wo 2016/085541 A1 || I} NN T OO0 OO 00 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

2 June 2016 (02.06.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/085541 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2015/035028

International Filing Date:
10 June 2015 (10.06.2015)

English
English

Filing Language:
Publication Language:

Priority Data:
62/085,370 28 November 2014 (28.11.2014) Us

Applicant: NASUNI CORPORATION [US/US]; 313
Speen Street, Natick, MA 01760 (US).

Inventors: MASON, Robert, S.; C/o Nasuni Corporation,
313 Speen Street, Natick, MA 01760 (US). SHAW, David,
M.; C/o Nasuni Corporation, 313 Speen Street, Natick,
MA 01760 (US). BAUGHMAN, Kevin, W.; C/o0 Nasuni
Corporation, 313 Speen Street, Natick, MA 01760 (US).
LACASSE, Christopher, S.; C/o Nasuni Corporation, 313
Speen Street, Natick, MA 01760 (US). MCDONALD,

(74

(8D

(84)

Matthew, M.; C/o Nasuni Corporation, 313 Speen Street,
Natick, MA 01760 (US). NEUFELD, Russell, A.; C/o
Nasuni Corporation, 313 Speen Street, Natick, MA 01760
(US). SAXENA, Akshay, K.; C/o Nasuni Corporation,
313 Speen Street, Natick, MA 01760 (US).

Agent: HALLAJ, Ibrahim, M.; Intrinsic Law Corp., 760
Main Street, Third Floor, Waltham, MA 02451 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: VERSIONED FILE SYSTEM WITH GLOBAL LOCK

1300
\

1355

1360

™

Local NAS N
management Web

interface

1330

1320
1300 1318 1322
s |HTTPD | Admin
swgp | 1308 ’
F
NFS/CIFS & N y | e | 1314
Active Directory | s aq::ror Cff; ‘19 volrmgr
a&mMon il =
LDAP 1204 E €
NFSD 1308
A\ J
Fig. 13

Lo

R \
¢ Cloud storage

§

(57) Abstract: A versioned file system comprising network
accessible storage is provided. Aspects of the system include
globally locking files or groups of files so as to better control
the stored files in the file system and to avoid problems asso-
ciated with simultaneous remote access or conflicting mul-

tiple access requests for the same files. A method for operat-
ing, creating and using the global locks is also disclosed. A

multiprotocol global lock can be provided for filing nodes
that have multiple network protocols for generating local
lock requests.

WO 2016/085541 A1 |IIWAT 00TV 00O OO

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Published:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

WO 2016/085541 PCT/US2015/035028

VERSIONED FILE SYSTEM WITH GLOBAL LOCK

Technical Field

[0001] The present application relates generally to data storage, and more

particularly to locking files stored in a network-attached file system.

Related Applications

[0002] This application is related and claims priority to U.S. Provisional
Application No. 62/085,370 entitled, “Versioned File System with Global Lock” filed on

November 28, 2014, which is hereby incorporated by reference in its entirety.

Background

[0003] It is known to provide an interface between an existing local file system
and a data store (e.g., a “write-once” store) to provide a “versioned” file system. The
versioned file system comprises a set of structured data representations, such as XML.
In a representative embodiment, at a first time, the interface creates and exports to a
data store a first structured data representation corresponding to a first version of the
local file system. The first structured data representation is an XML tree having a root
element, a single directory (the “root directory”) under the root element, zero or more
directory elements associated with the root directory, and zero or more elements (such
as files) associated with a given directory element. Each directory in turn can contain
zero or more directories and zero or more files. Upon a change within the file system

(e.g., file creation, file deletion, file modification, directory creation, directory deletion

WO 2016/085541 PCT/US2015/035028

and directory modification), the interface creates and exports a second structured data
representation corresponding to a second version of the file system. The second
structured data representation differs from the first structured data representation up
to and including the root element of the second structured data representation. Thus,
the second structured data representation differs from the first structured data
representation in one or more (but not necessarily all) parent elements with respect to
the structured data element in which the change within the file system occurred. The
interface continues to generate and export structured data representations to the data
store, preferably at given “snapshot” times when changes within the file system have
occurred. The data store comprises any type of back-end storage device, system or
architecture. In one embodiment, the data store comprises one or more cloud storage
service providers. As necessary, a given structured data representation is then used to
retrieve an associated version of the file system. In this manner, the versioned file
system only requires write-once behavior from the data store to preserve its complete

state at any point-in-time.

Summary

[0004] Example embodiments described herein have innovative features, no
single one of which is indispensable or solely responsible for their desirable attributes.
The following description and drawings set forth certain illustrative implementations of
the disclosure in detail, which are indicative of several exemplary ways in which the
various principles of the disclosure may be carried out. The illustrative examples,
however, are not exhaustive of the many possible embodiments of the disclosure.

Without limiting the scope of the claims, some of the advantageous features will now

WO 2016/085541 PCT/US2015/035028

be summarized. Other objects, advantages and novel features of the disclosure will be
set forth in the following detailed description of the disclosure when considered in

conjunction with the drawings, which are intended to illustrate, not limit, the invention.

[0005] In an aspect, the invention includes a method of locking a shared file
stored in a network-attached file system (NAS). The method includes intercepting a
local lock request initiated by a user of a local file system, the local lock request for
write access to the shared file. The method also includes translating the local lock
request having a first local protocol to a global lock request having a common
protocol. The method also includes sending the global lock request to a central lock
server. The method also includes receiving a global lock for the shared file if the central

lock server determines that the global lock is available.

[0006] The first local protocol can be Network File System (NFS), Server
Message Block (SMB) or Common Internet File System (CIFS). In some embodiments,
the method also includes intercepting a second local lock request initiated by a second
user of a second local file system, the second local lock request for write access to the
shared file, the second local lock request having a second local protocol, the second
local protocol comprising Server Message Block (SMB) or Common Internet File
System (CIFS). The method can also include translating the second local lock request
having the second local protocol to a second global lock request having the common
protocol. The method can also include sending the second global lock request to the
central lock server. The method can also include receiving a multiprotocol global lock
for the shared file if the central lock server determines that the multiprotocol global

lock is available.

WO 2016/085541 PCT/US2015/035028

[0007] In some embodiments, the method includes creating a snapshot of a
most recent version of the shared file. In some embodiments, the method includes
marking a parent directory of the shared file as modified. The method can also include
merging a file data for the shared file in a local cache prior to locking a file path of the
shared file. The method can also include determining whether a network file data
stored in a server is newer than a local file data stored in the local cache. The method
can also include, prior to releasing the global lock, discarding the network file data if
the local file data of the shared file is newer than the network file data of the shared
file. The method can also include discarding the network file data if a
lock_write_version of the shared file is less than a lock_push_version of the shared file.
The method can also include merging the local file data with the network file data if a

lock_write_version is greater than a lock_push_version.

[0008] In some embodiments, the method includes temporarily storing a local
lock release request in a local lock cache. The method can also include reestablishing
the global lock if a second local lock request is generated while the local lock release is
stored in the local cache. The method can also include resetting an existing lock mode
of the global lock if the new lock mode for the second lock request is different than the
existing lock mode. The reset lock mode can be inclusive of an existing access level of
the existing lock mode and a new access level of the new lock mode. The reset lock
mode can be inclusive of an existing share level of the existing lock mode and a new
share level of the new lock mode. The method can also include translating the local
lock release to a global lock release having the common protocol; and sending the

global lock release to the central lock server.

WO 2016/085541 PCT/US2015/035028

[0009] In some embodiments, the method includes updating a central lock
database with an identity of the shared file associated with the global lock released by
the global lock server. In some embodiments, the method includes determining
whether a requested lock mode is available. The requested lock mode can include an
exclusive write access or a shared write access. The method can also include
determining if the requested lock mode is compatible with an existing lock mode for
an existing global lock on the shared file. In some embodiments, determining if the
requested lock mode is compatible with an existing lock mode comprises comparing
the first local protocol associated with the global lock request with a second local

protocol associated with the existing global lock.

[0010] In some embodiments, the method includes storing a new file request on
the central lock server. The method can also include polling the central lock server for
new files or new objects that have not been merged into the NAS. The method can

also include merging a new file generated by the new file request into the NAS.

[0011] The method can also include promoting the local lock request to a write
lock that allows read-only access to others users of the NAS. The method can also
include honoring an access flag and a shared access flag associated with the local lock
request. The method can also include initiating a lock peek when the user opens the
shared file. In some embodiments, the lock peek comprises retrieving at least one of a
file handle, a handle version, a firsthandle, and a lock push version. In some
embodiments, the lock peek is retrieved from a local lock cache. In some
embodiments, the lock peek is retrieved from the central lock server. The method can
also include temporarily storing information retrieved from the lock peek in a local lock

cache.

WO 2016/085541 PCT/US2015/035028

[0012] In another aspect, the invention includes a method for managing locks in
a shared network-attached file system. The method includes receiving a first global
lock request from a first node, the first global lock request comprising a first local
protocol of a first local lock request generated by the first node. The method also
includes providing a global lock to the first node. The method also includes receiving a
second global lock request from a second node, the second global lock request
comprising a second local protocol of a second local lock request generated by the
second node, wherein the first protocol is different than the second protocol. The
method also includes providing a multiprotocol global lock to the second node if the
multiprotocol global lock is compatible with the first local protocol and the second

local protocol.

[0013] In some embodiments, the first local protocol is Network File System
(NFS), Server Message Block (SMB) or Common Internet File System (CIFS). In some
embodiments, the first protocol is Server Message Block (SMB) or Common Internet

File System (CIFS) and the second protocol is Network File System (NFS).

[0014] In another aspect, the invention includes an apparatus for managing file
locks in a shared network-attached file system. The apparatus includes a first server
comprising a processor, a network interface, a file system agent, and a lock daemon.
The first server is in communication with a central lock server and a cloud-based
storage via the network interface. The lock daemon is configured to translate a local
lock request for a shared file in the shared network-attached file system to a global lock
request, the local lock request having a first protocol, the global lock request having a

common protocol. The file system agent is configured to create and export to the

WO 2016/085541 PCT/US2015/035028

cloud-based storage one or more structured data representations of a local file system

to generate a version of the shared network-attached file system.

[0015] In another aspect, the invention includes an apparatus associated with
multiple filer entities, at least one of which creates and exports to a cloud data store
one or more structured data representations comprising a shared versioned file system,
the shared versioned file system accessible to each file entity, wherein filer entities do
not interact with one another. The apparatus includes a processor and a computer
memory storing computer program instructions executed by the processor. The
program instructions instruct the processor to intercept a local lock request initiated by
the filer entity, the local lock request for write access to a shared file in the shared
versioned file system. The program instructions also instruct the processor to translate
the local lock request having a first local protocol to a global lock request having a
common protocol. The program instructions also instruct the processor to transmit the
global lock request to a central lock server. The program instructions also instruct the
processor to receive a global lock for the shared file if the central lock server
determines that the global lock is available.

