 8 depicts the directed mutational analysis in Example 2, refining the definition
of classes of aptamers by testing a large number of directed mutations of the exemplars aptamers
in each class, where the topology-structure space encoding predicts which mutations would be
tolerated in retaining the function of the aptamer class, (e.g., delivery in muscle). The utility of
the topology-structure space is validated, and walks in this lower dimensional space within class
boundaries characterize mutational freedom in aptamer sequence that do not affect its functional
merit. This freedom enables engineering of specific realizations of a class, with distinct aptamer
sequences tailored for distinct payload OBMs, thereby eliminating unwanted aptamer-OBM
interactions.

[00102]  FIG. 9 shows enrichment of safe OBMs; Creyon survey OBMs were 69% safe
compared to 10-25% for random screening.

[00103]  FIG. 10A: Creyon platform is target agnostic. FIG. 10A is an exemplary depiction
that reconfirms the separability of off-target driven toxicity (RNase H mediated) vs the far more

common OBM sequence-interaction driven toxicities (protein-mediated).

[00104]  FIG. 10B is an exemplary depiction of Urinary Kim1 concentration of mice at 24
hours after dose 1 (75 mg/kg), normalized to urinary creatinine concentration, and plotted as fold
change to PBS treated (median over 3 animals). Fold change of over 2 is potentially kidney
toxic,

[00105]  FIG. 11 is an exemplary depiction of Urinary Cystatin C concentration of mice at 24

hours after dose 1 (75 mg/kg), normalized to urinary creatinine concentration, and plotted as fold
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change to PBS treated (median over 3 animals).

[00106]  FIG. 12 is an exemplary depiction of in vitro Necrosis (NG), Caspase Cas), Annexin
V (AV) and Cell viability (MT) signals for two engineered OBMs, with top row for an in vivo
toxic OBM, and bottom row for in vivo safe OBM. Dose of OBM is in caption (0, 2.5, 5.0, 10,
20, 40 uM concentrations), with darker colors representing higher doses. The signal plotted is
log2 fold change relative to untreated samples, matched by times in hours (8, 22, 24, 28, 32, 48,
52 and 56 hours).

[00107]  FIG. 13 is an exemplary depiction of model performance of 26 toxic 3-8-3 LNAs
tested against 128 training sequences 3-10-3 LNAs designed in Step 1 (128). 3-10-3 LNA dosing
scheme: 75 mg/kg per week, 2-week study, C57BL/6 mice, ALT, AST measured at 72 hours
after second dose. Test sequences are 3-8-3 LNA dosed at 100 mg/kg (lower dose than training

set) and therefore only toxic sequences are considered.

[00108]  FIG. 14 is an exemplary depiction of model performance of 26 toxic 3-8-3 LNAs
tested against 256 training sequences 3-10-3 LNAs designed in Step 1 & Step 2 (128 + 128). 3-
10-3 LNA dosing scheme: 75 mg/kg per week, 2 week study, C57BL/6 mice, ALT, AST
measured at 72 hours after second dose. Test sequences are 3-8-3 LNA dosed at 100 mg/kg

(lower dose than training sets) and therefore only toxic sequences are considered.

[00109]  FIG. 15is an exemplary depiction of model performance of 16 cEts tested against
128 training sequences 3-10-3 LNAs designed in Step 1 (128). 3-10-3 LNA dosing scheme: 75
mg/kg per week, 2-week study, C57BL/6 mice, ALT, AST measured at 72 hours after second
dose. Test sequences are 3-10-3 LNA versions of 3-10-3 cEts, which were tested in vivo using
animal studies, same design as above.

[00110]  FIG. 16 is an exemplary depiction of model performance of 16 cEts tested against
256 training sequences 3-10-3 LNAs designed in Step 1 and Step 2 (128 and 128). 3-10-3 LNA
dosing scheme: 75 mg/kg per week, 2-week study, C57BL/6 mice, ALT, AST measured at 72
hours after second dose. Test sequences are 3-10-3 LNA versions of 3-10-3 cEts, which were
tested in vivo using animal studies, same design as above.

[00111]  FIG. 17 is an exemplary depiction of an in vifro neurotoxicity assay (exemplary
ASO Experimental Group 155024). OBMs were administered at 4 concentrations (30uM,
15uM, 7.5uM and 3.75uM) to determine how calcium flux was affected by OBM dosing. The
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calcium agonist, ionomycin, was administered in the same well after ASO dosing at 1uM for

every OBM concentration. HBTS buffer was used as a negative control.

DETAILED DESCRIPTION

[00112]  Aspects of the present disclosure include in silico methods for training a machine
learned model. Aspects of the present disclosure include in silico methods for generating

oligonucleotide-based medicines (OBMs).

[00113]  Aspects of the present disclosure include methods for training a machine learned
model. Aspects of the present disclosure include methods for generating oligonucleotide-based
medicines, e.g., for use in therapeutic applications and/or diagnostic applications. Aspects of the
present disclosure include systems for carrying out the methods of the present disclosure.
Aspects of the present disclosure include a computer readable medium, comprising instructions,

that cause a processor to carry out the methods of the present disclosure.

[00114]  Oligonucleotide-Based Medicines/Drugs are polymeric molecules comprising
natural and synthetic derivatives of nucleic acids. Oligonucleotide-based medicines can be used

for, for example, therapeutic applications, personalized medicine, and/or diagnostic applications.

[00115]  Reference will now be made in detail to several embodiments, examples of which
are illustrated in the accompanying figures. It is noted that wherever practicable similar or like

reference numbers may be used in the figures and may indicate similar or like functionality.
1. DEFINITIONS

[00116]  Unless defined otherwise, all technical and scientific terms used herein have the
meaning commonly understood by a person skilled in the art to which this description belongs.
As used herein, the following terms have the meanings ascribed to them below.

[00117]  Asused herein, the term “individual” refers to a human or animal individual. As
used herein, the term “healthy individual” refers to an individual presumed to not have a

disease or disorder.

[00118]  The terms “biophysical”, “biophysical effect”, and “biophysical function”
generally refer to biological, chemical, and physical properties of an oligonucleotide that
determine its tolerability, functionality, activity, and effects within a living organism, cell or cell

extract.
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[00119]  Asused herein, the term “pharmacology” refers to studying how of an
oligonucleotide-based medicine affects a biological system, for example, by studying its
tolerability, functionality, activity, pharmacokinetics, pharmacodynamics, absorption,

distribution, metabolism, and extraction (ADME), and its tolerability in in-vifro and in-vitro.

[00120]  Asused herein, the term “oligonucleotide-based medicine” refers to an

oligonucleotide-based therapeutic for treatment of diseases, such as genetic diseases.

[00121]  The terms “polynucleotide” and “nucleic acid,” used interchangeably herein, refer
to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides.
Thus, this term includes, but is not limited to, single-, double-, or multi-stranded DNA or RNA,
genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine
bases or other natural, chemically or biochemically modified, non-natural, or derivatized
nucleotide bases. “Oligonucleotide” generally refers to polynucleotides of between about 5 and
about 100 nucleotides of single- or double-stranded DNA or RNA. For the purposes of this
disclosure, there is no upper limit to the length of an oligonucleotide. Oligonucleotides are also
known as oligomers or oligos. In some embodiments, oligonucleotides of the present disclosure
comprise base modifications, chemical modifications, or combinations thereof. In some
embodiments, oligonucleotides of the present disclosure comprise computer representation of the
molecules in formats including but not limited to hierarchical editing language for

macromolecules (HELM) or simplified molecular-input-line entry system (SMILES) strings.

[00122]  Asused herein, the term “microRNA” refers to any type of interfering RNAs,
including but not limited to, endogenous microRNAs and artificial microRNAs (e.g., synthetic
miRNAs). Endogenous microRNAs are small RNAs naturally encoded in the genome which are
capable of modulating the productive utilization of mRNA. An artificial microRNA can be any
type of RNA sequence, other than endogenous microRNA, which is capable of modulating the
activity of an mRNA. A microRNA sequence can be an RNA molecule composed of any one or
more of these sequences. MicroRNA (or “miRNA”) sequences have been described in
publications such as, Lim, et al., 2003, Genes & Development, 17, 991-1008, Lim et al., 2003,
Science, 299, 1540, Lee and Ambrose, 2001, Science, 294, 862, Lau et al., 2001, Science 294,
858-861, Lagos-Quintana et al., 2002, Current Biology, 12, 735-739, Lagos-Quintana et al .,
2001, Science, 294, 853-857, and Lagos-Quintana et al., 2003, RNA, 9, 175-179, which are

incorporated herein by reference. Examples of microRNAs include any RNA that is a fragment
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of a larger RNA oris a miRNA, siRNA, stRNA, sncRNA, tncRNA, snoRNA, smRNA, snRNA,
or other small non-coding RNA. See, e.g., US Patent Applications 20050272923, 20050266552,
20050142581, and 20050075492. A “microRNA precursor” (or “pre-miRNA”) refers to a
nucleic acid having a stem-loop structure with a microRNA sequence incorporated therein. A
“mature microRNA” (or “mature miRNA”) includes a microRNA that has been cleaved from a
microRNA precursor (a “pre-miRNA”), or that has been synthesized (e.g., synthesized in a
laboratory by cell-free synthesis), and has a length of from about 19 nucleotides to about 27
nucleotides, e.g., a mature microRNA can have a length of 19 nt, 20 nt, 21 nt, 22 nt, 23 nt, 24 nt,
25 nt, 26 nt, or 27 nt. A mature microRNA can bind to a target mRNA and inhibit translation of
the target mRNA.

[00123] A “stem-loop structure” refers to a nucleic acid having a secondary structure that
includes a region of nucleotides which are known or predicted to form a double strand (step
portion) that is linked on one side by a region of predominantly single-stranded nucleotides (loop
portion). The terms “hairpin” and “fold-back” structures are also used herein to refer to stem-
loop structures. Such structures are well known in the art and these terms are used consistently
with their known meanings in the art. The actual primary sequence of nucleotides within the
stem-loop structure is not critical to the practice of the invention as long as the secondary
structure 1s present. As is known in the art, the secondary structure does not require exact base-
pairing. Thus, the stem may include one or more base mismatches. Alternatively, the base-

pairing may be exact, i.e. not include any mismatches.

[00124] A “small interfering” or “short interfering RNA” or siRNA is a RNA duplex of
nucleotides that is targeted to a gene of interest (a “target gene”). An “RNA duplex” refers to the
structure formed by the complementary pairing between two regions of a RNA molecule. siRNA
is “targeted” to a gene in that the nucleotide sequence of the duplex portion of the siRNA is
complementary to a nucleotide sequence of the targeted gene. In some embodiments, the length
of the duplex of siRNAs is less than 30 nucleotides. In some embodiments, the duplex can be 29,
28,27, 26, 25, 24, 23,22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 nucleotides in length. In
some embodiments, the length of the duplex is 19-25 nucleotides in length. The RNA duplex
portion of the siRNA can be part of a hairpin structure. In addition to the duplex portion, the
hairpin structure may contain a loop portion positioned between the two sequences that form the

6,7,8,9,10,11, 12 or

2 2 2 ? 2

duplex. The loop can vary in length. In some embodiments the loop 1s 5
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13 nucleotides in length. The hairpin structure can also contain 3' or 5' overhang portions. In

some embodiments, the overhang is a 3' or a 5' overhang 0, 1, 2, 3, 4 or 5 nucleotides in length.

[00125]  Asused herein a “nucleobase” refers to a heterocyclic base, such as for example a
naturally occurring nucleobase (i.e., an A, T, G, C or U) found in at least one naturally occurring
nucleic acid (i.e., DNA and RNA), and naturally or non-naturally occurring derivative(s) and
analogs of such a nucleobase. A nucleobase generally can form one or more hydrogen bonds
(“anneal” or “hybridize”) with at least one naturally occurring nucleobase in manner that may
substitute for naturally occurring nucleobase pairing (e.g., the hydrogen bonding between A and

T, Gand C, and A and U).

[00126]  “Purine” and/or “pyrimidine” nucleobase(s) encompass naturally occurring purine
and/or pyrimidine nucleobases and also derivative(s) and analog(s) thereof, including but not
limited to, those a purine or pyrimidine substituted by one or more of an alkyl, caboxyalkyl,
amino, hydroxyl, halogen (i.e., fluoro, chloro, bromo, or i0do), thiol or alkylthiol moeity.
Preferred alkyl (e.g., alkyl, caboxyalkyl, etc.) moieties comprise of about 1, about 2, about 3,
about 4, about 5, to about 6 carbon atoms. Other non-limiting examples of a purine or pyrimidine
include a deazapurine, a 2,6-diaminopurine, a S-fluorouracil, a xanthine, a hypoxanthine, a 8-
bromoguanine, a 8-chloroguanine, a bromothymine, a 8-aminoguanine, a 8-hydroxyguanine, a 8-
methylguanine, a 8-thioguanine, an azaguanine, a 2-aminopurine, a 5-ethylcytosine, a 5-
methylcyosine, a S-bromouracil, a 5-ethyluracil, a S-iodouracil, a 5-chlorouracil, a 5-
propyluracil, a thiouracil, a 2-methyladenine, a methylthioadenine, a N,N-diemethyladenine, an
azaadenines, a 8-bromoadenine, a 8-hydroxyadenine, a 6-hydroxyaminopurine, a 6-thiopurine, a
4-(6-aminohexyl/cytosine), and the like. Other examples are well known to those of skill in the

art.

[00127] A nucleobase may be composed in a nucleoside or nucleotide, using any chemical or
natural synthesis method described herein or known to one of ordinary skill in the art. Such
nucleobase may be labeled or it may be part of a molecule that is labeled and contains the

nucleobase.

[00128]  Asused herein, a “nucleoside” refers to an individual chemical unit comprising a
nucleobase covalently attached to a nucleobase linker moiety. A non-limiting example of a
“nucleobase linker moiety” is a sugar comprising 5-carbon atoms (i.e., a "5-carbon sugar"),

including but not limited to a deoxyribose, a ribose, an arabinose, or a derivative or an analog of
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a S-carbon sugar. Non-limiting examples of a derivative or an analog of a 5-carbon sugar include
a 2'-fluoro-2'-deoxyribose or a carbocyclic sugar where a carbon is substituted for an oxygen

atom in the sugar ring.

[00129]  Diufferent types of covalent attachment(s) of a nucleobase to a nucleobase linker
moiety are known in the art. By way of non-limiting example, a nucleoside comprising a purine
(i.e., A or G) or a 7-deazapurine nucleobase typically covalently attaches the 9 position of a
purine or a 7-deazapurine to the 1'-position of a 5-carbon sugar. In another non-limiting example,
a nucleoside comprising a pyrimidine nucleobase (i.e., C, T or U) typically covalently attaches a

1 position of a pyrimidine to a 1'-position of a S-carbon sugar.

[00130]  Asused herein, a “nucleotide” refers to a nucleoside further comprising a
“backbone moiety”. A backbone moiety generally covalently attaches a nucleotide to another
molecule comprising a nucleotide, or to another nucleotide to form a nucleic acid. The
"backbone moiety" in naturally occurring nucleotides typically comprises a phosphorus moiety,
which is covalently attached to a 5-carbon sugar. The attachment of the backbone moiety
typically occurs at either the 3'- or 5'-position of the 5-carbon sugar. However, other types of
attachments are known in the art, particularly when a nucleotide comprises derivatives or analogs

of a naturally occurring 5-carbon sugar or phosphorus moiety.

[00131] A nucleic acid is “hybridizable” to another nucleic acid, such as a cDNA, genomic
DNA, or RNA, when a single stranded form of the nucleic acid can anneal to the other nucleic
acid under the appropriate conditions of temperature and solution ionic strength. Hybridization
and washing conditions are well known and exemplified in Sambrook, J., Fritsch, E. F. and
Maniatis, T. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor
Laboratory Press, Cold Spring Harbor (1989), particularly Chapter 11 and Table 11.1 therein;
and Sambrook, J. and Russell, W., Molecular Cloning: A Laboratory Manual, Third Edition,
Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2001). The conditions of temperature
and ionic strength determine the "stringency" of the hybridization. Hybridization conditions and
post-hybridization washes are useful to obtain the desired determined stringency conditions of
the hybridization. One set of illustrative post-hybridization washes is a series of washes starting
with 6.times. SSC (where SSC is 0.15 M NaCl and 15 mM citrate buffer), 0.5% SDS at room
temperature for 15 minutes, then repeated with 2.times.SSC, 0.5% SDS at 45°C. for 30 minutes,
and then repeated twice with 0.2.times.SSC, 0.5% SDS at 50°C. for 30 minutes. Other stringent
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conditions are obtained by using higher temperatures in which the washes are identical to those
above except for the temperature of the final two 30 minute washes in 0.2.times.SSC, 0.5% SDS,
which is increased to 60°C. Another set of highly stringent conditions uses two final washes in
0.1.times.SSC, 0.1% SDS at 65°C. Another example of stringent hybridization conditions is
hybridization at 50°C. or higher and 0.1.times.SSC (15 mM sodium chloride/1.5 mM sodium
citrate). Another example of stringent hybridization conditions is overnight incubation at 42°C.
in a solution: 50% formamide, 5.times.SSC (150 mM NaCl, 15 mM trisodium citrate), S0 mM
sodium phosphate (pH 7.6), 5S.times.Denhardt's solution, 10% dextran sulfate, and 20 mug/ml
denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1.times.SSC at
about 65°C. Stringent hybridization conditions and post-hybridization wash conditions are
hybridization conditions and post-hybridization wash conditions that are at least as stringent as

the above representative conditions.

[00132]  Hybridization requires that the two nucleic acids contain complementary sequences,
although depending on the stringency of the hybridization, mismatches between bases are
possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the
nucleic acids and the degree of complementation, variables well known in the art. The greater the
degree of similarity or homology between two nucleotide sequences, the greater the value of the
melting temperature (Tm) for hybrids of nucleic acids having those sequences. The relative
stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following
order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in
length, equations for calculating Tm have been derived (see Sambrook et al., supra, 9.50-9.51).
For hybridizations with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches
becomes more important, and the length of the oligonucleotide determines its specificity (see
Sambrook et al., supra, 11.7-11.8). Typically, the length for a hybridizable nucleic acid is at least
about 10 nucleotides. lllustrative minimum lengths for a hybridizable nucleic acid are: at least
about 15 nucleotides; at least about 20 nucleotides; and at least about 30 nucleotides.
Furthermore, the skilled artisan will recognize that the temperature and wash solution salt

concentration may be adjusted as necessary according to factors such as length of the probe.

[00133] A polynucleotide or polypeptide has a certain percent “sequence identity” to another
polynucleotide or polypeptide, meaning that, when aligned, that percentage of bases or amino

acids are the same, and in the same relative position, when comparing the two sequences.
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Sequence similarity can be determined in a number of different manners. To determine sequence
identity, sequences can be aligned using the methods and computer programs, including BLAST,
available over the world wide web at ncbi.nlm.nih.gov/BLAST. See, e.g., Altschul et al. (1990),
J. Mol. Biol. 215:403-10. Another alignment algorithm is FASTA, available in the Genetics
Computing Group (GCG) package, from Madison, Wis., USA, a wholly owned subsidiary of
Oxford Molecular Group, Inc. Other techniques for alignment are described in Methods in
Enzymology, vol. 266: Computer Methods for Macromolecular Sequence Analysis (1996), ed.
Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, Calif., USA. Of
particular interest are alignment programs that permit gaps in the sequence. The Smith-
Waterman 1s one type of algorithm that permits gaps in sequence alignments. See Meth. Mol.
Biol. 70: 173-187 (1997). Also, the GAP program using the Needleman and Wunsch alignment
method can be utilized to align sequences. See J. Mol. Biol. 48: 443-453 (1970).

[00134] “Complementary,” as used herein, refers to the capacity for precise pairing between
two nucleotides of a polynucleotide (e.g., an antisense polynucleotide) and its corresponding
target polynucleotide. For example, if a nucleotide at a particular position of a polynucleotide is
capable of hydrogen bonding with a nucleotide at a particular position of a target nucleic acid
(e.g., a microRNA), then the position of hydrogen bonding between the polynucleotide and the
target polynucleotide is considered to be a complementary position. The polynucleotide and the
target polynucleotide are complementary to each other when a sufficient number of
complementary positions in each molecule are occupied by nucleotides that can hydrogen bond
with each other. Thus, “specifically hybridizable” and “complementary” are terms which are
used to indicate a sufficient degree of precise pairing or complementarity over a sufficient
number of nucleotides such that stable and specific binding occurs between the polynucleotide

and a target polynucleotide.

[00135]  Itisunderstood in the art that the sequence of a polynucleotide need not be 100%
complementary to that of its target nucleic acid to be specifically hybridizable or hybridizable.
Moreover, a polynucleotide may hybridize over one or more segments such that intervening or
adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin
structure). A subject polynucleotide can comprise at least 70%, at least 80%, at least 90%, at
least 95%, at least 99%, or 100% sequence complementarity to a target region within the target

nucleic acid sequence to which they are targeted. For example, an antisense nucleic acid in
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which 18 of 20 nucleotides of the antisense compound are complementary to a target region, and
would therefore specifically hybridize, would represent 90 percent complementarity. In this
example, the remaining noncomplementary nucleotides may be clustered or interspersed with
complementary nucleotides and need not be contiguous to each other or to complementary
nucleotides. As such, an antisense polynucleotide which is 18 nucleotides in length having 4
(four) noncomplementary nucleotides which are flanked by two regions of complete
complementarity with the target nucleic acid would have 77.8% overall complementarity with
the target nucleic acid. Percent complementarity of an oligomeric compound with a region of a
target nucleic acid can be determined routinely using BLAST programs (basic local alignment
search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990,
215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656) or by using the Gap program
(Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group,
University Research Park, Madison Wis.), using default settings, which uses the algorithm of
Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489).

[00136]  Before the present invention is further described, it is to be understood that this
invention 1s not limited to particular embodiments described, as such may, of course, vary. It is
also to be understood that the terminology used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting, since the scope of the present invention

will be limited only by the appended claims.

[00137]  Where a range of values is provided, it is understood that each intervening value, to
the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the
upper and lower limit of that range and any other stated or intervening value in that stated range,
is encompassed within the invention. The upper and lower limits of these smaller ranges may
independently be included in the smaller ranges, and are also encompassed within the invention,
subject to any specifically excluded limit in the stated range. Where the stated range includes one
or both of the limits, ranges excluding either or both of those included limits are also included in

the invention.

[00138]  Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which this invention
belongs. Although any methods and materials similar or equivalent to those described herein can

also be used in the practice or testing of the present invention, the preferred methods and
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materials are now described. All publications mentioned herein are incorporated herein by
reference to disclose and describe the methods and/or materials in connection with which the

publications are cited.

[00139] It must be noted that as used herein and in the appended claims, the singular forms
“a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus,
for example, reference to “a biophysical effect” includes a plurality of such biophysical effects
and reference to “the oligonucleotide” includes reference to one or more oligonucleotides and
equivalents thereof known to those skilled in the art, and so forth. It is further noted that the
claims may be drafted to exclude any optional element. As such, this statement is intended to

2

serve as an antecedent basis for use of such exclusive terminology as “solely,” “only” and the

like in connection with the recitation of claim elements, or use of a “negative” limitation.

[00140]  Itis appreciated that certain features of the invention, which are, for clarity,
described in the context of separate embodiments, may also be provided in combination in a
single embodiment. Conversely, various features of the invention, which are, for brevity,
described in the context of a single embodiment, may also be provided separately or in any
suitable sub-combination. All combinations of the embodiments pertaining to the invention are
specifically embraced by the present invention and are disclosed herein just as if each and every
combination was individually and explicitly disclosed. In addition, all sub-combinations of the
various embodiments and elements thereof are also specifically embraced by the present
invention and are disclosed herein just as if each and every such sub-combination was

individually and explicitly disclosed herein.

[00141]  The publications discussed herein are provided solely for their disclosure prior to the
filing date of the present application. Nothing herein is to be construed as an admission that the
present invention is not entitled to antedate such publication by virtue of prior invention. Further,
the dates of publication provided may be different from the actual publication dates which may

need to be independently confirmed.

II. OVERVIEW OF METHOD

[00142]  Aspects of the present disclosure provide methods of training a machine learned

model, generating OBMs, and characterizing OBM sequence-pharmacology mapping for
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engineering safe and effective OBMs. Aspects of the present disclosure include initializing and
training a machine-learned model for mapping OBM sequence pharmacology, including
mapping the sequence of base and other nucleotide chemistries, and biochemical properties, and

biophysical properties to the pharmacological effects.

[00143] In some embodiments, the methods of the present disclosure are based on the
observation that OBMs have limited monomeric diversity overall, are linear polymers with
(possibly distinct) diversity of (possibly overlapping) monomers at each position along the
polymer, and can, without loss of generality, be represented as a novel mathematical graph
providing a probabilistic language to quantify its pharmacological readout as (multi-) monomeric

contributions (e.g. factors).

[00144]  In some embodiments, the methods of the present disclosure are based on the
assumption that OBM pharmacology is driven by interaction with enzymes and proteins, which
primarily interact with the OBM in motifs and 1s modulated by the three-dimensional

conformations of the OBM and base-pairing interactions.

[00145]  Aspects of the present disclosure include methods for generating oligonucleotide-
based medicines (OBMs), comprising: initializing a machine-learned model configured to map
an oligonucleotide sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect; generating a first set of oligonucleotides
based on the initial oligonucleotide using the initialized machine-learned model; determining, for
each oligonucleotide of the first set of oligonucleotides, whether the oligonucleotide corresponds
to the biophysical effect; generating a refined machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides corresponds to the
biophysical effect; and generating a final set of oligonucleotides using the refined machine-

learned model.

[00146] In some embodiments, the methods described in the present disclosure quantitatively
map OBM sequence and chemistry features to pharmacology. In some embodiments,
pharmacological endpoints comprise tissue distribution and productive uptake (ADME,
subcellular localization, etc.), targetability of RNA (accessibility, (co-)transcriptional dynamics
of RNA, etc.), hybridization, specificity and enzymatic rules (edit tolerance and sequence
preference). In some embodiments, pharmacological endpoints comprise cytotoxicity including

hepato, renal, cardio and neurotoxicity. In some embodiments, pharmacological endpoints
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comprise immunogenicity and/or immunostimulatory effects. In some embodiments,
pharmacological endpoints comprise membrane toxicity, including acute neurotoxicity and

cardiotoxicity. In some embodiments, neurotoxicity is acute or delayed neurotoxicity.

[00147]  In another embodiment, methods provided herein create in silico datasets. In some
embodiments, in silico data sets comprise biophysical models parameterizing RNA dynamics. In
some embodiments, in silico data sets comprise quantitative models of pharmacology. In some
embodiments, in silico data sets comprise quantitative models of mechanism-of-action. In some
embodiments, in silico data sets comprise ML/AI for molecular design. In some embodiments,
ML/AI models are specific to the biophysics and mechanisms of polymeric nucleic acids. In

some embodiments, in silico data sets comprise quantum chemistry of nucleic acids.

[00148]  In another embodiment, methods described herein provide the capability to design
and engineer optimal (safe and efficacious) OBMs in days, for multiple gene-modulatory
mechanisms of OBMs, delivering best-in-industry efficacy and safety profiles unattainable by
traditional screening campaigns. In another embodiment, methods described herein provide

novel tissue targeting using nucleic acid building blocks.

[00149] Methods provided herein can be used to predict and engineer optimal precise nucleic
acid interactions that underlay many foundational diagnostic instruments. In some embodiments,
provided methods predict, engineer or optimize nucleic acid interactions of any DNA

nanotechnology.

[00150] In some embodiments, diagnostic instruments amenable to provided methods
comprise microarrays that directly measure hybridization events. In some embodiments, methods
of the present disclosure can be used to predict, design, or modify for optimization of nucleic
acids used in microarray platforms. In some embodiments, the oligonucleotides used in an
oligonucleotide-based array can be designed to provide broad genome coverage with higher
probe density in regions associated with specific disorders or can include large-scale genomic
coverage for identifying many diseases or disorders. In some embodiments, the methods of the
present disclosure can be used to predict, modify, or design exon-level oligonucleotide probe

coverage for specific genes.

[00151] In some embodiments, provided methods predict and engineer custom micropatterned

surfaces that leverage hybridization to trap nucleic acid-tagged macromolecules (including but
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not limited to proteins, antibodies, sugars and lipids), to specific coordinates on a plate (e.g.,

DNA technology to engineer the nucleic acid topology of micron-sized ELISA beads).

[00152] By way of another example, specific nucleic acid structures needed to be formed to
facilitate sequencing readouts on nanopore and other sequencing platforms (e.g., PacBio,
Illumina, Ton Torrent (Thermo Fisher Scientific), BGI Genomics, PacBio and Oxford Nanopore
Technologies) are predicted or engineered by the provided methods. For example,
oligonucleotides that can be used in such sequencing platforms include, but are not limited to:
amplification primer sequences, sequences used for hybridization capture, adapter sequences,
barcode sequences, unique molecular identifiers (UMIs), biotinylated oligonucleotide probes,
primers that are specific to the sequencing platform or method used, aptamers for binding to or
targeting proteins, cleavage assays for detection, aptamer- nanomaterials, and the like. In some
embodiments, oligonucleotides produced or predicted by the present methods can be used in
hybrid capture methods and/or amplicon-based methods, e.g., for example oligonucleotides used
for hybrid capture methods such as SureSelect (Agilent Technologies) and SeqCap (Roche), or
oligonucleotides used for amplicon-based methods such as HaloPlex (Agilent Technologies) and

AmpliSeq (Ion Torrent).

[00153] In some embodiments, provided methods predict or engineer chemistries for
multiplexed Next Generation Sequencing (NGS) assays that are either more or less tolerant to

mismatches with library making enzymes (e.g., reverse transcriptase).

[00154] In some embodiments, provided methods predict or engineer oligonucleotides used in
DNA microarrays such as DNA microarrays developed by Illumnia, Affymetrix, Agilent,
Scienion AG, Applied Microarrays, Arrayit, Arrayit, Biometrix Technology, Savyon

Diagnostics, and WaferGen.
[00155] In some embodiments, provided methods predict or engineer oligonucleotides used in
microarrays for analysis of gene expression, genotyping, and genome cytogenetics.

[00156] In some embodiments, oligonucleotides generated by the method provided can
produce adapters that are added to both ends of the DNA/RNA fragments during library
preparation prior to sequencing. The fragment is attached to the surface of the flow cell by means
of oligonucleotides on the surface that have a nucleotide sequence complementary to the

adapters allowing the hybridization and the subsequent bridge amplification, forming a double-
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strand bridge. Optimization of oligonucleotides (e.g., optimization of attachment to flow cell
and/or fragments, predicted for stability, etc.) can be provided by the methods described herein.
Moreover, oligonucleotides can be predicted or developed by the methods described herein for

attachment of oligonucleotides to fluorophores.

[00157] In some embodiments, the oligonucleotides predicted and/or developed by the

methods described herein can be used or tailored for diagnostic imaging modalities.

[00158]  Surprisingly, the methods provided herein engineer and predict all OBM classes by
rapidly creating highly informative datasets for building machine learning (ML) and artificial
intelligence (AI) models for predictive pharmacology. OBM classes include an enzyme class
comprising engaging or editing enzymes such as CRISPR, RNase H, RNAi, ADAR, etc. In some
embodiments, methods provided herein may be used to engineer or predict oligonucleotides used
for CRISPR and other editing based or enzymatic diagnostics that rely on modified or selective

guide strands driving a specific reaction to happen at a duplexed locus.

[00159] OBM classes also include a steric class comprising steric blocking mechanisms of a
specific site via modulation of splicing, RBP binding, secondary structure, co- & post-
transcriptional modification of coding/non-coding RNA processing, etc., all of which are
leveraged in molecular diagnostics. In some embodiments, provided methods engineer and

optimize site-specific steric interactions.

[00160] Moreover, one surprising aspect of the provided methods was that by regressing on
the observed pharmacology, for example, target-gene modulation in patients, optimal and
maximal tolerated dose was quantified and predicted precisely. In some embodiments, the
platform was able to accurately and efficiently predict the expected maximum modulation
obtainable in patients. In some embodiments, predicted maximum modulation is directly used to
understand the applicability of OBMs to treating patients that require a certain level of
modulation. In some embodiments, provided methods are applied to combinatorial treatment to
predict optimal OBM dosing to understand the potential additive or synergistic effects of
administering two or more OBMs, either simultaneously or in series. In yet another
embodiment, provided methods predict optimal dosing for targeted delivery of known cytotoxic

OBMs to deliver the exact dosing needed to kill a cell, such as cancer cells, fibrotic tissue, etc.

[00161]  For example, the methods of the present disclosure can be used to find an optimal
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dose of OBMs alone or in combination with other OBMs, agents, or drugs. Such optimal doses
would reduce or eliminate toxicity in the patient. In some embodiments, the optimal dose can
include a dosage range that is lower than the “expected” or publicly known dosage range of the
oligonucleotide. In some embodiments, the optimal dose can include a dosage range that is

higher than the “expected” or publicly known dosage range of the oligonucleotide.

[00162] In some embodiments, the methods of the present disclosure can be used to find an

optimal dose of OBMs for a particular patient population, treatment indication, and the like.

I1. A OLIGONUCLEOTIDE-BASED MEDICINES (OBMS)

[00163] In some embodiments, the OBMs of the present disclosure are oligonucleotides
designed to engage with native DNA or RNA sequences in the cell by Watson Crick
hybridization. In some embodiments, such hybridization results in enzymatic recruitment post-
hybridization to achieve a biophysical function (e.g. desired function). In some embodiments, the
biophysical function includes, but is not limited to, one or more of gene editing, gene express
knock-down, gene expression upregulation, RNA splicing modulatory behavior, RNA-editing,
protein specific targeting, receptor specific targeting, enzymatic substrate specific targeting, and

distribution and update into tissues or cells.

