US 20090070667A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2009/0070667 A1

Zlatanov et al.

43) Pub. Date: Mar. 12, 2009

(54)

(735)

(73)

@

(22)

(62)

COMPUTER SYSTEMS AND METHODS FOR
PLATFORM INDEPENDENT PRESENTATION
DESIGN
Inventors: Teodore Zlatkov Zlatanov,
Braintree, MA (US); Christopher
Furlong, West Hollywood, CA
(US)

Correspondence Address:
JONES DAY

222 EAST 41ST ST

NEW YORK, NY 10017 (US)

Assignee: Pic Web Services, Inc.

Appl. No.: 11/801,986

Filed: May 11, 2007

Related U.S. Application Data

Division of application No. 10/663,571, filed on Sep.
15, 2003, now Pat. No. 7,236,982.

Publication Classification

(51) Int.CL
GOGF 17/00 (2006.01)

(52) US.CL it 715/243

(57) ABSTRACT

Methods, computer systems and computer program products
for constructing a presentation in a platform independent
manner. A layout is defined that includes a top split. The top
split includes a first orientation parameter specifying an ori-
entation for any daughter split created within the top split. A
request is received to create a daughter split within the top
split. In response, the daughter split is constructed within the
top split in accordance with the first orientation parameter.
The daughter split includes a second orientation parameter
specifying an orientation for any child split created within the
daughter split. The layout is converted into the presentation. A
database for storing the layout. The database including a
layout table having a row for storing an identity of the layout
and an identity of the top split in a hierarchy of splits within
the layout. The database also including a layoutdata table that
has a row for each split in the hierarchy of splits within the
layout.

418 4122 420 / e
i ';jn'..;enc;.'mamws_d ‘/“'I'* e ‘/ — —
i
B —

| Up Slot Position_ ~|

EVW

Patent Application Publication Mar. 12, 2009 Sheet 1 of 25 US 2009/0070667 A1

10\,‘ 20
glfmory Ope'rating system ~— 40
22 File system ~—42
CPU LayoutAssembler ~— 44
TableFormatter —~— 46
34 | edit_split_data.pl ~—48
26 CGl::FormBuilder —~—50
36 - 38 edit_split_simple.pl ~—52
@/ _j print_table.pl ~—54
D 8 TableGenerator ~—_56
4uanooaoas ViewGenerator —~—58
U::: :;t:rface Template Toolkit ~—60
Class::DBI —~—62
% Tabla::DBI —— 64
Controller |— Database ~—66
23 Cookies ——68
Sessions ~_70
Actions ' —~_72
- 28 Actionparameters —~—74
NIC Operations ~—76
Operationparameters —~—78
' 27 Users —~— 80
Power Layouts ~— 82
Layoutdata —~— 84
Blogviews —~—86
Views —~— 88
Galleryviews —~—90
Objects ' —— 02
Blogdata ~—04
Gallerydata ~— 06

FIG. 1

US 2009/0070667 Al

Mar. 12, 2009 Sheet 2 of 25

Patent Application Publication

pi 1098[q0 4 [4 wﬂm tbews
. v._C__ M adA)
| 13}
= pajqesip
[yoslqo —— aweu
co:_woﬂlwmm,m__ ssuobeies boig > pi_uoinesado
co;a:ommnl.wmme:_lwml — apy_boiq pr Jaieweled
- um_nmm_u rews soyne boiq suiayaweleduonesado
me:lwmmE_ aweu Joyne bo|q adAy k
n~ab5 i ajep boiq uopng 8L
=aBew Juajuod bo|q ubien 1X8)
smu.bo o PI 60Iq « uble aweu
pon eyepbo|q 618y pI_uonesado
96 ~/ b6 _J abejuassad s| azis suogpesado JoPWeled uoneado ¢
uopsod 9/ K eep
adfy - Pl uonoe e
spiomAay uipim pi_Jajoweled
S50 InoAe) 4] sisjoweseduonoe
sse|s Jasn uased
22)ds ¢ VL K
ejep [qo ; PI }IdS ¢
SWweu eepinoAe|
2kt 8~
pi103iqo—
sjo9fgo|™ wpe ongnd
N@\\ man ongnd pi_UOISSBS {4
yds~doy alep
sse|o Jasn ¢ LTI
uwm_no <+ noAe| uonesadole
Echm__mlsws B aweu pi_uonoe
sse|o Jasn|«* pI_InoAe| suopoe
Blep man synokey| w
—) 7 e
smain| ¢ N jepiul o
06 K : 8 - Buiwajel siasyo aw__mm
// 88 98 ajep a1e240 [qo oiep Emm_ 1sel
A" quinyy J 08 pramooo[* pn_ e
X quny) yos // TR un~ buwgyal
A Saujua Hwi| piomssed suossos Em%mldmm:
X Aewwns sse|o Jasn | Juaijo
pi-mon pi-mon ¢! 19sn 0L .\ \ ajep 9)2al0 [qo
smalalia|eb smalabojq sJ9sn 89 aweu Jasn
pI 8002
Sajood

Patent Application Publication Mar. 12, 2009 Sheet 3 of 25 US 2009/0070667 A1

r 302

Receive a request for a layout, check user permissions, invoke

any possible caching
v 304

Identify the top_split of the requested layout in database 66

v 306

Search Layoutdata 84 of database 66 for a split whose parent
has been previously identified (e.g., top_split)

« 308
Any

new splits
identified?

Yes

f310

Obtain the view for each data split in layoutdata 84

312

User
wants to
edit?