In the Drawings

[0016] For a more complete understanding of the disclosed subject matter and
the advantages thereof, reference is now made to the following descriptions taken in

conjunction with the accompanying drawings, in which:

[0017] Fig. 1 is a block diagram illustrating how a known versioned file system

interfaces a local file system to an object-based data store;

[0018] Fig. 2 is a block diagram of a representation implementation of a portion

of the interface shown in Fig. 1;

WO 2016/085541 PCT/US2015/035028

[0019] Fig. 3 is a more detailed implementation of the interface where there are

a number of local file systems of different types;

[0020] Fig. 4 illustrates the interface implemented as an appliance within a local

processing environment;

[0021] Fig. 5 illustrates a portion of a file system “tree” showing the basic
component elements that are used to create a structured data representation of a

“versioned” file system;

[0022] Fig. 6 illustrates the portion of the tree (as shown in Fig. 5) after a change

to the contents of the file has occurred in the local file system;

[0023] Fig. 7 illustrates the portion of the tree (as shown in Fig. 5) after a change

to the contents of the c-node has occurred;

[0024] Fig. 8 illustrates the portion of the tree (as shown in Fig. 5) after a change

to the contents of a directory has occurred;

[0025] Fig. 9 illustrates how a number of file changes are aggregated during a

snapshot period and then exported to the cloud as a new version;

[0026] Fig. 10 illustrates how CCS maintains an event pipe;
[0027] Fig. 11 illustrates a simple directory tree pushed to the cloud;
[0028] Fig. 12 illustrates the new version of that tree following several changes in

the local file system;

[0029] Fig. 13 illustrates a system for managing a versioned file system that

includes the capability of global locking;

WO 2016/085541 PCT/US2015/035028

[0030] Fig. 14 illustrates a global lock server according to an embodiment of this

disclosure; and

[0031] Fig. 15 illustrates a flow chart for determining whether a multi-protocol

lock may be granted according to an embodiment.

Detailed Description

[0032] Fig. 1 illustrates a local file system 100 and an object-based data store
102. Although not meant to be limiting, preferably the object-based store 102 is a
“write-once” store and may comprise a “cloud” of one or more storage service
providers. An interface 104 provides for a “versioned file system” that only requires
write-once behavior from the object-based data store 102 to preserve substantially its
“complete” state at any point-in-time. As used herein, the phrase “point-in-time”
should be broadly construed, and it typically refers to periodic “snapshots” of the local
file system (e.g., once every “n” minutes). The value of “n” and the time unit may be
varied as desired. The interface 104 provides for a file system that has complete data
integrity to the cloud without requiring global locks. In particular, this solution
circumvents the problem of a lack of reliable atomic object replacement in cloud-based
object repositories. The interface 104 is not limited for use with a particular type of
back-end data store. When the interface is positioned in “front” of a data store, the
interface has the effect of turning whatever is behind it into a “versioned file system”
(“VFS"). The VFS is a construct that is distinct from the interface itself, and the VFS
continues to exist irrespective of the state or status of the interface (from which it may

have been generated). Moreover, the VFS is self-describing, and it can be accessed

and managed separately from the back-end data store, or as a component of that data

WO 2016/085541 PCT/US2015/035028

store. Thus, the VFS (comprising a set of structured data representations) is location-
independent. In one embodiment, the VFS resides within a single storage service
provider (SSP) although, as noted above, this is not a limitation. In another
embodiment, a first portion of the VFS resides in a first SSP, which a second portion
resides in a second SSP. Generalizing, any given VFS portion may reside in any given
data store (regardless of type), and multiple VFS portions may reside across multiple
data store(s). The VFS may reside in an “internal” storage cloud (i.e. a storage system

internal to an enterprise), an external storage cloud, or some combination thereof.

[0033] The interface 104 may be implemented as a machine. A representative
implementation is the Nasuni® Filer, available from Nasuni Corporation of
Massachusetts. Thus, for example, typically the interface 104 is a rack-mounted server
appliance comprising of hardware and software. The hardware typically includes one or
more processors that execute software in the form of program instructions that are
otherwise stored in computer memory to comprise a “special purpose” machine for
carrying out the functionality described herein. Alternatively, the interface is
implemented as a virtual machine or appliance (e.g., via VMware®, or the like), as
software executing in a server, or as software executing on the native hardware
resources of the local file system. The interface 104 serves to transform the data
representing the local file system (a physical construct) into another form, namely, a
versioned file system comprising a series of structured data representations that are
useful to reconstruct the local file system to any point-in-time. A representative VFS is
the Nasuni Unity File System (UniFS®). Although not meant to be limiting, preferably
each structured data representation is an XML document (or document fragment). As is

well-known, extensible markup language (XML) facilitates the exchange of information

10

WO 2016/085541 PCT/US2015/035028

in a tree structure. An XML document typically contains a single root element (or a root
element that points to one or more other root elements). Each element has a name, a
set of attributes, and a value consisting of character data, and a set of child elements.
The interpretation of the information conveyed in an element is derived by evaluating

its name, attributes, value and position in the document.

[0034] The interface 104 generates and exports to the write-once data store a
series of structured data representation (e.g., XML documents) that together comprise
the versioned file system. The data representations are stored in the data store.
Preferably, the XML representations are encrypted before export to the data store. The
transport may be performed using known techniques. In particular, REST
(Representational State Transfer) is a protocol commonly used for exchanging
structured data and type information on the Web. Another such protocol is Simple
Object Access Protocol (SOAP). Using REST, SOAP, or some combination thereof,
XML-based messages are exchanged over a computer network, normally using HTTP
(Hypertext Transfer Protocol) or the like. Transport layer security mechanisms, such as
HTTP over TLS (Transport Layer Security), may be used to secure messages between
two adjacent nodes. An XML document and/or a given element or object therein is
addressable via a Uniform Resource Identifier (URI). Familiarity with these technologies

and standards is presumed.

[0035] Fig. 2 is a block diagram of a representative implementation of how the
interface captures all (or given) read/write events from a local file system 200. In this
example implementation, the interface comprises a file system agent (FSA) 202 that is
positioned within a data path between a local file system 200 and its local storage 206.

The file system agent 202 has the capability of “seeing” all (or some configurable set

11

WO 2016/085541 PCT/US2015/035028

of) read/write events output from the local file system. The interface also comprises a
content control service (CCS) 204 as will be described in more detail below. The
content control service is used to control the behavior of the file system agent. The
object-based data store is represented by the arrows directed to “storage” which, as
noted above, typically comprises any back-end data store including, without limitation,
one or more storage service providers. The local file system stores local user files (the
data) in their native form in cache 208. Reference numeral 210 represents that portion
of the cache that stores pieces of metadata (the structured data representations, as will

be described) that are exported to the back-end data store (e.g., the cloud).

[0036] Fig. 3 is a block diagram illustrating how the interface may be used with
different types of local file system architectures. In particular, Fig. 3 shows the CCS (in
this drawing a Web-based portal) controlling three (3) FSA instances. Once again, these
examples are merely representative and they should not be taken to limit the
invention. In this example, the file system agent 306 is used with three (3) different
local file systems: NTFS 300 executing on a Windows operating system platform 308,
MacFS (also referred to as “"HFS+"” (HFSPlus)) 302 executing on an OS X operating
system platform 310, and EXT3 or XFS 304 executing on a Linux operating system
platform 312. These local file systems may be exported (e.g., via CIFS, AFP, NFS or the
like) to create a NAS system based on VFS. Conventional hardware, or a virtual
machine approach, may be used in these implementations, although this is not a
limitation. As indicated in Fig. 3, each platform may be controlled from a single CCS
instance 314, and one or more external storage service providers may be used as an
external object repository 316. As noted above, there is no requirement that multiple

SSPs be used, or that the data store be provided using an SSP.

12

WO 2016/085541 PCT/US2015/035028

[0037] Fig. 4 illustrates the interface implemented as an appliance within a local
processing environment. In this embodiment, the local file system traffic 400 is
received over Ethernet and represented by the arrow identified as “NAS traffic.” That
traffic is provided to smbd layer 402, which is a SAMBA file server daemon that
provides CIFS (Window-based) file sharing services to clients. The layer 402 is managed
by the operating system kernel 404 is the usual manner. In this embodiment, the local
file system is represented (in this example) by the FUSE kernel module 406 (which is
part of the Linux kernel distribution). Components 400, 402 and 404 are not required
to be part of the appliance. The file transfer agent 408 of the interface is associated
with the FUSE module 406 as shown to intercept the read/write events as described
above. The CCS (as described above) is implemented by a pair of modules (which may
be a single module), namely, a cache manager 410, and a volume manager 412.
Although not shown in detail, preferably there is one file transfer agent instance 408 for
each volume of the local file system. The cache manager 410 is responsible for
management of “chunks” with respect to a local disk cache 414. This enables the
interface described herein to maintain a local cache of the data structures (the
structured data representations) that comprise the versioned file system. The volume
manager 412 maps the root of the FSA data to the cloud (as will be described below),
and it further understands the one or more policies of the cloud storage service
providers. The volume manager also provides the application programming interface
(API) to these one or more providers and communicates the structured data
representations (that comprise the versioned file system) through a transport
mechanism 416 such as cURL. cURL is a library and command line tool for transferring
files with URL syntax that supports various protocols such as FTP, FTPS, HTTP, HTTPS,
SCP, SFTP, TFTP, TELNET, DICT, LDAP, LDAPS and FILE. cURL also supports SSL

13

WO 2016/085541 PCT/US2015/035028

certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies,
cookies, user + password authentication, file transfer resume, proxy tunneling, and the
like. The structured data representations preferably are encrypted and compressed
prior to transport by the transformation module 418. The module 418 may provide one
or more other data transformation services, such as duplicate elimination. The
encryption, compression, duplicate elimination and the like, or any one of such
functions, are optional. A messaging layer 420 (e.g., local socket-based IPC) may be
used to pass messages between the file system agent instances, the cache manager

and the volume manager. Any other type of message transport may be used as well.

[0038] The interface shown in Fig. 4 may be implemented as a standalone
system, or as a managed service. In the latter case, the system executes in an end user
(local file system) environment. A managed service provider provides the system (and
the versioned file system service), preferably on a fee or subscription basis, and the
data store (the cloud) typically is provided by one or more third party service providers.
The versioned file system may have its own associated object-based data store, but
this is not a requirement, as its main operation is to generate and manage the
structured data representations that comprise the versioned file system. The cloud
preferably is used just to store the structured data representations, preferably in a
write-once manner, although the “versioned file system” as described herein may be

used with any back-end data store.

[0039] As described above, the file system agent 408 is capable of completely
recovering from the cloud (or other store) the state of the native file system and
providing immediate file system access (once FSA metadata is recovered). The FSA can

also recover to any point-in-time for the whole file system, a directory and all its

14

WO 2016/085541 PCT/US2015/035028

contents, a single file, or a piece of a file. These and other advantages are provided by

the “versioned file system” of this disclosure, as it now described in more detail below.