[00164] In some embodiments, the oligonucleotide has a length ranging from 10 nucleotides
to about 100 nucleotides. In some embodiments, the oligonucleotide has a length ranging from
about 10 nucleotides to about 20 nucleotides, about 20 nucleotides to about 30 nucleotides, about
30 nucleotides to about 40 nucleotides, about 40 nucleotides to about 50 nucleotides, about 50
nucleotides to about 60 nucleotides, about 60 nucleotides to about 70 nucleotides, about 70
nucleotides to about 80 nucleotides, about 80 nucleotides to about 90 nucleotides, or about 90
nucleotides to about 100 nucleotides. In certain embodiments, the oligonucleotide has a length
ranging from about 10 nucleotides to about 15 nucleotides, about 15 nucleotides to about 20
nucleotides, about 20 nucleotides to about 25 nucleotides, about 25 nucleotides to about 30
nucleotides, about 30 nucleotides to about 35 nucleotides, about 35 nucleotides to about 40
nucleotides, about 40 nucleotides to about 45 nucleotides, or about 45 nucleotides to about 50
nucleotides. In some embodiments, the length of the oligonucleotide ranges from 12 nucleotides

to 22 nucleotides. In certain embodiments, the oligonucleotide has a length of from 10, 11, 12,
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13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24. 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39,40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides. In some embodiments, the
oligonucleotide has a length of 12 nucleotides. In some embodiments, the oligonucleotide has a
length of 13 nucleotides. In some embodiments, the oligonucleotide has a length of 14
nucleotides. In some embodiments, the oligonucleotide has a length of 15 nucleotides. In some
embodiments, the oligonucleotide has a length of 16 nucleotides. In some embodiments, the
oligonucleotide has a length of 17 nucleotides. In some embodiments, the oligonucleotide has a
length of 18 nucleotides. In some embodiments, the oligonucleotide has a length of 19
nucleotides. In some embodiments, the oligonucleotide has a length of 20 nucleotides. In some
embodiments, the oligonucleotide has a length of 21 nucleotides. In some embodiments, the

oligonucleotide has a length of 22 nucleotides.

[00165] In some embodiments, an oligonucleotide includes, but is not limited, to an antisense
oligonucleotide (ASO), anti-gene oligonucleotides, CpG oligonucleotides, single-guide RNA
(sgRNA), dual-guide RNA, targeter RNA (e.g., targeted coding RNA such as a protein-encoding
gene or targeted non-coding RNA), activator RNA, ribozymes, tracr RNA, Ribonuclease H
(RNase H) harnessing oligonucleotides, RNA interference (RNAi)-based oligonucleotides, RNA
(ADAR)-guiding RNA (AD-gRNAs), double stranded RNA (dsRNA), CRISPR RNA(crRNA),
steric-blocking oligonucleotide (SBO), and the like. Targeted non-coding RNA includes, but is
not limited to, tRNA, rRNA, snoRNA, siRNA, miRNA, long ncRNA, etc. In some embodiments,
the final set of oligonucleotides comprises a set of antisense oligonucleotides (ASO). In some
embodiments, the final set of oligonucleotides comprises a set of anti-gene oligonucleotides. In
some embodiments, the final set of oligonucleotides comprises a set of CpG oligonucleotides. In
some embodiments, the final set of oligonucleotides comprises a set of single-guide RNAs. In
some embodiments, the final set of oligonucleotides comprises a set of dual-guide RNAs. In
some embodiments, the final set of oligonucleotides comprises a set of targeter RNAs. In some
embodiments, the final set of oligonucleotides comprises a set of activator RNAs. In some
embodiments, the final set of oligonucleotides are oligonucleotides directed to modulate gene
expression via a range of processes including, but not limited to: RNAI, target degradation by
RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation

and programmed gene editing.

[00166] In some embodiments, the oligonucleotide is an antisense oligonucleotide (ASO). In
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some embodiments, ASO can bind to a messenger RNA (mRNA) produced by a gene and
inactivate it, effectively turning that gene “off”. In some embodiments, the strand may be
targeted to bind to a splicing site on pre-mRNA and modify the exon content of an mRNA. In
some embodiments, the ASO is an ASO gapmer. ASOs in the form of a “gapmer” can be used to
suppress gene expression by degrading target mRNA via an RNase H mechanism. Gapmer ASOs
have a central DNA region required to support the RNase H activity and two ribonucleotide
wings to increase target binding affinity of the ASOs. Another category of ASOs are steric
blockers, which are typically composed uniformly of ribonucleotides and bind to pre-mRNA in
the nucleus to alter mRNA splicing by blocking the binding of certain splicing factors to the
mRNA. In some embodiments, the oligonucleotide is a mixmer oligonucleotide that acts as an
efficient steric block to mediate a phenotype without destroying a target RNA. In some
embodiments, the mixmer oligonucleotide comprises LNA and DNA nucleosides that are

interspersed throughout the sequence of the oligonucleotide.

[00167] In some embodiments, the oligonucleotide is an axiomer antisense oligonucleotide
or a self-looping antisense oligonucleotide. In certain embodiments, the oligonucleotide is used
for targeted editing of RNA, characterized by a sequence that is complementary to a target RNA
sequence and by the presence of a stem-loop structure that includes a recruitment sequence. In
some embodiments, the recruitment sequence acts in recruiting a natural ADAR enzyme present
in the cell to the dsSRNA formed by hybridization of the target sequence with the targeting

portion of the target sequence.

[00168] In some embodiments, the oligonucleotide is an antisense RNA oligonucleotide that
redirects endogenous ADAR to new sites by making editable structures using the antisense RNA
oligonucleotide. In some embodiments, the oligonucleotide 1s an antisense oligonucleotide that
recruits endogenously expressed ADARs.

[00169] In some embodiments, the ASO is designed to harness an RNase H (e.g. RNase H1)
mechanism. RNase H1 recognizes the duplex formed between a DNA-containing ASO and a
target RNA through its RNA-binding domain. In order to cleave the target RNA, the RNase H1
catalytic domain needs at least 5 consecutive DNA/RNA base pairs. In some embodiments, the
ASO is an ASO that harness RNase H1 and include a central stretch of 8—10 DNA nucleotides.
In some embodiments the ASO is an intron-targeted ASO. In some embodiments the ASO is an

exon-targeted ASO.
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[00170] In some embodiments, the oligonucleotide is a siRNA. In some embodiments, the
oligonucleotide is a sgRNA. In some embodiments, the oligonucleotide is a dual-guide RNA. In
some embodiments, the oligonucleotide is an anti-gene oligonucleotide. In some embodiments,
the oligonucleotide is a CpG oligonucleotide. In some embodiments, the oligonucleotide is a
targeter RNA. In some embodiments, the targeter RNA is a protein-encoding gene. In some
embodiments, the targeter RNA is a non-coding RNA| such as, but not limited to, a tRNA, a
rRNA, a snoRNA, an miRNA, an siRNA, an RNAi, or a long ncRNA. In some embodiments, the
oligonucleotide is a CRISPR RNA (crRNA). In some embodiments, the oligonucleotide is an
activator RNA. In some embodiments, the oligonucleotide is a ribozyme. In some embodiments,

the oligonucleotide is an aptamer.

[00171]  In some embodiments, the oligonucleotide is an siRNA. siRNA binds to a target
mRNA mainly in the cytoplasm to down-regulate gene expression post-transcriptionally via the
RNA interference (RNA1) mechanism. siRNAs may be designed to target a gene’s mRNA
sequence to silence its expression via the RNAi1 mechanism, for maximizing treatment outcomes.
In some embodiments, sSiIRNAs have endogenous RNA bases or chemically modified
nucleotides. In some embodiments, modifications can impart increased stability and/or increased
cellular potency. The siRNA can have varying lengths (e.g., 10-200 bps) and structures (e.g.,
hairpins, single/double strands, bulges, nicks/gaps, mismatches) and are processed in cells to
provide active gene silencing. In some embodiments, the oligonucleotide is a double stranded
siRNA. A double-stranded siRNA (dsRNA) can have the same number of nucleotides on each
strand (blunt ends) or asymmetric ends (overhangs). An overhang of 1-2 nucleotides, for
example, can be present on the sense and/or the antisense strand, as well as present on the 5’-
and/or the 3’-ends of a given strand.

[00172] In some embodiments, the oligonucleotide is a sgRNA. In some embodiments, the
sgRNA is a targeting sequence that hybridizes to a target sequence of a target DNA. In some
embodiments, the sgRNA comprises a targeting sequence that hybridizes to a target sequence of
a target DNA, and a protein-binding domain that interacts with a Cas9 protein. In some
embodiments, the desired sgRNA increases site-specific modification of the target DNA, e.g., for
example, by homologous directed repair (HDR), or non-homologous end joining (NHEJ).
[00173] In some embodiments, the oligonucleotide is a dual-guide RNA. A dual guide RNA

can be designed using the method of the present disclosure to allow for controlled (i.e.,
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conditional) binding of a targeter-RNA with an activator-RNA. Because a dual guide RNA 1s not
functional unless both the activator-RNA and the targeter-RNA are bound in a functional
complex with Cas9, a dual guide RNA can be inducible (e.g., drug inducible) by rendering the
binding between the activator-RNA and the targeter-RNA to be inducible. As one non-limiting
example, RNA aptamers can be used to regulate (i.e., control) the binding of the activator-RNA
with the targeter-RNA. Accordingly, the activator-RNA and/or the targeter-RNA can include an

RNA aptamer sequence.

[00174] In some embodiments, the oligonucleotide is Cas guide RNAs that bind to and
provide sequence specificity to a Cas protein or Cas variants thereof (e.g., guide RNA that binds
to and provides sequence specificity to a Cas variant thereof). In some embodiments, the
oligonucleotide is a Cas5 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a CasS variant thereof). In some embodiments, the
oligonucleotide is a Cas6 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a Cas6 variant thereof). In some embodiments, the
oligonucleotide is a Cas7 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a Cas7 variant thereof). In some embodiments, the
oligonucleotide is a Cas9 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a Cas9 variant thereof). In some embodiments, the
oligonucleotide is a Cas13 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a Casl3 variant thereof. In some embodiments, the
oligonucleotide is a Cas12 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a Cas12 variant thereof). In some embodiments, the
oligonucleotide is a Cas14 guide RNA or variant thereof (e.g., guide RNA that binds to and
provides sequence specificity to a Cas14 variant thereof).

[00175]  In some embodiments, the oligonucleotide is an adenosine deaminase acting on
RNA (ADAR)-guiding RNA (AD-gRNAs). For example, AD-gRNA can direct A-to-I RNA
editing activity of native human ADAR?2 into a programmable target site. In some embodiments,
the oligonucleotide is a short-chain AD-gRNA (shAD-gRNA). In some embodiments, the AD-
gRNA is an antisense RNA oligonucleotide that is a guide to deliver the catalytic domain of
engineered ADARSs to new sites, e.g., similar to CRISPR oligonucleotide guides that deliver Cas

nucleases.
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[00176] In some embodiments, the oligonucleotide is an aptamer. In some embodiments, the
oligonucleotide is an RNA aptamer. Aptamers are known in the art and are generally a synthetic
version of a riboswitch. The terms “RNA aptamer” and “riboswitch” are used interchangeably
herein to encompass both synthetic and natural nucleic acid sequences that provide for inducible
regulation of the structure (and therefore the availability of specific sequences) of the nucleic
acid molecule (e.g., RNA, DNA/RNA hybrid, etc.) of which they are part. RNA aptamers
usually comprise a sequence that folds into a particular structure (e.g., a hairpin, stem-loop,
pseudoknot, etc.), which specifically binds a particular target molecule. In some embodiments,
binding of the target molecule causes a structural change in the folding of the RNA, which
changes a feature of the nucleic acid of which the aptamer is a part. In some embodiments, RNA
aptamer sequences can be appended to or inserted within a guide RNA molecule, such as MS2,
PP7, QB, and other aptamers. Proteins that specifically bind to these aptamers can be fused to a
translational repression domain, a ribonuclease, or a domain that affects RNA stability. This
aptamer-effector domain fusion can be used to target the target RNA because the endonuclease
protein and gRNA complex will guide the aptamer protein-effector domain in proximity to the

target RNA.
[00177]  In some embodiments, the oligonucleotide is a DNA-based or RNA-based

oligonucleotide. In some embodiments, the oligonucleotide is selected from a locked nucleic acid
(LNA) oligonucleotide, a constrained ethyl (cEt) oligonucleotide, a bridged nucleic acid (BNA)
oligonucleotide (e.g., including but not limited to a 2'-0,4'-C-ethylene-bridged nucleic acid
(ENA) oligonucleotide and an amido-bridged nucleic acid (AmNA) oligonucleotide), a
Morpholino oligonucleotide, a 2'-O-methyl RNA (MOE) oligonucleotide, an antagomir, a steric-
blocking oligonucleotide (SBO) that inhibits miRNA maturation, or a steric-blocking oligomer
that blocks a target site of an mRNA transcript. Steric-blocking oligonucleotides (SBOs). SBOs
are short, single-stranded nucleic acids designed to modulate gene expression by binding to
mRNA and blocking access from cellular machinery such as splicing factors. SBOs have the
potential to bind to near-complementary sites in the transcriptome, causing off-target effects. In
certain embodiments, the ASO 1s a locked nucleic acid. In some embodiments, the
oligonucleotide is a steric blocking oligonucleotide. In some embodiments, the steric blocking
oligonucleotide can include chemical modifications that can simultaneously inhibit multiple

members of an miRNA family. In some embodiments, the oligonucleotide is a
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phosphorodiamidate morpholino oligonucleotide that has a charge-neutral nucleic acid chemistry
in which the five-membered ribose heterocycle is replaced by a six-membered morpholine ring.

In some embodiments, the oligonucleotide is a PMO-based steric block ASO.

[00178]  In some embodiments, the oligonucleotide is a constrained ethyl (cEt)
oligonucleotide. In some embodiments, the oligonucleotide is a 2'-0,4'-C-ethylene-bridged
nucleic acid (ENA). In some embodiments, the oligonucleotide is a 2',4'-constrained 2'-O-ethyl
(cEt) bridged nucleic acid (BNA). In some embodiments, the oligonucleotide is an amido-

bridged nucleic acid (AmNA).
I1.B. SCREENING FOR BIOPHYSICAL EFFECTS

[00179]  The method of the present disclosure screens for, using the machine-learned models
described herein, OBMs that correspond to one or more biological effects and that perform one

or more biophysical functions.

[00180]  The methods of the present disclosure include initializing a machine-learned model
configured to map an oligonucleotide sequence to a probability of a biophysical effect;
determining, for each oligonucleotide of a first set of oligonucleotides, whether the
oligonucleotide corresponds to the biophysical effect; and generating a refined machine-learned
model using the first set of oligonucleotides and whether each of the first set of oligonucleotides

corresponds to the biophysical effect.

[00181] In some embodiments, the biophysical effect includes one or more of: a biological

effect, a chemical effect, and a pharmacological effect.

[00182]  In some embodiments, the methods comprise measuring the biophysical effect. In
some embodiments, measuring the biophysical effects comprises quantifying the biophysical
effect, for instance evaluating a toxicity of an oligonucleotide on a scale of 0.0 to 1.0. In some
embodiments, measuring the biophysical effect comprises one or more of: comparing the
biophysical effect to a threshold (such as a toxicity threshold, a biological activity threshold, a
distribution threshold, a metabolism threshold, an excretion threshold, a threshold measure of
pharmacokinetics or pharmacodynamics) or to a range (such as a biological activity range or an
absorption range).

[00183]  In some embodiments, the biophysical effect is a CBC analysis on blood. In some

embodiments, the biophysical effect is a measure of one or more of: neutrophils (%), neutrophil
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(L), reticulocytes (%), WBC (K/uL), absolute reticulocyte (K/uL), RBC (M/uL), HGB (g/dL),
lymphocyte (/uL), lymphocytes (%), nucleated RBC (/100 WBC), HCT (%), monocyte (/uL),
monocytes (%), polychromasia, anisocytosis, eosinophil (/ul), eosinophils (%), MCV (fL),
basophil (/uL), basophils (%), MCH (pg), poikilocytosis, heinz bodies, MCHC (g/dL),
metamyelocyte (/ul), metamyelocyte (%), myelocyte (/ul), platelet estimate, myelocyte (%)
platelet count (K/uL), promyelocyte (/ulL), promyelocyte (%) and combinations thereof.

[00184] In some embodiments, the biophysical effect is a body or tissue weight. In some
embodiments, the biophysical effect is one or more of body weight, tissue weight, urine

collection and volume, serum and urinary analysis, kidney collection, and liver collection.

[00185] In some embodiments, the biophysical effect is a tolerability. In some embodiments,
tolerability, used in its conventional sense, refers to the degree to which an adverse effect of the
oligonucleotide can be tolerated. In some embodiments, the tolerability includes toxicity. In
some embodiments, toxicity comprises cytotoxicity. In some embodiments, toxicity comprises
membrane toxicity. In some embodiments, toxicity comprises immunotoxicity. In some
embodiments, toxicity comprises nephrotoxicity. In some embodiments, toxicity comprises
hepatotoxicity. In some embodiments, toxicity comprises neurotoxicity. For example, tolerability

can include the degree to which toxicity can be tolerated.

[00186] In some embodiments, the toxicity is membrane toxicity. As used herein, and in its
conventional sense, “membrane toxicity” refers to the ability of a toxicity-induced change to
occur to the cell membrane. Such changes to the cell membrane can include, but are not limited
to, a change in the normal flux of ions, a change related to cell membrane fluidity, a change
related to ion channels in the cell membrane, and the like. In some embodiments, the biophysical
effect is tolerability. In some embodiments, the tolerability is one or more of: an effect that
inhibits the normal flux of ions and an effect that inhibits membrane fluidity. In some
embodiments, the tolerability is the effect that inhibits the normal flux of ions. In some
embodiments, the tolerability comprises an effect that inhibits membrane fluidity. In some
embodiments, a biophysical effect comprises a membrane fusion and fission event. In some

embodiments, the membrane fusion and fission event result in loss of cellular signaling activity.

[00187]  In some embodiments, membrane toxicity or membrane tolerability is measured by
dysregulation of neuronal depolarization. Neuronal depolarization includes, but is not limited to,

pre-synaptic, post-synaptic, and channel-related action potentials. In some embodiments,
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membrane toxicity comprises one or more of: pre-synaptic, post-synaptic, and channel-related
action potential dysregulations by the oligonucleotide. In some embodiments, membrane toxicity
includes, but is not limited to, depolarization by OBMs, such as pre-synaptic, post-synaptic,
channel relation action potential dysregulations by OBMs in electrically excitable cells. In some
embodiments, electrically excitable cells include, but are not limited to, neurons, muscle cells,
such as skeletal, and cardiac cells. In some embodiments, membrane toxicity or tolerability
includes, but is not limited to, membrane potential events. In some embodiments, membrane
potential events can occur in electrically excitable cells. In some embodiments, membrane
toxicity or tolerability comprises membrane potential dysregulation in the kidneys. In some
embodiments, membrane toxicity or tolerability comprises membrane potential dysregulation in

hepatocytes.

[00188]  In some embodiments, toxicity comprises cytotoxicity. In some embodiments,
cytotoxicity i1s measured by an apoptotic response in a cell. In some embodiments, cytotoxicity
comprises metabolic toxicity. In some embodiments, cytotoxicity comprises cell organelle
toxicity, for example in systemic and neuronal tissues. In some embodiments, cytotoxicity
comprises receptor-specific toxicity, for example, in systemic and neuronal tissues. In some
embodiments, cytotoxicity comprises mitochondrial toxicity. In some embodiments, cytotoxicity
comprises cell-surface receptor-mediated toxicity. In some embodiments, cytotoxicity is
measured by mis-localization, accumulation, granules/paraspeckles associated with toxicity. In
some embodiments, the cytotoxicity is one or more selected from a liver toxicity measured, for
example, an amount of ALT, an amount of AST, or a ratio of ALT to AST; a kidney toxicity
measured by, for example, an amount of blood urea nitrogen (BUN), creatine, or a ratio of BUN
to creatine; and a neurotoxicity measured by microglia activation, for example, gene expression,
neuronal cell loss, or histology, and a combination thereof. Cytotoxicity can be measured using

any conventional method known in the art.

[00189] In some embodiments, the biophysical effect is one or more pharmacological
endpoints. Pharmacological endpoints comprise tissue distribution and productive uptake
(ADME, subcellular localization, etc.), targetability of RNA (accessibility, (co-)transcriptional
dynamics of RNA, etc.), hybridization, specificity and enzymatic rules (edit tolerance and
sequence preference). In some embodiments, pharmacological endpoints comprise cytotoxicity

including hepato, renal, cardio and neurotoxicity. In some embodiments, pharmacological
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endpoints comprise immunogenicity and/or immunostimulatory effects. In some embodiments,
pharmacological endpoints comprise membrane toxicity, including acute neurotoxicity and

cardiotoxicity. In some embodiments, neurotoxicity is acute or delayed neurotoxicity.

[00190] In some embodiments, cytotoxicity can be measured by measuring a level of
apoptosis, necroptosis, pyroptosis, viability, necrosis, caspase activity, and/or annexin exposure,
in a cell. In some embodiments, the biophysical effect is determined by cell viability and cell
death assays. Cell viability and cell death assays, any of which can be used with the provided
methods. Cell viability assays included, but are not limited to, Alamar Blue (measures metabolic
activity of cell by reducing resazurin to resorufin), MTT (MTT is reduced to formazan), MT
(MT substrate is reduced in a viable cell which then binds with the NanoLuc luciferase to
generate a signal), MitoView (measures cell viability by its ability to accumulate in active
mitochondria), CellTiter-Fluor Cell Viability Assay (a Gly-Phe-AFC peptide that enters the cells
and 1s cleaved to produce the fluorescent AFC), and Calcein AM (non-fluorescent membrane
permeable compound; cytoplasmic esterases convert to green fluorescence retained in cells with
intact plasma membrane). Cell death assays include, but are not limited to various caspase
assays, Annexin V (which measures phosphatidylserine exposure on outer cell membranes
during apoptosis in a calcium dependent manner), CellTox (cyanine dye excluded from viable
cells but binds DNA of dead cells, enhancing the fluorescent properties), Propidium lodide
(membrane impermeant nucleic acid intercalator used to stain dead cells, and 7-AAD (7-
aminoactinomycin D which is a membrane impermeant fluorescent DNA binding dye commonly
used for FACS).

[00191] In some embodiments, cytotoxicity can be determined using various dye-based
assays to assess real-time cell viability and apoptosis/necrosis onset. In some embodiments,
assays include, but are not limited to RealTime-Glo MT Viability Assay, CellEvent Caspase-3-7
Assay, RealTime-Glo Annexin V Apoptosis and Necrosis assay and combinations thereof.
[00192] In some embodiments, cytotoxicity can be determined using Next Generation
Sequencing (NGS) assays. In some embodiments, NGS assays include but are not limited to
DGE (digital gene expression), RNA-Seq, L1000, RASI-seq, DRUG-seq, QuantSeq 3> mRNA-
Seq, and combinations thereof.

[00193] In some embodiments, the biophysical effect is a measure of body weight. In some

embodiments, the biophysical effect is a measure of temperature. In some embodiments, the
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biophysical effect is a measure of one or more enzymes in a tissue (e.g., liver, kidney, spleen,
muscle, heart, etc.). In some embodiments, the biophysical effect is a measure of one or more
enzymes in the liver, such as, but not limited to: ALT, AST, ALPI, GGT, LDI, SDH, 5-
nucleotidase, AST/ALT, GLDH, TBI, AMM, and TP. In some embodiments, the biophysical
effect is a measure of one or more enzymes in blood. In some embodiments, the biophysical
effect is a measure of one or more measurements selected from alanine transaminase (ALT),
aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine, C-Reactive Protein
(CRP) and total bilirubin (TBILI). In some embodiments, the biophysical effect is a
hepatotoxicity measurement, including a measurement of serum ALT, AST, and creatine. In
some embodiments, the biophysical effect is nephrotoxicity measurement including a
measurement of urinary KIM-1 and Serum Cystatin-c (CysC). In some embodiments, the
biophysical effect is a measurement of GLDH. In some embodiments, the biophysical effect is a
measurement of CCK-18. In some embodiments, the biophysical effect includes measurements
of liver function. Non-limiting examples of liver function markers include ALT, AST, alkaline
phosphatase (ALPI), Gamma(y)-Glutamyl Transferase (GGT), Lactate Dehydrogenase (LDI),
Sorbitol dehydrogenase (SDH), S-nucleotidase, AST/ALT, Glutamate Dehydrogenase (GLDH),
Total Bilirubin (TBI), Ammonia (AMM), Total Protein (TP), Albumin (ALB), Globulin
(GLOB), Albumin: Globulin (A/G), Prothrombin Time (PT), Activated partial Thromboplastin
Time (APIT), Lactate (LA), and Bile Acid (BA). In some embodiments, the biophysical effect
includes measurements of kidney function. Non-limiting examples of kidney function markers
include Cystatin-C, Kim-1, BUN, and Urinary CREA, etc.

[00194] In some embodiments, the biophysical effect is a measurement of calcium flux.

[00195] In some embodiments, the biophysical effect is a measurement of a dosing
concentration. In some embodiments, the biophysical effect is a dosing concentration. In some
embodiments, the biophysical effect is a dosing concentration. In some embodiments, the
biophysical effect is a cytotoxic dosing concentration. In some embodiments, the biophysical
effect is a non-toxic dosing concentration. In some embodiments, the biophysical effect is a
dose response (e.g., tissue toxicity, such as liver or kidney toxicity). In some embodiments, the
biophysical effect is a maximum tolerable (e.g., maximum non-toxic) dose concentration. In
some embodiments, the biophysical effect is a minimum efficacious dose concentration. In some

embodiments, the biophysical effect is a maximum efficacious dose concentration. In some
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embodiments, the biophysical effect is an effect of calcium flux on dosing concentration.

[00196] In some embodiments, the toxicity is immunotoxicity. In some embodiments, the
immunotoxicity includes a measurement of one or more of cytokine measurements, complete

blood count (CBC) measurements, and CRP measurements.

[00197]  In some embodiments, the biophysical effect is an immunostimulatory and/or
immunogenic modulation. In some embodiments, an immunostimulatory effect is measured by
an immune response. In some embodiments, the immunostimulatory modulation is an increase in
an immune response. In some embodiments, an immunostimulatory modulation is a decrease in
an immune response. In some embodiments, the immune response is sequence dependent. In
some embodiments, the immune response is chemistry dependent. In some embodiments, the
immune response 1s sequence and chemistry dependent. In some embodiments, the immune
response includes cytokine stimulation and/or release. In some embodiments, an immune
response is determined by cytokine stimulation and/or release. In some embodiments, an immune
response 1s determined by platelet effects. In some embodiments, an immune response is
determined by macrophage activation. In some embodiments, macrophage activation is in
response to innate nonself and/or danger signals that are patient-specific. In some embodiments,
an immune response is determined by microglial activation in the brain. In some embodiments,
an immune response is determined by activation of resident macrophages, such as, but not
limited to liver Kupfter cells, lung macrophages, and the like. In some embodiments, an
immunostimulatory effect or immunogenic effect is determined by adaptive immune system
related effects. In some embodiments, immunostimulatory modulation and/or immunogenic
modulation is determined by one or more of immune system related effects, stimulating the
effect of anti-drug antibodies, and triggering anti-drug antibody inflammatory signaling. In some
embodiments, the biophysical effect is an immune-mediated response. In some embodiments, the
biophysical effect is an increase in immune-mediated response. In some embodiments, a

biophysical effect is a reduction of immune-mediated inflammation.

[00198] In some embodiments, the biophysical effect is a measure of absorption, distribution,
metabolism, or excretion of the oligonucleotide. In some embodiments, the biophysical effect is
a measure of absorption, distribution, metabolism, or excretion of the oligonucleotide in one or
more of’ a tissue, cell, intracellular space, and extracellular space. The intracellular space can

include any intracellular fluid within the cell. In some embodiments, the extracellular space
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includes any extracellular fluidic between the cells. In some embodiments, the intracellular fluid
includes, but is not limited to, blood or cerebrospinal fluid. In some embodiments, the
extracellular fluid includes, but 1s not limited to, interstitial fluid, plasma, lymph, cerebrospinal
fluid, and milk. In some embodiments, the biophysical effect is a measure of pharmacokinetics
or pharmacodynamics, and comprises one or more of: substrate-target processing, dynamics,
accessibility, inter-cellular distribution, intra-cellular distribution, and time-dependent
availability.

[00199] In some embodiments, the biophysical effect is absorption. In some embodiments,
absorption is determined by the amount of cellular uptake and accumulation of oligonucleotides
generally into cells. In some embodiments, absorption is determined by the amount of cellular
uptake and accumulation into a desired cellular compartment, such as membrane bound (e.g.
nucleus, cytoplasm, mitochondria) and non-membrane bound organelles (e.g., ribosomes, P-
bodies, paraspeckles, nucleoli, stress granules). In some embodiments, absorption is determined
by optimization of the time it takes for an oligonucleotide to absorb into tissue beds, cells, or

eventual subcellular localization.

[00200] In some embodiments, the biophysical effect is distribution. In some embodiments,
the distribution is determined by the transportation of the oligonucleotide from the site of dosing
to cells, tissues, or other structures either selectively or generally. In some embodiments, the site
of dosing includes the site of delivery of the oligonucleotide. In some embodiments, the
oligonucleotide is administered by, for example, oral delivery, systemic delivery, intravenous
delivery, or intrathecal injection. In some embodiments, the oligonucleotide is delivered via local
administration, such as, but not limited to aerosol exposure, topical or dermal ointments, or
tumor injections, to cells, tissues or other structures either selectively or generally. In some
embodiments, distribution is determined by binding to and subsequent release from proteins or
cells that facilitate transportation of oligonucleotides from one place in the organism to another
(e.g. binding to a protein or cell that transits OBMs from the blood to the CSF).

[00201]  In some embodiments, the biophysical effect is a Cmax measurement. Cmax 1s the
highest concentration of a drug, agent, or molecule (e.g., oligonucleotide) in the blood, plasma,
cerebrospinal fluid, or target organ after a dose is given. In some embodiments, the biophysical
effect is a Cmin measurement. Cminis the lowest concentration of a drug, agent, or molecule (e.g.,

oligonucleotide) in the blood, plasma, cerebrospinal fluid, or target organ after a dose 1s given. In
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some embodiments, the biophysical effect is a tmax measurement, which is the time it takes to
reach Cmax. In some embodiments, the biophysical effect is a tmin measurement, which is the time
it takes to reach Cmin. In some embodiments, the biophysical effect is an Area Under the Curve
(AUC) measurement. The AUC is a measure of the exposure of the drug, agent or molecule (e.g.,
oligonucleotide). In some embodiments, the biophysical effect is a tiz (elimination half-life)
measurement, to the time taken for half the initial dose of medicine administered to be eliminated
from the body. In some embodiments, the biophysical effect is selected from one or more of a
Cmax measurement, a Cmin measurement, a tmax measurement, a tmin measurement, an AUC

measurement, and a t12 measurement.

[00202]  t1/2 (elimination half-life) + is the time taken for the plasma concentration to fall by

half its original value.

[00203] In some embodiments, the biophysical effect is metabolism. In some embodiments,
metabolism is controlled by the stability of the oligonucleotide (e.g. as a whole, in partial form,
or in a specific confirmation). Non-limiting examples include, but are not limited to: controlling
of how long an oligonucleotide persists in the cell, blood, CSF or other biofluid; targeting
moieties, such as aptamers, may be optimized to degrade at a differential rate, or at a different
time, or place than the oligonucleotide; oligonucleotide conformational changes may be desired
and facilitated by differential metabolism of the oligonucleotide that would activate the
oligonucleotide by exposing/releasing an active substructure, or separate oligonucleotide; and
control of what metabolites are produce. In some embodiments, controlling what breakdown

products are created by the oligonucleotide enhances the safety of the oligonucleotide.

[00204] In some embodiments, the biophysical effect is excretion. In some embodiments,
excretion is determined by controlling how either whole or metabolites of the source
oligonucleotides are removed from the organism. In some embodiments, the biophysical effect of

excretion is optimized to enhance bile or urine removal.

[00205] In some embodiments, the biophysical effect is a biological activity of the
oligonucleotide (e.g., functionality). Accordingly, it should be noted that in some embodiments,
the terms “biological activity” and “biophysical functionality” can refer to a type of biophysical
effect described herein. In some embodiments, the biophysical effect is selectivity of the
oligonucleotide to the target. In some embodiments, the biophysical effect is inactivity of the

oligonucleotide. In some embodiments, the biophysical effect is lack of selectivity to the target.
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[00206] In some embodiments, the biological activity comprises an off-target engagement of
the oligonucleotide to a target molecule. As used herein and in its conventional sense, “off-
target”, refers to a lack of selectivity to a target, which, for example, causes an oligonucleotide to
effect a non-target molecule (e.g. non-target gene). In some cases, the non-target molecule is a
non-target gene. In some cases, lack of selectivity to a target is caused by the same on-target
mechanism for on-target engagement (e.g., RNase H1-mediated mechanism, and the like). In
some cases, lack of selectivity to a target is caused by a different mechanism than the intended
on-target mechanism for on-target engagement. In some embodiments, the off-target engagement
causes the oligonucleotide to perform an effective amount of one or more of: non-target gene
expression knock-down, non-target RNA splicing modulatory behavior, non-target gene
expression upregulation, non-target gene-editing, non-target RNA-editing, non-target protein
specific targeting, non-target receptor specific targeting, non-target enzymatic substrate specific
targeting, non-target distribution and uptake into tissues or cells, and non-target interaction with
a specific protein or receptor. In some embodiments, off-target engagement is measured by
transcriptome-wide gene expression readouts. In some embodiments, off-target engagement of
the oligonucleotide to the target is measured by unintended splicing modulation readouts
transcriptome-wide. In some embodiments, oft-target engagement is measured by biophysical

readouts of sequence/edit tolerance of relevant enzymes RNaseH, Ago2 spliceosome factors, and

the like.

[00207] In some embodiments, the biological activity comprises an on-target engagement of
the oligonucleotide to a target molecule. In some embodiments, the on-target engagement causes
the oligonucleotide to perform an effective amount of one or more of: gene expression knock-
down, RNA splicing modulatory behavior, gene expression upregulation, gene-editing, RNA-
editing, interaction with a specific protein or receptor, protein specific targeting, receptor specific

targeting, enzymatic substrate specific targeting, and distribution and uptake into tissues or cells.