No
f314

Beginning at top_split, walk down the layout hierarchy and, for
each split encountered in the hierarchy,

Build a translation of the split. If the split is a terminal
split referencing data, retrieve object data in
accordance with the view for the split and generate a
cell for the split by applying a template to the objects,
object data, and view associated with the spilit.

v 316

Produce and display a web page, using a target language (e.g.,
HTML, XML, text, etc.), that includes each cell generated in step
314. Optionally cache the web page as a static document.

FIG. 3A

Patent Application Publication Mar. 12, 2009 Sheet 4 of 25 US 2009/0070667 A1

322

Beginning at top_-éplit, walk down the layout hierarchy and, for
each split encountered in the hierarchy,

Build a translation of the split. If the spit is a terminal split that
references data, retrieve object data in accordance with the

view for the split and generate a cell for the split by applying a
template to the objects, object data, and view associated with

the split.
* 324

Associate a menu of options with each object, view, and splitin
the layout, where the menu options in each menu is dependent
upon the characteristics of the object, view, or split to which the
menu is associated.

Y - 326

Produce a web page using a target language (e.g., HTML, XML,
text, etc.) that includes each cell generated in step 322. Display
the web page, including the menus associated with each split, view,
object and compound object in the layout hierarchy.

v 328

Receive a menu selection from one of the menus associated with a
split, view, object, or compound object in the displayed web page.

330

Does the
action have
parameters?

No

332 °

Present the parameters in a form and allow the user to
edit the parameters using the form

+ 334

Add an entry in the actions table 72 of database 66 to
reflect the action taken and the target of the action

+ 336

Modify layout in database 66 based on the action taken |
FIG. 3B -

Vi "SI

US 2009/0070667 Al

Mar. 12, 2009 Sheet 5 of 25

14017

ywgns _;.,m,mmg

|3noAe menN jo sweN

‘paiinbai a1e Pjog Ui UMOYS Sp(el-

ejeq yids 3p3

0v \

Patent Application Publication

US 2009/0070667 Al

Mar. 12, 2009 Sheet 6 of 25

Patent Application Publication

dqy 319

!

=

Y 81V

[<] _mc_ﬂcoo :mmc;

,, ~ awennokeabuey) -

Cly |
Ol [moka1&mpon

w O .—V L v‘ﬁommpmwm_! a E

1591 OUIOp JNOAEJO MalA JOPSI

—
@@.v 3593 owsp HDO»».E@O 314 207pH

"3, 515se[d Jasn 5 noke] ST,
‘sjqenpa Lreangnd jou st jnoke] sny,

"a[qemala Aeanqnd st inoke] sny],

P NOEe] Urew au 03 00)

" XJ9,, §S€[2 30 ,X39, 1asn are nox

oov\

OV 314

2

US 2009/0070667 Al

[\ uowsogiois dn
— |

W

0ty — 81t — =

&] Jaulelo)Wasy|

Mar. 12, 2009 Sheet 7 of 25

\\|\|||\|||_. aweN nokeyabueyy ‘
(487

nofe Apow

SR SCH SR A A A S |

nofesEleg |

) 53} OWIP IJNOKE] JO MITA TOYST
\l.u 4 P 3 13 W I09STA

@@.V 1531 owap JnoAE] Jo Mamm J0TpY
", X33, S15se[0 Jasn s noke| siyT,
"31qepa Aeanqnd jou st noke] s,

‘ajqemara £[eanqnd st noke| smyT,

1SN0 ARLIREIN 210 01 GO

—91Y

Patent Application Publication

US 2009/0070667 Al

Mar. 12, 2009 Sheet 8 of 25

Patent Application Publication

Ay 81

uonIsod10lS dn

14474 - mlmv \w

8% &=

ai 1Bureuc)\asy)

Ewk

\I\|I||||+ awep inokeT] abueyy LA

noAet Apo

mofe ;gjlag |

1597 OWIap NOAE] JO 2a31A JOUSIA,

158] owap MOKE] JO MI JONPT
", XJ9, §1 s52[2 1asn s noKe] ST,
‘3|qenpa Afreonqnd jou st noke] ST,

‘a[qemata Lreanqgnd st jnoke] sy 7,

JSMANCARI I A0l 00

oov&

v

US 2009/0070667 Al

Mar. 12, 2009 Sheet 9 of 25

Patent Application Publication

dv 81

|

e e T T T o)

viv

1 aweNn0Ae] 36UBYY
iy :

noAe] Apow |

noAeisl@eg |

7557 OUISp INCAE] JO M3 JOJISTY

53] OWap JNOAE[JO Mal JOJIp3
" XJ3, S15S€[d Jasn s, noke[s],
‘3]qenpa Aeanqnd J0U ST Inoke] ST,

‘3jqemata £eanqnd st noke| sy,

SILM0ARL BN 01l

v

US 2009/0070667 Al

Mar. 12, 2009 Sheet 10 of 25

Patent Application Publication

At "B

I}

0%

E

uonisodio)s dn| |

Svk

noAe Apoiy

inode] 8y8|aQ

153] OWap NOAL] JO MalA JOTISIA

1531 ouIap uﬁoy\ﬂmﬁwo M3 JIONpY

oov\

US 2009/0070667 Al

Mar. 12, 2009 Sheet 11 of 25

Patent Application Publication

) .,II);

O "31]

o1y

=

__uomsodiois dn

mEl

— e

==

MA3I

i

msog10is dn |

F

o)

[5] uohsodioisdn|

81y —

PN
o

\\I‘\l‘|+ swep noke] abueyn .
487 T T

—{ noken Agpow_|

01y~

3cy

US 2009/0070667 Al

Mar. 12, 2009 Sheet 12 of 25

Patent Application Publication

Hp "1

l»

07

me_Q:oo tmm:_
1015 a1818Q

= .._o#_mon_ E_w an|
g

=l

w ﬁ ._u J |
T _Q:oo :mmc__

\\\I\l aweN inoke sbusyo
Iy]

S Ty s
{ nokeq Apow |

01y~

0ty
8y

Patent Application Publication = Mar. 12, 2009 Sheet 13 of 25 US 2009/0070667 A1

440

Fig. 41

Sibnit,

BSubmit

T

T s
LReeet

Type of New Object < Layout © Text © Gallery © Blog

Fields shownin bold are required.

