
(12)
(19)

(54)

(51)

(21)

(87)

(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

STANDARD PATENT
AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2006230171 B2

Title
Methods, systems, and computer program products for network firewall policy
optimization

International Patent Classification(s)
H04L9/00 (2006.01)
G06F9/00 (2006.01)
G06F 15/16 (2006.01)

G06F 75/78(2006.01)
G06F 17/00 (2006.01)

Application No: 2006230171 (22) Date of Filing: 2006.03.28

WIPO No: WO06/105093

Priority Data

Number
60/665,664

(32) Date
2005.03.28

(33) Country
US

Publication Date:
Accepted Journal Date:

2006.10.05
2012.06.21

Applicant(s)
Wake Forest University

Inventor(s)
Tarsa, Stephen J.;Fulp, Errin W.

Agent / Attorney
Griffith Hack, GPO Box 3125, Brisbane, QLD, 4001

Related Art
WO 2006/093557 A2
US 2005/0125697 A1
EP 1006701 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 October 2006 (05.10.2006) PCT

(51) International Patent Classification:
G06F15/16 (2006.01)

(21) International Application Number:
PCT/US2006/011291

(22) International Filing Date: 28 March 2006 (28.03.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/665,664 28 March 2005 (28.03.2005) US

(71) Applicant (for all designated States except US): WAKE
FOREST UNIVERSITY [US/US]; OFFICE OF TECH­
NOLOGY ASSET MANAGEMENT, WAKE FOREST
UNIVERSITY HEALTH SCIECNES, 200 East First
Street, Suite 101, Winston Salem, North Carolina 27101
(US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): FULP, Errin, W.

[US/US]; 308 N. Hawthorne Road, Winston-Salem, North

llllllllllllllllllllllllllllllllllllll^
(10) International Publication Number

WO 2006/105093 A2
Carolina 27104 (US). TARSA, Stephen, J. [US/US]; 135
King Phillips Path, Duxbury, Massachusetts 02332-3503
(US).

(74) Agent: HUNT, Gregory, A.; JENKINS, WILSON, TAY­
LOR & HUNT, P.A., Suite 1200 University Tower, 3100
Tower Boulevard, Durham, North Carolina 27707 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

/ Continued on next page]

(54) Title: METHODS, SYSTEMS, AND COMPUTER PROGRAM PRODUCTS FOR NETWORK FIREWALL POLICY OP­
TIMIZATION

w
o

20
06

/1
05

09
3 A

2 ll
llll
llll
llll
llll
llll
llll
llll
llll
llll
llll
llll
llll
lll̂

(57) Abstract: Methods, systems, and computer program products for
firewall policy optimization are disclosed. According to one method,
a firewall policy including an ordered list of firewall rules is defined.
For each rule, a probability indicating a likelihood of receiving a
packet matching the rule is determined. The rules are sorted in order of
non-increasing probability in a manner that preserves the firewall policy.

WO 2006/105093 A2 ll^
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), ΟΑΡΙ (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid­
ance Notes on Codes and Abbreviations" appearing at the begin­
ning of each regular issue of the PCT Gazette.

METHODS, SYSTEMS, AND COMPUTER PROGRAM PRODUCTS FOR

NETWORK FIREWALL ^OLICYIOPTIMIZATION
I:

06/06 2012 11:39 FAX 61 7 32211245 GRIFFITH HACK ®0004/0017

20
06

23
01

71

06
 Ju

n
20

12

5

10

15

20

25

30

TITLE

RELATED APPLICATIONS j

This application claims the benefit of U.S: Provision al Patent Application
Serial No. 60/665,664, filed March ^8, 20(5; the disclosure of which is

incorporated herein by reference in its jpntirety J

11 r i
GOVERNMENT INTEREST i

This invention was made with Gcvernm^nt support under Grant No. DE-
FG02-03ER25581 awarded by U.S. Deaartmenit of Energ/, Mathematical and
Computational Information Sciences Ipivisiop. The U.S. Government has
certain rights in the invention. '

ί i
I ■
I: i

V

The subject matter described h^rei

network firewalls. More particularly, thep
to methods, systems, and computer

performance of network firewalls. 1
i
I r
I;

TECHNICAL FIEIj-D
ilates to optimizing polices for
matter described herein relates

products for optimizing
I

program
I
i
! ■

I
- aht

)nti

BACKGROpND ApT

Network firewalls remain the forefront i defense

i
i

for most computer
systems. Guided by a security policy, jhese c evices provide access control,

auditing, and traffic control [3, 30, 31].| A security policy is a list of ordered
rules, as seen in Table 1, that define^ the in
packets. For example, an accept acticjn pass<

secure network, while deny causes the packet to be discarded. In many
implementations, the rule set is stored internally as a linked list. A packet is
sequentially compared to the rules, starting with the first, until a match is found;
otherwise, a default action is performed] [30, 3'
match policy and is used in many firewall syste ms including the Linux firewall
implementation iptables [25], l ί

iction to perform on matching
es the paclket into or from the

J. This is deferred to as a first-

34203QQJ (GHMaaerS) P75SS0AU

f

COMS ID No: ARCS-372276 Received by IP Australia: Time (H:m) 11:49 Date (Y-M-d) 2012-06-06

WO 2006/105093 PCT/US2006/011291

Table 1: Example Security Policy Consisting of Multiple Ordered Rules

No. Proto.

Source Destination

Action Prob.IP Port IP Port

1 UDP 1.1.* * * 80 deny 0.01
2 TCP 2 * * 1.* 90 accept 0.02
3 UDP * * 1.* *

accept 0.10
4 TCP 2 * * 1.* 20 accept 0.17
5 UDP 1.* * * *

accept 0.20
6 * * * * *

deny 0.50

5 Traditional firewall implementations consist of a single, dedicated

machine, similar to a router, that sequentially applies rules to each arriving

packet. However, packet filtering represents a significantly higher processing

load than routing decisions [24, 29, 31]. For example, a firewall that

interconnects two 100 Mbps networks would have to process over 300,000

10 packets per second [30], Successfully handling these traffic loads becomes

more difficult as rule sets become more complex [4, 22, 31]. Furthermore,

firewalls must be capable of processing even more packets as interface speeds

increase. In a high-speed environment (e.g. Gigabit Ethernet), a single firewall

can easily become a bottleneck and is susceptible to DoS attacks [4,9,13,14],

15 An attacker could simply inundate the firewall with traffic, delaying or preventing

legitimate packets from being processed.

One approach to increase firewall performance focuses on improving

hardware design. Current research is investigating different distributed firewall

designs to reduce processing delay [4, 9, 22], and possibly provide service

20 differentiation [11], Another approach focuses on improving performance via

better firewall software [6, 7, 12, 16, 17, 24]. Similar to approaches that

address the longest matching prefix problem for packet classification [8,10,25,

28], solutions typically represent the firewall rule set in different fashions (e.g.

tree structures) to improve performance. While both approaches, together or

25 separate, show great promise, each requires radical changes to the firewall

system, and therefore are not amenable to current or legacy systems.

-2-

WO 2006/105093 PCT/US2006/011291

Accordingly, there exists a need for improved methods, systems, and

computer program products for network firewall policy optimization.

SUMMARY

5 The subject matter described herein includes methods, systems, and

computer program products for network firewall policy optimization. According

to one method, a firewall policy including an ordered list of firewall rules is

defined. For each rule, a probability indicating a likelihood of receiving a packet

matching the rule is defined. Neighboring rules are sorted in order of non-

10 increasing probability in a manner that preserves the firewall policy.

As used herein, the term “firewall” refers to a logical entity that is

adapted to filter packets at the ingress and/or egress portions of a network

based on a policy. The term “firewall” is intended to include systems that block

packets from entering or leaving a network and systems that perform intrusion

15 detection and intrusion protection functions for packets entering or leaving a

network. Thus, the methods and systems described herein for firewall policy

optimization can be used to optimize policies for intrusion detection and

intrusion protection firewalls.

The subject matter described herein includes a method to improve

20 firewall performance and lower packet delay that can be applied to both legacy

and current systems. In one implementation, a firewall rule set may be re­

ordered to minimize the average number of rule comparisons to determine the

action, while maintaining the integrity of the original policy. Integrity is

preserved if the reordered and original rules always arrive at the same result.

25 To maintain integrity, a firewall rule set may be modeled as a Directed Acyclical

Graph (DAG), where vertices are firewall rules and edges indicate precedence

relationships. Given this representation, any linear arrangement ofthe DAG is

proven to maintain the original policy integrity. Unfortunately, determining the

optimal rule order from all the possible linear arrangements is proven to be NP-

30 complete, since it is equivalent to sequencing jobs with precedence constraints

for a single machine [15]. Although determining the optimal order is NP-

complete, a heuristic will be described below to order firewall rules that reduces

the average number of comparisons while maintaining integrity. Simulation

-3-

WO 2006/105093 PCT/US2006/011291

results show the proposed reordering method yields rule orders that art

comparable to optimal; thus, provides a simple means to significantly improve

firewall performance and lower packet delay.

