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Abstract Title: An array of interconnected processors executing a cycle-based program
(57) An integrated circuit 4 includes an array 10 of 4

processors 26, each processor having a memory (32)
storing a program, and interface circuitry 12 providing
communication with further processing circuitry 14, e.g.
a general-purpose processor or memory. Further
circuitry 14 is driven by synchronous clock signals sclk.
A higher-frequency array clock sighal aclk is used to
control processors 26. The processors within the array
execute individual programs which together provide the
functionality of a cycle-based program. During each
program cycle of the cycle-based program, each
processor executes its respective program starting
from a predetermined execution start point to evaluate
a next state of state variables of the cycle-based
program. A boundary between program-cycles
provides a synchronisation time (point) for processing
operations performed by the array. Memories (32) are
rewritable allowing in-field reprogramming of
processors 26. The cycle-based program may be
derived from a synthesisable subset of a hardware
description language, e.qg. register transfer level (RTL)
descriptions, Verilog, facilitating effective
parallelisation.
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Processor 0 Program

01 receive R0=(x_count*);
02 Rl = (RO > 334);

03 send Rl (x_hit_max);
04 RO = RO *
05 RO = RO +
06 send RO (

3
3;

x_count_u);

Processor 1 Program

01 get_state RO=(count*);

02 send (x_count*)=R0;

03 RO = RO - 100;

04 get_state R1=(download*);
05 receive R2=( x_hit_max);
06 Branch if zero (R1) labell
07 R3 = (RO <= 0);

08 R3 = not R3;

09 Branch_always label2;

10 .labell

11 R3 = R2

12 .label2

13 put_state (downward) =R3;
14 receive R4= ( x_count_u);

15 1f(R3!=0) put_state(count)=R0;
16 if (R3==0) put_state(count)=R4;

FIG. 5D
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Processor
Clock Processor 0 execuion trace Processor 1 execution frace Progran-
cycle Cycle
1 new_cycle new_cycle 0
2 /*power reduced state*/ | get_state R0=(count*);
3 receive R0=(x_count*); | send (x_count*)=R0; RO = RO - 100;
4 Rl = (RO > 334); get_state Rl=(downward*);
5 send (x_hit_max)=Rl; receive R2=(x_hit_max);
6 RO = RO * 33; Branch_if_zero (R1)/* not taken */
7 /*work on multiply*/ R3 = (RO <= 0);
8 /*work on multiply*/ R3 = not R3;
9 /*work on multiply*/ Branch_always
10 RO = RO + 1; put_state (downward)=R3;
11 send (x_count_u)=R0; receive R4={ x_count_u);
12 /*power reduced state*/ | BQ(R3) put_state()=R0;
13 /*power reduced state*/ | NE(R3) put_state()=R4;
14 new_cycle new_cycle 1
15 /*power reduced state*/ | get_state R0=({count*);
16 receive R0=(x_count*); | send (x_count*)=R0; R0 = RO - 100;
17 Rl = (RO > 334); get_state R1=(downward*);
18 send (x_hit_max)=R1; receive R2=(x_hit_max);
19 RO = RO * 33; Branch_if_zero (R1)/* taken */
20 /*working on multiply*/ | /*taken branch penalty*/
21 /*working on multiply*/ | R3 = R2;
22 /*working on multiply*/ | put_state(downward)=R3;
23 RO = RO + 1; /*power reduced state*/
24 send (x_count_u)R0; receive R4=(x_count_u);
25 /*power reduced state*/ | EQ(R3) put_state {count)=R0;
2% /*power reduced state*/ | NE(R3) put_state{count)=R4;
27 new_cycle new_cycle 2

FIG. 5E
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FIG. 6C: variable program-cycle time
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INTEGRATED CIRCUIT INCORPORATING AN ARRAY OF
INTERCONNECTED PROCESSORS EXECUTING A CYCLE-BASED
PROGRAM

This invention relates to the field of integrated circuits. More particularly, this
invention relates to integrated circuits incorporating an array of interconnected

processors executing a cycle-based program.

It is known to provide integrated circuits for performing data processing tasks.
These integrated circuits have rapidly increased in capability and complexity. It is
also known to provide desired data processing functionality in the form of either a
program executing on a general purpose processor or using special purpose dedicated
hardware. The approach of a program executing on a general purpose processor has
the advantage of flexibility in that it is possible to relatively readily modify the
program and so adapt the processing performed. As an example, if the program is
performing some data encryption or decryption processing and the method of
encryption or decryption is modified during the service life of the integrated circuit,
then it is possible to modify the program being executed to take account of the
change. However, using a program executing on a general purpose processor is
generally slower and less power efficient than using dedicated hardware. Dedicated
hardware can be tuned and optimised to perform a specific processing function. Such
dedicated hardware, such as an encryption engine or a decryption engine, can deliver
high performance with relatively low power consumption compared to a program
executing on a general purpose processor. However, such dedicated hardware has the
disadvantage of being relatively inflexible and generally unmodifiable during the
service life of the integrated circuit so as to adapt to changing processing

requirements.

Another situation in which there is a trade off between software implemented
processing and dedicated hardware support is where a number of variants of an
integrated circuit are required. The costs associated with developing and
manufacturing an integrated circuit are high. If dedicated hardware is used in order to

benefit from its high speed and low power consumption, then different integrated
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circuits need to be manufactured for each differing variant so as to provide the
different hardware support required. This increases cost. Accordingly, it may be
desirable in such circumstances to provide desired functionality via software
executing on a processor, even though this may be relatively slower and less power

efficient.

A further problematic scenario is wherein an integrated circuit is developed
and manufactured at considerable expense and then the desired functionality of that
integrated circuit is changed. At the time the integrated circuit was designed and
manufactured there may have been no need for a particular form of functionality.
However, during the lifetime of that integrated circuit in manufacture such a need
may arise. In order to avoid the cost of having to adapt the manufacturing process it
may be preferable in these circumstances to provide, the new desired functionality in
the form of software rather than using dedicated hardware. This software
implementation will generally have lower performance and higher power
consumption, but this may be preferable to the costs of developing a new integrated
circuit. It may also be possible to modify existing end-user devices that are in-field
via a software update whereas it is much more problematic to replace integrated
circuits within those end user devices in order to provide the desired new

functionality.

Viewed from one aspect the present invention provides an integrated circuit
for data processing, said integrated circuit comprising: an array of interconnected
processors, each processor having a memory storing a program defining a set of
processing operations to be performed by said processor; further processing circuitry
responsive to a synchronous clock signal to perform synchronous processing
operations; and interface circuitry coupled to said array and to said further circuitry to
provide communication of one or more signals between said array and said further
processing circuitry such that data processing operations of said integrated circuit are
distributed between said array and said further processing circuitry; wherein said
programs stored within said memories of said array together define a plurality of sets
of processing operations to be performed by said processors of said array such that

said array is configured to execute a cycle-based program; said cycle-based program
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provides state variables that allow results of operations executed in one program-cycle
of said cycle-based program to be accessed during a subsequent program-cycle of said
cycle-based program; and during each program-cycle of said cycle-based program,
each of said processors of said array executes a respective program starting from a
predetermined execution start point to evaluate a next state of at least some of said
state variables, a boundary between program-cycles providing a synchronisation time

for processing operations performed by said array.

