Innovation, Sciences et Innovation, Science and CA 3009359 C 2020/09/15

I*I Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 3 009 359
12 BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépdt PCT/PCT Filing Date: 2017/01/13 (51) ClLInt./Int.Cl. GO6F 9/52(2006.01),

(87) Date publication PCT/PCT Publication Date: 2017/07/20 GO6F 11/14(2006.01)
(72) Inventeurs/Inventors:

(45) Date de délivrance/lssue Date: 2020/09/15 DOUROS, BRYAN PHIL, US;

(85) Entrée phase nationale/National Entry: 2018/06/20 STANFILL, CRAIG W., US;

86) N° demande PCT/PCT Application No.: US 2017/013309 WHOLEY, JOSEPH SKEFFINGTON, Ill, US
(87) N° publication PCT/PCT Publication No.: 2017/123849 | (73) Propriétaire/Owner:

e AB INITIO TECHNOLOGY LLC, US
(30) Priorité/Priority: 2016/01/14 (US62/278,528)
(74) Agent: ROBIC

(54) Titre : TRAITEMENT DE FLUX RECUPERABLE
(54) Title: RECOVERABLE STREAM PROCESSING

Processing of First Pulse
100

112C 1128 112A 132A

5

e
zzzzzzA L
£’° SN

¥ 1224

-

121
131
N TEa i J
1134 122A

121

(57) Abrégé/Abstract:

A computing system (100) includes nodes (152) executing data processing programs that each process at least one stream of
data units. A data storage system (156, 157) stores shared data accessible by at least two of the programs. Processing at least one
stream using a first data processing program includes: processing a first stream of data units that includes multiple subsets of
contiguous data units; initiating termination of processing within the first data processing program, between processing a first
subset of contiguous data units and processing a second subset of contiguous data units adjacent to the first subset of contiguous
data units within the first stream of data units; durably storing at least some changes to the shared data caused by processing the
first subset of contiguous data units after determining that the termination of processing within the first data processing program
has completed; and resuming processing within the first data processing program.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

2017/123849 A1 I 000 10 D00 O 00

<

W

CA 03009359 2018-06-20

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
20 July 2017 (20.07.2017)

(10) International Publication Number

WO 2017/123849 A1l

WIPOIPCT

(51) International Patent Classification:
GO6F 9/52 (2006.01) GO6F 11/14 (2006.01)

(21) International Application Number:

PCT/US2017/013309

(22) International Filing Date:

13 January 2017 (13.01.2017)
English
English

(25)
(26)
(30)

Filing Language:
Publication Language:

Priority Data:
62/278,528 14 January 2016 (14.01.2016) Us

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventors: DOUROS, Bryan Phil; 92 Lakeview Road,
Framingham, Massachusetts 01701 (US). STANFILL,
Craig W.; 43 Huckleberry Hill Road, Lincoln, Massachu-
setts 01773 (US). WHOLEY, Joseph Skeffington, III; 11
Hillcrest Road, Belmont, Massachusetts 02478 (US).

Agent: MASON, Elliott J., IIT; Occhiuti & Rohlicek LLP,
321 Summer Street, Boston, Massachusetts 02210 (US).

1

(72

74

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, S@G, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZIM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: RECOVERABLE STREAM PROCESSING

Processing of First Pulse

1128 112A

— 1224,

”@ 122A

113A-"

121

100

135

121

141 142

FIG. 7B

(57) Abstract: A computing system (100) includes nodes (152) executing data processing programs that each process at least one
stream of data units. A data storage system (156, 157) stores shared data accessible by at least two of the programs. Processing at
least one stream using a first data processing program includes: processing a first stream of data units that includes multiple subsets
of contiguous data units; initiating termination of processing within the first data processing program, between processing a first sub-
set of contiguous data units and processing a second subset of contiguous data units adjacent to the first subset of contiguous data
units within the first stream of data units; durably storing at least some changes to the shared data caused by processing the first sub -
set of contiguous data units after determining that the termination of processing within the first data processing program has com-
pleted; and resuming processing within the first data processing program.

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

RECOVERABLE STREAM PROCESSING

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Application Serial No. 62/278,528, filed
on January 14, 2016.

BACKGROUND

This description relates to recoverable stream processing.

Some data processing programs receive a batch of data to be processed (e.g., one
or more files or database tables), and the amount of time needed for processing that data
is well-defined since it is based on the amount of data in the batch. This type of
processing is called “batch processing.” Some data processing programs receive one or
more streams of data that are processed for a potentially unknown amount of time since
the streams may include an unknown or arbitrary number of data units, or a potentially
continuous flow of data units. This type of processing is called “stream processing” or
“continuous flow processing.” The factors that are relevant to providing recoverability in
data processing systems can depend on the type of processing being used, as well as other
characteristics such as whether or not there are multiple interacting data processing

programs, and whether or not the order of processing data units is deterministic.

SUMMARY

In one aspect, in general, an apparatus includes: a computing system including
one or more nodes, the computing system configured to execute a plurality of data
processing programs that each process at least one stream of data units; and at least one
data storage system accessible to at least one of the one or more nodes, the data storage
system, in use, storing shared data accessible by at least two of the plurality of data
processing programs. Processing at least one stream of data units using at least a first
data processing program of the one or more data processing programs includes:
processing a first stream of data units to generate output for each of a plurality of subsets
of contiguous data units within the first stream of data units; initiating termination of
processing within the first data processing program, between processing a first subset of

contiguous data units and processing a second subset of contiguous data units adjacent to

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

the first subset of contiguous data units within the first stream of data units; durably
storing at least some changes to the shared data caused by processing the first subset of
contiguous data units after determining that the termination of processing within the first
data processing program has completed; resuming processing within the first data
processing program after the changes have been durably stored; and releasing, from the
first data processing program, first output generated for the first subset of contiguous data
units after the changes have been durably stored.

Aspects can include one or more of the following features.

The plurality of data processing programs each process at least one stream of data
units with no program state information being maintained over more than two adjacent
data units in the stream.

The data storage system includes a non-volatile storage medium, and durably
storing at least some changes to the shared data caused by processing the first subset of
contiguous data units includes storing the changes in the non-volatile storage medium.

The data storage system includes a communication medium coupled to a plurality
of the nodes, and durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units includes sending the changes from a
first node to at least a second node of the plurality of the nodes over the communication
medium.

The data storage system also stores stream state information associated with one
or more streams of data units processed by at least one of the plurality of data processing
programs.

Processing at least one stream of data units using at least the first data processing
program further includes, after determining that the termination of processing within the
first data processing program has completed, durably storing stream state information
associated with the first stream of data units.

Releasing, from the first data processing program, the first output generated for
the first subset of contiguous data units includes releasing the first output to an external
program that is not included in the plurality of data processing programs executing on the

computing system.

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

Durably stored changes to the shared data caused by processing the first subset of
contiguous data units are distinguished from durably stored changes to the shared data
caused by processing the second subset of contiguous data units (e.g., enabling pipelined
checkpoints, as described in more detail below).

At least some changes to the shared data caused by processing the first subset of
contiguous data units are durably stored after at least some changes to the shared data
caused by processing the second subset of contiguous data units have started, where the
first subset of contiguous data units are before the second subset of contiguous data units
within the first stream of data units.

The first output generated for the first subset of contiguous data units is released
from the first data processing program after all changes caused by processing the first
subset of contiguous data units have been durably stored.

Processing is resumed within the first data processing program after a first portion
of changes have been durably stored but before a second portion of changes have been
durably stored.

The first data processing program terminates processing the first stream of data
units periodically, and the computing system begins durably storing at least some
changes to the shared data caused by processing data units while the first data processing
program is terminated.

Initiating termination of processing within the first data processing program
includes inserting a stream-ending indicator between the first subset of contiguous data
units the second subset of contiguous data units, and the termination of processing within
the first data processing program has completed after all processes that perform tasks
specified by the first data processing program have exited normally in response to the
stream-ending indicator.

The shared data is accessible by all of the plurality of data processing programs.

In another aspect, in general, an apparatus includes: a computing system including
one or more nodes, the computing system configured to execute a plurality of data
processing programs that each process at least one stream of data units (such that at least
a first group of multiple data processing programs of the plurality of data processing

programs processes two or more streams of data units); and at least one data storage

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

system accessible to at least one of the one or more nodes, the data storage system, in use,
storing shared data accessible by at least two of the plurality of data processing programs.
Processing two or more streams of data units using at least the first group of multiple data
processing programs of the plurality of data processing programs includes: processing,
for each data processing program in the first group, a respective stream of data units that
includes a plurality of subsets of contiguous data units; initiating termination of
processing within each data processing program in the first group, between processing a
first subset of contiguous data units and processing a second subset of contiguous data
units adjacent to the first subset of contiguous data units within the respective stream of
data units; durably storing at least some changes to the shared data caused by processing
the first subset of contiguous data units after determining that the termination of
processing within each data processing program in the first group has completed; and
resuming processing within each data processing program in the first group after the
changes have been durably stored.

Aspects can include one or more of the following features.

The plurality of data processing programs each process at least one stream of data
units with no program state information being maintained over more than two adjacent
data units in the stream.

The data storage system includes a non-volatile storage medium, and durably
storing at least some changes to the shared data caused by processing the first subset of
contiguous data units includes storing the changes in the non-volatile storage medium.

The data storage system includes a communication medium coupled to a plurality
of the nodes, and durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units includes sending the changes from a
first node to at least a second node of the plurality of the nodes over the communication
medium.

The data storage system also stores stream state information associated with one
or more streams of data units processed by at least one of the plurality of data processing
programs.

Processing two or more streams of data units using at least the first group of

multiple data processing programs further includes, after determining that the termination

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

of processing within each data processing program in the first group has completed,
durably storing stream state information associated with each respective stream of data
units processed by any of the data processing programs in the first group.

Processing two or more streams of data units using at least the first group of
multiple data processing programs further includes releasing, from the first group of
multiple data processing programs, first output generated for the first subset of
contiguous data units after the changes have been durably stored.

Releasing, from the first group of multiple data processing programs, the first
output generated for the first subset of contiguous data units includes releasing the first
output to one of the plurality of data processing programs executing on the computing
system that is not included in the first group of multiple data processing programs.

Releasing, from the first group of multiple data processing programs, the first
output generated for the first subset of contiguous data units includes releasing the first
output to an external program that is not included in the plurality of data processing
programs executing on the computing system.

The external program sends a request to access particular shared data that is
accessible by at least one data processing program in the first group, and a result of the
request is released to the external program after all changes to the particular shared data
that occurred before the request was received have been durably stored.

Durably stored changes to the shared data caused by processing the first subset of
contiguous data units are distinguished from durably stored changes to the shared data
caused by processing the second subset of contiguous data units.

At least some changes to the shared data caused by processing the first subset of
contiguous data units are durably stored after at least some changes to the shared data
caused by processing the second subset of contiguous data units have started, where the
first subset of contiguous data units are before the second subset of contiguous data units
within the first stream of data units.

The first output generated for the first subset of contiguous data units is released
from the first group of multiple data processing programs after all changes caused by

processing the first subset of contiguous data units have been durably stored.

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

Processing two or more streams of data units includes processing four or more
streams of data units using at least the first group of multiple data processing programs
and a second group of multiple data processing programs of the plurality of data
processing programs.

Each group of multiple data processing programs terminates processing of
respective streams of data units periodically, and the computing system begins durably
storing at least some changes to the shared data caused by processing data units while all
data processing programs in that group are terminated.

The first group of data processing programs terminates and processing of
respective streams of data units at a first frequency, and the second group of data
processing programs terminate processing of respective streams of data units at a second
frequency different from the first frequency.

Processing is resumed within each data processing program in the first group after
a first portion of changes have been durably stored but before a second portion of
changes have been durably stored.

The first group of multiple data processing programs terminates processing the
two or more streams of data units periodically, and the computing system begins durably
storing at least some changes to the shared data caused by processing data units while all
data processing programs in the first group are terminated.

Initiating termination of processing within the first data processing program
includes inserting a stream-ending indicator between the first subset of contiguous data
units the second subset of contiguous data units, and the termination of processing within
the first data processing program has completed after all processes that perform tasks
specified by the first data processing program have exited normally in response to the
stream-ending indicator.

The shared data is accessible by all of the plurality of data processing programs.

In another aspect, in general, an apparatus includes: a computing system including
one or more nodes, the computing system configured to execute a plurality of data
processing programs that each process at least one stream of data units; and at least one
data storage system accessible to at least one of the one or more nodes, the data storage

system, in use, storing shared data accessible by at least two of the plurality of data

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

processing programs. Processing at least one stream of data units using at least a first
data processing program of the plurality of data processing programs includes: processing
a first stream of data units that includes a plurality of subsets of contiguous data units;
initiating termination of processing within the first data processing program, between
processing a first subset of contiguous data units and processing a second subset of
contiguous data units adjacent to the first subset of contiguous data units within the first
stream of data units; durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after determining that the termination
of processing within the first data processing program has completed; and resuming
processing within the first data processing program before all of the changes have
completed being durably stored.

Aspects can include one or more of the following features.

The plurality of data processing programs each process at least one stream of data
units with no program state information being maintained over more than two adjacent
data units in the stream.

The data storage system includes a non-volatile storage medium, and durably
storing at least some changes to the shared data caused by processing the first subset of
contiguous data units includes storing the changes in the non-volatile storage medium.

The data storage system includes a communication medium coupled to a plurality
of the nodes, and durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units includes sending the changes from a
first node to at least a second node of the plurality of the nodes over the communication
medium.

Processing at least one stream of data units using at least the first data processing
program further includes storing at least one snapshot of the shared data and storing a
journal of changes to the shared data caused by processing data units after the snapshot
was stored.