[00208] In some embodiments, the on-target engagement comprises an amount (e.g. %) of
gene expression knock-down. In some embodiments, gene expression knock-down can be
measured using conventional methods known in the art. In some embodiments, gene expression
knock-down is measured by RNase H1 dependent RNA cleavage. In some embodiments, gene
expression knock-down is measured by RNA-Induced Silencing Complex (RISC)-dependent
RNA cleavage. In some embodiments, the biophysical effect is RNase H-mediated degradation
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in the nuclease.

[00209] In some embodiments, the on-target engagement comprises an amount of splicing
modulatory behavior. RNA mis-splicing causes a large array of human diseases due to hereditary
and somatic mutations. In some embodiments, the biophysical effect comprises recognition of
specific RNA splicing regulatory elements to modulate splicing. In some embodiments, the
biophysical effect is the amount of splicing modulatory behavior that drives preferential
expression of an alternative splice isoform. In some embodiments, the biophysical effect is the
amount of splicing modulatory behavior that drives preferential co-transcriptional induction of

nonsense-mediated decay.

[00210] In some embodiments, the on-target engagement comprises the amount (e.g. %) of
gene expression up-regulation. In some embodiments, on-target engagement is the amount of
gene expression upregulation determined by stabilization of RNA through reduction of
endogenous RNA degradation pathways, such as, but not limited to, miRNA directed RISC
cleavage, protracted maintenance of polyA tails, and stabilization of RNA structures, including
polysome formation. In some embodiments, on-target engagement is the amount of gene
expression upregulation determined by enhanced translation through blockage of non-productive
uORFs. In some embodiments, on-target engagement is the amount of gene expression
upregulation determined by OBM-directed recruitment of nuclear factors. In some embodiments,
OBM directed recruitment of nuclear factors is determined by directly binding DNA. In some
embodiments, OBM directed recruitment of nuclear factors is determined by indirectly binding

DNA through interactions that orchestrate productive chromatin organization or dynamics.

[00211]  In some embodiments, on-target engagement comprises an amount of gene-editing.
In some embodiments, gene-editing is achieved by CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats)/Cas and CRISPR-like enzymatic processes. In some embodiments,
gene editing is achieved by engagement with other endogenous DNA repair and editing
mechanisms, such as, but not limited to, zinc-finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALENS). Using a guide RNA, Cas endonuclease (e.g., Cas9)
can modify (e.g. cleave) double-stranded DNA at any site, defined by the guide RNA sequence,
and including a protospacer-adjacent (PAM) motif. A Cas/guide RNA complex (i.e., a Cas
targeting complex) constitutes a simple and versatile RNA-directed system for modifying target

DNA, or modifying proteins associated with target DNA, in any desired cell or organism.
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Additionally, a Cas targeting complex having a mutated Cas9 protein with reduced or removed

nuclease activity can still bind to target DNA.

[00212] In some embodiments, the biophysical effect is an amount of RNA-editing achieved.
In some embodiments, the amount of RNA-editing is determined by engagement with adenosine
deaminase acting on RNA (ADAR) or other RNA editing enzyme systems conventionally known

in the art.

[00213] In some embodiments, the biophysical effect is interaction with a specific protein or
receptor. In some embodiments, the biophysical effect is one or more of’ protein specific

targeting, receptor specific targeting, or enzymatic substrate specific targeting.

[00214]  In some embodiments, the biophysical effect is one or more nucleotide sequence
and/or chemical modifications/mutations configured to improve its biophysical function. In some
embodiments, the biophysical effect is 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7
or more, 8 or more, 9 or more, or 10 or more nucleotide sequence or chemical mutations
configured to improve its biophysical function. In some embodiments, the biophysical effect is 1
to 3 mutations, 3 to 5 mutations, 5 to 10 mutations, 10 to 15 mutations, 15 to 20 mutations, 20 to

25 mutations, or 25 to 30 mutations.

[00215]  In some embodiments the biophysical effect is one or more chemical modifications.
Modifications include, for example, (a) end modifications, e.g., 5’ end modifications
(phosphorylation, conjugation, inverted linkages, etc.) 3’ end modifications (conjugation, DNA
nucleotides, inverted linkages, etc.), (b) base modifications, e.g., replacement with stabilizing
bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners,
removal of bases (abasic nucleotides), or conjugated bases, (c) sugar modifications (e.g., at the 2’
position or 4' position) or replacement of the sugar, as well as (d) backbone modifications,
including modification or replacement of the phosphodiester linkages. In some embodiments, the
chemical modification to the oligonucleotide is a modified backbone or no natural
internucleoside linkages. In some embodiments, the modification can include modified
backbones of the oligonucleotide that include, among others, those that do not have a phosphorus
atom in the backbone. In some embodiments, the modification includes those that do not have a
phosphorus atom in their internucleoside backbone. In some embodiments, the modification can
include one that will have a phosphorus atom in its oligonucleotide backbone. In some

embodiments, the modification can include phosphorothioate (PS) internucleoside linkages.
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[00216] Modified oligonucleotide backbones include, for example, phosphorothioates, chiral
phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl
and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates,
phosphinates, phosphoramidates including 3'-amino phosphoramidate and
aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates,
thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked
analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside
units are linked 3'-5"to 5'-3" or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are

also included.

[00217]  Examples of chemical modifications include phosphorothioate groups, 2'-
deoxynucleotide, 2'-OCH.sub.3-containing ribonucleotides, 2'-F-ribonucleotides, 2'-

methoxyethyl ribonucleotides, combinations thereof and the like.

[00218]  In some embodiments, the chemical modification is a PM-based oligonucleotide
modification where the five-membered ribose heterocycle is replaced by a six-membered

morpholine ring.

[00219] In some embodiments, the biophysical effect is the efficacy of aptamers. In some
embodiments, the efficacy of aptamers is measured by the binding activity to a target molecule
(e.g. OBM). In some embodiments, the efficacy of the aptamer is measured by, for example,
non-specific (e.g. intra and inter-) tissue-specific distribution and/or uptake; non-specific
cellular-specific distribution and/or uptake, and/or non-specific cell organelle-specific
distribution and/or uptake. In some embodiments, the efficacy of the aptamer is measured by
binding affinity to miRNAs, ncRNAs/regulatory RNAs, and the like. In some embodiments, the
efficacy of the aptamer is measured by the aptamer tertiary structure interaction with a target
molecule (e.g. OBM). In some embodiments, the biophysical property of the aptamer comprises
the amount of cellular uptake and trafficking of the aptamer. In some embodiments, the
biophysical effect of the aptamer comprises OBM-aptamer interactions. In some embodiments,
the biophysical effect of the aptamer comprises the folded structures of the aptamer. In some
embodiments, the folded structures are secondary and/or tertiary structures. In some
embodiments, the folded structure comprises one or more of a bulge, an apical loop, a stem-loop,
a 3-way junction, a form helix, an internal loop, a pseudoknot, a hairpin, G-quadruplexes, and a

combination thereof. In some embodiments, the biophysical effect of the aptamer is the

52

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

electrostatic interactions of the aptamer. In some embodiments, the biophysical effect of the

aptamer is the hybridization energetics and biophysics of the aptamer.

[00220] In some embodiments, the biophysical effect is one or more of: cellular uptake and
trafticking of the aptamer, binding affinity to the OBM, OBM-aptamer interactions, folded (e.g.
secondary, tertiary) structures of the aptamer, electrostatic interactions, and hybridization

energetics and biophysics.

[00221]  In some embodiments, the biophysical effect is selected to be optimal for an

individual based on the individual’s genetics.
I1.C CHARACTERISTICS OF BIOPHYSICAL FUNCTION

[00222]  Aspects of the present method include generating a final set of oligonucleotides
using a refined machine-learned model as described herein. In some embodiments, generating
the final set of oligonucleotides using the refined machine-learned model comprises: receiving an
identification of a biophysical function to be performed by an oligonucleotide-based medicine
(OBM) and an identification of a measure of the biophysical effect; identifying a set of
characteristics of an oligonucleotide associated with the biophysical function; and generating,
using the refined machine-learned model, a set of oligonucleotides having one or more of the
identified set of characteristics and corresponding to the measure of the biophysical effect.
[00223]  In some embodiments, the biophysical function is the desired function of an OBM
that satisfies a requirement of the biophysical effect (e.g. of measure of the biophysical effect).
For instance, the biophysical function can be selected by an OBM designer, who can also specify
a parameter (such as a threshold toxicity) that any oligonucleotide produced by the machine-
learned models described herein should satisfy (e.g., in the threshold toxicity example, any
oligonucleotides provided by the machine-learned model should corresponding to a toxicity less
than the specified threshold toxicity).

[00224]  In some embodiments, the biophysical function comprises a reduction of immune-
mediated inflammation. In some embodiments, the biophysical function comprises an increase in
immune-mediated responses.

[00225]  In some embodiments, the biophysical function is an on-target engagement of the
oligonucleotide to a target. In some embodiments, the on-target engagement causes the
oligonucleotide to perform an effective amount of one or more of: gene expression knock-down,

RNA splicing modulatory behavior, gene expression upregulation, gene-editing, RNA-editing,
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protein specific targeting, receptor specific targeting, enzymatic substrate specific targeting, and
distribution and uptake into tissues or cells.

[00226] In some embodiments, the target is a gene product. In some embodiments, the gene
product is one or more of: an mRNA, a splicing site on a pre-mRNA, a truncated transcript, an
aborted transcription product, or an antisense transcript. In some embodiments, the gene product
is a divergent antisense transcript. In some embodiments, the gene product is a convergent
antisense transcript.

[00227]  In some embodiments, the biophysical function is a toxicity threshold (e.g.
cytotoxicity, immunotoxicity, membrane toxicity, nephrotoxicity, hepatotoxicity, etc.) that is
lower than a reference toxicity threshold.

[00228]  In some embodiments, the biophysical function is an increase in site-specific
modification of the target molecule.

[00229]  In some embodiments, the biophysical function is the targeting of a gene associated

with a genetic disease (e.g. common or rare genetic disease).
III. A. TRAINING PROTOCOL

[00230]  There are two foundational barriers preventing the rapid creation of new OBMs that
can be affordably engineered and provided to patients with the understanding that they will be
safe and effective. Currently, there are no methods that can adequately predict the pharmacology
of newly designed OBMs. This forces drug developers to rely on onerous screening processes
(e.g. screening 1000s of oligonucleotides for a single target) which are slow, expensive, and are
often toxic and inactive. Secondly, OBMs have limited capacity to reach several cell-types,

tissues and organ systems.

[00231]  The training model described in the present disclosure increases the probability of
safe (e.g. non-toxic) and effective (e.g. active, favorable binding to target, etc.) OBMs, and
reduces the number of toxic and inactive OBMs for preclinical testing, thereby reducing the cost
of data generation.

[00232]  Aspects of the present methods include initializing a machine-learned model
configured to map an oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect; generating a first set of
oligonucleotides based on the initial oligonucleotide using the initialized machine-learned model;

determining, for each oligonucleotide of the first set of oligonucleotides, whether the
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oligonucleotide corresponds to the biophysical effect; generating a refined machine-learned
model using the first set of oligonucleotides and whether each of the first set of oligonucleotides
corresponds to the biophysical effect; and generating a final set of oligonucleotides using the

refined machine-learned model.

[00233] In some embodiments, the first set of oligonucleotides comprises 50 or fewer
oligonucleotides, between 50 and 100 oligonucleotides, between 100 and 150 oligonucleotides,
between 150 and 200 oligonucleotides, between 200 and 300 oligonucleotides, between 300 and
400 oligonucleotides, between 400 and 500 oligonucleotides, between 500 and 750
oligonucleotides, between 750 and 1000 oligonucleotides, between 1000 and 1500
oligonucleotides, between 1500 and 2000 oligonucleotides, between 2000 and 2500
oligonucleotides, between 2500 to 5000 oligonucleotides, or between 5000 to 10000
oligonucleotides.

[00234]  In some embodiments, the machine-learned model is a probabilistic graphical model.
In some embodiments, the initial machine-learned model can be represented by a sequence
graph. In some embodiments, the sequence graph has flexible diversity of overlapping monomers
at each position of the oligonucleotide sequence, and probabilistic factors quantifying sequence

dependence of the biophysical effect, such as a pharmacological, biological, or chemical effect.

[00235]  The methods of the present disclosure include initializing a machine-learned model
configured to map an oligonucleotide sequence to a probability of a pharmacological effect using
an initial oligonucleotide corresponding to the pharmacological effect. In some embodiments, the
initial oligonucleotide is a random seed oligonucleotide or a known oligonucleotide with a
known biophysical effect. The initial oligonucleotide can be selected, for instance by an entity
associated with the creation and training of the machine-learned model, based on a biophysical
effect intended to be associated with the machine-learned model. For example, if a machine-
learned model configured to predict a toxicity of an oligonucleotide is desired, then an initial
oligonucleotide known or determined to have a high toxicity can be selected for use in
initializing the machine-learned model. Alternatively, if a machine-learned model configured to
predict a low toxicity of an oligonucleotide 1s desired, then an initial oligonucleotide known or
determined to have a low toxicity can be selected for use in initializing the machine-learned

mode.
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[00236] In some embodiments, initializing the machine-learned model comprises initializing
a set of coefficients each representative of a correlation between n-grams of an oligonucleotide
sequence and a presence of the biophysical effect. In some embodiments, at least one coefficient
of the set of coefficients is representative of a correlation between consecutive n-grams within

the oligonucleotide and the presence of the biophysical effect.

[00237]  In some embodiments, the machine-learned model comprises one of: an Ising model,
a Potts model, a hidden Markov model, a continuous random field model, and a directed acyclic

graphical model.

[00238] In some embodiments, the machine-learned model comprises one of: a random
forest classifier, a logistic regression, a linear regression, a neural network, a sparsity-driven

convex optimization fit, and a support vector machine.

[00239] In some embodiments, characteristics of the machined-learned model include
constraints and factors. In some embodiments, the factors are indicative of a correlation between
consecutive graphical nodes or consecutive n-grams of an oligonucleotide sequence and a
measure of the biophysical effect for which the machine-learned model is being trained. In some
embodiments, the machine-learned model includes a set of coefficients representative of the
factors. In some embodiments, the coefficients are updated during refinement of the machine-
learned model (e.g., when the model is being refit/retrained) based on in vivo, in vitro, in silico,

or in situ assays, or combinations thereof

[00240]  In some embodiments, the method comprises generating a first set of
oligonucleotides using the initialized machine-learned model. For example, an initial or native
first iteration of the model is generated based on the initial oligonucleotide (e.g. test
oligonucleotide, non-random seed oligonucleotide, random seed oligonucleotide), and the first
set of oligonucleotides are generated in part based on outputs of the initialized machine-learned

model.

[00241] In some embodiments, the first set of oligonucleotides comprise n-gram mutations
of the initial oligonucleotide. In some embodiments, the first set of oligonucleotides comprise
gapped n-grams. In some embodiments, each of the first set of oligonucleotides comprises a

single or double n-gram or gapped n-gram mutation of the initial oligonucleotide. In some
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embodiments, the first set of oligonucleotides comprise a subset of all single or double n-gram or

gapped n-gram mutations of the initial oligonucleotide.

[00242]  In some embodiments, the first set of oligonucleotides, when fitted by the initialized
machine-learned model, represent a range of probabilities of the biophysical effect as determined
by the initialized machine-learned model. For instance, the first set of oligonucleotides can
include one or more nucleotides corresponding to probabilities of having the biophysical effect
within one or more of the following probability ranges: 0 to 10%, 10 to 20%, 20 to 30%, 30 to
40%, 40 to 50%, 50 to 60%, 60 to 70%, 70 to 80%, 80 to 90%, and 90 to 100%. Likewise, the
first set of oligonucleotides can include one or more nucleotides corresponding to probabilities
within one or more of the following probability ranges: 0 to 25%, 25 to 50%, 50 to 75%, 75 to
100%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about
40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about
80%, about 85%, about 90%, about 95%, or about 100%. In some embodiments, the first set of
oligonucleotides can include approximately equal numbers of oligonucleotides likely to
correspond to the biophysical effect and unlikely to correspond to the biophysical effect (e.g., the
average of the probabilities of each oligonucleotide corresponding to the biophysical effect is
approximately 50% +/- 15%). It should be noted that the discussion herein of selecting
oligonucleotides from a larger set of oligonucleotides based on the probabilities determined by
the machine-learned model and whether the probabilities fall into the probability ranges applies
equally to sets of the oligonucleotides other than the first set of oligonucleotides, and applies
equally to versions of the machine-learned model being trained other than the initialized
machine-learned model. For example, a subset of possible, optimized oligonucleotides are
selected for testing in vivo and in vifro for purposes of reducing cost and time for in vivo and/or
in vivo testing for all possible oligonucleotide targets. The subset of optimal oligonucleotides
generated by the machine-learned model of the methods described herein enable highly cost- and

time-efficient exploration of OBMs for therapeutic use.

[00243]  The methods of the present disclosure include determining, for each oligonucleotide
of the first set of oligonucleotides, whether the oligonucleotide corresponds to the biophysical
effect. In some embodiments, determining whether an oligonucleotide corresponds to the
biophysical effect comprises performing one or more of: in vitro, in vivo, ex vivo, and in situ

assays on the oligonucleotide. In some embodiments, determining whether an oligonucleotide
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corresponds to the biophysical effect comprises performing in vitro assays. In some
embodiments, determining whether an oligonucleotide corresponds to the biophysical effect
comprises performing iz vivo assays. In some embodiments, determining whether an
oligonucleotide corresponds to the biophysical effect comprises performing in sifu assays. In
some embodiments, the in vivo and/or in vifro assays include, but are not limited to, liver toxicity
assays, membrane toxicity assays, metabolic toxicity assays, and immunotoxicity assays using
conventional methods as known in the art. In some embodiments, the in vivo assay is an alanine
transaminase (ALT) levels measured in rodent blood samples. In some embodiments, the method

comprises performing in vivo and/or in vitro assays to measure protein expression.

[00244]  [n vifro assays to determine whether a protein has an RNA-binding portion interacts
with a subject guide RNA (e.g. oligonucleotide) can be any convenient binding assay that tests
for binding between a protein and a nucleic acid. Exemplary binding assays will be known to one
of ordinary skill in the art and can be found for example in U.S. patent applications:
20140068797, 20140189896, 20140179006, 20140170753, 20140179770, 20140186958,
20140186919, 20140186843; international applications: WO2013176772, W0O2013141680,
WO02013142578, W0O2014065596, W02014089290, W0O2014099744, W02014099750,
WO02014104878, W02014093718, W02014093622, W0O2014093655, W02014093701,
WO02014093712, W02014093635, W02014093595, W02014093694, and W02014093661; and
U.S. Pat. Nos. 8,697,359, 8,771,945, all of which are hereby incorporated by reference in their
entirety. In some embodiments, assays include, but are not limited to, binding assays (e.g., gel

shift assays) that include adding a guide RNA and a Cas9 protein to a target nucleic acid.

[00245]  Assays to determine whether a protein has an activity portion (e.g., to determine if
the polypeptide has nuclease activity that cleave a target nucleic acid) can be any convenient
nucleic acid cleavage assay that tests for nucleic acid cleavage. Exemplary cleavage assays can
be found in U S. patent applications: 20140068797, 20140189896, 20140179006, 20140170753
20140179770, 20140186958, 20140186919, 20140186843, international applications:
WO02013176772, WO2013141680, W02013142578, W02014065596, W02014089290,
W02014099744, W02014099750, W0O2014104878, W02014093718, W02014093622,
WO02014093655, W0O2014093701, W0O2014093712, W0O2014093635, W0O2014093595,
WO02014093694, and WO2014093661; and U.S. Pat. Nos. 8,697,359, 8,771,945, In some

2

embodiments, assays can include, but are not limited to, cleavage assays that include adding a
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guide RNA (e.g. oligonucleotide) and a Cas9 protein to a target nucleic acid. In some cases, a
PAM-mer is also added (e.g., in some cases when the target nucleic acid is a single stranded

nucleic acid).

[00246]  In some embodiments, in vivo assays are performed on, for example, non-human
mammals, mammals, rodents, rats, mice, humans, e.g. rats, mice, pigs, cows, goats, sheep, non-

human primates, fish, frogs, vertebrates, and the like.

[00247]  In some embodiments, the in vifro assays include, but are not limited to, Caspase
activation, In some embodiments, the in vifro assays can be performed in, for example,
eukaryotic single-cell organism, a somatic cell, a germ cell, a stem cell, a plant cell, an algal cell,
an animal cell, an invertebrate cell, a vertebrate cell, a fish cell, a frog cell, a bird cell, a
mammalian cell, a pig cell, a cow cell, a goat cell, a sheep cell, a rodent cell, a rat cell, a mouse

cell, a non-human primate cell, or a human cell.

[00248]  In some embodiments, the in vivo and/or in vitro assays measure the “efficiency” of
non-homologous end joining (NHEJ) and/or homology directed repair (HDR) after
administration of the oligonucleotide, which can be calculated by any convenient method. For
example, in some cases, efficiency can be expressed in terms of percentage of successful HDR.
For example, a restriction digest assay (e.g., using a restriction enzyme such as HindIII) can be
used to generate cleavage products and the ratio of products to substrate can be used to calculate
the percentage. For example, a restriction enzyme can be used that directly cleaves DNA
containing a newly integrated restriction sequence as the result of successful HDR. More cleaved
substrate indicates a greater percent HDR (a greater efficiency of HDR). As an illustrative
example, a fraction (percentage) of HDR can be calculated using the following equation
[(cleavage products)/(substrate plus cleavage products)] (e.g., b+c/at+b+c), where “a” is the band

intensity of DNA substrate and “b” and “c” are the cleavage products.

[00249] In some cases, efficiency can be expressed in terms of percentage of successful
NHEIJ. For example, a T7 endonuclease I assay can be used to generate cleavage products and
the ratio of products to substrate can be used to calculate the percentage NHEJ. T7 endonuclease
I cleaves mismatched heteroduplex DNA which arises from hybridization of wild-type and
mutant DNA strands (NHEJ generates small random insertions or deletions (indels) at the site of
the original break). More cleavage indicates a greater percent NHEJ (a greater efficiency of

NHE)J). As an illustrative example, a fraction (percentage) of NHEJ can be calculated using the
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following equation: (1-(1-(b+c/at+b+c))'"?) x 100, where “a” is the band intensity of DNA
substrate and “b” and “c” are the cleavage products (see e.g., Ran et. al., Cell. 2013 Sep. 12;
154(6):1380-9). This formula is used (instead of the formula used for HDR, see above) because
upon re-annealing, one duplex of mutant DNA can produce two duplexes of mutant:wild-type

hybrid, doubling the actual NHEJ frequency.

[00250] In some embodiments, determining whether an oligonucleotide corresponds to the
biophysical effect comprises simulating, in silico, one or more of: in vitro, in vivo, ex vivo, and in
situ assays on the oligonucleotide. For instance, a synthetic or machine-learned model can be
trained to predict a measure or characteristic of the biophysical effect based on a sequence or
other properties of the oligonucleotide. These models can be trained on training data that
includes associations between oligonucleotides and the biophysical effect corresponding to the

models.

[00251]  The present methods include generating a refined machine-learned model using the
first set of oligonucleotides and whether each of the first set of oligonucleotides corresponds to
the biophysical effect. In some embodiments, generating a refined machine-learned model
comprises retraining and/or refitting the machine-learned model based on a determination of
whether an oligonucleotide corresponds to the biophysical effect using, for example, actual (e.g.

in vivo, in vitro, and/or in sifu assay results) or simulated test results.

[00252]  In some embodiments, generating the refined machine-learned model comprises
retraining the initialized machine-learned model using the first set of oligonucleotides and
whether each of the first set of oligonucleotides corresponds to the biophysical effect. As used
herein, “retraining” a machine-learned model can include modifying coefficients or other
parameters of the machine-learned model using real-world measures of the biophysical effect of
the first set of oligonucleotides such that the machine-learned model is able to better predict a

correlation between a sequence of an oligonucleotide and the biophysical effect.

[00253] In some embodiments, generating the refined machine-learned model comprises
performing a sparsity-constrained fit on the first set of oligonucleotides and whether each of the

first set of oligonucleotides corresponds to the biophysical effect.
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[00254] In some embodiments, generating the refined machine-learned model comprises
generating a new machine-learned model using the first set of oligonucleotides and whether each

of the first set of oligonucleotides corresponds to the biophysical effect.

[00255]  In some embodiments, generating the refined machine-learned model comprises:
generating a first updated machine-learned model using the first set of oligonucleotides and
whether each of the first set of oligonucleotides corresponds to the biophysical effect, generating
a second set of oligonucleotides based on the first updated machine-learned model, each of the
second set of oligonucleotides comprising a mutation of the initial oligonucleotide; determining,
for each oligonucleotide of the second set of oligonucleotides, whether the oligonucleotide
corresponds to the biophysical effect; and generating a second updated machine-learned model
using the second set of oligonucleotides and whether each of the second set of oligonucleotides
corresponds to the biophysical effect. In some embodiments, generating the second updated
machine-learned model comprises retraining the first updated machine-learned model using the
second set of oligonucleotides and whether each of the second set of oligonucleotides
corresponds to the biophysical effect. In some embodiments, generating the second updated
machine-learned model comprises performing a sparsity-constrained fit on the second set of
oligonucleotides and whether each of the second set of oligonucleotides corresponds to the
biophysical effect. In some embodiments, generating the second updated machine-learned model
comprises generating a new machine-learned model using the second set of oligonucleotides and

whether each of the second set of oligonucleotides corresponds to the biophysical effect.

[00256] In some embodiments, the second set of oligonucleotides comprises 50 or fewer
oligonucleotides, between 50 and 100 oligonucleotides, between 100 and 150 oligonucleotides,
between 150 and 200 oligonucleotides, between 200 and 300 oligonucleotides, between 300 and
400 oligonucleotides, between 400 and 500 oligonucleotides, between 500 and 750
oligonucleotides, between 750 and 1000 oligonucleotides, between 1000 and 1500
oligonucleotides, between 1500 and 2000 oligonucleotides, between 2000 and 2500
oligonucleotides, between 2500 to 5000 oligonucleotides, or between 5000 to 10000
oligonucleotides. It should be noted that additional sets of oligonucleotides can be generated over
multiple iterations using increasingly complex mutations of the initial oligonucleotide (or

mutations of earlier sets of oligonucleotides) for use in updating/retraining the machine-learned
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model in order to improve the performance of the machine-learned model. In some

embodiments, this process is iteratively performed until a stop condition is satisfied.

[00257]  In some embodiments, generating the refined machine-learned model further
comprises: generating a third set of oligonucleotides, each of the third set of oligonucleotides
comprising a generated oligonucleotide; determining, for each oligonucleotide of the third set of
oligonucleotides, whether the oligonucleotide corresponds to the biophysical effect; and
modifying the second updated machine-learned model using the third set of oligonucleotides and
whether each of the third set of oligonucleotides corresponds to the biophysical effect. In some
embodiments, the third set of oligonucleotides further comprises approximately equal portions of
oligonucleotides predicted to correspond to the biophysical effect and predicted to not
correspond to the biophysical effect by the second updated machine-learned model. In some
embodiments, generating the third updated machine-learned model comprises retraining the
second updated machine-learned model using the third set of oligonucleotides and whether each
of the third set of oligonucleotides corresponds to the biophysical effect. In some embodiments,
generating the third updated machine-learned model comprises performing a sparsity-constrained
fit on the third set of oligonucleotides and whether each of the second set of oligonucleotides
corresponds to the biophysical effect. In some embodiments, generating the third updated
machine-learned model comprises generating a new machine-learned model using the third set of
oligonucleotides and whether each of the second set of oligonucleotides corresponds to the
biophysical effect. It should be noted that additional sets of oligonucleotides can be generated
randomly or non-randomly for use in iteratively updating/retraining the machine-learned model
in order to improve performance of the machine-learned model. In some embodiments, this
process is iteratively performed until a stop condition is satisfied. In some embodiments, the

third set of oligonucleotides are randomly or non-randomly generated.

[00258]  In some embodiments, a third set of oligonucleotides comprises 50 or fewer
oligonucleotides, between 50 and 100 oligonucleotides, between 100 and 150 oligonucleotides,
between 150 and 200 oligonucleotides, between 200 and 300 oligonucleotides, between 300 and
400 oligonucleotides, between 400 and 500 oligonucleotides, between 500 and 750
oligonucleotides, between 750 and 1000 oligonucleotides, between 1000 and 1500
oligonucleotides, between 1500 and 2000 oligonucleotides, between 2000 and 2500
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oligonucleotides, between 2500 to 5000 oligonucleotides, or between 5000 to 10000

oligonucleotides.

[00259] In some embodiments, generating an oligonucleotide in the second set of
oligonucleotides or the third set of oligonucleotides comprises: identifying an n-gram of an
oligonucleotide sequence that strongly corresponds to the biophysical effect; and generating an
oligonucleotide comprising a mutation of the identified n-gram of the oligonucleotide sequence.
In some embodiments, an n-gram is a single n-gram. In some embodiments, an n-gram is a
double n-gram. In some embodiments, an n-gram 1s a gapped n-gram. In some embodiments, an
n-gram comprises one or more n-grams. In some embodiments, an n-gram comprises a

collection of n-grams.

[00260]  As noted above, in some embodiments, generating a refined machine-learned model
further comprises iteratively refining the machine-learned model using additional sets of
oligonucleotides until a stop condition is satisfied. In some embodiments, the stop condition
comprises one or more of: a number of iterations, a threshold predictive performance of the
machine-learned model, and a below-threshold increase in predictive performance of the
machine-learned model after a refining iteration. In some embodiments, the stop condition
comprises a number of iterations. In some embodiments, the stop condition comprises a

threshold predictive performance of the machine-learned model.

[00261] In some embodiments, the stop condition comprises a below-threshold increase in
predictive performance of the machine-learned model after a refining iteration. In some
embodiments, the number of refining iterations ranges from 1to 3,3 to 5, 5to 10, 10to 15, 15 to
20, 20 to 30, 30 to 40, 40 to 50, 50 to 60, 60 to 70, 70 to 80, 80 to 90, or 90 to 100. In some
embodiments, the number of refining iterations is more than 100. In some embodiments, the
number of iterations is 1 iteration, 2 iterations, 3 iterations, 4 iterations, 5 iterations, 6 iterations,
7 iterations, 8 iterations, 9 iterations, 10 iterations, 11 iterations, 12 iterations, 13 iterations, 14
iterations, or 15 iterations.

[00262] In some embodiments, generating a “refined” machine-learned model comprises one
or more of: updating parameters of the existing machine-learned model or model architecture;
updating drop parameters by sparsity, elastic net, dropoff or other model penalizations; and
updating the machine-learned model architecture, including updating the feature space of the

model entirely. In some embodiments, updating the feature space of the model entirely 1s
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performed by changing how variates are encoded in features or how connections between

features are modeled.

[00263] In some embodiments, generating the final set of oligonucleotides using the refined
machine-learned model comprises: receiving an identification of a biophysical function to be
performed by an oligonucleotide-based medicine (OBM) and an identification of a measure of a
tolerable biophysical effect; identifying a set of characteristics of an oligonucleotide associated
with the biophysical function; and generating, using the refined machine-learned model, a set of
oligonucleotides having one or more of the identified set of characteristics and corresponding to

the measure of the biophysical effect.

[00264] In some embodiments, the final set of oligonucleotides comprises a set of aptamers.
In some embodiments, the final set of oligonucleotides comprises a set of oligonucleotide-
aptamer conjugates. In some embodiments, the final set of oligonucleotides comprises a set
antisense oligonucleotides (ASQO). In some embodiments, the final set of oligonucleotides
comprises a set of anti-gene oligonucleotides. In some embodiments, the final set of
oligonucleotides comprises a set CpG oligonucleotides. In some embodiments, the final set of
oligonucleotides comprises a set single-guide RNAs. In some embodiments, the final set of
oligonucleotides comprises a set dual-guide RNAs. In some embodiments, the final set of
oligonucleotides comprises a set targeter RNAs. In some embodiments, the final set of

oligonucleotides comprises a set activator RNAs.

[00265] In some embodiments, the final set of oligonucleotides comprise a set of
oligonucleotides with an optimized dosing profile that is deemed efticacious, safe, and non-toxic.
The dosing for a particular oligonucleotide can be determined using the models described herein,
which can be configured to determine a relationship between a particular dose of an
oligonucleotide and a measure of a corresponding biophysical effect. The model can apply such
a model to a desired measure of a biophysical effect in order to predict a dose of a particular
oligonucleotide that can produce the measure of the biophysical effect. In some embodiments,
the final set of oligonucleotides comprises a set of steric-blocking oligonucleotides.

[00266]  In some embodiments, the final set of oligonucleotides comprises a set of ASOs to
modulate RNase H activity.

[00267] In some embodiments, the final set of oligonucleotides comprises a set of tracr

RNA:s.
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[00268] In some embodiments, the final set of oligonucleotides comprises a set of RNA
interference (RNAi)-based oligonucleotides.

[00269] In some embodiments, the final set of oligonucleotides comprises a set of RNA
(ADAR)-guiding RNA (AD-gRNAs).

[00270] In some embodiments, the final set of oligonucleotides comprises a set of double
stranded RNA (dsRNA).

[00271]  In some embodiments, the final set of oligonucleotides comprises a set of CRISPR
RNA (crRNA).

[00272] In some embodiments, retraining, refining, or changing the machine-learned model
as described herein is performed by a controller. In some embodiments, the controller is a
feedback controller. In some embodiments, the feedback controller retrains and/or changes the
machine-learned model based on the first set of oligonucleotides, a second set of
oligonucleotides, and/or a third set of oligonucleotides having one or more of the identified set of
characteristics and corresponding to the measure of the biophysical effect. In some embodiments,
the controller generates mapping paths in a sequence graph. In some embodiments, the controller
generates the first set of oligonucleotides. In some embodiments, the controller generates the
second set of oligonucleotides. In some embodiments, the controller generates the third set of

oligonucleotides.

[00273]  In some embodiments, the method comprises calibrating noise in model readout to
quantify the level of accuracy achievable in learning factors and stopping criteria of the methods

described herein.