The subject matter described herein for network firewall policy

5 optimization may be implemented using any combination of hardware, software,

or firmware. For example, the subject matter described herein may be

implemented using a computer program product comprising computer

executable instructions embodied in a computer readable medium. Exemplary

computer readable media suitable for implementing the subject matter

10 described herein include disk memory devices, chip memory devices,

programmable logic devices, application specific integrated circuits, and

downloadable electrical signals. In addition, a computer program product that

implements the subject matter described herein may be implemented using a

single device or computing platform or may be distributed across multiple

15 devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the subject matter described herein will now

be explained with reference to the accompanying drawings of which:

20 Figure 1A is a block diagram of a rule list Directed Acyclical Graph

(DAG) for the firewall rules in Table 1;

Figure 1B is a linear arrangement of firewall rules corresponding to the

original rule order;

Figure 2A is a policy DAG representing a reordered version of the

25 firewall rule set in Figure 1 after sorting;

Figure 2B is a policy DAG for the rule set illustrated in Table 1 illustrating

an optimal rule order;

Figure 3A is a graph illustrating average numbers of packet comparisons

versus intersection percentage for different orderings of a firewall policy;

Figure 3B is a graph illustrating the percent difference in average

numbers of packet comparisons between sorted and optimal sortings of a

firewall policy;

-4-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

Figure 4A is a graph of percent difference comparisons between original

and sorted versions of a firewall policy;

Figure 4B is a graph illustrating the performance impact of considering

rule intersection and actions in performing firewall rule sorting;

Figure 5A is a table illustrating a firewall policy before sorting;

Figure 5B is a table illustrating a sorted version of the firewall policy of

Figure 5A;

Figure 6A is a policy trie representation of the firewall policy of Figure 5B;

Figure 6B is a table representing the firewall policy of Figure 5A after

TCP and UDP sub-trie rotation;

Figure 7A is a policy trie illustrating the splitting of rule r5 into rules r5a

and r5b;

Figure 7B is a table illustrating the firewall policy of Figure 5A after

splitting rule r5 into rules r5a and r5b;

Figure 8A is a graph illustrating firewall performance with and without

rule splitting;

Figure 8B is a graph illustrating locations and probabilities where splitting

is better;

Figure 9A is a policy DAG of a firewall rule set;

Figure 9B is a policy DAG illustrating compression of rules π and r5;

Figure 10A is a policy DAG of a firewall rule list;

Figure 10B is an original policy trie before sorting;

Figure 10C is a policy trie illustrating the firewall rules after rotating sub­

tries Ti and T2;

Figure 11A is a policy DAG illustrating a firewall policy;

Figure 11B is a policy trie illustrating firewall rules of the policy before

sorting;

Figure 11C is a policy trie illustrating the firewall policy after exchanging

nodes r-i and r2 and nodes r7 and r8;

Figure 11D is a policy trie illustrating the firewall policy after exchanging

sub-tries T3 and T4;

Figure 11E is a policy trie illustrating the firewall policy after exchanging

sub-tries Ti and T2;

-5-

WO 2006/105093 PCT/US2006/011291

Figure 12A is a policy DAG illustrating an original order for a firewall

policy;

Figure 12B is a policy DAG illustrating a sorted version of the firewall

policy of Figure 12A after exchanging neighbors;

5 Figure 12C is a policy DAG illustrating a sorted version of the firewall

policy after exchanging lists Li including rules η and r3 and lists L2 including

rules r2 and r;

Figure 13 is a flow chart illustrating exemplary steps for network firewall

policy optimization according to an embodiment of the subject matter described

10 herein;

Figure 14 is a block diagram illustrating exemplary components of a

system for firewall policy optimization according to an embodiment of the

subject matter described herein; and

Figure 15 is a block diagram illustrating a plurality of firewall nodes for

15 implementing a firewall policy according to an embodiment of the subject matter

described herein.

DETAILED DESCRIPTION OF THE INVENTION

Modeling Firewall Security Policies

20 As described above, a firewall rule set, also known as a firewall policy, is

traditionally an ordered list of firewall rules. Firewall policy models have been

the subject of recent research [1, 2, 16]; however, the primary purpose is

anomaly detection and policy verification. In contrast, the policy model

described in this herein is designed for firewall performance optimization and

25 integrity. Firewall performance refers to reducing the average number of

comparisons required to determine an action, while integrity refers to

maintaining the original policy intent. Although improving the worst-case

performance is important, it is not possible without changing the list-based

representation [16, 24].

30

Firewall Rule and Policy Models

In the examples described herein, a rule r is modeled as an ordered

tuple of sets, r= (r[1], r[2],..., r[k]). Order is necessary among the tuples since

-6-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

comparing rules and packets requires the comparison of corresponding tuples.

Each tuple r[/] is a set that can be fully specified, specify a range, or contain

wildcards in standard prefix format. For the Internet, security rules are

commonly represented as a 5-tuple consisting of: protocol type, IP source

address, source port number, IP destination address, and destination port

number [30, 31], Given this model, the ordered tuples can be supersets and

subsets of each other, which forms the basis of precedence relationships. In

addition to the prefixes, each filter rule has an action, which is to accept or

deny. However, the action will not be considered when comparing packets and

rules. Similar to a rule, a packet (IP datagram) d can be viewed as an ordered

k-tuple d= (c/[1], d[2],..., d[k]); however, ranges and wildcards are not possible

for any packet tuple.

Using the previous rule definition, a standard security policy can be

modeled as an ordered set (list) of n rules, denoted as R = {r1; r2, ..., rn}. A

packet d is sequentially compared against each rule η starting with the first, until

a match is found (d => η) then the associated action is performed. A match is

found between a packet and rule when every tuple of the packet is a subset of

the corresponding tuple in the rule.

Definition Packet d matches η if

d => η iff d[i\ c η[[\, /= 1, ..., k

The rule list R is comprehensive if for every possible legal packet d a

match is found using R. Furthermore, two rule lists R and R’are equivalent if'

for every possible legal packet d the same action is performed by the two rule

lists. If R and R’ are different (e.g. a reorder) and the lists are equivalent, then

the policy integrity is maintained.

As previously mentioned, a rule list has an implied precedence

relationship where certain rules must appear before others if the integrity of the

policy is to be maintained. For example consider the rule list in Table 1. Rule ρ

must appear before rules r3 and r5, likewise rule r6 must be the last rule in the

policy. If for example, rule r3 was moved to the beginning of the policy, then it

will shadow [2] the original rule η. However, there is no precedence

relationship between rules r2 and 14 given in Table 1. Therefore, the relative

ordering of these two rules will not impact the policy integrity and can be

-7-

WO 2006/105093 PCT/US2006/011291

changed to improve performance. The present example assumes that the

original policy is free from any anomalies. Likewise, when a policy is reordered

to improve performance it should not introduce any anomalies, which will occur

if precedence relationships are not maintained. As a result, a model is needed

5 to effectively represent precedence relationships.

Modeling Rule List Precedence Relationships

The precedence relationship between rules in a policy will be modeled as

a Directed Acyclical Graph (DAG) [23, 18]. Such graphs have been

10 successfully used to represent the relative order of individual tasks that must

take place to complete a job (referred to as a task graph model). Since certain

rules must appear before others to maintain policy integrity, this structure is well

suited for modeling the precedence of firewall rules. Let G = (R, E) be a rule list

DAG for a rule list R, where vertices are rules and edges E are the precedence

15 relationships (constraint). A precedence relationship, or edge, exists between

rules r, and η, if / < j, the actions for each rule are different, and the rules

intersect.

Definition The intersection of rule η and η, denoted as η Afj is

n Grj = (η[/] n/j[/]), /=l,...,k

20 Therefore, the intersection of two rules results in an ordered set of tuples that

collectively describes the packets that match both rules. The rules η and η

intersect if every tuple of the resulting operation is non-empty. In contrast, the

rules η and η do not intersect, denoted as η φ η, if at least one tuple is the

empty set. Note the intersection operation is symmetric; therefore, if η

25 intersects rs, then η will intersect η. The same is true for rules that do not

intersect.

For example consider the rules given in Table 1, the intersection of φ

and Γ3 yields (UDP, 1.1 *, 1 80). Again, the rule actions are not considered

in the intersection or match operation. Since these two rules intersect, a packet

30 can match both rules for example d = (UDP, 1.1.1.1, 80, 1.1.1.1, 80).

Furthermore, the actions of the two rules are different. Therefore, the relative

order must be maintained between these two rules and an edge drawn from η

to r3 must be present in the rule list DAG, as seen in Figures 1A and 1B. More

-8-

WO 2006/105093 PCT/US2006/011291

. particularly, Figure 1A illustrates a rule list DAG for the rules in Table 1. Figure

1B illustrates a linear arrangement ofthe rules in Figure 1 A. In Figures 1A and

1B, the vertices represent rules, the circles represents an accept rules, and the

squares represents deny rules. Edges that connect the vertices represent

5 precedence requirements. As can be seen from Figure 1B, because of the

edge between rules η and r3, precedence between rules η and r3 must be

maintained. In contrast consider the intersection of rules r3 and r5. These two

rules intersect, indicating packets belonging to the set (UDP, 1 .*, *, 1 *) would

match both rules. However, it does not matter which of the two rules a packet

10 matches first, since the action is the same for both rules. Therefore, an edge

does not exist between rules r3 and r5 in the diagram. Similarly, rules r2 and

do not intersect due to the fifth tuple (destination port). A packet cannot match

both rules indicating the relative order can change; therefore, an edge will not

exist between them.