[0040] Fig. 5 is a representation of a portion of a tree showing the basic
elements that are represented in a versioned file system according to one
embodiment. The reference numeral 500 is a c-node (or “cloud” node). A c-node
preferably contains all of the information passed by a file system agent instance about
an inode (or inode-equivalent) local file system. As will be seen in the examples below,
the inode subset of the c-node includes data that would be returned by a typical “stat”
function call, plus any additional extended attributes that are file system-dependent.
One or more remaining parts of the c-node are used to provide a CCS super-user with
additional access control and portability across specific file system instances. States
another way, c-nodes preferably act as super-nodes for access control to files and
metadata. While the inode sub-structure contains information from the original local
file system, c-nodes allow administrators of the system to gain access to files in a
portable, file system-independent manner. Preferably, each c-node is addressable by a
URI. A c-node preferably also includes a pointer to the actual location of the data file.
C-nodes indicate where the remote copies of the item may be found in the data store.
The reference numeral 502 is a data file. This object represents the file preferably as it
was created in the local file system. One of the main benefits to isolating the metadata
in the c-nodes is that a user’s data files can be stored with no modifications. As in a
traditional file system, preferably the name of the file is stored in the directory or
directories that contain it and not as part of the file itself. Preferably, URIs (for the actual
data files in the cloud) remain opaque to the end-users, although this is not a

requirement. An FSA instance controls access to the data file URIs through the

15

WO 2016/085541 PCT/US2015/035028

respective c-nodes. The reference numeral 504 is a directory. Directories are c-nodes
that contain a simple list relating names to the corresponding URIs for other c-nodes
that, in turn, point to other files or directories. Directories provide a convenient way to
establish a namespace for any data set. There can be multiple directories that point to
the same files or directories. The above-described approach can support hard links or
symbolic links. Hard links are simply multiple name entries that point to the same c-
node. A symbolic link is a name entry that contains another name inside; when
resolving the link, the entry is read and the resolution process is then restarted using
the inner name. Directories are owned by their own c-node, which preferably holds its

metadata and controls access to it.

[0041] Fig. 6 illustrates the portion of the tree (as shown in Fig. 5) after a change
to the contents of the file 502 has occurred in the local file system. In this example,
which is merely representative, a new version of the local file system is then created
(preferably at a “snapshot” period, which is configurable). The new version comprises
the file 602, the new c-node 600, and the new directory 604. As also seen in this
drawing, the changes to the tree also propagate to the root. In particular, upon a given
occurrence in the local file system (as will be described), a “new version” of the file
system is created (for export to the cloud), and this new version is represented as a new
structured data representation (e.g., a new XML document). As will be seen, the new
structured data representation differs from the prior version in one or more parent
elements with respect to the structured data element in which the change within the
file system occurred. Thus, upon a change within the file system, the interface creates
and exports to the data store a second structured data representation corresponding

to a second version of the file system, and the second structured data representation

16

WO 2016/085541 PCT/US2015/035028

differs from the first structured data representation up to and including the root
element of the second structured data representation. In this manner, the interface
provides for a “versioned” file system that has complete data integrity to the data store

without requiring global locks.

[0042] The second structured data representation may “borrow” unchanged
parts of the first structured data representation. Thus, the second structured data
representation does not need to construct or even consider parts of the tree that were
not changed; it just point to the same c-nodes that the first structured data

representation does.

[0043] Fig. 6 illustrates one type of change (a file update) that triggers the
generation of a new version. Fig. 7 illustrates another type of change (an update to c-
node 700) that also triggers the generation of a new version with changes propagated
to root, and Fig. 8 illustrates yet another type of change (an update to each of the
directories 804 and 808) that also implements a new version, once again with changes
propagated to root. Generalizing, while the types of changes that trigger a new version
may be quite varied, typically they include one of the following: file creation, file
deletion, file modification, directory creation, directory deletion and directory

modification. This list is representative.

[0044] Moreover, as noted, it is possible but not required that a new version be
created at the time of the actual change in the local file system; typically, the new
version is created after a “snapshot” of the local file system is taken, and a number of
change events may occur during a given snapshot period. Fig. 9 illustrates this
approach. As seen in this drawing, an FSA instance preferably aggregates all of the

changes to the local file system in two ways: delta frames 900, and reference frames

17

WO 2016/085541 PCT/US2015/035028

902. The delta frames 900 control the number (and size) of the objects that need to be
stored in cloud storage. As noted above, preferably every local file system event is
recorded by the FSA instance as a change event 904. As noted, new inodes, directories
and files trigger corresponding new entities (created by FSA) in the cloud; however,
preferably modifications to existing structures create change events that are
aggregated by FSA into a single new entity, the delta frame 900. A delta frame 900
starts with a new root that represents the current state of the file system. Preferably,
the FSA instance compiles the delta frame information such that each of the new entry
points (i.e. any modifications to the previous version) to c-nodes, directories and files
are represented as new versions of the data structures plus pointers to the old
structures. To reconstruct the current state of a local file system, an FSA client only has
to walk a tree for any version to see all the correct items in the tree. Reference frames
902 are also compiled by FSA and contain an aggregation of the previous reference

frame plus all the intervening delta frames.

[0045] A given reference frame 902 may be thought of as an entire copy with no
references to previous versions, while a delta frame 900 may be thought of as including
pointers to older versions. In other words, a delta frame logically is a combination of a
current version and one or more prior versions. Each frame (reference or delta) may be
considered a complete file system from a tree-walk perspective. This means that a walk
of the tree, by itself, is all that is required to restore the file system (or any portion
thereof, including a single file) to its associated state or point-in-time (as represented

by the tree).

18

WO 2016/085541 PCT/US2015/035028

[0046] Preferably, by pointing to the same c-node that a previous version did,
each version is complete in and of itself. There is no need to regenerate a “full” copy

of a given version, as preferably each version is always full.

[0047] When it is desired to reconstruct the file system to a point in time (or,
more generally, a given state), i.e., to perform a “restore,” it is only required to walk
(use) a single structured data representation (a tree). In other words, one and only one
VFS tree may be used to identify a prior state of the local file system. It is not required

to jump across multiple trees for this purpose.

[0048] Frames preferably are stored in an event pipe 906. As will be seen, the
event pipe is implemented in a structured data representation as a table of contents
(TOC), although this is not a limitation. Preferably, this data structure is held both at the
FSA instance and at CCS, as illustrated in Figure 10. The event pipe (with its entry
points into cloud storage) is then the primary means to access all files stored remotely.
In particular, one of ordinary skill in the art will appreciate that this is a lightweight data
structure that preferably contains only versions of root for the given volume. Although
it is desired that CCS be highly available, preferably the “writes” occur periodically in a
transaction safe way as controlled by FSAs. The “reads” are only necessary when an
FSA copy has failed; therefore, CCS can be run using an ordinary (high-availability)
database or file-based back-end. Preferably, the mix of delta and reference frames in
the event pipe is chosen to balance storage and bandwidth utilization against a
practical recovery time for FSA to create a new local file system instance. The
composition of the event pipe can also be set according to a configurable policy. For
instance, users may choose to keep only so many versions or versions dating back to a

specific date.

19

WO 2016/085541 PCT/US2015/035028

[0049] Figure 11 illustrates a directory tree in the cloud, and Figure 12 illustrates
the new version of that tree following several changes in the local file system. Figure 11
is a simplified diagram. Because the data store is write-once, preferably a directory tree
is pushed in two phases: phase 1 is all files (in any order), and phase 2 is all directories
(in strict depth-first order). This allows a directory (in which the file or another directory
is rooted) to be always written after the child file or directory is written. Other

approaches may be used.

[0050] In a versioned cloud file system according to embodiment described in
Serial No. 12/483,030, filed July 11, 2009, the disclosure of which is incorporated
herein by reference, a versioned file system (VFS) comprises a set of structured data
representations such as XML documents and document fragments. Names are object
references that typically are not parsed by the system. The handle names typically have
no relation to the actual file names or content. The handle names in the XML preferably
are prefixed with a length component. Also, for items other than the table of contents
(TOC), the path and version elements in the XML are informative and need not be used
by the system. The “path” typically represents the originating path (in the local file
system) when the item was last updated. The “version” typically represents the version
of root at the time the item was last updated. The table of contents (TOC) is a table at

the head of every version; preferably, the TOC contains references to all versions.

[0051] In the versioned cloud file system, each file is represented by a manifest
object, and a series of chunk objects. The manifest object comprises a listing of the
chunk objects that make up the file and each entry in the manifest preferably comprises
a handle, an offset, and chunk length. The entry also preferably identifies a number of

the version in which the chunk was created. A directory in the versioned cloud file

20

WO 2016/085541 PCT/US2015/035028

system is represented in a similar manner (as is a file), with the contents of the directory
being a series of directory entries. A directory entry also comprises a name, as well as
other attributes for the file/directory, as well as the handle for the manifest that
represents the contents of the file/directory. As described, a version is defined as the
tree of objects rooted at a particular root directory manifest. A file-system table of
contents (TOC) contains the handle of a latest root directory manifest, as well as a list
of all previously root directory manifests. For each table of contents entry, there is also
preferably stored a timestamp, version number, and a borrow window (as noted above,
preferably an unsigned integer). In the versioned cloud file system, each of the objects
is a write-once object, and versions often share objects (file/directory manifests,

file/directory chunks).

[0052] Pruning a version means an operation starting from the root directory
manifest for the version and deleting all objects in the tree are not referenced in
another version. A difficulty in pruning is dealing with the situation where items from
that version have been “borrowed” by other versions. Thus, for example, assume that a
first version V1 is created upon a write of file A and a write of file B. Now, assume that a
second version V2 is created upon a write file C and a delete of file B. If it is then
desired to prune V1, it is not possible to do so by merely deleting all the objects that
V1 references because File A is still being used (i.e., borrowed) by version V2. As noted
above, such “sharing” of objects is a characteristic of the versioned file system. As a
consequence, any pruning algorithm must take into consideration two (2) types of
objects: (i) objects in the pruned version that have been referenced from previous
versions and thus should not be purged (sometimes referred to as “borrowed”

objects); and (i) objects created in the pruned version that are referenced (restored) in

21

WO 2016/085541 PCT/US2015/035028

later versions (sometimes referred to as “lent” objects). During pruning, any objects

that are borrowed or lent are not purged.

[0053] During pruning, preferably the search for “lent” objects is constrained by
the borrow window of the version to be pruned, and preferably the search for
“borrowed” objects is constrained by the size of the borrow window of the version in
which the borrowed object was created. Constraining the searches in this manner
provides computational and storage efficiencies, as the approach obviates scanning all
versions backwards and forwards and limits the searching just to the versions within the

above-described windows.

[0054] A borrow window is associated to each of a set of versions in the
versioned file system. A version is then pruned by deleting all objects in the tree
associated with the version that, at the time of pruning: (i) are not being lent to any
other version within the borrow window of the version being pruned, and (ii) are not
referenced in any other version whose borrow window is sufficiently large enough such
that an object in the version could have been restored from that other version. Another
way of thinking about constraint (ii) with respect to a particular object in the tree
associated with the version (being pruned) is that the object is deleted if it does not
reside within the lending window of the version in which the object was created. If it is
assumed that the borrow window of the version being pruned does not include the
current version of the versioned file system, then the temporal limitation (“at the time
of pruning”) is not necessary, as all of the objects associated with the version being
pruned either are borrowed or not (and this fact cannot change during the time the

pruning is taking place). Thus, pruning of versions that are still available for borrowing

22

WO 2016/085541 PCT/US2015/035028

into the current version is not recommended and, in one embodiment, is not permitted

at all.