[00274]  In some embodiments, the method comprises providing experimental or synthetic

results (e.g. from in vivo and/or in vitro testing) into the feedback controller.

[00275]  In some embodiments, the controller updates the machine-learned model and
quantifies (e.g. a subset of all possible) probabilistic factors using a sparsity-driven convex
optimization algorithm. In some embodiments, the controller updates the initial sequence graph,
for example, by updating the monomer diversity at each position and/or abandoning certain
factors and/or introducing new factors, to optimize new paths within the sequence graph to
explore which paths are expected to improve learning/balancing the data-set during the next

iteration of model retraining or updating.

[00276]  In some embodiments, the controller updates the machine-learned model to generate
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OBMs from all possible paths from a specific type of perturbations. In some embodiments, the
controller retrains the machine-learned model to select a fraction of all possible such designs to
test in the next batch, primarily by balancing the predicted odds of expected pharmacology and
deciding the optimal policy to query highly informative factors that are under-investigated. In
some embodiments, the controller that retrains the machine-learned model identifies which set of
oligonucleotide sequences to test in the next iteration of oligonucleotide sequential experimental
design or the next iteration of machine-learned model retraining or updating. In some
embodiments, the controller retrains the machine-learned model to design OBMs by mapping
paths in the graph expected to optimize learning the probabilistic factors of the model, iterating
over custom steps of designing and testing batches of OBM sequences. In some embodiments,
the controller receives feedback control in the form of the results of the current and all previous
batches of experiments, in turn determining the next set of paths to explore in the graph, and
translating the paths to oligonucleotide sequences to test experimentally. In some embodiments,
the feedback control refines the machine-learned model in every step or iteration. In some
embodiments, the controller that trains the machine-learned model enriches for sequences of
desirable pharmacology, balancing the dataset and avoiding creating data with many more data
points of undesirable pharmacology (e.g. toxic) than desirable pharmacology (e.g. safe). In some
embodiments, the controller controls and adapts the sequence and factor graph, the monomer

diversity in each of the positions, and/or the probabilistic factors of an oligonucleotide sequence.

[00277]  Aspects of the present disclosure include a method for generating oligonucleotide-
based medicines, comprising: initializing a probabilistic machine-learned model configured to
map an oligonucleotide sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect; generating a first set of oligonucleotides
by performing single or double n-gram mutations on the initial oligonucleotide to obtain
oligonucleotides mapped to a distributed range of probabilities by the initialized probabilistic
machine-learned model; determining, for each oligonucleotide of the first set of oligonucleotides,
a first measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a first refined probabilistic machine-learned
model based on the first set of oligonucleotides and the determined first measures of correlation;
generating a second set of oligonucleotides, each of the second set of oligonucleotides generated

and mapped to a distributed range of probabilities by the first refined probabilistic machine-
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learned model; determining, for each oligonucleotide of the second set of oligonucleotides, a
second measure of correlation between the oligonucleotide and the biophysical effect based on
real-world experimental determination; generating a second refined probabilistic machine-
learned model based on the second set of oligonucleotides and the determined second measures
of correlation; and generating a final set of oligonucleotides using the second refined
probabilistic machine-learned model. In some embodiments, each of the second set of

oligonucleotides are randomly or non-randomly generated.

[00278]  In some embodiments, the method further comprises receiving a set of biophysical
requirements for an oligonucleotide-based medicine from a designer; and selecting a subset of

the generated final set of oligonucleotides that satisfy the set of biophysical requirements.

[00279]  In some embodiments, the first set of oligonucleotides comprises 50 or fewer
oligonucleotides, between 50 and 100 oligonucleotides, between 100 and 150 oligonucleotides,
between 150 and 200 oligonucleotides, between 200 and 300 oligonucleotides, between 300 and
400 oligonucleotides, between 400 and 500 oligonucleotides, between 500 and 750
oligonucleotides, between 750 and 1000 oligonucleotides, between 1000 and 1500
oligonucleotides, between 1500 and 2000 oligonucleotides, between 2000 and 2500
oligonucleotides, between 2500 to 5000 oligonucleotides, or between 5000 to 10000

oligonucleotides.

[00280]  Aspects of the present disclosure include a method for generating oligonucleotide-
based medicines, comprising: initializing a probabilistic machine-learned model configured to
map an oligonucleotide sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect; generating a first refined probabilistic
machine-learned model by, until a first stop condition is satisfied, iteratively 1) generating an
increasingly complex set of oligonucleotide mutations based on the initial oligonucleotide, 2)
determining a real-world measure of correlation between the set of oligonucleotide mutations
and the biophysical effect, and 3) fitting the set of oligonucleotides and the determined real-
world measures of correlations to an increasingly refined probabilistic machine-learned model;
generating a second refined probabilistic machine-learned model by, until a second stop
condition is satisfied, iteratively 1) generating a random set of oligonucleotides, 2) selecting a
subset of the generated random set of oligonucleotides such that approximately equal portions of

the subset of the generated random set of oligonucleotides are predicted to correspond to the
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biophysical effect and are predicted not to correspond to the biophysical effect, 3) determining a
real-world measure of correlation between the subset of oligonucleotides and the biophysical
effect, and 4) fitting the subset of oligonucleotides and the determined real-world measures of
correlations to an increasingly refined probabilistic machine-learned model; and generating a

final set of oligonucleotides using the second refined probabilistic machine-learned model.

IV. EXAMPLES

IV. A. EXAMPLE 1 — TRAINING PROTOCOL OF OBMS

[00281]  For the sake of clarity, the methods described herein are now described in the
context of a particular example. It should be noted, however, that the subject matter described
herein is applicable far more broadly. This example is constructed for the case of cytotoxicity for
a narrow class of OBMs: all possible 16 nucleotide long ASOs with fixed 3-10-3 LNA gapmer
chemical scaffold. In the traditional approach, a number of random sequences, or sequences
targeting a number of genes, will be designed and tested, for instance in in vitro assays and
rodent liver toxicity assays. The total number of possible ASOs in this case is 4'® ~ 4.3 x10°,

because each position in the ASO can be one of the four nucleotides, [A;C;G;T].

[00282]  In the traditional approach, with a budget of testing 1000 ASOs, one would have
typically created a data-set of 100 safe ASOs and 900 toxic ASOs, assuming the odds of safety is
1:10.

[00283]  The traditional approach of screening produces many fewer examples of the type of
OBMs of interest for machine learning and designing, i.e., safe OBMs. The present methods
provide for enriching safe ASOs to ~ 50% to create a data-set of ~ 500 safe ASOs. Moreover, the
designed ASOs query the sequence dependence of the ASOs pharmacology in a far more

rigorous manner.

Step 1: Creating sequence graph.

[00284] In this illustrative example, consider monomeric units to be dimers, defined by x{*at
position 7 along the ASO, chosen from the word space [AA;AC; : : : ;GT;TT] indexed by a. The
probability model P(y|X), i.e. where y is the cytotoxicity measurement and X represents the
sequence, is shown in equation 1. This is the sequence-to-pharmacology mapping described

herein.
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P(ylX) = 1_[ 1_[ Dy (xf, ij) 0,(xf, ij)
Ko

[00285]  In this example, a sequence graph is created, see FIG. 1 and a corresponding factor
graph, see FIG. 2, only including pairwise factors between monomer nodes limiting monomer
interactions modeled to be simply pairwise. Therefore, the © terms enforce constraints on
composition of monomers to create the ASO polymer, and the ® terms are factors for joint
probability distributions capturing correlations. In this example, there are 16 possible nodes in
each column of the graph of FIG. 1 and FIG. 2, corresponding to the dimer word space.
Therefore, @ is defined on the space of 16 * 16 * 15 = 3840 dimensions corresponding to the
constraints of which monomeric word can be linked which monomeric word in the next position

along the ASO. These constraints are known by construction, and not learned from data.

[00286] A probability function, being positive, can be written as an exponential function. In
the example of dimer units, and as it turns out in a wide variety of examples, the variables x{will
be indicators, denoted by a;*, presence/absence of the dimer a at position i. The notation from x

to s 13 changed to make the binary status explicit. Therefore, without loss of generality,

®(af, 0f )~exp(ufaf +plal +JiPofal + )

where y are the first order weights and J are the second-order interactions, and the dots represent
even higher order interactions. If the pairwise interactions are limited to nearest neighbors, only

3840 factors fb(aia, ajb ) may be required to train the machine-learned model.

Step 2: Create controller

[00287]  The controller is initiated by the sequence graph and factors described above,
including prior beliefs or biophysical effects on the factors from existing quantitative or

qualitative knowledge.

Step 3: Create first set of OBMs to test.

[00288] In this example, the controller is set up to efficiently consider paths in the sequence
graph—these paths are optimal small perturbations of the path corresponding to an ASO whose

cyto-toxicity has already been measured. The paths considered are optimal in exploration of
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poorly characterized factors and exploitation of important factors of high-confidence. The
controller weights all the factors and uncertainties for each such path and generates the first

batch of ASOs to test.

Step 4: Test first baich
[00289]  The first batch will typically have low sequence diversity in tested sequences, and

therefore, are maximally informative in characterizing the noise, calibrating the dynamic range
and precision of measurements. In this example, the measurements may be in vitro assays like
Caspase activation and in vivo assays like alanine transaminase (ALT) level in rodent blood

samples.

Step 5: Feedback control

[00290]  The results of the experiments are used to update factors using sparsity constrained
fitting paradigms. In this example, without any loss of generality, the regression problem of

mapping sequence X to measurement M(X) is defined as:

[00291]  where E(X) 1s an “energy” function. The function £(X) is approximated as follows:
EX) =) > ufof + ) ) Jiofiol
i a i>j ab

[00292]  where a,b spans the word space, for example, for DNA dimers over [AA;AC; : : :
;GT.TT]. The u parameter captures the independent weights of monomers for every position in
the ASQ, and the ]{Ijb parameter captures correlative weights. The N sequences tested in the first
batch are denoted as So. Every sequence is encoded in the matrix ©,, , where 0,, is an indicator
(binary) matrix of shape P * (L-k+1). Here P is the size of the word space, L is the length of the
polymer, and k is length of k-mers, here k£ = 2. The shape of matrix x 1s identical. Unraveling 0,
and concatenating /N is used to create the sequence code matrix 0, of shape N * (P * (L-k+1)).
The parameter vector p is unraveled to a vector of length P * (L- k+1)). In this matrix language,

the linear equation to solve in order to fit the data and update the factors, @ -y =Y.
[00293]  In this example, the goal is to solve the quadratic programming problem:

mljnIIY—G-uIIz + ] 1y
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where || ... ||, is [2-norm is 11-norm |-++|; and 4 is a sparsity parameter, a hyper-parameter in this
context that the controller can tune. The A-term ensures robust learning and Occam’s razor in

model complexity. A very similar formalism applies for fitting ./ parameters.

Step 6: Generate new batch of OBMs to test

[00294]  In this example, the controller generates a new batch of ASOs to test, weighing small
perturbations (mutations in dimers) in the sequence graph and computes optimal paths that
balance the explore-vs-exploit trade-off in learning the mapping of sequence-to-pharmacology.
The controller also predicts the expected measurement and appropriately chooses the batch of
ASOs to test such that the measurements are balanced, 1.e., approximately equal numbers of safe
and toxic compounds are expected to be seen. These predictions are made using the sparse

models described above.

Step 7: Test new batch of OBMs

[00295]  In this example, the ASOs cyto-toxicity is measured, and the measurement noise

model is re-calibrated.

Step 8: Feedback loop and sequence graph updating and resource reallocation

[00296]  Several iterations for Steps 5-7 are performed, with later iterations updating the
sequence graph by measuring the non-redundancy and relevance using mutual information of
monomer interactions captured in the sequence graph against measurement distributions, and
expanding the monomer diversity (at specific positions along the ASO) of high information
content by considering, for example, trimers and tetramers. For any factor @, relevance is
defined as, I(®|y), where / is mutual information and y is the measurement. For any two factors,

®, and ®,, non-redundancy is defined as [(®q, D,|y) — (P4, D,).

[00297]  The updated sequence graph also dictates resource reallocation in which factors to
learn extensively in the next series of feedback control loops, and which ones have already been

learned well and whether the net learning of sequence-pharmacology mapping has saturated.

[00298]  In this illustrative example, using only dimers as nodes of the sequence graph, using
a synthetic cyto-toxicity generator as described below, it is shown that that the method balances
the data by enriching for sate ASOs within a few batches of ASOs tested (50 tested in each
batch) and learns to predict measurements well within a few steps. In this simulated example, for

simplicity, the sequence graph is not updated by adjusting word space diversity in specific
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positions adapting to information content as described above—the controller is simpler than the

ideal scenario, and yet performs well.

The synthetic cytotoxicity generator

[00299]  For the illustrative example, a simulated response is trained to be realistic and
designed to be exigent on the policy evaluations. This is done by creating protein-binding events
in sequences, where many protein binding events may all independently and to varying degree
cause a toxicity measurement response. The synthetic cyto-toxicity generator is a function that
takes in a sequence as input and produces a response between [0,1] as output, where 1 is the most
desirable response (such as, “very safe”) and O is the least desirable response, such as “very
toxic.” In some embodiments, the synthetic cyto-toxicity generator is a machine-learned model
trained on oligonucleotide sequences and associated measures of cyto-toxicity. It should be noted
that biophysical effects can be determined using machine-learned models (such as the synthetic
cyto-toxicity generator), each trained on oligonucleotide sequences and corresponding measures
or characteristics of the biophysical effect. Likewise, these machine-learned models are
configured to compute or predict a measure or characteristic of a biophysical effect for sequences

of oligonucleotides being evaluated.

Algorithmic steps in simulation:

[00300]  The simulator uses real ENCODE position-weight matrices (PWMs) of motifs for
DNA-binding proteins.

[00301] Randomly, of the order of W =100 motifs are chosen. Each is assigned a random
uniform probability pm of being picked in the next step, and a random weight rv, where w €

[1, W]. There is also the option of a random choice of where to embed the motif in the sequence,
in the next step, typically the motif will be localized in the sequences by position, say, between
positions 3-7.

[00302] The PWMs of the motif w are embedded in the background frequency of nucleotides
to create a position dependent emission probability of each nucleotide a at each position 7,
denoted by P{(w) for a Hidden-Markov Model (HMM). Because the sequences that are
considered short, for example, 16-mer sequences, only one motif is embedded in one sequence—
note that ENCODE motif lengths are 7- to 20-mers. The probability of picking the HMM with

the motif w is pw. A dataset of N sequences is created in this manner.
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[00303] Response generation: Now that these sequences are created, the next step is to
quantify whether the sequence will be bound by the putative protein. Even random sequences
will exhibit motifs with a low probability because motifs are intrinsically probabilistic
descriptions of binding events. Also, PWMs may be weak (low in information) or strong (high in
information) and have a range of lengths. To quantify the p-value of whether a sequence will be
bound by the putative protein, the distribution of binding was computed for random sequences of
the same length as the motif. This is done by computing the cross-correlation of the PWM
against 10° randomly generated sequences and recording the mean mw and standard deviation o,
of the random samples. The p-value for any sequence binding is then the probability of observing
a value (as extreme or more) of then cross-correlation of the PWM and the one-hot encoded
sequence. One hot-encoding is a binary matrix, 4 * L for a sequence of length L and indicator for
[A;C.G;T] in each row.

[00304] Mathematically, given one-hot encoding of a sequence, Si* and PWM P# for a motif

of length /, cross-correlation is,

G =) LEZ PEW) S8

a i=1
[00305]  The value C;(w) is next assigned a “True/False” value if it exceeds the p-value cutoff

for the motif or not, referred to as indicator vector / }” (s) for motif w and sequence s.

[00306] The previous step quantifies whether a motif is bound, for any sequence. In this step
the binding events are assigned the weights for the protein contribution, 7w defined above. The
response for sequence is,

1
1+ exp[zj Yw rWI]W (s)]

R(s) =

[00307] Using the experiment generator, an illustrative simple policy is evaluated, and

performance 1s shown in FIG. 4.

V. EXAMPLE 2 —~APTAMERS FOR TARGETING TISSUES AND CELLS (CAT-TAC)

[00308] Aspects of the present disclosure related to using oligonucleotide-based medicines

stem from their limited activity in several tissues and cell types. The example described herein
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solves this by leveraging recent advances in the fields related to aptamer screening &
optimization, in conjunction with the machine learning and pharmacology modelling paradigm
of oligonucleotides described herein, called CAT-TAC (Creyon Aptamers for Targeting Tissues
and Cells).

[00309] The example provided herein show a scalable platform for computational engineering
of aptamers as conjugates to OBMs, and thereby dramatically enhancing OBMs’ tissue/cell-type
specific delivery. Aptamers share the merits of synthesis-simplicity and the compositional,
biophysical and medicinal/computational chemistry properties as the models provided herein for
OBMs.

[00310] The advanced oligonucleotide-based medicine (OBM) platform described is applied to
the creation and selection of novel aptamers, which are short highly structured DNA/RNA
fragments (chemically modified nucleic acid polymers) that enhance the general pharmacology

of OBMs, and targets OBMs to specific tissues, cells, and/or intracellular/extracellular spaces.

[00311] Aspects of the present disclosure describe building datasets, algorithms and tools to
accurately predict the pharmacology of OBMs (payload) conjugated to aptamers, called aptamer-
OBMs. The payload compounds are typically short (15-22 nt) and, typically by design, have
minimal capacity to form self-structures, as opposed to aptamers. The pharmacophore, or the
properties of the aptamer-OBMs which drive their pharmacokinetic properties, and the
dianophore, or the properties of the aptamer-OBMs which determine the molecular targeting
efficacy, are largely separable, with the pharmacophore being primarily defined by the molecular
processes involved in the OBM:target-RNA duplex formation, the systems biology of the target
and the biophysical rules of enzymatic mechanism-of-action (RISC/Ago, RNAseH1, etc.). The
dianophore, on the other hand, 1s largely controlled through protein: OBM interactions.
Leveraging this separability, tools developed by the present inventors focused on creating
datasets and models optimal in uncovering the sequence-chemistry to pharmacology mapping of
all non-branched polymeric nucleic acids at a pace and cost which is order(s) of magnitudes
better than the tradition trial-and-error approach.

[00312] Specifically, aspects of the present disclosure describe (a) search and active learning
algorithms, chemical space autoencoders and experimental protocols/methods to productively
and intelligently navigate the very high-dimensional sequence/chemistry space of aptamers-

OBMs (b) created datasets in batches of aptamer-OBMs tested such that every batch is near-
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optimal for machine learning OBM pharmacology (c) balanced the outcome of pharmacology
experiments and datasets created sequentially in a feedback control paradigm by enriching for
aptamer-OBMs with rare pharmacology (which 1s typically the desired pharmacology 1.e. safe &
efficacious).

[00313] The methods described herein leverage the mathematical and physical properties
inherent in polymeric interactions of OBMs—self-interactions are typically sparse & pairwise,
while non-self interactions are typically dictated by protein-binding domains and/or
hybridization dynamics. Aptamers on the other hand have dense secondary self-interactions,
however, tertiary conformation interactions (e.g. pseudo-knots, kissing-hairpins, hairpin bulge
etc.) are typically sparse. The mathematical and algorithmic innovation as described in aspects of
the present disclosure on short OBMs, the search and design policies in active learning and
feedback control, generalize well to the unique sparsities present in aptameric interactions. The
optimal controllers described herein enable highly cost- and time-efficient exploration of
aptamer sequence/chemistry-to-pharmacology mappings.

[00314] The design algorithms described herein use high-throughput readouts of in vitro or in
vivo structural constraints such as those measured by SHAPE-Seq (Selective 2’-Hydroxyl
Acylation Analyzed by Primer Extension Sequencing) like methods to refine and augment
topological and structural classifications of aptamers. Such readouts are important in the rather
common context of chemically modified nucleotides for which current in silico methods for
folding are expected to be misleading or fail completely because they were parameterized using
native DNA or RNA hybridization datasets. Several well-developed NGS-based highly-
multiplexed measurements on RNA structure can be utilized to greatly constrain the possible 3D-
conformations of the aptamers-OBM:s.

[00315] In silico methods for folding short RNA/ssDNA sequences are still rather limited in
recapitulating the diversity of energetically-equivalent structures and low-energy conformations
explored by aptamers in vivo. In order to ensure that the search algorithms of the present
methods perform as expected in the presence of novel chemistries, the method requires (a)
creating data analysis algorithms to model SHAPE-seq like readouts and establish the constraints
these readouts impose on topology and 3D structural properties of OBMs (b) performing
extensive simulations to mimic the complexity novel chemistry adds to the problem, by creating

synthetic hybridization energetics for folding algorithms and recreating many experiment
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simulators corresponding to these parameter choices. The simulator explores a broad parameter
space, for example, range of stringencies in folded-structural/topological uniqueness, low free
energy conformational states, and sequence uniqueness required for favorable pharmacology.
Ultimately the algorithms described herein discover a very rare pool of productive aptamers from

within a large pool, employing lean sequential experiments and feedback control design.

[00316] Aptamers have been developed through SELEX and other methods to have highly
selective (nanomolar range) dissociation constants with a variety of molecular targets. However,
aptamers identified through in vitro processes can frequently behave differently when brought
into an in vivo context, or when attached to the therapeutic OBM. Given these challenges, these
methods rely on a sensitive and high-throughput of single cell NGS assay to monitor both the
concentration of delivered OBM (PK) as well as the relative efficacy of the delivered OBM
measured by gene knock-down or splicing modulation (PD).

[00317] The methods of the present disclosure leverage advances in single cell biology to both
improve the performance of molecular selection and enable structural generalizations, which are
critical in ensuring that the identified aptamer classes are functional for any therapeutic or
diagnostic OBM. The core experimental methods in the CAT-TAC optimization strategy are
outlined in FIG. 6. The first step of these experiments involved dosing mice or other complex
cellular system such as an organoids, patient derived xenografts, or tissue-on-chip systems with a
limited-diversity library of random aptamers coupled to a OBM that targets a ubiquitously highly
expressed gene known to be sensitive to OBM modulation such as Malatl. After 1-2 weeks of
dosing, animals were sacrificed, and organs harvested. Prior to sacrificing animals they were
exposed to a SHAPE-reagent which marked unstructured bases on both endogenous RNA and
aptamers developed by aspects of present method. Single nuclei suspensions were created and
subjected to a modified single cell RNAseq protocol that used custom RT primers to only prime
first-strands from the target gene and the aptamers that happen to have gained access to the cell.
Primers that monitored several additional cell-health and cell identity marker genes were also
included. Notably, in addition to monitoring both the target gene knock-down, the various
markers of cell health, the methods described herein were able to extract aptamer abundance and
in vivo SHAPE-seq structural constraints and abundance for all aptamers present. The resulting
data provided a cell-type resolved picture of both target knockdown which integrates (PK and

PD processes), along with the family of aptamers which were instrumental in enhanced transport
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into the nucleus of the cell. It was anticipated that more than one aptamer will be present in
each cell—the cell “votes” for an aptamer sequence, but more importantly, “votes” on an
aptamer class defined by the topological and structural clusters. To illustrate this point: for a
specific cell-type, the aptamer sequence with highest votes across hundreds/thousands of
instances of that cell-type are top performers (selected aptamers). However, what
structural/topological properties and sequence elements were common between the top
performing aptamers for that cell-type, or across multiple cell-types? These structural/topological
properties reduced the high-dimensional sequence space of all possible aptameric sequences into
much lower dimensional design space that is described herein, characterizing the freedom in
sequence-mutational diversity in aptamers within classes of the same functional outcome.
[00318] CAT-TAC deviated significantly from SELEX. The methods described in aspects of
the present disclosure are not optimizing for binding to a specific ligand, nor are performing a
binding sequence elution/amplification step to select for a few sequences against a specific
target. Traditional SELEX approach may be counterproductive for the purpose of robustly
enhancing PK because of specificity to ligands. The method described in the aspects of the
present disclosure maintains both specific and non-specific/moderate binding to several cell-
surface and endosomal receptors contributing to general enhancement of OBM uptake, either for
a particular tissue/cell-type or broadly. Therefore, CAT-TAC maintains a large population of
distinct classes of aptamers, whose enhancement of cell/tissue specific nuclear-delivery of OBM-
payload is assessed directly at single-nucleus sequencing readout. The selection step of the
present method is partly algorithmic—it is informed directly by the CAT-TAC data and
augmented by auxiliary information on sequence-structure-topology mapping from SHAPE-seq
and in silico folding tools. CAT-TAC’s sequence-topology space algorithms do not simply
perform a selection of the current pool but rather designs novel sequences that are expected to
fall within a topology-structure class. These classes are expected to be robust to sequence
mutations while still maintaining desired pharmacology or enhance pharmacology by optimally

exploring the relevant topology-structure class by designing in a new aptamer library.

[00319] Significant advantages of using aptamers to deliver OBMs are their relatively small
size (20-100 nt), and that their building blocks are also nucleic acids just like OBMs. This makes
synthesis, computational modeling, characterizing sequence-function mappings and engineering

such mapping a far more tractable problem. The disadvantage is that the therapeutic payload
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(OBM) is both highly prone to interact directly with the delivery aptamer and likely to
significantly impact the structural and biophysical properties of the aptamer. The methods
described in aspects of the present disclosure directly addresses these issues by building a
topology-structure space encoding of aptamer-OBMs and evaluating how the OBM will impact

the structure of the aptamer (see e.g. FIG. 5) and vice versa.

[00320] The present inventors built a rich topology-structure space encoding for aptamer-OBM
conjugate polymers, driven by CAT-TAC datasets, topology of RNA folding, tertiary structures,
electrostatic interactions, hybridization energetics & biophysics, and constraints on the space
provided by SHAPE-seq like readouts. The present inventors built computational methods to
evaluate the existing library for an OBM of interest, and design of a specific exemplar aptamer
for that OBM which accurately mitigates aptamer-OBM interferences. A computational process
was also built to evaluate chemical modifications and sequence substitutions to engineer an
aptamer optimal for attaching to any OBM of interest for improved PK in specific tissue/cell
type.

[00321] One of the key challenges of learning the sequence-to-function map of aptamers is the
very high-dimensional space of possible designs, for a 50-mer aptamer, this is roughly

1.2 x 103 possible unique molecule designs. However, a large fraction of these sequences are
not expected to have productive interactions with cell-surface receptors, etc. One of
embodiments of the present disclosure is encoding any aptamer sequence into a much lower
dimensional topology-structure space, which is (a) common structural-motif-aware and encode
the sequence dependence of these motifs (b) topology-aware at multiple length-scales (create
feature sets on topologically equivalent structures and encode three dimensional interactions into
such topological feature sets) (c) able to inform the set of topological and sequence features by
(partial) readouts of in vivo RNA structure as contact maps and SHAPE-profiles (SHAPE-seq,
SHAPE-Map, M2-Seq, PAIR-Map, etc.). SHAPE-seq has recently been applied to aptamer
discovery and the methods described herein extend contact-map methods to aptamers. These
readouts were originally developed to either provide two point contact maps or accessibility
profiles of full-length folded RNAs—when applied to aptamers, which are much shorter, they
are high resolution and have favorable signal-to-noise.

[00322] One of the innovations of aspects of the methods disclosed of the present disclosure is

the building a topology-structure space. Traditional in silico approaches for characterization
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RNA sequences typically begin with folding the RNA into a minimal energy conformation, with
known nucleotide hybridization energetics as input. However, these folding algorithms typically
are limited to secondary structure computation, which can be performed in 0(N3)in computation
time using dynamic programming where N is the length of the RNA. However, for pseudo-knots
and structural motifs, the problem of RNA folding has been shown to be NP-complete, and
approximate dynamics programming approaches that include tertiary structures run at 0(N®) in
time. Moreover, exploring competing low-energy conformations is computationally costly, and
highly influenced by the assumptions made in the energetics. Specific structural motifs for
example, the ones shown in FIG. 7, typically need special treatment in realistic models owing to
their free energetics being poorly captured by pairwise additive hybridization energetics alone,
and they exhibit three-dimensional dynamics pivotal in determining realistic structural
conformations of the RNA.

[00323] A completely different approach is adopted in aspects of the methods disclosed herein.
Linear scaling algorithms, which are very accurate and at par with more costly exact dynamic
programming algorithms, were modified to identify a family of low-energy secondary structure
states of aptamers (not tertiary structures) and enlist the structural motifs as features in its
sequence context. To illustrate this point, the set of features for a single folded secondary
structure is a list of secondary states for sequence k-mers along the aptamer 5’ to 3°, for example,
these states could be “stem”, “loop”, “junction” etc.— a set of structural motifs. The secondary
interactions are typically dense, meaning, a large fraction of nucleotides engaged in them. The
tertiary structural interactions in contrast are sparse, and this sparsity is exploited in the
algorithms in this disclosure. In the space of all possible energetically favorable tertiary
structures for a particular secondary structure, topological features were created: (a) the genus
and persistence of genus was computed at various length scales, creating persistent homology
fingerprints (b) link topological features to both sequence and primary structural motifs
described above (c) constraint and inform these sequence-topology features with SHAPE-seq
like readouts, in essence, maintaining a rich set descriptors of structural interactions. The tertiary
interactions are likely to be most dynamic and relevant in competing aptamer conformational
states for the same aptamer sequence. This topological-structural space was refined and reduced
in dimensions by continual data input from CAT-TAC assays—the most informative manifold

embedded in the original space was identified for each aptamer function studied, see FIG. 7.
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[00324] This unique topology-structure space enabled the present disclosures to design a
specific aptamer sequence for a specific OBM by minimizing OBM-aptamer interaction—to do
so a search in this space that minimized both secondary and tertiary structure with OBM was
performed, while maintaining the desirable aptamer properties. Moreover, chemical
modifications that mitigated such interaction were evaluated using the same principles and

validated in experiments.

[00325] To deploy CAT-TAC aptamers across a diversity of therapeutic OBMs, a library of
aptamer classes was created to serve as the ‘scaffold” of the final design of OBM:aptamer

therapeutics for a specific OBM.

[00326] The examples described herein tested the robustness of the definition of classes in
topology-structure space. Specifically, these classes predicted aptamers sequence mutations that
were tolerated within a class, meaning, the mutated realizations retained the functional property
of the exemplar aptamer in the class. The models were evaluated on multiple classes across
tissues/cell-types by designing in silico and testing aptamers for enhancing efficacy of payloads,
by designing a large number of mutated aptamers of exemplars in each class and testing them in
CAT-TAC assays, see FIG. 8. This step typically also results in a parsimonious and robust
definition of these classes improving the models with a directed mutational analysis of sequence-

function mapping,

VI. EXAMPLE 3 — INITIALIZING THE MODEL - IN VIVO ANALYSIS OF 16 OBMS IN MICE TO INITIALIZE
THE PREDICTIVE MODEL OF SYSTEMIC TOLERABILITY

[00327] For the sake of clarity, the methods described herein are now described in the context

of a particular example.

[00328] This example describes a model initialization step and is constructed for the case of
cytotoxicity for a narrow class of OBMs: 16 nucleotide long ASOs with fixed 3-10-3 LNA
gapmer chemical scaffold. A first set of oligonucleotides was generated by performing single n-
gram mutations to obtain oligonucleotides mapped to a distributed range of probabilities. These
oligonucleotides were then synthesized as 16 nucleotide long ASOs with fixed 3-10-3 LNA
gapmer chemical scaffold. In order to determine a first measure of correlation between the

oligonucleotide and a biophysical effect and create a first training set (calibration), the first set of
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oligonucleotides (OBMs) were administered to mice and a variety of biophysical effects

measured over a 5-week period.

[00329] Mice. Male C57BL/6 mice aged 5-6 weeks were maintained on a 12-hour light/dark
cycle and were fed ad libitum normal mouse chow. Animals were acclimated for at least 7 days
in the research facility before initiation of the experiment. Oligonucleotide-based medicines
(OBMs) were prepared in buffered saline (PBS) and sterilized by filtering through a 0.2 micron

filter. OBMs were dissolved in PBS for subcutaneous injection.

[00330] Survey Study Design. Total Study Design was 5 weeks. On Day -1 (before the study
started) body weight was recorded and mice were randomized into 17 total groups of 5 mice each
per treatment (16 OBM groups and 1 saline control group). Groups received subcutaneous
injections of an OBM at a dose of 75 mg/kg at the start of Week 2, Week 3, Week 4, for 3 total
doses. No dose was administered during Week 1 (observation period) or Week 4 (washout
period).

[00331] Blood draws (via eye bleed, tail bleed or cardiac bleed) were administered on a
weekly basis 72 hours after each dosing or 72 hours after the start of Week 4 during the washout
period. Observations and read-outs included body weight (BW), temperature, ALT, AST, BUN,
creatinine, CRP and total bilirubin (TBILI). CBC analysis was performed on anticoagulated
whole blood samples and measurements included neutrophils (%), neutrophil (/uL), reticulocytes
(%), WBC (K/uL), absolute reticulocyte (K/uL), RBC (M/uL), HGB (g/dL), lymphocyte (/uL),
lymphocytes (%), nucleated RBC (/100 WBC), HCT (%), monocyte (/uL), monocytes (%),
polychromasia, anisocytosis, eosinophil (/uL), eosinophils (%), MCV (fL), basophil (/ul),
basophils (%), MCH (pg), poikilocytosis, heinz bodies, MCHC (g/dL), metamyelocyte (/ul),
metamyelocyte (%), myelocyte (/ul), platelet estimate, myelocyte (%) platelet count (K/uL),

promyelocyte (/uL), promyelocyte (%) and combinations thereof.

[00332] On Week 5 animals were sacrificed and wet tissue weight measured for liver, kidney

and spleen.

[00333] Exemplary training data at week S of the study are shown in Table 1. Importantly,
there were six OBMs correlated with safe biophysical effects, and ten OBMs correlated with

toxic biophysical effects, as measured over a 5-week period, which was sufficient to initialize the
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model. Any number of oligonucleotides can be used to create a first training set, so long as there

are sufficient representatives for one or more measured biophysical effects.
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VII. EXAMPLE 4 — AUC VS CMAX (ADDITIONAL AND INDEPENDENT DOSING INITIALIZATION)

[00334] This example describes experiments to initialize Cmax (max effects of dose) vs AUC
(Area under the curve, 1.¢., total dose distributed over a timescale within half-life in tissue) of

toxic ASOs.