15 The match operation can be used to identify precedence relationships,

but it cannot do so in every case. Consider a partial-match example [1], where

ra = (UDP, *, 80, 10.*, 90, accept) and rb = (UDP, 10.*, 80, *, 90, deny). The

intersection of ra and rb is (UDP, 10.*, 80,10.*, 90); therefore a packet, such as

d = (UDP, 10.10.10.10, 80, 10.10.10.10, 90), can match both rules. If ra

20 appears before rb then the packet d is accepted, but if rb occurs before ra then d

is rejected. As a result, the order of ra and rb in the original policy must be

maintained. However, the match operation is unable to identify the precedence

in this example. A partial match exists in between rules r3 and r5 in Table 1, but

as previously discussed an edge does not exist between the rules since the

25 actions are the same.

Using the rule list DAG representation a linear arrangement is sought

that improves the firewall performance. As depicted in Figure 1B, a linear

arrangement (permutation or topological sort) is a list of DAG vertices where all

the successors of a vertex appear in sequence after that vertex [23]. Therefore

30 it follows that a linear arrangement of a rule list DAG represents a rule order, if

the vertices are read from left to right. Furthermore, it is proven in the following

theorem that any linear arrangement of a rule list DAG maintains integrity.

-9-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

Theorem Any linear arrangement of a rule list DAG maintains integrity.

Proof Assume a rule list DAG G is constructed from the security policy R that is

free of anomalies. Consider any two rules η and η in the policy, where / < j. If

an edge between η and η in G does not exist, then a linear arrangement of G

can interchange the order of the two rules. An edge will not exist if the rules do

not intersect; however, a reorder will not affect integrity since a packet cannot

match both rules. Shadowing is not introduced due to the reorder since the

intersection operation is symmetric. An edge will not exist if the two rules

intersect but have the same action; however, a reorder will not affect integrity

since the same action will occur regardless of which rule is matched first. If an

edge does exist between the rules, then their relative order will be maintained in

every linear arrangement of G; thus maintaining precedence and integrity.

Rule List Optimization

As described above, it is important to inspect packets as quickly as

possible given increasing network speeds and QoS requirements. Using the

rule list DAG to maintain policy integrity, a linear arrangement is sought that

minimizes the average number of comparisons required. However, this will

require information not present in the firewall rule list. Certain firewall rules

have a higher probability of matching a packet than others. As a result, it is

possible to develop a policy profile over time that indicates frequency of rule

matches (similar to cache hit ratio). Let P = {pi, p2,..., pn} be the policy profile,

where p, is the probability that a packet will match rule / (first match in the

policy). Furthermore, assume a packet will always find a match, Σ·'=Ι Pi = 1;

therefore R is comprehensive. Using this information, the average number of

rule comparisons required is

(1)

For example, the average number of comparisons required for the rule set in

Table 1 is 5.03.

-10-

WO 2006/105093 PCT/US2006/011291

Given a rule list DAG G = (R, E) and policy profile P = {ρΊ, p2, ..., pn} a

linear arrangement π of G is sought that minimizes Equation 1. In the absence

of precedence relationships, the average number of comparisons is minimized

if the rules are sorted in non-increasing order according to the probabilities [26],

5 which is also referred to as Smith’s algorithm [27]. Precedence constraints

cause the problem to be more realistic; however, such constraints also make

determining the optimal permutation more problematic.

Determining the optimal rule list permutation can be viewed as job

scheduling for a single machine with precedence constraints [15, 21], The

10 notation for such scheduling problems is a|^|y|J, where a is the number of

machines, β is the precedence (or absence of) which can be represented as a

DAG, /is a restriction on processing time, and δ is the optimality criterion [15].

Determining the optimal rule order is similar to the 1|/?|1 |Σ coC/ scheduling

problem, or optimality criterion, where ω is a weight associated with a job (for

15 example, importance) and C/ is the completion time. As previously noted, the

11ll Σ roC/problem can be solved in linear time the using Smith’s algorithm [27],

which orders jobs according to non-decreasing ratio, where t, is the
ω

processing time of job /. In this case set t, = 1 and ω = p, Vz. However, Lawler

[19] and Lenstra etal. [21] proved 1|/?|1|Σ coC/to be Λ/Ρ-complete via the linear

20 arrangement problem, which implies determining the optimal firewall rule order

is also A/P-complete. Note, determining the number of possible permutations

has been proven to be Λ/Ρ-hard [5].

Theorem 1|/?| 11Σ ωΟ, a Determining the optimal order of a firewall rule list

25

Proof Consider the 1|/?|1|ΣωΟ,· problem. Each of n jobs J,, i e /, has to be

processed without preemption on a single machine that can handle at most one

job at a time. For each / e /, let ω be the associated weight. Furthermore, let G

= (½ E) be a DAG that represents the precedence order ofthe jobs J,. Assume

30 the processing time of each job equals 1 time unit, the weights to be 0 <ω <1

such that Σ ω = 1, and β, which is G, to be a rule list DAG. In this case, the

-11-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

optimization criterion Σ ω · C, is the same as Σ p, · /, which is given in equation

1. Clearly, the optimal firewall rule ordering problem has a solution if and only if

1|/?|11Σ coC, has a solution. Therefore, determining the optimal permutation of

firewall rules is A/P-complete.

Exemplary Rule Sorting Algorithm

Although determining the optimal rule permutation was proven to be NP-

complete, reducing the average number of comparisons required to process a

packet remains an important objective. As previously discussed, a sorting

algorithm must maintain the precedence relationships among rules. Of course

an exhaustive search is possible if the number of rules is small (generate and

test all possible topological orders); however as proven in the previous section,

this is not feasible with a realistic rule list.

One exemplary algorithm starts with the original the rule set, then sorts

neighboring rules based on nonincreasing probabilities. However, an exchange

of neighbors should never occur if the rules intersect and have different actions.

This test preserves any precedence relationships in the policy. For example,

the following sorting algorithm uses such a comparison to determine if

neighboring rules should be exchanged. Note a, denotes the action associated

with the ith rule.

done = false
while(ldone)

done = true
for(i = 1; i <n; i++)

if(p,· < p/+i AND (η rfr r/+1 OR a,· == a/+i))then
exchange rules, actions, and probabilities
done = false

endif
endfor

endwhile

Other sorting algorithms are possible if the completion time ofthe sort is

an issue; however, the method presented is easy to implement and only

requires a simple neighbor comparison. Assume the match probabilities for the

rule list given in Table 1. Applying the sorting algorithm to this rule list results in

the ordering depicted in Figure 2A, which has 10% fewer comparisons on

-12-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

average. However when using the algorithm, it is possible that one rule can

prevent another rule from being reordered. For example, rule if prevents rule r5

from being placed closer to the beginning of the rule set. However, if both rules

ri and r5 are placed closer to the beginning of the policy while maintaining their

relative order, the average number of comparison will be further reduced, 15%

fewer. This is the optimal order for the 6 rule set, which is depicted in Figure

2B. Although this simple sorting algorithm is unable to move groups of rules, it

can still improve the performance of the firewall system. Its effectiveness is

measured experimentally in the next section.

Experimental Results

In this section, the average number of rule comparisons required after

sorting the rules is compared with average number of comparisons required

using the original order and the optimal order. Note the optimal rule ordering

was determined via an exhaustive search. As a result, it was not feasible to

determine the optimal ordering once the number of rules equaled 15 given the

number of permutations to consider. Two different variations of the rule sorting

method described in the preceding section were implemented. The difference

between the methods was the comparison used to determine if neighboring

rules should be exchanged. The first sorting algorithm exchanged neighboring

rules if they were out of order and did not intersect. The if-condition was as

follows.

if (P/ < p,-+i AND q if /7+1) then I

Therefore, rule actions were not considered and the method will be referred to

as non-action sort. The second sorting method did consider the rule action (as

described in the preceding section) and will be referred to as action sort. The

comparison between the two sorting algorithms will indicate the importance of

considering rule actions when ordering rules.

In the first experiment, lists of 10 firewall rules were generated with

random precedence relationships. The match probability of each rule was

given by a Zipf distribution [20], which assigns probabilities according to the

rank of an item. For this simulation, the last rule had the highest probability

-13-

WO 2006/105093 PCT/US2006/011291

which is consistent with most policies (last rules are more general). As a result,

the original order yields the worst average number of comparisons. The

intersection percentage measured the percentage of rules that intersect in the

policy. This metric gives a value for the dependency level in the policy;

5 however note, rule action is not considered when calculating this metric. Rules

were equally likely to have an accept or deny action and the results (average

number of rule comparisons) for a particular intersection percentage were

averaged over 1000 simulations.