Durably storing at least some changes to the shared data caused by processing the
first subset of contiguous data units includes storing at least a portion of the snapshot and

storing at least a portion of the journal of changes.

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

The data storage system also stores stream state information associated with one
or more streams of data units processed by at least one of the plurality of data processing
programs.

Processing at least one stream of data units using at least the first data processing
program further includes, after determining that the termination of processing within the
first data processing program has completed, durably storing stream state information
associated with the first stream of data units.

Processing at least one stream of data units using at least the first data processing
program further includes, before determining that the termination of processing within
the first data processing program has completed, durably storing at least some changes to
the shared data caused by processing the first subset of contiguous data units.

Processing at least one stream of data units using at least the first data processing
program further includes, after resuming processing within the first data processing
program, durably storing at least some changes to the shared data caused by processing
the second subset of contiguous data units.

Durably stored changes to the shared data caused by processing the first subset of
contiguous data units are distinguished from durably stored changes to the shared data
caused by processing the second subset of contiguous data units.

At least some changes to the shared data caused by processing the first subset of
contiguous data units are durably stored after at least some changes to the shared data
caused by processing the second subset of contiguous data units have started, where the
first subset of contiguous data units are before the second subset of contiguous data units
within the first stream of data units.

Processing at least one stream of data units using at least the first data processing
program further includes further includes generating output for each of the plurality of
subsets of contiguous data units, and releasing from the first data processing program,
first output generated for the first subset of contiguous data units after the changes have
completed being durably stored.

The first output generated for the first subset of contiguous data units is released
from the first data processing program after all changes caused by processing the first

subset of contiguous data units have been durably stored.

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

The first data processing program terminates processing the first stream of data
units periodically, and the computing system begins durably storing at least some
changes to the shared data caused by processing data units while the first data processing
program is terminated.

Initiating termination of processing within the first data processing program
includes inserting a stream-ending indicator between the first subset of contiguous data
units the second subset of contiguous data units, and the termination of processing within
the first data processing program has completed after all processes that perform tasks
specified by the first data processing program have exited normally in response to the
stream-ending indicator.

The shared data is accessible by all of the plurality of data processing programs.

In another aspect, in general, an apparatus including means for performing the
processing of any of the apparatus above.

In another aspect, in general, a method for performing the processing of any of the
apparatus above.

In another aspect, in general, software is stored in a non-transitory form on a
computer-readable medium, the software including instructions for causing a computing
system to perform the processing of any of the apparatus above.

In another aspect, in general, a method includes: executing, on a computing
system including one or more nodes, a plurality of data processing programs that each
process at least one stream of data units; and storing, on at least one data storage system
accessible to at least one of the one or more nodes, shared data accessible by at least two
of the plurality of data processing programs; wherein processing at least one stream of
data units using at least a first data processing program of the one or more data
processing programs includes:processing a first stream of data units to generate output for
each of a plurality of subsets of contiguous data units within the first stream of data units;
initiating termination of processing within the first data processing program, between
processing a first subset of contiguous data units and processing a second subset of
contiguous data units adjacent to the first subset of contiguous data units within the first
stream of data units; durably storing at least some changes to the shared data caused by

processing the first subset of contiguous data units after determining that the termination

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

of processing within the first data processing program has completed; resuming
processing within the first data processing program after the changes have been durably
stored; and releasing, from the first data processing program, first output generated for
the first subset of contiguous data units after the changes have been durably stored.

In another aspect, in general, software is stored in a non-transitory form on a
computer-readable medium, the software including instructions for causing a computing
system to: execute a plurality of data processing programs that each process at least one
stream of data units; and store shared data accessible by at least two of the plurality of
data processing programs; wherein processing at least one stream of data units using at
least a first data processing program of the one or more data processing programs
includes: processing a first stream of data units to generate output for each of a plurality
of subsets of contiguous data units within the first stream of data units; initiating
termination of processing within the first data processing program, between processing a
first subset of contiguous data units and processing a second subset of contiguous data
units adjacent to the first subset of contiguous data units within the first stream of data
units; durably storing at least some changes to the shared data caused by processing the
first subset of contiguous data units after determining that the termination of processing
within the first data processing program has completed; resuming processing within the
first data processing program after the changes have been durably stored; and releasing,
from the first data processing program, first output generated for the first subset of
contiguous data units after the changes have been durably stored.

In another aspect, in general, a method includes: executing, on a computing
system including one or more nodes, a plurality of data processing programs that each
process at least one stream of data units; and storing, on at least one data storage system
accessible to at least one of the one or more nodes, shared data accessible by at least two
of the plurality of data processing programs; wherein processing two or more streams of
data units using at least a first group of multiple data processing programs of the plurality
of data processing programs includes: processing, for each data processing program in
the first group, a respective stream of data units that includes a plurality of subsets of
contiguous data units; initiating termination of processing within each data processing

program in the first group, between processing a first subset of contiguous data units and

-10-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

processing a second subset of contiguous data units adjacent to the first subset of
contiguous data units within the respective stream of data units; durably storing at least
some changes to the shared data caused by processing the first subset of contiguous data
units after determining that the termination of processing within each data processing
program in the first group has completed; and resuming processing within each data
processing program in the first group after the changes have been durably stored.

In another aspect, in general, software is stored in a non-transitory form on a
computer-readable medium, the software including instructions for causing a computing
system to: execute a plurality of data processing programs that each process at least one
stream of data units; and store shared data accessible by at least two of the plurality of
data processing programs; wherein processing two or more streams of data units using at
least a first group of multiple data processing programs of the plurality of data processing
programs includes: processing, for each data processing program in the first group, a
respective stream of data units that includes a plurality of subsets of contiguous data
units; initiating termination of processing within each data processing program in the first
group, between processing a first subset of contiguous data units and processing a second
subset of contiguous data units adjacent to the first subset of contiguous data units within
the respective stream of data units; durably storing at least some changes to the shared
data caused by processing the first subset of contiguous data units after determining that
the termination of processing within each data processing program in the first group has
completed; and resuming processing within each data processing program in the first
group after the changes have been durably stored.

In another aspect, in general, a method includes: executing, on a computing
system including one or more nodes, a plurality of data processing programs that each
process at least one stream of data units; and storing, on at least one data storage system
accessible to at least one of the one or more nodes, shared data accessible by at least two
of the plurality of data processing programs; wherein processing at least one stream of
data units using at least a first data processing program of the plurality of data processing
programs includes: processing a first stream of data units that includes a plurality of
subsets of contiguous data units; initiating termination of processing within the first data

processing program, between processing a first subset of contiguous data units and

-11-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

processing a second subset of contiguous data units adjacent to the first subset of
contiguous data units within the first stream of data units; durably storing at least some
changes to the shared data caused by processing the first subset of contiguous data units
after determining that the termination of processing within the first data processing
program has completed; and resuming processing within the first data processing
program before all of the changes have completed being durably stored.

In another aspect, in general, software stored in a non-transitory form on a
computer-readable medium, the software including instructions for causing a computing
system to: execute a plurality of data processing programs that each process at least one
stream of data units; and store shared data accessible by at least two of the plurality of
data processing programs; wherein processing at least one stream of data units using at
least a first data processing program of the plurality of data processing programs
includes: processing a first stream of data units that includes a plurality of subsets of
contiguous data units; initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units and processing a
second subset of contiguous data units adjacent to the first subset of contiguous data units
within the first stream of data units; durably storing at least some changes to the shared
data caused by processing the first subset of contiguous data units after determining that
the termination of processing within the first data processing program has completed; and
resuming processing within the first data processing program before all of the changes
have completed being durably stored.

Aspects can have one or more of the following advantages.

Computing systems configured for real-time data processing often need to handle
relatively large volumes of data in one or more incoming data streams, and also need to
be able to respond to incoming requests with low latency. The techniques described
herein enable such systems to have recoverability, fault tolerance, and high availability
while not compromising the response latency requirements. The techniques can also be
applied to collections of multiple interacting data processing programs. One of the
mechanisms used for recoverability is checkpointing. High frequency checkpointing
(e.g., with a period of around 10 ms to 100 ms) can be achieved, supporting the ability to

provide escrowed output with low latency in response to a request.

-12-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 11is ablock diagram of a task-based computing system.

FIG. 2A is a processing timeline showing successful processing of first and
second pulses of input data and failed processing of a third pulse of input data in a pulsed
ingestion computing system.

FIG. 2B is the processing timeline of FIG. 2A showing a recovery operation
restoring a state of the processing to a checkpoint associated with the successful
processing of the second pulse of input data.

FIG. 2C is the processing timeline of FIG. 2A showing a successful reprocessing
of the third pulse of output data.

FIG. 3 is a processing timeline of a general pulsed ingestion checkpointing
approach.

FIG. 4 is a processing timeline of a recovery procedure in the general pulsed
ingestion checkpointing approach of FIG. 3.

FIG. 5 is a processing timeline of a multiple graph version of the general pulsed
ingestion checkpointing approach of FIG. 3.

FIG. 6 is a processing timeline of an incremental and pipelined pulsed ingestion
checkpointing approach.

FIG. 7A is an exemplary computing system implementing an incremental and
pipelined pulsed ingestion checkpointing approach.

FIG. 7B is the computing system of FIG. 7A processing a first pulse of input data
and journaling state changes related to the processing of the first pulse.

FIG. 7C shows the computing system of FIG. 7A in a quiesced state after
finishing processing of the first pulse of input data.

FIG. 7D shows the computing system of FIG. 7A processing a second pulse of
input data and journaling state changes related to the processing of the second pulse while

durably storing the state changes related to the first pulse of input data.

- 13-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

FIG. 7E shows the computing system of FIG. 7A releasing output data generated
from the first pulse of input data from escrow upon completion of durably storing the
state changes related to the first pulse of input data.

FIG. 7F shows the computing system of FIG. 7A continuing to maintain output
data generated from the second pulse of input data in escrow and journaling state changes
related to the second pulse of input data.

FIG. 7G shows the computing system of FIG. 7A recovering from an error in
processing the second pulse of input data.

FIG. 8 is a computing system implementing a distributed incremental and
pipelined pulsed ingestion checkpointing approach.

FIG. 9A shows multiple computing systems interacting with a transactional data
store and implementing an incremental and pipelined pulsed ingestion checkpointing
approach.

F1G. 9B shows a transactional data store commit procedure for the system of FIG.
OA.

DESCRIPTION

1 System Overview

Referring to FIG. 1, a task-based computing system 100 uses a high-level
program specification 110 to control computation and storage resources of a computing
platform 150 to execute the computation specified by the program specification 110. A
compiler/interpreter 120 receives the high-level program specification 110 and generates
a task-based specification 130 that is in a form that can be executed by a task-based
runtime interface/controller 140. The compiler/interpreter 120 identifies one or more
“execution sets” of one or more “components” that can be instantiated, individually or as
a unit, as fine-grained tasks to be applied to each of multiple data elements. Part of the
compilation or interpretation process involves identifying these execution sets and
preparing the sets for execution, as described in more detail below. It should be
understood that the compiler/interpreter 120 may use any of variety of algorithms that

include steps such as parsing the high-level program specification 110, verifying syntax,

- 14-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

type checking data formats, generating any errors or warnings, and preparing the task-
based specification 130, and the compiler/interpreter 120 can make use of a variety of
techniques, for example, to optimize the efficiency of the computation performed on the
computing platform 150. A target program specification generated by the
compiler/interpreter 120 can itself be in an intermediate form that is to be further
processed (e.g., further compiled, interpreted, etc.) by another part of the system 100 to
produce the task-based specification 130. The discussion below outlines one or more
examples of such transformations but of course other approaches to the transformations
are possible as would be understood, for example, by one skilled in compiler design.
Generally, the computation platform 150 is made up of a number of computing
nodes 152 (e.g., individual server computers that provide both distributed computation
resources and distributed storage resources) thereby enabling high degrees of parallelism.
As discussed in further detail below, the computation represented in the high-level
program specification 110 is executed on the computing platform 150 as relatively fine-

grain tasks, further enabling efticient parallel execution of the specified computation.

2 Data Processing Graphs

In some embodiments, the high-level program specification 110 is a type of
graph-based program specification called a “data processing graph” that includes a set of
“components”, each specifying a portion of an overall data processing computation to be
performed on data. The components are represented, for example, in a programming user
interface and/or in a data representation of the computation, as nodes in a graph. Unlike
some graph-based program specifications, such as the data processing graphs described
above, the data processing graphs may include links between the nodes that represent any
of transfer of data, or transfer of control, or both. One way to indicate the characteristics
of the links is by providing different types of ports on the components. The links are
directed links that are coupled from an output port of an upstream component to an input
port of a downstream component. The ports have indicators that represent characteristics
of how data elements are written and read from the links and/or how the components are

controlled to process data.

-15-

10

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

These ports may have a number of different characteristics. One characteristic of
a port is its directionality as an input port or output port. The directed links represent data
and/or control being conveyed from an output port of an upstream component to an input
port of a downstream component. A developer is permitted to link together ports of
different types. Some of the data processing characteristics of the data processing graph
depend on how ports of different types are linked together. For example, links between
different types of ports can lead to nested subsets of components in different “execution
sets” that provide a hierarchical form of parallelism, as described in more detail below.
Certain data processing characteristics are implied by the type of the port. The different
types of ports that a component may have include:

e (ollection input or output ports, meaning that an instance of the
component will read or write, respectively, all data elements of a
collection that will pass over the link coupled to the port. For a pair of
components with a single link between their collection ports, the
downstream component is generally permitted to read data elements as
they are being written by an upstream component, enabling pipeline
parallelism between upstream and downstream components. The data
elements can also be reordered, which enables efficiency in
parallelization, as described in more detail below. In some graphical
representations, for example in programming graphical interfaces, such
collection ports are generally indicated by a square connector symbol at
the component.

e Scalar input or output ports, meaning that an instance of the component
will read or write, respectively, at most one data element from or to a link
coupled to the port. For a pair of components with a single link between
their scalar ports, serial execution of the downstream component after the
upstream component has finished executing is enforced using transfer of
the single data element as a transfer of control. In some graphical
representations, for example in programming graphical interfaces, such
scalar ports are generally indicated by a triangle connector symbol at the

component.