[00335] In particular, this example details a dosing calibration survey step of 2 toxic OBMs (16
nucleotide long ASOs with fixed 3-10-3 LNA gapmer chemical scaffold) interrogated in vivo to
calibrate safety and toxicity of three escalating ASO doses of 4 doses of 10 mg/kg, 2 doses of 20
mg/kg and one dose of 40 mg/kg respectively.

[00336] Male C57BL/6 mice aged 11-12 weeks were maintained as described in Example 3

above.

[00337] Total Study Design was 4 weeks. On Day -1 (before the study started) body weight
was recorded and for each OBM treatment mice were randomized into 3 groups (3 x 10 mg/kg, 2
x 20 mg/kg or 1 x 40 mg/kg) of 3 mice per group. One group received a single subcutaneous
injection of an OBM at a dose of 40 mg/kg on Friday of Week 1, for a total of 1 dose. Another
group received a subcutaneous injection of an OBM at a dose of 20 mg/kg on Monday of Week 1
and Friday of Week 2, for a total of 2 doses. Another group received a subcutaneous injection of
an OBM at a dose of 10 mg/kg on Monday and Friday of Week 1 and on Friday of Week 2 for a
total of 3 doses.

[00338] Observations and read-outs included body weight, urine volume and collection, blood
collection, serum and urinary analysis and kidney and liver collection. Urine analysis was
performed +24 hours after each dosing and blood analysis was performed +72 hours after dosing.
Exemplary hepatotoxicity assays included, but were not limited to serum ALT, AST, and
creatine. Exemplary nephrotoxicity assays included but were not limited to urinary KIM-1 and

CysC. CBC analysis was performed as described in Example 3 above.

[00339] At the end of Week 4 animals were sacrificed and wet tissue weight measured for

liver, kidney and spleen.
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Table 2: Exemplary Dosing Initialization Data - Dosing and Liver Function Tests

Week | EXperimental Dosing at (o) | astupy | SREA Cysc Kim-1
Group (mg/dL) | (pg/mL) | (pg/ml)
40mg/kg (1 Dose) | 118.65 115.91 0.22 252116.67 | 9440.67
810069 20mg/kg (2 Dose) | 43.26 82.75 .021 130094.00 | 10517.00
Week 1 10mg/kg (4 dose) 37.40 93.58 0.23 113872.67 | 7964.00
40mg/kg (1 Dose) | 597.25 521.97 0.26 920498.67 | 6096.33
453801 20mg/kg (2 Dose) | 1065.98 880.11 0.22 1061200.00( 10940.67
10mg/kg (4 dose) | 460.33 425.83 0.30 148400.00 | 8540.00
40mg/kg (1 Dose)| 238.71 | 261.60 0.42 * *
810069 20mg/kg (2 Dose) | 532.81 787.10 0.37 301170.00 | 9323.50
Week 2 10mg/kg (4 dose) | 131.85 135.26 0.36 317895.00 | 12102.50
40mg/kg (1 Dose) | 9644.45 | 9843.84 131 * *
453801 20mg/kg (2 Dose) | 11842.79 | 11919.25 0.32 * *
10mg/kg (4 dose) | 2777.11 | 2733121 0.37 2485211.00| 78094.50
40mg/kg (1 Dose) | 710.85 | 672.59 0.32 * *
810069 |20mg/kg (2 Dose)| 1077.88 | 1237.47 0.40 * *
Week 3 10mg/kg (4 dose) | 532.83 554.43 0.37 154632.00 | 7075.00
40mg/kg (1 Dose) | 2550.82 | 1698.77 0.38 * *
453801 |20mg/kg (2 Dose)| dead dead dead dead dead
10mg/kg (4 dose) | 1284.39 | 2124.10 0.30 2853108.00] 22327.00
40mg/kg (1 Dose) | 174.42 | 219.77 0.27 * *
810069 |20mg/kg (2 Dose)| 955.80 | 1234.95 0.25 * *
10mg/kg (4 dose) | 376.43 | 279.50 0.34 * *
Week 4
40mg/kg (1 Dose) | 1933.55 | 1278.47 0.32 * *
453801 | 20mg/kg (2 Dose)| dead dead dead dead dead
10mg/kg (4 dose) | 2043.27 | 1002.34 0.34 * *
40mg/kg (1 Dose) | 327.49 | 347.59 0.30 * *
810069 |20mg/kg (2 Dose)| 247.50 | 334.02 0.29 * *
Terminat 10mg/kg (4 dose) | 315.65 337.40 0.34 * *
ion 40mg/kg (1 Dose) | 296.67 191.51 0.34 * *
453801 |20mg/kg (2 Dose)| dead dead dead dead dead
10mg/kg (4 dose) | 246.13 | 230.00 0.38 * *

* Note: Urine was collected only from mice dosed with OBM.

Table 3: Exemplary Dosing Initialization Data - Body Weight and Terminal Organ Weight

Experimental . Dose 1 Dose 2 Dose 3 . Kidney Spleen
Dosing Liver {mg)
Group BW(g) | BW(g) | BW(g) (mg) (mg)
810069 40mg/kg (1 Dose)| 25.81 24.80 25.05 1746 344 79
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20mg/kg (2 Dose)|  25.09 24.90 24.05 1358 348 81
10mg/kg (4 dose) 25.55 24.028 24.11 1639 340 101
40mg/kg (1 Dose)| 26.21 22.92 20.4% 1347 299 60
453801 [20mg/kg (2 Dose)| 26.20 23.43 dead dead dead dead
10mg/kg (4 dose)| 26.26 25.11 23.10 1210 295 77

*Note - 2 of 3 mice dead

VIII. EXAMPLE 5 — ACTIVE LEARNING STEP - STEP 1 - ACUTE /N VIO SURVEY OF 128 OBMS IN MICE
TO REFINE PREDICTIVE REGRESSION MODEL OF SYSTEMIC TOLERABILITY

[00340] This example details Step 1 of an active learning survey step of 128 OBMs (16
nucleotide long ASOs with fixed 3-10-3 LNA gapmer chemical scaffold) interrogated in vivo to
evaluate the safety and toxicity of OBMs engineered by the methods described herein.

[00341] Mice. Male C57BL/6 mice were maintained as described in Example 3 above.

[00342]  Acute Study Design. Total Study Design was 3 days (72 hours). On Day -1 (before
the study started) body weight was recorded and mice were randomized into groups of 2 mice
each per treatment (OBM or control). The foundational survey instrument comprised 128
compounds surveyed over 4 groups with 32 compounds interrogated per group. Groups received
subcutaneous injections of an OBM at a dose of 75 mg/kg at the start of the study. Clinical
chemistry data were collected at 24 hours and 72 hours post-administration. Animals were

sacrificed at 72 hours.

[00343] Observations and read-outs included body weight (BW), temperature, ALT, AST,
BUN, creatinine, CRP and total bilirubin (TBILI). CBC analysis was performed on
anticoagulated whole blood samples and measurements included neutrophils (%), neutrophil
(uL), reticulocytes (%), WBC (K/uL), absolute reticulocyte (K/uL), RBC (M/uL), HGB (g/dL),
lymphocyte (/uL), lymphocytes (%), nucleated RBC (/100 WBC), HCT (%), monocyte (/uL),
monocytes (%), polychromasia, anisocytosis, eosinophil (/ul), eosinophils (%), MCV (fL),
basophil (/uL), basophils (%), MCH (pg), poikilocytosis, heinz bodies, MCHC (g/dL),
metamyelocyte (/ul), metamyelocyte (%), myelocyte (/uL), platelet estimate, myelocyte (%)
platelet count (K/uL), promyelocyte (/ulL), promyelocyte (%) and combinations thereof.

[00344] Exemplary active learning data are shown in Tables 4, 5,6, 7, 8,9, 10, 11 and 12 and
were used to build a Step 1 regression model of toxicity. OBMs with ALT levels <100 U/L at 72
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hours after administration (post-administration) were trained as safe and ALT levels >200 U/L

as toxic.

Table 4: Exemplary Step 1 acute active learning data @ 24 hours (Group 1)

SUBSTITUTE SHEET (RULE 26)

Experimental Group No.. of z4r'|r Dosing [ ALT | AST | BUN S;;::‘ CRP | TBIU Train
mice |Survival| BW (g) | (U/L) | (U/L) |(mg/dL) (mg/L) | {mg/dL)
(mg/dL)

Saline Control 2 2 2198 | 28 61 21 0.34 0.19 | 0.70 -
321969 2 2 2035 | 55 68 21 0.35 0.27 | 0.80 |SAFE
75408| 2 2 2273 | 45 46 24 0.29 0.40 | 0.60 |SAFE
454453 2 2 23.00 | 38 55 24 0.33 0.25 | 0.80
895121 2 2 2117 | 41 48 23 0.29 0.28 | 0.70
658579 2 2 23.68 | 46 51 23 0.42 0.37 | 0.80 |SAFE
978800 2 2 2234 | 58 44 24 0.27 031 | 0.60 |TOXIC
984883 2 2 2133 | 42 42 23 0.27 0.17 | 0.60 |SAFE
550074 2 2 2221 | 41 45 27 0.39 0.16 | 0.80 |SAFE
475483 2 2 20.73 | 53 53 21 0.36 0.07 | 0.90
586100 2 2 20.85 | 35 38 21 0.33 0.15 | 0.50
807174 2 2 2256 | 54 57 24 0.36 0.16 | 0.80
780896 2 2 20.81 | 56 60 19 0.35 0.09 | 0.90 |SAFE
589215 2 2 21.19 | 29 49 23 0.37 0.07 | 0.70 |SAFE
953213 2 2 2233 | 36 48 21 0.36 0.03 | 0.70 |SAFE
745787 2 2 21.89 | 51 46 20 0.28 0.03 | 0.60 |SAFE
271136| 2 2 2145 | 41 42 27 0.28 0.01 | 0.60 |TOXIC
237297 2 2 21.67 | 40 53 35 0.37 0.00 1.00 |TOXIC
585158 2 2 21.66 | 48 54 28 0.37 0.18 1.00 | SAFE

7313| 2 2 21.24 | 37 47 33 0.42 0.10 | 0.50 |SAFE
915197 2 2 2203 | 41 73 22 0.33 0 1.00 | SAFE
552066 2 2 2150 | 50 24 24 0.26 0.06 | 0.50 |SAFE
829201 2 2 21.18 | 33 46 24 0.34 0.08 | 0.50 |SAFE
852114 2 2 21.83 | 42 50 27 0.36 0.06 | 0.80 |SAFE
205017 2 2 2235 | 50 48 25 0.30 0.28 | 0.60 |SAFE
355821 2 2 2131 | 37 44 21 0.36 0.09 | 0.60 |SAFE
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956379 2 2 21.81 | 39 43 23 0.33 0.17 0.60 |TOXIC
866952| 2 2 2044 | 38 50 26 0.33 0.22 0.90 |TOXIC

14300| 2 2 2340 | 39 52 24 0.43 0.22 0.50 | SAFE
678794 2 2 20.90 | 47 53 22 0.45 0.17 0.50 |TOXIC
825173 2 2 2133 | 41 43 25 0.33 0.04 0.60 |TOXIC
953122 2 2 21.62 | 29 46 23 0.32 0.10 0.60 |TOXIC
292462 2 2 23.00 | 41 40 23 031 0.21 0.50 |TOXIC

Table 5: Exemplary Step 1 acute active learning data @ 72 hours post administration

(Group 1)
Serum
Experimental Group No. of 72l'1r SacBW| ALT | AST | BUN CREA CRP | TBIL Train
mice [Survival| (g) | (U/L) | (U/L) |{mg/dL) (mg/L) | (mg/dL)
(mg/dL)
saline Control 2 2 | 2191 23 [ 76 | 26 | 034 [o000 | 040 | -

321969 2 2 2119 | 53 | 309 23 0.29 0.24 0.60 | SAFE
75408 2 2 2274 | 42 84 22 0.28 0.00 0.40 | SAFE

454453 2 2 2232 | 126 | 145 23 0.32 0.16 0.30

895121 2 2 21.81 | 133 | 336 25 0.32 0.40 0.60
658579 2 2 23.62 52 360 25 0.32 0.18 0.60 | SAFE
978800 2 2 21.52 | 1110 | 2719 10 0.29 0.00 1.20 |TOXIC
084883 2 1* 21.22 | 60 130 34 0.24 0.00 0.60 | SAFE
550074 2 2 21.68 | 44 184 24 0.25 0.14 0.70 | SAFE

475483 2 1* 21.10 | 156 | 638 24 0.32 0.18 1.00

586100 2 1* 21.57 | 126 | 148 26 0.24 0.10 0.40

807174 2 2 23.02 | 140 | 172 20 0.33 0.29 0.60
780896 2 1* 21.16 56 82 26 0.32 0.16 0.40 | SAFE
589215 2 2 2191 | 31 91 23 0.31 0.08 0.60 | SAFE
053213 2 2 2233 | 33 86 23 031 0.16 0.30 | SAFE
745787 2 2 2230 | 42 53 21 0.37 0.14 0.40 | SAFE
271136 2 2 21.21 | 452 | 559 27 0.29 0.22 0.90 |TOXIC
2372971 2 0 - - - - - - - TOXIC
585158 2 2 21.81 | 48 192 30 0.30 0.34 0.50 | SAFE
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7313 2 1* 2149 | 26 68 30 0.26 0.04 0.40 | SAFE
915197 2 2 2235 | 26 73 25 0.29 0.05 0.40 | SAFE
552066| 2 1* 2199 | 82 | 354 20 0.40 0.16 0.60 | SAFE
829201 2 2 2218 | 66 | 104 22 0.37 0.10 0.30 | SAFE
852114 2 2 22.04 | 49 69 23 0.29 0.14 0.30 | SAFE
205017 2 2 21.86 | 25 40 23 0.29 0.06 0.20 | SAFE
355821 2 2 21.92 | 35 78 21 0.33 0.07 0.40 | SAFE
956379 2 2 21.10 | 1850 | 4950 22 0.06 0.03 3.00 |TOXIC
866952| 2 1* 20.59 | 800 | 1000 20 0.36 0.20 1.00 ([TOXIC
14300| 2 2 23.56 | 68 94 18 0.33 0.04 0.60 | SAFE
678794 2 2 20.82 | 280 | 249 22 0.33 0.05 0.60 |TOXIC
825173 2 1* 21.19 | 5000 | 5480 20 0.34 0.16 1.00 ([TOXIC
953122 2 2 21.68 | 552 | 520 15 0.22 0.07 0.40 |TOXIC
292462 2 2 22.73 | 220 | 110 19 0.26 0.18 0.40 |TOXIC

*clot

Table 6: Exemplary Step 1 acute active learning data @ 24 hours post-administration

(Group 2)

. Serum
. No. of | 24nr |Dosing| ALT | AST | BUN CRP TBILI ]
Experimental Group | | . CREA Train

mice |Survival | BW (g) | (U/L) [(U/L) |(mg/dL) (mg/L)| (mg/dL)
(mg/dL)
Saline Control 2 2 2197 | 29 41 24 0.23 0.09 0.50 -
70160 2 2 22,28 | 47 24 24 0.29 0.13 0.60 | SAFE
692064 2 2 22,87 | 43 41 19 0.38 0.13 0.40 | SAFE
814059 2 2 2463 32 39 25 0.27 0.06 0.50 | SAFE
835697 2 2 23.00| 35 40 24 0.27 0.27 0.40 | SAFE
359245 2 2 2413 | 42 57 26 0.28 0.15 0.70 | SAFE
146606 2 2 2332 | 44 41 20 031 0.10 0.40 | TOXIC
574235] 2 2 2279 38 62 27 0.26 0.10 0.40 | TOXIC
551123] 2 2 2245 | 40 47 25 0.33 0.35 0.60 | SAFE
11559 2 2 23.11| 41 49 26 0.31 0.11 0.60 | SAFE
628903 2 2 22951 31 41 22 0.26 0.04 0.50 | SAFE
960675| 2 2 2339 | 47 44 30 0.28 0.23 0.70 | SAFE
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24282 2 2 24,52 | 48 44 20 0.35 0.29 0.60 | TOXIC
687156| 2 2 2259 30 48 22 0.31 0.13 0.60 | SAFE
43504 2 2 23.88 | 40 47 21 0.24 0.15 0.60 | TOXIC
769032 2 2 22951 35 43 23 0.31 0.20 0.60 | SAFE
953723 2 2 |22.705( 56 55 21 0.23 0.19 0.60 | TOXIC
441788 2 2 23.73 | 36 47 21 0.23 0.22 0.80 | SAFE
208910 2 2 2295 38 42 23 0.26 0.12 0.50
656462 2 2 24.03 | 37 51 20 0.35 0.22 0.80 | SAFE
687114 2 2 2397 35 45 22 0.34 0.16 0.60 | SAFE
651507 2 2 23.08 | 45 51 21 0.33 0.02 0.60 | SAFE
665810 2 2 23.99 | 37 43 21 0.31 0.07 0.60 | SAFE
846421 2 2 2130 40 48 23 0.32 0.20 0.70 | SAFE
703478] 2 2 2536 | 44 42 21 0.28 0.11 0.60 | SAFE
229968 2 2 2241 38 44 22 0.24 0.16 0.70 | SAFE
947698| 2 2 2691 | 62 41 20 0.14 0.22 0.40 | SAFE
885459 2 2 2521 42 49 17 0.30 0.17 0.60 | SAFE
871001 2 2 2289 35 42 23 0.30 0.15 0.40
827865 2 2 2476 | 39 42 19 0.29 0.16 0.70 | SAFE
330302 2 2 22.01| 50 61 24 0.24 0.11 0.60 | TOXIC
502160| 2 2 2396 | 41 43 22 0.25 0.29 0.50 | SAFE
234899 2 2 23,51 37 39 21 0.27 0.41 0.50 | SAFE

Table 7: Exemplary Step 1 acute active learning data @ 72 hours post-administration

(Group 2)
Serum
E . al G No. of | 72hr Sac ALT | AST BUN CREA CRP TBILI Trai
Xperimenta rou . rain
P P1 mice |survival|BW (g)| (U/L) | (U/L) |(me/dL) (mg/L)| (mg/dL)
(mg/dL)
Saline Control 2 2 22.40 33 51 29 0.25 0.11 0.50 -
70160 2 2 22.74 54 63 30 0.28 0.06 0.50 SAFE
692064 2 2 23.56 55 50 24 0.28 0.19 0.20 SAFE
814059 2 2 |2464| 28 | 45 24 021 | 0.13 | 0.50 | SAFE
835697 2 2 23.44 26 42 25 0.33 0.07 0.40 SAFE
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359245 2 2425 46 55 29 0.28 0.06 0.40 | SAFE
146606 2 23.23 | 1586 | 1314 8 0.33 0.07 0.60 | TOXIC
574235 2 23.22 | 3786 | 1871 11 0.31 0.22 0.60 | TOXIC
551123 2 22,67 50 62 28 0.22 0.11 0.40 | SAFE

11559 2 2321 | 46 61 34 0.22 0.13 0.50 | SAFE
628903 2 23.18| 41 63 24 0.26 0.11 0.40 | SAFE
960675 2 2350 | 37 45 32 0.25 0.24 0.40 | SAFE

24282 2 23.58 | 4850 | 4233 19 0.21 0.14 0.50 | TOXIC
687156 2 22,80 36 78 20 0.28 0.28 0.40 | SAFE

43504 2 22.68 | 7683 | 5016 21 0.25 0.23 1.20 | TOXIC
769032 2 2360 31 59 19 0.28 0.09 0.40 | SAFE
953723 2 2210 717 | 775 18 0.20 0.01 0.80 | TOXIC
441788 2 24.07 | 33 48 24 0.29 0.21 0.50 | SAFE
208910 2 23.07 | 115 | 118 26 0.27 0.06 0.60
656462 2 23.95| 38 69 22 0.33 0.22 0.70 | SAFE
687114 2 2406 | 29 50 25 0.33 0.24 0.40 | SAFE
651507 2 23.10 | 56 58 25 0.35 0.19 0.50 | SAFE
665810 2 2335 38 58 22 0.25 0.04 0.60 | SAFE
846421 2 22251 32 49 26 0.32 0.24 0.40 | SAFE
703478 2 2581 39 58 25 0.33 0.11 0.60 | SAFE
229968 2 229 | 31 47 21 0.28 0.22 0.30 | SAFE
947698 2 2691 | 56 83 21 0.29 0.07 0.20 | SAFE
885459 2 25,85 52 63 19 0.26 0.00 0.40 | SAFE
871001 2 23.13 | 153 | 183 22 0.27 0.24 0.40
827865 2 2533 39 53 22 0.34 0.20 0.50 | SAFE
330302 2 21.88 | 872 | 625 21 0.30 0.10 0.60 | TOXIC
502160 2 2459 | 38 46 24 0.27 0.10 0.60 | SAFE
234899 2 2401 | 42 59 22 0.31 0.20 0.40 | SAFE
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(Group 3)
: Serum
Experimental Group No-. of zar'w Dosing( ALT | AST | BUN CREA CRP TBILI Train
mice |Survival|BW (g)| (U/L) | (U/L) |(mg/dL) (mg/L) | (mg/dL)
(mg/dL)

Saline Control 2 2 23.28 | 24 40 | 20.37 0.29 0.17 0.44 -
634433 2 2 2229 31 36 | 17.96 0.28 0.27 .037 | SAFE
52553 2 2 2353 30 38 | 17.72 0.35 0.23 0.45 | SAFE
89422 2 2 23.77 29 39 18.44 0.32 0.16 0.47 SAFE
252689 2 2 2215 34 40 | 2420 | 0.32 0.24 0.45
534368 2 2 2194 32 31 | 18.65 0.33 0.18 0.30 | SAFE
125535 2 2 2246 | 37 52 22.54 0.26 0.01 0.46 | TOXIC
531745 2 2 2492 ( 32 61 | 25.06 0.34 | 0.13 0.41 |TOXIC
711284 2 2 2221 34 23 | 16.95 0.26 0.07 0.38 | SAFE
982426 2 2 2426 | 31 46 | 18.95 030 | 0.23 0.67 | SAFE
122106 2 2 2112 | 52 42 21.63 0.32 0.19 0.49 | TOXIC
82284 2 2 24.87 | 25 37 | 21.72 0.37 0.35 0.46 | SAFE
328861 2 2 2233 31 56 | 19.70 | 0.36 0.08 0.33 | SAFE
432289 2 2 1996 | 32 48 | 19.75 0.30 | 0.20 0.34 | SAFE
546096 2 2 2419 ( 36 40 | 2191 0.28 0.26 0.71 | SAFE
227340 2 2 2429 [ 29 56 | 25.58 0.43 0.24 0.40 | SAFE
111307 2 2 21.24 31 38 | 23.63 0.36 0.07 0.42 | SAFE
155024 2 2 22.65| 32 34 23.12 0.37 0.14 0.42 SAFE
571013 2 2 2363 32 31 | 20.17 0.31 0.14 0.33 | SAFE
452068 2 2 2440 ( 41 39 | 19.57 0.29 0.19 0.35 | SAFE
130071 2 2 23.76 [ 29 30 | 21.79 0.30 | 0.03 0.41 | SAFE
168413 2 2 2285 25 29 | 20.63 0.31 0.05 0.39 | SAFE
3469101 2 2 2393 34 32 | 17.89 0.27 0.23 0.39 | SAFE
83429 2 2 2294 ( 32 40 | 19.27 0.15 0.14 0.52 | SAFE
940231 2 2 22.67 29 38 18.70 0.25 0.51 0.43 SAFE
394594 2 2 21.87 82 69 | 21.58 0.35 0.12 0.41 | SAFE
863606 2 2 2269 30 34 | 18.76 0.26 0.06 0.34 | SAFE
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753381 2 2 21,53 | 40 39 | 22.35 0.22 0.06 0.42 SAFE
540023 2 2 21.83 | 40 40 | 20.11 0.31 0.31 0.46 SAFE
118784 2 2 2191 | 25 39 | 20.66 0.28 0.05 0.46 SAFE
47506 2 2 2245 | 34 38 17 0.27 0.11 0.54 | SAFE
499883 2 2 2451 | 28 36 | 22.60 0.30 0.04 0.48 SAFE
15478 2 2 2290 | 26 35 | 21.38 0.21 0.26 0.43 SAFE

Table 9: Exemplary Step 1 acute active learning data @ 72 hours post-administration

(Group 3)
Serum
Experimental Group No. of 72t'1r Sac ALT | AST | BUN CREA CRP TBILI Train
mice |Survival|BW (g)| (U/L) |(U/L)|(mg/dL) (mg/L) | (mg/dL)
(mg/dL)
Saline Control 2 2 2349 21 48 22 0.020 | 0.06 0.54 -
634433 2 2 2284 20 67 24 0.17 0.21 0.46 SAFE
52553 2 2 2350 | 18 47 25 0.23 0.04 0.32 SAFE
89422 2 2 2350 22 58 22 0.22 0.13 0.37 SAFE
252689 2 2 2270 [ 153 | 128 19 0.24 0.04 0.41
534368 2 2 2285 27 62 23 0.20 0.07 0.54 SAFE
125535 2 2 2233 637 | 613 11 0.19 0.20 0.53 | TOXIC
531745 2 2 22.80 | 1440 | 3120 38 0.16 0.07 0.66 | TOXIC
711284 2 2 2264 33 85 22 0.23 0.22 0.42 SAFE
982426 2 2 24211 29 54 26 0.18 0.22 0.46 SAFE
122106 2 2 20.87 | 1034 | 1008 22 0.21 0.14 0.51 |TOXIC
82284 2 2 2451 24 96 28 0.28 0.19 0.60 SAFE
328861 2 2 23.28 | 24 94 14 0.18 0.08 0.44 SAFE
432289 2 2 2030 | 40 67 20 0.24 0.08 0.33 SAFE
546096 2 2 2433 | 22 50 24 0.19 0.19 0.54 SAFE
227340 2 2 2444 | 28 80 27 0.17 0.42 0.43 SAFE
111307 2 2 2213 | 24 61 29 0.15 0.27 0.38 SAFE
155024 2 2 23.53 22 56 28 0.24 0.07 0.43 SAFE
571013 2 2 2396 | 44 54 23 0.19 0.27 0.32 SAFE
452068 2 2 2492 | 57 109 22 0.20 0.02 0.49 SAFE
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130071 2 2 23.39 | 66 101 24 0.15 0.21 0.37 SAFE
168413 2 2 2323 | 26 68 21 0.25 0.09 0.41 SAFE
346910 2 2 24701 59 82 24 0.22 (0132 046 SAFE

83429 2 2 23.12 | 43 66 34 0.31 0.04 0.31 SAFE
940231 2 2 2357 | 43 103 22 0.18 0.16 0.39 SAFE
394594 2 2 22,67 53 67 20 0.22 0.21 0.31 SAFE
863606| 2 2 23541 19 70 22 0.21 0.26 0.42 SAFE
753381 2 2 2190 31 195 22 0.17 0.09 0.50 | SAFE
540023 2 2 2236 28 146 21 0.23 0.19 0.44 | SAFE
118784 2 2 2288 21 96 24 0.21 0.11 0.51 SAFE

47506 2 2 23.26 | 25 47 22 0.22 0.07 0.38 SAFE
499883 2 2 2538 | 34 60 14 0.24 0.00 0.38 SAFE

15478 2 2 2334 24 56 25 0.24 0.23 0.33 SAFE

Table 10: Exemplary Step 1 acute active learning data @ 24 hours post-administration

(Group 4)
. Serum

. No.of | 2anr |Dosing| ALT | AST | BUN CRP TBILI )
Experimental Group . ) CREA Train

mice |Survival | BW (g)| (U/L) | (U/L) |(mg/dL) (mg/L) | (mg/dL)

(mg/dL)

Saline Control 2 2 23.89 | 30 50 18 0.32 0.16 0.56 -
737341 2 2 2393 | 49 66 21 0.31 0.10 0.47 SAFE

253319 2 2 2213 | 28 43 20 0.39 0.16 0.60
527126 2 2 2237 | 40 39 20 0.40 0.30 0.47 SAFE
338296 2 2 23.84 | 42 45 21 0.33 0.05 0.53 SAFE
204254 2 2 23.43 | 36 35 20 0.36 0.05 041 SAFE
819987 2 2 23.56 | 39 44 21 0.39 0.13 0.46 SAFE
479162 2 2 20.28 | 39 58 24 0.36 0.17 043 SAFE
351132 2 2 2296 | 26 45 22 0.38 0.07 0.61 SAFE
770912 2 2 2393 | 28 38 19 0.37 0.23 0.56 SAFE
768336 2 2 21.14 | 26 37 23 0.44 0.29 0.48 SAFE
606819 2 2 2232 | 32 43 23 0.37 0.08 0.62 SAFE
624628 2 2 21.65| 33 40 29 0.48 0.13 0.46 SAFE
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612527 2 2 19.97 ] 24 51 24 0.40 0.19 0.48 SAFE
928411 2 2 2213 | 43 54 20 0.38 0.10 0.62 SAFE
174113 2 2 21.75| 28 40 22 0.34 0.26 0.48 | TOXIC
858171 2 2 2148 | 79 95 22 0.38 0.20 0.45 SAFE
796555] 2 2 2276 | 33 46 21 0.44 0.02 0.49 | TOXIC
474266 2 2 2131 35 47 22 0.40 0.10 0.55 SAFE
242649 2 2 21.06 | 46 69 24 0.29 0.20 0.47 SAFE
359800] 2 2 23.69 | 47 49 23 0.39 0.23 0.57 SAFE
327141 2 2 2049 29 43 20 0.38 0.01 0.45
562229 2 2 20.03 | 44 46 21 0.39 0.21 0.56 SAFE
903104 2 2 21.68 | 40 64 24 0.38 0.17 0.42 SAFE
774779 2 2 2205 46 47 21 0.36 0.15 0.41 SAFE
992725] 2 2 2250 29 54 24 0.49 0.13 0.60 | SAFE
350213 2 2 23.12 | 32 41 22 0.39 0.13 0.48 | TOXIC
279342 2 2 22731 36 53 20 0.43 0.06 0.55 | TOXIC
563767 2 2 2176 | 39 41 21 0.38 0.00 0.43
826204 2 2 2172 | 28 45 23 0.35 0.03 0.48 SAFE
881216 2 0 22,88 79 86 24 0.41 0.06 0.53 | TOXIC
739351 2 2 2480 36 43 21 0.36 0.30 .050
874060| 2 2 22541 26 40 19 0.40 0.31 0.46 SAFE

Table 11: Exemplary Step 1 acute active learning data @ 72 hours post-administration

(Group 4)
Serum
E . al G No. of | 72hr Sac ALT AST BUN CREA CRP TBILI Trai
Xperimenta rou . rain
P ®| mice |survival|BW (g)| (U/L) | (U/L) |(mg/dL) (mg/L) | (mg/dL)
(mg/dL)
Saline Control 2 2 24.00 22 54 27 0.23 0.02 0.57 -
737341 2 2 24.15 66 212 28 0.29 0.29 1.46 SAFE
253319 2 2 22.82 | 132 143 19 0.25 0.19 0.42
527126 2 2 22.59 81 216 27 0.20 0.23 0.69 SAFE
338296 2 2 23.50 25 75 26 0.23 0.12 0.42 SAFE
204254 2 2 23.09 47 140 23 0.22 0.08 0.49 SAFE
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819987 2 23.73 | 46 81 18 0.21 0.14 0.49 SAFE
479162 2 2060 | 25 59 28 0.19 0.10 0.44 | SAFE
351132 2 23.251 29 77 29 0.23 0.08 0.44 | SAFE
770912 2 23.83 | 63 283 29 0.25 0.11 0.92 SAFE
768336 2 2158 | 27 67 25 0.26 0.07 0.41 SAFE
606819 2 22.83| 36 98 23 0.22 0.00 0.70 | SAFE
624628 2 2157 | 43 93 22 0.22 0.15 0.53 SAFE
612527 2 2036 | 25 72 25 0.21 0.21 0.85 SAFE
928411 2 2218 | 47 146 23 0.23 0.11 0.98 SAFE
174113 2 21.89 | 207 | 275 21 0.21 0.15 0.33 | TOXIC
858171 2 2213 | 82 112 27 0.25 0.29 0.60 | SAFE
796555 2 2338 | 357 | 371 29 0.21 0.16 411 | TOXIC
474266 2 21.01| 62 143 29 0.25 0.01 1.52 SAFE
242649 2 1945] 29 59 26 0.3 0.00 0.56 SAFE
359800 2 23.69 | 76 109 23 0.26 0.13 0.43 SAFE
327141 2 20.92 | 168 | 337 24 0.31 0.01 0.68
562229 2 20.86 | 26 70 25 0.25 0.06 0.54 | SAFE
903104 2 2346 | 46 73 22 0.25 0.20 0.55 SAFE
774779 2 2241 26 50 25 0.26 0.09 0.49 SAFE
992725 2 2332 26 86 29 0.27 0.03 0.67 SAFE
350213 2 23.63 | 586 | 511 24 0.28 0.11 0.78 | TOXIC
279342 2 22.071 35 67 24 0.32 0.14 0.47 | TOXIC
563767 2 21.27 | 147 | 187 22 0.27 0.03 0.58
826204 2 2229 25 55 29 0.25 0.03 0.48 SAFE
881216 0 dead - - - - - - TOXIC
739351 2 2441 | 135 | 168 20 0.18 0.07 0.51
874060 2 22,80 27 53 28 0.20 0.11 0.53 SAFE

[00345]

Surprisingly, data from the Step 1 active learning demonstrated an unexpected

enrichment of safe OBMs. In particular, after only 1 active learning round Creyon Step 1 OBMs

were already 69% safe compared to 10-25% for random screening (FIG. 9). FIG. 9 is an

exemplary plot of measured log10 ALT (U/L) vs measured logl0 AST (U/L) (ALT and AST are
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both biomarkers for hepatotoxicity) and demonstrates a clustering of Creyon OBMs below 100

U/L toxicity level for both ALT and AST.

[00346] These data also demonstrate that the provided methods are target agnostic and
perform equally well regardless of whether the sequence “has a target” or has no known target.
These results confirm the separability of RNaseH-mediated off-target driven toxicity versus the

far more common OBM sequence-interaction driven toxicities (FIG. 10A).