Edit Split Data

US 2009/0070667 Al

Mar. 12, 2009 Sheet 14 of 25

Patent Application Publication

[+] sieiawelng s8ureuo) Yp3 f—

e =

o coa_mon_ 10|S QD_

e | |

T w " ——— — — T —— — - | Iﬁ.
M | 01:¢5:00] | *
i By | !
11 pom | 111
| o w
M W wayl R
: aureu| !
_ wafol |/ |}] N 444
] . ,_.n#\
MIA] | TR
| | l soupa| {|1] 1] | ;
M | al 1
Y..x -m __.I -:o_:mon_ﬁ_m QD_ () : m#\F\
. |
!

8Th
e (I | S—c
9Ty —j— =

w L_ulcomwmmxﬂm_w‘mm_ 1N

US 2009/0070667 Al

Mar. 12, 2009 Sheet 15 of 25

Patent Application Publication

{

_.mﬁmuﬂ pTod TITA <d/>pTog<c> 03 sHea Hutd1dde 3dueasur 104 °sbea
‘€ 2TTdE 02AUT 2AX32 BUTIIISUT

Tway saaoddng OSTE YITHA JOIITPS X33 3Y3 ST STUL

xal

‘palinbal ale pjog Ul UMOUYS Spiold

ejeq uids up3

US 2009/0070667 Al

Mar. 12, 2009 Sheet 16 of 25

Patent Application Publication

[AA%

|
,
8TV —1 |
VN.VI\\ . [=] uomsogqiois dn| ﬂ
\\(PR |
@NV N | MA3 “W
! &) |
[T " uonisod oIS dn |
e e e T

=) !
{1 [_vowsogwisdn| .

P
X3
X9
‘auReu

13(q0

aTpa aAx3aa| !
aya st STY
1l ‘¢ atTds
03utr 1X33
putaIasSUTL i

20914 |

“
i
APy
soppg) 11| Hil |
|
i
1
!

_m $15)3UWBIB 1BURUCY PSH—

.
|
|
|
]
|
4
|

T
réay

TR
| |0t

144%

US 2009/0070667 Al

Mar. 12, 2009 Sheet 17 of 25

Patent Application Publication

SR
ol i |
may
- IWRy il
1340 in
| |
. ATPa 2xX32 M |
¥ 3yl ST STIY it _
V , L ‘¢ ar1ds N
I 3 oaut axaa| Wil il
- NW.—N futaaasurl il]
| | R Mman !
— 1k] Jo1p] . |
i B H
i |
0SSyt i & ||
A ' H |[= s:@swereg iaumuod wpst- L
1)L [owegwisdn) i
| = |
sy L | [£] vowsod oS dAf
_ W MA3 A
8TV _
| i
I | | G
vir— = s
_ kel - / T

=] uonisod oIS dn

(444

/
144%
0ty

US 2009/0070667 Al

Mar. 12, 2009 Sheet 18 of 25

Patent Application Publication

143%

[49%

05t —

sy —t

slajaweled Jaurguc) ¥p3 _ :

. = mM
[<i coa_mon:o_me_

~ uowsodiols dn|

01-65:00 ;
9
By _
P _
I
w®ay i |
owrewl | |
P3fqQ)| | I

2IPd 2X31
aya s1 sIY
Ll "¢ atrds }
oaut 2x313
putraassul

M3IATA

sorpg| |1 |

E sigjaw

eied jauEuo) Ipa |l L

B |

[«] uowsodioisdn|

)

r

1 uows0d3io|S dn ;

= = = ===

y .

8Th

~

o

I\\\\\,‘

US 2009/0070667 Al

Mar. 12, 2009 Sheet 19 of 25

Patent Application Publication

O 314

[T [Kaba=a|

[JSOIV| edfi jo sepy

e

:auseu o4

did sm (g
Eﬁzm@
1 E_mzm@

ysipeas [

st

| O ——

du) peoy Mohw.cﬂwﬂuﬂ,w_ _ u o0

ajy asooy)

uopdiuosaq sbew)

| peojdn aBew

"pauinbal a1e poq Ul Umoys splel-

ejeg Nids 3p3

o

US 2009/0070667 Al

Mar. 12, 2009 Sheet 20 of 25

Patent Application Publication

dy 81

[poz] 3uBiaH Heuquiny L

522 UIPIM Ifeuquinyl

2l wBieH Aislien

J wpm Al

‘palinbal ale poq Ul UMOYS Splel

ejeq yids up3a

US 2009/0070667 Al

Mar. 12, 2009 Sheet 21 of 25

Patent Application Publication

uoyso

=

3
(2]

|
V
|
m

d10I1S nD%l_

uopsod101s dn

.:,‘J- t » »:lliilr»' H
NN
HE
!
i
L i
, I
” T
_ 4 [:o_w_moanﬁ._,mh»a,al w
, |
, _ _ i
o | A——— il . =T T ‘. i
1

x| JBumuUO) Pasuy|

US 2009/0070667 Al

Mar. 12, 2009 Sheet 22 of 25

Patent Application Publication

Av 31

81000-¥=:29
£1000->@) 1 19
81000-¥®) - 09
5 1000-8) - 6
P 1000-H=1 - 35
£1000->® {5
21000-8) - 95
1100084 55
g1000-¥83) - S
60000} - €9
800003} 25

