
(12) United States Patent
Shia

US0085394.41B2

US 8,539,441 B2
Sep. 17, 2013

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR SPECIFYING
AND DEVELOPINGAPPLICATION SYSTEMS
WITH DYNAMIC BEHAVOR

(76) Inventor: So-Ming Daniel Shia, San Francisco,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 23 days.

(21) Appl. No.: 13/369,164

(22) Filed: Feb. 8, 2012

(65) Prior Publication Data

US 2012/O2O3834 A1 Aug. 9, 2012

Related U.S. Application Data
(63) Continuation of application No. 1 1/432,849, filed on

May 13, 2006, now Pat. No. 8,117,597.
(60) Provisional application No. 60/681.420, filed on May

16, 2005.

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl.
USPC 717/107; 717/103; 717/172; 709/238;

71.9/313

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,257,363 A 10/1993 Shapiro et al.
5,297,057 A 3, 1994 Kramer et al.
5,754,845. A 5, 1998 White
5,831,853. A 11/1998 Bobrow et al.
5,878,036 A * 3/1999 Spartz et al. 370,335

805

5,913,065 A * 6/1999 Faustini 717/107
6,115,710 A 9, 2000 White
6,275,843 B1* 8/2001 Chorn T18, 101
6,550,057 B1 4/2003 Bowman-Amuah
6,556,586 B1 * 4/2003 Sipila 370/469
6,807,583 B2 10/2004 Hrischuk et al.
6.951,022 B1 9, 2005 Golde et al.
6,981,265 B1* 12/2005 Rees et al. T19, 313
6,983,227 B1 1/2006 Thalhammer-Reyero
7.323,970 B1* 1/2008 Murray et al. 340,426.12
7,451.447 B1 1 1/2008 Deshpande
7,512,531 B1 3, 2009 Shia
7,519,960 B2 4/2009 Mei et al.
7,680,888 B1 3/2010 Marmaros et al.
7,797,669 B1 9/2010 Rehofetal.

2001/00395.62 A1* 11/2001 Sato TO9,202
2002/O120921 A1 8, 2002 Coburn et al.
2002/0194393 A1 12/2002 Hrischuk et al.

(Continued)
Primary Examiner — Chameli Das
(74) Attorney, Agent, or Firm — Brian N. Young;
Fountainhead Law Group P.C.

(57) ABSTRACT

A method derives a composite activity that specifies a behav
ior of a first system that interacts with a second system. The
method specifies the composite activity containing a set of
first simple activities in which each first simple activity is a
basic activity specifying a message that is either sent from the
first system to the second system or sent from the second
system to the first system. Then, each first simple activity that
specifies a message sent from the second system to the first
system is replaced by a second activity for the first system to
receive the message followed by an unspecified activity that is
to be specified by a user to define an internal action the first
system is to take. Also, each first simple activity that specifies
a message sent from the first system to the second system is
replaced by an unspecified activity that is to be specified by a
user to define an internal action the first system is to take
followed by a second activity for the first system to send out
the message.

8 Claims, 22 Drawing Sheets

Participant-PS2.1

US 8,539.441 B2
Page 2

(56) References Cited 2004/0098728 A1* 5/2004 Husain et al. T19, 313
2004/O128120 A1 7/2004 Coburn et al.

U.S. PATENT DOCUMENTS 2005/0176445 A1* 8/2005 Quetal. 455,458

2003/0050983 A1 3, 2003 Johnson S.S. A. 1939. S. al
2003/0083941 A1* 5/2003 Moran et al. TO5/14 rOOkS et al.
2003/0.109271 A1* 6/2003 Lewis et al. 455,517 2006.0167771 A1 7, 2006 Meldahl
2003/0182083 Al 9, 2003 Schwenke et al. 2006/0184410 A1 8/2006 Ramamurthy et al.
2003/0217176 A1* 1 1/2003 Beunings TO9,238 2009,0003547 A1 1/2009 Katis et al. 379.88.13
2004/OOO6652 A1 1/2004 Prall et al.
2004/0073404 A1 4/2004 Brooks et al. * cited by examiner

U.S. Patent Sep. 17, 2013 Sheet 1 of 22 US 8,539,441 B2

FIG. 1

FG. 2

U.S. Patent Sep. 17, 2013 Sheet 2 of 22 US 8,539,441 B2

Composite DS

509 parallel
Sub-DS

axawarara Yarrassass-a-ax

F.G. 5

F.G. 6

F.G. 7

U.S. Patent Sep. 17, 2013 Sheet 3 of 22 US 8,539,441 B2

800

Protocol O

- Protocol. 1

---...
Protocol 2

FG. 8

Simple Ext-DS

U.S. Patent Sep. 17, 2013 Sheet 4 of 22 US 8,539,441 B2

Matching (Ext-DS, event

no-match
Check if event

is the right
Event-type

c

Check ext

Dredicate phase to null

factive if partial
Thatch Matching

parallel sub-Ext-OS, event

As Else, h full-match

parts
Check Exit

Record Exit
Code in Result

F.G. 12

U.S. Patent Sep. 17, 2013 Sheet 5 of 22 US 8,539,441 B2

React (PS, event

if no-match

Check Exit
Condition Set

tfany Exit
Condition is met

Check Exit
Condition

F.G. 3

U.S. Patent Sep. 17, 2013 Sheet 6 of 22

lf Current-phase is
not null

Check Exit
Condition

Set

Condition is net

Condition is net

FIG. 14

US 8,539,441 B2

U.S. Patent Sep. 17, 2013 Sheet 7 of 22 US 8,539,441 B2

Paralle PM

FIG. 15A

FIG. 5B

Transition
predicate

Target-phase

Exit
condition
Y. Swaz

603

U.S. Patent Sep. 17, 2013 Sheet 8 of 22 US 8,539,441 B2

1.

1704 1705
1707 sub-DS P0 1708

D (1709

1902 N. 1903 1904

"D- 1900 1905

1907

V

A
1908 go9 1910

U.S. Patent Sep. 17, 2013 Sheet 9 of 22 US 8,539,441 B2

FIG. 20

2105

104 2103 2106

U.S. Patent Sep. 17, 2013 Sheet 10 of 22 US 8,539,441 B2

type reference
result

FIG. 25

Simple Ext-DS U

Simple Ext-DS
type reference

Result

Simple Int-DS ?pe

Action type

U.S. Patent Sep. 17, 2013 Sheet 11 of 22 US 8,539,441 B2

Simple In-DS

type reference
Result

FIG. 31

3203 N st

Transition- type V
predicate phase phase

3216

reference

Transition- type
predicate phase

-- r-ra- - - - - --e -----
munraawann-area

U.S. Patent Sep. 17, 2013 Sheet 12 of 22 US 8,539,441 B2

Sondition
Static-count

Transition
predicate phase

3220

DS type specs DS types int-DS and Action
in binary code in binary

Design tool Code
a Genetor " duo is Run time platform

ign tool Code :
a as a a a Genertor " a Run time platform

F.G. 34

U.S. Patent Sep. 17, 2013 Sheet 13 of 22 US 8,539,441 B2

Exit condition set Composite DS type reference
Result

t

PM
PM-type reference

Current phase

Transition-predicate
Target-phase

FIG. 35

U.S. Patent Sep. 17, 2013 Sheet 14 of 22 US 8,539,441 B2

X-server Participant-PS type

Phase type: 1

3606
Transition- arget-phase :

predicate: true Null-phase

sub-Ext-DS type: “Request0” sub-Ext-DS type: “Entry"
sub-int-DS type: "??" sub-Int-DS type: "ReplyO”

3610 reference
1.

type
reference

X-server Participant-PS

FIG. 36

U.S. Patent Sep. 17, 2013 Sheet 15 of 22 US 8,539,441 B2

protocol2

> b

U.S. Patent Sep. 17, 2013 Sheet 16 of 22 US 8,539,441 B2

U.S. Patent Sep. 17, 2013 Sheet 17 of 22 US 8,539,441 B2

4500 4501 4502 4503 4505

4700 N 4701 4704

U.S. Patent Sep. 17, 2013 Sheet 18 of 22 US 8,539,441 B2

U.S. Patent Sep. 17, 2013 Sheet 19 of 22 US 8,539,441 B2

FIG. 52

FIG. 53

U.S. Patent Sep. 17, 2013 Sheet 20 of 22 US 8,539,441 B2

5500 5501 5502 5503

F.G. 55

5600 5601 5602 5603

O**O Reply1 / ?? O

FIG. 56

U.S. Patent Sep. 17, 2013 Sheet 21 of 22 US 8,539,441 B2

5700 701

702

FIG. 57

Design tool
using generalize
methods and Code 1 visual Genertor Run time platformtime platform

representations

F.G. 60

U.S. Patent Sep. 17, 2013 Sheet 22 of 22 US 8,539,441 B2

US 8,539,441 B2
1.

METHOD AND SYSTEM FOR SPECIFYING
AND DEVELOPINGAPPLICATION SYSTEMS

WITH DYNAMIC BEHAVOR

PRIORITY CLAIMARELATED CASE

This application is a continuation of U.S. patent applica
tion No. 11/432,849 filed May 13, 2006, entitled “Method
and System for Specifying and Developing Application Sys
tems with Dynamic Behavior, issued as U.S. Pat. No. 8,117.
597 on Feb. 14, 2012, which claims priority under 35 U.S.C.
119(e) to U.S. Provisional Patent Application Ser. No.
60/681,420, filed on May 16, 2005 and entitled “Method and
apparatus for modeling dynamic system behavior”, both of
which are incorporated herein by reference in its entirety for
all purposes.

CROSS-REFERENCES TO RELATED
APPLICATION(S)

United Modeling Language (UML): Superstructure, Ver
sion 2.0, Aug. 2005.

Business Process Modeling Notation (BPMN), Version
1.0, May 3, 2004.

Process Definition Interface-XML Process Definition Lan
guage (XPDL), Version 1.0, Oct. 25, 2002.

Business Process Execution Language (BPEL) for web
services, Version 1.1, May 5, 2003.
Web Services Choreography Description Language (WS

CDL), Version 1.0, Nov. 9, 2005.
Method and apparatus for specifying reactive systems (Dy

namic State Machine), Apr. 30, 2003.

FIELD OF THE INVENTION

The present invention relates to flow charts, activity dia
grams, business process, process modeling, work flow, state
machines, protocol specifications, application Software
design and implementation.

BACKGROUND OF THE INVENTION

Traditionally, the system behavior are modeled in two dif
ferent approaches. One focuses on internal active activities
that a system performs, whereas the other focuses on behavior
reacting to external events. This two-prong approach is
reflected by the fact that Activity diagram, which focuses on
active behavior, and Statechart, which focuses on reactive
behavior, are two different styles of diagrams in United Mod
eling Language (UML). Let's call the former approaches
“active behavior modeling and the latter ones “reactive
behavior modeling”.

Active behavior modeling includes flow chart, Business
Process Modeling Notation (BPMN), XML Process Defini
tion Language (XPDL), Business Process Execution Lan
guage (BPEL) and UML Activity diagrams. Both BPMN and
UML Activity diagram use nodes in a diagram to represent
activities to perform, while using links to connect one node to
another representing the sequence of these activities. On the
other hand, XPDL and BPEL define these activity nodes and
their links in an XML syntax instead of a diagram.

While these active behavior modeling notations are useful
in describing internal active behavior of a system, they are
inadequate for defining reactive behavior in response to exter
nal events that may occurat any time. A typical approach is to
have some special event detecting activities, such as “receive”
in BPMN and BPEL, to detect these possible external events.

10

15

25

30

35

40

45

50

55

60

65

2
Since external events can happen any time, various event
detecting activities have to be inserted in various places in a
diagram. However, unlike a state machine, these active
behavior modeling diagrams don’t have a “state' where all
event detecting activities can be grouped together. The result
is that these event detecting activities are scattered all over the
places in a diagram and makes it very difficult to know what
external events an application system is waiting for at any
point in time during execution.
A major drawback of this approach is that if a correct

detection activity is not inserted in a critical position in a
diagram, some unexpected events will be left unprocessed
and the application system may crash at run time. To over
come this problem, a designer may try to place various event
detection activities all over the diagram. The result may be an
overly complex diagram.

Another drawback is that since these event detection activi
ties are inserted in a diagram in an ad hoc and unstructured
way, it is very difficult to verify if the system behavior as
defined in the diagram is consistent with other systems that it
communicates with. This deficiency has caused many critical
design problems with an application system that needs to
interact with other systems.

While an active behavior modeling notation fails to provide
an adequate facility to Support reactive behavior in response
to external events, a reactive behavior modeling notation is
designed specifically to address this issue.

Reactive behavior modeling includes finite state machines
(FSMs), UML Statechart, and Dynamic State Machine. A
pure FSM includes a number of states and their outgoing
transitions with external events dearly specified for each tran
sition. While at a state, the FSM is waiting for all possible
external events. Upon receiving a valid external event, a tran
sition is triggered and an associated action is performed along
with the transition. After a transition, the current state
becomes inactive, and another state becomes active. The FSM
then waits for another set of events associated with the new
active state. Therefore, at any time, a FSM typically is in a
particular state waiting for various possible external events to
happen.
A pure FSM has a number of disadvantages. For example,

one undesirable restriction is that a pure FSM has no memory.
Due to its lack of memory, the usage of a pure FSM is very
limited. Since a state in a pure FSM contains no memory, any
change or information about history, Such as a simple counter,
must be presented by defining additional states in order to
maintain these changes. Given the infinite number of values
that a counter may have, an infinite number of states would be
required.

Extended finite state machines (EFSMs) or Register
Automata add memory or data variables to each state to
contain values. Such as numbers and counters, to overcome
the major problem of a pure FSM as described above. EFSMs
are widely used to model various reactive systems.
When EFSMs are used to model some real world events or

behavior, it is often found that a hierarchical of states or
nested states are useful to reduce the number of states and to
organize a complex set of states into a hierarchy. Statechart as
part of the United Modeling Language (UML) and STATEM
ATE are some examples. Statechart is the term used herein to
refer to a hierarchical finite state machine.

Although a reactive behavior modeling notation is design
to deal with external events, it typically overlooks how to
specify complex internal active behavior. As we have already
learned from using some active behavior modeling notations,
these internal active behavior can be extremely complex. It

US 8,539,441 B2
3

would be highly desirable to incorporate an active behavior
modeling notation that is consistent to the reactive behavior
modeling notation.

Another common deficiency shared by existing active and
reactive behavior modeling notations is that they can only
specify the behavior of a single system. Complex internal
messages exchanged among components inside of a Super
system are not modeled in any way. The lack of Support for
behavior of multiple parties is very limiting in a distributed
computing environment where a system may contain mul
tiple Sub-systems who communicate with each other to coor
dinate their work.