Results of the first experiment are given in Figures 3A and 3B. More

10 particularly, Figure 3A is a graph illustrating the average number of packet

comparisons versus intersection percentage for the original rule sorting, the

non-action sort, the action sort, and the optimal sort. Figure 3B is a graph

illustrating the percent difference in the average number of comparisons

required between the sorted and optimal firewall policy configurations. The

15 average number of comparisons required was lower for the sorted and the

optimal lists when the intersection percentage was low, as seen in Figure 3A.

This was expected since there is a large number of possible rule permutations

(few edges in the DAG). When the intersection percentage approached 100%,

the values converged to the number required for the original list. This is due to

20 the limited number of possible rule orders, only one order in the extreme case.

The percent difference between the sorted and optimal order is shown in Figure

3B. At zero intersection percentage the sorted and optimal orders are equal,

since any ordering is possible. Similarly at an intersection percentage of 100,

the sorted and optimal orders are equal since only one order is possible.

25 Between these two extremes, the action sorting algorithm remains close to the

optimal value. In contrast, the non-action sort had a maximum difference of

33%.

The benefit of rule sorting on larger policies is also of interest; however

as previously described, it was not possible to determine the optimal ordering

30 once the number of rules approaches 15. Therefore, the second experiment

used larger rule sets, but only compared the original order and the sorted

orders. The number of rules ranged from 10 to 1000, while the matching

probabilities and intersection percentages were the same as the previous

-14-

WO 2006/105093 PCT/US2006/011291

experiment. The results of this experiment are depicted in Figure 4A. The

sorted rule sets always performed equal to or better than the original order,

while the action sort consistently performed better than the non-action sort. As

noted in the previous experiment, the percent difference is very large given few

5 intersections (e.g. 80% decrease for 1000 rules with 0% dependency), but

approaches zero as all the rules intersect. As the number of rules increases,

sorting is increasingly beneficial, although only at low intersection percentages.

The benefit of sorting drops more significantly as the intersection percentage

increases with larger rule sets. This is primarily due to the low matching

10 probabilities of each rule, which requires a complete reordering to have a

significant impact on the average number of comparisons. As a result, large

rule sets can benefit from sorting if the intersection percentage is low.

The impact of considering rule actions when sorting is illustrated in

Figure 4B. In this experiment lists of 1000 rules were generated, where the

15 intersection percentages ranged from 0% to 100% and the percentage of rules

with the same action varied from 50% to 100%. The performance of the action

sort to the original list was then compared. As the percentage of rules with the

same action increased, the percent difference (reduction) in the average

number of comparisons also increased. This is due to the increased number of

20 permutations possible when the rule actions are increasingly the same (fewer

edges in the rule list DAG to consider). This is depicted in Figure 4B where a

policy with a 100% intersection percentage can significantly reduce the number

of comparisons (80% reduction) if all the rules have the same action. This

performance increase is not possible with the non-action sort. Therefore,

25 considering the rule action increases the number of possible rule orders,

thereby providing more possibilities to improve firewall performance.

Conclusions

Network firewalls enforce a security policy by comparing arriving packets

30 to a list of rules. An action, such as accept or deny, is then performed on the

packet based on the matching rule. Unfortunately packet filtering can impose

significant delays on traffic due to the complexity and size of rule sets.

-15-

WO 2006/105093 PCT/US2006/011291

Therefore, improving firewall performance is important, given network Quality of

Service (QoS) requirements and increasing network traffic loads.

The sections above describe rule ordering methods to improve the

performance of network firewalls. Assuming each rule has a probability of a

5 packet matching, firewall rules should be sorted such that the matching

probabilities are non-increasing. This reduces the average number of

comparisons and the delay across the firewall. However, a simple sort is not

possible given precedence relations across rules. It is common in a security

policy that two rules may match the same packet yet have different actions. It

10 is this precedence relationship between rules that must be maintained to

preserve integrity. The method described above uses Directed Acyclical

Graphs (DAG) to represent the precedence order rules must maintain. Given

this representation, a topological sort can be used to determine the optimal

order (minimum average number of comparisons); however, the examples

15 above prove this problem to be Λ/Ρ-complete (similar to job scheduling for a

single nonpreemptive machine with precedence constraints). As an alternative,

a simple sorting method was introduced that maintained the precedence order

of the rules. Simulation results indicate this method can significantly reduce the

average number of comparisons required and is comparable to optimal

20 ordering.

Several areas exist for future research in optimizing firewall rule lists.

The sorting method proposed above is based on a simple algorithm. Although

it can offer an improvement over the original rule order, algorithms that can

move groups of rules could provide a larger reduction in the average number of

25 comparisons. The effect of stateful firewalls should also be addressed in future

research. Security can be enhanced with connection state and packet audit

information. For example, a table can be used to record the state of each

connection, which is useful for preventing certain types of attacks (e.g., TCP

SYN flood) [30, 31]. The impact of such rules on the firewall needs to be

30 investigated and whether sorting can be done on-line to reflect temporal

changes. In addition, more research is needed to determine more accurate

probability distributions for packet matching and dependency percentages.

-16-

WO 2006/105093 PCT/US2006/011291

Given this information, better algorithms can be designed and more realistic

simulations can be performed.

Trie-Based Network Firewall Optimization Methods and Rule Splitting

5 Overview

As described above, while assuring firewall policy integrity is critical,

performance is equally important given increasing network speeds and traffic

volumes. Firewall processing delay can be reduced via hardware as well as

policy optimization, where rules are manipulated to reduce the number of

10 comparisons. For a given firewall installation, it can be determined that certain

security rules have a higher probability of matching a packet than others. As a

result, it is possible to develop a policy profile overtime that indicates frequency

of rule matches (similar to cache hit ratio). Given this information, trie-based

methods are described herein to minimize the average number of comparisons

15 required per packet. Although most firewall systems still utilize an ordered list

representation, the proposed enhancements still are applicable to current

firewall systems since a policy trie can be converted into an ordered list using

an inorder traversal.

20 Rule Sorting

As described above, rule sorting of neighboring rules based on

ascending probabilities in a manner that considers rules intersection and rule

actions can be used to improve firewall performance by reducing the number of

packet comparisons. The methods described above use Directed Acyclic Goal

25 Graphs (DAGs) to represent firewalls. The methods described in this section

will use the rule sorting algorithms in combination with policy trie

representations to perform sorting of groups of rules in a manner that improves

firewall performance.

In this example, it is assumed that a security policy contains a list of n

30 ordered rules, {ri, r2, ..., rn}. In addition, let p, represent the probability that a

packet will match rule / (first match in the policy). Therefore, the policy is

comprehensive, which means every packet will have a match, if Σ·=Ι P/ = 1-

-17-

WO 2006/105093 PCT/US2006/011291

Using this information, the average number of rule comparisons required can

be calculated as

El"] = tFPi
/=1

5
The average number of comparisons is minimized if the rules are sorted in non­

ascending order according to the probabilities. However, this can only be

achieved if the sorting algorithm considers the probabilities and whether one

rule is a superset of another. For example, sorting algorithms must use the

10 following comparison to determine if neighboring rules should be interchanged

Note, a,· denotes the action associated with the ith rule.

if (pi < pm AND r, OR a, == a/+i)) then

Sorting rules in this fashion can have positive impact on the average

15 number of comparisons required. Figure 5A is a table illustrating a firewall

policy prior to rule sorting. The expected number of comparisons for the policy

of Figure 5A is 4.26 comparisons per packet. Figure 5B is a table illustrating

the firewall policy of Figure 5A after sorting using the above-described

algorithm. In Figure 5B, the expected number of comparisons per packet has

20 been reduced to 3.94. Thus, using the method described above, the number of

comparisons per packet can be reduced by 8%.

However, it can be seen from Figures 5A and 5B that one rule can

prevent another rule from being reordered. For example in Figure 5B, rule

prevents rule r4 from being placed closer to the beginning of the rule set.

25 However, if both rules if and r4 are placed closer to the beginning of the policy

while maintaining their relative order, the average number of comparison will be

reduced.

To solve this problem, rule sets can be sorted a using policy tries. First,

the rule list is converted into an equivalent policy trie. Each sub-trie will have an

30 associated probability p that is average probability (hit-ratio) of the rules

comprising the sub-trie. Sub-tries can be rotated around their parent node to

increase performance, using the method described earlier. Since the policy trie

(or equivalent rule set) is tested from left to right, rotation should occur if the

-18-

WO 2006/105093 PCT/US2006/011291

probability of the right sub-trie is greater than the left sub-trie. As a result, the

average number of comparisons required will be reduced and the policy

integrity is maintained. Figure 6A is a trie representation of the rules in Figure

5B. Figure 6B is a table representing resulting rule set after rotating the TCP

5 and UDP sub-tries. The TCP sub-trie in Figure 6A has an expected packet

matching probability of 0.095 while the UDP sub-trie has an expected packet

matching probability of 0.155. Thus, the UDP sub-trie and the TCP sub-trie

should be rotated so that the UDP sub-trie becomes the left sub-trie and the

TCP sub-trie becomes the right sub-trie. In the table illustrated in Figure 6B,

10 which lists the ordering of the rules after rotating the sub-tries, the average

number of comparisons per packets has been reduced to 3.70.