The present technique provides within an integrated circuit a combination of
an array of interconnected processors each having a memory storing a program for
that processor, and the array communicating via interface circuitry with further
processing circuitry responsive to a synchronous clock signal to perform its own
synchronous processing operations. The array of inteconnected processors and the
further processing circuitry thus cooperate to achieve the overall desired functionality
of integrated circuit concerned. The processors of the array are programmed such that
the array is configured to execute a cycle-based program. The cycle-based program
provides state variables that allow operations executed in one program-cycle of the
cycle-based program to be accessed during a subsequent program-cycle of the cycle-
based program. The cycle-based program provides the desired functionality by
establishing what processing operations need to be performed in each program-cycle
to generate desired output state variables from the available input state variables. This
processing is then divided between the different processors of the array. Each
processor in the array executes its own program starting from a predetermined
execution start point at the beginning of each evaluation cycle so as to evaluate the
next state of at least some of the state variables. Each processor of the array executes
its same program starting from the same point during each program-cycle, although
the path through that program may vary. The boundary between program-cycles

provides a synchronisation time for the processing operations performed by the array.

Dividing the processing to be performed between different processors within
such an array allows a high degree of parallelism. The cycle-based program
simplifies the programming of the array. The programming of parallel processing is

notoriously difficult. However, when a user is seeking to provide such processing in
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place of dedicated hardware, it is normal for the designers of such dedicated hardware
to already have a clear view of the processing operations which need to be performed
in parallel during each cycle by the dedicated hardware. Using this understanding of
how the dedicated hardware would be provided allows a cycle-based program to be
formed and partitioned between different processors of the array in a manner which
allows a good balance between processor performance and power consumption to be
achieved in providing the required functionality using the array. Hardware engineers
are used to partitioning the processing to be required into different sections which can
be performed in parallel by the hardware. Much hardware design is performed using
design languages, such as register transfer level Verilog or synthesisable Verilog,
which utilise an explicit clock signal and define the operations to be performed in
parallel during each clock cycle. This type of understanding and existing
infrastructure can be utilised in forming the cycle-based programs for the processors
of the array. Each processor of the array executes its individual program during a
program-cycle to produce its output state variables from its input state variables. The
values of state variables and temporary (non-state) variables required by processors
that do not produce them are transmitted across the array communication links during
execution. The program-cycles correspond to clock cycles within hardware. In the
same way that a hardware element will perform the same processing on each clock
cycle, so will a processor within the array execute the same program on each

program-cycle.

The interface circuitry communicating with the further processing circuitry
driven by the synchronous clock signal can take a variety of different forms. These
different forms may be used separately or in combination. The different forms
include a synchronous clocked bus of the further processing circuitry, an
asynchronous bus of the further processing circuitry, handshake circuitry providing
communication in accordance with a handshake protocol, circuitry responsive to a
signal from the array to be communicated to the further processing circuitry which
maintains a signal level of a signal being passed to the further processing circuitry for
a predetermined number of cycles of the synchronous clock signal, circuitry
responsive to a signal from the array to be communicated to the further processing

circuitry that alters a signal level of the signal being passed to the further processing
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circuitry after a predetermined number of cycles of the synchronous clock signal;
and/or circuitry that samples a signal from said further processing circuitry at a
predetermined time relative to said synchronous clock signal and then passes said
signal to said array synchronised with a clock signal of said array. These different
interface mechanisms have different strengths and weaknesses. For example,
utilisation of the synchronous bus may more readily provide predictable levels of
performance. The use of an asynchronous bus may give more flexibility in
incorporating the desired communication within the overall processing being
performed on the integrated circuit. The use of the circuitry which holds a signal for a
predetermined number of cycles of the synchronous clock signal, or alters the signal
after a predetermined number of cycles, provides a mechanism for ensuring
appropriate capture of a signal being passed to the further processing circuitry

operating with the synchronous clock signal.

The programs being executed by the processors of the array have the
characteristics of software programs as contrasted with the characteristics of static or
time varying hardware configuration. In at least preferred embodiments, the programs
of the processors of the array may include branch programming instructions for
permitting non-sequential program flow, variable length instructions for permitting
higher program density and/or program instructions which take different numbers of
clock cycles of the processors of the array to execute in recognition of the different
levels of processing complexity which may be associated with different program

instructions.

The processors of the array will typically be relatively simple processors since
they are only being required to repeatedly perform execution of one program which
itself only forms part of the overall desired processing. The simple form of the
processors of the array can allow them to execute with a high frequency array clock
signal which can be greater in frequency than the synchronous clock signal used by
the further processing circuitry. Thus, the processors of the array may perform many
processing cycles to achieve their desired portion of the overall processing being
provided by the array during a single clock cycle of the synchronous clock signal of
the further processing circuitry.
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It may be that the program-cycles of the array are synchronised with the
synchronous clock signal in some fixed manner. This can facilitate communication
between the array and the further processing circuitry. It is also possible that the
program-cycles may be permitted to have a variable duration while the interface
circuitry still continues to communicate with the further processing circuitry in a
manner synchronised with the synchronous clock. This may permit the array to enter,
for example, a low power mode when high performance is not required. A further
example would be altering the program-cycle duration to match the amount of

processing to be performed.

The processors within the array can provide a multi-bit data path way for
processing a multi-bit data value. It is often the case that when processing operations
to be performed in parallel are portioned out that the same processing operation will
be required in respect of different bits within a multi-bit value and this may be
conveniently and efficiently performed utilising a processor within an array that

supports such a multi-bit pathway.

The interface circuitry between the array and the further processing circuitry
may in some embodiments use a system bus which is open to use for communication
within the integrated circuit that does not involve the array. The array thus can act as
a master or slave device attached to the system bus utilising communication

infrastructure that is already provided.

In other embodiments, the interface circuitry can provide communication to
the further processing circuitry via a private bus dedicated to communication between
the array and the further processing circuitry. This arrangement permits a more
tightly-coupled association to be achieved and provides more predictable levels of

performance and potentially higher performance than utilising an open system bus.