-16-

10

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

e Control input or output ports, which are similar to scalar inputs or outputs,
but no data element is required to be sent, and are used to communicate
transfers of control between components. For a pair of components with a
link between their control ports, serial execution of the downstream
component after the upstream component has finished executing is
enforced (even if those components also have a link between collection
ports). In some graphical representations, for example in programming
graphical interfaces, such control ports are generally indicated by a
circular connector symbol at the component.

These different types of ports enable flexible design of data processing graphs,
allowing powerful combinations of data and control flow with the overlapping properties
of the port types. In particular, there are two types of ports, collection ports and scalar
ports, that convey data in some form (called “data ports”); and there are two types of
ports, scalar ports and control ports, that enforce serial execution (called “serial ports™).
A data processing graph will generally have one or more components that are “source
components” without any connected input data ports and one or more components that
are “sink components” without any connected output data ports. Some components will
have both connected input and output data ports. In some embodiments, the graphs are
not permitted to have cycles, and therefore must be a directed acyclic graph (DAG). This
feature can be used to take advantage of certain characteristics of DAGs, as described in
more detail below.

The use of dedicated control ports on components of a data processing graph also
enable flexible control of different parts of a computation that is not possible using
certain other control flow techniques. For example, job control solutions that are able to
apply dependency constraints between data processing graphs don’t provide the fine-
grained control enabled by control ports that define dependency constraints between
components within a single data processing graph. Also, data processing graphs that
assign components to different phases that run sequentially don’t allow the flexibility of
sequencing individual components. For example, nested control topologies that are not

possible using simple phases can be defined using the control ports and execution sets

-17-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

described herein. This greater flexibility can also potentially improve performance by
allowing more components to run concurrently when possible.

By connecting different types of ports in different ways, a developer is able to
specify different types of link configurations between ports of components of a data
processing graph. One type of link configuration may correspond to a particular type of
port being connected to the same type of port (e.g., a scalar-to-scalar link), and another
type of link configuration may correspond to a particular type of port being connected to
a different type of port (e.g., a collection-to-scalar link), for example. These different
types of link configurations serve both as a way for the developer to visually identify the
intended behavior associated with a part of the data processing graph, and as a way to
indicate to the compiler/interpreter 120 a corresponding type of compilation process
needed to enable that behavior. While the examples described herein use unique shapes
for different types of ports to visually represent different types of link configurations,
other implementations of the system could distinguish the behaviors of different types of
link configurations by providing different types of links and assigning each type of link a
unique visual indicator (e.g., thickness, line type, color, etc.). However, to represent the
same variety of link configurations possible with the three types of ports listed above
using link type instead of port type, there would be more than three types of links (e.g.,
scalar-to-scalar, collection-to-collection, control-to-control, collection-to-scalar, scalar-
to-collection, scalar-to-control, etc.) Other examples could include different types of
ports, but without explicitly indicating the port type visually within a data processing
graph.

The compiler/interpreter 120 performs procedures to prepare a data processing
graph for execution. A first procedure is an execution set discovery pre-processing
procedure to identify a hierarchy of potentially nested execution sets of components. A
second procedure is a control graph generation procedure to generate, for each execution
set, a corresponding control graph that the compiler/interpreter 120 will use to form
control code that will effectively implement a state machine at runtime for controlling
execution of the components within each execution set. Each of these procedures will be

described in greater detail below.

- 18-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

A component with at least one input data port specifies the processing to be
performed on each input data element or collection (or tuple of data elements and/or
collections on multiple of its input ports). One form of such a specification is as a
procedure to be performed on one or a tuple of input data elements and/or collections. If
the component has at least one output data port, it can produce corresponding one or a
tuple of output data elements and/or collections. Such a procedure may be specified in a
high level statement-based language (e.g., using Java source statements, or a Data
Manipulation Language (DML) for instance as used in U.S. Pat. 8,069,129 “Editing and
Compiling Business Rules”), or may be provided in some fully or partially compiled
form (e.g., as Java bytecode). For example, a component may have a work procedure
whose arguments include its input data elements and/or collections and its output data
clements and/or collections, or more generally, references to such data clements or
collections or to procedures or data objects (referred to herein as “handles”) that are used
to acquire input and provide output data elements or collections.

Work procedures may be of various types. Without intending to limit the types of
procedures that may be specified, one type of work procedure specifies a discrete
computation on data elements according to a record format. A single data element may
be a record from a table (or other type of dataset), and a collection of records may be all
of the records in a table. For example, one type of work procedure for a component with
a single scalar input port and a single scalar output port includes receiving one input
record, performing a computation on that record, and providing one output record.
Another type of work procedure may specify how a tuple of input records received from
multiple scalar input ports are processed to form a tuple of output records sent out on
multiple scalar output ports.

The semantic definition of the computation specified by the data processing graph
is inherently parallel in that it represents constraints and/or lack of constraints on ordering
and concurrency of processing of the computation defined by the graph. Therefore, the
definition of the computation does not require that the result is equivalent to some
sequential ordering of the steps of the computation. On the other hand, the definition of
the computation does provide certain constraints that require sequencing of parts of the

computation, and restrictions of parallel execution of parts of the computation.

-19-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

In the discussion of data processing graphs, implementation of instances of
components as separate “tasks” in a runtime system is assumed as a means of
representing sequencing and parallelization constraints. A more specific discussion of an
implementation of the data processing graph into a task-based specification, which
implements the computation consistently with the semantic definition, is discussed more
fully after the discussion of the characteristics of the graph-based specification itself.

Generally, each component in a data processing graph will be instantiated in the
computing platform a number of times during execution of the graph. The number of
instances of each component may depend on which of multiple execution sets the
component is assigned to. When multiple instances of a component are instantiated,
more than one instance may execute in parallel, and different instances may execute in
different computing nodes in the system. The interconnections of the components,
including the types of ports, determine the nature of parallel processing that is permitted
by a specified data processing graph.

Although in general state is not maintained between executions of different
instances of a component, as discussed below, certain provisions are provided in the
system for explicitly referencing ‘persistent data’ that may span executions of multiple
instances of a component. One way to ensure that such persistent data will be available
for later executions, and/or recoverable in the event of certain faults, is to durably store
such persistent data in a durable storage medium (e.g., a medium in which information
can be stored without loss in the event of one or more predetermined faults such as power
interruptions, such as a non-volatile storage medium).

In examples where a work procedure specifies how a single record is processed to
produce a single output record, and the ports are indicated to be collection ports, a single
instance of the component may be executed, and the work procedure is iterated to process
successive records to generate successive output records. In this situation, it is possible
that state is maintained within the component from iteration to iteration.

In examples where a work procedure specifies how a single record is processed to
produce a single output record, and the ports are indicated to be scalar ports, multiple
instances of the component may be executed, and no state is maintained between

executions of the work procedure for different input records.

-20-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

Also, in some embodiments, the system supports work procedures that do not
follow a finest-grained specification introduced above. For example, a work procedure
may internally implement an iteration, for example, which accepts a single record
through a scalar port and provides multiple output records through a collection port.

As noted above, there are two types of data ports, collection ports and scalar
ports, that convey data in some form; and there are two types of serial ports, scalar ports
and control ports, that enforce serial execution. In some cases, a port of one type can be
connected by a link to a port of another type. Some of those cases will be described
below. In some cases, a port of one type will be linked to a port of the same type. A link
between two control ports (called a “control link””) imposes serial execution ordering
between linked components, without requiring data to be sent over the link. A link
between two data ports (called a “data link™) provides data flow, and also enforces a
serial execution ordering constraint in the case of scalar ports, and does not require serial
execution ordering in case of collection ports. A typical component generally has at least
two kinds of ports including input and output data ports (either collection ports or scalar
ports) and input and output control ports. Control links connect the control port of an
upstream component to a control port of a downstream component. Similarly, data links
connect the data port of an upstream component to a data port of a downstream

component.

3 Computing Platform

Referring back to FIG. 1, instances of components of the data processing graph
are spawned as tasks in the context of executing a data processing graph and are
generally executed in multiple of the computing nodes 152 of the computing platform
150. As discussed in more detail below, the interface/controller 140 provides supervisory
control aspects of the scheduling and locus of execution of those tasks in order to achieve
performance goals for the system, for example, related to allocation of computation load,
reduction in communication or input/output overhead, and use of memory resources.

Generally, after translation by the compiler/interpreter 120, the overall
computation is expressed as a task-based specification 130 in terms of procedures of a

target language that can be executed by the computing platform 150. These procedures

-21-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

make use of primitives, such as “spawn” and “wait” and may include within them or call
the work procedures specified by a programmer for components in the high-level (e.g.,
graph-based) program specification 110.

In many instances, each instance of a component is implemented as a task, with
some tasks implementing a single instance of a single component, some tasks
implementing a single instance of multiple components of an execution set, and some
tasks implementing successive instances of a component. The particular mapping from
components and their instances depends on the particular design of the
compiler/interpreter, such that the resulting execution remains consistent with the
semantic definition of the computation.

Generally, tasks in the runtime environment are arranged hierarchically, for
example, with one top-level task spawning multiple tasks, for example, one for each of
the top-level components of the data processing graph. Similarly, computation of an
execution set may have one task for processing an entire collection, with multiple (i.e.,
many) sub-tasks each being used to process an element of the collection.

In the runtime environment, each task that has been spawned may be in one of a
set of possible states. When first spawned, a task is in a Spawned state prior to being
initially executed. When executing, it is in an Executing state. From time to time, the
task may be in a Suspended state. For example, in certain implementations, a scheduler
may put a task into a Suspended state when it has exceeded quantum of processor
utilization, is waiting for a resource, etc. In some implementations, execution of tasks is
not preempted, and a task must relinquish control. There are three Suspended sub-states:
Runnable, Blocked, and Done. A task is Runnable, for example, if it relinquished control
before it had completed its computation. A task is Done when it has completed its
processing, for example, prior to the parent task retrieving a return value of that task. A
task is Blocked if it is waiting for an event external to that task, for example, completion
of another task (e.g., because it has used the “wait for” primitive), or availability of a data
record (e.g., blocking one execution of an in.read() or out. write() function).

Referring again to FIG. 1, each computing node 152 has one or more processing
engines 154. Each computing node 152 also includes buffer memory 156 (e.g., volatile

storage medium), data storage 157 (e.g., non-volatile storage medium), and in I/O

-22-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

interface 158, which may access a source and/or destination 160 for data being consumed
and/or produced by the computing platform 150. FEither or both of the buffer memory
156 and/or data storage 157 on one or more of the computing nodes 152 may be
configured to be accessible my multiple of the computing nodes 152. In at least some
implementations, each processing engine 154 is associated with a single operating system
process executing on the computing node 152. Depending on the characteristics of the
computing node 152, it may be efficient to execute multiple processing engines 154 on a
single computing node 152. For example, the computing node 152 may be a server
computer with multiple separate processors, or the server computer may have a single
processor that has multiple processor cores, or there may be a combination of multiple
processors with multiple cores. In any case, executing multiple processing engines may
be more efficient than using only a single processing engine on a computing node 152.
One example of a processing engine is hosted in the context of a virtual machine.
One type of virtual machine is a Java Virtual Machine (JVM), which provides an
environment within which tasks specified in compiled form as Java Bytecode may be
executed. But other forms of processing engines, which may or may not use a virtual

machine architecture can be used.

4 Recovery

In some examples, the computing system 100 described above implements a
recovery algorithm to ensure that, if a processing failure occurs (e.g., a computing node
fails during a processing operation), the system can be restarted such that it produces
results which could have been produced if the system had not failed or had gone to sleep
or slowed down for a period of time.

One simple recovery algorithm includes processing the data as an atomic unit of
work such that, after a failure, all of the work done by the data processing graph is rolled
back. In this batch processing approach, the computing system achieves recoverability
by restoring any files that were changed during the failed processing to their state before
the processing began. In this way, the recovery algorithm can assure that all work done

and changes made during the failed processing are discarded. This type recovery

-23-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

algorithm it is especially useful when data is being processed by a single data processing
graph which processes all of the data in a relatively short amount of time.

However, when dealing with multiple graphs which update persistent, shared
resources or when dealing which graphs which process data over a long (possibly
indefinite) duration, it is impractical and sometimes impossible to treat the processing of

the data as an atomic unit of work that can be entirely rolled back after a failure.

4.1 Entanglement

For example, when the computing system concurrently processes one or more
shared resources using multiple data processing graphs, including updating persistent,
shared data, recoverability is lost due to a condition referred to as ‘entanglement.” Shared
data is data that is able to be read and written (or modified) by each of at least two
different data processing graphs. The shared data may be, for example, variables whose
values are read and written by different data processing graphs as a form of shared state
and/or shared communication among the data processing graphs.