[0055] More generally, the prune algorithm deletes a version from the versioned
filed system by deleting all objects in the tree associated with the version that are not
referenced in any other version whose borrow window is sufficiently large such that an

object in the version could be restored from that other version.

[0056] During a restore, preferably metadata is pulled back from the cloud first,
so users can see the existence of needed files immediately. The remainder of the data
is the pulled back from the cloud if/when the user goes to open the file. As a result, the
entire file system (or any portion thereof, including a single file) can be restored to a
previous time nearly instantaneously. The metadata appears first (and is stitched into
the file system, where it remains available for immediate use), and then the cache
gradually fills with the associated files as they are requested (and as they are streamed
back from the cloud). From the user’s perspective, however, it will appear as if the data

is actually present (restored) once merely the metadata is returned.

[0057] A "fast” restore is said to be performed if an object being restored exists
within a "borrow window” of the version from which the system is restoring. During a
fast restore, the file (or, more generally, file system portion) being restored is
associated into a new place in the file system, which results in two identifiers (e.g.,
filenames) within the file system pointing to the same (single) object. As noted above,
the metadata for the file (or file system portion) being restored is pulled back from the
cloud first, so users can see the existence of needed files immediately. The remainder

of the data is then pulled back from the cloud if/when the user goes to open the file.

23

WO 2016/085541 PCT/US2015/035028

This enables the file system portion to be restored to a previous time nearly

instantaneously.

[0058] Typically, a restore is triggered by a user choosing to restore his/her/its
data. In a representative embodiment, a user opens an interface (e.g., a web-based Ul)
and selects a file (data, time, snapshot, etc.) and selects a “restore” button. The system
determines whether the restore will proceed on a “fast” basis based on a “borrow
window.” By way of brief background, each version in the versioned file system is
identified as a particular version (typically by a version number) and has associated
therewith a “borrow window,” which preferably is an integer value. A most-recently
created version is a “current” version. In the context of a fast restore operation, the
borrow window of interest is the borrow window of the older version from which an
object is being restored. As used herein, this construct is sometimes referred to as the
“restore” borrow window. Each individual version has its own associated borrow
window, and for a set of versions, each borrow window may be different. A "borrow

window” is sometimes referred to as a “borrowing window” or “window.”

[0059] If a user-initiated restore requires objects from a version outside the
restore borrow window, the system performs a “slow restore” (with respect to versions
outside the restore borrow window) to copy from an old version to the latest version as
necessary. The word “slow” in the phrase “slow restore” does not necessarily have
temporal implications; by definition, a “slow restore” is a state or status associated with
a new file that just happens to have the same name and content as an older file. The

metadata for a new file, like all new files, is available when the file is written.

[0060] In some embodiments, files can be shared across filer entities or nodes.

24

WO 2016/085541 PCT/US2015/035028

[0061] The above-described discussion associates an interface 104 with a
particular versioned file system (VFS). An extension to this approach to enable
“sharing” across multiple versioned file systems is now described. As used herein,
“sharing” refers to the ability to provide full or partial read/write access at any time to
any file/folder/volume owned by a particular filer (i.e. interface 104), or across multiple
such filers. According to this approach, independent volumes are enabled to share

data in the cloud.

[0062] Consider the case of two (2) filers that desire to do full read/write sharing
of a single volume, where each of the filers uses an interface and creates a VFS as has
been described above. In particular, Filer A has Volume-RW, and Filer B has Volume'-
RW. Users of Filer A read and write Volume-RW as a normal file system, and users of
Filer B read and write Volume'-RW as a normal file system. This type of operation has
been described above. Now, according to the “sharing” technique herein, filers first
register into a sharing group. Preferably, a web-based interface (or the like) is provided
for this purpose, although any other convenient sharing group registration mechanism
may be used. The registration interface includes or is associated with appropriate
authentication and/or authorization mechanisms to ensure privacy and security, and
that entities desiring to “share” independent volumes can manage their sharing
appropriately. (Filers may also de-register from a sharing group using the web-based
interface). At a start of each snapshot, a filer that has registered for a sharing group is
provided (e.g., by the service provider or otherwise) a “snapshot lock” that is retained
while a new version number is acquired. By definition, during this lock no other filers
can snapshot. Once the new version number is acquired, the lock is released and the

filer that acquires the lock does the following: (i) the filer then begins pushing data to

25

WO 2016/085541 PCT/US2015/035028

the cloud; (ii) the filer completes the data push; (iii) the filer gets a metadata lock and
then compares file system metadata (directories, structures, and so forth) between the
local snapshot and the snapshot on the cloud using a merge algorithm; and (iv) the filer

sends the changed metadata to the cloud and finally releases the metadata lock.

[0063] During the push (i.e. as all chunks and the file manifests, etc. are being
pushed), optionally a notification is sent to all other members of the sharing group
notifying them of new/changed files. In the embodiment where notification is used, the
message typically includes only the cloud handle for the file manifest; all other
information (e.g., the GUID of the filer that wrote the file, the path of the file in the
namespace, etc.) can be learned from this manifest. Preferably, the sending filer only
has to send once, and the notification message is replicated into a persistent message
queue for each other filer in the sharing group. (Preferably, each filer in the sharing

group has an associated message queue, although this is not a limitation).

[0064] Once notified, each other filer in the sharing group performs the
following: if the version of the object is greater than its own version, the other filer
inserts the new/changed file into its “now” current file system using the fast restore
algorithm described above. If the version of the object is less than its own version, the

other filer ignores the update. The use of notifications is optional and is not required.

[0065] In some embodiments, a reduced lock sharing approach can be
provided.
[0066] As described, a simple technique to share a consistent fully-versioned file

system (and, in particular, a “volume” therein) between or among multiple nodes (i.e.,
the filers in a sharing group) is to use a single distributed lock (the snapshot lock, as

described) to protect each version of the file system. Preferably, this lock is then

26

WO 2016/085541 PCT/US2015/035028

managed with one or more fairness algorithms to allow each node (filer) access to the
shared file system volume to create its new version. While this approach works well,
because each filer can only do work when under the lock, the one or more other filers
(that do not have the lock) are essentially idle until they receive it. Accordingly, the

aggregate bandwidth utilized by those in the sharing group may not be optimized.

[0067] Thus, a variant of the described approach is to reduce the period during
which nodes in the sharing group operate under lock. This is sometimes referred to as
“reduced lock sharing.” Under this variant, and because data does not have to be sent
to the cloud under lock, the lock is moved (i.e., delayed) so that it is not initiated until
the metadata update phase. This allows for increased aggregate bandwidth to the
cloud from all the nodes and faster responsiveness of the nodes in that the lock only
occurs when the work (of sending the data to the cloud) is done and it is time to

update the file system.

[0068] In some embodiments, non-preemptive sharing scheduling can be
provided.
[0069] While reduced lock sharing is advantageous, one further issue that it does

not address is responsiveness and visibility of new files to other nodes (other filers).
Even if multiple nodes can send their data to the cloud concurrently (which reduced
lock sharing permits), if the metadata (which is what enables the data to be visible to
other filers) is only sent when all of the data is finished, then other filers may not see
the data appear for an unacceptable time period. This can be addressed by another
variant, which is referred to herein as “non-preemptive sharing scheduling.” According
to this further optimization, a data push to the cloud is broken up into two or more

separate pushes. Each push then comprise a first phase, during which the data is sent

27

WO 2016/085541 PCT/US2015/035028

to the cloud (but not under lock, as per the reduced lock sharing concept), followed by
the metadata update (which occurs under lock) to tie the new files into the shared file
system. In non-preemptive sharing, preferably a time limit is associated with the first

phase to limit the objects pushed during the first phase.

[0070] An issue that may arise when non-preemptive sharing scheduling is
implemented is that, because not all files are pushed, it is possible to be in an
inconsistent file system state. For example, take a directory that contains two files, one
of which was pushed, and one which was not. Pushing one file in that directory
necessitates pushing that directory for the file to be visible to other filers, but at the
same time, the directory must not be pushed unless all files it contains are safely in the
cloud. Because of this conflict, the directory is in an inconsistent state. While it is
permissible to push a directory with a mix of modified (but pushed to the cloud) and
not modified files, it is not safe to push a directory containing files that were modified
but not pushed to the cloud. Thus, to maintain consistent versioned file system
semantics, limiting the objects pushed in the first phase also requires matching

changes in what objects are pushed in the second phase.

[0071] Without limitation, the list of data objects for pushing from a particular
node in the first phase can be chosen via any means desired (large files first, oldest files
first, a mix, or the like), but optimally the chosen data objects are in as few directories
as possible. Because all files in a given directory need to be pushed, this constraint
simplifies the second phase metadata object choice later. Preferably, the first phase
works against this list until the time limit is reached, after which the sending node stops
sending new files and only permits files already started to complete. This ensures that,

when this phase completes, while there are a number of files in the cloud that are not

28

WO 2016/085541 PCT/US2015/035028

yet referenced by metadata (and perhaps a number of files that were not sent at all),

there are no files that are split between the two states.

[0072] The time for the first phase to push is chosen to balance responsiveness
and cost. The lower the number, the more responsive the system will be (that is, new
data will be available to other filers sooner). The higher the number, the lower the cost
and load will be (as there is a network, storage, and processing cost for all work done

when pushing data).

[0073] Before the second phase starts, preferably there is a brief clean up phase
(an intermediate phase between the first phase and the second phase) during which
some extra data files may be pushed to the cloud to ensure that the file system isin a
consistent state, so that the second phase can push up the metadata. For example, if a
given directory had two dirty files in it, and the first phase had only pushed one, that
would be an inconsistent file system, so the intermediate phase will push the other file
in that directory to make that directory ready for the second phase. The intermediate
and second phases preferably are done together and under the same lock. The
intermediate phase may be though of as a part of second phase. When the second
phase proper begins, the list of metadata objects for pushing are chosen to be the
minimal set of metadata that encompasses the objects pushed in the first phase and
the intermediate phase, combined with any metadata that has changed alone without

a corresponding data change.

[0074] In some embodiments, a merge/push functionality can be implemented

at each node that is participating in the sharing group.

[0075] Before a filer (a node) can begin to send data to the cloud (using the

reduced lock sharing and/or non-preemptive sharing scheduling techniques described

29

WO 2016/085541 PCT/US2015/035028

above), it is first necessary that the node have a consistent view of the volume into
which the data is to be sent. In particular, each member of the sharing group must
have the same view of the volume for sharing to be efficient and useful. To this end, a
merge/push functionality is implemented at each node that is participating in the

sharing group. That functionality is now described.

[0076] Thus, to share a fully-versioned file system between multiple nodes in a
read-write fashion, asynchronous updates at each of the nodes is permitted, and each
node is then allowed to “push” its individual changes to the cloud to form the next
version of the file system. To present reasonably consistent semantics, before pushing
its changes to create the next version, each node in the sharing group is required to
merge the changes from all previous versions in the cloud that were created since the

node’s last push.