The programs for the array may be conventionally machine generated from a
machine readable hardware description of hardware having functionality to be

provided by the array. As previously mentioned, it is known for hardware engineers
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to design dedicated hardware using machine readable hardware descriptions. Various
software tools are conventionally used to then convert these machine readable
hardware descriptions into gate level implementations of the desired hardware. This
process is normally referred to as hardware synthesis. With the present technique, the
same machine readable hardware descriptions may be utilised to generate the
programs for the processors of the array in a technique analogous to software
compilation. The hardware descriptions are typically already in a form with an
explicit clock which facilitates partitioning between the processors of the array and
effective parallisation of the processing being performed. Examples of the machine
readable hardware description include register transfer level Verilog and synthesisable

Verilog.

The reusability and flexibility of the array within the integrated circuit is
facilitated when the memories of the processors within the array are rewritable.
Whilst it might be possible to use non-rewritable memories in some circumstances,
rewritable memories for the processors within the array permits them to be
reprogrammed and permits them to be readily used for temporary data storage during

each program-cycle.

It will be appreciated that the further processing circuitry can take a wide
variety of different forms. These may include, for example, a general purpose
program controlled processor, a digital signal processor, a non-programmable

processing engine and a memory.

Viewed from another aspect the present invention provides a method of
programming an integrated circuit having an array of interconnected processors, each
processor having a memory storing a program comprising a set of processing
operations to be performed by said processor, and further processing circuitry
responsive to a synchronous clock signal to perform synchronous processing
operations, said method comprising the steps of: generating a synthesisable hardware
description with at least one explicit clock signal to perform desired processing;

mapping said hardware description to a plurality of programs each defining a set of
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processing operations to be performed by a processor within said array; and storing
said plurality of programs in respective program memories within said array such that:
said array when executing said plurality of programs executes a cycle-based program
corresponding to said desired processing described in said hardware description; said
cycle-based program provides state variables that allow results of operations executed
in one program-cycle of said cycle-based program to be accessed during a subsequent
program-cycle of said cycle-based program; and during each program-cycle of said
cycle-based program, each of said processors of said array executes a respective
program starting from a predetermined execution start point to evaluate a next state of
at least some of said state variables, a boundary between program-cycles providing a

synchronisation time (or point) for processing operations performed by said array.

Viewed from a further aspect the present invention provides an end-user
device including an integrated circuit for data processing, said integrated circuit
comprising: an array of interconnected processors, each processor having a memory
storing a program defining a set of processing operations to be performed by said
processor; further processing circuitry responsive to a synchronous clock signal to
perform synchronous processing operations; and interface circuitry coupled to said
array and to said further circuitry to provide communication of one or more signals
between said array and said further processing circuitry such that data processing
operations of said integrated circuit are distributed between said array and said further
processing circuitry; wherein said programs stored within said memories of said array
together define a plurality of sets of processing operations to be performed by said
processors of said array such that said array is configured to execute a cycle-based
program; said cycle-based program provides state variables that allow results of
operations executed in one program-cycle of said cycle-based program to be accessed
during a subsequent program-cycle of said cycle-based program; and during each
program-cycle of said cycle-based program, each of said processors of said array
executes a respective program starting from a predetermined execution start point to
evaluate a next state of at least some of said state variables, a boundary between
program-cycles providing a synchronisation time for processing operations performed

by said array.
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Viewed from a further aspect the present invention provides a method of
providing an in-field update to functionality of an integrated circuit having an array of
interconnected processors, each processor having a memory storing a program
comprising a set of processing operations to be performed by said processor, and
further processing circuitry responsive to a synchronous clock signal to perform
synchronous processing operations, said method comprising the steps of: generating a
synthesisable hardware description with at least one explicit clock signal to perform
desired processing; mapping said hardware description to a plurality of programs each
defining a set of processing operations to be performed by a processor within said
array; and storing said plurality of programs in respective program memories within
said array such that: said array when executing said plurality of programs executes a
cycle-based program corresponding to said desired processing described in said
hardware description; said cycle-based program provides state variables that allow
results of operations executed in one program-cycle of said cycle-based program to be
accessed during a subsequent program-cycle of said cycle-based program; and during
each program-cycle of said cycle-based program, each of said processors of said array
executes a respective program starting from a predetermined execution start point to
evaluate a next state of at least some of said state variables, a boundary between
program-cycles providing a synchronisation time for processing operations performed

by said array.

Embodiments of the invention will now be described, by way of example only,

with reference to the accompanying drawings in which:

Figure 1 schematically illustrates an end-user device incorporating an

integrated circuit;

Figure 2 schematically illustrates an integrated circuit incorporating an array

of processors and further processing circuitry;

Figure 3 schematically illustrates in an array of processors;



10

15

20

25

30

10

Figure 4 schematically illustrates an individual processor from within an array

of processors;

Figures 5a, Sb, Sc, 5d and Se schematically illustrates a relationship between a
simple C program, a pseudo-code cycle-based program performing the same function
as the C program, the dependencies between the instructions within the pseudo-code
program, the partitioning of the pseudo-code programs in to two sub-programs for

running on two processors and a pseudo-code execution trace;

Figures 6A, 6B and 6C illustrates a relationship between a synchronous clock

signal (system clock signal), an array clock signal and an program-cycle; and

Figure 7 is a flow diagram schematically illustrating the programming of an

array of processors.

Figure 1 illustrates an end-user device 2 incorporating a system-on-chip
integrated circuit 4 communicating with a memory 6 and input/output circuitry 8. It
will be appreciated that the end-user device could have a wide variety of different
forms. For example, the end-user device could be a mobile telephone, a portable
computer, a control system within an automobile, a control system within a television

set or many other end-user devices.

The memory 6 stores data and programs for manipulation or use by the
integrated circuit 4. Communication with devices external of the end-user device 2 is

performed by the input/output circuitry 8.

Subsequent to initial design, or during in-field use, it may be that the
functionality required of the integrated circuit 4 changes. For example, a new
encryption algorithm may need to be supported, or a new format of media data may
need to be decoded. Some of these new requirements may be accommodated by
reprogramming of the software controlling a general purpose processor within the

integrated circuit 4. However, such a general purpose processor may not provide
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processing of sufficiently high performance or of sufficiently high efficiency

compared with a dedicated hardware implementation of the new functionality.

Figure 2 schematically illustrates the integrated circuit 4 in more detail the
integrated circuit 4 includes an array of processors 10, interface circuitry 12 and
further processing circuitry 14. The array of processors 10 communicates via the
interface circuitry 12 with the further processing circuitry 14 using a system bus 16.
It is also possible in some embodiments to utilise a private bus (and/or individual
signals) 18 running directly between the interface circuitry 12 and the further
processing circuitry 14. A cache memory 20, a main memory 22 and input/output
circuitry 24 are also connected to the system bus 16 and may communicate with the
further processing circuitry 14 and with each other without involvement of the array

10.