For an example of entanglement, consider a situation where two data processing
graphs are processing independent sets of shared data, where each data processing graph
makes changes to the shared data atomically. A situation can occur where a first of the
two data processing graphs processes a set of data, makes changes in an atomic update,
and commits its changes to confirm they have been made persistent (e.g., durably stored),
after which a failure occurs in the execution of a second of the two data processing
graphs. If the system implements a recovery procedure that restores any data (including
the shared data) that was changed during the failed processing of the second data
processing graph to its state before the processing began, then at least some of the
changes that the first data processing graph made to the shared data will be undone,
resulting in an inconsistency. On the other hand, if the system doesn’t restore any data
(including the shared data) that was changed during the failed processing of the second
data processing graph to its state before the processing began, then the output of the
second data processing graph may be incorrect due to the state of the shared data being
incorrect at the beginning of its processing. Thus, due to entanglement, data processing

graphs operating on shared data can not be independently restored after a failure.

-24-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

One approach to recovery in the presence of entangled processes includes
isolating the multiple data processing graphs from one another so the graphs can not see
one another’s changes. However, it is often the case that the data processing graphs are
operating on the same data items and isolation is therefore not possible. Furthermore, in
some examples the multiple data processing graphs run for a relatively long duration
which is likely to result in either one data processing graph waiting for another to release
a lock or one data processing graph being rolled back due to a deadlock (using
pessimistic concurrency control) or a commit-time collision (using optimistic
concurrency control). Other approaches to recovery in the presence of entangled
processes include running the multiple data processing graphs as a part of a single atomic

unit of work or running the multiple data processing graphs serially.

42 Long Running Graphs

In some examples, data processing graphs executing in the computing system 100
process continuous streams of data without any well-defined ending point. These data
processing graphs are sometimes referred to as ‘ingestion graphs.” When processing a
continuous stream of data, it is inappropriate to treat processing of all of the data as a
single, atomic unit of work and the recovery approaches described above are inadequate
for successfully recovering from a failure in the computing system.

One approach for recovering from a failure in such a computing system includes
dividing the continuous stream of input data into a series of smaller ‘pulses’ of input data
and processing the series of pulses of input data individually. At the completion of
processing a given pulse of input data, a checkpoint of the graph’s internal state is
created. In the event of a failure, the computing system can use the checkpoint to restore
the internal state of the graph and restart processing at an intermediate point in the
processing of the continuous data stream. In some examples, if the computing system
includes entangled long running graphs, it must coordinate checkpoints to ensure that all
of the graphs share common commit times.

As used herein, the input data to be divided into pulses, also referred to as a
“stream of data units,” will be considered to include, for example, any sequence of input

records that are read after being received from an external source, or any units of data

-25-

10

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

that have been read by accessing stored state of any shared variables or any internal
system state that acts as a source of input data.
For example, referring to FIG. 2A, the computing system 100 starts a first graph,

labeled ‘A’ and a second graph labeled ‘B’ at time, #, and the graphs begin processing a
first pulse of input data. At time 7, both the first graph and the second graph complete

processing the first pulse of input data and write a first checkpoint. With the first
checkpoint written, the first graph and the second graph begin processing a second pulse

of input data. At time ¢, , both the first graph and the second graph complete processing

the second pulse of input data and write a second checkpoint. With the second
checkpoint written, the first graph and the second graph begin processing a third pulse of

input data. At time 7, a failure in the processing of the third pulse of input data occurs.

Referring to FIG. 2B, to recover from the failure, the computing system uses the
second checkpoint to restore the first graph and the second graph to their respective states
at the completion of processing the second pulse of input data.

Referring to FIG. 2C, with the first graph and the second graph restored to their
respective states at the completion of processing the second pulse of input data, the
graphs successfully re-process the third pulse of input data and write a third checkpoint at

time 7, .

43 General Checkpointing Algorithm

One approach to saving checkpoint data includes having a ‘checkpoint master’
node (e.g., one of the computing nodes in the system) first initiate the checkpoint by
broadcasting a new checkpoint message to all other computing nodes in the computing
system. Once received at the computing nodes, the new checkpoint message causes the
servers to suspend all computing activity. The computing system then waits for all
messages in transit between computing nodes in the system to be delivered.

Once all messages have been delivered, each computing node saves its task state,
pending messages, persistent data, and transient state to a checkpoint file. The master
computing node then writes a journal entry committing the checkpoint and sends a

message to all of the computing nodes in the system to resume processing.

-26-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

While the above-described approach does result in a checkpointing procedure that
is capable of recovering from failures in processing a continuous stream of input data,
there are a number of drawbacks associated with the approach. For example, the above
approach requires suspension of processing for a relatively long duration, during which
the computing system is unable to complete useful processing. Furthermore, saving the
task state of the computing nodes is computationally intensive and would result in the
computing system expending an inordinate amount of time saving the task state and not
processing input data. Finally, the computing system has a large amount of transient state
such as the state of the transactional data store commit manager, in-flight updates to
transactional data store tables and indexes, in-flight service calls, in-flight data moving
from one server to another, in-flight processes migrating from one server to ancther, and
in-flight accesses to shared data (e.g., data accessible to two or more tasks (associated
with components of the data-processing graph) executing in the computing system 100).

In some examples, saving this transient state is computationally expensive and complex.

4.4 Pulsed Ingestion Algorithm

A pulsed ingestion algorithm relies on a number of properties of the graphs
executing in the computing system to avoid the drawbacks associated with the general
checkpointing algorithm. One property of ingestion graphs executing in the computing
system is that they ingest data one record at a time (e.g., ingestion includes repeatedly
reading a record and updating shared persistent data). Another property of the ingestion
graphs executing in the computing system is that they are stateless from one record to the
next. That is, all state is maintained in persistent data (e.g., shared data collections and
transactional data store tables) that is accessible to the graphs. Furthermore, in some
examples, data processing graphs executing in the computing system include only
components that are stateless from one record to the next.

Based on these properties of the graphs executing in the computing system, there
is no difference between ingesting the entire input data stream in a single run of the
graphs and ingesting a pulse of input data from the input data stream, cleanly shutting
down the graphs (i.e., allowing all processes to exit normally after completing any

processing associated with the pulse of data), and then restarting the graphs to process a

-27-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

subsequent pulse of the input data stream. Since the graphs are allowed to cleanly shut
down in a pulsed ingestion approach, the computing system does not need to save a large

amount of internal graph state during the checkpointing process.

44.1 Single Graph Pulsed Ingestion Algorithm

Referring to FIG. 3, a pulsed ingestion algorithm for processing a stream of input
data in a single graph includes starting the graph at a time, 7,. Once started, the graph
processes a first pulse of input data from the stream of input data to generate output data,
which it stores in escrow (i.e., the output is not immediately provided to downstream

processes). Attime 7,, a pulse-ending indicator (e.g., an end-of-file (EOF) character) is

inserted into the stream of input data, indicating the end of the first pulse of input data.

When the graph encounters the pulse-ending indicator at time ¢, it ceases ingesting new
data from the input data stream. From time ¢, to time 7, the graph then finishes
processing all data that it was already processing at time 7, (i.e., the graph is allowed to
‘quiesce’). The quiescing period between times 7, and 7, is shown as a ramp down 370

in a processing load in FIG. 3.

At time ¢, , once the graph has quiesced, the computing system begins writing a

checkpoint including all persistent data, a state of the streaming input data (e.g., a current

position), and a state of the output data are written to durable storage. Attime 7,, upon

completion of writing the checkpoint to durable storage, the escrowed output data
associated with the first pulse of input data is released to downstream processes. Then, at

time 7,, the graph is restarted and begins processing a second pulse of input data from the

stream of input data (following the procedure described above).

In general, given that the graph is allowed to quiesce prior to writing the
checkpoint, process state, messages, and transients do not exist in the system since the
graph isn’t running. In some examples, there is very little overhead associated with
shutting down and restarting the graph since every pulse of input data is very small (e.g.,
there are 100 pulses per second). This can result a high frequency of checkpointing (e.g.,
a 10ms checkpoint interval) which is ideal for applications which require a sufficiently

short response latency. For example, certain applications require that the overhead of

-28-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

restarting (i.e., shutting down graphs, waiting for processes to exit normally, and starting
up again) is significantly less than 10ms (e.g., less than 1ms). Furthermore, the time
required to write the checkpoint is also small when compared to the checkpoint interval
(e.g., Ims). In some examples, the restart timing requirement is achieved by storing
certain startup related processing results and reusing (rather than re-computing) those
results for subsequent pulses of input data for a faster startup. In some examples, the
stored results are recomputed at a low frequency (e.g., every 10 sec or every minute).
Referring to FIG. 4, in an example of a recovery procedure, the computing system
processes a first pulse of input data using a single graph (as is described above) and stores

a first checkpoint at time 7, . At time 7, , the system begins processing a second pulse of
input data using the graph. Then, at time 7, a failure occurs in the processing of the

second pulse. Due to the failure, the system shuts down all computation (e.g., stops

processing on any computing nodes that did not fail) at time 7, and uses the first

checkpoint to restore the state of its input and output data to the state of the system at the

completion of processing the first pulse of data (i.e., at time 7,). To do so, the system
rewinds the second pulse of input data to its initial state (i.e., at time 7,) and discards any
escrowed output data for the second pulse of input data. At time 7., the checkpoint is

used to restore the system’s persistent data to its state at the completion of processing the
first pulse of data.

At time 7, , with the system fully restored to its state at the completion of

processing the first pulse of data, the graph restarts and begins re-processing the second
pulse of input data. In FIG. 4, the re-processing of the second pulse of input data

succeeds.

442 Multiple Graph Pulsed Ingestion Algorithm

Referring to FIG. 5, in some examples, when the system includes a collection of
multiple graphs (e.g., multiple ingestion graphs), the system is configured to process
pulses of data in synchrony through the collection of graphs.

In particular, a pulsed ingestion algorithm for processing one or more streams of

input data in a collection of multiple graphs includes starting all of the graphs in the

-20-

10

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

collection at a time, 7,. Once started, each of the graphs processes a first pulse of input
data from one or more streams of input data to generate respective one or more output
data stream, which are stored in escrow (i.e., the output data streams are not immediately
provided to downstream processes). At time 7, a pulse-ending indicator is inserted into
the streams of input data, indicating the end of the first pulses of input data. In some
examples, a barrier synchronization operation is used to ensure that pulse-ending
indicators are synchronously inserted into two or more of the input data streams. When

the graphs encounter the pulse-ending indicators at time 7, they cease ingesting new data
from the input data streams. From time ¢, to time 7, the graphs then finish processing all
data that they were already processing at time ¢, (i.e., the graphs are allowed to
‘quiesce’). The quiescing period between times 7, and 7, is shown as a ramp down 570
in a processing load in FIG. 5.

In some examples another barrier synchronization is used to wait for all of the

graphs to exit. Once the graphs have all exited at time ¢, , a checkpoint is written in

which all persistent data, a state of the streaming input data (e.g., a current position), and

a state of the output data are written to durable storage. At time 7, , upon completion of

writing the checkpoint to durable storage, the escrowed output data streams associated

with the first pulses of input data are released to downstream processes. Then, at time 7, ,

the graphs are synchronously restarted using another barrier synchronization operation
and begin processing second pulses of input data from the streams of input data

(following the procedure described above).

443 Incremental and Pipelined Checkpoints

In some examples, it is not practical to save the entire contents of the persistent
data for every checkpoint operation since doing so could take minute or even hours,
whereas the system may need to make ingested data available within as little as a fraction
of a second.

One approach to reducing the amount of data saved for every checkpoint is to
incrementally write changes to the persistent data to a journal as a particular pulse of

input data is processed. Doing so limits the amount of data written for a given

-30-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

checkpoint to the amount of data changed in the processing of a particular pulse of input
data. One advantage of doing so is that entries to the journal (representing changes to the
persistent data) are at least in the process of being durably stored before the system
begins forming and storing a checkpoint. Furthermore, incrementally writing changes to
a journal avoids incurring the overhead of maintaining a ‘dirty list’ of changed data items
and walking that list when the checkpoint is formed. Another advantage of incrementally
writing changes to a journal is that entries to the journal can be tagged with a ‘checkpoint
marker’ which can be used to identify a boundary between journal entries for different
pulses. When using checkpoint markers, the system can begin processing a second pulse
while journal entries for a first, previous pulse are still being durably stored.

Referring to FIG. 6, a pulsed ingestion algorithm with incremental and pipelined
checkpointing includes starting the graphs at a time, 7,. Once started, the graphs process
tirst pulses of input data from the streams of input data to generate one or more streams
of output data, which are stored in escrow. Furthermore, changes to the persistent data
that occur during the processing of the first pulses of input data are asynchronously stored
as entries in a journal as they occur.

At time /,, pulse-ending indicators are inserted into the streams of input data,
indicating the end of the first pulses of input data. When the graphs encounter the pulse-
ending indicators at time 7, they cease ingesting new data from the input data streams.
From time 7, to time 7, the graphs then finish processing all data that that they were
already processing at time 7, (i.e., the graphs are allowed to ‘quiesce’). The quiescing
period between times 7 and 7, is shown as a ramp down 670 in a processing load in FIG.

6.

At time 7, , once the graphs have quiesced, a checkpoint record including a

checkpoint counter is written to the journal and the system begins durably storing the
checkpoint record (including durably storing all persistent data, a state of the streaming
input data (e.g., a current position), and a state of the output data). Attime #,, and before
the checkpoint record is durably stored, the graphs are restarted and begin processing

second pulses of input data from the streams of input data. Attime 7., the system

-31-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

completes durably storing the checkpoint record and the escrowed output data associated
with the first pulses of input data is released to downstream processes. The system
continues processing the second pulses of input data according to the algorithm described
above.

In some examples, the algorithm described above is modified to allow for
multiple checkpoints to be simultaneously in progress. To do so, different sets of durably
stored data are distinguished from one another. For example, any output data kept in
escrow is tagged with a checkpoint counter, and checkpoint records written to the journal
are tagged with a checkpoint counter.