[0077] A push/merge cycle to generate a consistent local view of a volume (that
is being shared in the cloud) is now described, by way of example. As described
above, in a system of N nodes sharing read-write access to a single versioned cloud file
system (i.e., a particular volume therein), changes to the file system are written locally
to the cache at a node X. As also previously described, the nodes in the sharing group
push their un-protected changes to the cloud, taking turns in doing so using the lock
mechanism. Preferably, each push from a node X is staged from a point-in-time
snapshot so that it is internally consistent. Each such push forms a new version of the
versioned file system in the cloud. The changes pushed from node X are not visible at
node X+1 (of the sharing group) until node X+1 sees the new version in the cloud and

merges the changes from that version into its local cache. To be sure that changes

30

WO 2016/085541 PCT/US2015/035028

from different nodes do not diverge, each node X is required to merge changes from

all other nodes before pushing it changes to the cloud.

[0078] Permission to push changes to the cloud is granted by the acquisition of
the lock as has been described. The lock can be implemented in a variety of ways. For
an individual node, the sequence of steps in the cycle may be as follows. At step 1, the
lock is obtained from the cloud (the service provider). The lock indicates what the
version number of the next push should be, e.g., X. Then, at step 2, and for each
version in cloud Y between a current version and version X, the changes of Y are
merged into the local cache, and the current version is marked as Y+1. At step 3, a
local snapshot of the cache is created, and the current version is marked X+1. Then, at
step 4, all local dirty changes are then pushed from the local snapshot to the cloud as

version X+1. The lock is then released at step 5 to complete the push/merge cycle.

[0079] To merge the changes from a cloud version X, the local filer must have
merged all versions up to and including X-1. To merge a single directory from the

cloud into the corresponding cache directory the following process is used:

[0080] 1. First find all elements of the cloud directory that have a shared history
with an element in the cache directory. As used herein, a “shared history” means that
the two objects are derived from the same original object. Each element in the cloud

can only share history with a single element in the cache.

[0081] 2. For each object from the cloud that shares history with a cache
element, if the cloud element is “cloud-dirty” then the object should be merged in. As
used herein, a cloud element is “cloud-dirty” for a version X if either its data or

metadata is newly written in version X.

31

WO 2016/085541 PCT/US2015/035028

[0082] 3. To merge an element into the cache, the routine processes cache
objects depending if they are “clean” or “dirty.” If a cloud object is clean, it is
overwritten with the cloud object. For stub objects, overwrite simply means that the
handle and metadata can be overwritten. For non-stub files, handle and metadata
should be overwritten and the file data in the cache should be made into a stub. For
non-stub directories, the handle and metadata should be overwritten and the contents
of the cloud directory should be (recursively) merged with the cache directory. If the
cache object is dirty (a name change is necessary to make metadata dirty), the conflicts
may be resolved as follows. For data/data conflicts (files), the cloud object comes in
labeled as a conflicting copy of the file. For data/data conflicts (directories), the cloud
directory contents are (recursively) merged with cache directory. For
metadata/metadata conflicts, discard the cloud metadata change and keep the local
metadata change. For metadata/data conflicts, overwrite the cache metadata with the
new cloud metadata but keep the cache data. For data/metadata conflicts, overwrite
the handle in the cache with the cloud handle, but keep the cache metadata (for files,
the cache data should be stubbed; for directories, the cloud directory should be

(recursively) merged with the cache directory).

[0083] 4. Next, import all elements from the cloud directory that have no shared
history with the cache elements. When importing, if the cache has an object with the
same name if it is clean, it can be deleted before proceeding to import. When
importing, if the cache has an object with the same name if it is dirty, import the cloud

object under a “conflict” name.

32

WO 2016/085541 PCT/US2015/035028

[0084] 5. Finally, delete all elements from the cache that did not have a shared
history with an element in the cloud directory (unless the element is dirty). This

completes the merge process.

[0085] To merge a whole tree, the above-described merge process is carried out
on the root directory of the version to be merged. This may create additional
directories to be merged. Directories are continued to be merged until there are no

more directories remaining to be merged.

[0086] In some embodiments, an auto-fault algorithm can be implemented at

the local node.

[0087] To facilitate usability, it is advantageous to populate the cache of the
local node with changes that are being made to the versions in the cloud. In an
example scenario, multiple users add data to their shares from multiple locations.
When a remote office (part of the sharing group) wants to access the data, it may be
necessary to fault the data from the cloud. This can be a time-consuming process that
utilizes significant resources. To ameliorate this issue, an auto-fault algorithm may be
implemented at the local node to pull data proactively (as a background process). The
algorithm determines when new data is added to a volume (that is the subject of the
sharing group) and begins faulting it in the background proactively. Therefore, when
the user at the remote office attempts to access the data preferably it is already faulted

into their local cache.

[0088] Preferably, the algorithm is triggered when merging a shared file system
(in particular, a volume that is being shared). As the file system volume is compared for
deletions, additions, or conflicts, the newly-replicated data is scheduled for so-called

“auto-fault.” The file system sends the data to be auto-faulted to an auto-fault

33

WO 2016/085541 PCT/US2015/035028

manager, which then queues the fault. Preferably, the auto-fault function runs throttled
in the background, and auto-fault requests are scheduled behind user requests. Auto-
fault also allows data to be pushed to the cloud so snapshots can make progress and
data replication can proceed un-interrupted. If an auto-fault is scheduled and the data
is requested by the user, the auto-fault request is re-scheduled and the user request is
serviced without delay. All prefetch associated with the auto-fault request will also be

treated as a user request.

[0089] Preferably, auto-fault is called as part of the merge process, and it helps
to provide better responsiveness of shared data, especially in the case of thinly-

provisioned distributed system.

[0090] The above-described techniques provide significant advantages, the
foremost being the ability to share independent volumes that are established by
distinct filers. This conserves storage space in the cloud, does not require the use of
shadow volumes, does not require snapshots to alternate between or among filers,
facilitates near-live sharing of files even before a snapshot is complete, maintains
synchronous snapshot of file system capability, and enables multiple volumes to have

independent histories without twice the data being persisted in the cloud.

[0091] The filers may be anywhere geographically, and no network connectivity
between or among the filers is required (provided filers have a connection to the

service).

[0092] Sharing enables multi-site access to a single shared volume. The data in
the volume is 100% available, accessible, secure and immutable. The approach has
infinite scalability and eliminates local capacity constraints. The sites (nodes) may

comprise a single enterprise environment (such as geographically-distributed offices of

34

WO 2016/085541 PCT/US2015/035028

a single enterprise division or department), but this is not a requirement, as filers are
not required to comprise an integrated enterprise, though practical limitations (e.g.,
security) can dictate whether multiple enterprises can share access to a common file
system. This enables partners to share the file system (and thus particular volumes
therein) in the cloud. Using the service provider-supplied interfaces, which are
preferably web-based, the permitted users may set up a sharing group and manage it.
Using the sharing approach as described, each member of the sharing group in effect
“sees” the same volume. Thus, any point-in-time recovery of the shared volume is

provided, and full read/write access is enabled from each node in the sharing group.
[0093] In some embodiments, a global lock can be provided.

[0094] The technique described above provides for multiple-site/multiple-filer
access to the same NAS namespace. The described model is such that the cloud is the
center for all storage and operations, and the filer typically is at the edge at customer
sites providing access to the data. In the above-described model, none of the
appliances/devices communicate with each other directly. Rather, preferably all
communication is through the highly scalable, fault-tolerant cloud provided by a
particular service provider (e.g., Amazon, Microsoft, or the like), and over standard
Internet connections (with no special requirements). This “hub and spoke” model
allows for wide distribution of data throughout the world with many devices
concurrently accessing the data without reliance on any specific sites or connections for
the stability of the entire system. The model has also provided high-performance

access, and reliable data distribution and sharing.

35

WO 2016/085541 PCT/US2015/035028

[0095] While each filer typically offers standard NAS protocol locking for local
users collaborating on files and documents, in the above-described model typically

those locks are not extended to other sites/locations.

[0096] The following provides for further extension of these techniques. This
extension is referred to herein as “global lock” or “global locking.” As will be seen, this
approach provides for the ability to collaborate on a portion of the documents across
multiple filers/sites. Such collaboration requires the local protocol locks to be extended
through the system, providing global lock functionality. Locks can prevent clashes or
corruption when multiple users attempt to write to the same file concurrently. The word

“global” is not intended to be limiting.

[0097] In the global lock approach herein, preferably lock management is
centralized even though the file systems do not communicate with each other. The lock
functionality operates at a very high speed, and at large scale (e.g., millions or billions
of files). Also, data can move through the system faster than traditional

snapshot/synchronization process flow.

[0098] Global locking can be achieved with the following extensions to the
versioned file system approach described above: extending locks to the service,
providing a centralized lock manager in the cloud, allowing for individual file snapshot,
synchronization, merge cycles to ensure that current data is always available upon lock
grant, configuration of locks preferably at a folder-level granularity, and/or the ability of

administrators to break locks when appropriate.

[0099] One way to achieve Global Locking is to extend local locks to a
centralized global lock manager in the cloud. This can be done by intercepting local

lock requests and transforming those requests into a common lock protocol that can be

36

WO 2016/085541 PCT/US2015/035028

centrally managed in a global lock server. Local file lock requests are generated by a
local computer and sent to a server when opening a shared file. The local file lock
request can vary in form depending on the network protocol used by the operating
system on the local computer, for example to communicate with a network-attached
file system (i.e., NAS). For example, the network protocols Server Message Block (SMB)
or Common Internet File System (CIFS) generate file lock requests using a first
protocol. Similarly, the network protocol Network File System (NFS) generates file lock
requests using a second protocol. These protocols are generally incompatible and
need to be interpreted differently. One skilled in the art will recognize that alternatives
to SMB, CIFS, and NFS can be used, and such alternatives are within the scope of this
disclosure. For example, the Web Distributed Authoring and Versioning (WebDAV)
protocol can be used to communicate with the NAS. Additional protocols include

Delta-V and Apple Filing Protocol (AFP), though this list is not exhaustive.

[00100] Fig. 13 is a block diagram that illustrates a system 1300 for managing a
versioned file system that includes the capability of global locking. The system 1300
includes an interface 1310 in communication with local traffic 1320, a web-based portal
1330, a local cache 1340, a lock server 1350, and cloud storage 1360. The interface
1310 includes a SMBD layer 1302, a NFSD layer 1304, a FUSE module 1306, a FSA
1308, a cache manager 1312, a volume manager 1314, a lock daemon 1316, a
transport layer 1318, and an administrative module 1322. In some embodiments, the
interface 1310 is the same as the interface described with respect to Fig. 4 but with the

addition of the lock daemon 1316.

[00101] SMB/CIFS lock requests are intercepted by SMBD layer 1302, which is a

SAMBA file server daemon. An optional Virtual File System (VFS) module can extend

37

WO 2016/085541 PCT/US2015/035028

the SAMBA server daemon to send the local lock information to the FSA 1308. FSA
1308 then communicates with FUSE 1306 to coordinate the FUSE file descriptors
(pointers) with the ioctl information to determine a path for the given file(s) associated
with the lock request. Assuming a path is enabled for global locking, FSA 1308 sends
the lock and path to the lock daemon 1316, which handles the lock request as
described below. If a path is not enabled for global locking, the lock request stays
within the SAMBA server as it did previously (e.g., conflict management, etc. as

described above) and it is not sent to the lock daemon 1316.