Rule Splitting

Rule splitting takes a general rule and creates more specific rules that

15 collectively perform the same action over the same set of packets. Here, rule

splitting is used to reduce the average number of comparisons. For example in

Figure 7A, rule r5 is split into two separate rules, r5a for UDP and r5b for TCP.

Figure 7B is a table corresponding to the policy trie of Figure 7A. Once the

rules are positioned based on their probabilities and their relation to other rules,

20 the average number of rule comparisons is reduced to 2.98 (after sort, trie

rotation, and splitting) which is a 30% less.

It many not be advantageous to split a general rule since it adds another

rule to the policy. For example, assume a policy contains 20 rules where the

first 19 rules have the same probability. Assume the last rule can be split and

3
25 the new specific rule has a probability that is — of the last rule. The impact of

4

the probability of the last rule and the location of the new split rule, m, is

depicted in Figures 8A and 8B. More particularly, Figure 8A is a graph

illustrating the average number of comparisons for firewalls with and without

rule splitting. Figure 8B is a graph illustrating average number of comparisons

30 versus different locations of the new rule and probabilities. The average

number of comparisons is reduced as the split rule is located closer to the first

rule (surface decreases as m approaches one). Furthermore, splitting yields

-19-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

better results when the general rule has a high probability. However as

illustrated in Figure 8B, the closer the specific rule is to the location of the

original rule the average number of comparisons increases, which is the penalty

of adding one more rule to the policy.

The effect of splitting a single rule can be described mathematically as

follows. Consider n rules where rule rn can be split into rules rn,i and rn>/- (whose

union is the original rule). In addition, assume the split rule rn,i will be located at

the mth position (1 <m < n), while rule γΠιΓ will remain at the nth location. The

goal is to determine the best location m, which yields a lower average number

of comparisons as compared to the original rule set. This can be defined

mathematically in the following formula.

it m-1 n-1

Pi+m · p»,i+Σ +· Pi+(n+· pn,r
/=1 /=1 i=m

The left side of the inequality is the average number of comparisons for the

original rule set. The right hand side of the inequality is the average number of

comparisons with the specific rule at location m. If it is assumed that the rules

located between m and n have an equal probability (denoted as p) the previous

equation can be solved for m.

η· ρ-η· p +(η + ϊ)· p
m <--------------------------------------—

P~Pn,i

The new rule must be located between the first and mth; however, its final

location will depend on the relationship with the other rules (cannot be placed

before any rule for which it is a superset). This result can be applied iteratively

to multiple rules and repeatedly to the same rule.

Rule Optimization for QoS

In the preceding sections, optimizing the entire security policy has been

discussed. However, it may be desirable to optimize the rules for a certain type

of traffic, in order to reduce the average number of comparisons this traffic

encounters. This can be done by organizing the policy trie via traffic

-20-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

classification, then optimizing the sub-tries. The result is an ordering where the

rules for the most important traffic are tested first.

Network Firewall Optimization Using Rule Compression

Another method for network firewall optimization is referred to as rule

compression. Given a security policy R, one objective in optimizing firewall

performance is to reduce number of rules in the policy while maintaining the

original integrity. A method for reducing the number of rules called rule

compression, which combines and replaces two rules in the policy will now be

described. Although compression does reduce the number of rules, it can only

be done if the integrity of the original policy is maintained.

Consider two rules p and η in policy R, where p appears before η. The

two rules can be compressed if and only if the following conditions are true

1. The two rules intersect, ρ η η ψ 0 (an edge between η and η

exists in the policy DAG) (Tuples that are proper subsets and

supersets are considered. Compression may still occur if the

rules do not intersect or are adjacent in the set space, the

resulting rule may contain ranges.)

2. The action of ρ and η is the same.

3. Rule ρ is not dependent on any rule rk that is directly or indirectly

dependent on η (only one path from ρ to η exists in the policy

DAG).

The result of compression is a new rule, /7,; whose tuples are the union of

the corresponding tuples of rules ρ and p. The new rule pj replaces both η and

η in R; however, the location of pj in R may require the relocation of other rules.

Let Dj be the ordered set of rules that appear after ρ that directly or indirectly

depend upon η. The new rule is placed at the original location of ρ in R and the

rules Dj are placed before pj.

For example, consider the policy given in Table 2. It is possible to

compress rules r1 and r5, creating the new rule /γ5 =[TCP, *, *, 2.*, *, accept].

The ordered set Dj in this example consists of the rules r3 and r4. As a result,

the new rule ri,s is placed at the original location of r while the rules in Dj are

placed before the new rule. Figures 9A and 9B respectively illustrate the

-21-

WO 2006/105093 PCT/US2006/011291

original policy DAG for Table 2 and the policy DAG after rules zy and r5 are

compressed.

Table 2: Example Policy Consisting of Multiple Ordered Rules

No.

Source Destination

ActionProto. IP Port IP Port

1 TCP 1.1.* * 2.2.* *
accept

2 TCP 1.* * * 80 deny
3 TCP 3.3.* * * 80 accept
4 TCP 3.* * * *

deny
5 TCP * * 2 * 90 accept

Theorem Compressing rules η and η of policy R will maintain integrity if the

three conditions are met and method described is used.

10

Proof Before r, and /) are compressed, relocate the rules Dj immediately before

η and Dj. This relocation will maintain integrity due to the third requirement for

compression (no rule in D, can be dependent on any rule in Dj). Now place η

directly after η. This relocation will not affect integrity since no rule in D, can

15 have an edge to η (again, due to the third condition). Compressing the

neighboring rules η and η creates pj . This does not affect integrity since the

resulting rule only matches the packets that match η or η in the original policy.

Therefore, the result is the compression of rule p and η, and the integrity ofthe

policy is maintained.

20

Determining if Compression Should Occur

Although compression may be possible, it may not improve the

performance of the policy due to the relocation of rules. Compression should

only occur if the average number of comparisons required for the new policy Rc

25 is less than the original policy R; therefore, E[RC] < E[R].

-22-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

Firewall Rule Sub-Trie and Sub-List Ordering

Policy Sub-Trie Ordering

Additional methods for firewall optimization are referred to as firewall

sub-trie and sub-list ordering. Given a policy trie T, it may be desirable to order

all sub-tries such that the average number of tuple comparisons is reduced and

policy integrity is maintained. Consider a policy trie Tthat contains sub-tries 7

and Tj having the same parent node, as seen in Figures 10A-10C. Let P,

denote the sum of the probabilities of the rules contained in sub-trie /, while C,

denotes the number of comparisons required to completely traverse sub-trie /

(which is equal to the number of branches). In order to reduce the average

number of tuple comparisons, sub-tries that share the same parent node should

be ordered such that the following two conditions are observed.

1. Sub-tries that share a parent node are ordered such that the P,

values are non-ascending (higher match probabilities occur first,

from left to right).

2. If sub-tries that share a parent node have the same probability (P,·

equals Py), then order the sub-tries such that the Ct values are

non-descending (sub-tries consisting of fewer comparisons occur

first, from left to right).

These conditions are recursively applied throughout the policy trie as seen in

Figures 11A-11D. However, these conditions do not necessarily maintain policy

integrity.

Consider a group of n sub-tries that share the same parent node that are

numbered sequentially from left to right. Consider any two non-intersecting

sub-tries 7 and 7+/< in this group that are out of order. If two sub-tries do not

intersect, denoted as 7 cf Tj, then no rule in one sub-trie will intersect with any

rule in the other sub-trie, rk n, Vrk e 7, V/7 e Tj. The following integrity

condition must be observed when reordering the sub-tries. The two sub-tries

can be exchanged (rotated about the parent) if and only the sub-tries 7 through

Ti+k.i do not intersect with Ti+k and the sub-tries Τ,+ι through 7+a· do not intersect

with 7. Similar to finding the linear sequence of a policy DAGs, these

conditions maintain the policy trie integrity. This is observed in Figure 10A,

-23-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

where no edge exists between any rule in T1 and T2. More particularly, Figure

10A is a policy DAG of a six-rule firewall list. Figure 10B is a policy trie

representation of the firewall rule list represented by Figure 10A. In Figure 10B,

the average number of tuple compares required per packet is 5.5. Figure 10C

illustrates the policy trie after rotating sub-tries Tj and T2. In Figure 10C, the

average number of tuple compares required is 4.5. In Figures 10A-10C, the

following probabilities are assumed:

Pi = 0.5

Ci =4

P2 = 0.5; and

C2 = 2.

The average number of tuple comparisons is an estimate based on the longest

trie path.