Whenever all checkpoint records for a given checkpoint, n become durable, the
given checkpoint is committed and all output data tagged with the given checkpoint’s
checkpoint counter is released from escrow. Note that in this approach, rather than
waiting until the checkpoint records from the current checkpoint to become durable
before performing a subsequent iteration of the checkpointing algorithm, this final step is
performed asynchronously with the iterations of the checkpointing algorithm. While the
writing of the checkpoint records from different checkpoint iterations do not overlap, the

processing to store the checkpoint records durably is allowed to overlap.

4431 Incremental and Pipelined Checkpoints Example
Referring to FIG. 7A, in one example of an incremental and pipelined

checkpointing approach, the computing system 100 receives a stream of input data 112
from an input flow 111, processes the stream of input data 112, and provides a stream of
output data to an output flow 131. The computing system 100 includes a number of
computing nodes 121 which process the input data in a distributed fashion to generate the
output data, for example, as is described in greater detail above for the computing nodes
152.

In operation, the computing system 100 ingests data from the stream of input data
one or a few records at a time using ingestion graphs. The ingested data is processed
using one or more data processing graphs running on the computing nodes 121 of the
computing system 102. The input data stream 112 is segmented into pulses including a
first pulse of input data 112A, a second pulse of input data 112B, and a third pulse of

input data 112C, all separated by pulse ending indicators. In some examples, the pulse-

-32-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

ending indicators are inserted into the input data stream 112 according to existing or
inherent structure of the input data (e.g., each record, every n records, etc.). In some
examples, the system dynamically or arbitrarily determines where to insert pulse-ending
indicators into the input data stream 112. In some examples, the system inserts pulse-
ending indicators when the system is momentarily quiescent. Each ‘pulse’ of input data
includes a subset of contiguous data units within the input data stream 112. As used
herein, each subset of ‘contiguous’ data units includes data units that are in-sequence
according to some ordering within the input data stream 112, and that do not overlap with
any other subset of contiguous data units.

In some examples, the size of the pulses (sometimes called the “checkpoint
interval”) are determined based on a trade-off between the degradation to throughput that
frequent checkpointing incurs, and the response latency required by the application
(which 1s limited by the checkpoint interval since at any given time, a response from the
graph might not be supplied until a full checkpoint is performed).

Referring to FIG. 7B, as the computing system 100 ingests data from the first
pulse 112A of the data stream, the ingested data 122A (e.g., individual records) are
provided to the computing nodes 121 for processing according to the one or more data
processing graphs. A copy of the ingested data 113 A from the first pulse 112A is also
durably stored for later retrieval if a recovery operation is required.

A stream of output data 132A generated by the computing nodes 121 is provided
to the output flow 131 but is held in escrow (represented by the open switch 135) such
that the output data 132 is not provided to downstream processes (e.g., processes
implemented in a downstream computing system — not shown) until the entire first pulse
112A has been successfully processed. In some examples, the stream of output data is
associated with a unique identifier linking the output data to its associated input data
pulse.

As the processing of the first pulse 112A of the input data stream 112 progresses,
the state of the persistent data, the state of the streaming inputs, and the state of the
streaming outputs changes. In some examples, the computing system 100 performs a
checkpoint procedure in which these state changes are recorded (sometimes

asynchronously) in a volatile temporary journal 141 as they occur. The temporary

-33-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

journal 141 asynchronously writes the recorded state changes to a durable journal 142. In
some examples, state changes stored in the temporary journal 141 and the durable journal
142 are also associated with the unique identifier such that the stream of output data and
the journaled state changes are both linked to their associated input data pulse. In some
examples, the unique identifier is referred to as “checkpoint identifier.”

Referring to FIG. 7C, upon ingestion of the entire first pulse 112A, the computing
system 100 encounters a pulse-ending indicator which signals the computing system 100
to perform a checkpoint procedure. In the checkpoint procedure, the computing system
stops ingesting data and to allows the computing nodes 121 to quiesce (i.e., to finish
processing any unprocessed records of the first pulse 112A present in the computing
system 100). During this time, the temporary journal 141 continues asynchronously
writing the recorded state changes to the durable journal 142. Eventually, once the
computing nodes 121 quiesce, the computing system 100 completes recording state
changes related to the first pulse 112A to the temporary journal 141,

By allowing the computing system to quiesce, it is ensured that when the system
completes recording state changes related to the first pulse 112A to the temporary journal
141, no process state, messages, or transients are present in the computing system
because the data processing graph isn’t running at that time.

Referring to FIG. 7D, with the checkpoint for the first pulse 112A recorded in the
temporary journal 141, the computing system 100 begins processing the second pulse of
data 112B. To do so, the computing system 100 ingests data from the second pulse 112B
of the data stream and provides the ingested data to the computing nodes 121 for
processing according to the one or more data processing graphs. A copy of the ingested
data 113B from the second pulse 112B is also stored in persistent data for later retrieval if
a recovery operation is required.

As the processing of the second pulse 112B of the data stream progresses the state
of the persistent data, the state of the streaming inputs, and the state of the streaming
outputs changes. A checkpoint procedure for the second pulse 112B is performed in
which the state changes are recorded in the temporary journal 141 as they occur. At the
time shown in FIG. 7D, the temporary journal 141 has not completed asynchronously

writing the recorded state changes for the first pulse 112A to the durable journal 142, so

-34-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

the temporary journal 141 includes recorded state changes for both the first pulse 112A
and the second pulse 112B (each identified by their respective unique checkpoint
identifier). In some examples, by allowing journal entries associated with a second pulse
of input data to be written before journal entries associated with a first, previous pulse of
input data is made durable, the computing system is able to shrink the pulse interval to
less than one disk rotation (around 10 ms) because the checkpoints, and therefore the
pulses, can repeat before the checkpoint records have been made durable (which could
require waiting on the order of a full disk rotation).

The first stream of output data 132A remains in an escrowed state for as long as
the temporary journal 141 has not completed asynchronously writing the recorded state
changes for the first pulse 112A.

A second stream of output data 132B generated by the computing nodes 121 is
provided to the output flow 131 and is also held in escrow (behind the first stream of
output data 132A) such that the second stream of output data 132B is not provided to
downstream processes until the second first pulse 112B has been successfully processed.

Referring to FIG. 7E, when the temporary journal 141 completes writing the
recorded state changes (i.e., the checkpoint is committed) for the first pulse 112A to the
durable journal 142, the switch 135 is closed and the first stream of output data 132A is
released to downstream processes. The recorded state changes for the first pulse 112A
stored in the durable journal 142 represent the state of the computing system 100 at
completion of processing the first pulse 112A, and are collectively referred to as a first
checkpoint. With the first checkpoint written to durable storage, the state changes
associated with the first pulse 112A are no longer present in the temporary journal 141.

Referring to FIG. 7F the switch 135 is reopened such that the second stream of
output data 132B remains in escrow. The computing system 100 continues to ingest and
process the second pulse of data 112B to add to the second stream of output data 132B.
With the first checkpoint written to the durable journal 142, the temporary journal 141
begins asynchronously writing a second checkpoint including the recorded state changes
for the second pulse 112B to the durable journal 142.

Referring to FIG. 7G, at some point during the processing of the second pulse

112B, an error occurs and a recovery procedure is performed. In general, the error

-35-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

recovery procedure restores the state of the computing system to its state at the first
checkpoint (i.e., its state at completion of processing of the first pulse 112A.) For
example, in the recovery procedure, the state of the persistent data, the state of the
streaming inputs, and the state of the streaming outputs is restored. This includes
clearing the second stream of output data 132B and combining the copy of the ingested
data 113B for the second pulse 112B with the unprocessed portion of the second pulse
112B to reconstruct the original second pulse 112B. The state information in the durable
journal 142 is used to restore the state of the computing system 100 (i.e., the state of the
persistent data, the state of the streaming inputs, and the state of the streaming outputs) to
the state represented by the first checkpoint.

Upon completion of the recovery procedure, the computing system 100

commences processing the second pulse 112B as if no error had ever occurred.

4.5 Distributed Journal

In the computing system described above, checkpoint records including state
changes are durably to a single global journal. In some examples, using a single global
journal can limit system scalability. Referring to FIG. 8, in a more scalable approach the
computing system 100 uses a distributed journal to store checkpoints. For example, each
of the computing nodes 121 maintains its own individual temporary journal 141 and
durable journal 142.

In some examples, the individual journals maintained by the computing nodes 121
are referred to as journal fragments, with each journal fragment corresponding to
different fragment of persistent data. For example, each computing node 121 in the
computing system 100 is associated with a journal fragment covering the data associated
with the computing node 121. Whenever the computing system 100 changes a data item,
it writes a journal entry to the journal fragment associated with the data item (i.e. to the

journal fragment associated with the computing node 121 storing the data item).

4.5.1 Snapshotting

In some examples, one potential problem is that the total size of all journal
fragments may grow without bound, consuming unbounded amounts of storage.

Furthermore, the time to recover from a failure would then also grow without bound

-36-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

because the system would need to replay the journal fragments in their entirety. A
solution to this potential problem includes ‘snapshotting’ the data corresponding to a
journal fragment then discarding portions of the journal fragment that were created prior
to the start of the snapshot process. In the event of a failure, the computing system can
recover by loading a snapshot and then applying the journal to the data from the snapshot
In some implementations, snapshots share certain properties with database checkpoints.

In one approach to storing snapshot(s), each snapshot has an associated start time
and an associated end time. The state of any particular portion of the persistent data
within the snapshot is known to exist at a time between the start and end time. In some
examples, the snapshots are distributed as snapshot fragments, with each snapshot
fragment being tied to a given journal fragment. In general, the system generates a
snapshot fragment for cach data fragment repeatedly until the system is shut down. To
do so, for ecach data fragment, the system creates a snapshot fragment and tags it as
‘pending’. In some examples, the snapshot fragments are replicated across multiple
servers. The computing system then sets the start time of the snapshot fragment as the
current value of a unique checkpoint identifier (e.g., a checkpoint counter) for the
currently processing checkpoint. With the snapshot in the pending state and associated
with a unique checkpoint identifier, the snapshot is considered to be ‘started.’

The persistent data associated with the data fragment is then scanned and the
current data values (i.e., the data values not yet durably written to the journal since the
previous snapshot fragment) are written to the snapshot fragment associated with the data
fragment. In some examples, each current data value written to the snapshot is associated
with a timestamp at which the current data value was valid. The system waits for the
snapshot fragment to become durable and then for the current journal fragment to
commit, guaranteeing that the snapshot fragment includes only committed data. The
snapshot fragment then has its end time set to the current value of the unique checkpoint
identifier, which is considered to be the ‘end’ of the snapshot fragment. The snapshot
fragment is marked as final and any previous snapshot fragments are cleared. In some
examples, the journal is forward-truncated to ensure that all journal entries associated
with unique checkpoint identifiers prior to the start of the snapshot fragment are ignored,

resulting in a reclamation of storage space.

-37-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

Upon a failure in the computing system 100, the system can restore the durable
storage associated with a journal fragment to any committed checkpoint greater than or
equal to the ‘end’ of the snapshot. In some examples, the system 100 does so by first
loading the contents of the snapshot fragment into the durable storage. The system 100
then examines the data items and their associated timestamps in the snapshot fragment to
identified entries in the journal fragment corresponding to the versions of the data items
that were valid at the timestamps. The system 100 then restores the durable storage to the
committed checkpoint by rolling the values of the data items from snapshot fragment
forward by redoing any updates from the journal fragment not already reflected in the
snapshot fragment, until the desired checkpoint marker is found (where the rolling
forward starts from the identified entries in the journal fragment). If the durable storage
associated with a journal fragment survives a failure, the system can roll it back to any
desired checkpoint greater than or equal to the ‘end’ of the snapshot by scanning the
journal fragment in reverse order, starting at values in the snapshot fragment, and
undoing all changes until the durable storage is at the state associated with the desired
checkpoint is encountered.

In some examples, journal fragments are formed as a distinct file for each
checkpoint. The system is able to forward truncate the journal by removing files
pertaining to older checkpoints. In some examples, the computing system 100 packages
multiple checkpoints in a single file. Each file therefore includes a range of checkpoints.
When the system forward truncates the journal, it deletes files with a highest checkpoint
prior to the truncation point. At recovery time the system ignores all journal entries
before the truncation point. This process can be expedited by recording, in an auxiliary
file, the file-offset of each checkpoint record in a given file.

Given the above journal structure, the computing system can recover the most
recently committed checkpoint by first halting all processing in the computing system.
For each failed computing node, a new computing node is started (possibly on a different
physical node). At least one replica of the journal fragment(s) and snapshot fragment(s)
associated with the computing node is located and used to restore to the committed
checkpoint (as is described above). All surviving computing nodes have their persistent

data rolled back to the committed checkpoint and escrowed data is cleared. The input

-38-

10

15

20

25

data to the computing system is rolled back to the previous pulse ending indicator and
processing is resumed.

Based on the above recovery procedure, before the system resumes processing, it
has restored all persistent data to its state as of the most recently committed unit of work,
then restarted processing with the subsequent unit of work.

Various other examples of recoverable processing techniques can be used in
combination with the techniques described herein, including techniques described in U.S.

Pat. No. 6,584,581 and U.S. Pat. No. 9,354,981,

4.6 Replication

The approaches described above provide recoverability but do not neéessarily
provide high availability or fault tolerance. For example, after a failure, the system needs

to reload the persistent data associated with any failed servers from a snapshot then re-

' apply all changes up to the desired checkpoint, a process which may take hours, during

which the system is be unavailable.