The further processing circuitry 14, the cache memory 20, the main memory
22 and the input/output circuitry 24 are all driven by a system clock signals sclk
(serving as the synchronous clock signals mentioned above) distributed throughout
the integrated circuit 4. The array 10 has its own higher frequency array clock signal
aclk which is used to control an array of processors 26. These processors 26 are
interconnected. There are shown local connections from processors within the array
to their North, South, East and West neighbours. It is also possible that non-local

interconnections may be provided between processors which are spaced further apart.

The interface circuitry 12 receives the system clock signal sclk and signals
from the array 10. The interface circuitry 12 manages communication between the
further processing circuitry 14 and the processors 26 within the array 10. This
communication may be via the system bus 16 or the private bus 18. Communication
via the system bus 16 or private bus 18 may be synchronous or asynchronous. When
operating asynchronously, instead of sclk the bus can use asynchronous circuitry, e.g.
asynchronous-handshake circuitry (no sclk) or it may simply be that sclk is not
synchronised with aclk. Synchronous communication has advantages such as
predictability, whereas asynchronous communication may be more flexible and

adaptable. It is also possible that both types of communication may be supported.
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The interface circuitry 12 may output a value received from the cycle-based-
program to the further processing circuitry 14 quickly as possible. Similarly it may
make values from the further processing circuitry 14 available to the cycle-based-

program as quickly as possible.

Alternatively, the interface circuitry 12 may synchronise outputs to further processing

circuitry 14 to sclk or to a number of aclk cycles after an sclk edge.

Similarly, inputs from the further processing circuitry 14 may be sampled on an sclk

edge or to a number of aclk cycles after an sclk edge.

Alternatively, the interface circuitry 12 may be signalled to outputs values to the

further processing circuitry 14 for a number of aclk cycles after an sclk edge.

Similarly, inputs from the further processing circuitry 14 may be sensitive for a

number of aclk cycles after an sclk edge.

The interface circuitry 12 may be send a set of output values to output to the

further processing circuitry 14 in sequence advanced by sclk or aclk edges.

Similarly, inputs from the further processing circuitry 14 may be sampled more than
once per program-cycle, the set of samples being available to the cycle-based

program.

The interface circuitry 12 may be configured to hold its output values unless a

new value is sent to it by a deadline specified relative to aclk or sclk.

Similarly, inputs of the interface circuitry 12 from the further processing circuitry 14
may be configured to sample a new value only if it arrives from the further processing

circuitry 14 by a deadline specified relative to aclk or sclk.
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Inputs from the further processing circuitry 14 may be monitored for certain
values and a transition to those values reported to the cycle-based program even if the
values subsequently changes to other values before the cycle-based program reads the

input.

When a handshake is used to connect the further processing circuitry 14 to the
array, the interface circuitry 12 may take care of part or all of the handshake protocol.
At one extreme, the interface circuitry 12 takes values to be communicated from the
array and performs an entire handshake controlled transfer to the further processing
circuitry 14 or visa-versa. At the other extreme, the interface circuitry 12 passes the
values of the handshake control signals to the array and the cycle-based program on

the array performs the handshake protocol.

In some implementations the interface circuitry 12 can also buffer
communications from the array to the further processing circuitry 14 or from the
further processing circuitry 14 to the array. Values are inserted into a buffer
according to one clock or protocol and removed from the buffer according to the other

clock or protocol.

Figure 3 schematically illustrates the array 10 in more detail. In particular, the
interface circuitry 12 is shown as including a bus interface unit 28 and an input/output
unit 30. The bus interface unit 28 is responsible for communication with bus
transactions using either the system bus 16 or the private bus 18. These transactions
may be synchronous with the array clock aclk or asynchronous. The transactions may
pass data or control in either direction. The bus interface unit 28 is responsive to the

array clock signal aclk as well as the system clock signal sclk.

The input/output unit 30 is responsible for passing signals to and from the
array 10 that are not bus transactions. These signals may, for example, be interrupt
signals or control signals. The input/output unit 30 is responsible for holding an
output signal to the further processing circuitry 14 for a predetermined number of aclk

clock signal cycles (with the delay counted in aclk or sclk cycles) or for altering such
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a signal after a predetermined number of system clock signal cycles as previously

discussed. Handshaking circuitry and protocols may also be used.

Figure 4 schematically illustrates a processor 26 of the array 10 in more detail.
The processor 26 includes a memory 32 storing both the program to be executed by
the processor 26 as well as providing data storage for use by variables of the
processing performed by the processor 26. The memory 32 may be partitioned to
allow simultaneous access to multiple instruction or data values. Use for Instruction
or Data may be fixed or variable. The processor 26 further includes a load store unit
34 for loading data to and from the memory 32. An arithmetic logic unit 36 performs
arithmetic or logical operations as specified by program instructions retrieved from
the memory 32 upon data values. Interconnect circuitry 38 serves to provide North,
South, East and West local connections to other processors 26 within the array 10 as
well as non-local connection. The processors 26 are interconnected and can exchange

signals both at program-cycle boundaries and at fixed offsets from such boundaries.

The processor 26 further includes a register file 40 for storing values used
frequently in processing manipulations. An immediate generator circuit 42 is
responsive to decoded instructions to generate immediate values for use in data
manipulations. Such immediate values are specified by the program instructions
being manipulated, as will be familiar to those in this technical field. The memory 32
is addressed to retrieve program instructions for execution by the processor 26 using
program counter circuitry 44 which includes PC control logic 46, an incrementer 48
and a multiplexer 50. The PC control logic 46 responds to branch instructions to
trigger a non-sequential jump of program flow to a branch target by an appropriate
manipulation of the program counter value. In normal sequential program flow the
incrementer 48 is used to advance the program counter (by an amount dependent upon
the current instruction length) as each program instruction to be executed by the
processor 26 is required. An instruction decoder 52 decodes program instructions
fetched from the memory 34. These program instructions may be variable length
program instructions so as to improve code density. The program instructions may
also take variable numbers of array clock cycles to execute with the program counter

value PC being changed after the appropriate number of array clock signal cycles.
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The instruction decoder 52 controls the immediate generator circuitry 42 and other
circuit elements when an instruction specifying an immediate value is encountered.
Furthermore, flag signals generated by at least the arithmetic logic unit 36 can be used
to modify the behaviour of the instruction decoder 52. For example, a conditional
branch instruction may trigger a branch when the result of a preceding data processing
operation performed by the arithmetic logic unit produces a zero value. Further types
of flags such as non-zero, carry, overflow etc will be familiar and can be used by the

instruction decoder 52 depending upon the level of complexity thereof.