In addition to above mentioned active behavior modeling
and reactive behavior modeling, some other notations are
designed to specify a protocol in between two interacting
systems. Web Services Choreography Description Language
(WS-CDL) is such an example. One possible application
development procedure is to define a protocol in WS-CDL
and then design the behavior of a participating system in
another notation, such as BPEL, XPDL or BPMN. However,
due to differences among these notations, mapping from a
protocol to two participating systems and ensuring these two
participating systems are compatible with each other can be
problematic.
What is needed is a comprehensive approach to unify both

active behavior modeling and reactive behavior modeling
notations in a single consistent modeling notation that also
Supports dynamic behavior of multiple parties in the modern
distributed computing environment. The present invention
provides Such a solution.

BRIEF SUMMARY OF THE INVENTION

This invention describes method and system for specifying
and developing application systems with dynamic behavior.
One purpose of this invention is to improve how we specify

dynamic behavior of an application system in diagrams to
facilitate the development of Such a system in a computer
software or hardware.

Another purpose is to provide necessary mechanisms and
methods so that design tools, code generators and run time
platforms can be developed to realize the dynamic behavior
specified.

In order to achieve these purposes, system for specifying
dynamic application system behavior, procedures and meth
ods about its operations, and methods about how to develop
such a behavior model are provided in the present invention.

This invention uses a Dynamic System (DS) type for speci
fying dynamic behavior of an application system. A DS type
can be either simple or composite. A simple DS type has a
Behavior type for specifying simple behavior of the applica
tion system. A composite DS type (of model 1) has a number
of Phased Machine (PM) types, which specify complex
sequential and parallel behavior of the application system,
and either an Exit-condition set or an exit function. Each PM
type has one or more Phase types and an optional Static
count. Each Phase type has a sub-DS type and Zero or more
Transitions. Each Transition has a Transition-predicate and a
Target-phase.

If an exit function is specified, it returns an exit code that
identifies a condition under which an instance of the compos
ite system type exits. If an Exit-condition set is specified, each
Exit-condition has a pair of Exit-predicate that specifies a
condition under which an instance of the composite system
type exits and an exit-code that identifies the associated Exit
condition.

5

10

15

25

30

35

40

45

50

55

60

65

4
While one PM type may have a plurality of Phase types for

specifying a sequential behavior of the composite DS,
another PM type may have only one Phase type for specifying
a parallel behavior of the composite DS.
The DS type can be specialized into a Proactive System

(PS) type to specify the reactive behavior of a system that
interacts with others in a distributed environment. APS type
is either simple or composite. A simple PS type is a special
ization of the simple DS type. It’s behavior has an External
DS (Ext-DS) type followed by an Internal DS (Int-DS) type.
The Ext-DS type specifies external incoming events to occur
when communicating with another system, whereas the Int
DS type specifies internal actions to perform in response to
the occurrence of those external events. A composite PS type
is a specialization of the composite DS type. Hence, it is the
same as a composite DS type except that it contains sub-PS
types instead of sub-DS types.
An Ext-DS type is also a specialization of a DS type. An

Ext-DS type is either simple or composite. A simple Ext-DS
type is a specialization of the simple DS type with an Event
type as its Behavior to specify an external incoming event
type in a communication protocol. A composite Ext-DS type
is a specialization of the composite DS type. Hence, it is the
same as a composite DS type except that it contains sub-Ext
DS types instead of sub-DS types.
An Int-DS type is also a specialization of a DS type. An

Int-DS type is either simple or composite. A simple Int-DS is
a special kind of simple DS that has an Action type as its
Behavior to specify an internal action to perform. A compos
ite Int-DSs a specialization of the composite DS type. Hence,
it is the same as a composite DS type except that it contains
sub-Int-DS types instead of sub-DS types.
At run time, multiple instances of DS types, including PS

types, Ext-DS types and Int-DS types, can be created. A DS
instance is either simple as composite. A simple DS instance
has a type reference to its DS type and a Result that records the
outcome of performing its behavior. A composite DS instance
has a type reference to its DS type, a Result, and a number of
PMs. Each PM has a type reference to its PM type, a Current
phase, and a number of Phases. Each Phase has a type refer
ence to its Phase type and a sub-DS instance.

After a DS instance is created, various parts of the DS
instance can be activated and deactivated at run time to model
the evolving behavior of a real world system. Similar to a DS
instance, various parts of a Ext-DS instance, Int-DS instance
and PS instance can be activated and deactivated at run time to
model the evolving behavior of the corresponding real world
system.
To specify an Int-DS to be performed immediately after a

simple PS becomes active, a predefined “Entry” event type
can be specified in the Ext-DS of the simple PS type. To
specify an Int-DS to be performed immediately before a
simple PS becomes inactive, a predefined “Exit” event type
can be specified in the Ext-DS of the simple PS.
One main benefit of the present invention is that a single

consistent general model based on DS is used throughout the
design process while a particular specialization of this gen
eral model is used in each design step to focus on a specific
behavior aspect.

Several design methods are provided in this invention so
that the behavior of a system that interacts with others can be
derived from its protocol specifications. First, following a
generalized conversion method, a Participant-PS is derived
from each Protocol that a role may support. Then, these
Participant-PSs are merged into a single Role-PS. These
design methods ensure that the specifications of the protocol
and communicating parties are consistent with each other.

US 8,539,441 B2
5

Some components used in these design methods are gen
eralized so that they can also be used in other behavior mod
eling notations. The unspecified Ext-DS is generalized into an
unspecified external activity that describes an activity to
receive Some unspecified external events. The unspecified
Int-DS is generalized into an unspecified internal activity that
describes an activity to perform some unspecified internal
actions.
A generalized conversion method is used for converting a

composite-activity from a protocol specification to a behavior
specification of a participant. The method comprises: for each
incoming simple-activity that describes an incoming event
for the participant to receive, replacing the incoming simple
activity by a reactive composite-activity with the incoming
simple-activity as its external activity and an unspecified
internal activity that describes activities to perform in
response to the occurrence of the incoming simple-activity;
and for each outgoing simple-activity that specifies an event
for the participant to send, replacing the outgoing simple
activity by a reactive composite-activity with an unspecified
external activity that describes events to receive and the out
going simple-activity as its internal activity to perform in
response to the occurrence of the unspecified external activ
ity.

Several exemplary embodiments are provided to apply
similar methods to define reactive and active behavior using
UML Statechart, UML Activity Diagram, BPMN, and BPEL
notations.

Another method is provided to generate a protocol com
posite-activity for specifying a protocol from a participant
composite-activity. The method comprises: copying apartici
pant composite-activity that specifies a behavior of a partici
pant; and changing each simple-activity that neither receives
an incoming event nor sends an outgoing event to a null
activity.
A graphical representation of these DS types, including PS

types, Ext-DS types and Int-DS types, are provided in this
invention. A DS type can be graphically represented as a
containment box. A containment box representing a compos
ite DS type may contain a number of sub-containment boxes,
a number of bi-directional interaction links, a number of
Creation arrows, a number of Transition arrows, and a num
ber of Exit-points. Each of these sub-containment boxes rep
resents either a simple or composite Sub-DS. A composite
sub-DS may be shown with its own sub-sub-containment
boxes within its boundary. A sub-containment box with at
least one Transition arrow represents a sequential Sub-DS,
whereas a Sub-containment box without any transition arrow
represents a parallel sub-DS.
A simple PS is graphically represented as a containment

box with two sub-containment boxes. One of these sub-con
tainment boxes represents the Ext-DS that specifies external
events to receive and another sub-containment box represents
the Int-DS that specifies internal activities to perform in
response to the occurrence of the external events.

Reference to the remaining portions of the specification,
including the drawings and claims, will realize other features
and advantages of the present invention. Further features and
advantages of the present invention, as well as the structure
and operation of various embodiments of the present inven
tion, are described in detail below with respect to accompa
nying drawings, like reference numbers indicate identical or
functionally similar elements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

FIG. 1 is a simplified block diagram showing an example of
a distributed computing environment;

5

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 2 is a simplified block diagram illustrating a computer

system that can be used to implement the present invention;
FIG. 3 is a DS containing a tree of sub-DS's;
FIG. 4 is a simple DS:
FIG. 5 is a composite DS:
FIG. 6 shows an Exit-condition comprising a pair of

explicit Exit-predicate and corresponding Exit-code;
FIG. 7 is the general life cycle of a DS:
FIG. 8 shows Protocol, Participant-PS and Role-PS:
FIG.9 is a simple Ext-DS:
FIG. 10 is a simple PS:
FIG. 11 is a simple Int-DS:
FIG. 12 shows the matching procedure pseudo code in a

graphical notation
FIG.13 shows the react procedure pseudo code in a graphi

cal notation
FIG. 14 shows the act procedure pseudo code in a graphical

notation
FIG. 15A is a Parallel PM with Zero Transition to emulate

a Parallel-element;
FIG. 15B is a Parallel PM with only one Transition to

emulate a Parallel-element;
FIG. 16 is a model 1 composite DS:
FIG. 17 is an exemplary graphical notation of a DS

example;
FIG. 18 is another exemplary graphical notation of a DS:
FIG. 19 is an exemplary graphical notation of a composite

PS example:
FIG. 20 shows an example composite PS containing a

sub-PS with a composite Ext-DS
FIG. 21 is a composite PS with “Entry” and “Exit” pre

defined events;
FIG. 22 X-server Participant-PS without predefined

“Entry” event;
FIG. 23 X-server Participant-PS with a predefined “Entry”

event;
FIG. 24 shows type properties and instance properties of a

simple DS:
FIG. 25 shows type properties and instance properties of a

simple DS in UML class diagram;
FIG. 26 shows type properties and instance properties of a

simple Ext-DS:
FIG. 27 shows type properties and instance properties of a

simple Ext-DS in UML class diagram;
FIG. 28 shows type properties and instance properties of a

simple PS:
FIG. 29 shows type properties and instance properties of a

simple PS in UML class diagram;
FIG. 30 shows type properties and instance properties of a

simple Int-DS:
FIG.31 shows type properties and instance properties of a

simple Int-DS in UML class diagram;
FIG. 32A shows model 1 composite DS type with an exit

condition set and instance;
FIG. 32B shows model 1 composite DS type with an exit

function and instance;
FIG. 32C shows model 1 composite PS type and instance:
FIG. 33 shows the process to design, build and run DS

based application software;
FIG. 34 shows the process to design a DS-based applica

tion and build it to run on various run time platforms;
FIG.35 shows type properties and instance properties of a

composite model 1 DS in UML class diagram;
FIG. 36 shows the composite PS type and instance of

X-server Participant-PS type of FIG. 23;
FIG.37 shows a system “X” interacting with a client and a

server;

US 8,539,441 B2
7

FIG.38 shows exemplary Protocol “protocol 0' and “pro
tocol 1:

FIG. 39 is the Participant-PS for “X-server” derived from
“protocol 0 in FIG.38:

FIG. 40 is the Participant-PS for “X-client” derived from
“protocol 1 in FIG. 38;

FIG. 41 is the Protocol “protocol2:
FIG. 42 shows how Participant-PSs are Combined into a

Role-PS:
FIG. 43 shows how internal interactions and behavior are

added;
FIG. 44 is the Role-PS of “X” using a composite Protocol

“protocol2:
FIG. 45 shows “protocol 0' and “protocol 1 specified in

UML Activity Diagram;
FIG. 46 shows X-server” in UML Activity Diagram

derived from “protocol.0” in FIG. 45:
FIG. 47 shows “X-client” in UML Activity Diagram

derived from “protocol1” in FIG. 45:
FIG. 48 shows that "X-server” and "X-client” are com

bined into a role composite-activity in UML Activity Dia
gram using a pair of fork and join nodes;

FIG. 49 shows “protocol 0' and “protocol 1 specified in
BPMN;

FIG.50 shows X-server” in BPMN derived from “proto
colo:

FIG. 51 shows “X-client” in BPMN derived from “proto
col1:

FIG. 52 shows that X-Server and X-client are com
bined into a Role-PS in BPMN using a pair of fork and join
parallel gateways:

FIG. 53 shows that X-Server and X-client are com
bined into a Role-PS in BPMN in a parallel box:

FIG. 54 shows “protocol 0' and “protocol 1 specified in
Statechart;

FIG.55 shows “X-server” in Statechart derived from “pro
tocol.0':

FIG. 56 shows “X-client” in Statechart derived from “pro
tocol1:

FIG. 57 shows that X-Server and X-client are com
bined into a Role-PS in Statechart;

FIG. 58 shows a protocol derived from X-server' partici
pant composite-activity;

FIG. 59 shows how to follow the design process described
in this invention to design an application and build it to run on
various run time platforms;

FIG. 60 shows a composite-activity with sequential and
parallel Sub-composite-activities, one of which is a reactive
composite-activity;

FIG. 61 shows a composite-activity with sub-composite
activities, an Interaction-link and two Exit-points;

FIG. 62 shows a composite-activity with sequential and
parallel Sub-composite-activities, one Creationarrow and one
Interaction-link:

FIG. 63 shows a composite-activity with sequential and
parallel Sub-composite-activities, and the external activity is
linked to the internal activity by an arrow.

DETAILED DESCRIPTION OF THE INVENTION

The present invention in the form of one or more exemplary
embodiments will now be described. In the following
description, numerous specific details are set forth in detail to
provide a more thorough description of the invention. It will
be apparent to one skilled in the art, however, that this inven
tion can be practiced without these specific details. In other

10

15

25

30

35

40

45

50

55

60

65

8
instances, well known features have not been described in
detail so as not to unnecessarily obscure the invention.
Many of the real world Systems have complex and dynamic

behaviors. A behavior is complex because there are lots of
elements involved. A behavior is dynamic because it evolves
or changes over time. One guiding principle to model com
plex and dynamic behavior is to divide and conquer. The
present invention uses Dynamic Systems (DS’s) and sub
DSs to divide and model or specify any complex and
dynamic behavior that may be present in a wide range of
software or hardware systems in a real time or distributed
environment as in FIG.1 as well as real world entities, such as
people and organizations.
A distributed environment typically is made up of multiple

hardware systems connected by a network. Each hardware
system has a central processing unit (CPU), memory (ROM,
RAM, and disks), and input and output devices as in FIG. 2.
The hardware system is a computer, which may be a Per

Sonal Data Assistant, a laptop, a desktop, a workstation, a
mainframe, a real time control device, a networked equip
ment, or any of a variety of other devices providing comput
ing and input/output capabilities.