In some examples, high availability and fault tolerance is achieved by replicating
persistent data (e.g., using database sharding or partitioning techniques) that such that a
failure is unlikely to destroy all replicas. For example, each piece of data may be
replicated on a different physical node so that a single crash cannot destroy all replicas.
Doing so results in higher degrees of resilience by ensuring that, for example, replicas are
on nodes with different power supplies or even in different data centers. In some
situations, replication approaches also obviate the need for durably storing checkpoint
and snapshot data.

In one approach, each data item (e.g., row in a transactional data store table,
shared data instance) of the persistent data is replicated such that there exists a master
replica of the data item and one or more backup replicas of the data item. To implement
this approach, a checkpoint counter is first initialized to 0. All graphs operating in the
computing system are then started. Each time a data item in persistent data is changed a

replication message, tagged with the checkpoint counter, is asynchronously transmitted,

-39-

CA 3009359 2019-09-24

1

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

to its replica(s). All output data generated by the computing system is kept in escrow,
tagged with the checkpoint counter, and not made immediately visible.

Eventually, a pulse-ending indicator is received for all the streaming inputs,
causing a clean shutdown of all of the graphs running in the computing system. Once all
of the graphs have exited the checkpoint counter is incremented. All of the graphs in the
computing system are then restarted.

Once all replication messages for given checkpoint have been received, the
checkpoint is committed the output data tagged with that checkpoint counter value is
released from escrow. Thus, in this scheme, replication exactly completely replaces
journaling.

To recover from a failure when using the above-described replication scheme, all
processing is first halted. For any master replicas that were lost in a failure of a
computing node, choose one of the backup replicas to act as the master replica. Then, for
each replica, the state of the replica is recovered to its last committed checkpoint. Any
escrowed output data is cleared and all input data is restored to the point where the last
pulse ending indicator was inserted. Processing is then resumed using the methods
described above.

In some examples, the master replica is chosen by first including a primary key in
every data item which can be hashed to yield a list of servers such that at least one server
in the set is likely to be survive a failure. The first server in the list that is chosen as the
master replica. All others are slaves. If a computing node fails, the system marks it as
no-longer operational. If a computing has been restored, the system marks it as
operational once more.

In some examples, a key requirement of the replication techniques described
herein is to be able to roll replicas back to a committed checkpoint when a failure occurs
and a recovery operation is necessary. One replication technique that satisfies this
requirement operates according to the following algorithm. When the system changes a
data item, it transmits a replication message for the new value for the data item. When a
computing node receives a replication message, it queues it and applies it asynchronously
to the target replica. In some examples, when the system applies a replication message to

a data item, it creates a rollback entry which allows it to undo the change. The rollback

-40-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

entry is used for rollback processing after a failure. In some examples, rollback entries
are tagged with an associated unique checkpoint identifier. Alternatively, the system
keeps multiple versions of the data item in memory.

After a failure, each surviving server performs the following procedure to recover
to the checkpoint state. First all unprocessed replication messages that are not tagged
with a unique checkpoint identifier subsequent to the recovery point are processed. Then,
all rollback entries that are tagged with a checkpoint generation subsequent to the recover
point are applied in reverse-order of receipt. After applying all rollback entries, all data
is in a state corresponding to the desired recovery point. Note that the amount of work is
proportional to the amount of data changed during any generations that need to be rolled
back so that if the system has sub-second ingestion pulses then it is entirely plausible that
the system can achieve sub-second recovery.

Eventually the failed server is restored to service (or a replacement is brought
online). The replication system then replicates data back on to the failed server and,

possibly, restores the ‘master’ status of some or all data on that server.

477 Combined Replication and Journaling

In some approaches, both replication and journaling are employed in the
computing system. For example, replication is used to achieve high availability and fault
tolerance, but it suffers from a catastrophic failure mode in which the simultaneous
failure of a too many servers (e.g., all of them due to loss of power or cooling to an entire
data center) will permanently lose data with no possibility of recovery. Journaling is
used in addition to replication to guard against such failures by storing recovery
information on highly durable storage such as disk drives. In this approach, the use of
journals is a form of disaster recovery, which is likely to entail considerable downtime.

In one example, combined replication and journaling is performed in a journal
then replicate procedure. For example, the computing system journals changes to data
items at the point where they take place (i.e. at the master replica), then replicates the
journal across multiple devices. This type of approach is usable with HDFS (Hadoop
File System) which is configured for replicating everything written to files. In some

examples, a downside of this approach is that every data item update results in two waves

-41-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

of network traffic: one to replicate the data, and one to replicate the journal. In another
example, combined journaling and replication is performed in a replicate then journal
procedure. For example, on a more conventional file system, the computing system
could journal changes at the point where they take place AND remotely at the points of
replication. This only involves one wave of network traffic as the system replicates the
data because the journal is co-located with the replica. The two combined journaling and
replication examples described above are essentially equivalent except for the difference
in network traffic.

Due to the latency involved in writing to disk, the computing system ends up with
two levels of durability for a given checkpoint: replication-level durability and journal-
level durability. Replication-level durability does not guarantee against catastrophic
multi-node failures. The distinction could impact the point at which the system releases
data from escrow. If the system releases outgoing data from escrow when at the point
where the system has replication level durability, then the system reduces latencies and
can increase the frequency of pulses. The downside of doing so is that, after a
catastrophic failure, other applications may have ‘seen’ data that will get rolled back.
Given the (hopeful) rarity of catastrophic failures this may be a reasonable tradeoff.

However, the conservative choice is to wait for journal-level durability.

4.8 Interaction with Transactional Data Store

Referring to FIG. 9A, in some examples two or more computing systems 100 both
employ the journaling techniques described above and interact with a transactional data
store 151. The transactional data store 151 independently guarantees the ACID
(atomicity, consistency, isolation, and durability) properties of transactions. In some
examples, this property of the transactional data store 151 has the potential to subvert the
checkpoint mechanism because it might make a transactional data store transaction
durable even if the checkpoint it was part of was rolled back due to a failure.

To address this issue, the commit protocol of the transactional data store 151 is
modified to separate the “ACI” from the “D.” That is, when a transactional data store
transaction commits it guarantees atomicity, consistency, and isolation, but not durability.

In the moditied commit protocol, durability occurs when the checkpoint commits and

-42-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

becomes durable. In some computing systems, this separation is forbidden but in the
computing systems described herein it is allowed since, if the checkpoint fails to commit
then all evidence of the transactional data store commit is obliterated during the rollback.
In particular, any responses in which it participated will have been held in escrow and
discarded during the rollback.

In FIG. 9A, transactional data store transactions related to the first data pulse
112A are not yet committed to the transactional data store 151 and the streams of output
data 132A generated from the first data pulses 112A are held in escrow since the
checkpoints related to the first data pulses 112A is not yet durable. Referring to FIG. 9B,
once the checkpoints related to the first data pulses 112A are made durable, the
transactional data store transactions related to the first data pulses 112A are committed to
the transactional data store 151 and the streams of output data 132A are released from

CSCIow.

4.9 Checkpoint Triggering

In the examples described above, triggering of checkpoints is time based (e.g.,
checkpoints are periodically triggered). However, triggering of checkpoints need not be
time-based. In some examples, checkpoints are triggered based on resource constraints.
For example, a queuing system may allow only a limited number of records to be
received before the received messages are committed. In this case, therefore, the system
must trigger a checkpoint when this limit is reached or closely approached, regardless of

any pulse interval that may have been specified.

4.10 Interaction with Non-Checkpointed Applications and Data

Not all applications can or should operate under the checkpoint algorithms
described above. For example, some applications operate on too coarse a time
granularity (e.g., a batch graph that runs for several hours). Other applications may
operate on too fine a time granularity (e.g., a service with a required response time that is
shorter than the checkpoint interval). In some examples, approaches described herein use
the concept of a “checkpoint group” to interact with non-checkpointed applications and

data.

-43-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

4.10.1 Checkpoint Groups

Very generally, a checkpoint group is a set of persistent data and associated
graphs that are checkpointed on the same pulse schedule. The system may contain
multiple checkpoint groups if different applications have different time/throughput
tradeoffs. For example, the system might have one checkpoint group with a large volume
of incoming data (e.g., 100 million records per second, processed by 100 cores in a server
cluster) that requires relatively large (e.g., a 100 millisecond) checkpoint interval for
efficiency sake, and another checkpoint group with a lower volume of incoming data with
a 10 millisecond checkpoint, chosen to optimize response times. A checkpoint interval
that approaches 1 second may not provide a short enough response latency for some
applications.

In some examples, a checkpoint group can be configured using a declaration
component in a data processing graph. This component can be included in all graphs that
need to participate in the group. In addition, it is referenced in the declarations of any
shared data or transactional data store tables that need to be managed within the group. A
given data set may be ‘owned’ by at most a single checkpoint group because that is what
determines its checkpoint interval. In some examples, the checkpoint group declaration
includes additional information, such as a desired replication scheme, data directories
where checkpoints and journals may be kept, pulse frequencies, etc.

Not all data and not all graphs reside within a checkpoint group. For example, a
transactional data store table may be used primarily by transactional services rather than
streaming ingestion graphs. Data stored in 3rd party persistent stores such as Cassandra

and Oracle will necessarily be outside the checkpoint group.

4.10.2 Inside and Outside Access

In this context there are two classes of tasks (inside and outside) and two classes
of data (inside and outside), where ‘inside’ means managed by a checkpoint group and
‘outside’ means not managed by a checkpoint group. If there are multiple checkpoint
groups, then each of them will consider the other ‘outside’. All access between the inside
and the outside is considered ‘foreign’. In general, there are four cases of foreign access:

an inside task reads outside data an inside task writes outside data, an outside task reads

- 44-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

inside data, and an outside task writes inside data. Each of these has associated issues

pertaining to correctness.

4.10.2.1 Inside Task Reads Outside Data
A task inside the checkpoint group may read data outside the checkpoint group

without any impact on correctness. For example, consider a situation where an inside
task reads data from Cassandra, there is a failure and the checkpoint gets rolled back, the
task is restarted, the task reads data from Cassandra after the restart and gets a different
answer.

At first glance it may appear that the system suffers from inconsistency because it
got a different answer on the second read. But there is no inconsistency because all
evidence of the first read was obliterated by the rollback. It is exactly as if the
application had gone to sleep for a while then woken up and gotten the ‘second’ answer

from Cassandra. So the system does meet the definition of recoverability.

41022 Inside Task Writes Outside Data
If a task inside the checkpoint group writes data outside it then the system may

well violate recoverability, in one of two ways. First, the write may become durable but
the task that made the update gets rolled back. This can result in duplicate updates,
which are therefore incorrect. This can only be handled by careful application design.
Second, the write might be lost if the writer doesn’t (or can’t) wait for the update to be
durable. So, for example, an inside task might update Casandra then get rolled back, and
the Casandra update might become durable. Careful application design would be

required to avoid such an eventuality.

4.10.2.3 OQutside Task Reads Inside Data
If a task outside a checkpoint group reads data on the inside, then the system risks

doing a “dirty read’ of data which might be rolled back after a failure. The following are
examples of two ways to resolve this problem. First, the system can optimistically
perform a dirty read. For example, ad-hoc queries are run against in-memory data it is
extremely doubtful that the effects of a dirty read would have any detectable result. In
addition, dirty reads inside a checkpoint group are considerably safer than against a
database since database transactions get rolled back in the normal course of processing,

whereas checkpoint group rollbacks occur only after a major failure and do not occur in

- 45-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

the normal course of processing. This means that it will be extremely rare for dirty reads
to have any effect whatsoever.

Second, the system can push the read into the checkpoint group. In this mode, the
system transmits an SV apply or a transactional data store transaction to a service running
inside the checkpoint group and the answer is held in escrow until the next checkpoint.
This operation will incur latency but convert a dirty read into a clean one. This operation
can also be handled entirely in the server software so that they user would never be aware
of the read-push.

Note that the second approach cannot be used to allow one checkpoint group to
access data in another checkpoint group because the reader’s checkpoint group cannot
checkpoint until the data is released from escrow (the system does not do the checkpoint
until all tasks have exited). This could potentially lead to deadlock where a task in
checkpoint group A is waiting for an answer to a read from checkpoint group B to return,
so group A cannot checkpoint. At the same time, a task in checkpoint group B is doing
the exact same thing. Neither group can ever become quiescent and neither group can

ever checkpoint.

4.10.2.4 OQutside Task Writes Inside Data
If a task outside a checkpoint group writes data on the inside, then the system

risks losing the write if the checkpoint gets rolled back. Again, have the same tradeoft
exists: the system can do it anyway in the hope that the chances of losing the update are
small, or the system can push the write into the checkpoint group as described above.
The write would then wait for an escrowed answer indicating confirmation of the write
operation. The issues are otherwise the same as those described above.

As a note, this does not affect the correctness of applications inside the checkpoint
group. The logic is the same as for the inside-reads-outside case: an outside task writes
inside data, the system has a failure and does a rollback which rolls back the write by the
outside task, the system restarts, and from the inside the system has no way of telling that
the outside task ever happened so the system is in a consistent state. The entity on the
outside will have a consistency failure, but that’s doesn’t affect the correctness of the

inside tasks.

- 46-

10

15

20

25

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

In summary, foreign access sometimes (but not always) entails the possibility of
inconsistency. Inside reading outside is always consistent. Inside writing to the outside
exposes the writer to duplicate and/or lost writes. Outside reading the inside results in
dirty reads, but this can be cured by pushing the read into the checkpoint group. Outside
writing to the inside may result in a lost write, but this can be cured by pushing the write
into the checkpoint group.

Dirty reads and lost writes are failure-mode-only faults. The system does not
perform a group-level rollback unless it has a server failure, so these faults only manifest
after a failure. In normal operation foreign reads/writes are perfectly safe.