The program stored within the memory 32 is executed from a predetermined
start point for each program-cycle. The path followed through the program may vary.
In some program-cycles no processing may be required by that processor 26 and
accordingly the processing path will be very short with the processor spending most
of its time waiting for the start of the next evaluations cycle. In other program-cycles,
complex processing may be required which only completes just before the end of the
program-cycle. In each program-cycle, the program executed can be considered as
manipulating input state variables to generate output state variables in a manner
equivalent to what would be achieved by a corresponding portion of a dedicated
hardware implementation of the functionality concerned. The individual processors
within the array are responsible for repeatedly executing their own individual
programs to achieve the functionality of a small portion of hardware which would
otherwise be used in a dedicated hardware implementation. The processors 26 as a
consequence of their relative simplicity can operate with a high array clock signal
frequency with many array clock signal cycles borresponding to a signai prdgram-

cycle and/or a single system clock cycle.

The processors 26 within the array 10 as a whole together serve to execute a
cycle-based program which is performing the desired overall functionality of
manipulating state variables at each program-cycle to determine the value of those
state variables for the next program-cycle. This is analogous to the way in which
synchronous hardware evaluates in each clock signal to generate circuit state
characterising the outcome of the current cycle starting from the state which

characterise the outcome cycle.



10

15

20

25

30

16

The processor 26 manipulates multi-bit data values with, for example, the
arithmetic logic unit 26 supporting multi-bit arithmetic operations and multi-bit
logical operations. Similarly, the load store unit 34 can perform store data operations
and load data operations to and from the memory 34 in relation to multi-bit data
values. In practice, many desired processing operations have such multi-bit
characteristics which are more effectively supported by processors 26 having a multi-

bit capability.

The memory 32 is rewritable. This permits in-field reprogramming of the
processors 26. The reprogramming of the memory 32 may be achieved in a variety of
different ways. A separate reprogramming channel may be provided. Alternatively,
the reprogramming could take place under control of one of the processors 26 within

the array 10.

Returning to Figure 2, it will be appreciated that the further processing
circuitry 14 can have a variety of different forms. For example, it may be in the form
of a general purpose program controlled processor, a digital signal processor, a non-
programmable processing engine or a memory. The integrated circuit 4 may or may

not include further elements.

Figure 5a is a simple C program that performs the same function as the cycle-
based pseudo-code in Figure 5b. It is presented only for the purpose of aiding
understanding of the testcase. The cycle-based code is not derived from a C program.
The program counts up to a limit and then down to zero and then up again repeatedly.
When counting up, the count increases to the current count multiplied by 3 plus 1:

When counting down the count is decreased by 100.

The C language is such that the instructions in the program execute in the
order they appear in the program, so for example, when all the "if " condition evaluate
true:

The "if" at line 12 evaluates before

the "if" at line 14 which evaluates before
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the "count=count*3+1" at line 14 which evaluates before

the "downward" at line 15 ...

Note: the C program includes a printf function call to print the result to the

screen. This is not included in the cycle-based pseudo-code in Figure Sb.

Figure S5b shows the pseudo-code for a cycle-based program that performs the

same count as Figure Sa.

Lines 11, 12 and 26 delimit the block of instructions that capture the desired
function of the program. The instructions between lines 11 and 25 are describe
desired function of the program not the order in which to execute them. Instead the
instructions may be evaluated in any order that satisfies the dependencies between
them (See Figure 5c). Note: that the entire "if...else..." on lines 21 and 22 is
considered one instruction for the purposes of ordering. Similarly the "if...else..." at
lines 24, 25.

A processor running this cycle-based program repeatedly evaluates the
operations between lines 11 and 25. Each evaluation corresponds to a program-cycle
of an element in the array. In some applications this re-evaluation is allowed to
continue indefinitely i.e. until power is removed or the processor is reset. In other
applications an "exit" instruction is implemented (not shown in this pseudo-code) and

this can be used by a program to signal it wishes to stop executing,.

Lines 4 and 5 declare state variables that are used to send information from
one program-cycle to the next. The value of a passed from the last program-cycle is
identified using an "*" at then end of the variable name, with no intervening white
space. So, "count*" gives access to the value of the state variable "count" passed
from the last program-cycle. "count" gives access the value to be sent to the next
program-cycle. "count*" may only be read and cannot be assigned. "count” can be
read and assigned. It may be read multiple times per program-cycle but may be

assigned only once per program-cycle. In this embodiment state variables are
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initialized to zero before the first Program-cycle. In other embodiments all state

variables may be initialized to one to values specified by the programmer per variable.

Lines 7 and 8 declare temporary variables whose values are lost at the end of a
program-cycle. Again these variables may be read multiple times per program-cycle

but may be assigned only once per program-cycle.

Those with a knowledge of synchronous digital electronic hardware design
will recognize that cycle-based programs have parallels with Register Transfer Level
(RTL) descriptions that are used to specify synchronous digital hardware. They will
also see that a cycle-based program can be derived from code in the Synthesizable
subset of a Hardware Description Language. The design must have a single clock or
multiple clocks derived by dividing down one master clock. The algorithms required
to derive the cycle-based program are synthesis algorithms that are well known and

demonstrated in academic and commercial Electronic Design Automation tools.

Figure S5c shows the dependencies between the pseudo-code instructions
between lines 11 and 25 in Figure 5b. (1) & (2) represent the selections indicated by
the "if" instructions. The dotted line arrow represents the execution looping back to
evaluate the next program-cycle. As far as a programmer is concerned all work for
one program-cycle is fully completed before the next program cycle is started. The
work is carried out such that the dependencies shown in Figure Sc are honored. The
advancement from on program-cycle to the next is marked by a new program-cycle

synchronization illustrated by the dotted arrow.

Some embodiments may allow completion of some work from the end of a
program-cycle at the start of the next. This "borrowing" works in cases where the
corresponding state variables are not needed immediately in the next program-cycle.
The "borrowing" optimization is hidden from the programmer who can rely on the
program functioning as though one program-cycle is fully completed before the next

program cycle is started.
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Figure 5d shows how this simple test case could be partitioned into two
pseudo-assembly-code sub-programs running on two processors of a multi-processor.
Only two processors are needed because this is a trivial example. Real-world
examples would entail hundreds, thousands or more processors with a vast amount of

fine-grain communication between them.

Once a dependency graph such as the one shown in Figure 5c has been derived
for a program, known allocation and scheduling algorithms can be used to allocate
instructions to processors. The example shows one of many ways that the code could
have been allocated between the processors. In this example each processor executes
the code in-order but in other embodiments the execution order could be determined
by each processor's hardware using the techniques found in out-of-order processors

and dynamic dataflow computers.

There follows a description of the pseudo assembler code two processor. This
pseudo assembly code is use to demonstrate the fine-grain partitioning of the cycle-
based program between the processors. This pseudo assembly code would be
translated it binary-encoded machine-code instructions to be stored in the processors'
memory. Often one assembler instruction corresponds to one machine-code

instruction, but that is not guaranteed to be the case.