In the present invention, types (or classes) and instances are
differentiated. A type or class is a design time concept that
specifies some behavior properties of an entity, whereas an
instance is a run time entity whose behavior property is
defined by a particular class. Unless explicitly described as a
class, a term in the present invention typically refers to an
instance.
Specifying Dynamic Behavior Using the DS

In order to divide complex system behavior into smaller
components, this invention borrows the idea from a common
sense that the universe we live in has two fundamental dimen
sions, namely time and space. Along the time dimension, a
composite system can be divided into sequential Sub-DSs,
while along the space dimension, a composite system can be
divided into parallel sub-DSs. At any point in time and space,
a DS can be decomposed into multiple sequential sub-DSs
and multiple parallel sub-DSs. Each sub-DS may also be
further decomposed into its own sub-DS's along these two
dimensions.

In general, a DS may contain a set of sequential Sub-DS's
and a set of parallel sub-DSs. Since each of these sub-DSs
may have its own sub-DSs, a DS typically contains a tree of
Sub-DSs. An intermediate DS in this tree can be viewed as a
super-DS with regard to its sub-DSs, and as a sub-DS with
regard to its super-DS. Hence, a DS may be called a DS, a
super-DS or a sub-DS depending on the context it is referred
to. For example, as shown in FIG. 3, DS0 is a super-DS of
DS1 and DS2. Hence, DS1 is a sub-DS of DS0. However,
DS1 is also a super-DS of DS3 and DS4.
When specifying the behavior of a system in an intercon

nected world, both external and internal readiness need to be
considered. Typically, a particular action can be performed
only when both the system itself is ready and certain external
conditions are met. The present invention also reflects these
interdependencies among systems.
ADS can be either simple or composite. A simple DS (FIG.

4) has a Behavior and a Result. The Behavior describes the
behavior of a DS and the Result may be used by the Behavior
to record the final outcome after the behavior is completely
performed. An exemplary Behavior may specify that when a
certain condition is met, the DS performs a particular action.

Note that in FIG. 4 The simple DS is shown as a box with
a label on the top. Components are shown as Smaller boxes
inside of the containing box. This is the convention used in
this document.

US 8,539,441 B2

A composite DS (FIG. 5) has following components:
Zero or more Phased Machines (PM’s) 501 that represent the

sequential part of behavior of the composite DS.
Each PM has one or more Phases 502 and a Current-phase

SO3.
When a PM becomes active, one of its Phases becomes

active. While the PM is active, its Phases are being
activated and deactivated according to their Transi
tion specifications. In general, while the PM is active,
at most one of its Phases can be active.

A normal Phase has a sequential sub-DS 504 and Zero or
more Transitions 505.
The sequential Sub-DS contains the behavior of the

Phase. It can be either a simple or composite DS.
Each Transition has a Transition-predicate 506 and a

Target-phase 507.
When a Current-phase Subsequently becomes inac

tive, another Phase is selected to become active.
A Transition specifies that if its Transition-predi
cate is evaluated as true, its Target-phase is the
next phase to become active after the transition.
The Transition-predicate may use information in
the Result of the sequential sub-DS or any other
information available to it at run time for the
evaluation.

The Target-phase in any Transition must refer to
one of the Phases in the same PM. In other
words, transition cannot go beyond the boundary
of a PM. Note that a particular Phase can be the
target of more than one other source Phases. In
addition, cyclical transitions are allowed, includ
ing transitioning to Current-phase itself. This is
how a repetitive behavior can be specified.

Since at most one Phase can be active at any time,
all those Transition-predicates of the same
source Phase must be mutually exclusive.

the Current-phase is a pointer or reference to the cur
rently active Phase in the PM at run time.

For setting the Current-phase, a PM may have two kinds
of special phases.
One special phase is the Initial-phase. APM can have

at most one Initial-phase. The Initial-phase is used
to select the first Phase to become active when the
PM becomes active. This Initial-phase has a
dummy null sequential sub-DS and a list of initial
Transitions.

Another special phase is the Null-phase. When the
Current-phase of a PM refers to a Null-phase, the
entire PM has became inactive. A PM may have
Zero or more user defined Null-phases and a default
Null-phase. A Null-phase is a phase without any
Sub-DS nor Transition defined. It only has a unique
ID that differentiates one Null-phase from another
in a PM and the default Null-phase has a predefined
unique ID that is different from any user defined
Null-phase in the same PM. The ID of a Null-phase
can be used by the Exit-condition or Exit-predicate
(described below) to determine if a composite DS
should exit or not.

Zero or more Parallel-elements 508
Each Parallel-element has a parallel sub-DS 509 that rep

resents part of the parallel behavior of the composite DS,
an optional Static-count 510, and a Mode 511 that indi
cates whether the corresponding parallel sub-DS is
active or inactive at run time.
The optional Static-count is a number that indicates how
many static instances of the parallel sub-DS is to be

10

15

25

30

35

40

45

50

55

60

65

10
created when its containing composite DS is created.
If no Static-count is specified, the default value of
Static-count is 1 and one instance of the parallel Sub
DS is always created when its containing composite
DS is created. In addition to these statically created
instances, other instances of the parallel Sub-DS may
be dynamically created by a user defined Behavior at
run time. Dynamically created sub-DSs are called
dynamic sub-DSs, whereas those sub-DS's created
along with its super-DS are called static Sub-DSs.
The dynamic sub-DS is useful when the number of
instances of a parallel Sub-DS is not known at design
time, but can only be found out at run time.

When a parallel sub-DS becomes active at run time, its
Mode is set as “active'. When the parallel sub-DS
becomes inactive at run time, its Mode is set as “inac
tive’.

When a composite DS becomes active, all its parallel
Sub-DS instances become active.

Each of these parallel sub-DSs can be either simple or
composite.

An Exit-condition set 512 with Zero or more Exit-conditions,
where each Exit-condition 600 specifying a condition
under which the entire composite DS should become inac
tive and exit. Each Exit-condition comprises a pair of
explicit Exit-predicate 601 and its corresponding Exit
code 602 (FIG. 6). The Exit-predicate can be specified as a
logical expression, a mathematical formula or symbol, or a
description in text. The Exit-code is unique among all
Exit-codes within the same Composite DS. It is typically a
number that is either generated by a design tool or specified
by a designer. When one Exit-predicate is tested to be true
at run time, the composite DS exits and its corresponding
Exit-code is recorded in the Result of the composite DS to
indicate under which condition the composite DS exits.
Alternatively, the Exit-condition set can be specified by
defining an exit function, which is either a procedure or
function of a functional programming language or a
method of an object-oriented programming language. The
exit function uses a list of implicit Exit-predicates inter
nally to decide whether any Exit-condition is met or not at
run time, and returns the corresponding Exit-code to indi
cate which particular Exit-predicate that is evaluated as
true.
One exemplary Exit-predicate is that when any PM or

parallel sub-DS exits, the composite DS exits.
Another exemplary Exit-predicate is that when one par

ticular parallel sub-DS exits, the composite DS exits.
If no Exit-condition is specified in the Exit-condition set,

the default Exit-condition is that when all PM’s and all
parallel Sub-DSs become inactive, the containing com
posite DS becomes inactive and a predefined default
Exit-code is recorded in the Result. This default Exit
condition is always in effect in any composite DS.

a Result 513 for the entire composite DS. The Result records
the Exit-code returned by the exit function, or, if an Exit
condition set is specified, it records the Exit-code whose
corresponding Exit-predicate is evaluated as true.
Note that if more than one instance of a particular compo

nent is allowed, the component is shown in the diagram with
a shade. For example, within a composite DS, there can be a
number of PM’s and Parallel-elements, and within a PM,
there can be one or more Phases, which may have a number of
Transitions. Hence, each of PM, Parallel-element, Phase and
Transition is shown with a shade as in FIG. 5.
Many real world systems display different behavioras time

passes. To model the changes of behavior over time, some

US 8,539,441 B2
11

part of a DS is activated and deactivated as time passes and
only the active part of the DS is in effect at any point in time.
Hence, the way to control the changing behavior is by con
trolling when to activate and deactivate sub-DS's within a DS.

The general life cycle of a DS (FIG. 7) is that after it is
created, it may become either active or inactive. An active DS
becomes inactive when its behavior completes or ends. ADS
(either active or inactive) can be destroyed when it can no
longer become active again. In FIG. 7, a rectangle box repre
sents a phase, and a phase may have a label (such as “Cre
ated') attached to it. Anarrow represents a transition from one
phase to another. A Small empty rectangle on the boarder
represents an Initial-phase or a Null-phase, which indicates
that the DS does not exist (either before it is created or after it
is destroyed). A phase may contain Sub-phases. For example,
the “Created phase contains Active' and “Inactive' sub
phases.
ADS instance as specified by a DS type can be created by

loading relevant code and data into memory or a persistent
storage device at run time. However, the exact procedures for
creation and destruction of a DS is not essential to this inven
tion, hence, is left for an application system, which is an
embodiment of this invention that executes DS or DS derived
models, to decide. The application system only needs to
ensure that after a DS instance is created, all its static com
ponents are created and the DS and all its components are
ready to be activated and deactivated until the DS is finally
destroyed. Specific activation and deactivation procedures of
a DS are described below.
The run time activation and deactivation procedure of a

simple DS (FIG. 4) is as follows:
When a simple DS becomes active, its Behavior is per

formed.
After its Behavior is performed, the outcome is recorded in

the Result, and the simple DS subsequently becomes
inactive.

The run time activation and deactivation procedure of a
composite DS (FIG. 5) is as follows:
When a composite DS becomes active, all its PM’s and

static Parallel-elements become active.
When a Parallel-element becomes active, its parallel sub
DS becomes active and its Mode is set as “active'.

When a PM becomes active, one of its Phases (including its
sequential sub-DS) becomes active.

The first active Phase is selected in the follow way. If there
is only one Phase in the PM, that Phase is selected as the
Current-phase to become active. Otherwise, one of the
Phases must be the Initial-phase, which is required for
the selection procedure. The Transition-predicates of
these initial Transitions are evaluated when a PM
becomes active. If one Transition-predicate is evaluated
as true, its associated Target-phase is selected as the next
Current-phase to become active after the transition.

When a Sequential or parallel sub-DS (either simple or
composite) becomes active, the same behavior
described here for either simple or composite DS is
repeated recursively for that sub-DS.

When a parallel sub-DS subsequently becomes inactive, its
corresponding Mode is set as “inactive'.

When a sequential sub-DS subsequently becomes inactive,
its Phase becomes inactive and its Transition-predicates
are evaluated. When one Transition-predicate is evalu
ated as true, its associated Target-phase (may be a
dummy Null-phase) is the next phase to become active
after the transition and the Current-phase is changed to

5

10

15

25

30

35

40

45

50

55

60

65

12
the Target-phase. If no Transition-predicate is evaluated
as true, the default is to change the Current-phase to the
default Null-phase.

When the Current-phase is changed to a Null-phase, the
entire PM becomes inactive.

Whenever any PM or Parallel-element becomes inactive,
the Exit-condition set is evaluated. If a set of Exit-predi
cate and Exit-code pair is explicitly specified (FIG. 6) in
an Exit-condition set, whenever an Exit-predicate is
evaluated to be true, its corresponding Exit-code is
recorded in the Result and the composite DS becomes
inactive. If an exit function is specified, it tests each
Exit-condition, and if any Exit-condition is met, an
appropriate Exit-code is recorded in the Result and the
composite DS becomes inactive. Otherwise, the com
posite DS remains active.

When a composite DS becomes inactive, all its PM’s
(along with their active sequential sub-DSs) and Paral
lel-elements (along with their parallel sub-DSs)
become inactive.

Repetitive behavior may be specified in a repetitive Phase.
A repetitive Phase is a Phase that has itself as the Target-phase
in one of its Transitions.

In the present invention, recursive DS's are supported. A
recursive DS has one or more sub-DS's with the same type or
class as itself or one of its direct or indirect super-DS's. With
recursive DSs, the same behavior typically repeats recur
sively in ever Smaller scopes. The recursion is usually termi
nated by a choice that no further recursive sub-DS would be
required.
The benefits of using DS for dynamic behavior modeling

are that
its composition structure directly reflects the fact that we

live in a universe with both time and space dimensions
and that these dimensions are orthogonal to each other;

Viewing things in both time and space dimensions is natu
ral to human minds. It also adds significant meaning on
top of a bunch of nodes and links typically defined in
many existing behavior specification techniques. Hence,
it is easy to learn and comprehend;

By activating and deactivating various Sub-DSs, the
behavior of a DS can evolve over time in a well con
trolled way:

The Exit-condition set with a number of Exit-predicates
and Exit-codes provides a powerful and flexible mecha
nism to control when a composite DS should end;

Unlike many existing behavior specification techniques
with fork and join nodes, the containment box of a
composite DS maintains a dean life cycle boundary for
all its components.

Since each sub-DS in a composite DS can be composite, it
Supports recursive specifications of behavior in ever
refined details;

By Supporting repetitive phases and dynamic parallel Sub
DSs, repetitive behavior and dynamic behavior can also
be specified.

Specialization of DS into Ext-DS, PS, Int-DS
Although DS is a very powerful tool to describe dynamic

behavior, to fully specify the behavior of an application sys
tem that interacts with multiple peer systems in a distributed
environment, we need three kinds of specialization of a DS.
One is the External DS (Ext-DS) that is used to specify
external activities, including incoming messages and events,
that an application system must deal with. The second one is
the Internal DS (Int-DS) that is used to specify internal activi
ties that an application system performs to get some work
done. The third one is the Proactive System (PS) to combine

US 8,539,441 B2
13

Ext-DS and Int-DS for specifying the reactive and proactive
behavior of an application system.
External DS (Ext-DS)
An Ext-DS defines what incoming external events a PS

waits for before performing some internal actions.
An Ext-DS is a specialization of DS, and it can be either

simple or composite. As a specialization of a simple DS, a
simple Ext-DS (FIG.9) has an Event type as its Behavior, and
a Result. The Event type specifies the type of a signal, mes
sage or event that may be received by a PS. An Event type may
be specified in one of the following: 1) a programming lan
guage, such as C and Java, 2) a data specification notation,
such as Abstract Syntax Notation One, 3) an XML-based
notation, or 4) a graphical notation.
The run time activation and deactivation procedure of a

simple Ext-DS is as follows:
When a simple Ext-DS becomes active, its Event type
becomes active.

When a message specified by its Event type occurs on a
connection Subsequently, the eventis matched. The mes
sage is saved for use later and the simple Ext-DS
becomes inactive. Otherwise, the message is dropped
and the simple Ext-DS remains active.

A composite Ext-DS is the same as a composite-DS (FIG.
5) except that each of sub-DS is replaced by a sub-Ext-DS and
any of these sub-Ext-DSs (sequential or parallel) can be
either simple or composite.

Since a composite Ext-DS is a specialization of a compos
ite DS, the activation and deactivation procedure of a com
posite Ext-DS is identical to the activation and deactivation
procedure of a composite DS as described previously with
each “DS” replaced by an “Ext-DS”.
When a simple PS receives an incoming event at run time,

it calls an event matching procedure Matching() to check if
the event matches a valid event type in its Ext-DS or not. The
Matching procedure returns one of the following:

no-match, indicating that there is no match;
partial-match, indicating that there is a match, the event is

saved for processing later, but the Ext-DS has not exited,
since more events are expected by the Ext-DS; or

full-match, indicating that there is a match, the event is
saved for processing later, and the Ext-DS has exited.