Using the conditions for comparing and ordering, the following sorting

algorithm sorts neighboring sub-tries that share the same parent node.

m = a parent node in T
done = false
while(ldone)

done = true
for each sub-trie T having parent m AND a right neighboring sub-trie

if((Pi < Pi+i AND (Pi == Pi+1 AND Ci > Ci+1)) AND T Ti+1) then
interchange T, and T,-+i
done = false
endif

endfor
endwhile

Figures 11A-11D illustrate policy trie rotation for an eight-rule firewall

policy. More particularly, Figure 11A illustrates the policy DAG representation

of an eight-rule firewall policy. Figure 11B is a policy trie representation of the

original firewall policy. In this example, ordering occurs in three stages, starting

at the bottom level and moving towards the top level of the trie. In Figure 11C,

the leaves are ordered at the lowest level. More particularly, nodes ρ and r2

are exchanged with nodes r7 and r8. The average number of tuple compares

for the ordering represented by Figure 11C is 10.45. In Figure 11D, the sub-

-24-

WO 2006/105093 PCT/US2006/0U291

tries on the second lowest level (T3, T4, T5, and Te) are ordered. More

particularly, Figure 11D illustrates the policy trie after exchanging sub-tries T3

and T4. The average number of tuple compares for the representation in Figure

11D is 10.275. In Figure 11E, the sub-tries on the second highest level, (Ti and

5 T2) are ordered. Figure 11E illustrates the final ordering after exchanging Ti

and T2. In the policy trie of Figure 11E, the average number of tuple compares

required is 6.775. The average number of tuple comparisons is an estimate

based on the longest trie path.

i

10 Policy Sub-List Ordering

The preceding section describes conditions for sorting policy sub-tries,

which allow the exchange of groups of rules (sub-tries). The same conditions

can be applied to list based policies, where sub-lists are ordered to improve the

average number of rule comparisons.

15 In the sections above relating to rule sorting, a method is described to

exchange neighboring rules in a list-based security policy, as seen in Figure

12B. However, it was observed that when ordering rules in this fashion it is

possible that one rule can block the exchange of another. If groups of rules

were allowed to be exchanged the average number of rule comparisons could

20 be further reduced.

Given a policy list L, it may be desirable to order all sub-lists such that

the average number of rule comparisons is reduced and policy integrity is

maintained. Consider a policy list L that contains sub-tries L, and Lj. Let P,

denote the sum of the probabilities of the rules contained in sub-list /, while C,

25 denotes the number of rules in sub-list /. In order to reduce the average

number of rule comparisons, sub-lists should be ordered such that the following

two conditions are observed.

1. Sub-lists are ordered such that the P: values are non-ascending

30 (higher match probabilities occur first, from left to right).

2. If sub-lists have the same probability (P, equals F)), then order the

sub-lists such that the C, values are non-descending (sub-lists

consisting of fewer comparisons occur first, from left to right).

-25-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

These conditions are applied throughout the policy list; however as with policy

tries, these conditions do not necessarily maintain policy integrity.

Consider a group of n sub-lists that are numbered sequentially from left

to right. Consider any two non-intersecting sub-lists L, and L,+k in this group that

are out of order. If two sub-lists do not intersect, denoted as L, a Lj, then no

rule in one sub-list will intersect with any rule in the other sub-list, rk A η, \frk g

Lt, Vq g Lj. The following integrity condition must be observed when reordering

the sub-lists. The two sub-lists can be exchanged if and only if the sub-lists L,

through Li+k-i do not intersect with any rule in Li+k and sub-lists Li+i through Li+k

do not intersect with L,·. Similar to finding the linear sequence of a policy DAGs,

these conditions maintain the policy trie integrity. For example, consider the

sub-lists Li = {g, r3} and L2 = {r2, r4} given in Figure 12B. No edge exists

between any rule in Li and L2. The two sub-lists are out of order with respect to

Rand should be exchanged. The resulting list is given in Figure 12C. Figure

12A illustrates the original policy order and results in an average number of rule

comparisons of 3.4. In the sorted version in Figure 12B, the average number of

rule comparisons is 3.3. In Figure 12C, the average number of rule

comparisons has been reduced to 2.7. Using the conditions for comparing and

ordering, the following sorting algorithm sorts neighboring sub-lists.

done = false

while(ldone)

done = true

for each sub-list L\ having a right neighboring sub-list

if ((R < Pi+i OR (R == Pi+i AND q > Ci+1)) AND U Ui)then

interchange rules and probabilities

done = false

endif

endfor

endwhile

-26-

WO 2006/105093 PCT/US2006/011291

Summary of Firewall Policy Optimization Techniques and Methods

As stated above, the methods and systems described herein for a

network firewall policy optimization can be implemented using any combination

of hardware, software, and/or firmware. Alternatively, the steps for firewall

5 policy optimization can be performed manually with the number of rules being

optimized is small enough. Figure 13 is a flow chart illustrating an exemplary

process for firewall policy optimization according to an embodiment of the

subject matter described herein. Referring to Figure 13, in block 1300, a

firewall policy including an ordered list of firewall rules is defined. In block 1302,

10 for each rule, a probability indicating a likelihood of receiving a packet that

matches each rule is specified. In block 1304, neighboring rules are sorted in

order of non-increasing probability in a manner that preserves firewall policy. In

block 1306, groups of rules are sorted in order of non-increasing probability in a

manner that preserves firewall policy. For example, any of the policy-trie-based

15 methods described above may be used. In block 1308, one or more rules are

split to reduce the number of average packet comparisons. In block 1310,

intersecting rules having common actions are identified and collapsed into

single rules.

As described above, the subject matter described herein may be

20 implemented in hardware, software, and/or firmware. In one implementation,

the subject matter described herein for firewall policy optimization may be

implemented on a general purpose computing platform. Figure 14 is a block

diagram of a general purpose computing platform including software for firewall

policy optimization according to an embodiment of the subject matter described

25 herein. Referring to Figure 14, computing platform 1400 may be a general

purpose computer, such as a personal computer, that includes a

microprocessor 1402, memory 1404, and I/O interfaces 1406. Microprocessor

1400 may be any suitable microprocessor, such as any of the Intel or AMD

families of microprocessors. Memory 1404 may include volatile memory for

30 running programs and persistent memory, such as one or more disk storage

devices. I/O interface 1406 may include interfaces with I/O devices, such as

user input devices and output devices.

-27-

WO 2006/105093
PCT/US2006/011291

5

10

15

20

25

30

In the illustrated example, software that may be resident in memory 1404

includes a firewall policy editor 1408 and a firewall policy optimizer 1410.

Firewall policy editor 1408 may allow a user to define a firewall policy. For

example, firewall policy editor 1408 may allow a user to define a firewall policy

by specifying different rules. The rules may be specified in a graphical manner,

for example using policy DAGs as described above. Alternatively, firewall

policy editor 1408 may allow a user to input rules in a tabular manner, as

illustrated in any ofthe tables described herein. Firewall policy optimizer 1410

may implement any or all ofthe firewall policy optimization techniques to order

rules entered via firewall policy editor 1408 in a manner that preserves policy

integrity and that enhances firewall performance.

A firewall rule set that is optimized using the subject matter described

herein may be implemented on any firewall system that includes one or more

firewalls. For example, an optimized firewall rule set according to embodiments

of the subject matter described herein may be implemented using any of the

hierarchical, multi-node firewall systems described in commonly assigned, co­

pending U.S. patent application no. 11/316,331, filed December 22, 2005, the

disclosure of which is incorporated herein by reference in its entirety. Figure 15

illustrates an example of a multi-node firewall system suitable for implementing

the firewall rules according to an embodiment of the subject matter described

herein. Referring to Figure 15, a plurality of firewall nodes 1500, 1502,

1504,and 1506 may collectively implement any ofthe optimized firewall policies

described herein. For example, the firewall nodes may collectively implement

different portions of a firewall policy data structure including an ordered list of

firewall rules. A firewall policy engine 1508 resident on each firewall node may

filter packets using its local portion 1510 ofthe firewall policy data structure. A

control node 1512 may include a firewall policy optimizer 1514 that measures

the average number of comparisons per packets for the current rule

configuration and may dynamically reorder the rules to reduce the average

number of comparisons per packet. For example, firewall policy optimizer 1514

may utilize any ofthe methods described herein to rearrange rules and improve

firewall performance. Rules may be tested for rearrangement at user-specified

-28-

WO 2006/105093 PCT/US2006/011291

5

10

15

20

25

30

intervals or when average number of packet comparisons increases by a user-

specified amount.

References

The disclosure of each ofthe following references is hereby incorporated

herein by reference in its entirety.

[1] E. Al-Shaer and H. Hamed. Firewall Policy Management Advisor for

Anomaly Detection and Rule Editing. In Proceedings ofthe IFIP/IEEE

International Symposium on Integrated Network Management, 2003.

[2] E. Al-Shaer and H. Hamed. Modeling and Management of Firewall

Policies. IEEE Transactions on Network and Service Management, 1 (1),

2004.

[3] S. M. Bellovin and W. Cheswick. Network Firewalls. IEEE

Communications Magazine, pages 50-57, Sept. 1994.

[4] C. Benecke. A Parallel Packet Screen for High Speed Networks. In

Proceedings of the 15th Annual Computer Security Applications

Conference, 1999.