Processor 0:

Line 1: Receive a value from another processor into RO (communication
label "x_count*")

Line 2: Set Rl non-zero if RO is greater than 334

Line 3: Send the value in RI to another processor (communication label
"x_hit_max")

Line 4: Mulitiply RO by 3

Line 5: Add 1toRO

Line 6: Send the value in RO to another processor (communication label

"x_count_u")
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Processor 1:

Line 1: Set RO to the value of the "count" state variable passed from the last
program-cycle

Line 2: Send the value in RO to another processor (communication label
"X_count*")

Line 3: Subtract 100 from RO

Line 4: Set R1 to the value of the "downward" state variable passed from the
last program-cycle

Line 5: Receive a value from another processor into R2 (communication label
"x_hit_max")

Line 6: Branch to "labell" if the value in R1 is zero

Line 7: Set R3 to non-zero if RO is less than or equal to zero

Line 8: Invert value in R3

Line 9: Unconditional branch to "label2"

Line 10: branch target label "labell"

Line 11: Set R3 to the value in R2

Line 12: branch target label "label2"

Line 13: Pass the value in R3 to the next Program-cycle in the "downward"
state variable

Line 14: Receive a value from another processor into R4 (communication
label "x_count_u")

Line 15: Conditional on R3 being non-zero, pass the value in R0 to the next
program-cycle in the "downward" state variable

Line 16: Conditional on R3 being zero, pass the value in R4 to the next

program-cycle in the "downward" state variable

Lines 6 to 12 implement the select operation labeled (1) in figure Sc using
conditional branches to make control flow changes. But lines 15 & 16 implement the

select operation labeled (1) in figure Sc using conditional instructions.

Most of the pseudo-code instructions are well known and used in many
processors.  Four instructions will be explained further: "get state", "put_state",

"send" and "receive".
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get state and put_state: these pseudo instructions are for accessing state

variables that pass information from one program cycle to the next. For example
"get_state(count*)" gets the value of "count" passed from the previous program cycle.
"put_state(count)" sets the value of count in this program cycle and to be passed to the
next program cycle. Also, "get state(count)" will get a value of count previously set
in the current program cycle. So, the value of count in the current cycle and the value
passed from the previous cycle can both be accessed. Using a string identifier for the
state variable in the instruction ("count” in this case) is makes the assembly code easy
to read and write. The assembler will allocate memory or register space as
appropriate for the state variable and use the appropriate machine instructions to
access the state. If the machine code can be scheduled so that all reads of "count*" in
a cycle occur before the write to "count" then the value can be passed to the next
program cycle simple by overwriting the register or memory location holding "count”.
If the "count*" must be read after "count" is written then the in this embodiment the
tools must insert code to manage taking a copy of "count*" or delaying overwriting
the register or address holding "count”. In other embodiments the processor hardware

directly supports updating state variables.

send and receive: these pseudo instructions are for communicating between
processors. As well as the source or destination registers a label for the transaction is
given in the send and receive instruction. This label identifies the intended start and
end points for assembler so that it can create correct code to implement the desired
transfer. Note that a "send" instruction may have more than one associated "receive"

instruction.

In this embodiment the processors are connected to their nearest-neighbor
using multi-bit links. In other embodiments other types of inter-processor message
passing link technology and network topology are used. These include: single-bit
serial links and multi-but links, links, packet-routed links in nearest neighbor, N-th
neighbor, hieratical and hyper cube networks.
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In this embodiment the processors communications may be routed directly
between processors and the processor's inter-processor-communication hardware will
autonomously pass on transfers travelling to other processors. In other embodiments
communications are routed though intermediate router blocks. In other embodiments
the processors inter-processor-communication hardware is not autonomous and the

routing through of communications in the processor's program.

In this embodiment the transaction label is used by the assembler to align the
time of send and receive instructions so they occur on separate processor at the same
time. The transaction label is also used to encode the relative position of the receiving
processor in the machine code performing the transmission. In other embodiments
the absolute position of the receiving processor is encoded. In other embodiments

another unique identifier of the receiving processor is encoded.

At receiving processor the transaction label is used to code the input channel
on which to expect the communication. This embodiment aligns the time of the
sending and receiving instructions making the inter-processor links simple at the cost
of constraining the performance of the links by requiring them to operate in one cycle.
This also puts constraints on position of instructions in the machine code relative to
the start of the program-cycle. Other embodiments align transaction code in each
processor with a fixed offset giving more time for the link to pass information. Other
embodiments encode an offset for transactions in the machine-code instruction which
relaxes the constraints on positioning of send and receive instructions. Allowing
offset that are longer than the link latency adds a requirement for buffering

somewhere in the processors or inter-processor link.

In other embodiments the transaction label is used to allocate a unique tag for
the transaction. The tag must at least be unique across the range of time the
transmission could take place and across the region of the multi-processor though
which the message could pass. Tags that are unique between the sending a receiving
processor can be used to identify transactions between the two processors. These are

most useful for direct communications. Tags that are unique across part or all of the
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multi-processor can also be used to route communications through intermediate

Processors or routers.

Figure 5e is a pseudo-code execution trace of two program-cycles of the cycle
based program. The operations performed in each processor clock cycle are shown as

is the start of each program-cycle.

In this embodiment the processor executes instruction in-order and can
execute up to one communication instruction (send or receive) and one other
instruction in parallel per processor-cycle. In other embodiments the processor
executes one instruction per cycle. In other embodiments the processor executes other
number of instructions in parallel. In other embodiments the processor executes the

instructions out-of-order.

There follows a description of the activity on processor 0:

1. This instruction starts a new program-cycle in this embodiment it is aligned
in the static schedule with the same instruction on processor 1. In other embodiments
the instruction may not be needed with the alignment occurring implicitly on the first
instruction or communication. In other embodiments the alignment occurs though a
program-wide synchronization signal between processor 1 and processor 0. This in
turn allows the number of processor-cycle per program-cycle to vary dynamically
depending on the work required in a given processor cycle. In other embodiments the
number of processor-cycle per program-cycle to vary dynamically as long as all
processors running part of the program communicate enough information for them all
to execute the same number of processor-cycle per program-cycle.

2. This is an empty cycle. It is required because processor 0 cannot do
anything useful until it receives transmission "x_count*". In this embodiment it is
implemented using a NOP instruction that puts the processor into a power reduced
state for a cycle. In other embodiments a NOP may not be needed with execution
beginning at an offset from the start of the program cycle or being triggered by
receiving an inter-processor communication. In a dynamic schedule this empty-cycle

could be removed potentially reducing the number of processor cycles in the program-
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cycle or saving power at the end of the program-cycle by allowing the processor to
enter an idle state at reduced power.

3. The value of transmission labeled "x_count*" is received into register RO.

4. R1 is set non-zero if the contents of RO are greater then 334

5. The contents of R1 are transmitted labeled "x_hit max". The transmission
instruction could execute in parallel with step 4 except that step 4 sets R1 and this
embodiment does not support the necessary forwarding path to transmit a value in the
same cycle it is calculated. Other embodiments may include this forwarding path.