An exemplary run time Matching procedure of an active
Ext-DS is described in the following pseudo code, where
“Ext-DS” is the Ext-DS that specifies incoming external
events to receive, and “event' is the incoming event to be
checked. Note that comments are included in between an
opening and a closing.

Matching (Ext-DS, event) {
If the Ext-DS is simple,

Checks if the event is the same type as specified in Event type or not;
If no, return “no-match:
Else the event is the right type),

Save the event;
return full-match:

Else the Ext-DS is composite,
Check all PM’s
For each PM whose Current-phase is not null, do the following:

recursively calls itself for the sequential sub-Ext-DS:
If it returns “partial-match', return “partial-match'
Else, if it returns “full-match,

check each Transition one at a time;
If any Transition-predicate is “true',

change the Current-phase to the Target-phase;
Else if none of these Transition-predicates is true,

change the Current-phase to the default
Null-phase:

10

15

25

30

35

40

45

50

55

60

65

14
-continued

If the Current-phase is not a Null-phase,
return partial-match':

Else the Current-phase is a Null-phase),
check the Exit-condition set:
If any Exit-condition is met,

record the Exit-code in Result:
return full-match:

Else No Exit-condition is met,
return “partial-match':

Else returns “no match', go check the next PM;
If it reaches here, all PM is “No match', go check all
Parallel-elements
For each active Parallel-element,

recursively call itself for the parallel sub-Ext-DS:
If it returns “partial-match', return “partial-match':
Else, if it returns “full-match,

set Mode as “inactive:
check the Exit-condition set:
If any Exit-condition is met,

record the Exit-code in Result:
return full-match:

Else No Exit-condition is met, return “partial-match:
Else returns “no match', go check the next parallel-element:

If it gets here, there is no match in all sequential and parallel
Sub-Ext-DS's, return “no-match':

For clarification purpose, the event matching procedure is
also shown in FIG. 12 using the graphical notation described
later in this invention.
Internal DS (Int-DS)
Once triggered by a full match of Ext-DS, the correspond

ing Int-DS in a simple PS is performed. Hence, an Int-DS is
viewed as the active part of the behavior or active behavior of
the PS.
An Int-DS is a specialization of DS, and it can be either

simple or composite. As a specialization of a simple DS, a
simple Int-DS (FIG. 11) has an Action as its Behavior, and a
Result. The Action is the most basic unit of behavior that is
not further broken down to smaller components in the current
specification. It can be reading or writing a piece of informa
tion, searching or matching, accessing data in events saved by
an Ext-DS, building or sending out events, creating or
destroying dynamic DS instances, or invoking a complex
actions performed by others. An Action can be implemented
as a procedure of a functional language. Such as C, a method
of an object-oriented language. Such as Java, or a script of a
Script language. Such as Shell in Linux. An Action may also be
implemented as a fragment of code in a script language, a
programming language, a byte code, Such as Java byte code,
or even in an assembly language. The Result may be used by
the Action to record the outcome of its execution.
The run time activation and deactivation procedure of a

simple Int-DS is as follows:
When a simple Int-DS becomes active, its Action becomes

active and is performed.
After the Action is performed, the simple Int-DS subse

quently becomes inactive.
A composite Int-DS is the same as a composite DS (FIG. 5)

except that each sub-DS is replaced by a sub-Int-DS, and any
of these sub-Int-DSs (sequential or parallel) can be either
simple or composite.

Since a composite Int-DS is a specialization of a composite
DS, the activation and deactivation procedure of a composite
Int-DS is identical to the activation and deactivation proce
dure of a composite DS as described previously with each
“DS” replaced by an “Int-DS”.
When a simple PS receives an incoming event at run time,

it calls an event matching procedure to check if the event

US 8,539,441 B2
15

matches a valid event type in its Ext-DS or not. If there is a full
match, the simple PS calls an action performing procedure
Act () to perform internal activities as defined in its Int-DS.
The Act procedure returns one of the following:

error, indicating that there is an error, or
OK, indicating that internal activities have been Success

fully performed.
An exemplary run time Act procedure for an active Int-DS

is described in the following pseudo code, where “Int-DS” is
the Int-DS that defines the internal activities to be performed.

Act (Int-DS) {
If the Int-DS is simple,

Perform the Action to process saved events;
If there is error detected, return error:
Else, return “OK”:

Else the Int-DS is composite,
Check all PM’s
For each PM whose Current-phase is not null, do the following:

Recursively call itself for the sequential Sub-Int-DS:
If It returns "error, return "error:
Else, check each Transition;

If any Transition-predicate is “true',
Change the Current-phase to the Target-phase;

Else, change the Current-phase to default Null-phase:
If Current-phase is not null, repeat this for the (new)
Current-phase;
Else,

Check the Exit-condition set:
If any Exit-condition is met,

record the Exit-code in Result:
return “OK”:

Else, go check the next PM;
Check all Parallel-elements
For each active Parallel-element,

Recursively call itself for the parallel Sub-Int-DS:
If it returns “error, return "error:
Else,

set Mode as “inactive:
check the Exit-condition set:
If any Exit-condition is met,

record the Exit-code in Result:
return “OK”:

Else, go check the next Parallel-element;

For clarification purposes, the action performing proce
dure is also shown in FIG. 14 using the graphical notation
described later in this invention.
PS
An application system with a reactive behavior that is

triggered by external interactions or events can be defined as
a PS.
APS is a specialization of DS, and it can be either simple

or composite. As a specialization of a simple DS, a simple PS
(FIG. 10) has a Behavior that includes an External DS (Ext
DS) followed by an Internal DS (Int-DS), and a Result The
Ext-DS specifies external events to occur and the Int-DS
specifies internal actions to perform in response to the occur
rence of external events defined in the Ext-DS. Each of Ext
DS and Int-DS can be either simple or composite. The Result
may be used by the Int-DS to record the outcome of perfor
mance of its actions.
The run time activation and deactivation procedure of a

simple PS is as follows:
When a simple PS becomes active, its Ext-DS becomes

active.
When its Ext-DS subsequently has a full match (to be

described later), its Int-DS becomes active and is per
formed.

16
After the Int-DS is performed, the simple PS subsequently
becomes inactive.

A composite PS is the same as a composite DS (FIG. 5)
except that each sub-DS is replaced by a sub-PS and any of
these sub-PS's (sequential or parallel) can be either simple or
composite.

Since a composite PS is a specialization of a composite DS,
the activation and deactivation procedure of a composite PS is
identical to the activation and deactivation procedure of a
composite DS as described previously with each “DS”

O replaced by a “PS'.

15

25

30

35

40

45

50

55

60

65

When a PS receives an incoming event at run time, it calls
a React procedure to handle the event The React procedure
returns one of the following:

nothing-done, indicating that no internal activity is done;
partial, indicating that part of internal activities are done,

but the PS has not exited yet; or
done, indicating that internal activities are done and the PS

has exited.
An exemplary run time React procedure of an active PS

upon receiving an event is described in the following pseudo
code, where “PS is the reacting PS and “event” is the event
to process.

React (PS, event) {
If the PS is simple,

Call the Matching procedure for its Ext-DS with the event;
If the result is “no-match', return “nothing-done:
Else if the result is “partial-match', return “partial':
Else the result is “full-match'),

call Act procedure to perform the Int-DS:
return "done':

Else PS is composite,
Check all PM’s
For each PM whose Current-phase is not null, do the following:

recursively call itself for the sequential Sub-PS:
If it returns “partial, return “partial:
Else if it returns “done, check each Transition;

If any Transition-predicate is “true',
change the Current-phase to the Target-phase;

Else no Transition-predicate is true,
change the Current-phase to default Null-phase:

If the Current-phase is not null, return “partial':
Else the Current-phase is null),

check the Exit-condition set:
If any Exit-condition is met,

record the Exit-code in Result:
return done:

Else No Exit-condition is met,
return “partial:

Else returns “nothing-done', go check the next PM;
If it reaches here, all PM is “nothing-done', go check all
Parallel-elements
For each active Parallel-element,

Recursively call itself for the parallel Sub-PS:
If it returns “partial, return “partial:
Else. If it returns “done,

set Mode as “inactive:
check the Exit-condition set:
If any Exit-condition is met,

record the Exit-code in Result:
return done:

Else No Exit-condition is met, return “partial:
Else returns nothing-done, go check the next
parallel-element;

If it reaches here, nothing is done return "nothing-done;

For clarification purpose, the reactive procedure is also
shown in FIG. 13 using the graphical notation described later
in this invention.

Using Ext-DS, PS and Int-DS, which are specializations of
DS, in various steps instead of using the more general DS has
many additional benefits. They are:

US 8,539,441 B2
17

Ext-DS, PS and Int-DS provide layers of abstraction to
facilitate defining complex system behavior in a distrib
uted environment, since each one is specialized in a way
to help the designer to focus on a particular aspect of the
system behavior.

PS is a useful extension and improvement over the conven
tional state machine based techniques, such as Stat
echart, whereas Int-DS is a useful extension and
improvement over conventional flow chart based tech
niques, such as BPMN and UML 2.0 Activity diagram.

Since each of them is a specialization of the same DS, there
is strong consistency in each layer of design to make the
present invention easy to learn and to understand.

Because of this consistency, as shown later in this inven
tion, reactive behavior defined in a PS can be systemati
cally and mechanically derived from a protocol defined
as a DS. Hence, the present invention provides a solution
to the difficult problem of keeping the protocol and
communicating parties consistent with each other.

Simplified Model of DS, Ext-DS, PS, and Int-DS
So far the basic model of DS and its specializations, such as

Ext-DS, PS, and Int-DS, have been described. Together, they
are referred to as the DS model in the present invention. This
basic DS model (referred to as “model 0” hereafter) may be
simplified by emulating each Parallel-element by a Parallel
PM. The simplified model is referred to as “model 1” here
after.
A Parallel-element in a composite DS of model 0 can be

emulated by a PM with only one Phase with a dummy Tran
sition. The PM that emulates a Parallel-element is called a
“Parallel PM' in the present invention. The Phase in a Parallel
PM has only one sub-DS. Its dummy Transition may be
implemented as one of the following:

no Transition is defined as shown in FIG. 15A;
there is only one Transition, which is marked as null;
there is only one Transition with its Transition-predicate

set to be true 1501 and its Target-phase pointing to a
Null-phase 1502 as shown in FIG. 15B.

A new optional component Static-count 1604 is added to
the PM. Like the Static-countina Parallel-element, the Static
count in a PM indicates how many static instances of the PM
type should be created when its containing DS is created. If no
Static-count is specified, the default value of Static-count is 1
and one instance of the PM type is always created when its
containing DS is created.
The Sub-DS of Such a Parallel PM would have the same

behavior as the parallel sub-DS of the Parallel-element that
the PM is emulating.

In the present invention, the term “Sequential PM is used
when referring to a full-fledged PM without the above-men
tioned limitations of a Parallel PM. A Sequential PM's Static
count may be set as 1 so that one static instance of the
Sequential PM is created when its containing composite DS is
created.

Using a Parallel PM to emulate each Parallel-element in a
composite DS, a model 1 composite DS has a number of PM’s
1601, an Exit-condition set 1602 and a Result 1603. Some of
these PM's are Sequential PM’s and others are Parallel PM’s
(FIG. 16).

Since each Parallel-element is emulated by a PM, the pro
cedure for activation and deactivation of a composite DS of
model 1 is the same as model 0 except that the part of code that
deals with a Parallel-element is not executed, since there is no
Parallel-element defined in a composite DS.

Similarly, a composite Ext-DS, PS, or Int-DS can be a
specialization of model 1 composite DS's. Since each Paral
lel-elements are now replaced by a parallel PM, the procedure

10

15

25

30

35

40

45

50

55

60

65

18
for activation and deactivation of each of these model 1 DS
components is the same as model 0 except that the part of code
that deals with a Parallel-element is not executed. Similarly,
the event matching procedure for an active Ext-DS of model
1, the action performing procedure for an active Int-DS of
model 1, and the reactive procedure for an active PS of model
1 as described earlier are all still applicable.
Graphical Notation
One exemplary embodiment of the present invention is to

represent PS, Ext-DS, Int-DS or any other DS derived com
ponents (all of these are referred to as “DS components’
hereafter) in a human readable graphical notation.
As an example for this graphical notation, a DS or a sub-DS

can be shown as either a containment box or a containment
box with a label attached to it. The containment box can be in
many shapes, such as a polygon, a circle, or an oval. A Super
DS containing a number of sub-DSs (either Sequential or
Parallel) can be shown as a large containment box (the Super
DS) containing a number of sub-containment boxes (both
sequential and parallel sub-DS’s) within its boundary. If the
DS can have multiple instances, it is shown with a shade. An
Initial-phase or a Null-phase can be shown as a small box or
a symbol at the boarder of the composite DS box.

FIG. 17 depicts an exemplary graphical notation of an
example composite DS “DS 0” 1700 with three sequential
sub-DS's (“sub-DS so 1701, “sub-DS s1' 1702, and “sub
DSs2' 1703), three parallel simple sub-DSs (“sub-DS p0”
1706, “sub-DS p3' 1709 and “sub-DS p5' 1704), and two
parallel composite sub-DS's (“sub-DSp1' 1705 and “sub-DS
p2” 1708). Note that each of “sub-DS p2” 1708 and “sub-DS
p3' 1709 is shown with a shade indicating that it may have
more than one instance at run time.

In this example, a simple DS is shown as a rectangle box
with the name or a short description of its Behavior inside of
the box. “sub-DS p0” 1706 and “sub-DS p5” 1704 in FIG. 17
are two simple DS examples.
A Transition can be shown as a link or arrow (called Tran

sition arrow) with its Transition-predicate (TransPred) close
to it as its label, and the arrow points to its Target-phase. For
example, in FIG. 17, there is a Transition arrow from “sub-DS
s2' 1703 to “sub-DS s0” 1701 (the Target-phase) with
“TransPred 5” as the label for the Transition. Any sub-DS
with at least one Transition arrow (incoming or outgoing) is a
sequential sub-DS, whereas a sub-DS without any Transition
arrow is a parallel sub-DS.
A Creation arrow can be used to point to a dynamic com

ponent that is created dynamically. Although a Creation
arrow is shown as a thick dashed line arrow 1707 in FIG. 17
as an exemplary graphical notation, it can be represented by
another kind of link as long as it is visually distinctive from a
Transitionarrow. As shown in FIG. 17, “sub-DSp0” 1706 can
create multiple instances of “sub-DS p2' 1708 dynamically,
and “sub-DS p2' 1708 can create multiple instances of “sub
DS p3' 1709 dynamically. A parallel sub-DS, such as “sub
DS p2” 1708 and “sub-DS p3' 1709 in FIG. 17, with an
incoming creation arrow is a dynamic parallel Sub-DS whose
corresponding Static-count in Parallel-element is set to 0.
whereas a parallel sub-DS, such as “sub-DS p0' 1706 and
“sub-DS p1' 1705 in FIG. 17, without an incoming creation
arrow is a static one with its Static-count typically set to 1
indicating that one instance should be created when “DS 0”
1700 is created.
Note that “DS 0” 1700 in FIG. 17 does not explicitly

specify any Exit-condition. As described earlier, the default
Exit-condition is that “DSO 1700 exits when all its Sub-DSS
have exited.