[00102] NFS lock requests are passed through the NFSD layer 1304 to FUSE
1306. Assuming a path prefix is enabled for global locking, FSA 1308 communicates
with the lock daemon 1316 to handle the lock request using a common protocol, as
described above. If the path prefix is not enabled for global locking, FSA 1308 handles
the lock request as it did previously (e.g., conflict management, etc. as described

above) and the lock request is not sent to the lock daemon 1316.

[00103] The lock daemon 1316 is responsible for local lock management and
coordinating with the global lock server. The lock daemon 1316 can perform one or
more of the following functions: (a) translating the lock format; (b) communicating with
the centralized lock server; (c) acquiring locks; (d) lock peeking; (e) lock re-acquiring; (f)

lock releasing; and (g) communicating with UniFS®.

[00104] With respect to translating the lock format, the lock daemon 1316 can
translate the local file lock requests to a common lock format understood by the
centralized lock server 1350 (described below). Using this approach, the lock server

1350 receives a lock request in one format regardless of the underlying network

38

WO 2016/085541 PCT/US2015/035028

protocol (e.g., SMB/CIFS or NFS). The centralized lock server 1350 can be in a network
operations center (NOC) 1355.

[00105] The lock daemon 1316 can then communicate with the centralized lock
server 1350 by making calls to a Centralized Lock API. Through the API, the lock
daemon 1316 can execute a lock request, an unlock request, and/or a lock break
request. A lock request generally requires the transmission of certain information such
as the first handle (a unique identifier to the original base object for the file), the
requested lock mode, the file path, the protocol of the requester, etc. Additional
information such as timestamps and serial number can be included in the lock request.
The requested lock mode is the type of access for the lock, such as a shared or
exclusive lock, a lock for read, a lock for write, lock for exclusive write, lock for shared
write. If the centralized lock server 1350 grants the lock request, the lock server 1350
then uses information provided in the lock request (e.g., the first handle) to retrieve the
latest version of the requested file from cloud storage 1360. The centralized lock server
1350 transmits the latest version of the requested file to the lock daemon 1316, which

can store the file in local cache 1340.

[00106] An unlock request can include the same or similar information as the lock
request but with an updated handle name that was generated as a result of
modifications to the locked file. A lock break request can be provided by a system
administrator to manually unlock a file (e.g., if a user leaves a locked file open

overnight, a server goes down, etc.).

[00107] Prior to making a new lock request, the lock daemon 1316 determines
whether a lock already exists in local cache 1340 or on the centralized lock server 1350.

If no lock exists in either of those locations, the lock daemon 1316 acquires a new lock

39

WO 2016/085541 PCT/US2015/035028

through the centralized lock server 1350. The new lock can have a lock mode

computed using the requested access and share profiles (masks).

[00108] Lock peeking can be initiated every time a file is opened for read. In lock
peeking, the lock daemon 1316 can query whether a lock exists on the file prior to
opening the file. If a lock exists, the lock daemon 1316 can also determine the
associated lock mode to evaluate whether the lock mode permits the user to open the
file. The lock daemon 1316 retrieves this information from local lock cache 1340 if the
filer requesting the lock peek already has a write lock on the file. Otherwise, the lock
daemon 1316 retrieves this information from the centralized lock server 1350. Each
lock peek request can be cached in the local lock cache 1340 for a short time period
(e.g., several seconds) to reduce traffic to the central lock server 1350 if the lock

daemon 1316 receives a new lock peek request shortly after the first lock peek request.

[00109] For example, another user may have a lock for exclusive write access to
the file that does not allow any shared access (i.e., no shared read access). In this
example, the lock daemon 1316 determines from the lock query that the file cannot be
opened due to an existing lock on the file. In another example, the lock mode can
allow shared read or write access in which case the lock daemon 1316 determines from

the lock query that the file can be opened.

[00110] During lock peeking, the lock daemon 1316 can also retrieve additional
information about the file, such as the file handle, handle version, firsthandle, and lock
push version. The file handle is a pointer to the latest version of the file in the cloud.
The handle version is a version of the file in the cloud. The firsthandle provides a
unique identifier to the file across versions and renames of the file. The lock push

version is the latest version of the file that was sent to the cloud.

40

WO 2016/085541 PCT/US2015/035028

[00111] The lock deamon 1316 can cache locks and unlocks in a local lock cache
1340 for release to the centralized lock server 1350. If a lock request is made for a file
that has a cached unlock request, the lock can be reestablished without having to
acquire a new lock from the centralized lock server 1350. In such a situation, the unlock
request is cancelled. This caching can reduce load on the lock server 1350 and improve
response time. In general, the unlock requests are cached for a certain period of time

prior to release to the lock server 1350 to allow for such lock reestablishment.

[00112] In some embodiments, the lock in cache can be fully reset with a new lock
mode calculated from the requested access and share masks in a new lock request. If
there are outstanding locks, the new lock request could result in a partial lock reset to a
new mode. The new mode in the partial lock reset can be calculated from an access
mask that is inclusive of the existing and new access masks and from a share mask that
is the least common denominator between the existing and new share masks. Such a
partial lock reset can occur if the new lock mode is different from the existing lock
mode, for example if the existing lock mode is shared while the new lock request is for

an exclusive lock.

[00113] A new lock request can cause a lock downgrade or upgrade depending
on the existing and new lock modes. For example, a lock downgrade can occur if the
lock request has an access mask less than or equally permissive than its current access
mask and its shared mask is less than or equally restrictive than its current share mask.
The lock daemon 1316 can cache downgrade requests since applications commonly
upgrade or downgrade lock modes on files in rapid succession. In addition, a lock can
be downgraded when it is cached for release. Instead of releasing the lock in local

cache 1340 the lock is reacquired with the new mode (access mask or shared mask).

41

WO 2016/085541 PCT/US2015/035028

Before the lock is downgraded, the current data can be sent to the cloud so that it’s
available for the next locker. A lock can also be downgraded when it is not in cache for
release. This can occur when an unlock doesn’t completely reset the lock mode (e.g., a
shared mode lock is unlocked but another lock still exists on the file). In this case, the
lock is downgraded with the outstanding mode still on the lock. It also helps keep

unlocks completely asynchronous by allowing lock caching.

[00114] A lock upgrade can occur for locks that do not meet the lock downgrade

conditions described above.

[00115] As discussed above, the lock request includes information on the
protocol (e.g., SMB/CIFS or NFS) of the requester and the lock mode. The lock server
1350 receives this information and can determine, based on any existing lock(s) on the
requested file, whether the lock server 1350 can issue multiple locks on the same file.
The lock server 1350 can evaluate the protocol used by the requester of the existing
lock and the associated access/share permissions of that lock and determine whether
protocol used with the new lock requester is compatible. An exemplary flow chart of
the logic that can be employed by the locker server 1350 when evaluating such lock

requests is illustrated in Fig. 15.

[00116] At 1510, the lock server has received a lock request for a file that has an
existing lock as described above. The requester is using a first protocol (e.g., CIFS) and
the user of the existing lock is using a second protocol (e.g., NFS). The lock server
determines whether a multi-protocol lock is available using the flow chart 1500. At
1520, the lock server determines whether the existing lock is using an “advanced” lock
mode, as described below. If so, at 1530 the lock server determines whether the user

of the existing lock is using the NFS protocol with write access to the locked file. If the

42

WO 2016/085541 PCT/US2015/035028

NFS protocol with write access is not used, a multi-protocol lock can be granted. If the
NFS protocol with write access is used, the lock server determines 1540 whether the
new requester is using the CIFS protocol with read/write access. If the new requester is
not using the CIFS protocol with read/write access, a multi-protocol lock cannot be
granted. If the new requester is using the CIFS protocol with read/write access and
1550 the new requester is using the CIFS protocol with write access, a multi-protocol
lock cannot be granted. However, If 1550 the new requester is using the CIFS protocol
without write access (i.e., read-only access), a multi-protocol lock can be granted. If at
1520, the existing lock is not using “advanced” mode and 1560 at least one user does
not have write access to the locked file, a multi-protocol lock can be granted. However,
if at 1520, the existing lock is not using “advanced” mode and 1560 a write lock has

already been granted, a multi-protocol lock cannot be granted.

[00117] In addition, the lock daemon 1316 handles lock releases. In some
embodiments, the lock daemon 1316 does not immediately send the lock release to
the lock server 1350. This time delay can reduce load on the centralized lock server
1350 because files are frequently locked and unlocked in rapid succession, as
discussed above. Before a lock is released, if the file was changed, the current data is
sent to cloud storage 1360 (e.g., Amazon S3, Microsoft Azure, or other public or

private clouds) so the most recent data is available to the next locker.

[00118] Finally, the lock daemon 1316 can communicate with the FSA 1308. The
lock daemon 1316 can receive lock requests and/or lock peek requests from FSA 1308,
which the lock daemon 1316 translates into a common protocol for transmission to the

centralized lock server 1350, as discussed above. The lock daemon can also pass the

43

WO 2016/085541 PCT/US2015/035028

updated handle name to the FSA 1308 to perform a file-level snapshot before

unlocking a file and/or a file level merge/synchronization before locking a file.

[00119] In order for global locking to be successful, it is desirable for the locker to
have the most recent version of the file associated with the lock request (and lock
grant). To accomplish this, the cache manager 1312 can be configured to snapshot a
single file (e.g., the file associated with the lock request) without triggering a copy-on-
write (COW) event (which would cause a version update, as discussed above) and
without affecting other snapshot operations. After a single file snapshot, the cache
manager 1312 can mark all parent directories of the file as changed or “dirty.” In
addition, the fault manager algorithm can be configured to fault a single file based on

requests from the FSA 1308.

[00120] The merge/push algorithm can be modified to provide for merging single
files. Before the locked file is pushed to the local cache 1340, the NOC 1355 assigns a
unique lock version (e.g., 64 bit) to the file. The lock version can be used by FSA 1308
to determine whether a locked file or its metadata is dirty (i.e., changed). The parent
directories of the locked file can continue to use the existing write version assigned
from the last TOC. Thus, FSA 1308 can track two values: lock_write_version and
lock_push_version. When a file or directory is dirtied, the lock_write_version is
updated. When a file or directory is pushed to local cache 1340, the lock_push_version

is updated.

[00121] As discussed above, the file data from the NOC 1355 (or centralized lock
server 1350) is merged into the local cache 1340 before the FSA 1308 returns control
of the file to the client,. To determine if the file data in the NOC 1355 is newer than the

file data in the cache 1340 (e.g., if the lock is retrieved while an unlock request is

44

WO 2016/085541 PCT/US2015/035028

cached), the FSA checks MAX (lock_write_version, lock_push_version) against the NOC
lock version. If the NOC lock version is greater than the lock_write_version and the
lock_push_version, the file data (object metadata and data) from the NOC 1355 is used
to instantiate the object (locked file) in the local cache 1340. If the file data in the cache
1340 is newer, then the file data from the NOC 1355 is discarded. In the circumstance
where the NOC 1355 indicates that the file is deleted, the delete version is compared

to the local cache 1340 version in order to apply the delete to the local cache 1340.