[5] G. Brightwell and P. Winkler. Counting Linear Extensions is #P-

Complete. In Proceedings of the Twenty-Third Annual ACM Symposium

on Theory of Computing, 1991.

[6] M. Christiansen and E. Fleury. Using Interval Decision Diagrams for

Packet Filtering. Technical report, BRICS, 2002.

[7] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A

Software Architecture for Next-Generation Routers. IEEE/ACM

Transactions on Networking, 8(1), February 2000.

[8] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small Forwarding

Tables for Fast Routing Lookups. In Proceedings of ACM SIGCOMM,

pages 4-13, 1997.

[9] U. Ellermann and C. Benecke. Firewalls for ATM Networks. In

Proceedings of INFOSEC’COM, 1998.

[10] A. Feldmann and S. Muthukrishnan. Tradeoffs for Packet Classification.

In Proceedings ofthe IEEE INFOCOM, pages 397 - 413, 2000.

-29-

WO 2006/105093 PCT/US2006/011291

[11] E. W. Fulp. Firewall Architectures for High Speed Networks. Technical

Report 20026, Wake Forest University Computer Science Department,

2002.

[12] E. W. Fulp. Firewall Policy Models Using Ordered-Sets. Technical

5 report, Wake Forest University Computer Science Department, 2004.

[13] R. Funke, A. Grote, and H.-U. Heiss. Performance Evaluation of

Firewalls in Gigabit-Networks. In Proceedings of the Symposium on

Performance Evaluation of Computerand Telecommunication Systems,

1999.

10 [14] S. Goddard, R. Kieckhafer, and Y. Zhang. An Unavailability Analysis of

Firewall Sandwich Configurations. In Proceedings of the 6th IEEE

Symposium on High Assurance Systems Engineering, 2001.

[15] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan.

Optimizing and Approximation in Determinstic Sequencing and

15 Scheduling: A Survey. Annals of Discrete Mathematics, 5:287 - 326,

1979.

[16] A. Hari, S. Suri, and G. Parulkar. Detecting and Resolving Packet Filter

Conflicts. In Proceedings of IEEE INFOCOM, pages 1203-1212, 2000.

[17] HiPAC. High Performance Packet Classification, http://www.hipac.org.

20 [18] E. Horowitz, S. Sahni, and D. Mehta. Fundamentals of Data Structures

in C++. Compuer Science Press, 1995.

[19] E. L. Lawler. Sequencing Jobs to Minimize Total Weighted Completion

Time Subject to Precedence Constraints. Annals of Discrete

Mathematics, 2:75 - 90, 1978.

25 [20] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the Self­

Similar Nature of Ethernet Traffic. IEEE Transactions on Networking,

2:1 -15,1994.

[21] J. K. Lenstra and A. H. G. R. Kan. Complexity of Scheduling under

Precedence Constraints. Operations Research, 26(1):22 - 35, 1978.

30 [22] O. Paul and M. Laurent. A Full Bandwidth ATM Firewall. In

Proceedings ofthe 6th European Symposium on Research in Computer

Security ESORICS’2000, 2000.

-30-

http://www.hipac.org

20
06

23
01

71

08
 Se

p 2
01

1 [23] B. R. Preiss. Data Structures and Algorithms with Object-Oriented

Design Patterns in C++. John Wiley & Sons, 1999.

[24] L. Qui, G. Varghese, and S. Suri. Fast Firewall Implementations for

Software and Hardware-Based Routers. In Proceedings of ACM

5 SIGMETRICS, June 2001.

[25] V. P. Ranganath and D. Andresen. A Set-Based Approach to Packet

Classification. In Proceedings of the IASTED International Conference

on Parallel and Distributed Computing and Systems, pages 889-894,

2003.

10 [26] R. Rivest. On Self-Organizing Sequential Search Heuristics,

Communications of the ACM, 19(2), 1976.

[27] W. E. Smith. Various Optimizers for Single-Stage Production. Naval

Research Logistics Quarterly, 3:59-66, 1956.

[28] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and

15 Scalable Layer Four Switching. In Proceedings of ACM SIGCOMM,

pages 191-202, 1998.

[29] S. Suri and G. Varghese. Packet Filtering in High Speed Networks. In

Proceedings of the Symposium on Discrete Algorithms, pages 969 -

970, 1999.

20 [30] R. L. Ziegler. Linux Firewalls. New Riders, second edition, 2002.

[31] E. D. Zwicky, S. Cooper, and D. B. Chapman. Building Internet

Firewalls. O’Reilly, 2000.

It is to be understood that, if any prior art publication is referred to

herein, such reference does not constitute an admission that the publication

25 forms a part of the common general knowledge in the art, in Australia or any

other country.

In the claims which follow and in the preceding description of the
invention, except where the context requires otherwise due to express
language or necessary implication, the word “comprise” or variations such as

30 “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the
presence of the stated features but not to preclude the presence or addition of
further features in various embodiments of the invention.

-31-
2812965.2 (GHMattera) P75550 AU

It will be understood that various details of the invention may be

changed without departing from the scope of the invention. Furthermore, the

foregoing description is for the purpose of illustration only, and not for the

purpose of limitation.

20
06

23
01

71

08
 Se

p 2
01

1

-32-
281298S_2 (GHMattera) P7S8S0 AU

06/06 2012 11:40 FAX 61 7 32211245 GRIFFITH HACK ®0005/0017

el optimized firewall policy, the

20
06

23
01

71

06
 Ju

n
20

12

The claims defining the invention are sjs follov/s:

1. A method for producing a perf|rmanci
method comprising:

(a)
(b)

(c)

(d)

η the group from being moved,
ginning of :he ordered list that

Ij

2.

3.

i.
i.I-
f ! 1

defining a firewall policy including an ordered list of firewall rules;
f ί I

for each rule, defining a first match probability indicating the

likelihood that the rule wil| be this first matclji for a given packet;
sorting neighboring rules order of non-inci
the first match probabilities and
firewall policy; and
sorting groups of two or pore rbles in ord<br of non-increasing
probability in a manner th^t preserves the fir ewall policy, wherein

at least one of the groupp of twajor more rules includes a first
rule that prevents a secorjd rule
within the group, closer tb a be
implements the firewall policy an|di wherein sorting the groups of
rules includes moving th| first ^pd seconc rules closer to the
beginning of the ordered list Wljiile maintaining their relative
position. ί

Ii:I:
ff

The method of claim 1 wherein sorting n
increasing probability in a man|ier thatj preserve^ the firewall policy
includes rearranging the rules if e|first ru
second rule and the first rule is |ot a sybset of the second rule with a
different action. |i

i:I.
!:1;

ijeasing probability for
irji a manner that preserves the

; I
i Ϊ

i ajghboring rules in order of non-

e has a lovjer probability than a

I

The method of claim 1 <
order of non-increasing probability
firewall policy. |

comprising sortin g|groups of two or more rules in
a manner that preserves thein

342O3OO_1 (GHMattera) P75850AU

COMS ID No: ARCS-372276 Received by IP Australia: Time (H:m) 11:49 Date (Y-M-d) 2012-06-06

06/06 2012 11:41 FAX 61 7 32211245 GRIFFITH HACKir
®0006/0017

I

20
06

23
01

71

06
 Ju

n
20

12

4.

5.

The method of claim 3 wherein porting groups of tyvo or more rules in a
manner that preserves firewall pjolicy in<
rules to a sub-trie in a policy trie| comp
probabilities for rules in each sub-trie, arid, in response to determining

■

that a first sub-trie has a lower sjim thaiua second sub-trie, rotating the

first and second sub-tries about|a com
second sub-trie will be applied before tf
firewall policy. i·

i;
II
i
ί:

cjludes ass gning each group of
ujting a surrji of packet matching

mon parent so that rules in the
e rules in the first sub-trie in the

ί

determining that the
[mining whether the

The method of claim 4 comprising, in response to
first and second sub-tries have jequal ^iims, dete

branches than the first sub-trie,second sub-trie has an lower number of
and, in response to determining! that ttjie second sub-trie has a lower

number of branches than the firs
sub-tries about a common paren

: sub-tnie, rotating
so that (he rules ip the second sub-trie

will be applied before the rules iii the fiist sub-trie

the first and second

n the firewall policy.
I

6. The method of claim 3 wherein sorting groups of two or more rules in a
manner that preserves the firewall policy includes:

(a)

7.

identifying first and second sub-l sts of rules in the ordered list of
firewall rules, the first sub4ist preceding the second sub-list in the
ordered list of firewall rule|s; i

determining a sum of packet matching probabilities for each of
the first and second sub-l|sts;

determining whether the first and
in response to determining that t

!!
probabilities for the second sub-li

I:

packet matching probabilities for
and second sub-lists do njpt inter
first and second sub-lists in the c rdered list pf firewall rules.