US 8,539,441 B2
19

FIG. 18 shows how Initial-phases, Null-phases, Exit-predi
cates and Exit-points can be explicitly represented visually. In
FIG. 18, the Initial-phase 1801 is shown as a small box at the
left boarder. It has one Transition to the Phase containing
“sub-DS s0' 1802 and another Transition to the Phase con- 5
taining “sub-DSS1’ 1803. “sub-DS s0” 1802 has a Transition
to “sub-DSs2 1804 and its Transition-predicate is always
true. “sub-DSs2 1804 has one Transition (“TransPred2" in
FIG. 18) leading to a Null-phase 1806, a Transition
“TransPred 3” leading to itself, and another “TransPred 4” 10
leading back to the Phase containing “sub-DSso1802. “DS
0” also contains a parallel “sub-DS p1 1805 and two Exit
points.

Each exit-point represents an Exit-condition that indicates
the condition under which a composite DS exits. An Exit- 15
condition has a pair of Exit-predicate and Exit-code. An Exit
point can be shown as a symbol or a small box inside of or at
the boundary of the containing composite DS box. As an
example, each of these exit-points is shown in FIG. 18 as a
small dark box 1807 at the boundary and labeled with its 20
associated Exit-predicate.
An Exit-predicate can be shown as a text, a logical expres

Sion, or a mathematical formula describing a condition under
which a composite DS exits. Exit-predicate “Sub-DSP1 has
exited' is a text example indicating that when “sub-DS P1’ 25
exits, the composite DS “DS 0” 1800 exits. Exit-predicate
“R” is an exemplary logical expression indicates that when all
components exit, “DS 0 1800 exits. Exit-predicate Age
<10” is an exemplary mathematical formula indicating that
when a datum “Age” is smaller than 10, “DS 0” 1800 exits. 30

In order to simplify the behavior models and their graphical
representations, following exemplary default cases are
defined:
A Transition-predicate that is always true can be omitted.
If a Phase has only one incoming Transition that is con- 35

nected from the Initial-phase and its Transition-predi
cate is always true, that Transition may be omitted com
pletely.

If a Phase has only one outgoing Transition that is con
nected to a Null-phase and its Transition-predicate is 40
always true, that Transition may be omitted completely.

FIG. 19 depicts an exemplary graphical representations of
a composite PS example. In this exemplary diagram, “Com
posite PSO 1902 contains two sequential sub-PSs, namely
“sub-PS s0' 1903 and “sub-PS s1' 1904, three parallel sub- 45
PS’s, namely “sub-PS p0 1905, “sub-PS p1 1906, and
“sub-PS p2' 1911, and two Exit-points 1913, 1915 with
“ExitPredO” and “ExitPred1 as their respective Exit-Predi
Cates.

A simple PS 1906 is shown as a box with its Ext-DS 1908 50
and Int-DS 1910 components inside. To differentiate an Ext
DS from an Int-DS in a simple PS, a divider (a vertical 1909
or a horizontal line 1907) is drawn in between the two com
ponents. “sub-PS p0 1905 and “sub-PS p1' 1906 are two
examples. 55

Interactions in between two PSs are bi-directional lines
(called Interaction-links) connecting two participating PSs.
FIG. 19 shows that the “composite PS 0” 1902 interacts with
“PS1’ 1900, “sub-PS s1” 1904 interacts with “sub-PS p2”
1911 and “sub-PSp0” 1905 interacts with “sub-PSp2” 1911. 60
In this particular example, an Interaction-link is shown as a
dashed line (“protocol.0” in FIG. 19 is such an example).
However, it can be represented by another kind of link as long
as it is visually distinctive from a Transition arrow and a
Creation arrow. Optionally, one or two arrow heads can be 65
used to indicate the direction of an interaction flow. A simple
interaction with only one event sent is shown by a dashed line

20
with only one arrow head (“protocol2 in FIG. 19 is such an
example). An Interaction-link with arrow heads on both sides
indicate a set of interactions that flow in both directions
(“protocol1 in FIG. 19 is such an example). An Interaction
link can optionally have an associated label or identifier
describing the protocol specification with which the interac
tions must comply. “protocol.0”, “protocol1 and “procotol2
in FIG. 19 are such examples.

In the present invention, any sub-DS in a composite DS can
be either simple or composite. Even the Ext-DS or Int-DS in
a simple sub-PS can be either simple or composite. Therefore,
a containment box may have a plurality of Sub-containment
boxes, wherein any of these sub-containment boxes may
comprise a plurality of Sub-Sub-containment boxes. Some of
these Sub-Sub-containment boxes are sequential, hence, are
connected by Transition arrows. Some of these sub-sub-con
tainment boxes are parallel, hence, are not connected to any
other sub-sub-containment box. FIG. 20 shows an example
composite PS “PS 0” 2000 containing a sub-PS “sub-PS so
2001 with a composite Ext-DS 2002 and a composite Int-DS
2006. The composite Ext-DS 2002 contains two sequential
Ext-DSs, namely “ext-DS s0” 2003 and “ext-DS s1' 2004,
and a parallel Ext-DS “ext-DS p0” 2005. The composite
Int-OS 2006 contains two sequential Int-DS's 2007 and 2008,
and a parallel Int-DS 2009.

Benefits of the graphical notation of a DS. Ext-DS, PS and
Int-DS (for brevity, when referring to either DS, Ext-DS, PS
or Int-DS, the term "system is used here) are as follows:
A composite system is dearly shown with all its sequential

and parallel components at the same time.
The containment box clearly shows that when a Super

system becomes inactive or is destroyed, all its compo
nents become inactive or be destroyed.

Exit-points can dearly show how internal operations of a
composite Sub-system can affect how its Super-system
changes its current Phase.

Only essential elements of a composite system are shown.
For example, PM’s, Phases, and Parallel-elements are
not shown in the diagram, since they are not critical in a
diagram to understand the behavior. This greatly simpli
fies the graphical notation of a system specification.

The consistency among Ext-DS, PS and Int-DS diagrams
makes it easier to learn and understand a specification of
a complex behavior.

Note that the above descriptions use one particular way to
represent DS, Ext-DS, PS, Int-DS and their components.
However, based on the disclosure and teachings provided
herein, it should be apparent to a person of ordinary skill in the
art that various diagramming presentations may be used to
represent the same mechanisms in accordance with the
present invention as long as the following essences are pre
served:

a composite DS is shown as a containment box containing
its components, such as sequential Sub-DS, parallel Sub
DS. Initial-phase, Null-phase, exit-points, transition
arrows, creation arrows and Interaction-links;

Each of these components inside of the composite DS box
must be visually differentiated from each other,

A simple PS box contains an Ext-DS component and an
Int-DS component and that they are visually differenti
ated from each other.

Predefined Event Types
Some systems may need to perform a certain Int-DS as

Soon as a PS becomes active. The present invention Supports
a predefined event “Entry’ that is always delivered to a newly
active PS. The exemplary composite PS 2100 in FIG. 21 has
a simple sub-PS2101 with the “Entry” specified as its Ext-DS

US 8,539,441 B2
21

2102. When the containing composite PS 2100 becomes
active, all parallel sub-PSs become active. Hence, the Int-DS
2103 associated with “Entry' is performed immediately after
the composite PS 2100 becomes active.
Some systems may need to perform a certain Int-DS imme

diately before a PS becomes inactive. The present invention
supports a predefined event “Exit” that is always delivered to
a PS that is becoming inactive. The exemplary composite PS
2100 (FIG. 21) has a simple sub-PS 2104 with the “Exit”
specified as its Ext-DS 2105. When the composite PS 2100
becomes inactive, all parallel sub-PSs become inactive.
Hence, the Int-DS 2106 associated with “Exit” is performed
immediately before the composite PS becomes inactive.

The benefits of predefined event “Entry” and “Exit” are:
UML Statechart needs additional special mechanisms for

an entry action and an exit action in a state. With “Entry’
and “Exit” event types, the same simple PS mechanism
can be used to achieve the same function. Therefore,
users need to learn less specialized mechanisms in the
present invention.

Sometimes it is desirable to keep a particular Int-DS sepa
rate from an Ext-DS. For example, when deriving a
Participant-PS from a Protocol as described later in this
invention, it is desirable for the derived Participant-PS to
keep the same composition structure as the Protocol. For
example, the X-server Participant-PS in FIG. 39 should
have the same composition structure as the Protocol
“protocol.0” in FIG. 38. However, if there is no addi
tional incoming event needed for the unspecified Ext
DS“??”3905, the Int-DS“Reply 0”3906 would have to
be combined with Ext-DS “Request0' 3902, hence,
destroy the same composition structure as shown in FIG.
22. Using a “Entry’ for the unspecified Ext-DS, the
same composition structure would be maintained as
shown in FIG. 23.

Implementation Issues
While some run time properties of a DS. Ext-DS, PS and

Int-DS are frequently changed at run time, some static design
time properties remain unchanged in its entire life time. In
addition, there can be multiple instances of the same type at
run time. Therefore, it makes sense to separate these design
time properties in a class or type structure from run time
properties in an instance structure.

In one exemplary embodiment, the instance structure of a
simple DS 2402 has a pointer or reference 2403 to its type
structure 2400 and a Result component 2404 (FIG. 24). The
type structure 2400 of a simple DS has one Behavior type
component 2401. As shown in FIG. 24, there can be more than
one simple DS instance sharing the same simple DS type.
FIG. 25 shows the same simple DS type and instance struc
tures in a UML class diagram.

In one exemplary embodiment, the instance structure of a
simple Ext-DS has a pointer or reference to its type structure
and a Result component (FIG. 26). The type structure of a
simple Ext-DS has one Event type component. As shown in
FIG. 26, there can be more than one simple Ext-DS instance
sharing the same simple Ext-DS type. FIG.27 shows the same
simple Ext-DS type and instance structures in a UML class
diagram.

In one exemplary embodiment, the instance structure of a
simple PS has a pointer or reference to its type structure and
a Result component (FIG. 28). The type structure of a simple
PS has one Ext-DS type (simple or composite) component
and an Int-DS type (simple or composite) component. As
shown in FIG. 28, there can be more than one simple PS

10

15

25

30

35

40

45

50

55

60

65

22
instance sharing the same simple PS type. FIG. 29 shows the
same simple PS type and instance structures in a UML class
diagram.

In one exemplary embodiment, the instance structure of a
simple Int-DS has a pointer or reference to its type structure
and a Result component (FIG. 30). The type structure of a
simple Int-DS has one Action type component, which can be
a code fragment, a procedure of a functional language. Such as
C, a method of an object-oriented language, such as Java, or
a script of a script language, such as Shell in Linux. As shown
in FIG.30, there can be more than one simple Int-DS instance
sharing the same simple Int-DS type. FIG.31 shows the same
simple Int-DS type and instance structures in a UML class
diagram.
Composite DS Type and Instance
As shown in FIG. 32A, the composite DS type 3200 of

model 1 has a number of Phased Machine (PM) types 3201,
and either an Exit-condition set 3202 as in FIG.32A or an exit
function 3218 as shown in FIG. 32B. If an exit condition set
is specified, it includes at least one exit condition, each exit
condition including a pair of an exit predicate that specifies a
condition under which an instance of the composite DS type
exits and an exit code that identifies the associated exit con
dition. If an exit function is specified, the exit function returns
an exit code that identifies a condition under which an
instance of the composite DS type exits. Each PM type
includes an optional Static-count 3203 and one or more Phase
types 3204. Each Phase type has a sub-DS type 3205, and Zero
or more Transitions 3206. Each Transition includes a Transi
tion-predicate 3207 and a Target-phase 3208. Each sub-DS
type can be either a simple DS type or a composite DS type.

If a Static-count is specified in a PM type, it specifies the
number of static instances of the PM type. If it is not specified,
the default is that the PM type has one static instance.

Note that each PM type can be either a sequential PM or a
parallel PM. As described earlier, a parallel PM type has only
one phase type as shown in FIG. 15A and FIG. 15B.
The instance structure 3209 of a model 1 composite DS has

a type reference 3210 to its DS type structure, a number of
PM's 3211, and a Result 3212. Each PM has a type reference
3213 to its PM type structure, a number of Phases 3214, and
a Current-phase 3215. Each Phase has a type reference 3216
to its Phase type structure, and a sub-DS instance structure
3217. The sub-DS instance can be either simple or composite.
If it is simple 2402 as shown in FIG. 24, it includes a type
reference 2403 to its associated simple DS type 2400 and a
Result 2404 that records the outcome of performing the
behavior 2401 of its associated simple DS type. If the sub-DS
instance is composite, it has the same structure as 3209.

Note that the shade of the instance structure in FIGS. 32A,
B and C indicates that there can be more than one composite
DS instance sharing the same composite DS type.

FIG. 35 shows the same composite-DS type and instance
structures in a UML class diagram.
As a specialization of a composite DS of model 1, a com

posite Ext-DS of model 1 can be similarly separated into a
type structure and an instance structure. The type structure of
a composite Ext-DS of model 1 is identical to a composite DS
type structure in FIG. 32A or 32B after replacing each “DS”
with an “Ext-DS”. The instance structure of a composite
Ext-DS of model 1 is identical to a composite DS instance
structure in FIG. 32A or 32B after replacing each “DS” with
an Ext-DS.
As a specialization of a composite DS of model 1, a com

posite PS of model 1 can be similarly separated into a type
structure and an instance structure. The type structure of a
composite PS of model 1 is identical to a composite DS type

US 8,539,441 B2
23

structure in FIG. 32A or 32B after replacing each “DS” with
a “PS'. Note that the sub-PS type in a Phase type can be either
simple or composite. FIG. 32C shows a composite PS type
3219 with a simple PS type 3220. The simple PS type includes
an Ext-DS type that specifies external events to occur and an
Int-DS type that specifies internal actions to perform in
response to the occurrence of said external events.
The instance structure of a composite PS of model 1 is

identical to a composite DS instance structure in FIG. 32A or
32B after replacing each “DS” with a “PS'. Note that the
sub-PS in a Phase can be either simple or composite. FIG.
32C shows a composite PS instance 3221 with a simple PS
instance 3222. The simple PS includes an Ext-DS instance
and an Int-DS instance.