[00122] In addition, the merge/push algorithm can be modified to reconcile the
single-file merges of locked files with the snapshot merges of files. Any file that was
“fastsynched” through the FSA 1308 (i.e., locked) or “fastpushed” to the cloud (i.e.,
unlocked) is designated as “cloud fastsynced.” When merging an object or file that is
considered “cloud dirty” or “cloud fastsynched,” the FSA 1308 will update the file if
the incoming lock_push_version is greater than MAX (lock_write_version,
lock_push_version), as discussed above. If the incoming lock_push_version is less than
MAX (lock_write_version, lock_push_version), the cache object is considered newer and
the incoming update is discarded by the FSA 1308. Also, when a file is missing
(deleted) from the pushed version but the file is also locally fastsynched, the file will not
be deleted. This merging can occur concurrently or before the global lock on the file is

granted.

[00123] In addition, if a file has been deleted or renamed, the local cache
metadata can record a “delete tombstone” which includes certain information (e.g.,
parent firsthandle, lock version, name, etc.). FSA 1308 merges a file as new if the file is
newer than any delete tombstone contained in the cache for the unique file. This can

address the situation in which a file has been fast synchronized before merge. In that

45

WO 2016/085541 PCT/US2015/035028

case, the incoming cloud dirty file is old compared to the cache and the import is

discarded.

[00124] To ensure that the unlocked file includes the changes from the latest
version, the locked file can only be unlocked when the lock_push_version is greater
than or equal to the lock_write_version at which point the FSA 1308 sends the
lock_push_version back to the NOC 1355 (or centralized lock server 1350) to store the

new version of the file in cloud storage 1360.

[00125] In some embodiments, the interface 1310 snapshots and merges new
files at the time of creation. The new file requests can be stored on the lock server
1350 with the lock entries. Other users can poll the lock server 1350 to determine if
new files/objects exist that have not yet been populated to the cloud 1360, for
example if there are new files/objects in a given directory. After the new files have
been created, the locker server 1350 can merge the new file requests into the

appropriate directories in the cloud 1360.

[00126] Figure 14 is a block diagram of a centralized lock manager 1400. The lock
manager 1400 includes a load balancer 1410 and lock server 1420. The load balancer
1410 can distribute the lock/unlock requests over a number of lock servers 1420A,
1420B, 1420C, 1420n. In some embodiments, the load balancer 1410 is based on the

AWS Elastic Load Balancing service available from Amazon Web Services, Inc.

[00127] The lock servers 1420 are deployed in the cloud and can be scaled up or
down depending on demand. The lock APl servers 1420 execute the centralized lock
APl functions and provide the logic for the lock manager 1400 (e.g., lock grants/denies,
when to allow/deny a lock request, what lock modes can be provided in response to a

lock request, tracking of the handles, cleaning the lock database 1430 periodically from

46

WO 2016/085541 PCT/US2015/035028

old entries that are no longer tracked by anyone, etc.). The lock servers 1420 are in

communication with the load balancer 1410, as discussed above.

[00128] The lock database 1430 is a central database in communication (e.g.,
over the Internet) with the lock manager 1400. The lock database 1430 can store
information on files that are in the locked state. For example, the lock database 1430
can store, for each locked file, the lock state, the first handle, the owner, etc. When the
lock database 1430 receives a lock request for a file that is already being tracked by
the database 1430, the database 1430 can return the current handle if the current
version of the file remains in cloud storage (i.e., if the file is not locked by another user).
When the files are unlocked, their state is updated and an updated current handle is
provided in the database 1430. The lock database 1430 can be scaled up or down with

the load on the active locks.

[00129] In some embodiments, multiple global locking modes can be provided.
In a first mode (e.g., an “optimized” mode), all lock requests are elevated to write locks
that allow read-only access to users other than the locker. Such a mode can be
implemented for SMB/CIFS and NFS without VFS. The first mode provides a “coarser”
lock and is best suited for applications that do not rely on shared access modes (e.g.,
text editors, Microsoft Office, etc.). In the second mode (e.g., an “advanced” mode),
global lock honors the access and shared access flags from SAMBA, which can allow
multiple users to hold locks on a file at a given time. In some embodiments, the second
mode is only available with SMB/CIFS. The second mode provides a “finer” lock and is

best suited for applications that rely on shared access mode (e.g., AutoCAD Revit®).

[00130] It is appreciated that certain features of the invention, which are, for

clarity, described in the context of separate embodiments, may also be provided in

47

WO 2016/085541 PCT/US2015/035028

combination in a single embodiment. Conversely, various features of the invention
which are, for brevity, described in the context of a single embodiment, may also be

provided separately or in any suitable sub-combination.

[00131] Unless otherwise defined, all technical and scientific terms used herein
have the same meanings as are commonly understood by one of ordinary skill in the art
to which this invention belongs. Although methods similar or equivalent to those
described herein can be used in the practice or testing of the present invention,
suitable methods are described herein. The present materials, methods, and examples

are illustrative only and not intended to be limiting.

[00132] It will be appreciated by persons skilled in the art that the present
invention is not limited to what has been particularly shown and described
hereinabove. Rather the scope of the present invention is defined by the appended
claims and includes both combinations and sub-combinations of the various features
described hereinabove as well as variations and modifications thereof, which would

occur to persons skilled in the art upon reading the foregoing description.

[00133] What is claimed is:

48

WO 2016/085541 PCT/US2015/035028

Claims

1. A method of locking a shared file stored in a network-attached file system (NAS),
the method comprising:

intercepting a local lock request initiated by a user of a local file system,
the local lock request for write access to the shared file;

translating the local lock request having a first local protocol to a global
lock request having a common protocol;

sending the global lock request to a central lock server; and

receiving a global lock for the shared file if the central lock server

determines that the global lock is available.

2. The method of claim 1, wherein the first local protocol is Network File System
(NFS).
3. The method of claim 1, wherein the first local protocol is Server Message Block

(SMB) or Common Internet File System (CIFS).

4. The method of claim 2, further comprising:
intercepting a second local lock request initiated by a second user of a second
local file system, the second local lock request for write access to the shared file, the
second local lock request having a second local protocol, the second local protocol
comprising Server Message Block (SMB) or Common Internet File System (CIFS);
translating the second local lock request having the second local protocol to a

second global lock request having the common protocol;

49

WO 2016/085541 PCT/US2015/035028

sending the second global lock request to the central lock server; and
receiving a multiprotocol global lock for the shared file if the central lock server

determines that the multiprotocol global lock is available.

5. The method of claim 1, further comprising creating a snapshot of a most recent

version of the shared file.

6. The method of claim 5, further comprising marking a parent directory of the

shared file as modified.

7. The method of claim 1, further comprising merging a file data for the shared file

in a local cache prior to locking a file path of the shared file.

8. The method of claim 7, further comprising determining whether a network file

data stored in a server is newer than a local file data stored in the local cache.
9. The method of claim 8, further comprising, prior to releasing the global lock,
discarding the network file data if the local file data of the shared file is newer than the

network file data of the shared file.

10. The method of claim 9, further comprising discarding the network file data if a

lock_write_version of the shared file is less than a lock_push_version of the shared file.

11. The method of claim 9, further comprising merging the local file data with the

network file data if a lock_write_version is greater than a lock_push_version.

50

WO 2016/085541 PCT/US2015/035028

12. The method of claim 1, further comprising temporarily storing a local lock

release request in a local lock cache.

13. The method of claim 12, further comprising reestablishing the global lock if a
second local lock request is generated while the local lock release is stored in the local

cache.

14. The method of claim 13, further comprising resetting an existing lock mode of
the global lock if the new lock mode for the second lock request is different than the

existing lock mode.

15. The method of claim 14, wherein the reset lock mode is inclusive of an existing

access level of the existing lock mode and a new access level of the new lock mode.

16. The method of claim 14, wherein the reset lock mode is inclusive of an existing

share level of the existing lock mode and a new share level of the new lock mode.
17. The method of claim 12, further comprising:

translating the local lock release to a global lock release having the common
protocol; and

sending the global lock release to the central lock server.

18. The method of claim 1, further comprising updating a central lock database with

51

WO 2016/085541 PCT/US2015/035028

an identity of the shared file associated with the global lock released by the global lock

server.

19. The method of claim 1, further comprising determining whether a requested

lock mode is available.

20. The method of claim 19, wherein the requested lock mode includes an exclusive

write access or a shared write access.

21. The method of claim 19, further comprising determining if the requested lock
mode is compatible with an existing lock mode for an existing global lock on the

shared file.

22. The method of claim 21, wherein determining if the requested lock mode is
compatible with an existing lock mode comprises comparing the first local protocol
associated with the global lock request with a second local protocol associated with

the existing global lock.

23. The method of claim 1, further comprising storing a new file request on the

central lock server.

24. The method of claim 23, further comprising polling the central lock server for

new files or new objects that have not been merged into the NAS.

52

WO 2016/085541 PCT/US2015/035028

25. The method of claim 23, further comprising merging a new file generated by the

new file request into the NAS.

26. The method of claim 1, further comprising promoting the local lock request to a

write lock that allows read-only access to others users of the NAS.

27. The method of claim 1, further comprising honoring an access flag and a shared

access flag associated with the local lock request.

28. The method of claim 1, further comprising initiating a lock peek when the user

opens the shared file.

29. The method of claim 28, wherein the lock peek comprises retrieving at least one

of a file handle, a handle version, a firsthandle, and a lock push version.

30. The method of claim 29, wherein the lock peek is retrieved from a local lock

cache.

31. The method of claim 29, wherein the lock peek is retrieved from the central lock

server.

32. The method of claim 31, further comprising temporarily storing information

retrieved from the lock peek in a local lock cache.

53

WO 2016/085541 PCT/US2015/035028

33. A method for managing locks in a shared network-attached file system, the
method comprising:

receiving a first global lock request from a first node, the first global lock request
comprising a first local protocol of a first local lock request generated by the first node;

providing a global lock to the first node;

receiving a second global lock request from a second node, the second global
lock request comprising a second local protocol of a second local lock request
generated by the second node, wherein the first protocol is different than the second
protocol; and

providing a multiprotocol global lock to the second node if the multiprotocol

global lock is compatible with the first local protocol and the second local protocol.

34. The method of claim 33 wherein the first local protocol is Network File System

(NFS).

35. The method of claim 33 wherein the first local protocol is Server Message Block

(SMB) or Common Internet File System (CIFS).

36. The method of claim 35 wherein the second local protocol is Network File

System (NFS).

37. An apparatus for managing file locks in a shared network-attached file system,
the apparatus comprising:
a first server comprising a processor, a network interface, a file system agent,

and a lock daemon;

54

WO 2016/085541 PCT/US2015/035028

wherein the first server is in communication with a central lock server and a
cloud-based storage via the network interface,

wherein the lock daemon is configured to translate a local lock request for a
shared file in the shared network-attached file system to a global lock request, the local
lock request having a first protocol, the global lock request having a common protocol,
and

wherein the file system agent is configured to create and export to the cloud-
based storage one or more structured data representations of a local file system to

generate a version of the shared network-attached file system.