6. The start of a multi-step instruction multiplies the value of RO multiplied by

7. The multiply instruction continues

8. The multiply instruction continues

9. The multiply instruction continues

10. One is added to the contents of RO

11. The contents of RO are transmitted labeled "x_count_u".

12. & 13. These are empty steps because the processor has finished its work
for the program-cycle and the next program-cycle has not begun. In this
implementation the processor it put in a reduced power state until the start of the next
cycle. In other implementations the processor may start any work it can from the next
program-cycle.

14. to 26. These are the next program-cycle. The work mirrors steps 1 to 13
above.

Execution would continue iterating after the part of the pseudo-instruction trace

shown.

There follows a description of the activity on processor 1:

1. This instruction starts a new program-cycle in this embodiment it is aligned
in the static schedule with the same instruction on processor 0.
2. RO is set to the value of the "count" state variable sent from the last

program-cycle
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3. The value in RO is sent to another processor with transaction labeled
"x_count*". In parallel 100 is subtracted from R0O. The value of RO before 100 is
subtracted is transmitted.

4. R1 is set to the value of the "downward" state variable sent from the last
program-cycle

5. The value of transmission labeled "x_hit_max" is received into register R2

6. Branch not taken -- in this example we assume R1 is not zero this cycle.

7. R3 is set non-zero if the value in RO is less than or equal to 0

8. if R3 is zero it is set non-zero, if R3 is non-zero it is set to zero

9. Unconditional branch (unconditional so no branch penalty)

10. The value in R3 is stored in the sate variable "downward" to be passed to
the next program-cycle

11. The value of transmission labeled "x_count_u" is received into register R4

12. if R3 is zero the value in RO is stored in the sate variable "count" to be
passed to the next program-cycle

13. if R3 is non-zero the value in R4 is stored in the sate variable "count" to be
passed to the next program-cycle

14. This instruction starts a new program-cycle

15. as cycle 2

16. as cycle 3

17. ascycle 4

18. ascycle 5

19. Unlike the previous program cycle, this time the branch is taken

20. unused cycle penalty due to taking the conditional branch

21. R3 is set to the value held in R2

22. The value in R3 is stored in the sate variable "downward" to be passed to
the next program-cycle

23. This is an empty cycle. It is required because processor 0 cannot do
anything useful until it receives transmission " x_count_u"

24. as cycle 11 (The value of transmission labeled "x_count u" is received
into register R4)

25. ascycle 12

26. ascycle 13
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Execution would continue iterating after the part of the pseudo-instruction

trace shown.

Figures 6a, 6b and 6¢c schematically illustrates the relationship between the
system clock signals sclk, the array clock signals aclk and the program-cycle. As will
be seen, the system clock signal sclk has a lower frequency than the array clock
signals aclk. The rising edge of the system clock signal sclk can be used to define the
boundary of the program-cycle and provide a synchronisation point between the
processing being performed by each of the processors 26. Each of the processors may
be arranged to have completed the execution of its program by the time the program-
cycle has completed, as indicated by the start of the next cycle of the system clock
sclk. These synchronisation times provide an opportunity for communication
between the processors 26 of the array 10. Communication may also take place
within the array at predetermined offsets from these synchronisation times as is
illustrated. Intra-array communication during program-cycles may improve efficiency

with two or more processors 26 being able to cooperate more effectively.

Also illustrated in Figure 6 is an evaluation cycle. This program-cycle is
shown as having a variable duration and accordingly is not limited to any fixed
relationship with the system clock signal sclk. It is the boundary between program-
cycles which defines the synchronisation time for the processing operations
performed by the array 10. In a subset of circumstances, the boundary between

program-cycles will also be the boundary between cycles of the system.

Figure 7 schematically illustrates a flow diagram illustrating the programming
of the array 10. At step 54 a programmer writes a register transfer level Verilog
hardware description or a synthesisable Verilog hardware description of hardware
with the desired functionality to be provided by the array 10. This hardware
description includes an explicit clock. The hardware description is then supplied to a
logic synthesiser which allocates (step 56) which functionality of the hardware
description is to be provided by which processor 26 within the array 10. The
partitioning is performed such that the program-cycle of the processors 26 within the

array matches the explicit clock within the hardware description. At step 58, the
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software encodes the allocated functionality for each processor 26 into program
instructions for that processor 26 which will control that individual processor 26 to
achieve the desired functionality within the program-cycle, i.e. generate starting from
its required input state variables the next state of the output state variables for which it
is responsible. At step 60, the separate programs for the individual processors 26 are

stored within the memories 32 of the individual processors 26 within the array 10.
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CLAIMS

1. An integrated circuit for data processing, said integrated circuit comprising:

an array of interconnected processors, each processor having a memory storing
a program defining a set of processing operations to be performed by said processor;

further processing circuitry responsive to a system clock signal to perform
synchronous processing operations; and

interface circuitry coupled to said array and to said further circuitry to provide
communication of one or more signals between said array and said further processing
circuitry such that data processing operations of said integrated circuit are distributed
between said array and said further processing circuitry; wherein

said programs stored within said memories of said array together define a
plurality of sets of processing operations to be performed by said processors of said
array such that said array is configured to execute a cycle-based program;

said cycle-based program provides state variables that allow results of
operations executed in one program-cycle of said cycle-based program to be accessed
during a subsequent program-cycle of said cycle-based program; and

during each program-cycle of said cycle-based program, each of said
processors of said array executes a respective program starting from a predetermined
execution start point to evaluate a next state of at least some of said state variables, a
boundary between program-cycles providing a synchronisation time for processing

operations performed by said array.

2. An integrated circuit as claimed in claim 1, wherein said interface circuitry
includes a bus interface unit coupled to a synchronous clocked bus of said further

processing circuitry.

3. An integrated circuit as claimed in claim 1, wherein said interface circuitry

includes an bus interface unit coupled to an asynchronous bus of said further circuitry.

4. An integrated circuit as claimed in claim 1, wherein said interface circuitry
includes handshake circuitry to provide said communication in accordance with a

handshake protocol.
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5. An integrated circuit as claimed in claim 1, wherein said interface circuitry is
responsive to a signal from said array to be communicated to said further processing
circuitry to maintain a signal level of a signal being passed to said further processing
circuitry at a corresponding level for a predetermined number of cycles of said system

clock signal.

6. An integrated circuit as claimed in claim 1, wherein said interface circuitry is
responsive to a signal from said array to be communicated to said further processing
circuitry to alter a signal level of a signal being passed to said further processing

circuitry after a predetermined number of cycles of said system clock signal.

7. An integrated circuit as claimed in claim 1, wherein said interface circuitry
includes; and/or circuitry that samples a signal from said further processing circuitry
at a predetermined time relative to said synchronous clock signal and then passes said

signal to said array synchronised with a clock signal of said array.