FIG.36 shows how “X-server” Participant-PS type of FIG.
23 is specified as a composite PS type structure 3600 contain
ing a default Exit-condition set and a PM type “0” 3601. PM
type “0” has a Static-count and three Phase types. They are
“init 3615, “O 3602 and “13605. Its Static-count with a
value of 1 indicates that one instance of this PM type is
created when the composite PS is created. Phase type “init'
3615 is an Initial phase with a Transition 3616, whose Tran
sition-predicate 3617 is always true and Target-phase 3618 is
phase type “0”. Note that the dummy null sequential sub-DS
is not shown in FIG. 36. Phase type “0” 3602 has one Tran
sition 3603 and a sub-PS type 3604 with an Ext-DS type of
“Request0” and an Int-DS type of “??”. Phase type “1”3605
has a Null-phase as its Target-phase 3606 and a predefined
“Entry” event type specified as its sub-Ext-DS type 3607.

FIG. 36 also shows an instance 3608 of X-server Partici
pant-PS type. The instance has a Result, a type reference3609
pointing to its type 3600, and a PM“0”3610, which has a type
reference pointing to its PM type “0”. PM“0”3610 has a type
reference pointing to its PM type “0” 3601, a Current-phase,
and two Phases, namely Phase “0”3611 and Phase “1”3613.
Phase “0” has a type reference pointing to its Phase type “0”
3602 and a sub-PS3612 containing a type reference pointing
to its PS type 3604 and a Result.
As a specialization of a composite DS of model 1, a com

posite Int-DS of model 1 can be similarly separated into a type
structure and an instance structure. The type structure of a
composite Int-DS of model 1 is identical to a composite DS
type structure in FIG. 32A or 32B after replacing each “DS”
with an “Int-DS”. The instance structure of a composite Int
DS of model 1 is identical to a composite DS instance struc
ture in FIG. 32A or 32B after replacing each “DS” with an
Int-DS.
Although type information is abstracted out of the instance

information, as long as both type and instance information are
accessible at run time, the run time procedures, such as the
event matching procedure for an active Ext-DS, the reactive
procedure for an active PS, and the action performing proce
dure for an active Int-DS, described previously in the present
invention are still applicable.

Although there are some advantages to have type structure
cleanly separated from the instance structure, an embodiment
may choose to combinetype and instance attributes in a single
structure or mix them in certain ways. This is an implemen
tation decision, which is not restricted by this invention.

Those run time procedures described in this invention ear
lier may need to store some transient data during their execu
tions. In one exemplary embodiment of the present invention,
the instance structure of a DS component may contain a local
data areas in addition to these defined in an instance structure.
The present invention includes methods and components

that can be used to benefit the entire life cycle of developing
an application Software. One exemplary embodiment of the

5

10

15

25

30

35

40

45

50

55

60

65

24
present invention is to design an application software based
on DS components using a design tool, then use a code
generator to generate machine readable binary code to be run
on a run time platform. As shown in FIG.33, the output of the
design tool is the DS type specification, which can be trans
mitted to a code generator or stored on a storage device for
later retrieval by a code generator. The output of the code
generator is a set of DS types in binary format that can be
loaded by a run time platform into memory to be executed.
The run time platform may also input some Supporting binary
code that implements basic Actions or some existing Int
DSS
The design tool may support a graphical user interface

(GUI) to allow a designer to define DS components based on
the graphical notation described earlier. After the design pro
cess is done, the design tool generates the DS type specifica
tion, which is a set of user defined DS types or classes, such as
PS, Ext-DS and Int-DS types. At design time, the design tool
only needs to deal with the type information. Therefore, there
is no need to deal with instance structures.
A code generator reads the DS type specification stored on

a storage device and then generate these DS types in binary
code. The output of the code generator can be stored on a
storage device to be retrieved later by a run time platform or
be transmitted to the run time platform directly for execution.

During the execution, the run time platform can load the
DS types in binary code into memory and create instance
structures with references to their type structures as described
by this invention. These DS component instances are created
and initialized using information available in the DS type
specification. These DS components can also be activated and
deactivated dynamically following procedures described in
this invention to perform their assigned functions.

In one embodiment, a run time platform may implement
the action performing procedure to process each composite
Int-DS defined in Int-DS types, whereas in another embodi
ment of this invention may have each composite Int-DS type
specification complied into a lower layer code that can be
executed more efficiently by the run time platform. A lower
layer code may be in the form of a byte code, such as Java byte
code, which can be executed directly by a virtual machine,
such as Java Virtual Machine. Another lower layer code may
be a binary code of a programming language. Such as C or
Java. In this case, Source code in a programming language for
each specific composite Int-DS type can be generated and
then compiled into binary code.
The type and instance structures described in this invention

are abstract, namely they are implementation independent.
These abstract structures need to be mapped to various con
crete structures implemented by each tool. For example, these
DS components may be stored in one external concrete forms
on permanent storage devices and loaded into memory for
processing in another internal concrete form. The external
concrete form can be any of the following: 1) a programming
language. Such as C or Java, 2) a data specification notation,
such as Abstract Syntax Notation One, 3) an XML based
notation, or 4) any proprietary representation that a visual
design tool may support. The internal concrete form can be in
the form of a data element in a data specification notation, an
XML based notation, a script language, a programming lan
guage. Such as C or Java, or a machine readable binary code
of any programming language.
The concrete format that implements the abstract struc

tures described in this invention does not have to follow the
abstract structure in verbatim. For example, the Static-count
in the PM type or Parallel-element type can be in the form of
a flag that indicates whether any static instance of a PM

US 8,539,441 B2
25

should be created Statically when its containing composite
DS is created. The flag information may also be implemented
as a specifically designated bit of another variable. For
another example, the Result in a DS instance structure can be
implemented as an integer or a complex data structure to
contain various result information. In short, the concrete for
mat of an embodiment of this invention does not need to
follow the abstract structures described in this invention
closely.

Although the present invention uses PS, Ext-DS and Int
DS to model the behavior of a system interacting with others,
each of these can be replaced by components of an existing or
a future behavior specification technique, Script language, or
programming language. There is no requirement that all Ext
DS, PS and Int-DS have to be used together.

Another embodiment of this invention is to use DS com
ponents only in the design and code generation phases. As
shown in FIG.34, an application can be designed based on DS
components. However, its output DS type specification can be
read by a code generator that generates code for a different
platform, which does not support DS components, to run.
This code generator would only need to use the DS type
structures described in this invention along with a proprietary
way to map DS components into another set of mechanisms
Supported by its run time platform.
Design Methods
To design application systems that need to interact with

each other in a distributed environment is a challenging task.
If two interacting systems are designed separately, it would be
difficult to ensure that their behaviors are fully compatible
with each other. A better approach is to first define the com
munication protocol in between two interacting parties and
then convert the protocol specification into the behavior
specification for each party in a systematic and mechanical
way, hence, removing the possibility of inconsistency from
the design process.
An embodiment application system of this invention may

play multiple roles, and each role may need to participate in
interactions with multiple parties simultaneously. For clarity
purposes, this invention uses the term “Role-PS' to refer to
the behavior of a role played by the application system. With
regard to each Protocol, there are two interacting participat
ing parties. The term “Participant-PS' refers to the part of the
behavior of a particular participant. Therefore, a system typi
cally has multiple Role-PSs and each Role-PS may have
multiple Participant-PSs, one for each Protocol that the role
supports. FIG. 8 depicts an example “System 0 800 interact
ing with “System 1801, “System2802, and “System3'803.
“System0” plays 2 roles. They are “Role-PS 0” 804 and
“Role-PS1805, where “Role-PSO interacts with both “Sys
tem1” and “System2 and “Role-PS1 interacts with “Sys
tem3.

To illustrate the desirable design procedure, an example
application system “X” is used. FIG. 37 depicts the system
with one Role-PS interacting with a client and a server simul
taneously. Internally, “X” has an “X-server Participant-PS
that interacts with the client through protocol “protocol.0',
and another “X-client’ Participant-PS that interacts with the
server through protocol “protocol1. Following the design
procedure, we first define protocol “Protocol 0 and protocol
“Protocol 1. We then convert “Protocol 0 to X-Server
Participant-PS and “Protocol 1 to “X-client’ Participant-PS.
Finally, we merge "X-server and “X-client' into an “X”
Role-PS.
The most preferred design procedure of this invention is

described as follows:

10

15

25

30

35

40

45

50

55

60

65

26
The first step is to define a protocol for each peer system

that a Role may interact with. A protocol is defined as a
DS type including all possible external events that may
flow in both directions on a connection or session
between the Role being defined and another peer system.

The second step is to follow a conversion method to convert
each protocol defined in the previous step into a Partici
pant-PS of the Role;

The third step is to follow a merging method to merge all
Participant-PS's of the same role derived from the pre
vious step into a single Role-PS.

The final step is to complete the behavior specification for
the Role by adding internal interactions and internal
active behavior. Each of these internal interactions is
defined as a DS type, whereas the internal active behav
ior is defined as an Int-DS type.

When changes are required, these steps can be iterated as
needed.

In this invention, a protocol is typically specified as a DS
type describing only incoming events to receive and outgoing
events to send for a participant, while other internal activities
not related to sending and receiving events are ignored. This
protocol DS type can also be viewed as if it is defined for the
behavior of an entity that sits in between the two communi
cating participants and receives events flowing in both direc
tions.

FIG. 38 depicts the example Protocol “protocol.0” and
“protocol1” specified as DS types. The “protocol.0” Protocol
specifies that the client first sends a “Request0” event to
“X-server” and then “X-server” sends back a “Reply0” event.
The “protocol1” Protocol specifies that "X-client” first sends
a “Request1 event to the server and then the server sends
back a “Reply 1” event. Note that “->” and “e-” are used to
make the direction of the event flow easier to see in the
diagram.
The conversion method to convert a DS type specifying a

protocol to a PS type that specifies the reactive behavior of a
participant is described as follows:

for each incoming simple Sub-DS type that describes an
event for the participant to receive in the protocol DS
type, replace the incoming simple Sub-DS type by a
simple sub-PS type with the simple sub-DS type as its
Ext-DS type and an unspecified Int-DS type:

for each outgoing simple Sub-DS type that specifies an
event for the participant to send in the protocol DS type,
replace the outgoing simple Sub-DS type by a simple
Sub-PS type with an unspecified Ext-DS type and the
outgoing simple Sub-DS type as its Int-DS type.

Based on the conversion method described above, the Par
ticipant-PS3900 for “X-server” (FIG. 39) can be derived as
follows:

Since “Request0” is an incoming simple sub-DS type for
“X-server”, it is replaced by a simple sub-PS type 3901
with “Request0” as its Ext-DS type 3902 and an
unspecified Int-DS type (shown as “??” in FIG. 39)
3903.

Since “Reply 0” is an outgoing simple sub-DS type for
“X-server”, it is replaced by a simple sub-PS type 3904
with an unspecified Ext-DS type (shown as "??” in FIG.
39)3905 and the outgoing simple sub-DS type “Reply 0”
as its Int-DS type 3906.

Based on the conversion method described above, the Par
ticipant-PS 4000 for “X-client” (FIG. 40) can be derived as
follows:

Since “Request1 is an outgoing simple sub-DS type for
“X-client’, it is replaced by a simple sub-PS type 4001

US 8,539,441 B2
27

with an unspecified Ext-DS type 4002 and the outgoing
simple sub-DS type “ReRequest1 as its Int-DS type
4003.

Since “Reply 1” is an incoming simple sub-DS type for
“X-client’, it is replaced by a simple sub-PS type 4004
with "Reply1 as its Ext-DS type 4005 and an unspeci
fied Int-DS type 4006.

In one embodiment, the conversion method can also be
implemented directly over the data structures of DS types
without using the graphical notations of DS types as in FIGS.
38, 39 and 40.
The merging method to combine all derived Participant

PS's of the same Role into a single Role-PS is to add a
super-PS to contain all these derived Participant-PSs as par
allel sub-PS's. FIG. 42 depicts how the Role-PS “X” is
derived from Participant-PS's for “X-server” and “X-client”.

In one embodiment, the merging method can also be imple
mented directly over the data structures of Participant-PS
types without using the graphical notations of PS types as in
FIG. 42.
The derived Role-PS is typically incomplete, since there

may be some unspecified Ext-DS's and Int-DSs. The next
step is to replace these unknown Ext-DS's and Int-DS's with
internal interactions and behavior.

Let's assume the behavior of “X” is that after receiving
“Request0”, “X-server” does part of the work and then ask the
server to do the rest by sending “Request1 to the server. Lets
also assume that after receiving a response “Reply1 from the
server, "X-client' informs "X-server” about the result of
work done by the server, and then X-server' sends “Reply 0”
back to the client.

To accomplish these internal interactions, a event "aa’ is
defined for “X-server” to send to “X-client to ask the server
to do the rest of work. A event “bb’ is defined for “X-client
to sent to “X-server” to inform about the result of work done
by the server. After replacing those unspecified Ext-DSs and
Int-DSs, the new Role-PS is shown as in FIG. 43.

This example uses two very simple internal protocols (each
protocol has only one event), i.e. "aa’ and “bb’, to accom
plish the job. The present invention Supports complex proto
cols defined in composite DS types in between any two inter
nal Sub-PS's. In fact, the same example can be used to
illustrate this feature. FIG. 44 depicts the same example
except that the internal protocol is defined in a composite DS
type “protocol2 as shown in FIG. 41.

Benefits of using various design methods described in the
present invention are:
By mechanically deriving the reactive behavior specifica

tion from an external behavior, the present invention
ensures that the protocol and communicating parties are
consistent with each other.

Since Ext-DS, Int-DS and PS are specializations of DS and
share the same composition structure, it is easy to iden
tify internal behavior that are added to the mechanically
derived reactive behavior specification.

By mechanically deriving the reactive behavior specifica
tion from an external behavior, the effort and time for
specifying complex behavior is greatly reduced.