3|8s-[399[q O Jo sweN

=

£

‘palinbal aie PIOY Ul UMOUS Splaiq

ejeq yds 3p3

US 2009/0070667 Al

Mar. 12, 2009 Sheet 23 of 25

Patent Application Publication

J8F @=92Z18
auog, |
200
D00 #=30T0D
Bg ,I32U3D
w=uBITS P3|

46314 it _
sompg] |

=@

e - § :
m. si)BUIRIRd Jauejuo) %m& lm S I _
|
i T—
|
I

20 %

_

Ty 1Y

US 2009/0070667 Al

Mar. 12, 2009 Sheet 24 of 25

Patent Application Publication

1b 314

I’t]g

c0¢

S

o
£v0S (

SPqQUUKa Buraaen
pue ‘sherdsmp
Jafreuss osfe

TR 213Y] ‘syue}
asayy o3 uoyppE
U] JUIWUONAUI
ras uado Jo
ey djay oy; se

yons Swa1s45093

v0s

I-v0S

juasap juasaidaz

Jey) sAqUe] €IS
aBre| resaaas are

313y, “aJ aULew
Gv Jo sad4y juasapp
Kuew SutureIuod

uonmnsu

SSE[d ppoMm
e st wnienby

L1afesn £313ju0TY Ay,

wmionby ay1 1 L 199,

1531 OWISP JNOAL] JO MITA JOTSTA

1531 OUIap JNOAE] JO M3IA JOPPH

X390, S SSE[D Jasn s noLe[sKT,

US 2009/0070667 Al

Mar. 12, 2009 Sheet 25 of 25

Patent Application Publication

¢ 31

TS
0TS CoTms~
/ ; ;

v -

"sucoeq Jajem 303 Smddoys atam Layy "Aon] puaLgLRS sy pue Auoy Appnqg Aw o3m el pue 33035 3y} 03 JUp T Aepo], Kan} pue Kuo],
€002 L1:G1:20 91 I UngG §o parsoq

Z PaL, Hoyny

a4 se ‘saatoa ansmuIssad alam 313y} ‘PIOM Y} pUNOTE

seepded ur | asueys e adead 3aID),, JO SIURYD PRI Ing SIPEIIP W SUONRXSUOWAP 15a8H1q JY) JO aulos JOJ jno PAtIng SUOYU Jajfe YIUoW € awed ysng juapisalg
3o wis1onuo peardsspm pue juaumuas jsgroed Jo Suunodine syJ, sBep wesuawry paumng siayjo 134 pue ‘£0qmod snolaBuep e se ysng Juapisalg pauoodure
s1aylo ‘[aeIs] qoene o} saanesado epred)-Te Jo3 pafed swog A[aNy asow sreadde Jem se Uasa preay sadloa NaY 138 03 SHORPA pamattal ul ‘ae aty ur sund

Bunrg siatpio pue sapsym Sumolq awos ‘Aepinieg 3qo[8 ay; puUNoTe samid W payasew s1a3sajold rem-nue Jo spuesnol Jo sua], (I) 1489 ‘OTVD @ Soig

£00C 0-62°¢C G1 FE 1€5 U0 paisoq

\ \ 7 pa __H. Jouny

1-0¢5 1-ces—
1-/S

US 2009/0070667 Al

COMPUTER SYSTEMS AND METHODS FOR
PLATFORM INDEPENDENT PRESENTATION
DESIGN

1. FIELD OF THE INVENTION

[0001] The field of this invention relates to computer sys-
tems and methods for generating a presentation in a language
and platform independent manner. A specific implementation
of'the present invention can be use to generate web pages in a
language independent manner.

2. BACKGROUND

[0002] Increasingly computer software packages and pro-
gramming languages have displaced traditional methods of
producing images, video, and graphic design layouts. They
have also been used to create and maintain web pages on the
Internet. A multitude of programming languages and soft-
ware packages have been created for such purposes. How-
ever, these programming languages and software packages
are often highly specialized and typically require that the
information to be presented be formatted in a specific lan-
guage. This is especially true for the visual presentation of
information on mediums such as Internet web pages.

[0003] For anything other than unformatted ASCII text,
Internet web pages can typically only be viewed using soft-
ware packages that are capable of interpreting World Wide
Web specific languages such as HTML, Java, and ASP. Simi-
larly, video typically must be streamed over the Internet
through programs such as Real Player and QuickTime. Many
such World Wide Web specific languages and Internet pro-
grams are built upon proprietary code base. Therefore, Inter-
net web pages created using such programs and products can
only be seen when specialized software, such as an Internet
browser or other form of interpreter, is invoked. All of this
leads to the nearly universal requirement that information
intended for display on the Internet must be stored in a spe-
cific language.

[0004] One of the consequences of the Internet language
requirement is that content providers that want to present their
information across multiple formats typically must store their
information in several different ways so that the various types
of different devices that the content provider wants to support
will be capable of displaying the information. However, stor-
age of the same content in multiple different languages can be
time consuming and expensive for content providers. Further-
more, in the rapidly advancing field of Internet web page
design and display, it is not always clear if one particular
format will be able to reach all of the intended user base or if
that format will become obsolete in the future. For example,
if a content provider makes a substantial investment in coding
web content in ASP and/or HTML, the content provider is at
riskif HTML standards or the ASP code changes in the future.
If the HTML or ASP standard changes, then the content
provider must make an additional substantial investment in
time and resources updating all of the content so that it is
compatible with the new HTML or ASP standard. Also newer
languages can emerge either to support specific devices (e.g.
Pocket C for Palm handheld devices), or for more general
application (e.g., such as PHP, see www.php.net). Updating
content to display in new languages is another expense that
must be incurred by content providers.