8. An integrated circuit as claimed in any one of the preceding claims, wherein
one or more signal are passed between said processors of said array at times having a

predetermined timing relative to a start time of each program-cycle.

9. An integrated circuit as claimed in any one of the preceding claims, wherein at
least one of said programs executed by said processors of said array includes at least

one branch program instruction.

10.  An integrated circuit as claimed in any one of the preceding claims, wherein at
least one of said programs executed by said processors of said array includes variable

length instructions.

11.  Anintegrated circuit as claimed in any one of the preceding claims, wherein at
least one of said programs executed by said processors of said array includes

instructions taking different numbers of processing cycles to execute.
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12.  An integrated circuit as claimed in any one of the preceding claims, wherein
said processors of said array execute said programs under control of an array clock

signal having a higher frequency than said synchronous clock signal.

13.  An integrated circuit as claimed in any one of the preceding claims, wherein

said program-cycles of said array are synchronised with said synchronous clock.

14.  An integrated circuit as claimed in any one of the preceding claims, wherein
said program-cycles of said array have a variable duration and said interface circuitry
provides communication with said further processing circuitry that is synchronised

with said synchronous clock.

15.  Anintegrated circuit as claimed in any one of the preceding claims, wherein at
least one or said processors of said array provides a multi-bit data pathway for

processing a multi-bit data value.

16.  An integrated circuit as claimed in any one of the preceding claims, wherein
said interface circuitry provides communication between said array and said further

processing circuitry via a system bus open to communication not involving said array.

17.  An integrated circuit as claimed in any one of claims 1 to 15, wherein said
interface circuitry provides communication between said array and said further
processing circuitry via a private bus dedicated to communication between said array

and said further processing circuitry.

18.  An integrated circuit as claimed in any one of the preceding claims, wherein
said programs for said array are machine generated from a machine readable hardware

1
description of hardware having functionality to be provided by said array.

19.  An integrated circuit as claimed in claim 18, wherein said machine readable
hardware description is one of register transfer level Verilog and synthesisable

Verilog.
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20.  An integrated circuit as claimed in any one of the preceding claims, wherein
said memory of said processors are rewritable such that said programs can be changed

after manufacture of said integrated circuit.

21. An integrated as claimed in any one of the preceding claims, wherein said
further processing circuitry comprises one of more of®

a general purpose program controlled processor;

a digital signal processor;

a non-programmable processing engine; and

a memory.

22. A method of programming an integrated circuit having an array of
interconnected processors, each processor having a memory storing a program
comprising a set of processing operations to be performed by said processor, and
further processing circuitry responsive to a synchronous clock signal to perform
synchronous processing operations, said method comprising the steps of:

generating a synthesisable hardware description with at least one explicit clock
signal to perform desired processing;

mapping said hardware description to a plurality of programs each defining a
set of processing operations to be performed by a processor within said array; and

storing said plurality of programs in respective program memories within said
array such that:

said array when executing said plurality of programs executes a cycle-based
program corresponding to said desired processing described in said hardware
description;

said cycle-based program provides state variables that allow results of
operations executed in one program-cycle of said cycle-based program to be accessed
during a subsequent program-cycle of said cycle-based program; and

during each program-cycle of said cycle-based program, each of said
processors of said array executes a respective program starting from a predetermined
execution start point to evaluate a next state of at least some of said state variables, a
boundary between program-cycles providing a synchronisation time for processing

operations performed by said array.
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23.  An end-user device including an integrated circuit for data processing, said
integrated circuit comprising:

an array of interconnected processors, each processor having a memory storing
a program defining a set of processing operations to be performed by said processor;

further processing circuitry responsive to a synchronous clock signal to
perform synchronous processing operations; and

interface circuitry coupled to said array and to said further circuitry to provide
communication of one or more signals between said array and said further processing
circuitry such that data processing operations of said integrated circuit are distributed
between said array and said further processing circuitry; wherein

said programs stored within said memories of said array together define a
plurality of sets of processing operations to be performed by said processors of said
array such that said array is configured to execute a cycle-based program,;

said cycle-based program provides state variables that allow results of
operations executed in one program-cycle of said cycle-based program to be accessed
during a subsequent program-cycle of said cycle-based program; and

during each program-cycle of said cycle-based program, each of said
processors of said array executes a respective program starting from a predetermined
execution start point to evaluate a next state of at least some of said state variables, a
boundary between program-cycles providing a synchronisation time for processing

operations performed by said array.

24. A method of providing an in-field update to functionality of an integrated
circuit having an array of interconnected processors, each processor having a memory
storing a program comprising a set of processing operations to be performed by said
processor, and further processing circuitry responsive to a synchronous clock signal to
perform synchronous processing operations, said method comprising the steps of:

generating a synthesisable hardware description with at least one explicit clock
signal to perform desired processing;

mapping said hardware description to a plurality of programs each defining a

set of processing operations to be performed by a processor within said array; and
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storing said plurality of programs in respective program memories within said
array such that:

said array when executing said plurality of programs executes a cycle-based
program corresponding to said desired processing described in said hardware
description;

said cycle-based program provides state variables that allow results of
operations executed in one program-cycle of said cycle-based program to be accessed
during a subsequent program-cycle of said cycle-based program; and

during each program-cycle of said cycle-based program, each of said
processors of said array executes a respective program starting from a predetermined
execution start point to evaluate a next state of at least some of said state variables, a
boundary between program-cycles providing a synchronisation time for processing

operations performed by said array.

25.  Anintegrated circuit for data processing, said integrated circuit comprising:

array means of interconnected processor means, each processor means having
memory means for storing a program defining a set of processing operations to be
performed by said processor means;

further processing means responsive to a synchronous clock signal to perform
synchronous processing operations; and

interface means coupled to said array means and to said further means to
provide communication of one or more signals between said array means and said
further processing means such that data processing operations of said integrated
circuit are distributed between said array means and said further processihg means;
wherein

said programs stored within said memory means of said array means together
define a plurality of sets of processing operations to be performed by said processor
means of said array means such that said array means is configured to execute a cycle-
based program;

said cycle-based program provides state variables that allow results of
operations executed in one program-cycle of said cycle-based program to be accessed

during a subsequent program-cycle of said cycle-based program; and
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during each program-cycle of said cycle-based program, each of said
processor means of said array means executes a respective program starting from a
predetermined execution start point to evaluate a next state of at least some of said
state variables, a boundary between program-cycles providing a synchronisation time

for processing operations performed by said array means.

26.  An integrated circuit substantially as hereinbefore described with reference to

the accompanying drawings.

27. A method of programming substantially as hereinbefore described with

reference to the accompanying drawings.

28. A end-user device substantially as hereinbefore described with reference to the

accompanying drawings.

29. A method of providing an in-field update substantially as hereinbefore

described with reference to the accompanying drawings.
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