1 I

I: i
r i

The method of claim 6 comprisinjg, in response to determining that the
sums of the packet matching propabilities for the first and sub-lists are

(b)

(c)

(d)

j

1 second sub-lists intersect; and
le sum of t|ie packet matching
st is greatej than the sum of the

I

he first suld-list and that the first
spot, switching the order of the

3420300J (GHMaftera) P75850AU

COMS ID No: ARCS-372276 Received by IP Australia: Time (H:m) 11:49 Date (Y-M-d) 2012-06-06

06/06 2012 11:41 FAX 61 7 32211245 GRIFFITH HACK @10007/0017

20
06

23
01

71

06
 Ju

n
20

12

8.

9.

10.

11.

12.

13.

i
i
II

sub-list he s a lower number of
I:

equal, determining whether the jseconc
rules than the first sub-list, anc|, in re sponse to determining that the
second sub-list has a lower number
switching the order of the first arjd seco

firewall rules. i
I:

|;

The method of claim 1 comprisi
rules to reduce an average number
received packet. !?

i
!i
ii

The method ofclaim 1 comprising

an the first sub-list,qf rules th
i Jd sub-lists in the ordered list of

i

I |ig splitting at least one of the firewall
I
Of comparisons required per

The method ofclaim 1 comprising identifying inters acting rules having a
common action and collapsing ttje rules into a single rule representing a
union of the intersecting rules, i j

l: I
! i
J

The method ofclaim 1 wherein sorting neighboring rules includes sorting
rules such that comparisons for a particular class of packets are
reduced. i '

The method of claim 1 comprisi
directed acyclical graph (DAG),
between the rules, assigning the breced ejnee relationships to edges that
connect the vertices in the DAG| and wherein sorting the neighboring
rules in order of non-increasing probability in a manner that preserves
the firewall policy includes sorting the ne i

preserves the precedence relationships

i

The method of claim 1 wherein jjhe rule
rules. Ii

l:
I '
ί:

The method of claim 1 wherein t|ie rule:
rules. j

ig assi gning the rlules to vertices in a
ietermiping prece dence relationships

ighboring rules in a manner that
represented by the DAG.

i I! I

ιέ comprise intrusion detection

is comprise intrusion protection

3420300.1 P7S8S0AU

COMS ID No: ARCS-372276 Received by IP Australia: Time (H:m) 11:49 Date (Y-M-d) 2012-06-06

06/06 2012 11:42 FAX 61 7 32211245 GRIFFITH HACK ®0008/0017

A system for firewall policy optirMzation,j for implementing the steps of

20
06

23
01

71

06
 Ju

n
20

12

14.
any one of claims 1-13.

15. . -V 1. .].
I:
i.

a firewall policy data structure for

rules; i
{'·

A network firewall comprising: (
(a)

I
storing an ordered list of firewail

a firewall policy by(b)

(c)

16.

comparing packets to th^ rules
„)·

I.

t
wall policy optimizer

is further configured to so|t grou
. .1........

that preserves the

a firewall policy engine for implementing
jn the order specified by the

firewall policy data structure; and;
a firewall policy optimizer for optimizing performance of the
network firewall by reordering the rules in a rpanner that reduces

f
an average number of rule comparisons per packet and that
preserves the firewall policy, wherein the firef

ps of two or more rules in order
of non-increasing probability in a manner

1'
firewall policy, wherein at |east o ie of the groups of two or more
rules includes a first rule that prevents a second rule in the group
from being moved, within rhe grojup, closer |o a beginning of the

ordered list that i
sorting the groups of rule^ includes moving the first and second
rules closer to the beginning of the ordered I
their relative position. |

I.I: 1;
.1. ...

1'

mplembnts the firewall policy and wherein
_ i _ I _i_ ■ _

st while maintaining

j
IThe network firewall of claim 15 ^herein [the firews II policy optimizer ic

adapted to measure average nupber of [comparisons per packet for a
rule ordering specified by the firewall
dynamically re-order to rules jto red
comparisons per packet. |

1!■

is

policy da
ujce the a

a structure and to
verage number of

17.
ί

r I
A computer program product comprising computer executable
instructions embodied in a computer readable medium which, when
executed on one or more comp|uting c evices or platforms, performs
steps in accordance with any on| of clairps 1 -13. j

3420300,1 (Gl-Nattera) P75850.AU

COMS ID No: ARCS-372276 Received by IP Australia: Time (H:m) 11:49 Date (Y-M-d) 2012-06-06

P75850.AU

06/06 2012 11:43 FAX 61 7 32211245 GRIFFITH HACK ®0009/0017

q optimized firewall policy, the
bribed witlh reference to the

20
06

23
01

71

06
 Ju

n
20

12 18.

19.

A method for producing a perfirmanci
method substantially as here|n des
accompanying drawings. |

i: rI;
Ϊ

A network firewall substantially a|s herei
f

accompanying drawings. *
i:
|i
l·
I.
ii
li
ί

i: ! Ϊ:
iil·
ΐ·
I:

i(described with reference to the

3420800.1 (GHMatters} P75B50AU

COMS ID No: ARCS-372276 Received by IP Australia: Time (H:m) 11:49 Date (Y-M-d) 2012-06-06

WO 2006/105093 PCT/US2006/011291

1/19

FIG. 1A

FIG. IB

WO 2006/105093 PCT/US2006/011291

2/19

FIG. 2A

FIG. 2B

WO 2006/105093 PCT/US2006/011291

3/19

av
er

ag
e

nu
m

be
r o

f c
om

pa
ris

on
s

Average Number of Compares as Dependency Increases

FIG. 3A

WO 2006/105093 PCT/US2006/011291

4/19

35
Percent Difference in Number of Compares Between Sorted and Optimal

T T

30

TT

......... Nan-action sort:
— Action sort

25

8
g 20

g 15a rf

10

5

0
0

: /
: <

/
z: /

/
/

/

7
i ... I

20

s _
s

X

X
X

X -H,
I" " r·

40 60 80
intersection percentage

I

100

FIG. 3B

WO 2006/105093

5/19

PCT/US2006/011291

ce
nt

 d
iff

er
en

ce

FIG. 4A

WO 2006/105093
PCT/US2006/011291

6/19

Performance Impact of Rule Intersection and Action

percentage percent with same action

FIG. 4B

WO 2006/105093 PCT/US2006/011291

7/19

ri (UDP, 1.1.*, ACCEPT) Pl =0.01
Γ2 (TCP, 1 *

1 . , ACCEPT) P2 = 0.02
r3 (TCP, o * , ACCEPT) P3 =0.17
Γ4 (UDP, 1 *

± . , DENY) P4 = 0.30
?5 (*, ❖

? DENY) P5 = 0.50

FIG. 5A

r3 (TCP, 2.*, ACCEPT) P3 =0.17
P2 (TCP, 1 *

± . 2 ACCEPT) P2 = 0.02
ri (UDP, 1.1.*, ACCEPT) Pl =0.01
r4 (UDP, 1 * -L . ? DENY) P4 = 0.30
T5 (*, * ? DENY) P5 = 0.50

FIG. 5B

WO 2006/105093
PCT/US2006/0U291

8/19

FIG. 6A

n (UDP, 1.1.*, ACCEPT) Pl =0.01
r4 (UDP, 1 'k

X . 5 DENY) P4 == 0.30
(TCP, 9 * ACCEPT) P3 =0.17

Γ2 (TCP, 1 *
X . 5 ACCEPT) P2 = 0.02

T5 (*, *
5 DENY) P5 = 0.50

FIG. 6B

WO 2006/105093 PCT/US2006/011291

9/19

r5b r5

FIG. 7A

ri (UDP, 1.1.
r4 (UDP, 1·*,
l”5a (UDP, *

r3 (TCP, 2 *
1*2 (TCP, 1 4! x . ,
T5b (TCP,

ACCEPT)
ACCEPT)
DENY)
ACCEPT)
ACCEPT)
DENY)

Pl =0.01
P4 = 0.30
P5a = 0.47
P3 =0.17
P2 = 0.02
P5b = 0.03

FIG. 7B

WO 2006/105093 PCT/US2006/011291

10/19

FIG. 8A

WO 2006/105093 PCT/US2006/011291

11/19

FIG. 8B

WO 2006/105093 PCT/US2006/011291

12/19

FIG. 9A

FIG. 9B

WO 2006/105093 PCT/US2006/011291

13/19

parent

FIG. 10B

FIG. IOC

WO 2006/105093 PCT/US2006/011291

14/19

FIG. 11A

FIG. 1 IB

1*2 ri Γ3 1*4
0.05 0.025 0.025 0.15

FIG. 11C

WO 2006/105093 PCT/US2006/011291

15/19

FIG. 1 ID

r3 r4
0.025 0.15

Γ2 Γ1
0.05 0.025

■Γ5 r6 r7
0.125 0.25 0.125

Γ8
0.25

FIG. 11E

WO 2006/105093 PCT/US2006/011291

16/19

FIG. 12A

FIG. 12B

FIG. 12C

WO 2006/105093 PCT/US2006/011291

17/19

FIG. 13

WO 2006/105093 PCT/US2006/011291

18/19

TO I/O DEVICES
1400 i

1408

FIG. 14

WO 2006/105093 PCT/US2006/011291

19/19