IX. EXAMPLE 6 — ACTIVE LEARNING STEP - STEP 2 - SYSTEMIC /N V'IVO TOLERABILITY SURVEY OF
128 OBMS IN MICE TO REFINE PREDICTIVE REGRESSION MODEL OF SYSTEMIC TOLERABILITY

[00347] This example details a second active learning survey step evaluated in vivo over a 15-
day period of time to further refine the Step 1 regression model built in Example 5. In particular,
the Step 2 active learning surveyed 128 OBMs (16 nucleotide long ASOs with fixed 3-10-3 LNA
gapmer chemical scaffold) in vivo to evaluate the safety and toxicity of OBMs engineered by the

methods described herein.
[00348] Male C57BL/6 mice aged 11-12 weeks were maintained as described in Example 3.

[00349] Total Study Design was 15 days. On Day -1 (before the study started) body weight
was recorded and mice were randomized into groups of 3 mice each per treatment (OBM or
control). Observations and read-outs included body weight, urine volume and collection, blood
collection, serum and urinary analysis and kidney and liver collection. Exemplary
nephrotoxicity assays included, but were not limited to urinary KIM-1, Serum Cystatin-¢ (CysC),
Serum Creatinine and BUN. Exemplary hepatotoxicity assays included, but were not limited to
serum ALT, AST, GLDH, and CCK-18. Exemplary immunotoxicity assays included, but not
limited to cytokine assay(s), complete blood count (CBC) and C-reactive protein (CRP). Mean
bodyweight was recorded on Days 1, 5 and 15. CBC analysis was performed as described in

Example 3.

[00350] Groups received subcutaneous injections of an OBM at a dose of 75 mg/kg on Day 1
and Day 4, for a total of 2 doses. Urinary kidney injury molecule (KIM-1), a sensitive
quantitative biomarker for early detection of kidney tubular injury and Serum Cystatin-c (CysC)

were measured at +24 hours after each dose. At +72 hours after each dose and on Day 15, blood
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was collected and Liver Function Tests (LFT) and Kidney Function Tests (KFT) performed.

Immunotoxicity was also measured at and included levels of CRP and CBC analysis.

[00351]

Liver function tests (LFT) included but were not limited to serum alanine

transaminase (ALT), aspartate transaminase (AST), and total bilirubin (TBIL) measurements.

Kidney function tests (KFT) included but were not limited to serum blood urea nitrogen (BUN)

and creatinine measurements. Final Study Design was as follows: Day 1: Dose 1; Day 2 (+24

hours): collect urine KIM-1; Day 3 (+72 hours): collect blood LFT, KFT, CRP; Day 4: Dose 2,
Day 5(+24 hours): collect urine KIM-1; Day 6 (+72 hours): collect blood LFT, KFT, CRP; Day
15: study termination, collect blood, LFT, KFT, CRP, CBC).

[00352]

and spleen.

[00353]

On Day 15 animals were sacrificed and wet tissue weight measured for liver, kidney

Exemplary liver function test markers are provided in Table 12. Exemplary dosing,

liver and kidney function results for the Step 2 of active learning are provided in Table 13, 14,

15,16,17, 18, 19, 20, 21, 22, 23 and 24.

Table 12: Exemplary liver function test markers

Parameters Full Name Associated with

ALT Alanine Aminotransferase Hepatocytic damage/necrosis, Hepatitis

AST Aspartate Aminotransferase Llyer, Skeletal, cardiac, muscle, kidney,
brain

ALPI Alkaline Phosphatase leer, Bone Parathyroid and Intestinal
diseases,

Liver, Heart, Kidney, spleen, pancreas
GGT Gamma(y)-Glutamyl Transferase 1 prostate
LDI Lactate Dehydrogenase k%il:l/er, carglacrnlnlilscle, skeletal muscle,
Liver enzymes idneys and erythrocytes.
SDH Sorbitol dehydrogenase Liver damage and diabetic

5-NUCLEOTIDASE

5- mucleotidase

Hepatocytic damage/necrosis, Hepatitis,
autoimmune, toxic,

Aspartate Aminotransferase; Alanine

AST/ALT >2 in Chronic Liver Disease

AST/ALT Aminotransferase AST/ALT <1 acute hepatitis/ injury
Flevated blood serum GLDH levels
GLDH Glutamate Dehydrogenase indicate liver damage; hepatocytic
damage/necrosis, hepatitis
TBI Total Bilirubin Liver, Hemolytlc, Hematological and
metabolic disorders
Excretory . Severe liver disorders such as cirrhosis,
AMM Ammonia heoatit
epatitis
Protein synthesis TP Total Protein Liver, kidney, Bone marrow, metabolic
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or nutritional disorders
ALB Albumin Liver, Kidney
. Liver, kidney, Bone marrow, metabolic
GLOB Globulin or nutritional disorders
. . Liver, kidney, Bone marrow, metabolic
AlG Albumin: Globulin or nutritional disorders
PT Prothrombin time Liver, Vitamin K deficiency, etc.
APTT Activated partial Thromboplastin Time{ Liver, Vitamin K deficiency, etc.
Liver, Oxygen deficiency (Lactic
Other LA Lactate Acidosis) and CKD
BA Bile Acid Liver (biliary Damage)
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Table 14: Exemplary Step 2 active learning data - Day 4 and Day 7 Liver Function Tests
(Batch 1)

Day4 | Day4 | Day4 | Day7 | Day7 | Day?7
ALT AST | GLDH ALT AST | GLDH | Train
(U/L) | (U4 | (U | U/ | (U/L) | (VN
Saline Control | 25.67 | 25.77 | 48.12 | 73.36 | 26.36 | 40.45 | 84.64 | 27.58 -
993154| 26.09 | 25.65 | 81.55 | 83.73 | 40.49 | 36.34 | 74.26 | 22.05 | SAFE

Experimental | Day 1 | Day 5
Group | BW (g) (BW (g)

519154| 25.43 | 24.69 | 44.31 | 63.86 | 17.53 | 59.29 93.6 | 34.59 [ TOXIC

307838| 54.54 | 22.16 | 540.75 | 859.16 | 311.87 |6289.33]|7910.27|2152.43| TOXIC

981380| 24.88 | 24.25 | 29.63 | 59.62 | 19.44 | 36.84 | 99.83 | 28.55 | SAFE

738296| 25.05 | 25.14 | 31.05 | 60.08 | 17.89 | 135.51|311.73 | 209.37 | TOXIC

118475| 25.04 | dead | -10.48 | -26.55 | 381.52 | dead | dead | dead [ TOXIC

632914| 25.05 | 25.48 | 52.01 | 82.63 | 32.96 | 41.36 | 85.19 | 29.07 | SAFE

49609| 25.07 | 25.29 | 55.61 [ 113.73 | 24.18 | 2331 | 62.86 | 15.78 | SAFE

746474| 25.15 | 24.46 | 38.87 | 57.02 | 21.41 | 35.26 | 67.67 | 86.66 | SAFE

27749| 2545 | 25.22 | 42.35 | 72.19 | 23.57 |(3122.48]|2582.87| 908.36 | TOXIC

304426| 25.62 | 24.86 | 62.8 | 69.66 | 18.64 33 7159 | 20.8 SAFE

8566 25.48 | 25.20 | 34.44 | 6598 | 20.11 | 68.43 | 101.78 | 28.72

443170( 25.31 | 25.19 | 95.38 | 68.36 | 16.26 | 62.4 | 10859 | 27.42

873027| 26.06 | 25.79 | 42.39 | 59.23 | 16.26 | 28.43 | 56.67 | 14.56 | SAFE

603813| 25.43 | 25.27 | 7738 | 82.61 | 22.66 | 6857 | 95.01 | 38.49

741913| 25.41 | 25.25 | 61.39 | 70.54 | 24.57 | 27.93 | 63.43 | 18.42 | SAFE

238639| 25.40 | 24.93 | 33.01 | 69.24 | 17.06 |1001.08( 917.46 | 529.3 | TOXIC

747776| 25.70 | 25.55 | 55.17 | 77.96 | 29.44 |1089.15|1472.11| 894.48 | TOXIC

361474| 25.41 | 25.30 | 45.17 | 59.94 | 18.69 | 28.37 | 57.74 | 20.36 | SAFE

866975| 24.96 | 25.38 | 41.38 | 71.86 14.1 | 43.05 | 60.95 | 14.87 | SAFE

791282| 25.21 | 25.22 | 42.24 | 64.36 | 16.26 | 20.34 | 39.69 | 15.54 | SAFE

966623| 26.09 | 25.53 | 86.04 | 704 | 39.77 | 35.63 | 56.29 | 15.09 | SAFE

70031( 2548 [ 25.52 | 475 | 6631 | 28.69 | 2439 | 61.01 | 13.43 | SAFE

716261| 24.82 | 25.78 | 61.83 | 90.23 | 31.46 | 99.62 | 94.03 | 23.68

194812 25.62 | 25.37 | 5095 | 77.03 | 27.14 | 107.2 | 147.63 | 124.63 | TOXIC
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521162| 24.85 | 25.69 | 50.13 | 80.9 | 19.33 758 [1194.95| 343.39 | TOXIC

777802 26.07 | 25.73 | 71.53 | 269.49 | 33.26 | 551.29 | 534.96 | 201.01 | TOXIC

638908| 25.62 | 25.59 | 39.02 | 83.66 | 19.99 | 364.7 | 248.1 | 112.33 | TOXIC

325463| 25.47 | 25.37 | 41.27 | 75.81 | 12.07 | 26.52 | 56.09 | 15.59 | SAFE

208852| 25.21 | 25.16 | 44.29 | 88.18 | 23.68 |1757.65|1180.11| 780.33 | SAFE

942598| 25.00 | 25.68 | 55.75 | 86.09 | 29.72 | 110.11 | 123.69 | 58.13 | SAFE

832389 25.47 | dead | -5.89 | -22.18 | 255.43 | dead dead | dead | TOXIC

Table 15: Exemplary Step 2 active learning data - Day 2 and Day S Kidney Function Tests
(Batch 2)

Day 2 Day 5
Day 2 Day 2 Uri Day 5 Day 5 Uri
i rinar rinar
Experimental Cystatin-C Kim-1 y Cystatin-C Kim-2 y Train
TP gmy | gmn | SR gmy) | gy | S
pg/m pg/m pg/m pg/m
(mg/dL) (mg/dL)

Saline Control | 164523.75 | 5891.07 50.76 155519.11 | 2858.10 33.93 -

881203| 513349.17 | 3768.06 34.16  |2465814.60| 2518.90 22.98 TOXIC

944156] 926560.15 | 4080.82 34.24 524836.78 | 4716.98 28.29 SAFE

200150( 373915.10 | 4543.03 28.24 11283689.91| 4243.06 29.82 SAFE

938067| 221015.85 | 3734.25 32.59 396179.46 | 3017.35 34.14 TOXIC

118948| 287970.73 | 3020.57 19.60 796090.05 | 2766.67 20.09 SAFE

781955] 408805.46 | 5736.60 38.87 1218251.46| 2605.33 27.46 SAFE

665820| 155475.10 | 1970.27 17.92 326068.44 | 1484.82 16.92 SAFE

72753(2321213.15] 4521.09 9.60 3635846.93| 24328.63 3541 TOXIC

401556| 504298.44 | 3640.51 25.75 173386.37 | 2035.10 23.48 SAFE

618163| 107968.18 | 2965.15 23.58 83980.52 1372.94 20.77 SAFE

726259| 155966.37 | 4973.45 26.59 614002.23 | 6711.40 52.48 TOXIC

570833(3066491.53| 9313.84 44.10 9057371.21| 5780.62 38.75 TOXIC

383196] 501629.22 | 31544.32 64.33 27478541 | 5629.36 22.32

179548 388085.55 | 7628.96 53.68 525792.76 | 2884.60 29.17 SAFE

653495| 916817.58 | 5324.17 59.58 dead dead dead TOXIC

797688( 941107.85 | 7831.34 52.99 1790584.81( 14992.44 36.16 TOXIC

711766] 350755.60 | 4242.10 44.23 210373.74 | 1333.62 22.28
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879866| 988432.11 | 8953.57 53.17 782667.84 | 3995.45 34.81 SAFE
814738] 615962.98 | 6663.63 42.30 727026.70 | 5108.78 34.85 SAFE
145937 739960.44 | 10314.10 70.19 486368.88 | 6058.86 34.88
154401 662691.30 | 6723.92 41.27 386301.61 | 2843.94 27.54 SAFE
586734 510217.59 | 8889.21 50.52 dead dead dead TOXIC
538044| 486609.09 | 6791.24 62.72 1374166.92| 9649.63 44.19 TOXIC
168576( 775128.37 | 21559.68 78.32 1205692.89( 8512.70 24.29
734191] 659826.41 | 8733.07 47.29 269004.47 | 2389.31 21.60 SAFE
771379] 401119.56 | 5806.31 45.46 419092.23 | 18698.92 34.78 TOXIC
199181(2146503.90( 9133.44 38.53 |6280147.11| 12158.54 31.74 TOXIC
375707] 539522.43 | 10127.82 54.62 465346.57 | 2041.34 16.35 SAFE
156549 571628.08 | 6091.03 2557 754430.60 | 3008.57 24.86 TOXIC
408449| 501630.31 | 4521.32 25.99 697090.24 | 4576.08 37.09 SAFE
81243( 824610.24 | 5787.19 23.66 906035.76 | 5245.13 29.79 TOXIC
541841| 446072.24 | 15812.45 25.13 848295.10 | 3833.39 28.05 TOXIC

Table 16: Exemplary Step 2 active learning data - Day 4 and Day 7 Liver Function Tests

(Batch 2)
Day 4
a Day 7 Day 7 Day 7
Experimental | Day1 | Day5 |Day15| Day4 | Day4 |Serum ALT AST Serum Train
Group  |BW (g) | BW (g) |BW (g) |ALT (U/L)|AST (U/L)| CREA o |y | CREA
(mg/dL) (mg/dL)

Saline Control| 25.79 | 26.54 | 27.56 79.89 95.13 0.49 45.56 86.61 0.36 -
881203| 27.08 | 26.92 | 27.43 | 91.66 100.29 0.48 |2156.24| 1273.83 | 0.41 |[TOXIC
944156 26.55 | 27.66 | 29.50 87.92 72.29 0.38 73.91 114.01 0.37 | SAFE
200150 26.30 | 26.47 | 27.86 | 38.19 73.74 0.52 39.80 71.02 0.46 | SAFE
938067| 26.16 | 26.26 | 28.65 | 42.18 85.69 0.43 | 165.36 | 188.39 | 0.33 (TOXIC
118948| 26.84 | 27.22 | 28.95 | 83.59 88.81 0.41 27.48 63.57 0.40 | SAFE
781955] 26.09 | 26.14 | 27.90 | 66.73 90.20 0.40 53.11 76.82 0.35 [ SAFE
665820| 25.86 | 26.37 | 27.62 28.13 67.32 0.42 | 190.21 | 243.09 | 0.30 | SAFE

72753| 26.63 | 25.53 | 18.45 | 648.92 | 1592.60 | 0.45 |2640.12 | 5824.85 | 0.31 |TOXIC
401556] 25.98 | 26.39 | 27.54 33.44 74.97 0.46 28.39 61.90 0.38 | SAFE
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618163] 26.05 | 26.52 | 27.70 | 61.66 95.64 0.41 | 3994 67.86 0.35 | SAFE
726259] 25.49 | 26.13 | 27.02 | 73.40 115.40 | 0.46 | 16132 | 19256 | 0.41 [TOXIC
570833| 25.24 | 25.31 | 27.18 | 379.14 | 528.10 | 0.41 |2146.71| 2057.92 | 0.38 |TOXIC
383196| 26.34 | 27.03 | 29.25 | 49.72 77.19 0.42 | 229.21 | 154.16 | 0.35
179548( 26.01 | 26.24 | 28.04 | 83.79 85.68 0.36 | 51.21 83.11 0.25 | SAFE
653495( 26.10 | dead | dead |13056.50(10151.86| 0.50 dead dead dead [TOXIC
797688| 26.13 | 25.66 | 24.80 | 88.94 171.14 | 0.37 | 848.33 | 930.82 | 0.35 [TOXIC
711766] 26.46 | 26.73 | 26.76 | 52.18 66.76 0.34 | 22.18 51.33 0.26
879866| 25.93 | 26.78 | 28.08 | 151.18 | 141.92 | 0.29 | 20.13 51.76 0.28 | SAFE
814738| 26.37 | 26.27 | 27.84 | 53.18 65.59 039 | 1754 65.94 0.33 | SAFE
145937 26.70 | 27.10 | 27.75 | 60.68 76.12 0.34 | 39.85 85.79 0.28
154401 26.88 | 26.63 | 19.46 | 97.57 70.30 0.34 | 17.79 47.17 0.26 | SAFE
586734( 27.02 | dead | dead |12614.00(11094.75| 0.38 dead dead dead [TOXIC
538044| 26.49 | 25.19 | 24.06 | 227.56 | 249.13 | 0.38 |8805.96(11128.89 0.38 |TOXIC
168576 26.67 | 27.19 | 27.67 | 66.89 73.41 0.36 | 858.59 | 1109.81| 0.34
734191) 25.79 | 27.01 | 27.89 | 37.67 70.54 0.33 | 14.15 89.72 0.30 | SAFE
771379] 26.59 | 27.28 | 27.76 | 41.79 83.73 0.38 | 438.49 | 179.35 | 0.32 |TOXIC
199181( 26.60 | 26.50 | 21.76 | 91.98 105.62 | 0.28 |1192.75| 1103.13| 0.31 (TOXIC
375707] 26.56 | 27.27 | 27.75 | 29.75 64.37 0.31 | 26.17 58.00 0.33 | SAFE
156549( 26.26 | 26.02 | 27.11 | 57.90 114.87 | 0.23 | 19250 | 271.25 | 0.29 [TOXIC
408449| 25.71 | 26.66 | 27.12 | 66.29 86.17 0.26 | 29.33 51.55 0.33 | SAFE

81243 26.32 | 26.62 | 27.45 | 49.98 69.15 0.31 | 242.40 | 125.26 | 0.31 |TOXIC
541841| 26.30 | 25.58 | dead | 45.66 72.36 0.38 |4467.70| 3085.91 | 0.35 |TOXIC

Table 17: Exemplary Step 2 active learning data - Day 2 and Day S Kidney Function Tests

(Batch 3)

Day 2 Day 5

i Day 2 Day 2 Urinar Day5 Day > Urinar
Experimental Cystatin-C Kim-1 y Cystatin-C Kim-2 y Train

srouw {pg/mL) | (pg/mL) CREA (pg/mL) | (pg/mL) CREA

(mg/dL) (mg/dL)
Saline Control | 238758.21 | 4972.13 60.67 286055.06 | 4834.46 4514 -
732514] 260896.80 | 3152.16 30.98 721692.13 | 2008.02 18.85 SAFE
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87575( 930943.53 | 51460.84 65.82 643520.53 | 5124.79 18.43 SAFE
48388| 71011.45 3025.90 14.65 295531.18 | 7376.62 40.96 SAFE
500494)3292786.53| 12757.90 57.12 3172471.47| 4561.93 27.22 SAFE
883656]1295204.47| 4761.91 38.17 6886940.00| 4629.12 23.62 TOXIC
539919| 539761.40 | 3308.32 20.51 2121778.00| 3688.30 20.34 SAFE
98818( 742534.07 | 3877.60 3331 2130835.60| 3699.91 3091 SAFE
7643121 6607410.67| 15077.94 99.66 5480822.67| 6547.28 43.74 SAFE
731722] 534844.53 | 12698.21 106.25 381681.00 | 3454.84 30.64 SAFE
485590| 491913.47 | 4867.55 35.71 9277260.00( 63019.26 20.50 TOXIC
834577]|2589888.50| 15723.40 54.93 3644999.33| 11960.59 28.92 SAFE
801559]2225262.90| 36067.46 56.27 3459124.00( 18109.12 41.40 SAFE
352118] 476729.57 | 3539.09 31.83 2801964.67| 6223.87 41.14 SAFE
575833|1087197.00| 4219.34 19.41 2996238.00| 9697.15 28.81 TOXIC
984070| 208308.75 | 1631.89 26.03 617289.20 | 2310.41 22.68 SAFE
519970]3902555.33 | 18998.46 79.66 5256790.67| 20385.51 28.42 TOXIC
67247112066235.07| 1217.53 15.95 6554424.00| 16476.40 32.83 TOXIC
373230/1201103.70| 1344.78 23.49 3942965.87( 3395.30 19.42
567116|1391476.33| 4536.76 29.21 2615064.00| 5950.67 25.97 SAFE
68461( 104880.24 530.06 18.06 957770.87 | 7405.26 47.00 TOXIC
474831| 242401.90 | 3384.06 44.05 386873.22 | 17524.30 39.19 SAFE
171217 166365.04 761.76 37.08 119366.11 | 3491.39 24.61 SAFE
972466] 460135.27 | 3907.07 48.39 461563.67 | 4585.89 40.75 SAFE
34573(1048882.53( 1950.72 31.25 8721028.00( 37359.63 77.46 TOXIC
948669|2829127.07| 5079.42 48.23 5268642.00| 3022.56 18.20 TOXIC
611192]11749360.47| 7123.79 32.82 8997380.00| 19629.60 26.35 TOXIC
39449( 827785.60 | 9878.52 2291 8302236.00( 57203.99 16.96 TOXIC
825340] 353552.16 | 3526.44 55.56 664796.27 | 2324.53 22.25 SAFE
205789( 334009.20 | 1264.12 19.25 4294692.00( 5868.36 50.07 SAFE

Table 18: Exemplary Step 2 active learning data - Day 4 and Day 7 Liver Function Tests

(Batch 3)
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Day 4 Day 7
Experimental | Day 1 | Day 5 |Day 15 D::_,T‘l D::T4 Ser:,Jm Day 7 Day 7 Ser:,xm Train
Group BW (g) | BW (g) |BW (g) w | CREA |ALT (U/L)|AST (U/L)| CREA
(mg/dL) (mg/dL)
Saline Control | 28.27 | 27.88 | 28.46 | 89.68 | 85.13 | 0.29 24.38 50.10 | 0.17 -
732514 26.94 | 26.63 | 27.42 | 116.83 | 82.94 | 0.31 48.69 58.05 0.16 | SAFE
87575 25.36 | 26.15 | 26.88 | 116.81 | 105.04 | 0.24 19.32 50.44 | 0.21 | SAFE
48388| 24.44 | 27.15 | 27.69 | 41.22 | 78.33 | 0.27 64.88 | 133.95 | 0.16 | SAFE
500494| 26.80 | 27.36 | 27.63 | 43.70 | 70.67 | 0.33 35.18 58.38 0.17 | SAFE
883656 26.83 | 26.01 | 25.66 | 33.29 | 69.62 | 0.40 | 614.80 | 464.21 | 0.22 |TOXIC
539919 25.63 | 26.02 | 27.05 | 66.60 | 77.45 | 0.37 23.88 57.25 0.21 | SAFE
98818| 27.34 | 26.18 | 26.98 | 30.04 | 60.25 | 0.34 19.86 69.33 0.20 | SAFE
764312 23.44 | 25.53 | 26.05 | 46.89 | 73.13 | 0.33 46.74 79.41 0.20 | SAFE
731722 22.62 | 25.27 | 2555 | 34.71 | 70.54 | 0.29 55.49 62.57 0.16 | SAFE
485590 26.44 | 23.64 | dead | 722.26 | 797.26 | 0.35 dead dead dead |TOXIC
834577| 26.95 | 26.39 | 26.65 | 108.40 | 81.36 | 0.37 38.27 61.02 0.25 | SAFE
801559 25.62 | 27.40 | 29.58 | 48.76 | 117.78 | 0.27 78.81 99.11 0.17 | SAFE
352118( 22.82 | 24.41 | 25.75 | 36.54 | 69.88 | 0.34 35.93 65.76 0.19 | SAFE
575833| 27.68 | 28.12 [ 27.99 | 59.69 | 121.75 | 0.30 | 321.63 | 42531 | 0.14 |TOXIC
984070| 26.15 | 24.71 | 26.39 | 53.39 | 74.64 | 0.42 19.41 41.87 0.24 | SAFE
519970 26.48 | 25.26 | 21.45 | 166.13 | 278.04 | 0.34 | 720.35 | 988.92 | 0.19 |TOXIC
672471| 25.37 | 24.15 | dead |1393.29|1383.50| 0.36 |12356.55| 7554.34 | dead |TOXIC
373230 26.36 | 25.34 | 26.75 | 46.03 | 104.14 | 0.33 | 101.97 | 155.83 | 0.14
567116| 26.87 | 26.23 | 27.02 | 82.56 | 106.90 | 0.31 12.81 54.92 0.16 | SAFE
68461| 27.07 | 25.95 | 25.04 | 42.28 | 85.52 | 0.32 | 819.18 | 1326.06 | 0.17 |TOXIC
474831| 25.34 | 22.80 | 25.70 | 42.77 | 90.33 | 0.36 13.29 42.16 0.13 | SAFE
171217| 24.79 | 24.64 | 25.93 | 4255 | 71.73 | 0.27 23.00 52.86 0.20 | SAFE
972466| 25.99 | 25.12 | 25.89 | 64.41 | 83.01 | 0.29 19.18 44.62 0.18 | SAFE
34573| 26.79 | 23.41 | dead | 231.08 | 278.68 | 0.24 |13507.02|10074.54| 0.11 |TOXIC
948669| 26.32 | 25.60 | 27.10 | 207.10 | 214.74 | 0.27 |12705.36|11758.45| 0.26 |TOXIC
611192 25.73 | 23.47 | dead |1701.45|2965.18| 0.24 dead dead dead |TOXIC
39449| 27.37 | 26.66 | 27.70 [3207.82(3861.79| 0.27 | 2675.44 | 1250.84 | 0.28 |TOXIC
825340 25.16 | 22.93 | 25.24 | 82.87 | 64.20 | 0.25 42.47 84.70 | 0.24 | SAFE
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205789

22.85

25.26

26.07

47.12

84.58

0.26

26.50

76.53

0.30

SAFE

Table 19: Exemplary Step 2 active learning data - Day 2 and Day S Kidney Function Tests

(Batch 4)

Day 2 Day 2 D?y 2 Day5 Day5 D?y >

Experimental Cystatin-C Kim-1 Urinary Cystatin-C Kim-2 Urinary Train

srow (pg/mL) | (pg/mlL) CREA (pg/mL) | (pg/mL) CREA
(mg/dL) (mg/dL)

Saline Control | 260869.60 | 5955.54 63.12 88643.05 | 1209.21 22.89 -
403138( 474242.20 | 5437.96 40.06 744446.00 | 2365.97 17.10 TOXIC
960688(1360967.13 11972.50 47.22 2058346.20| 4883.93 20.41 TOXIC
209901| 350910.13 | 4517.79 26.79 401606.00 | 2858.54 19.00 TOXIC
27122412377972.67| 3661.58 18.06 3297180.00| 4791.12 22.06 TOXIC
424753| 474861.53 5285.38 36.61 676750.53 | 4272.16 26.48
347410| 529883.40 | 4000.57 22.66 456599.76 1347.10 7.04 TOXIC
915019 991440.20 | 6447.03 42.34 4458235.00| 7695.06 40.97 TOXIC
860444(2524640.90( 25547.29 42.87 1466631.87| 20894.73 51.44 TOXIC
770772 879996.20 1658.19 22.17 4324970.00| 84304.21 19.74 TOXIC
347738(1506716.00 5589.58 32.37 1455349.70| 2824.25 20.28 SAFE
605401/ 1897051.33 | 23989.88 42.30 453195.25 2502.17 29.24 TOXIC
870257( 331480.27 3451.99 25.71 1971347.33 | 4502.89 20.88 TOXIC
571578(1757100.30( 5557.19 38.73 2239937.00| 4524.36 25.63 TOXIC
571326| 901524.00 | 6608.68 62.65 220513.96 2612.63 28.97 TOXIC
537377(2407175.80( 12955.24 45.50 4359576.00| 6515.82 30.65 TOXIC
804768( 161897.70 2055.13 24.52 4129850.00| 4991.68 30.25 TOXIC
402461( 860701.20 | 4986.68 34.29 855144 .33 2783.29 18.30 SAFE
23699 206248.77 3669.04 23.17 396875.75 2873.74 25.98 TOXIC
868203 526293.00 1095.35 15.53 1733312.73 | 4426.87 29.61 TOXIC

Table 20: Exemplary Step 2 active learning data - Day 4 and Day 7 Liver Function Tests

(Batch 4)
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_ Day4 | Day4 Day 4 Day 7 Day 7 Day 7
Expé:':l‘j;"ta' :v?/y(:gl) ;)VTIV(:) :3\‘,’ (1;; ALT | AST s;:::\ ALT | AST Sce;::' Train
(u/) | (UL (U/L) | (U
(mg/dL) (mg/dL)
saline Control| 25.15 | 26.51 | 27.28 | 68.09 | 191.06 | 031 | 3175 | 76.14 | 029 | -
403138| 24.19 | 25.87 | dead | 115.46 | 159.06 | 0.36 [19036.92[18438.13| 0.09 [TOXIC
960688| 26.77 | 25.64 | 20.84 | 869.06 | 995.14 | 0.34 |6268.70 | 6570.31 | 0.27 |ToxIC
209901| 25.48 | 26.56 | 26.70 | 47.91 | 80.98 | 0.43 | 99.25 | 183.09 | 0.35 |TOXIC
271224| 2657 | 26.74 | 25.19 | 56.22 | 89.67 | 0.33 | 61877 | 242.15 | 0.32 [ToOXIC
424753 2536 | 25.94 | 27.65 | 50.18 | 72.29 | 0.31 | 4010 | 7672 | 0.30
347410| 23.68 | 24.63 | 24.02 |3839.66|3669.03| 0.23 | 7750.81 | 6080.74 | 0.24 |ToXIC
915019| 25.58 | 25.00 | 22.00 | 215.38 | 222.66 | 0.29 |3770.16 | 2825.47 | 0.28 |TOXIC
860444 24.81 | 23.18 | dead |7210.53]6699.77| 0.26 [3795.62 [ 7201.27 | 0.04 [TOXIC
770772 24.80 | 22.37 | dead |310036(5076.09| 0.20 | dead | dead | dead |ToXiC
347738 24.95 | 23.44 | 26.44 | 2177 | 63.26 | 0.23 | 3598 | 67.19 | 0.31 |SAFE
605401 25.59 | 25.62 | 28.04 | 57.43 | 75.12 | 0.27 | 132.78 | 172.74 | 0.33 [ToXIC
870257 26.26 | 26.61 | dead | 100.86 | 108.20 | 0.25 [10341.86|6818.89 | 0.24 |TOXIC
571578 23.47 | 25.67 | 26.10 | 31.87 | 66.00 | 031 | 2062 | 67.61 | 0.32 [ToxiC
571326 26.61 | 25.81 | 27.40 | 75.34 | 75.84 | 0.26 | 1026.84 | 1188.33 | 0.30 |TOXIC
537377| 2552 | 24.11 | 23.63 | 473.17 | 378.37 | 0.23 | 9498.20 [ 5176.81 | 0.17 [TOXIC
804768| 25.79 | 25.85 | 26.51 |1090.28|1651.16| 0.30 [24081.78[18576.76 0.25 [ToXIC
402461| 2591 | 25.67 | 25.75 | 49.24 | 6494 | 0.24 | 4035 | 7141 | 0.29 |saFE
23699| 25.42 | 25.96 | 25.96 | 87.37 | 106.31 | 0.24 |2119.88 |3021.48 | 0.33 |TOXIC
868203 24.37 | 25.76 | 25.07 | 70.10 | 7191 | 0.26 | 91.13 | 13730 | 0.33 [ToxIC

Table 21: Exemplary Step 2 active learning data - Terminal Liver Function Tests - Day 15

(Batch 1)
Experimental |No.of|15pay [ ALT AST Serum Liver | Kidney | Spleen Trai
rain
Group | mice [suival| (U/t) | (u/) | AL (mg) | (mg) | (mg)
(mg/dL)

Saline Control 3 3 20.12 49.58 0.3 1489.67 | 335.33 88.67 -
993154 3 3 34.38 153.25 0.38 1514.33 336 104 SAFE
519154| 3 2 82393 | 380.33 0.38 1681 298.67 87.33 TOXIC
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307838| 3 1 232538233789 0.35 1716 349 67 TOXIC
981380, 3 3 57.21 | 11846 0.40 |1266.33 | 289.33 84 SAFE
738296| 3 3 409.00 | 716.95 0.45 119233 | 316 160 TOXIC
118475| 3 0 - - - - - - TOXIC
632914 3 2 42.77 76.28 0.41 1893.5 | 3325 123 SAFE

49609| 3 3 43.14 68.99 0.38 |1754.67 | 311.67 133 SAFE
746474 3 3 88.73 | 117.71 0.36 |1337.33 274 74.67 SAFE

27749 3 1356.56 | 510.07 0.39 |1389.67 | 329.67 70 TOXIC
304426 3 3 19.23 56.05 0.34 |1244.67 | 32433 | 69.67 SAFE

8566 3 3 125.58 | 98.68 0.33 |2222.33 | 318.33 | 83.67

443170 3 3 120.48 | 128.25 0.50 |1748.67 | 284.67 100
873027 3 3 12.91 40.84 0.50 1326 324.67 87 SAFE
603813| 3 3 134.10 | 13531 0.49 1958 | 328.33 92
741913| 3 3 26.84 54.02 0.46 1517 333.33 | 87.67 SAFE
238639 3 3 |2637.60|1479.03| 0.36 1604 283.67 | 70.67 TOXIC
747776| 3 3 1899.20 | 1960.89 | 0.45 | 2555.67 329 135.67 | TOXIC
361474 3 3 29.14 | 112.54 0.33 1412 | 326.33 | 90.67 SAFE
866975 3 3 43.58 64.29 0.47 |1335.33 308 77.67 SAFE
791282 3 3 20.52 57.96 0.46 1286 305 84.67 SAFE
966623| 3 3 41.62 66.71 0.53 |[1554.33 | 311.33 | 96.33 SAFE