The system cannot use the ‘read/write pushing’ trick between different checkpoint
groups because the interaction between the two groups can lead to deadlock. If necessary
this could be cured by firing off an asynchronous operation, ¢.g., queuing up a message
but not waiting for the answer. But the system can still read/write data inside a different
checkpoint group as long as the system is able to accept (very rare) dirty reads or lost

writes.

S Implementations

The recoverability techniques described herein (including the attached Appendix)
can be implemented, for example, using a programmable computing system executing
suitable software instructions or it can be implemented in suitable hardware such as a
field-programmable gate array (FPGA) or in some hybrid form. For example, in a
programmed approach the software may include procedures in one or more computer
programs that execute on one or more programmed or programmable computing system
(which may be of various architectures such as distributed, client/server, or grid) each
including at least one processor, at least one data storage system (including volatile
and/or non-volatile memory and/or storage elements), at least one user interface (for
receiving input using at least one input device or port, and for providing output using at
least one output device or port). The software may include one or more modules of a
larger program, for example, that provides services related to the design, configuration,

and execution of data processing graphs. The modules of the program (e.g., elements of

-47-

10

15

20

25

30

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

a data processing graph) can be implemented as data structures or other organized data
conforming to a data model stored in a data repository.

The software may be stored in non-transitory form, such as being embodied in a
volatile or non-volatile storage medium, or any other non-transitory medium, using a
physical property of the medium (e.g., surface pits and lands, magnetic domains, or
electrical charge) for a period of time (e.g., the time between refresh periods of a dynamic
memory device such as a dynamic RAM). In preparation for loading the instructions, the
software may be provided on a tangible, non-transitory medium, such as a CD-ROM or
other computer-readable medium (e.g., readable by a general or special purpose
computing system or device), or may be delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system where it is executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose hardware, such as coprocessors
or field-programmable gate arrays (FPGASs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or
downloaded to a computer-readable storage medium (e.g., solid state memory or media,
or magnetic or optical media) of a storage device accessible by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage device medium is read by the computer to perform the processing described
herein. The inventive system may also be considered to be implemented as a tangible,
non-transitory medium, configured with a computer program, where the medium so
configured causes a computer to operate in a specific and predefined manner to perform
one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, it
is to be understood that the foregoing description is intended to illustrate and not to limit
the scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims. For

example, various modifications may be made without departing from the scope of the

-48-

CA 03009359 2018-06-20

WO 2017/123849 PCT/US2017/013309

invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

-49-

What is claimed is:

1. An apparatus including:

a computing system including one or more nodes, the computing system
configured to execute a plurality of data processing programs that each

process at least one stream of data units; and

at least one data storage system accessible to at least one of the one or more
nodes, the data storage system, in use, storing shared data accessible by at

least two of the plurality of data processing programs;

wherein processing at least one stream of data units using at least a first data

processing program of the one or more data processing programs includes:

processing a first stream of data units to generate output for each of a
plurality of subsets of contiguous data units within the first stream

of data units;

initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units
and processing a second subset of contiguous data units adjacent to
the first subset of contiguous data units within the first stream of

data units;

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within the first data

processing program has completed;

resuming processing within the first data processing program after the

changes have been durably stored; and

releasing, from the first data processing program, first output generated for
the first subset of contiguous data units after the chaﬁges have been

durably stored.

- 50-

CA 3009359 2019-09-24

2. The apparatus of claim 1, wherein the plurality of data processing
programs each process at least one stream of data units with no program state information

being maintained over more than two adjacent data units in the stream.

3.+ The apparatus of claim 1 or 2, wherein the data storage system includes a
non-volatile storage medium, and durably storing at least some changes to the shared data
caused by processing the first subset of contiguous data units includes storing the changes

in the non-volatile storage medium.

4. The apparatus of any one of claims 1 to 3, wherein the data storage system
includes a communication medium coupled to a plurality of the nodes, and durably
storing at least some changes to the shared data caused by processing the first subset of
contiguous data units includes sending the changes from a first node to at least a second

node of the plurality of the nodes over the communication medium.

5. The apparatus of any one of claims 1 to 4, wherein the data storage system
also stores stream state information associated with one or more streams of data units

processed by at least one of the plufality of data processing programs.

6. The apparatus of claim 5, wherein processing at least one stream of data
units using at least the first data processing program further includes, after determining
that the termination of processing within the first data processing program has completed,

durably storing stream state information associated with the first stream of data units.

7. The apparatus of any one of claims 1 to 6, wherein releasing, from the first
data processing program, the first output generated for the first subset of contiguous data
units includes releasing the first output to an external program that is not included in the

plurality of data processing programs executing on the computing system.

-51-

CA 3009359 2019-09-24

8. The apparatus of any one of claims 1 to 7, wherein durably stored changes
to the shared data caused by processing the first subset of contiguous data units are
distinguished from durably stored changes to the shared data caused by processing the

second subset of contiguous data units.

9. The apparatus of claim 8, wherein at least some changes to the shared data
caused by processing the first subset of contiguous data units are durably stored after at
least some changes to the shared data caused by processing the second subset of
contiguous data units have started, where the first subset of contiguous data units are

before the second subset of contiguous data units within the first stream of data units.

10. The apparatus of claim 9, wherein the first output generated for the first
subset of contiguous data units is released from the first data processing program after all
changes caused by processing the first subset of contiguous data units have been durably

stored.

11. The apparatus of any one of claims 1 to 10, wherein processing is resumed
within the first data processing program after a first portion of changes have been durably

stored but before a second portion of changes have been durably stored.

12. The apparatus of any one of claims 1 to 11, wherein the first data
processing program terminates processing the first stream of data units periodically, and
the computing system begins durably storing at least some changes to the shared data

caused by processing data units while the first data processing program is terminated.

- 52

CA 3009359 2019-09-24

13. The apparatus of any one of claims 1 to 12, wherein initiating termination
of processing within the first data processing program includes inserting a stream-ending
indicator between the ﬁrst'subset of contiguous data units, the second subset_of
contiguous data units, and the termination of processing within the first data processing
program has completed after all processes that perform tasks specified by the first data

processihg program have exited normally in response to the stream-ending .indicator.

14. The apparatus of any one of claims 1 to 13, wherein the shared data is

accessible by all of the plurality of data processing programs.

15. An apparatus including:

a computing system including one or more nodes, the computing system
configured to execute a plurality of data processing programs that each

process at least one stream of data units; and *

at least one data storage system accessible to at least one of the one or more
nodes, the data storage system, in use, storing shared data accessible by at

least two of the plurality of data processing programs;

wherein processing two or more streams of data units using at least a first group _
of multiple data processing programs of the plurality of data processing

programs includes:

processing, for each data processing program in the first group, a
respective stream of data units that includes a plurality of subsets

of contiguous data units;

initiating termination of processing within each data processing program
" in the first group, between processing a first subset of contiguous
data units and processing a second subset of cohtiguous data units
adjacent to the first subset of contiguous data units within the .

respective stream of data units;

-53-

CA 3009359 2019-09-24

N

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within each data

processing program in the first group has completed; and

resuming processing within each data processing program in the first

group after the changes have been durably stored.

16. The apparatus of claim 15, wherein the plurality of data processing
programs each process at least one stream of data units with no program state information

' being maintained over more than two adjacent data units in the stream.

17. The apparatus of claim 15 or 16, wherein the data storage system includes
a non-volatile storage medium, and durably storing at least some changes to the shared
data caused by processing the first subset of contiguous data units includes storing the

changes in the non-volatile storage medium.

18. The apparatus of any one of claims 15 to 17, wherein the data storage
system includes a communication medium coupled to a plurality of the nodes, and
durably storing at least some changes to the shared data caused by prbcessing the first
subset of contiguous data units includes sending the changes from a first node to at least a

second node of the plurality of the nodes over the communication medium,.

19. The apparatus of any one of claims 15 to 18, wherein the data storage
system also stores stream state information associated with one or more streams of data

units processed by at least one of the plurality of data processing programs.

-54.

CA 3009359 2019-09-24

20. The apparatus of claim 19, wherein processing two or more streams of
data units using at least the first group of multiple data processing programs further
includes, after determining that the termination of processing within each data processing
program in the first group has completed, durably storing stream state information
associated with each respective stream of data units processed by any of the data

processing programs in the first group.

21. The apparatus of any one of claims 15 to 20, wherein processing two or
more streams of data units using at least the first group of multiple data processing
programs further includes releasing, from the first group of multiple data processing
programs, first output generated for the first subset of contiguous data units after the

changes have been durably stored.

22. The apparatus of claim 21, wherein releasing, from the first group (?f
multiple data processing programs, the first output generated for the first subset of
contiguous data units includes releasing the first output‘to one of the plurality of data
processmg programs executmg on the computing system that is not included in the first

group of multiple data processing programs.

23. The apparatus of claim 21, wherein releasing, from the first group of
multiple data processing programs, the first output generated for the first subset of
contiguous data units includes releasing the first output to an external program that is not

included in the plurality of data processing programs executing on the computing system.

24. The apparatus of claim 23, wherein the external program sends a request
to access particular shared data that is accessible by at least one data processing program
in the first group, and a result of the request is released to the external program after all
changes to the particular shared data that occurred before the request was received have

been durably stored.

- 55-

CA 3009359 2019-09-24

25. The apparatus of any one of claims 15 to 24, wherein durably stored
changes to the shared data caused by processing the first subset of contiguous data units
are distinguished from durably stored changes to the shared data caused by processing the

second subset of contiguous data units.

26. The apparatus of claim 25, wherein at least some changes to the shared
data caused by processing the first subset of contiguous data units are durably stored after
at least some changes to the shared data caused by processing the second subset of
contiguous data units have started, where the first subset of contiguous data units are

before the second subset of contiguous data units within the first stream of data units.

27. The apparatus of claim 26, wherein the first output generated for the first
subset of contiguous data units is released from the first group of multiple data processing
programs after all changes caused by processing the first subset of contiguous data units

have been durably stored.

28. The apparatus of any one of claims 15 to 27, wherein processing two or
more streams of data units includes processing four or more streams of data units using at
least the first group of multiple data processing programs and a second group of multiple

data processing programs of the plurality of data processing programs.

29. The apparatus of claim 28, wherein each group of multiple data processing
programs terminates processing of respective streams of data units periodically, and the
computing system begins durably storing at least some changes to the shared data caused

by processing data units while all data processing programs in that group are terminated.

30. The apparatus of claim 29, wherein the first group of data processing
programs terminates and processing of respective streams of data units at a first
frequency, and the second group of data processing programs terminate processing of

respective streams of data units at a second frequency different from the first frequency.

- 56-

CA 3009359 2019-09-24

31. The apparatus of any one of claims 15 to 30, wherein processing is
resumed within each data processing program in the first group after a first portion of
changes have been durably stored but before a second portion of changes have been

durably stored.

32. The apparatus of any one of claims 15 to 31, wherein the first group of
multiple data processing programs terminates processing the two or more streams of data
units periodically, and the computing system begins durably storing at least some
changes to the shared data caused by processing data units while all data processing

programs in the first group are terminated.

33. The apparatus of any one of claims 15 to 32, wherein initiating
termination of processing within the first data processing program includes inserting a
stream-ending indicator between the first subset of contiguous data units the second
subset of contiguous data units, and the termination of processing within the first data
processing program has completed after all processes that perform tasks specified by the
first data processing program have exited normally in response to the stream-ending

indicator.

34. The apparatus of any one of claims 15 to 33, wherein the shared data is

accessible by all of the plurality of data processing programs.

35. An apparatus including:

a computing system including one or more nodes, the computing system
configured to execute a plurality of data processing programs that each

process at least one stream of data units; and

at least one data storage system accessible to at least one of the one or more
nodes, the data storage system, in use, storing shared data accessible by at

least two of the plurality of data processing programs;

-57-

CA 3009359 2019-09-24

wherein processing at least one stream of data units using at least a first data

processing program of the plurality of data processing programs includes:

processing a first stream of data units that includes a plurality of subsets of

contiguous data units;

initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units
and processing a second subset of contiguous data units adjacent to
the first subset of contiguous data units within the first stream of

data units;

durably storing at least some changes to the shared data caused by
processing the first subset of contigiious data units after
determining that the termination of processing within the first data

processing program has completed; and

resuming processing within the first data processing program before all of

the changes have completed being durably stored.

36. The apparatus of claim 35, wherein the plurality of data processing
programs each process at least one stream of data units with no program state information

being maintained over more than two adjacent data units in the stream.

37. The apparatus of claim 35 or 36, wherein the data storage system includes
a non-volatile storage medium, and durably storing at least some changes to the shared
data caused by processing the first subset of contiguous data units includes storing the

changes in the non-volatile storage medium.

38. The apparatus of any one of claims 35 t0 37, wheréin the data storage
system includes a communication medium coupled to a plurality of the nodes, and
durably storing at least some changes to the shared data caused by processing the first
subset of contiguous data units includes sending the changes from a first node to at least a

second node of the plurality of the nodes over the communication medium.

-58-

CA 3009359 2019-09-24

39. The apparatus of any one of claims 35 to 38, wherein processing at least
one stream of data units using at least the first data processing program further includes
storing at least one snapshot of the shared data and storing a journal of changes to the

shared data caused by processing data units after the snapshot was stored.

40. The apparatus of claim 39, wherein durably storing at least some changes
to the shared data caused by processing the first subset of contiguous data units includes
storing at least a portion of the snapshot and storing at least a portion of the journal of

changes.

41. The apparatus of any one of claims 35 to 40, wherein the data storage
system also stores stream state information associated with one or more streams of data

units processed by at least one of the plurality of data processing programs.

42. The apparatus of claim 41, wherein processing at least one stream of data
units using at least the first data processing program further includes, after determining
that the termination of processing within the first data processing program has completed,

durably storing stream state information associated with the first stream of data units.