38. An apparatus associated with multiple filer entities, at least one of which creates
and exports to a cloud data store one or more structured data representations
comprising a shared versioned file system, the shared versioned file system accessible
to each file entity, wherein filer entities do not interact with one another, comprising:
a processor;
a computer memory storing computer program instructions executed by the
processor to:
(a) intercept a local lock request initiated by the filer entity, the local lock
request for write access to a shared file in the shared versioned file system;
(b) translate the local lock request having a first local protocol to a global
lock request having a common protocol;
(c) transmit the global lock request to a central lock server; and
(d) receive a global lock for the shared file if the central lock server

determines that the global lock is available.

55

WO 2016/085541

L

hY

104
N

PCT/US2015/035028

1 {}2

&

3

LOCAL FILE
SYSTEM

VERSIONED FILE
SYSTEM INTERFACE

OBJIECT-BASED
DATA STORE

Fig. 1

1/15

WO 2016/085541 PCT/US2015/035028

200~ LOCAL FILE
SYSTEM

ALL
READAWRITE
CONTENT 202 |EVENTS
CONTROL N
SERVICE (CUS) | FLE QYSTEM | STORAGE

‘ !

ok

L g

204

o LocAL
206-"| STORAGE

o N oy

Vo
PROTECTED
EFS FILES
::M mm\w““““‘““““""""‘\“W\w\,.&\ e MMM“\“‘“M“““WW“NG
S VIV, e RSy
LOCAL EXTENDED FILE
20871 USER FILES STORAGE FFSY ™10
DA UATA MOOEL
M__» N fa POV L

Fig. 2

2/18

WO 2016/085541 PCT/US2015/035028

314
\

3

CONTENT CONTROU SERVICE (8C8)

CONTHROL
300~

CONTRG CONTROL

. &, N 304 - NN
MIES . S0 maers by SMN oo
306 | FILE SYSTEM 306 -} FILE SYOTEM a5~ FILE SYRTE

AZENT (FSA) AGENT {FSA) AGE
WINDOWS 05 X

LINUIX
30871 pLATFONM 31071 PLATFORM 31271 PLATFORM

4 1 1
4 3 ")
STIRAGE A‘\.\\/“"‘»\\\M STORARE
Y
f({ EXTERNAL OBJECY

REPQGITORY

“ .rv/

Fig. 3

3/15

WO 2016/085541

PCT/US2015/035028

MESSAGING

-

i

—

-~ 430

.

NAS

TRAFFIC ismibgd [KERNEL | FUSE
woorsccepooseseseiiv: "
/ 402

400

404 | 406

CachoMan

Valhig
42

cURL

S
fex]

ENCRYPT AND
COMPRESS

N

SHARED LIBR/
LOGGING
CONFIGURATION

418

v

DISK CATHE

Fig. 4

4/15

WO 2016/085541 PCT/US2015/035028

T . s LS B ST YA
S04~ pReCTORY

502"\

Fig. 5

5/18

WO 2016/085541 PCT/US2015/035028

CHANGES PROPAGATE
ALL THE WAY TO RDOT

604~ pipeoToRY |-— ———» DiRECTORY | 004

Fig. ©

6/15

WO 2016/085541 PCT/US2015/035028

A
A
CHANGES PROPABATE /

ALL THE WAY TO RODY 4

£

&

DIRECTORY i DIRECTORY

LRIZY -

700~

Fig. 7

7/15

WO 2016/085541 PCT/US2015/035028

CHANGES PROPAGATE

b
4 S, ALL THE WAY 70 ROOT
3 X

CHANGES PROPAGATE /o o —
ALL THE WAY TO ROOT,] DIREGTORY(1Y b o] DIRECTORY{1)
f 7
804~ DIRECTORYDY b el DIRECTORY(D) 5
:\\\MN 5 RIS
URES T /

mv L SDsstony(DiFle 7L
_*&;ra{;\a. iRV Filg

Fig. 8

8/15

PCT/US2015/035028

WO 2016/085541

b FAST

‘
= W o5 i
e, -
22 o prrioi e,
A" S BN
&5 ! § "~ o
. 3 e 3 1 3 e
2 iz =4 M g
ﬂ\ﬁw S e W : £ i H
it kV.%\ iiiiii R S
- Py Y414
o SIMAAD A0
5 " e Aff Pt
) ") , \,\.\\\
) fMX\\
%] ks
Lo,
.Tt(.
bl

REF 2
J
N\,
5
A\

L TAL.

i
i

mmuv.\i ot

5

4
;
e s St o st e o

Fig. 9

9/15

WO 2016/085541

E

I T D

CONTENT CONTROL BERVICE

{zp_ ~
X
A\

EVENT PIPE ~

A ———_—

FILE SYSTEM AGENT
FOA

Fig. 10

10/15

PCT/US2015/035028

CLOUD STORAGE

PCT/US2015/035028

WO 2016/085541

T
Ui 228871840

MANIFERT
" RECTORY CHUNK

e Y
16T 2R354884 /;.
é
ROQT BIRECTORY . S
i
e
e i
e
- {
/ {
-~ 3
o 13
yd ;
/ H
K - ¥
I H s o
Saniards --t-{\ \‘ SRR oS4 e ow
,ww.z’
FURECTORIES
.‘/\‘
\";
-"
«‘/
- ;
o s
.~/ ~
- - .\"/
\.-"‘") ¢ ‘/
e - A
~ /"'x ,/“
MANIFEST
{\ “.& DARIR I g 4“ .
e \,\\ R S e € . §
e G DO3NDG | L ING D0y
(=
S
P i
g g
,.v"'mw /~‘/ e "
) SN FILES

{,.—"‘"\,, A\ﬁ" i -)
PRV S -
: o § 2 g
5 \.\‘“ / K/ .‘\\
Y

}
pl
R 2\ *3 L
S ~
L FILE CHUNKS
S
o
t
\‘4 G
—

11/15

WO 2016/085541

00
UniZZ887 184 e

PCT/US2015/035028

MANIFEST
DHECTORY CHIMNK

pe

TEonISTRHAGNST dn

THE CHANGES
PROPABATE TO THE
ROUT DIRECTORY
BESULTING) THE
CREATION UF NEW

& NEWTOQ
X

ROOT DIRERC

MANIFESTS AND o
pd

Sanimals

ORY

CHRECTORES

1§ MG 0955 s

3 R

Atddpg

ol siemg .
N MANFEST ,

— e
ey MG 08XS e

N {
Y 3 ad
PR s \‘x" \Mw .~“S
{ Ve g i
RECHUNKS 7V 7
\ood 4

12/15

WO 2016/085541

1300
\\\

PCT/US2015/035028

1330

NFS/CIFS &
Active Directory

LDAP

—

13/15

13§5 1360
Local NAS 1350 \\ \}W\
management Web Lock - \
interface Server NeC \ Cloud storage o
- ‘\\ B
1302 1318 1322
i HTTPD | Admin
SMBD | 4348
F
o || sz | o
S ” Lacne volmgr
£ dasmon man
1304
NFSD 1308
FSA
\ y,
1340
Local
cache
Fig. 13

WO 2016/085541

PCT/US2015/035028

Fig. 14

14/15

WO 2016/085541

1500

Ko

PCT/US2015/035028

Cantgat
{ helockin
{mum-pmmmg}

3,

‘Q@ﬁe st 4
§ o
N a

1510 \‘ »»*““‘"\\

1560 \‘ '

-

-~
AR
MO e s winowts, YeS

P -
&
soveEy
-
.-"'.(

e e, f"\ "
e & . T .
P = o N

£ N, i
f y if »
ﬁ No } f Yes \

\E\ 1":; \ £
N N/
e ey

' Y ﬁ‘ﬁv
\)"\,&

vy
Advanged?
LY s

N o

&

N

Yas L NES Has

it aszae.;,f
v

o/

No 7 CIFS ™ o ves

Fig. 15

15/15

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US15/35028

A. CLASSIFICATION OF SUBJIECT MATTER
IPC(8) - GO6F 17/30 (2015.01)

CPC - GO6F 17/3023, 17/30362
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

‘Minimum documentation searched (classification system followed by classification symbols)’

IPC(8) Classification(s): GO6F 17/30; HO4L 29/06, 29/00 (2015.01)
CPC Classification(s): GO6F 17/3023, 17/30362, 17/30067, 17/3007, 17/30309, 17/30356; HO4L 29/06068; Y10S 707/99938

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, wheré practicable, search terms used)

PatSeer (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, Other Countries (INPADOC), RU, AT, CH, TH, BR, PH);
Google/Google Scholar; ProQuest; EBSCO
KEYWORDS: lock, file, global, protocol, request, compatible

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 0566895 A2 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 27 October 1993, 1-4,18-27, 33-36
- Abstract; Column 1, Lines 26-30; Column 1, Lines 53-55; Column 2, Lines 34-45; Column 3,

Y Lines 4-18; Column 4, Lines 24-40; Column 9, Lines 49-58; Column 10, Lines 1-9; Figures 1, 5-17, 28-32, 37, 38
3a, 4a : ' :
Y WO 2005/045556 A2 (NETWORK APPLIANCE, INC.) 19 May 2005; Page 7, Lines 24-34; Pagé 5,6,9-11,37,38
8, Lines 5-9; Page 12, Lines 1-4; Page 15, Lines 16-30; Page 16, Lines 24-31; Page 27, Lines
3-10; Page 27, Lines 15-25 . o :
Y US 7958169 B1 (WITTE, W et al.) 07 June 2011; Column 3, Lines 1-10; Column 21, Lines 6-13; 6, 28-32
Column 25, Lines 52-63; Column 31, Lines 62-66
Y GB 2374175 B (EMC CORPORATION) 28 July 2004; Page 12, Lines 18-26; Page 27, Lines 7-11
21-28; Page 35, Lines 26-34; Page 41, Lines 8-12; Page 45, Lines 27-33; Figures 8, 9
Y WO 2005/103963 A2 (CISCO TECHNOLOGY, INC.) 03 November 2005; Page 12, Lines 8-32; |12-17
Page 13, Lines 23-25 :
US 6654794 B1 (FRENCH, S) 25 November 2003; entire document 1-38
A US 6343346 B1 (OLNOWICH, H) 29 January 2002; entire document 1-38

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority

the priority date claimed

“A” document defining the general state of the art which is not considered date and not in conflict with the apEliQalion but cited to understand
. to be of particular relevance) the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
S":giz:lo r:::‘;t,’lh(sutl :hic?ggg)c ation date of another citation or other wy» 4ocyment of particular relevance; the claimed invention cannot be
o p) S Sp . - considered to involve an inventive step when the document is
O document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means ’ being obvious to a person skilled in the art
P” document published prior to the international filing date but later than «g» document member of the same patent family

Date of the actual completion of the international search

24 August 2015 (24.08.2015)

Date of mailing of the international search report

15SEP 2015

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300 .

Authorized officer
Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP. 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - wo-search-report