It is possible that these design methods described above
can be generalized when applied to another modeling nota
tion based on nodes and links, such as UML Activity Dia
gram, BPMN, XPDL, WS-CDL and BPEL, or a combination
of these modeling notations. An equivalent of the composite
DS in the present invention is called an Activity in UML
Activity diagram, a process in BPMN, XPDL, and BPEL, or
a choreography in WS-CDL. To simplify the description, an
equivalent of composite-DS in another modeling notation is

5

10

15

25

30

35

40

45

50

55

60

65

28
referred to as a composite-activity hereafter. An equivalent of
the simple DS in the present invention is called an action in
UML Activity Diagram, a task in BPMN and XPDL, and an
activity in BPEL and WS-CDL. They are referred to as a
simple-activity hereafter. In addition, the term activity is used
to refer to either a simple-activity or a composite-activity.
A simple-PS can be mapped to a reactive composite-activ

ity in one of these modeling notations comprising an external
activity describing external events to receive, and an internal
activity describing internal actions to perform in response to
the occurrence of the associated external activity. Since a
composite-PS has the same structure as a composite-DS, it
can be mapped to a composite-activity.
Some other components used in these design methods are

also generalized so that they can also be used in other behav
ior modeling notations. The unspecified Ext-DS is general
ized into an unspecified external activity representing an
activity to receive some unspecified external events. The
unspecified Int-DS is generalized into an unspecified internal
activity representing an activity to perform some unspecified
internal actions.

Using these generalized components, these design meth
ods described above can be generalized when applied to other
behavior notations. The procedure for using those general
ized design methods is as follows:
The first step is to specify each of those protocols supported
by a role as composite-activities in UML Activity Dia
gram, BPMN, XPDL, WS-CDL or BPEL

The second step is to apply a generalized conversion
method to derive a participant composite-activities from
each of these protocol composite-activities,

The third step is to merge those participant composite
activities of the same role to form a role composite
activity in UML Activity Diagram, BPMN, XPDL, WS
CDL or BPEL.

The forth step is to complete the role specification by
replacing unspecified external activities and unspecified
internal activities in the resulting role composite-activ
ity from last step with internal interactions and behavior.

A protocol can be specified in UML Activity Diagram,
BPMN, XPDL, WS-CDL or BPEL as a composite-activity
containing a series of simple-activities describing only exter
nal events flowing in both directions in between two interact
ing parties, while other activities not related to sending and
receiving events are ignored. Since each of these modeling
notations has a simple-activity to receive an external event, a
protocol can be specified using event receiving simple-activi
ties. In other words, this protocol composite-activity can be
specified as if it is defined for the behavior of an entity that sits
in between the two communicating participants receiving
external events flowing in both directions. Following this
approach, a protocol can be defined as composite-activities in
UML Activity Diagram using 'AcceptEventAction” to
receive external events coming from both directions. As an
example, the same protocols “Protocol 0 and “Protocol 1.
defined as DS types as shown in FIG. 38 can be defined in
UML Activity Diagram as shown in FIG. 45.
Converting to a Participant Composite Activity
The generalized conversion method is used for converting

a composite-activity from a protocol specification to a behav
ior specification of a participant. The method comprises:

For each incoming simple-activity in the composite-activ
ity that describes an event for the participant to receive,
replace the incoming simple-activity by a reactive com
posite-activity including the incoming simple-activity
as its external activity followed by an unspecified inter

US 8,539,441 B2
29

nal activity that describes activities to perform in
response to the occurrence of the incoming simple-ac
tivity.

For each outgoing simple-activity in the composite-activ
ity that specifies an event for the participant to send,
replace the outgoing simple-activity by a reactive com
posite-activity including an unspecified external activity
that describes events to receive followed by the outgoing
simple activity as its internal activity to perform in
response to the occurrence of the unspecified external
activity.

FIG. 46 shows the resulting Participant composite-activity
4600 of “X-server' in UML Activity Diagram, which is con
verted from “Protocol 04500 in FIG.45. The simple-activity
“Request0' 4501 is an incoming event to receive, hence, is
replaced by a reactive composite-activity 4601 containing an
external activity to receive the incoming event "Request0”
4602, followed by an unspecified internal activity 4603,
which is to be performed in response to its associated incom
ing event “Request0”. This internal activity may be defined as
either an action or an activity in UML Activity Diagram. The
simple-activity “Reply0' 4502 in “Protocol 0' 4500 is an
outgoing event to send, hence, is replaced by a reactive com
posite-activity 4604 containing an unspecified external activ
ity 4605 to receive unspecified incoming events followed by
an internal activity to send out the outgoing event "Reply0”
4606. Each of these external activity and internal activity may
be defined as either an action or an activity in UML Activity
Diagram.

FIG. 47 shows the resulting Participant composite-activity
of “X-client' 4700 in UML Activity Diagram, which is con
verted from “Protocol 14503 in FIG.45. The simple-activity
“Request1' 4504 is an outgoing event to send, hence, is
replaced by a reactive composite-activity 4701 containing an
unspecified external activity to receive unspecified incoming
events 4702, followed by an internal activity to send out the
outgoing event “Request1'4703, which is to be performed in
response to its associated unspecified incoming event "??'.
Each of these external activity and internal activity may be
defined as either an action or an activity In UML Activity
Diagram. The simple-activity “Reply 14505 in “Protocol 1”
4503 is an incoming event to receive, hence, is replaced by a
reactive composite-activity 4704 containing an external
activity 4705 to receive the incoming event "Reply1", fol
lowed by an unspecified internal activity 4706. This external
activity may be defined as either an action or an activity In
UML Activity Diagram.
A generalized merging method to combine all resulting

participant composite-activities of the same role into a com
posite-activity specifying the behavior of a single role when
using a nodes and links based modeling notation is as follows:
Add a super composite-activity to contain all these derived

participant composite-activities as its parallel sub-ac
tivities. This is achieved by adding a fork node with a
link leading to each of these participant composite-ac
tivities followed by a join node as the target of each of
these participant composite-activities.

FIG. 48 shows how derived participant composite-activity
“X-server and “X-client” are merged into the "X role com
posite-activity” in UML Activity Diagram. Note that the fork
node 4800 and join node 4801 are shown as vertical lines in a
UML Activity Diagram.
When applying the general design methods to BPMN, the

specific procedure is described as the following:
Specify protocol composite-activities in BPMN (FIG. 49)

with only event receiving tasks to receive external events
flowing in both directions.

10

15

25

30

35

40

45

50

55

60

65

30
modify the following to convert it into a participant com

posite-activity (FIG.50 and FIG. 51):
For each “receive' task 4901 receiving an incoming

event as viewed by the participant, replace the
“receive' task by a reactive process 5001 including
the “receive task 5003 as its external activity fol
lowed by an unspecified internal activity 5004 (a sub
process or task in BPMN) as its internal activity to
perform in response to the occurrence of the incoming
event.

For each “receive” task 4902 in the composite-activity
that specifies an event for the peer to receive, hence,
for the participant to send, replace the task by a reac
tive process 5002 including an unspecified external
activity 5005 (a task or sub-process in BPMN) as its
external activity that describes unspecified external
events to receive followed by a task to send the event
as its internal activity 5006 to perform in response to
the occurrence of the unspecified external activity.

to combine all these participant composite-activities into a
single role composite-activity, add a super process to use
either a pair of AND-Split 5200 and AND-join 5201
parallel gateways (FIG. 52) or a parallel box 5300 (FIG.
53) to combine all these derived participant composite
activities as its parallel sub-processes. Similar to parallel
sub-PS's in a composite PS, these sub-processes start to
run in parallel with each other when the super process
Starts to run.

The resulting process can subsequently be completed by
replacing unspecified external activities and unspecified
internal activities with internal interactions and behavior.
When applying the general design methods to BPEL, the

specific procedure is described as the following:
Specify a protocol composite-activity in BPEL with only

event receiving tasks to receive external events flowing
in both directions using either “receive” or “pick” activ
ity of BPEL.

If “pick” is used to specify a protocol, its <on Message->
structure should have the event name specified as its
“operation” and "empty” specified as its activity. For
example, the pseudo code of BPEL of "protocol.0” may
look like this:

<sequence...)
<pick...>

<onMessage ... operation=Request0' ...’

empty
</onMessage>

</pick->
<pick...

<onMessage... operation="Reply0' ...Y

empty
<onMessage->

</pick->
</sequence>

If “receive' is used to specify a protocol, the event name
should be specified as its "operation”. For example, the
pseudo code of BPEL of “protocol1” may look like this:

<sequence ...’
<receive... operation="Request1'...Y

US 8,539,441 B2
31

-continued

<receives
<receive... operation="Reply 1...d.

<receives
<sequences

Note that although “sequence' is used in this example to
define sequential activities, a “flow with “links' can
also be used to define sequential activities in BPEL.

modify the following to convert it into a participant com
posite-activity: for each “receive” or “pick’ activity in
the protocol composite-activity,
If the activity describes an incoming event for the par

ticipant to receive, replace it by a reactive composite
activity including the incoming activity as its external
activity followed by an unspecified internal activity (a
sub-activity in BPEL) as its internal activity to per
form in response to the occurrence of the incoming
activity:
For “pick”, the activity in the <on Message-> structure

should be changed from “empty” to an unspecified
internal activity “Internal Activity??, and

For “receive', it should be followed by an unspecified
internal activity “Internal Activity??” in a
'sequence'.

If the activity specifies an event for the participant to
send, replace the activity by a reactive composite
activity including an unspecified external activity that
describes events to receive followed by an activity to
send the event as its internal activity to perform in
response to the occurrence of the unspecified external
activity.
If “pick” is used, the <on Message structure of an

unspecified external activity should be waiting for
an unspecified incoming event"??, and its internal
activity should contain the outgoing event.

If “receive” is used, the unspecified external activity
should wait for an unspecified event, and followed
by an internal activity of sending the outgoing
event in a "sequence'.

For example, X-server' participant composite-activity
in the BPEL pseudo code using “pick” may look like
this:

<sequence ...>
spick...>

<onMessage ... operation=Request.O...

Internal Activity??
<onMessage->

<pick
spick...>

<onMessage ... operation="??'...>

<invoke ... operation="Reply0.
</invoke

<onMessage->
<pick

<sequences

For example, “X-client' participant composite-activity
in the BPEL pseudo code using “receive' may look
like this:

10

15

25

30

35

40

45

50

55

60

65

32

<sequence...>
<receive... operation="??'...>

<receives
<invoke ... operation="Request1 ...
<invoke
<receive... operation="Reply 1...d.

<receives
Internal Activity??

<sequences

to define a single role composite-activity, add a Super pro
cess by using a “flow structure to combine all these
derived participant composite-activities as its parallel
Sub-processes.
For example, the combined role composite-activity in

the BPEL pseudo code may look like this:

<flows
<sequence...>

spick...>
<onMessage ... operation=Request.O...

Internal Activity??
<ionMessage->

<pick
spick...>

<onMessage... operation="??...Y

<invoke ... operation="Reply0.
</invoke

<ionMessage->
<pick

<sequences
<sequence ...>

<receive... operation"??'...>

<receives
<invoke ... operation="Request1 ...
<invoke
<receive... operation="Reply 1...d.

<receives
Internal Activity??

<sequences
</flow

The resulting process can Subsequently be completed by
replacing unspecified external activities and unspecified
internal activities with internal interactions and behavior.

Note that the above exemplary embodiment uses “opera
tion="??” “to represent an unspecified external activity and
“Internal Activity?? to represent an unspecified internal
activity, each of unspecified external activity and unspecified
internal activity can be represented by other ways in another
embodiment as long as they can be differentiated from other
normal activities.

Although the above exemplary embodiment of general
design methods is based on specifying a protocol composite
activity and a participant composite activity in BPEL, a simi
lar approach can be applied to any XML based behavior
notation that supporta'sequence’ activity, such as XPDL and
WS-CDL, by persons skilled in the art. In general, a reactive
composite-activity described above can be defined as a
sequence activity containing an external activity to wait for an
incoming event and an internal activity to perform some
actions in response to the occurrence of the incoming event.
The XML below shows a reactive composite-activity defined
in a sequence activity:

US 8,539,441 B2
33

<sequences
External Activity
Internal Activity

</sequences

For a reactive composite-activity defined in WS-CDL, its
external activity can be a WS-CDL Interaction activity speci
fying an incoming event to wait for, and its internal activity
can be an activity specifying some actions to perform.
Although WS-CDL currently does not support internal activi
ties, it is conceivable that WS-CDL can be extended to allow
for internal activities. These general design methods
described in the present invention can then be applied to such
an extended behavior notation.
Generating a Participant State Machine
The procedure to apply these generalized design methods

to a state machine modeling notation, such as Statechart, is
described as the following:

Specify each protocolas a state machine (“protocol05400
and “protocol15403 in FIG. 54) with only incoming
events and outgoing events (“Request0' 5401 and
“Reply0' 5402 in “protocol.0', and “Request1'54.04
and “Reply 15405 in “protocol1') specified as events or
triggers in its transitions without any action or effect
specified. A protocol state machine can be viewed as if it
is defined for the behavior of an entity that sits in
between the two communicating participants and
receives events flowing in both directions. Each of these
events is defined as a trigger in its corresponding transi
tion.

modify the following for each protocol state machine to
convert it into a Participant state machine (FIG.55 and
FIG. 56):
for each transition in the Protocol state machine that has

an incoming event, as viewed by the participant, in its
trigger, add an unspecified effect (shown as "?? 5501
in FIGS. 55 and 5603 FIG. 56) to the transition.

for each transition having said outgoing event, as viewed
by the participant, in its trigger, add an effect to send
the outgoing event, and change the trigger to wait for
an unspecified incoming event (shown as "??” in FIG.
56).

To generate a Role state machine, a Super state is added to
merge all these Participant state machines into a single Role
state machine. The super state contains all these derived Par
ticipant state machines as its orthogonal regions. As shown in
FIG. 57, the derived participant state machine "X-server'
5701 and participant state machine “X-client' 5702 are com
bined as orthogonal regions in a super state “X” 5700. Note
that orthogonal regions in state machine are similar to parallel
sub-PS's in a composite PS.
The resulting Role State machine can Subsequently becom

pleted by replacing those unspecified triggers and effects with
internal interactions and behavior.

Although FIGS. 54, 55, 56 and 57 are shown as Statechart
diagrams, they can be substituted by other state machine
diagrams without any loss of the essence of this invention.

Sometimes a designer needs to specify the behavior of a
new application that needs to interact with an existing appli
cation. Since it is not possible to change the existing applica
tion, it is desirable to derive the protocol supported by the
existing application from the behavior specification of the
existing application, and then apply the conversion method to
generate the participant composite-activity for the new appli

10

15

25

30

35

40

45

50

55

60

65

34
cation. The resulting participant composite-activity would be
able to interact with the existing application correctly.
Generating a Protocol Composite-Activity
The method for generating a protocol composite-activity

for specifying the protocol between two participants from a
participant composite-activity specifying the behavior of one
of these said two participants is described as follows:

copy the participant composite-activity to the protocol
composite-activity;

change each simple-activity in the copied composite-activ
ity that does not receive an incoming event nor send an
outgoing event to a null-activity while keeping the same
outgoing links.