[0005] In many cases, web pages and other visual presen-
tations are coded in such a way that both the information to be

Mar. 12, 2009

displayed and the order of the information to be display are
stored in a single file. Everything in such a file is then con-
sidered to be static, because nothing else can be inserted into
the file or changed, unless the file is opened and altered. Static
files that contain all the information for a web page can be
generated in three different ways. First, they can be hand
coded. Hand coding involves manually writing out lines of
code containing the data and instructions on how to order that
data. Hand coding is very labor intensive and an unsatisfac-
tory approach for anything other than the simplest web page
designs. Second, static files that code for web pages can be
generated using a specialized editor. Such specialized editors
have the advantage over hand coding in that they can be used
to introduce many programming shortcuts, such as the ability
to fill in commonly used lines of code on command. Thus,
specialized editors are advantageous for hand coding because
they speed up the process of web page development. How-
ever, specialized editors have two drawbacks. Like hand cod-
ing, they require that the user be familiar with the commands
of'the web specific code (e.g. HTML, Java, etc.). Second, they
have the drawback described earlier that web pages produced
by such editors are based in a specific web language and are
therefore at risk of becoming obsolete when the web language
is revised.

[0006] The third approach to creating static files that code
for web pages is the use of What You See Is What You Get
(WYSIWYG) interfaces to generate the web page. Such plat-
forms (e.g., Microsoft Frontpage) use a graphical user inter-
face to allow users to place information onto a canvas using
point and click or drag and drop methods. In this approach,
specially designed functions are provided in order to arrange
items on a page and conduct other tasks. These functions
generate code containing the data, its attributes, and the order
the data is to be presented so that the user does not need to
know how to code in order to create the visual presentation.
The code is then saved as a static file as in the hand coding and
specialized editor approaches. While the WYSIWYG
approach removes the need to train users so that they can
program in web specific programming languages, the
approach still has the inherent drawback of generating static
web files.

[0007] The creation of a single static file for each layout of
information (e.g., web page) is particularly unsatisfactory in
cases where the visual format of the layout is a constant but
the information being displayed changes. In such situations, it
becomes redundant from a data storage perspective and
repetitive from a labor standpoint to create the same static file
over and over with only the actual information in the file
changing. An examples of such an instances is a multi-page
photo gallery where the frames and control functionality is
the same on each page and the only thing that changes is the
images being displayed.

[0008] To address the situation where the overall look of a
presentation, such as a collection of web pages, remains the
same on each page but the information on each page changes,
templates were developed. A template is a standard ordering
and layout of information that does not contain the informa-
tion to be inserted, only a placeholder where each piece of
information can be inserted.

[0009] To illustrate the advantages of a template, consider
the case of a hypothetical online store. The store name
appears on the top of each web page associated with the
online store. Further, a list of links to each section in the store
appears on the left side of the pages associated with the store.

US 2009/0070667 Al

A display capable of depicting twelve products, with an order
of four products across and three products down, appears in
the center of each page associated with the store. A template
can be created for such an arrangement, but the template will
not contain the product information because such information
(the products viewed in the central display) will depend on
what section of the store is being displayed. Thus, the tem-
plate and the data (the products) presented by the template are
stored in two different locations. The use of a template in this
illustration obviates the need to produce a large number of
web pages, each displaying a different sent of products.
[0010] The use of templates then splits a presentation (e.g.,
collection of web pages) into two separate locations, one for
the template and one for the data displayed by the template.
The template is typically stored as a file and the information
that is presented using the template is typically stored in a
database. The use of templates is referred to as a dynamic
solution because the information inserted into the template
can change on a dynamic basis (e.g., as the user selects
different sections of the online store or different web pages
within the presentation, etc.).

[0011] Dynamic approaches to web presentation design
eliminates the need to insert information into each and every
file associated with the presentation, but it does not remove
the dependency on specialized code to order the layout of data
in a visual medium such as the Internet. For example, if the
goal is to display information in an identical manner on two
different platforms, platform specific code must be written for
each platform in order to achieve the goal.

[0012] Given the above background, what is needed in the
art are systems and methods for generating presentations that
can be presented on any desired target platform and in any
desired target language without modifying the presentation.
[0013] Discussion or citation of a reference herein will not
be construed as an admission that such reference is prior art to
the present invention.

3. SUMMARY OF THE INVENTION

[0014] The present invention addresses the problems found
in the known art. In the systems and methods of the present
invention, presentations are created in a platform independent
manner. Thus, they can be presented on any desired target
platform using any desired programming language without
modification of the platform. Using the systems and methods
of the present invention, presentations can be stored,
retrieved, and modified in a way that eliminates any depen-
dency on storing the presentation as a combination in a fixed
set of code. This is accomplished by a novel combination of a
treemap layout algorithm with a generic content engine and a
backend storage database to keep all of the components of a
web page in the most generic form possible. Language spe-
cific modules are then used to convert data, views of data, and
the order of data into platform specific code. In this way,
presentations can be displayed in more than one program-
ming language or medium, and its data and views of data can
be reused more than once in a layout or across multiple
layouts.