70031 3 3 39.52 65.25 0.34 |1264.33 | 301.33 | 76.33 SAFE
716261 3 3 166.81 | 200.09 0.44 |1399.67 | 336.67 86
194812 3 3 264.44 | 231.87 0.39 | 1580.67 | 345.67 98 TOXIC
521162 3 2 | 2461.99|1351.90( 0.40 1494 318 1225 TOXIC
777802 3 3 1807.53 | 948.72 0.43 18185 | 300.67 | 85.33 TOXIC
638908| 3 3 1500.47 | 1385.34 | 0.39 1870 326 78.33 TOXIC
325463 3 3 21.30 66.14 0.40 |1132.33 308 84.67 SAFE
208852| 3 3 98.61 | 108.59 0.37 1699 | 335,67 | 114.33 SAFE
942598 3 3 72.41 95.09 0.45 |1663.33 | 295.33 74 SAFE
832389 3 0 - - - - - - TOXIC
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Table 22: Exemplary Step 2 active learning data - Terminal Liver Function Tests - Day 15
(Batch 2)

Experimental |NoO. of [ 15 pay Serum Liver Kidney | Spleen .
Group mice | survival ALT (U/L)|AST (U/L)| CREA (mg) (mg) (mg) Train
(mg/dL)

Saline Control 3 3 35.93 71.64 0.38 1491.7 3453 78.0 -
881203 3 3 2925.14 | 1346.58 | 0.43 2655.7 | 3443 81.0 TOXIC
944156 3 62.09 101.02 0.42 2002.7 365.7 1253 SAFE
2001501 3 3 35.69 69.49 0.33 1687.3 | 321.0 87.7 SAFE
938067 3 3 341.23 | 389.88 0.36 2303.3 | 3470 89.3 TOXIC
118948| 3 3 36.76 75.73 0.34 1723.0 | 3720 95.7 SAFE
781955 3 3 51.96 72.7 0.39 1531.3 | 3253 95.3 SAFE
665820 3 3 60.64 88.72 0.36 1750.3 | 3343 104.3 SAFE

72753 3 2 2799.56 | 3004.34 | 0.22 12585 | 292.0 41.5 TOXIC
401556 3 3 32.26 63.30 0.38 1441.0 | 348.0 853 SAFE
618163 3 3 63.96 130.81 0.34 1361.3 | 331.0 92.0 SAFE
726259 3 3 245.66 | 151.21 0.25 1801.7 | 3403 89.7 TOXIC
570833 3 3 972.56 | 1006.99 | 0.36 1494.3 | 332.0 102.0 TOXIC
383196 3 3 118.96 | 150.72 0.35 2194.0 | 3413 92.3
179548| 3 3 38.85 74.22 0.24 1769.3 | 3237 103.3 SAFE
653495 3 0 - - - - - - TOXIC
797688 3 3 2151.42 | 1433.10 | 0.37 1281.3 312.0 88.3 TOXIC
711766 3 3 101.37 96.02 0.31 1455.0 | 305.0 76.7
879866 3 3 39.05 82.8 0.38 1495.7 | 3353 95.7 SAFE
814738 3 3 31.99 77.48 0.39 1528.7 | 315.7 88.7 SAFE
145937 3 3 195.60 | 246.49 0.34 1372.7 | 352.0 92.3
154401 3 3 28.70 139.15 0.45 840.0 302.3 39.3 SAFE
586734 3 0 - - - - - - TOXIC
538044 3 3 1746.59 | 147430 | 0.23 1659.0 | 304.7 66.0 TOXIC
168576 3 3 102.45 99.40 0.25 1941.3 | 3527 90.0
734191 3 3 28.96 61.13 0.33 1658.7 | 3363 111.3 SAFE
771379 3 3 2102.53 | 858.08 0.32 1386.3 | 343.0 98.0 TOXIC
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199181 3 3 |14610.40|13284.01| 0.33 828.3 322.0 68.0 TOXIC
3757071 3 3 24.96 69.77 031 | 1372.7 | 351.0 913 SAFE
156549 3 3 782.80 | 629.52 0.31 | 1797.3 | 316.0 107.7 | TOXIC
408449 3 3 49.42 74.7 0.38 | 1291.3 | 306.0 81.3 SAFE

81243 3 3 1292.98 | 549.23 0.30 | 1991.0 | 309.0 80.0 TOXIC
541841 3 0 - - - - - - TOXIC

Table 23: Exemplary Step 2 active learning data - Terminal Liver Function Tests - Day 15
(Batch 3)

Experimental |No.of|15pay | ALT AST Serum Liver | Kidney | Spleen .
Group | mice [srival| (ut) | ) | FEA | (mg) | (mg) | qmg) | T
(mg/dL)

Saline Control | 3 | 3 | 1959 | 5152 | 027 | 14107 | 3320 | 87.0 i
732514 3 | 3 | 8394 | 9640 | 014 | 16653 | 2933 | 1257 | sare
87575| 3 | 3 | 4281 | 8257 | 024 | 14597 | 3090 | 907 | sAFE
48388| 3 | 3 | 7001 | 13809 | 021 | 50583 | 3413 | 3603 | SAFE
500494 3 | 3 | 9321 | 1199 | 025 | 16023 | 3333 | 1000 | sAFE
883656| 3 | 3 |4009.141691.82| 0.9 | 21070 | 3263 | 117.7 | Toxic
539919 3 | 3 | 4933 | 7518 | 023 | 16203 | 3060 | 77.0 | SAFE
08818 3 | 3 | 2311 | 5540 | 018 | 13683 | 3250 | 767 | sare
764312] 3 | 3 | 1473 | 4370 | 013 | 1339.0 | 2943 | 910 | sarE
731722] 3 | 3 | 4232 | 6011 | 015 | 14373 | 2993 | 79.0 | SAFE
485590 3 | o - - i - - - | Toxic
834577 3 | 3 | 2369 | 5811 | 017 | 14357 | 3093 | 1113 | saFE
801550| 3 | 2 | 8134 | 117 | o026 | 17135 | 3535 | 1010 | safE
352118| 3 | 3 | 5747 | 7056 | 021 | 14423 | 3030 | 783 | SAFE
575833| 3 | 3 |1253.74(211496| 023 | 24057 | 3313 | 997 | Toxc
084070 3 | 3 | 3655 | 4621 | 020 | 13043 | 2063 | 710 | safE
519970| 3 | 3 [3400.583000.28| 0.11 | 10360 | 2997 | 993 | Toxic
672471 3 | o ] ] : ] ] - | Toxic
373230 3 | 3 | 14045 | 17727 | 0133 | 1657.3 | 3063 | 913
567116 3 | 3 | 34.13 | 6501 | 0.16 | 1477.0 | 3090 | 860 | SAFE
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68461 3 3 |3281.26|2678.82 | 0.14 1655.3 | 308.0 85.0 TOXIC

474831 3 3 27.66 47.89 0.14 1292.0 | 2757 71.0 SAFE

171217 3 3 57.78 | 101.16 0.20 1395.7 | 281.7 78.7 SAFE

972466| 3 3 13.14 42.11 0.08 1356.0 | 285.3 70.3 SAFE

34573 3 0 - - - - - - TOXIC
948669 3 3 1884.40 | 1411.11( 0.13 2374.7 | 3163 106.3 | TOXIC
611192| 3 0 - - - - - - TOXIC

39449 3 3 122590 | 878.65 0.17 2136.7 | 380.3 95.7 TOXIC

825340, 3 3 91.59 | 162.19 0.19 1464.0 | 292.0 88.7 SAFE

205789 3 3 20.45 72.43 0.21 1263.0 | 300.7 81.0 SAFE

Table 24: Exemplary Step 2 active learning data - Terminal Liver Function Tests - Day 15
(Batch 4)

Experimental |No.of| 15pay | ALT AST Serum Liver | Kidney | Spleen .
Growp | mice |swiall () | () | SRER | (mg) | (mg) | (mg) | T
(mg/dL)

Saline Control | 3 | 3 | 4470 | 89.77 | 034 |1342.00]| 34533 | 84.00 i
403138 3 | o - - : - - - | Toxic
960688| 3 | 3 |3055.823310.02| 0.20 |1016.33| 285.67 | 5533 | ToXIC
209901| 3 | 3 | 84415 | 60184 | 033 |180333| 296.67 | 107.67 | ToXIC
271224| 3 | 3 |586145|269155| 023 |1827.67| 297.00 | 89.00 | Toxic
424753 3 | 3 | 14204 | 21018 | 033 |1936.67 | 343.00 | 11833
347410 3 | 3 | 76664 | 81530 | 020 |121533| 318.67 | 104.67 | TOXIC
915019| 3 | 3 |2861.242268.85| 0.0 |1766.67| 29400 | 83.00 | ToxiC
860444 3 | 0 - - : - - - | Toxic
770772] 3 | o ] ] : ] ] - | Toxic
347738| 3 | 3 | 4539 | 8850 | 028 |1551.00( 301.33 | 91.00 | SAFE
605401 3 | 3 | 46845 | 48682 | 027 |356067| 338.00 | 8167 | ToXIC
870257 3 | o0 - - : - - - | Toxic
571578| 3 | 3 | 87196 | 48464 | 022 |157433| 280.00 | 9733 | Toxic
571326] 3 | 3 | 3247129528 | 024 |1312.00| 346.67 | 10167 | TOXIC
537377 3 | 3 |1167.79| 70129 | 034 |149433| 292.67 | 9033 | Toxic
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804768| 3 2 2820.05 | 2265.31| 0.35 |[2647.00| 31750 | 85.00 | TOXIC

402461 3 3 58.96 92.70 0.21 |1336.67| 29733 | 77.00 SAFE

23699| 3 3 311.93 | 358.85 0.26 |1543.67 | 336.33 | 89.67 TOXIC

868203| 3 3 1263.76 | 946.59 0.24 |1699.00| 287.33 | 76.67 | TOXIC

[00354] The Step 2 active learning data were used to further refine the Step 1 regression
model of hepatotoxicity described in Example 6 to include kidney toxicity. As part of the model
refinement, urinary Kim-1 concentration at 24 hour after dose 1 (75 mg/kg) was normalized to
urinary creatinine concentration, and plotted as fold change to PBS treated (median over 3
animals) where fold change of over 2 is potentially kidney toxic (FIG. 10B). Additionally,
urinary cystatin-c concentration at 24 hour after dose 1 (75 mg/kg was normalized to urinary
creatinine concentration and plotted as fold change to PBS treated (median over 3 animals)

(FIG. 11).

X. EXAMPLE 7 — SECOND ACTIVE LEARNING STEP OF 48 PLATFORM-ENGINEERED OBMS: ACUTE /N
VITRO CYTOTOXICITY ANALYSIS OF OBMS IN HUMAN CELL LINES TO REFINE PREDICTIVE MODEL OF

TOLERABILITY AND VALIDATE CYTOTOXICITY

[00355] This example details an active learning survey step of engineered OBMs interrogated

in highly predictive in vitro assays to analyze cytotoxicity driven OBM induced pathologies.

[00356] The Step 1 in vivo regression model that was developed with the in vivo mouse data
described above was used to engineer 48 additional OBMs (16 nucleotide long ASOs with fixed

3-10-3 LNA gapmer chemical scaftold) for testing in an in vifro cytotoxicity active learning step.

[00357] Engineered OBMs were then tested in a human hepatocyte carcinoma cell line
(HepG2) for various measures of cell viability and cell death in a series of experiments with

similar culture conditions and varying cell densities.

[00358] Several types of cell death were assayed including apoptosis, necroptosis and
pyroptosis. Apoptosis is programmed cell death leading to cell shrinkage, membrane blebbing,

chromatin condensation, and DNA fragmentation. Causes of apoptosis include loss of growth
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signals, presence of cellular stressors, detection of intracellular events that may compromise the

whole organism (including DNA replication errors and misfolded proteins) induced by caspases.

[00359] Necroptosis presents as different from apoptosis in morphology. Cells undergoing
necroptosis exhibit mitochondrial membrane damage, cell swelling, vacuolization, and
membrane rupture. Pyroptosis is an inflammatory form of lytic cell death most frequently
associated with intracellular pathogens, and is part of the antimicrobial response. Pyroptosis

destroys integrity of cell membranes by punching pores through them.

[00360] A POSITA is familiar with standard cell viability and cell death assays, any of which
can be used with the provided methods. Cell viability assays included, but are not limited to,
Alamar Blue (measures metabolic activity of cell by reducing resazurin to resorufin), MTT
(MTT is reduced to formazan), MT (MT substrate is reduced in a viable cell which then binds
with the NanoLuc luciferase to generate a signal), MitoView (measures cell viability by its
ability to accumulate in active mitochondria), Cell Titer-Fluor Cell Viability Assay (a Gly-Phe-
AFC peptide that enters the cells and is cleaved to produce the fluorescent AFC), and Calcein
AM (non-fluorescent membrane permeable compound; cytoplasmic esterases convert to green
fluorescence retained in cells with intact plasma membrane). Cell death assays included, but are
not limited to various caspase assays, Annexin V (which measures phosphatidylserine exposure
on outer cell membranes during apoptosis in a calcium dependent manner), CellTox (cyanine dye
excluded from viable cells but binds DNA of dead cells, enhancing the fluorescent properties),
Propidium Iodide (membrane impermeant nucleic acid intercalator used to stain dead cells, and
7-AAD (7-aminoactinomycin D which is a membrane impermeant fluorescent DNA binding dye

commonly used for FACS).

[00361] In a specific embodiment, a time-course collection of four dose-response readouts

(viability, necrosis, caspase activity, and annexin exposure) was performed.

[00362]  Preparation of HepG2 cells. Briefly, HepG2 cells were cultured in MEM-alpha with
10% FBS (complete medium). Cell counts were performed with trypan blue to determine

average cell number and to verify that the cells were healthy.

[00363] Electroporation of ASOs. Standard cell culture protocols were used. Briefly, cell
collection was always performed in the morning. Cells were washed with dPBS and detached

from the cell plate by applying trypsin for 5 minutes at 37 degrees C. Once the cells detached,
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the trypsin was neutralized by adding 8 mL complete medium and resuspending the cells. Cell
suspensions were centrifuged at 300xg for 5 minutes. Supernatant was removed and cells
resuspended in 1 mL of complete medium. Cell counts were performed using serial dilutions

and used to calculate a 20 mL final cell suspension with a total 6.75x10"6/total cell count.

[00364] A total of four serial (1:2) dilutions were performed such that each OBM was

prepared at S different cell densities and OBM concentrations.

[00365] OBM/HepG2 cell preparations were transferred to an electroporation plate and
electroporated using a BTX ECM 830 square wave plate electroporator and a Plate Handler BTX
HT 96 well system. The electroporated cells were pipetted up and down to ensure a homogenous
cell suspension for seeding. Electroporated cells were transferred to a 384-well plate and
incubated at 37C, 5% CO2 for 5-6 hours.

[00366] Cytotoxic Assays. Cytotoxicity of OBM’s was determined using various dye-based
assays to assess real-time cell viability and apoptosis/necrosis onset. Assays included, but were
not limited to, RealTime-Glo MT Viability Assay, CellEvent Caspase-3-7 Assay and Real Time-
Glo Annexin V Apoptosis and Necrosis assay. Plates were imaged using a Cytation 5 imaging
reader pre-warmed to 37C. Wells were imaged under brightfield using the 4x objective,
followed by a plate read of the green channel and then of the luminescence. Data were observed
over 3 days and plates were imaged seven (7) times post-electroporation at time 6, 23, 26, 29, 47,
50, and 53 hours.

[00367] Cytotoxic Results. In vitro Necrosis, Caspase, Annexin V and Cell viability signals
for the engineered OBMs aligned with the in vivo ALT (U/L) data. Exemplary cytotox results
are shown in FIG. 12.

XI. EXAMPLE 8 — VALIDATION STEP OF 80 OBMS USING REFINED PREDICTIVE MODEL: /N SILICO
TOXICITY ANALYSIS OF 80 PUBLISHED 3-8-3 LNA VS PREDICTED 3-10-3 LNA OBMS TO VALIDATE
STEP 1 AND STEP 2 TOXICITY MODELS

[00368] For the sake of clarity, the methods described herein are now described in the context

of a particular example.
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[00369] To validate provided methods and demonstrate accuracy of the Step 1 and Step 2
models produced, 80 OBM sequences were selected that had publicly available toxicity measures
(ALT, Cdknla, and Caspase levels) for 3-8-3 LNAs (3 nt with an extra methylene bridge fixed to
the ribose moiety , an 8 nt “gap”, followed by another 3 LNA) bridged-nucleic acid architecture.
The dosing regimen for the test 3-8-3 LNA data was significantly lower at total dosage of only
100 mg/kg, versus our 150 mg/kg total dose. Therefore, the test data was filtered for ALT levels
that were greater than 500 (U/L) (or log10(500) is 2.69897000434) which resulted in 26 toxic
sequences against which to test the predictive accuracy of the Step 1 and Step 2 models (Table
20).

[00370] First, the 26 test 3-8-3 sequences were run through the Step 1 model (trained on 128
in vivo sequences) to predict toxicity as a 3-10-3 OBM. The Step 1 model performed
exceptionally well correctly predicting 21 sequences as having toxic ALT levels (FIG. 13). This
was an unexpectedly high level of accuracy after having trained on only 128 sequences.

[00371] Next, the 26 test 3-8-3 sequences were run through the refined model trained on both
the Step 1 and Step 2 sequences (256 in vivo sequences) to predict toxicity as a 3-10-3 OBM.
Remarkably, after training on only 256 sequences the refined model was able to accurately

predict all 26 sequences as toxic in a 3-10-3 LNA architecture (FIG. 14).

Table 20: Publicly available 38-3 LNA ASO sequences and measured and predicted ALT
(U/L) levels

SEQID | Sequence Target Measured Measured 3- Refined Validate
NO. 3-8-3LNAALT | 8-3LNAALT Model
{U/L) logl0 Predicted
3-10-3 LNA
ALT logl10
1 BAAGTCTGTTACCCC GR 1943 3.29 2.68 Validated
2 CAGTAGTCTTTCAG ApoC3 646 2.81 2.77 Validated
3 GGTATTCAGTGTGATG Apo(C3 705 2.85 3.24 Validated
4 GTAGTCTTTCAGGG Apo(C3 742 2.87 3.18 Validated
5 GTATTGAGGTCTCA ApoC3 794 2.90 2.03 Validated
117

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

6 AGTCTTGGCCCTCT GR 1764 3.25 3.49 Validated
7 GCATTGGTATTCA ApoB 2154 3.33 2,51 Validated
8 GTCTCTTTACCTGG GR 8979 3.95 3.14 Validated
9 TAATGCTCGATCCC | None 3369 3.53 3.66 Validated
10 AAGTCTGTTTCCCC GR 12186 4.09 3.10 Validated
11 TCATGGCTGCAGCT | ApoC3 532 2.73 2.14 Validated
12 TGCCTCTAGGGATG | ApoC3 627 2.80 2.57 Validated
13 AGCAGCTGCCTCTA | ApoC3 1129 3.05 2.61 Validated
14 GTGCTCCAGTAGTC | ApoC3 1157 3.06 3.24 Validated
15 TGCTCCAGTAGTCT | ApoC3 1436 3.16 3.11 Validated
16 AGTGCATCCTTGGC | ApoC3 1706 3.23 5.52 Validated
17 CCTGCTGGGCCACC | ApoC3 1868 3.27 3.13 Validated
18 GCTCCAGTAGTCTT | ApoC3 2369 3.37 3.19 Validated
19 ACTCCAAATCCTGC GR 2461 3.39 3.13 Validated
20 TCCAAGGACTCTCA GR 2630 3.42 3.05 Validated
21 ACCTGGGACTCCTG | ApoC3 3796.7 3.58 3.41 Validated
22 GGTTTGCAATGCTT GR 6894 3.84 2.72 Validated
23 TGGCCCTGCTGTGG GR 7376 3.87 3.41 Validated
24 CCGTTGGTGCCAGT GR 7376 3.87 2.81 Validated
25 GTCTTCTCCCGCCA GR 9781 3.99 3.16 Validated
26 AGGTGCTTTGGTCT GR 11155 4.05 4.44 Validated

[00372] Unexpectedly, after only training on only 256 sequences the model was able to

correctly predict toxicity for 26 test sequences demonstrating that performing n-gram mutations

(including single, multiple or correlated mutations) on an initial set or set of initial

oligonucleotides facilitated the creation of an orders-of-magnitude faster first training set for

training a machine-learned model in a first stage. Likewise, these results also confirmed that
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generating a second set of oligonucleotides (either randomly, or by design, e.g. non-random),
using identical or new n-gram mutation types, in single, multiple or a correlated manner from the
first set, facilitated the creation of an orders-of-magnitude faster second training set for training a
machine-learned model in a second stage. Creating data sets that are optimal for machine

learning have significant economic costs.

[00373] Among other things, one surprising and unexpected aspect of the provided methods is
that they allow for incredibly efficient exploration of an almost infinite space of sequence X
chemistry X architecture that was previously impossible to do (FIG. 14). The current paradigm
for creating new OBMs, enabling new nucleic acid chemistries, or leveraging new mechanisms
of action are through edisonian trial-and-error screening campaigns that come at a huge
economic cost (of both money and time). For example, in one embodiment imagine the length of
a single target sequence of interest is 16 nt and, quite conservatively, the n-gram size of interest
is 4. Considering only standard nucleotides of A, T, C or G there are 256 possible 4 n-grams for
a contiguous k-mer and 12 possible positions in the sequence for each n-gram (16-4=12). To
explore the full diversity of n-grams at every position, a POSITA would need 3072 sequences
(12%256). This space increases rapidly when non-standard nucleotides and/or additional
chemistries/architectures are added. Moreover, OBMs work via multiple complex mechanisms
including engaging enzymes (RNase H, RNAi, ADAR, etc.) and by steric blocking via
modulation of splicing, RBP binding, secondary structure, co- & post-transcriptional
modification of coding/non-coding RNA processing, etc. Traditional screening campaigns fail to
optimize safety, efficacy or discover optimal design because the design space of sequence and
chemistry is huge.

[00374]  Surprisingly, the methods provided herein engineer and optimize all OBM classes by
rapidly creating highly informative datasets for building machine learning (ML) and artificial

intelligence (AI) models for predictive pharmacology.

XI1I. EXAMPLE 9 — VALIDATION STEP OF 16 OBMS USING REFINED PREDICTIVE MODEL: /N VIO
ANALYSIS OF 16 CET v§ LNA OBMS IN MICE TO CONFIRM PREDICTIVE MODEL OF SYSTEMIC

TOLERABILITY
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[00375] To validate provided methods and demonstrate predictive accuracy of the Step 1 and
Step 2 models with real-world measured in vivo data, sixteen (16) 3-10-3 cEt test sequences
were selected with publicly available toxicity measures (ALT, Cdknla, and Caspase levels) for a
cEt (S-constrained ethyl) bridged-nucleic acid architecture (Table 21). In general, ALT levels
below 100 (U/L) are considered safe and the cEt antisense oligo architecture has been described
as a “safer” (less toxic) chemistry than locked nucleic acid (LNA) chemistries. Validation
against the 16 test sequences was first performed in silico against the two model versions and

then in vivo testing actual OBM toxicity in mice.

[00376] First, the 16 test 3-10-3 cEt sequences were run through the Step 1 model (trained on
128 in vivo sequences) to predict toxicity in a 3-10-3 LNA architecture (FIG. 15). The Step 1
model predicted 12/16 sequences as having toxic ALT levels. Next, the 16 test 3-10-3 cEt
sequences were run through the refined model trained on both the Step 1 and Step 2 sequences
(256 in vivo sequences) to predict toxicity as a 3-10-3 OBM (FIG. 16). Remarkable, after
training on only 256 sequences the refined model was able to predict SEQ ID NO. 4 as a non-
toxic 3-10-3 LNA alternative to the published toxic 3-10-3 cEt architecture.

[00377] Next, to confirm the model predictions and provide in vivo validation of the provided
methods, each published cEt sequence was synthesized as a 3-10-3 gapmer LNA OBM and
dosed in vivo in mice in a 5 week systemic tolerability study.

[00378] Aice. Male C57BL/6 mice aged 9-12 weeks were maintained on a 12-hour light/dark
cycle and were fed ad libitum normal mouse chow. Animals were acclimated for at least 7 days
in the research facility before initiation of the experiment. Oligonucleotide-based medicines
(OBMs) were prepared in buffered saline (PBS) and sterilized by filtering through a 0.2 micron

filter. OBMs were dissolved in PBS for subcutaneous injection.

[00379]  Study Design. Total Study Design was 5 weeks. On Day -1 (before the study started)
body weight was recorded and mice were randomized into 17 total groups of 5 mice each per
treatment (16 OBM groups and 1 saline control group). Groups received subcutaneous injections
of an OBM at a dose of 75 mg/kg at the start of Week 2, Week 3, Week 4, for 3 total doses. No

dose was administered during Week 1 (observation period) or Week 4 (washout period).

[00380] Blood draws (via eye bleed, tail bleed or cardiac bleed) were administered 72 hours
after each dosing or 72 hours after the start of Week 4 during the washout period. Observations
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and read-outs included body weight (BW), temperature, ALT, AST, BUN, creatinine, CRP and

total bilirubin (TBILI). On Week 5 animals were sacrificed and wet tissue weight measured for

liver, kidney and spleen.

Table 21: Public test 3-10-3 cEt sequences and predicted and measured ALT (U/L) levels

SEQID | CBID Sequence Pub. | cEt bin Model Measured | Mouse Human
NO: ALT <100 Prediction | ALT (U/L) | Target Target
(U/L) | (safe) for 3-10-3 | [3-10-3
[cEt] | 2200 LNA LNA]
{toxic)
Saline Control - - - - 21.6 - -
CAAAGTGATACCAGTT| 21 SAFE SAFE 40 Grm7,F1 | NELL1
27 838280 1,Cdh20
GAATCTCCTTTTCCAG| 98 SAFE TOXIC 434 Mtdh GSG1L,C
(4/5 dead) LASP1,TE
CTA,MT
28 982655 DH
GAGGATGGCAAGCACA| 131 TOXIC 114 Hdac2,A | SH3TC1,
(3/5 mice | nk2 CREBBP,
29 416562 dead) TRAK1
GTACCTATAGTCTCTG| 182 SAFE 35.2 Hdac2 FBXL7,T
30 516166 MTC2
CTTCTTGATGTCTTTC| 533 TOXIC TOXIC 2054 Atpévlg | ABCC9,N
(1/5 dead) | 1,Ankrd6 | EXMIF
,Usp37,
Wwtrl,D
31 801663 pyd
CTTTTCTATCAGTCTC| 608 TOXIC TOXIC 138 Usp12,N | USP12,T
es,Nes, A | CERGIL,
damts20 | RANBP1
7,DNAAF
5,ARHGA
P15,CNT
32 999945 N1
TTTTGTGTCTTCTGTA| 2347 TOXIC TOXIC (5/5 dead) | F11,Psm | ARIDSB,
b3,Nrxnl | YIPF1,SY
,Gli3,Atr | T14
33 392108 nll,Lrp6
ACCCTCAAGTCTCCTG| 3894 | TOXIC TOXIC 510 Tmem12 | MAK16,T
6b,Ephb | TI2,HDA
34 567908 2,Hdac2, | C2
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Stxbp5!
TCTCCTTGCTGTATTT| 11752 | TOXIC | TOXIC (5/5 dead) | Nek10,G | ASTN2,L
m11639, | DB2,DCL
F11 K2,RAB1
1FIP1,FE
R1L6,CD
KALL,S0
35 790763 s1
36 765307 GTCAGTATCCCAGTGT | 13168 | TOXIC TOXIC (5/5 dead) | F11
37 810069 |GACTCTCTGATGATAC| 14907 | TOXIC | TOXIC 2054 Hdac2 | HDAC2
ATTCTGTGTGCACTGC| 24858 | TOXIC | TOXIC (5/5 dead) | Mapk4,F | ARMC3
11,Katnb
38 875287 1
TTGCCAATATCACCAT| 37277 | TOXIC | TOXIC 514 Zfpm1,G | SNX29,P
alnt2l LCB,SLI
T3,PDEY
39 773959 A
GTCTGTGCATCTCTCC| dead | TOXIC | TOXIC (5/5 dead) | F11,Atpl | HDACY
40 453801 a3
TCTTGTCTGACATTCT | dead | TOXIC | TOXIC (5/5 dead) | F11,Hs3s
41 985738 t2
TAGTCTCTGTCAGTT | dead [ TOXIC | TOXIC (5/5 dead) | Hdac2
42 487997 A
[00381] Results. Public data for cEt architecture, evaluating ALT as a measure of toxicity,

reported that SEQ ID NO. 1 was safe, SEQ ID NO. 2 borderline, and SEQ ID NOs. 3-16 were

toxic. The model non-toxic prediction for SEQ ID NO. 4 was confirmed in vivo with an average

ALT of 35.2 (U/L) (compared to ALT level of 182 of test sequence cEt). Similarly, methods

described herein surprisingly predicted SEQ ID NO. 6 would reduce ALT levels when prepared

in an LNA architecture as compared to published data reporting the equivalent cEt chemistry

with toxic ALT levels thus validating the models and methods described herein. In vivo results
confirmed the model prediction for SEQ ID NO. 6 with average ALT levels of 138 (U/L)
compared to ALT level of 608 (U/L) of the test sequence cEt.

[00382]

Most unexpectedly, the provided methods built an accurate and predictive toxicity

model using a minimal 256 survey compounds. In addition, when using the same chemistry but
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different sequences, there was an order of magnitude range in maximum tolerated dose.
Traditional OBM screening paradigms cost millions of dollars and take a minimum of 2-3 years
from target identification to lead OBM identification. A typical OBM screening paradigm will
screen ~100 - 1000 sequences in vitro for activity and cytotoxicity, ~10 - 100s for in vivo

toxicity and activity screening, resulting in ~5-10 leads.

[00383] In contrast, the methods of the present disclosure provide for OBMs to be directly
engineered with optimal chemical design (maxima efficacy/ avoid toxicity) at a fraction of the
cost and time and avoid the inefficiencies of a traditional OBM screen. One surprising aspect of
the methods described in the present disclosure is the orders-of-magnitude leaner in data
requirements for building robust predictive models as demonstrated in this (and previous)

examples.

X111 EXAMPLE 10 — ACTIVE LEARNING SURVEY TO REFINE NEUROTOXICITY MODEL - /N VITRO
FLIPR CALCIUM CHANNEL ASSAY ANALYSIS OF OBMS IN PRIMARY NEURONAL CULTURES

[00384] OBM-induced neurotoxicity presents as acute, delayed neurotoxicity or combinations
thereof. A challenge of centrally delivered OBMs is often acute neuronal toxicities. Without
wishing to be bound to a particular theory, evidence supports that acute neuronal toxicities are
caused by OBM interactions at the neuronal membrane, and that these OBM/membrane
interactions ultimately lead to dysfunction of the neuronal membrane which results in death of

the neuron.

[00385] This example describes assays developed to monitor membrane potentials, and to
specifically measure and monitor calcium influx into neurons after treatment with an OBM. In a
specific embodiment, the effects of OBM on calcium flux in rat cortical neuron (RCN) cells was
measured using ionomycin as a calcium agonist. These data were used to create a training set
comprising a correlation between an OBM (each OBM comprising a sequence, e.g., 16-mer, a
chemistry, e.g., LNA and a specific architecture, e.g., 3-10-3) and a specific biophysical effect
on neurotoxicity. In some embodiments, neurotoxicity was measured by monitoring neuronal
membrane potentials. In some embodiments, membrane potentials included measuring calcium
concentrations. In some embodiments, membrane potentials included measuring potassium

concentrations. In some embodiments, membrane potentials were measured using a fluorescent
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dye-based assay. In some embodiments, the fluorescent dye was Fluo-6AM (Fluo-6-penta
acetoxymethyl ester). Fluo-6AM is a calcium indicator that exhibits an increase in fluorescence
upon binding Ca2+ and 1s particularly useful to image the spatial dynamics of Ca2+ signaling, in
flow cytometry experiments involving photoactivation of caged chelators, second messengers,
neurotransmitters, and for cell-based pharmacological screening. In some embodiments, a

FLIPR calcium channel assay is used to monitor membrane potentials after OBM treatment.

[00386] Any type of cell can be used to monitor membrane potential after OBM treatment. In
some embodiments, cells comprised SH-SYSY cells or primary rat cortical neurons. Ina
specific embodiment, neuronal cells were primary rat cortical neurons. In some embodiments,
calcium influx in primary rat cortical neurons (RCN) was measured via a FLIPR assay after in

vitro treatment of OBM.

[00387]  Cell preparation and culture. Fresh primary rat cortical neurons were isolated
according to standard laboratory procedures and seeded as per Thermo B-27 Plus Neuronal
Culture System guidelines. Briefly, 4,000 cells/well were seeded on seven (7) PDL-coated 384-
well plates with a total volume of 25uL of cells/well. In some embodiments, 20,000 cells/well
were seeded in 96-well plates with a total volume of 100uL of cells/well. Culture dishes were
incubated at 37° C in a humidified atmosphere at 5% CO2. Every two to three days half of the
medium from each well was aspirated and replaced with the same volume of fresh media. The
same plating and culture procedures were also used for commercial RCN and SH-SYSY cells

purchased from vendors.

[00388] FLIPR assay conditions. Assay volume for the agonist study was as follows: 25uL
cells + 25uL Fluo-6AM dye + 10pL (6X) OBMs (first addition).

[00389] Assay volume for the antagonist study was as follows: 25uL cells + 25uL. Fluo-6AM
dye + 10uL (6X) OBMs (first addition) + 10uL (7x) ionomycin (ionomycin is an ionophore and
an antibiotic that binds calcium ions in a 1:1 ratio).