An example showing how this method can be applied is
now described using UML Activity Diagram as the behavior
modeling notation. FIG. 46 shows the “X-server' participant
composite-activity defined in a UML Activity Diagram. By
following the protocol generating method described above, a
protocol composite-activity can be derived:

copy “X-server participant composite-activity 4600 in
FIG. 46 to the protocol composite-activity 5800 in FIG.
58:

Since simple-activity"??' 4603 does not receive an incom
ing event nor send an outgoing event, change it to a
null-activity 5803;

Since simple-activity"??' 4605 does not receive an incom
ing event nor send an outgoing event, change it to a
null-activity 5805.

Note that the null-activity is like an ordinary node except
that it does not include any real action to perform. If a com
posite-activity is specified in BPEL, an “empty' activity can
be used as a null-activity. If a composite-activity is specified
in WS-CDL, a “no Action activity can be used as a null
activity. If a composite-activity is specified in a behavior
modeling notation that does not support an empty activity,
such as BRIAN, XPDL and UML Activity Diagram, a special
null-activity can be added.
The generated protocol composite-activity may contain

many null-activities. These null-activities can be cleaned up
using following rules:

Each of these null-activities can be deleted by linking all
targets of its outgoing links directly to each Source activ
ity of the deleted null-activity.

If a pair of fork and join nodes is left with either no link or
only one link in between the fork and join nodes, this
fork and join pair can be deleted.

If a composite activity has only one sub-activity left, the
composite activity can be replaced by the Sub-activity.

After cleaning up null-activities, the protocol in FIG. 58 is
changed into “Protocol.0' 4500 as defined in FIG. 45.
A design tool or a runtime system that implements these

generalized design methods above needs to represent these
generalized components, such as unspecified external activi
ties and unspecified internal activities, the protocol compos
ite-activity and the participant composite-activity in a par
ticular concrete form. A concrete form can be in any of the
following: 1) a programming language. Such as Cand Java, 2)
a data specification notation, such as Abstract Syntax Nota
tion One, 3) an XML based notation, such as XPDL, BPEL
and WS-CDL, or 4) a graphical notation, such as BPMN,
UML Activity Diagram, or any proprietary representation
that a visual design tool may support

In one embodiment of these design methods may represent
both protocol and participant composite-activities in the same
concrete form. In another embodiment, the protocol compos

US 8,539,441 B2
35

ite-activity may be represented in one concrete form, while
the participant composite-activity may be represented in
another concrete form.
CONCLUSIONS
The present invention includes methods and components

that can be used to benefit the entire life cycle of developing
an application software.

In one embodiment, DS components and methods
described in this invention can be used in design, code gen
eration, and execution phases. In another embodiment, DS
components and methods are used in design and code gen
eration phases. In yet another embodiment, DS components
and methods are used only by a design tool.

Another embodiment may use generalized methods and
graphical notations described in this invention in the design
phase along with another behavior modeling notation, Such as
UML Statechart, UML Activity Diagram, BPMN, XPDL,
and BPEL. As shown in FIG.59, a design tool may supportan
application design process using those generalized methods
and guidelines to specify external behavior and internal
behavior of an application system. All or part of the graphical
notation described in this invention can be adopted by a
design tool to facilitate the design process. However, the
resulting behavior may be specified in another behavior mod
eling notation, such as UML Statechart, UML Activity Dia
gram, BPMN, XPDL, and BPEL. The resulting behavior can
be subsequently used by a code generator to generate binary
code to be loaded by a run time platform for execution.
The graphical notation described in this invention is ver

satile and modular in that not all components need to be
supported by a design tool. Hence, a design tool may choose
to use only some of those components described in this inven
tion for various purposes. In the next three diagrams, some of
these embodiment examples are presented.

FIG. 60 shows a containment box 6000 representing an
application system whose dynamic behavior is specified as a
composite-activity including three Sub-containment boxes
6001, 6002 and 6003, where two sub-containment boxes
6001 and 6002 represent sequential sub-activities and one
sub-containment box 6003 represents a parallel sub-activity.
There is one Transition arrow connecting Sub-containment
box 6001 to sub-containment box 6002, whereas the parallel
sub-activity 6003 does not have any Transition arrow. One of
those two sequential Sub-activities is a reactive composite
activity 6001 containing an event sub-sub-containment box
6004 representing an external activity that specifies external
events to occur and an action sub-sub-containment box 6005
representing an internal activity that specifies internal activi
ties to perform in response to the occurrence of these external
events. A bi-directional Interaction-link 6006 represents a set
of interactions in between a sequential sub-activity 6001 and
the parallel sub-activity 6003. The protocol is specified by an
identifier as “protocol 0, which is a DS not explicitly speci
fied in this diagram.

FIG. 61 shows a containment box 6100 representing an
application system whose dynamic behavior is specified as a
composite-activity including three Sub-containment boxes
6101, 6102 and 6105, each representing a sub-activity. A
bi-directional Interaction-link 6106 represents a set of inter
actions in between two sub-containment boxes 6101 and
6105. The Interaction-link has an identifier “Protocol.0 indi
cating the protocol specification for the set of interactions.
The composite-activity 6100 has two Exit-points. One Exit
point 6103 has a default Exit-predicate, which is not explic
itly shown. The other Exit-point 6104 has an Exit-predicate
“TransPred1.

10

15

25

30

35

40

45

50

55

60

65

36
FIG. 62 shows a containment box 6200 representing an

application system whose dynamic behavior is specified as a
composite-activity 6200 with two sequential sub-activities
6201 and 6202 and one parallel sub-activity 6205, and an
Interaction-link 6206 in between one sequential sub-activity
6201 and the parallel sub-activity 6205. There is one Transi
tion arrow 6208 for pointing from a source sub-containment
box 6201 to a target sub-containment box 6202. There is one
creation arrow 6207 for pointing to a dynamic component
6205 that may be created by one sequential sub-activity 6202
at run time. One sub-containment box 6201 represents a
reactive composite-activity that includes an event Sub-Sub
containment box 6209 that specifies external events to occur
and an action sub-sub-containment box 6210 that specifies
internal activities to perform in response to the occurrence of
said external events.

In another embodiment, instead of using a divider to sepa
rate the external activity from the internal activity inside of a
reactive composite-activity as shown in FIG. 60, a directional
link can be used. FIG. 63 shows the same exemplary com
posite-activity as in FIG. 60 with an additional directional
link 6303 connecting the external activity 6301 to the internal
activity 6302 inside of the reactive composite-activity 6300.

In addition to a visual design tool, other tools can be used
to generate user defined DS type specifications based on the
present invention. For example, a Computer-Aided Software
Engineering (CASE) tool may be used. A CASE tool may
Support creating and editing user defined DS components as
part of an overall development methodology incorporating
features of this invention.
One CASE tool may provide support for performing analy

sis and verification of user defined DS type specifications,
while another may support reuse of user defined DS type
specifications by providing catalogs and directories of exist
ing DS type specifications, and searching/matching capabili
ties.

Other CASE tools may support simulation of DS compo
nent based applications, or even provide automatic testing by
generating test cases from these specifications.

In another embodiment, an Integrated Development Envi
ronment (IDE) may support the development of software
based on the present invention, including design, build and
execution time Support. In particular, the execution time Sup
port may be provided by a run time platform with software
libraries to support DS components.

Similar to a run time platform, another embodiment is to
Support DS components and its run time procedures in a
Software implemented virtual machine or a computing device
that is built entirely in hardware and firmware.
On the other hand, not all DS components need to be

automated or executed by software. An alternative embodi
ment is that a designer may use a design tool to define human
activities, business process, or action plans in terms of DS
components or composite-activities. Some of these DS com
ponents or composite-activities may be jobs for human to
perform.

Although the description above contains many specifici
ties, these should not be construed as limiting the scope of the
present invention but as merely providing illustrations of
some of the presently described embodiments of the present
invention. Based on the disclosure and teachings provided
herein, it will be appreciated by a person of ordinary skill in
the art that various other embodiments and ramifications are
possible within the scope of the present invention.
The application of the present invention is very extensive,

since most systems solving real world problems can be mod
eled as reactive systems. For example, in a 3-tierarchitecture,

US 8,539,441 B2
37

the database management system can be viewed as a reactive
system reacting to input from its upper tier servers. Servers
can be viewed as Systems reacting to input from its uppertier,
namely the presentation tier. The presentation tier can also be
viewed as systems reacting to input from human beings. In
other words, nearly all computing systems can be modeled by
DS, PS, Ext-DS and Int-DS described in the present invention
and benefit from the extended, advanced features as described
above.
The present invention can also be used to model highly

complex communication protocols. In particular, using a
composite DS specification, a protocol not only Supports one
single session, but also supports multiple concurrent nested
sessions.
The present invention can also be used to model man

machine interfaces. A human user can deal with multiple
things at the same lime. To match Such a multi-processing
capability of a human user, a graphical user interface based
application may use a composite DS to define its interface
with human users, while using a composite PS to define its
reactive behavior.

With its highly sophisticated modeling capabilities, it is
even possible to model human behavior or an organization
behavior with the present invention. For example, the entire
business process of an organization can be modeled by a
composite PS with various levels of sub-PS's that implement
behavior of departments, teams and employees. The process
of planning, decision making and problem solving can also be
modeled using DS, PS, Ext-DS and Int-DS.
A general business operation environment, such as a busi

ness process management platform, a work flow engine or a
general business operational framework, can be implemented
by supporting DS, PS, Ext-DS and Int-DS specifications for
carrying out various business processes and activities.
Some real world objects, which can have multiple states,

Such as machinery, customer records, and order entries, can
also be modeled with DS's or their extensions.

Using the method of the present invention for modeling
and designing various application systems, such as the ones
described above, DS, PS, Ext-DS and Int-DS specifications
can be defined. Some of these specifications can also be
generated or derived using other approaches. Disregarding
which approach to use, the resulting user DS, PS, Ext-DS and
Int-DS specifications of these applications can be performed
by a device or machine, Such as a computer, that practicing the
present invention to carry out these specifications.

In general, the present invention can be embodied in the
form of methods and apparatuses for practicing those meth
ods and operations. The present invention can also be embod
ied in the form of program code embodied in tangible media,
such as floppy diskettes, CD-ROMs, disk drives, or any other
machine-readable storage medium. When the program code
is loaded into and executed by a device or machine, such as a
computer, the machine becomes an apparatus for practicing
the invention. The present invention can also be embodied in
the form of program code, which can be transmitted over
Some transmission medium, Such as electrical wiring or
cabling, through fiber optics, or via electromagnetic radia
tion. When the program code is loaded into and executed by
a device or machine. Such as a computer, the machine
becomes an apparatus for practicing the invention.

Accordingly, it can be seen that DS components and their
related methods and procedures described in accordance with
the present invention is a very powerful method and technique
to define behavior and protocols of systems. In particular, the
present invention extends and improves the prior art, BPMN,
XPDL, BPEL WS-CDL or UML, in several major areas.

10

15

25

30

35

40

45

50

55

60

65

38
One is that the DS model, which reflects both time and

space dimensions in the universe we live in, adds significant
meaning and structure to a bunch of nodes and links specified
with a prior art technique. The second is that using a contain
ment box to contain both sequential and parallel components
in a diagram, various forking and joining nodes and links can
be eliminated. The third is that the combination of Result and
Exit-conditions provides a very powerful and flexible mecha
nism to control when a composite DS should end. The forth is
the use of specializations of DS, such as Ext-DS, PS, and
Int-DS, to specify external behavior, reactive behavior and
internal behavior of a system in a consistent way. The fifth is
to specify the behavior of multiple systems that may have
complex interactions with each other. The sixth is that sys
tematic design methods are provided to derive a Role-PS
from Protocols and to ensure consistency among related
specifications.

It is understood that the examples and embodiments
described herein are for illustrative purposes only and that
various modifications or changes in light thereofwill be Sug
gested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
the appended claims. It is further understood that various
changes in the details, materials, and arrangements of the
parts which have been described and illustrated in order to
explain the nature of this invention may be made by those
skilled in the art without departing from the principle and
Scope of the invention as expressed in the claims. All publi
cations, patents, and patent applications cited herein are
hereby incorporated by reference for all purposes in their
entirety.
What is claimed is:
1. A method for deriving a composite activity that specifies

a behavior of a first system that interacts with a second sys
tem, the method comprising:

specifying, by a computing device, the composite activity
containing a set of first simple activities in which each
first simple activity is a basic activity specifying a mes
Sage that is either sent from the first system to the second
system or sent from the second system to the first sys
tem;

replacing, by the computing device, each first simple activ
ity that specifies a message sent from the second system
to the first system by a second activity for the first system
to receive the message followed by an unspecified activ
ity that is to be specified by a user to define an internal
action the first system is to take; and

replacing, by the computing device, each first simple activ
ity that specifies a message sent from the first system to
the second system by an unspecified activity that is to be
specified by a user to define an internal action the first
system is to take followed by a second activity for the
first system to send out the message.

2. The method of claim 1, the composite activity is speci
fied in a unified modeling language (UML) Activity Diagram.

3. The method of claim 1, the composite activity is speci
fied in a business process model and notation (BPMN).

4. A non-transitory computer-readable storage medium
containing instructions for deriving a composite activity that
specifies a behavior of a first system that interacts with a
second system, the instructions for controlling a computer
system to be configured for:

specifying the composite activity containing a set of first
simple activities in which each first simple activity is a
basic activity specifying a message that is either sent
from the first system to the second system or sent from
the second system to the first system;

US 8,539,441 B2
39

replacing each first simple activity that specifies a message
sent from the second system to the first system by a
second activity for the first system to receive the mes
sage followed by an unspecified activity that is to be
specified by a user to define an internal action the first
system is to take; and

replacing each first simple activity that specifies a message
sent from the first system to the second system by an
unspecified activity that is to be specified by a user to
define an internal action the first system is to take fol
lowed by a second activity for the first system to send out
the message.

5. The non-transitory computer-readable storage medium
of claim 4, the composite activity is specified in a unified
modeling language (UML) Activity Diagram.

6. The non-transitory computer-readable storage medium
of claim 4, the composite activity is specified in a business
process model and notation (BPMN).

10

15

7. A method for generating a finite state machine that 20
specifies a behavior of a first system that interacts with a
second system, the method comprising:

40
specifying, by a computing device, the finite state machine

containing a set of States and first transitions, in which
each first transition contains either a first trigger that
specifies a first message that is sent from the first system
to the second system or a second trigger that specifies a
second message that is sent from the second system to
the first system;

replacing, by the computing device, each first transition
containing the first trigger by a second transition con
taining unspecified trigger that is to be specified by a
user to define a third message to receive by the first
system and an action to send out the first message to the
second system; and

replacing, by the computing device, each first transition
containing the second trigger by a third transition con
taining the second trigger and an unspecified action to be
performed by the first system in response to the occur
rence of the second trigger, wherein the unspecified
action is to be specified by the user.

8. The method of claim 7, wherein the finite state machine
is specified in unified modeling language (UML) state chart.

k k k k k