43. The apparatus of any one of claims 35 to 42, wherein processing at least
one stream of data units using at least the first data processing program further includes,
before determining that the termination of processing within the first data proceséing
program has completed, durably sforing at least some changes to the shared data caused

by processing the first subset of contiguous data units.

44. The apparatus of claim 43, wherein processing at least one stream of data
units using at least the first data processing program further includes, after resuming
processing within the first data processing program, durably storing at least some changes

to the shared data caused by processing the second subset of contiguous data units.

- 59-

CA 3009359 2019-09-24

45. The apparatus of any one of claims 35 to 44, wherein durably stored
changes to the shared data caused by processing the first subset of contiguous data units
are distinguished from durably stored changes to the shared data caused by processing the

second subset of contiguous data units.

46. The apparatus of claim 45, wherein at least some changes to the shared
data caused by processing the first subset of contiguous data units are durably stored after
at Jeast some changes to the shared data caused by processing the second subset of
contiguous data units have started, where the first subset of contiguous data units are

before the second subset of contiguous data units within the first stream of data units.

47. The apparatus of any one of claims 35 to 46, wherein processing at least
one stream of data units using at least the first data processing program further includes
generating output for each of the plurality of subsets of contiguous data units, and
releasing from the first data processing program, first output generated for the first subset

of contiguous data units after the changes have completed being durably stored.

48. The apparatus of claim 47, wherein the first output generated for the first
subset of contiguous data units is released from the first data processing program after all
changes caused by processing the first subset of contiguous data units have been durably

stored.

49. The apparatus of any one of claims 35 to 48, wherein the first data
processing program terminates processing the first stream of data units periodically, and
the computing system begins durably storing at least some changes to the shared data

caused by processing data units while the first data processing program is terminated.

- 60-

CA 3009359 2019-09-24

50." The apparatus of any one of claims 35 to 49, wherein initiating -
termination of processing within the first data processing program includes inserting a
stream-ending indicator between the first subset of contiguous data units the second
subset of contiguous data units, and the termination of processing within the first data
processing program has completed after all processes that perform tasks specified by the

| first data processing program have exited normally in response to the étream-ending

indicator.

51. The apparatus of any one of claims 35 to 50, wherein the shared data is

accessible by all of the plurality of data processing programs.

52. A method including:

executing, on a computing system including one or more nodes, a plurality of data
processing programs that each process at least one stream of data units;

and

storing, on at least one data storage system accessible to at least one of the one or
more nodes, shared data accessible by at least two of the plurality of data

processing programs;

wherein processing at least one stream of data units using at least a first data

processing program of the one or more data processing programs includes:

processing a first stream of data units to generate‘output for each of a
plurality of subsets of contiguous data units within the first stream

of data units;

initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units
and processing a second subset of contiguous data units adjacent to
the first subset of contiguous data units within the first stream of

data units;

-61-

CA 3009359 2019-09-24

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within the first data

processing program has completed;

resuming processing within the first data processing program after the

changes have been durably stored; and

releasing, from the first data processing program, first output generated for
the first subset of contiguous data units after the changes have been

durably stored.

53. A computer readable medium for maintaining a programming instructions

for éausing a computing system to:

execute a plurality of data processing programs that each process at least one

stream of data units; and

store shared data accessible by at least two of the plurality of data processing

programs;

wherein processing at least one stream of data units using at least a first data

processing program of the one or more data processing programs includes:

processing a first stream of data units to generate output for each of a
plurality of subsets of contiguous data units within the first stream

of data units;

initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units
and processing a second subset of contiguous data units adjacent to
the first subset of contiguous data units within the first stream of

data units;

-62-

CA 3009359 2019-09-24

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within the first data

processing program has completed;

resuming processing within the first data processing program after the

changes have been durably stored; and

releasing, from the first data processing program, first output generated for

the first subset of contiguous data units after the changes have been

durably stored.

54. A method including:

executing, on a computing system including one or more nodes, a plurality of data
processing programs that each process at least one stream of data units;

and

storing, on at least one data storage system accessible to at least one of the one or
more nodes, shared data accessible by at least two of the plurality of data

processing programs;

wherein processing two or more streams of data units using at least a first group
of multiple data processing programs of the plurality of data processing

programs includes:

processing, for each data processing program in the first group, a
respective stream of data units that includes a plurality of subsets

of contiguous data units;

initiating termination of processing within each data processing program
in the first group, between processing a first subset of contiguous
data units and processing a second subset of contiguous data units
adjacent to the first subset of contiguous data units within the

respective stream of data units;

-63-

CA 3009359 2019—.09—24

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within each data

processing program in the first group has completed; and

resuming processing within each data processing program in the first

group after the changes have been durably stored.

55. A computer readable medium for maintaining a programming instructions

for causing a computing system to:

execute a plurality of data processing programs that each process at least one

stream of data units; and

store shared data accessible by at least two of the plurality of data processing

programs;

wherein processing two or more streams of data units using at least a first group
of multiple data processing programs of the plurality of data processing

programs includes:

processing, for each data processing program in the first group, a
respective stream of data units that includes a plurality of subsets

of contiguous data units;

initiating termination of processing within each data processing program
in the first group, between processihg a first subset of contiguous
data units and processing a second subset of contiguous data units
adjacent to the first subset of contiguous data units within the

respective stream of data units;

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within each data

processing program in the first group has completed; and

- 64-

CA 3009359 2019-09-24

resuming processing within each data processing program in the first

group after the changes have been durably stored.

56. A method including:

executing, on a computing system including one or more nodes, a plurality of data
processing programs that each process at least one stream of data units;

and

storing, on at least one data storage system accessible to at least one of the one or
more nodes, shared data accessible by at least two of the plurality of data

processing programs;

wherein processing at least one stream of data units using at least a first data

processing program of the plurality of data processing programs includes:

processing a first stream of data units that includes a plurality of subsets of

contiguous data units;

initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units
and processing a second subset of contiguous data units adjacent to
the first subset of contiguous data units within the first stream of

data units;

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within the first data

processing program has completed; and

resuming processing within the first data processing program before all of

the changes have completed being durably stored.

57. A computer readable medium for maintaining a programming instructions

for causing a computing system to:

- 65-

CA 3009359 2019-09-24

execute a plurality of data processing programs that each process at least one

stream of data units; and

store shared data accessible by at least two of the plurality of data processing

programs;

wherein processing at least one stream of data units using at least a first data

processing program of the plurality of data processing programs includes:

processing a first stream of data units that includes a plurality of subsets of

contiguous data units;

initiating termination of processing within the first data processing
program, between processing a first subset of contiguous data units
and processing a second subset of contiguous data units adjacent to
the first subset of contiguous data units within the first stream of

data units;

durably storing at least some changes to the shared data caused by
processing the first subset of contiguous data units after
determining that the termination of processing within the first data

processing program has completed; and

resuming processing within the first data processing program before all of

the changes have completed being durably stored.

- 66-

CA 3009359 2019-09-24

WO 2017/123849

CA 03009359 2018-06-20

1/

16

PCT/US2017/013309

HIGH-LEVEL PROGRAM SPECIFICATION

110

l

COMPILER/INTERPRETER

120

i

TASK-BASED SPECIFICATION

130

i

TASK-BASED RUNTIME INTERFACE /
CONTROLLER

140

A

154 —

154ﬁ

A

I
PROCESSING
ENGINE

__ _ENGINE

SING

ESSING)
5INE

I/0

160
7 Y

DATA

SOURCE/
DESTINATION

157 —

FACE

* INTER-

BUFFER
MEMORY

DATA

STORAGE

COMPUTING NODE 152

TOoTVITOUT LA A2

[CUNIPUTING™

NODE 152

FSSING
5INE

NODE 152

COMPUTING PLATFORM 150

—
o

FIG.

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

2/16

O
IVOQIYO /mvolv.zu nmv/YQ
1 Q®°
N d
Y
{ ejeq indu| sseoo0lid m
wN NN G ON
as|nd pJiyL jo Buissadoid |njsseaong
0
. 30D o°
gz ‘Ol
®V /V/o (./ w
(A oa&ay
! g
| v
aJ0)soy i m
g “ Y Y
uonesadQ Aianooay
. /vZ/ GZ/
V¢ Ol 2 ©° < @
&VA//. & 170 o IVMU QVO
\N\.//V/. (.//V/ wly

d
Y

ejeq induj ssedoid

LS S

i

as|nd pJiyL ul ainjieq Buisseooid

PCT/US2017/013309
3/16

CA 03009359 2018-06-20

WO 2017/123849

¢ Old

S
&KUJK?

0/¢

e S

7

ejeq indinQ mouos3 ejeq IndinO mouos3

ejeq nduj ssedolid eje induj ssedoid

e e e e e e e ———— W e ——————————— = =

A

e ———

)
N D Rt e e L L L L L L L C e e

uwy
Tl

~
R e et

e m————————————

A
-

sulodyoay) yim Buissadolid uolisebu| pasind

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

oo
OJV

4/16

T L T L L

ejeq INdinQO MoJosg

ejeq induj ssedold

P ——

N=)

Nﬂ

<
[y ——

|

ol
Y

&

ejeq IndinO MmoJosg

B

ejeq nduj ssedolid

ainpaoold Alanodsy peseg julodyosy)

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

5/16

e e e e e e e ———— W e ——————————— = =

A

S
BN

N=)

B N

e oy I gt

ejeq INdinO MoJosg

uwy
Tl

ejeq nduj ssedolid

e ———

ejeq INdinQO MoJosg

eje induj ssedoid

(]

7

sulodyoay) yim Buissaooud uolisebu| pasing ydeus) sidiynpy

e m————————————

-

PCT/US2017/013309
6/16

CA 03009359 2018-06-20

WO 2017/123849

S
@vo.wv@.{

o0,

o] ot

sebuey) |eulnor sebuey) |eunor

. B

" “ ! [22) “ “ " 1

b ejeq indinQ mouos3 Am v_ P ejeq IndinO mouos3

b /@" ; A

ejeq induj sseoold | eleq 1nduj sses0id

_N w_N ow & & & Nw m_ 0

sulodyoay) yim Buissasold uonssbu| pasing pauljadid

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

LEL

4 7/16

V. Old

00/

(

Vel gcitt oclt

weisAg Bunndwo) Buissasold uolisebu| pasind

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

8/16

gl

veel

d/ Ol

00}

VELL

Vell

gcitt oclt

as|nd 1sli{ Jo Buissedold

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

9/16

A

veel

oL 'Old

gcitt oclt

00/

MOJOST Ul pjaH as|nd IndinQ 1sli4 ‘es|nd 1sJi4 Jo Buissadold jo uone|dwo)

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

10/16

veel

gcel

dZ old

gcc!
20k

00}

geLlt

gctt oclt

as|nd puooeg jo Buisseoold

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

11/16

g¢l

LEL

4---——-"""—""—"-—"—"—————.

A

veel

gcel

4/ '9Old

Eﬁﬂmmmw

X4

00/

getlt

EMMQNNF

A

m [

gcitt oclt

MOJOST Wol4 as|nd IndinQ 1sli{ Jo ases|ay

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

12/16

g¢l

4/ Old

veel

X4

_\\mNN“

gcel

00/

EHMQNNF

A

geLlt

y

)

gcitt

as|nd puooeg Jo Buisseoold psnunuo?d)

z

oclt

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

13/16

g¢l

leusnopr

esel]

veel

39Eq||0Y

gctt oclt

00/

as|nd puooag Jo Buissadolid Ul ainjie] Jayy ainpadoid Alanoosy

CA 03009359 2018-06-20

PCT/US2017/013309

WO 2017/123849

8 9Old

R
%

cri

134

&

cri

%

134

gcel

—

3 WMM
gect

X4 <

VELL

w\\mNN“

N

Vell gcitt chl
114 0

00/

sjulodyosy) yum Buisseoold uonsebul pesing pauljadid painglisiq

CA 03009359 2018-06-20

2
“
= 44 LpL
2 Gel LeL
wn
=
- <
2 4 V
gzzi
2l
vzel gcel
00}
(o]
< 1GL
- 124
gzzi 2
Ag) Lh) m%%]
Gel LEL €
121 gzzi

A
N\

WO 2017/123849
N
m
N
N
~~

veel gcel

00}

getlt

gcitt oclt

2J0)S Ble([euoljoBsURI | UYlIM Uoljoelalu|

geLlt

gctt oclt

CA 03009359 2018-06-20

1

crl 134
g&l LEL

x 2

A

PCT/US2017/013309

getlt

vZst gzsl gzil oZLL
00}
(o]
S Gl 21013 BlE(] [BUOIIOBSURI | IO} 8JNP820Id NWWOD
. 1z4
S N gLl
Ag) Lh) a]
Gel LEL €

« , 1z w gzzi

WO 2017/123849
N
m
N
N
~~

veel gcel

00}

gctt oclt

Processing of First Pulse
100

112C 112B 112A 132A

)T NE

135

FIG. 7B

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - CLAIMS
	Page 53 - CLAIMS
	Page 54 - CLAIMS
	Page 55 - CLAIMS
	Page 56 - CLAIMS
	Page 57 - CLAIMS
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS
	Page 61 - CLAIMS
	Page 62 - CLAIMS
	Page 63 - CLAIMS
	Page 64 - CLAIMS
	Page 65 - CLAIMS
	Page 66 - CLAIMS
	Page 67 - CLAIMS
	Page 68 - CLAIMS
	Page 69 - DRAWINGS
	Page 70 - DRAWINGS
	Page 71 - DRAWINGS
	Page 72 - DRAWINGS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - DRAWINGS
	Page 84 - DRAWINGS
	Page 85 - REPRESENTATIVE_DRAWING