[0015] Oneembodiment ofthe present invention provides a
method of constructing a presentation in a platform indepen-
dent manner. A layout that includes a top split is defined. The
top split includes a first orientation parameter specifying an
orientation for any daughter split created within the top split.
A request is received to create a daughter split within the top
split. The daughter split is generated within the top split in

Mar. 12, 2009

accordance with the first orientation parameter. The daughter
split includes a second orientation parameter specifying an
orientation for any child split created within the daughter
split. Finally, the layout is converted to the presentation. In
some embodiments where the daughter split is a data split, the
method further comprises inserting a data object in the data
split and associating a view with the data object. This view
determines how the data object is presented in the data split.
The data object can be a complex object such as a blog or a
gallery.

[0016] Another embodiment of the present invention pro-
vides a computer program product for use in conjunction with
a computer system. The computer program product compris-
ing a computer readable storage medium and a computer
program mechanism embedded therein. The computer pro-
gram mechanism is for constructing a presentation in a plat-
form independent manner. The computer program mecha-
nism has instructions for defining a layout that includes a top
split. The top split includes a first orientation parameter speci-
fying an orientation for any daughter split created within the
top split. The mechanism further has instructions for receiv-
ing a request to create a daughter split within the top split and
instructions for generating the daughter split within the top
split in accordance with the first orientation parameter. The
daughter split includes a second orientation parameter speci-
fying an orientation for any child split created within the
daughter split. The mechanism further includes instructions
for converting the layout to the presentation.

[0017] Yet another embodiment of the present invention
provides a computer system for constructing a presentation in
a platform independent manner. The computer system com-
prises a central processing unit and a memory, coupled to the
central processing unit. The memory stores instructions for
defining a layout that includes a top split. The top split
includes a first orientation parameter specifying an orienta-
tion for any daughter split created within the top split. The
memory further stores instructions for receiving a request to
create a daughter split within the top split. The memory fur-
ther includes instructions for generating the daughter split
within the top split in accordance with the first orientation
parameter. The daughter split includes a second orientation
parameter specifying an orientation for any child split created
within the daughter split. The memory further includes
instructions for converting the layout to the presentation.
[0018] Still another aspect of the present invention provides
a database for storing a layout comprising a hierarchy of
splits. The database comprises a layout table that includes a
column for storing an identity of the layout and an identity of
the top split in the hierarchy of splits. The database further
comprises a layoutdata table that includes a row for each split
in the hierarchy of splits, such that each respective split stored
in the layoutdata table comprises (i) a parent field that speci-
fies the parent split of the respective split, and (ii) a type field
that specifies whether the respective split is a data split and,
when the respective split is not a data split, defines an orien-
tation of the respective split within the parent split of the
respective split.

4. BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 illustrates a computer system for generating
a presentation in a language and platform independent man-
ner in accordance with one embodiment of the present inven-
tion.

US 2009/0070667 Al

[0020] FIG. 2 illustrates a database schema for storing pre-
sentations in a language and platform independent manner in
accordance with one embodiment of the present invention.
[0021] FIGS. 3A-3B illustrate procedures for retrieving
and editing a presentation in accordance with one embodi-
ment of the present invention.

[0022] FIGS.4A-4T are screen shots that illustrate the gen-
eration of a presentation in a platform and language indepen-
dent manner in accordance with one embodiment of the
present invention.

[0023] FIG. 5 illustrates a portion of a blog in accordance
with an embodiment of the present invention.

[0024] Like reference numerals refer to corresponding
parts throughout the several views of the drawings.

5. DETAILED DESCRIPTION

[0025] Referring to FIG. 1 a specific embodiment of a
system 10 in accordance with one aspect of the invention is
illustrated. System 10 preferably comprises a server 20 that
includes:

[0026] a central processing unit 22;

[0027] a main non-volatile storage unit 23, preferably
including one or more hard disk drives, for storing soft-
ware and data, the storage unit 23 typically controlled by
disk controller 25;

[0028] a system memory 24, preferably high speed ran-
dom-access memory (RAM), for storing system control
programs, data, and application programs, including
programs and data loaded from non-volatile storage unit
23; system memory 24 can also include read-only
memory (ROM);

[0029] an optional user interface 26, including one or
more input devices, such as a mouse, a keypad 8, and
display 38 and/or mouse 36;

[0030] network interface circuitry 28 for connecting to
any wired or wireless communication network, the net-
work interface circuitry 28;

[0031] one or more internal buses 34 for interconnecting
the aforementioned elements of the system; and

[0032] a power source 27 for providing power to the
above identified components.

[0033] Operation of server 20 is controlled primarily by
operating system 40, which is executed by central processing
unit 22. Operating system 40 can be stored in system memory
24. In addition to operating system 40, a typical implemen-
tation of system memory 24 includes a file system 42 for
controlling access to the various files and data structures used
by the present invention.

[0034] Database 66 is any form of data storage system
including, but not limited to, a flat file, a relational database
(SQL), and an OLAP database (MDX and/or variants
thereof). In some specific embodiments, database 66 is a
hierarchical OLAP cube. In preferred embodiments, database
66 is implemented as a RDBMS server, an objected-oriented
database, or a file-based RDBMS server. In one embodiment,
database 66 is implemented as a MySQL database (MySQL
AB, http://www.mysql.com). In some embodiments, there is
only a single database 66 while, in other embodiments, there
are a plurality of databases 66. In some embodiments of the
present invention, system 10 includes a plurality of servers
20. The servers 20 can be in one centralized location. How-
ever, more preferably, the servers 20 are distributed over a
large geographic area. It will be appreciated that the software
modules illustrated in memory 24 are listed in memory 24 for

Mar. 12, 2009

ease of presentation. In fact, any of the software modules and
database 66 illustrated in memory 24 of FIG. 1 can be inde-
pendently located in any memory that is addressable by sys-
tem 20 including, but not limited to, remote servers.