[00390] OBMs were administered at 4 concentrations (30uM, 15uM, 7.5uM and 3.75uM) to
determine how calcium flux was affected by OBM dosing. The calcium agonist, ionomycin, was
administered in the same well after ASO dosing at 1uM for every OBM concentration. HBTS
buffer was used as a negative control. Standard FLIPR assay protocols were used, which are

familiar to a POSITA. Briefly, 20 thousand cells were seeded per well in a 384-well flat, clear
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bottom, black walled plat, quadrant wise coated with PDL. Seeded plates were incubated for 48
hours at 37° C and 5% CO2. On the day of experiment (21st day) media was completely
removed and replenished by PSS buffer solution. Fluo-6AM dye was loaded on the day of the
assay and the plate incubated for 30 minutes at 37° C and 5% CO2 and then kept at room
temperature (RT) for 5 minutes. A signal test was done prior to starting the FLIPR assay to
confirm the uniformity of cell seeding. Thirty-four (34) second baseline fluorescence readings
were taken prior to treating with OBMs (first addition). OBM compounds and agonists were
added by FLIPR and the data recorded through FLIPR. The machine was a FLIPR Tetra with
96-well head and baseline fluorescence and Ca2+ responses were measured using a cooled CCD
camera with excitation at 470-495 nM and emission at 515-575 nM. Data was expired and

standard analysis performed.

[00391] A subset of OBMs from Group 2 and Group 3 of the in vivo 72-hour acute study were
assayed. OBMs were assayed as follow: Plate 1 - CR-AA-0079 through CR-A A-0088; Plate 2 -
CR-AA-0089 through CR-AA-0099; Plate 3 - CR-AA-00100 through CR-AA-00109; Plate 4 -
CR-AA-00110 through CR-AA-00119; Plate 5 - DR-AA-00120 through CR-AA-00132. A
second FLIPR batch included Plate 1 - CR-AA-00133 through CR-AA-00141; Plate 2 - CR-AA-
00142 through CR-AA-00150.

[00392] The effect of an exemplary OBM (155024) on calcium influx in rat cortical neurons is
shown in FIG. 17.

V. ADDITIONAL CONSIDERATIONS
[00393] The foregoing description of the embodiments of the disclosure has been presented
for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Persons skilled in the relevant art can appreciate that many

modifications and variations are possible in light of the above disclosure.

[00394] Some portions of this description describe the embodiments of the disclosure in terms
of algorithms and symbolic representations of operations on information. These algorithmic
descriptions and representations are commonly used by those skilled in the data processing arts
to convey the substance of their work effectively to others skilled in the art. These operations,

while described functionally, computationally, or logically, are understood to be implemented by
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computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has
also proven convenient at times, to refer to these arrangements of operations as modules, without
loss of generality. The described operations and their associated modules can be embodied in

software, firmware, hardware, or any combinations thereof.

[00395]  Any of the steps, operations, or processes described herein can be performed or
implemented with one or more hardware or software modules, alone or in combination with
other devices. In some embodiments, a software module is implemented with a computer
program product including a computer-readable non-transitory medium containing computer
program code, which can be executed by a computer processor for performing any or all of the

steps, operations, or processes described.

[00396] Embodiments can also relate to a product that is produced by a computing process
described herein. Such a product can include information resulting from a computing process,
where the information is stored on a non-transitory, tangible computer readable storage medium
and can include any embodiment of a computer program product or other data combination

described herein.

[00397] Finally, the language used in the specification has been principally selected for
readability and instructional purposes, and it cannot have been selected to delineate or
circumscribe the inventive subject matter. It is therefore intended that the scope of the invention
be limited not by this detailed description, but rather by any claims that issue on an application
based hereon. Accordingly, the disclosure of the embodiments herein is intended to be
illustrative, but not limiting, of the scope of the invention, which is set forth in the following

claims.
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CLAIMS

What is claimed is:

1. A method for training a machine-learned model, comprising:

initializing a machine-learned model configured to map an oligonucleotide sequence
to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect;

generating a first set of oligonucleotides based on the initial oligonucleotide using the
initialized machine-learned model;

determining, for each oligonucleotide of the first set of oligonucleotides, whether the
oligonucleotide corresponds to the biophysical effect;

generating a refined machine-learned model using the first set of oligonucleotides and
whether each of the first set of oligonucleotides corresponds to the biophysical
effect; and

generating a final set of oligonucleotides using the refined machine-learned model.

2. The method of claim 1, wherein the initial oligonucleotide comprises an

oligonucleotide that causes the biophysical effect.

3. The method of claim 1, wherein the biophysical effect comprises one or more of:

a biological effect, a chemical effect, and a pharmacological effect.

4, The method of claim 1, wherein the biophysical effect is tolerability.

5. The method of claim 4, wherein tolerability comprises cytotoxicity.

6.  The method of claim 4, wherein tolerability comprises membrane toxicity.

7. The method of claim 4, wherein tolerability comprises immunotoxicity.
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8. The method of claim 4, wherein tolerability comprises an effect that inhibits

membrane fluidity.

9. The method of claim 4, wherein tolerability comprises a membrane fusion and

fission event.

10. The method of claim 9, wherein the membrane fusion and fission event result in

loss of cellular signaling activity.

11.  The method of claim 1, wherein the biophysical effect is an immune response.

12. The method of claim 1, wherein the biophysical effect is a biological activity of
the oligonucleotide, and comprises an on-target engagement of the oligonucleotide to a target

molecule.

13.  The method of claim 1, wherein the biophysical effect 1s one of inactivity of the

oligonucleotide.

14, The method of claim 1, wherein the biophysical effect comprises an off-target

engagement of the oligonucleotide to a target molecule.

15.  The method of claim 12, wherein the on-target engagement causes the
oligonucleotide to perform an effective amount of one or more of: gene expression knock-down,
RNA splicing modulatory behavior, gene expression upregulation, gene-editing, RNA-editing,
protein specific targeting, receptor specific targeting, enzymatic substrate specific targeting,

distribution and uptake into tissues or cells, and interaction with a specific protein or receptor.

16. The method of claim 14, wherein the off-target engagement causes the
oligonucleotide to perform an effective amount of one or more of: non-target gene expression
knock-down, non-target RNA splicing modulatory behavior, non-target gene expression
upregulation, non-target gene-editing, non-target RNA-editing, non-target protein specific

targeting, non-target receptor specific targeting, non-target enzymatic substrate specific
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targeting, non-target distribution and uptake into tissues or cells, and non-target interaction with

a specific protein or receptor.

17.  The method of claim 1, wherein the biophysical effect is a measure of absorption

2

distribution, metabolism, or excretion of the oligonucleotide.

18.  The method of claim 1, wherein the biophysical effect is a measure of
pharmacokinetics or pharmacodynamics, and comprises one or more of: substrate-target
processing, dynamics, accessibility, inter-cellular distribution, intra-cellular distribution, and

time-dependent availability.

19.  The method of claim 1, wherein initializing the machine-learned model comprises
initializing a set of coefficients each representative of a correlation between n-grams of an

oligonucleotide sequence and a presence of the biophysical effect.

20.  The method of claim 19, wherein at least one coefficient of the set of coefficients
is representative of a correlation between consecutive n-grams within the oligonucleotide and the

presence of the biophysical effect.

21.  The method of claim 1, wherein the machine-learned model comprises one of: an
Ising model, a Potts model, a hidden Markov model, a continuous random field model, and a

directed acyclic graphical model.

22, The method of claim 1, wherein the machine-learned model comprises one of: a
random forest classifier, a logistic regression, a linear regression, a neural network, a sparsity-

driven convex optimization fit, and a support vector machine.

23, The method of claim 1, wherein the first set of oligonucleotides comprise n-gram

mutations of the initial oligonucleotide.

24.  The method of claim 23, wherein the first set of oligonucleotides comprise gapped

n-gram mutations.

129

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

25.  The method of claim 23, wherein each of the first set of oligonucleotides

comprises a single or double n-gram or gapped n-gram mutation of the initial oligonucleotide.

26.  The method of claim 25, wherein the first set of oligonucleotides comprise a

subset of all single or double or gapped n-gram mutations of the initial oligonucleotide.

27.  The method of claim 26, wherein the first set of oligonucleotides, when fitted by

the initialized machine-learned model, represent a range of probabilities of the biophysical effect.

28.  The method of claim 1, wherein determining whether an oligonucleotide
corresponds to the biophysical effect comprises performing one or more of’ in vifro, in vivo, ex

vivo, in situ, and in silico assays on the oligonucleotide.

29.  The method of claim 1, wherein determining whether an oligonucleotide
corresponds to the biophysical effect comprises simulating, in silico, one or more of: in vitro, in

vivo, ex vivo, and in situ assays on the oligonucleotide.

30.  The method of claim 1, wherein determining whether an oligonucleotide
corresponds to the biophysical effect comprises classifying the oligonucleotide using a synthetic

model configured to predict whether the oligonucleotide corresponds to the biophysical effect.

31.  The method of claim 1, wherein generating the refined machine-learned model
comprises retraining the initialized machine-learned model using the first set of oligonucleotides

and whether each of the first set of oligonucleotides corresponds to the biophysical effect.

32.  The method of claim 1, wherein generating the refined machine-learned model
comprises performing a sparsity-constrained fit on the first set of oligonucleotides and whether

each of the first set of oligonucleotides corresponds to the biophysical effect.

33.  The method of claim 1, wherein generating the refined machine-learned model
comprises generating a new machine-learned model using the first set of oligonucleotides and

whether each of the first set of oligonucleotides corresponds to the biophysical effect.
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34.  The method of claim 1, wherein generating the refined machine-learned model
comprises:

generating a first updated machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides
corresponds to the biophysical effect;

generating a second set of oligonucleotides based on the first updated machine-
learned model, each of the second set of oligonucleotides comprising a
mutation of the initial oligonucleotide;

determining, for each oligonucleotide of the second set of oligonucleotides, whether
the oligonucleotide corresponds to the biophysical effect; and

generating a second updated machine-learned model using the second set of
oligonucleotides and whether each of the second set of oligonucleotides

corresponds to the biophysical effect.

35.  The method of claim 34, wherein generating the refined machine-learned model
further comprises:

generating a third set of oligonucleotides, each of the third set of oligonucleotides
comprising a randomly generated oligonucleotide;

determining, for each oligonucleotide of the third set of oligonucleotides, whether the
oligonucleotide corresponds to the biophysical effect; and

modifying the second updated machine-learned model using the third set of
oligonucleotides and whether each of the third set of oligonucleotides

corresponds to the biophysical effect.

36.  The method of claim 35, wherein the third set of oligonucleotides further
comprises approximately equal portions of oligonucleotides predicted to correspond to the
biophysical effect and predicted to not correspond to the biophysical effect by the second

updated machine-learned model.
37.  The method of claim 34 or 35, wherein generating an oligonucleotide in the

second set of oligonucleotides or the third set of oligonucleotides comprises:
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identifying an n-gram of an oligonucleotide sequence that strongly corresponds to the
biophysical effect; and
generating an oligonucleotide comprising a mutation of the identified n-gram of the

oligonucleotide sequence.

38.  The method of claim 1, wherein generating a refined machine-learned model
further comprises iteratively refining the machine-learned model using additional sets of

oligonucleotides until a stop condition is satisfied.

39.  The method of claim 35, wherein the stop condition comprises one or more of: a
number of iterations, a threshold predictive performance of the machine-learned model, and a
below-threshold increase in predictive performance of the machine-learned model after a

refining iteration.

40.  The method of claim 1, wherein generating the final set of oligonucleotides using
the refined machine-learned model comprises:

recetving an identification of a biophysical function to be performed by an
oligonucleotide-based medicine (OBM) and an identification of a measure of
the biophysical effect;

identifying a set of characteristics of an oligonucleotide associated with the
biophysical function; and

generating, using the refined machine-learned model, a set of oligonucleotides having
one or more of the identified set of characteristics and corresponding to the

measure of the biophysical effect.

41.  The method of claim 40, wherein the biophysical effect comprises one or more of’

a biological effect, a chemical effect, and a pharmacological effect.

42, The method of claim 40, wherein the biophysical effect is tolerability.

43, The method of claim 42, wherein tolerability comprises cytotoxicity.
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44, The method of claim 42, wherein tolerability comprises membrane toxicity.

45, The method of claim 42, wherein tolerability comprises immunotoxicity.

46.  The method of claim 42, wherein tolerability comprises an effect that inhibits

membrane fluidity.

47.  The method of claim 42, wherein tolerability comprises a membrane fusion and

fission event.

48.  The method of claim 47, wherein the membrane fusion and fission event result in

loss of cellular signaling activity.

49.  The method of claim 40, wherein the biophysical effect is an immune response.

50.  The method of claim 40, wherein the biophysical function is a reduction of

immune-mediated inflammation.

51.  The method of claim 40, wherein the biophysical function is increasing immune-

mediated responses.

52. The method of claim 40, wherein the biophysical function is an on-target

engagement of the oligonucleotide to a target.

53.  The method of claim 52, wherein the on-target engagement causes the
oligonucleotide to perform an effective amount of one or more of: gene expression knock-down,
RNA splicing modulatory behavior, gene expression upregulation, gene-editing, RNA-editing,
protein specific targeting, receptor specific targeting, enzymatic substrate specific targeting, and

distribution and uptake into tissues or cells.

54.  The method of claim 53, wherein the target is a gene product.
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55. The method of claim 54, wherein the gene product is an mRNA, a splicing site on

a pre-mRNA, a truncated transcript, an aborted transcription product, or an antisense transcript.

56.  The method of claim 40, wherein the biophysical effect is a measure of
absorption, distribution, metabolism, or excretion of the oligonucleotide within one or more of: a

tissue,cell, intracellular spaces, and extracellular spaces.

57.  The method of claim 56, wherein the intracellular space comprises blood or

cerebrospinal fluid (CSF).

58.  The method of claim 40, wherein the measure of the biophysical effect comprises
one or more of: a threshold toxicity, a threshold biological activity or biological activity range, a
threshold of absorption or absorption range, a threshold distribution, a threshold metabolism, a
threshold excretion, a threshold measure of pharmacokinetics, and a threshold measure of

pharmacodynamics.

59.  The method of claim 58, wherein the biophysical effect is selected to be beneficial

for an individual based on the individual’s genetics.

60.  The method of claim 40, wherein generating the set of oligonucleotides comprises
selecting one or more of: antisense oligonucleotides (ASO), anti-gene oligonucleotides, CpG
oligonucleotides, single-guide RNAs, dual-guide RNAs, targeter RNAs, activator RNAs, and

ribozymes.

61.  The method of claim 40, wherein the final set of oligonucleotides comprises a set

of aptamers.

62.  The method of claim 61, wherein the biophysical effect is one or more of: cellular
uptake and trafficking of the aptamer, binding aftinity to the OBM, OBM-aptamer interactions,
folded structures of the aptamer, electrostatic interactions, and hybridization energetics and

biophysics.
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63.  The method of claim 62, wherein the folded structure comprises one or more of a
bulge, an apical loop, a stem-loop, a 3-way junction, a form helix, an internal loop, a pseudoknot,

and a hairpin.

64.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

of oligonucleotide-aptamer conjugates.

65.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

antisense oligonucleotides (ASO).

66.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

of anti-gene oligonucleotides.

67.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

CpG oligonucleotides.

68.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

single-guide RNAs.

69.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

dual-guide RNAs.

70.  The method of claim 33, wherein the final set of oligonucleotides comprises a set

targeter RNAs.

71.  The method of claim 57, wherein the final set of oligonucleotides comprises a set

activator RNAs.

72. A method for training a machine-learned model, comprising:
initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an

initial oligonucleotide corresponding to the biophysical effect;

135

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

generating a first set of oligonucleotides by performing single n-gram mutations on
the initial oligonucleotide to obtain oligonucleotides mapped to a distributed
range of probabilities by the initialized probabilistic machine-learned model;

determining, for each oligonucleotide of the first set of oligonucleotides, a first
measure of correlation between the oligonucleotide and the biophysical effect
based on real-world experimental determination;

generating a first refined probabilistic machine-learned model based on the first set of
oligonucleotides and the determined first measures of correlation;

generating a second set of oligonucleotides, each of the second set of oligonucleotides
randomly generated and mapped to a distributed range of probabilities by the
first refined probabilistic machine-learned model,;

determining, for each oligonucleotide of the second set of oligonucleotides, a second
measure of correlation between the oligonucleotide and the biophysical effect
based on real-world experimental determination;

generating a second refined probabilistic machine-learned model based on the second
set of oligonucleotides and the determined second measures of correlation;,
and

generating a final set of oligonucleotides using the second refined probabilistic

machine-learned model.

73.  The method of claim 72, further comprising:
receiving a set of biophysical requirements for an oligonucleotide-based medicine
from a designer; and
selecting a subset of the generated final set of oligonucleotides that satisty the set of

biophysical requirements.

74.  The method of claim 1 or 72, wherein the first set of oligonucleotides comprises

50 or fewer oligonucleotides, between 50 and 100 oligonucleotides, between 100 and 150

oligonucleotides, between 150 and 200 oligonucleotides, between 200 and 300 oligonucleotides,

between 300 and 400 oligonucleotides, between 400 and 500 oligonucleotides, between 500 and

750 oligonucleotides, between 750 and 1000 oligonucleotides, between 1000 and 1500

136

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

oligonucleotides, between 1500 and 2000 oligonucleotides, between 2000 and 2500
oligonucleotides, between 2500 to 5000 oligonucleotides, or between 5000 to 10000

oligonucleotides.

75. A method for training a machine-learned model, comprising:

initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect;

generating a first refined probabilistic machine-learned model by, until a first stop
condition is satisfied, iteratively 1) generating an increasingly complex set of
oligonucleotide mutations based on the initial oligonucleotide, 2) determining
a real-world measure of correlation between the set of oligonucleotide
mutations and the biophysical effect, and 3) fitting the set of oligonucleotides
and the determined real-world measures of correlations to an increasingly
refined probabilistic machine-learned model;

generating a second refined probabilistic machine-learned model by, until a second
stop condition 1s satisfied, iteratively 1) generating a random set of
oligonucleotides, 2) selecting a subset of the generated random set of
oligonucleotides such that approximately equal portions of the subset of the
generated random set of oligonucleotides are predicted to correspond to the
biophysical effect and are predicted not to correspond to the biophysical
effect, 3) determining a real-world measure of correlation between the subset
of oligonucleotides and the biophysical effect, and 4) fitting the subset of
oligonucleotides and the determined real-world measures of correlations to an
increasingly refined probabilistic machine-learned model; and

generating a final set of oligonucleotides using the second refined probabilistic

machine-learned model.

76. A system for training a machine-learned model, comprising:

a hardware processor; and
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a non-transitory computer-readable storage medium storing executable instructions
that, when executed by the hardware processor, cause the system to perform
steps comprising
initializing a machine-learned model configured to map an oligonucleotide
sequence to a probability of a biophysical effect using an initial
oligonucleotide corresponding to the biophysical effect;

generating a first set of oligonucleotides based on the initial oligonucleotide
using the initialized machine-learned model;

determining, for each oligonucleotide of the first set of oligonucleotides,
whether the oligonucleotide corresponds to the biophysical effect;

generating a refined machine-learned model using the first set of
oligonucleotides and whether each of the first set of oligonucleotides
corresponds to the biophysical effect; and

generating a final set of oligonucleotides using the refined machine-learned

model.

77. A non-transitory computer-readable storage medium storing executable
instructions that, when executed by a hardware processor, cause the hardware processor to
perform steps for generating oligonucleotide-based medicines, the steps comprising:

initializing a machine-learned model configured to map an oligonucleotide sequence
to a probability of a biophysical effect using an initial oligonucleotide
corresponding to the biophysical effect;

generating a first set of oligonucleotides based on the initial oligonucleotide using the
initialized machine-learned model;

determining, for each oligonucleotide of the first set of oligonucleotides, whether the
oligonucleotide corresponds to the biophysical effect;

generating a refined machine-learned model using the first set of oligonucleotides and
whether each of the first set of oligonucleotides corresponds to the biophysical
effect; and

generating a final set of oligonucleotides using the refined machine-learned model.
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78. A system for training a machine-learned model, comprising:
a hardware processor; and
a non-transitory computer-readable storage medium storing executable instructions

that, when executed by the hardware processor, cause the system to perform

steps comprising:

initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using
an initial oligonucleotide corresponding to the biophysical effect;

generating a first set of oligonucleotides by performing single n-gram
mutations on the initial oligonucleotide to obtain oligonucleotides
mapped to a distributed range of probabilities by the initialized
probabilistic machine-learned model,

determining, for each oligonucleotide of the first set of oligonucleotides, a
first measure of correlation between the oligonucleotide and the
biophysical effect based on real-world experimental determination;

generating a first refined probabilistic machine-learned model based on the
first set of oligonucleotides and the determined first measures of
correlation;

generating a second set of oligonucleotides, each of the second set of
oligonucleotides randomly generated and mapped to a distributed
range of probabilities by the first refined probabilistic machine-learned
model;

determining, for each oligonucleotide of the second set of oligonucleotides, a
second measure of correlation between the oligonucleotide and the
biophysical effect based on real-world experimental determination;

generating a second refined probabilistic machine-learned model based on the
second set of oligonucleotides and the determined second measures of
correlation; and

generating a final set of oligonucleotides using the second refined

probabilistic machine-learned model.
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79. A non-transitory computer-readable storage medium storing executable
instructions that, when executed by a hardware processor, cause the hardware processor to
perform steps for generating oligonucleotide-based medicines, the steps comprising:

initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an
initial oligonucleotide corresponding to the biophysical effect;

generating a first set of oligonucleotides by performing single n-gram mutations on
the initial oligonucleotide to obtain oligonucleotides mapped to a distributed
range of probabilities by the initialized probabilistic machine-learned model;

determining, for each oligonucleotide of the first set of oligonucleotides, a first
measure of correlation between the oligonucleotide and the biophysical effect
based on real-world experimental determination;

generating a first refined probabilistic machine-learned model based on the first set of
oligonucleotides and the determined first measures of correlation;

generating a second set of oligonucleotides, each of the second set of oligonucleotides
randomly generated and mapped to a distributed range of probabilities by the
first refined probabilistic machine-learned model;

determining, for each oligonucleotide of the second set of oligonucleotides, a second
measure of correlation between the oligonucleotide and the biophysical effect
based on real-world experimental determination;

generating a second refined probabilistic machine-learned model based on the second
set of oligonucleotides and the determined second measures of correlation,
and

generating a final set of oligonucleotides using the second refined probabilistic

machine-learned model.

80. A system for training a machine-learned model, comprising:
a hardware processor; and
a non-transitory computer-readable storage medium storing executable instructions
that, when executed by the hardware processor, cause the system to perform

steps comprising:
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initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using
an initial oligonucleotide corresponding to the biophysical effect;

generating a first refined probabilistic machine-learned model by, until a first
stop condition is satisfied, iteratively 1) generating an increasingly
complex set of oligonucleotide mutations based on the initial
oligonucleotide, 2) determining a real-world measure of correlation
between the set of oligonucleotide mutations and the biophysical
effect, and 3) fitting the set of oligonucleotides and the determined
real-world measures of correlations to an increasingly refined
probabilistic machine-learned model,

generating a second refined probabilistic machine-learned model by, until a
second stop condition is satisfied, iteratively 1) generating a random
set of oligonucleotides, 2) selecting a subset of the generated random
set of oligonucleotides such that approximately equal portions of the
subset of the generated random set of oligonucleotides are predicted to
correspond to the biophysical effect and are predicted not to
correspond to the biophysical effect, 3) determining a real-world
measure of correlation between the subset of oligonucleotides and the
biophysical effect, and 4) fitting the subset of oligonucleotides and the
determined real-world measures of correlations to an increasingly
refined probabilistic machine-learned model; and

generating a final set of oligonucleotides using the second refined

probabilistic machine-learned model.

81. A non-transitory computer-readable storage medium storing executable
instructions that, when executed by a hardware processor, cause the hardware processor to
perform steps for generating oligonucleotides, the steps comprising:

initializing a probabilistic machine-learned model configured to map an
oligonucleotide sequence to a probability of a biophysical effect using an

initial oligonucleotide corresponding to the biophysical eftect;
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generating a first refined probabilistic machine-learned model by, until a first stop
condition is satisfied, iteratively 1) generating an increasingly complex set of
oligonucleotide mutations based on the initial oligonucleotide, 2) determining
a real-world measure of correlation between the set of oligonucleotide
mutations and the biophysical effect, and 3) fitting the set of oligonucleotides
and the determined real-world measures of correlations to an increasingly
refined probabilistic machine-learned model,

generating a second refined probabilistic machine-learned model by, until a second
stop condition is satisfied, iteratively 1) generating a random set of
oligonucleotides, 2) selecting a subset of the generated random set of
oligonucleotides such that approximately equal portions of the subset of the
generated random set of oligonucleotides are predicted to correspond to the
biophysical effect and are predicted not to correspond to the biophysical
effect, 3) determining a real-world measure of correlation between the subset
of oligonucleotides and the biophysical effect, and 4) fitting the subset of
oligonucleotides and the determined real-world measures of correlations to an
increasingly refined probabilistic machine-learned model; and

generating a final set of oligonucleotides using the second refined probabilistic

machine-learned model.

82. An oligonucleotide, generated according to the method of claim 1, 72, or 75.

83. A method for generating oligonucleotide-based medicines, comprising:
generating a first set of oligonucleotides by performing n-gram mutations on an initial
oligonucleotide to obtain oligonucleotides mapped to a distributed range of
probabilities;
creating a first training set comprising, for each oligonucleotide of the first set of
oligonucleotides, a first measure of correlation between the oligonucleotide
and a biophysical effect determined based on real-world experimental

determination;
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training a machine-learned model in a first stage using the first training set, the
machine-learned model configured to map an oligonucleotide sequence to a
probability of a biophysical effect;

generating a second set of oligonucleotides mapped to a distributed range of
probabilities by the machine-learned model,

creating a second training set comprising, for each oligonucleotide of the second set
of oligonucleotides, a second measure of correlation between the
oligonucleotide and a biophysical effect determined based on real-world
experimental determination; and

training the machine-learned model in a second stage using the second training set.

84.  The method of claim 1, further comprising:

generating a final set of oligonucleotides using the trained machine-learned model.

85.  The method of claim 84, further comprising;
accessing a set of biophysical requirements for an oligonucleotide-based medicine;
and
selecting a subset of the generated final set of oligonucleotides that satisty the set of

biophysical requirements.

86.  The method of claim 84, wherein the final set of cligonucleotides comprises one

or more of: a set of aptamers, a set of oligonucleotide-aptamer conjugates, a set antisense

oligonucleotides (ASO), a set of anti-gene oligonucleotides, a set CpG oligonucleotides, a set

single-guide RNAs, a set dual-guide RNAs, a set targeter RNAs, and a set activator RNAs.

87.  The method of claim 84, wherein generating the final set of oligonucleotides

using the trained machine-learned model comprises:

receiving an identification of a biophysical function to be performed by an
oligonucleotide-based medicine (OBM) and an identification of a measure of

the biophysical effect;
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identifying a set of characteristics of an oligonucleotide associated with the
biophysical function; and

generating, using the trained machine-learned model, a set of oligonucleotides having
one or more of the identified set of characteristics and corresponding to the

measure of the biophysical effect.

88.  The method of claim 87, wherein the biophysical function comprises one or more
of: a reduction of immune-mediated inflammation, an increase in immune-mediated response,

and an on-target engagement of the oligonucleotide to a target.

89.  The method of claim 88, wherein the on-target engagement causes the
oligonucleotide to perform an effective amount of one or more of: gene expression knock-down,
RNA splicing modulatory behavior, gene expression upregulation, gene-editing, RNA-editing,
protein specific targeting, receptor specific targeting, enzymatic substrate specific targeting, and

distribution and uptake into tissues or cells.

90.  The method of claim 89, wherein the target is an mRNA, a splicing site on a pre-

mRNA, a truncated transcript, an aborted transcription product, or an antisense transcript.

91.  The method of claim 87, further comprising identifying a dose for the OBM based
on a relationship between a quantity of one or more of the final set of oligonucleotides and the

measure of the biophysical effect.

92.  The method of claim 83, wherein the biophysical effect comprises one or more of

a biological effect, a chemical effect, and a pharmacological effect.

93.  The method of claim 83, wherein the biophysical effect comprises one or more of
cytotoxicity, membrane toxicity, immunotoxicity, an effect that inhibits membrane fluidity, a

membrane fusion and fission event, and an immune response.

144

SUBSTITUTE SHEET (RULE 26)



WO 2021/202938 PCT/US2021/025471

94, The method of claim 83, wherein the biophysical effect is a biological activity of
the oligonucleotide, and comprises one of an on-target engagement of the oligonucleotide to a

target molecule or an oftf-target engagement of the oligonucleotide to a target molecule.

95.  The method of claim 83, wherein the biophysical effect comprises an inactivity of

the oligonucleotide.

96.  The method of claim 83, wherein the biophysical effect comprises a measure of
one or more of: absorption, distribution, metabolism, excretion, pharmacokinetics or
pharmacodynamics, substrate-target processing, dynamics, accessibility, inter-cellular

distribution, intra-cellular distribution, and time-dependent availability.

97.  The method of claim 83, wherein the machine-learned model is initialized by
initializing a set of coefficients each representative of a correlation between n-grams of an

oligonucleotide sequence and a presence of the biophysical effect.

98.  The method of claim 97, wherein at least one coefficient of the set of coefficients
is representative of a correlation between consecutive n-grams within the oligonucleotide and the

presence of the biophysical effect.

99.  The method of claim 83, wherein the machine-learned model comprises one of:
an Ising model, a Potts model, a hidden Markov model, a continuous random field model, a
directed acyclic graphical model, a random forest classifier, a logistic regression, a linear
regression, a neural network, a sparsity-driven convex optimization fit, and a support vector

machine.

100.  The method of claim 83, wherein the n-gram mutations comprise single n-gram
mutations, multiple n-gram mutations, gapped n-gram mutations, or correlated n-gram mutations

on a set of one or more initial oligonucleotides.
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101.  The method of claim 83, wherein the second set of oligonucleotides are generated
by design using identical or new n-gram mutation types in a single, multiple or correlated

manner from the first set of oligonucleotides.

102.  The method of claim 83, wherein the second set of oligonucleotides are generated
randomly using identical or new n-gram mutation types in a single, multiple or correlated

manner from the first set of oligonucleotides.

103.  The method of claim 83, wherein the real-world experimental determination
comprises performing one or more of: in vitro, in vivo, ex vivo, in situ, and in silico assays on

the oligonucleotide.

104.  The method of claim 83, wherein generating the training the machine-learned
model in the first stage comprises performing a sparsity-constrained fit on the first set of
oligonucleotides and whether each of the first set of oligonucleotides corresponds to the

biophysical effect.

105.  The method of claim 83, further comprises generating a third set of
oligonucleotides, creating a third training set comprising, for each oligonucleotide of the second
set of oligonucleotides, a second measure of correlation between the oligonucleotide and a
biophysical effect determined based on real-world experimental determination, and training the

machine-learned model in a third stage using the third training set.

106.  The method of claim 105, wherein the third set of oligonucleotides comprises
approximately equal portions of oligonucleotides predicted to correspond to the biophysical

effect and predicted to not correspond to the biophysical effect by the machine-learned model.

107.  The method of claim 83, further comprising iteratively training the machine-

learned model in subsequent stages until a stop condition is satisfied.

108.  The method of claim 107, wherein the stop condition comprises one or more of: a

number of iterations, a threshold predictive performance of the machine-learned model, and a
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below-threshold increase in predictive performance of the machine-learned model after an

iteration.

109. A non-transitory computer-readable storage medium storing executable
instructions for generating oligonucleotide-based medicines, the instructions, when executed by a
hardware processor, configured to cause the hardware processor to perform steps comprising;

generating a first set of oligonucleotides by performing n-gram mutations on an initial
oligonucleotide to obtain oligonucleotides mapped to a distributed range of
probabilities;

creating a first training set comprising, for each oligonucleotide of the first set of
oligonucleotides, a first measure of correlation between the oligonucleotide
and a biophysical effect determined based on real-world experimental
determination;

training a machine-learned model in a first stage using the first training set, the
machine-learned model configured to map an oligonucleotide sequence to a
probability of a biophysical effect;

generating a second set of oligonucleotides mapped to a distributed range of
probabilities by the machine-learned model,

creating a second training set comprising, for each oligonucleotide of the second set
of oligonucleotides, a second measure of correlation between the
oligonucleotide and a biophysical effect determined based on real-world
experimental determination; and

training the machine-learned model in a second stage using the second training set.

110. A system for generating oligonucleotide-based medicines, comprising;
a hardware processor; and
a non-transitory computer-readable storage medium storing executable instructions
that, when executed by the hardware processor, cause the system to perform

steps comprising;
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generating a first set of oligonucleotides by performing n-gram mutations on
an initial oligonucleotide to obtain oligonucleotides mapped to a
distributed range of probabilities;

creating a first training set comprising, for each oligonucleotide of the first set
of oligonucleotides, a first measure of correlation between the
oligonucleotide and a biophysical effect determined based on real-
world experimental determination;

training a machine-learned model in a first stage using the first training set,
the machine-learned model configured to map an oligonucleotide
sequence to a probability of a biophysical effect;

generating a second set of oligonucleotides mapped to a distributed range of
probabilities by the machine-learned model,;

creating a second training set comprising, for each oligonucleotide of the
second set of oligonucleotides, a second measure of correlation
between the oligonucleotide and a biophysical effect determined based
on real-world experimental determination; and

training the machine-learned model in a second stage using the second

training set.

111.  An oligonucleotide-based medicine manufactured by a process comprising:

generating a first set of oligonucleotides by performing n-gram mutations on an initial
oligonucleotide to obtain oligonucleotides mapped to a distributed range of
probabilities;

creating a first training set comprising, for each oligonucleotide of the first set of
oligonucleotides, a first measure of correlation between the oligonucleotide
and a biophysical effect determined based on real-world experimental
determination;

training a machine-learned model in a first stage using the first training set, the
machine-learned model configured to map an oligonucleotide sequence to a

probability of a biophysical effect;
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generating a second set of oligonucleotides mapped to a distributed range of
probabilities by the machine-learned model,

creating a second training set comprising, for each oligonucleotide of the second set
of oligonucleotides, a second measure of correlation between the
oligonucleotide and a biophysical effect determined based on real-world
experimental determination; and

training the machine-learned model in a second stage using the second training set.

112.  The oligonucleotide-based medicine of claim 111, wherein the process further
comprises generating a final set of oligonucleotides for inclusion in the oligonucleotide-based

medicine using the trained machine-learned model.
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FIG. 3
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