[0035] The present invention provides a database-driven
architecture that stores platform and language independent
layout instructions in a database 66. A layout is a visual
presentation of information, such as a web page. Modules 44
through 64, described in more detail below, allow a user to
build, edit, and review these layouts. Each layout comprises a
series of instructions that are hereinatter referred to as splits to
emphasize that they do not encode absolute screen positions,
but rather specify subdivisions in the layout. Because the
splits do not encode absolute screen positions, they are suit-
able for any display device, from basic HTML rendered on a
browser to Java Swing containers.

[0036] Each split in a layout can contain one or more splits
or an object view. An object view is a description of how an
object associated with the object view is to be displayed.
[0037] Advantageously, the layout data, including splits,
object views and objects, are stored in database 66. Further,
all operations performed by a user are stored in the database.
When an operation is executed, its implementation is referred
to as an action. For instance, an implementation (action) for
the operation “modify a text object” is “modify text object
234 to say ‘hello’”. All actions are stored in database 66 so
that the path a user took to create a layout’s current state can
be recreated for various purposes. In addition, operations can
be batched into macros so that complex tasks (e.g., creating a
layout) can be expressed in a single action (e.g., as a macro).
[0038] The various advantages and features of the present
invention will be presented by first describing the major com-
ponents of a database 66 schema (FIG. 2) in accordance with
a preferred embodiment of the present invention (Section
5.1). Then, the process steps (FIG. 3) taken by a user to edit or
view a layout will be presented (Section 5.2). Next, a collec-
tion of exemplary screen shots showing the construction of a
layout in accordance with one embodiment of the present
invention (FIG. 4) will be described (Section 5.3).

[0039] Section 5.4 provides a detailed example of how an
operation on a complex object (a gallery view) is processed
and stored in database 66.

5.1. Exemplary Database Schema

[0040] Database 66 (FIG. 1) illustrates the tables found in a
database schema in accordance with one embodiment of the
present invention. The columns of the database tables illus-
trated in FIG. 1 and the relationship between the various
database tables are illustrated in FIG. 2. In FIG. 2, a “one to
one” relationship between tables is illustrated as a straight
line to straight line, a “one to many” relationship between
tables is illustrated as a straight line to an arrow, and a “many
to many” relationship between tables is illustrated as an arrow
to an arrow.

[0041] Cookies 68 tracks user information such as IP
addresses, user agent, user name, and the uniform resource
location (URL) that referred the user to the site. Cookie table
68 is primarily a tracking and debugging table.

[0042] Session table 70 tracks session information for
users. Section table 70 tracks the date of a session, the first
URL viewed in that session, and the URL that referred the
user to the site of that session. The cookie_id column in
session table 70 is a foreign key to cookies table 68. Session
table 70 is primarily a tracking and debugging table.

US 2009/0070667 Al

[0043] Actions table 72 stores user invoked operations that
create or edit layouts, splits, object views, or objects as
actions. The operation column of action table 72 indicates the
type of action the user has taken. The target column of action
table 72 indicates the layout (layout_id), split (split_id),
object view (view_id), or object (object_id) that the action is
being committed upon.

[0044] Actionparameters table 74 stores any values associ-
ated with an action. Not all actions have a parameter. How-
ever, some actions have one or more parameters. An action
that creates a blog entry, for instance, will have one parameter
for the title of the blog and another one for the actual content
in the entry. The column operation_parameter in the action-
parameters table 74 is a foreign key to the operationparam-
eters table 78, described in more detail below.

[0045] Operations table 76 is a lookup table that includes
information for all possible types of actions. Operationpa-
rameters table 78 contains additional information about
operations. For instance, a single operation may need to alter
more than one database table or column. Operationparam-
eters table 78 provides additional information necessary to
apply each step in the operation including Perl code to be
enacted by the magic column. Actionparameters table 74 has
a foreign key to this table so that system instructions for each
action parameter can be obtained. A detailed example of the
use of actions table 72, operations table 76, actionparameters
table 74 and operationparameters table 78 work to process an
operation is provided in Section 5.4 in conjunction with FIG.
4P.

[0046] Users table 80 contains the login and password for
each user. It also contains a user class value that governs what
information each user can alter and view in database 66.

[0047] Layout table 82 contains information about each
layout stored in database 66. A layout represents the complete
collection of information for a specific presentation. For each
layout stored in database 66, layout table 82 dictates who can
view and edit each layout through values stored in columns
user_class, public_view, and public_edit. Specifically, the
user_class column identifies the user class that has full access
(read and write privileges) to the layout. The public_view and
public_edit columns respectively specify whether visitors
with a user class different from the layout’s user class can
view and edit the layout. Each layout is assigned a unique
layout ID that is stored in the layout_id column of layout table
82. The user assigns a name to each layout and this name is
stored in the name column of layout table 82. The top_split
column specifies the top split of each layout stored in database
66. The top split is the first layout instruction that is executed
during a layout read procedure. Layouts have a hierarchical
data structure such that the top split serves as the starting point
from which all information concerning a particular layout is
retrieved from database 66. The top_split column of the lay-
out table is a foreign key to layoutdata table 84.

[0048] Layoutdata table 84 stores all the splits of all the
layouts stored in database 66. The parent column of layout-
data table 84 indicates the parent split that a given split falls
under. If the split is a top_split, then in the layouts table the
value for the split in the parent column is null. Layoutdata
table 84 also includes several property columns that deter-
mine attributes of the split such as position relative to the
other daughter splits sharing a parent, height, width, and
alignment. However, no column in the layoutdata table 84
dictates the absolute position of a split in a given display. This
is one of the advantages of the data architecture of the present

Mar. 12, 2009

invention. As will be explained in more detail below, a
treemap algorithm is applied to successive splits in the layout
hierarchy in order to determine the absolute position of each
split in the layout. Usage of the treemap algorithm in this
novel way removes any requirement for hard coding splits
and allows for the development of code independent and
platform independent presentations. The type column in lay-
outdata table 84 determines whether a given split is direc-
tional with respect to the parent split (e.g., horizontal or
vertical) or if the splitis a data split. In some embodiments the
type column specifies that the splits are to be arranged in a
circle or a rectangle. In fact, in some embodiments, the type
column specifies any arrangement of items based on position.
[0049] Objects are stored in object table 92. Each object is
assigned an object_id that is stored in the object_id row of
object table 92. Additionally, each object is given a user
defined name that is stored in the name row of object table 92,
a user class who can edit the data that is stored in the user_
class row of object table 92, and the type of data the object
contains that is stored in the type row of object table 92.
[0050] Blogdata table 94 tracks a special form of object
called a blog. Blog objects are complex objects and therefore
require database table 94 in addition to database table 92 to
store all their data. The term “blog” is a form of “web-based
diary”. A blog object is considered complex because it con-
tains a series of time stamped entries that are entered by users
who have read/write privileges to the blog.

[0051] FIG. 5 illustrates a portion of a blog with two time
stamped entries 520. Each blog entry 520 is stamped with the
date 522 in that it was created. Further, the author 524 of each
blog entry 520 is noted in the entry. Although not shown, each
blog optionally has a blog title and a category that is stored in
blogdata table 94.

[0052] Each of the time-stamped entries in a blog can be
considered a separate object. However, each entry in a given
blog is assigned the same object_id and this object_id is
stored in the object_id column of object table 92. The name of
the blog s stored in the name column of object table 92. There
is a one to many relationship between a blog, stored in object
table 92, and the blog entries for the blog, stored in blogdata
table 94. That is, each blog entry in a blog is stored in a
separate row in blogdata table 94.

[0053] Eachblogentry inblogdata table 94 has a title that is
stored in the blog_title column of blogdata table 94. Each
blog entry is given a unique identifier that is stored in the
blod_id column of blogdata table 94. The content of a blog
entry is stored in the blog_content column of blogdata table
94. The date of a blog entry is stored in the blog_date column
of blogdata table 94. Further, the blog entry author’s name
and e-mail address are respectively stored in the blog_author_
name, and blog_author_email columns of blogdata table 94.
The disabled column of the blogdata table 94 tracks whether
the blog has been disabled. The link column of the blogdata
table 94 provides a link, such as a link to a picture gallery
described in more detail below, that provides a means for
linking an object to a given blog entry.

[0054] Like blogs, gallery objects are complex objects
meaning that they need a separate database table, in addition
to object table 92, to store all their data. This separate data-
base table is gallerydata table 96. An exemplary gallery is
gallery 502 of FIG. 4T. The obj_data column of object table
92 contains the object gallery title. Each gallery entry 504 is
stored as a row in gallerydata table 96. As such, there is a one
to many relationship between a gallery object, stored in object

US 2009/0070667 Al

table 92, and the gallery entries, which are stored each inde-
pendently stored as rows in gallerydata table 96.

[0055] Each gallery entry 504 in a gallery 502 (FIG. 4T) has
the same object identifier (object_id). Further, each gallery
entry 504 is assigned a unique image identifier, which is
stored in the image_id column of the gallerydata table 96.
Each gallery entry 504 is stored at a particular URL address
that is stored in the image_url column of the gallerydata table
96. Each gallery entry 492 is also assigned an image name that
is stored in the image_name column of the gallerydata table
96. Each gallery entry 504 has a flag to indicate whether or not
the image is disabled. This flag is stored in the disabled
column of gallerydata table 96.

[0056] As seen in the case of blogs and galleries, objects
can be complex. The database schema illustrated in FIG. 2
illustrates two types of complex objects, blogs and galleries.
However, the present invention is not limited to such data
forms. Those of skill in the art will appreciate that many other
types of complex objects can be constructed in view of the
teachings of the present invention and all such complex
objects are within the scope of the present invention.

[0057] Objects are pure data that contain little if any infor-
mation on how the objects are to be displayed in a presenta-
tion. Such presentation information is stored in object views.
In other words, a view controls how a corresponding object
looks in a presentation. Views have two important properties.
First, there can be more than one view per object. This allows
the same set of data to be displayed with different properties
in more than one layout. An example of an instance where
there is more than one view for an object is the case of a photo
gallery that has 75 by 75 pixel thumbnails when used as a
minor item within a layout, and has 150 by 150 pixel thumb-
nails when used as a major item in a different layout. Second,
in preferred embodiments, there is only one view per data
split.

[0058] Views are stored in the views database table 88.
There are also special views for certain objects. For instance,
there are blog views and gallery views that respectively
handle the particular attributes of blog objects and gallery
objects. Blog views and gallery views are respectively stored
in blogviews table 86 and galleryviews table 90.

[0059] Each row of view table 88 has an object field that
identifies the object to which the view applies. Further, each
view has a view identifier that is stored in the view_id column
of view table 88. There is a one to one correspondence
between the view identifier of a view and the split identifier of
the corresponding split that holds the object regulated by a
particular view. In other words the view_id of views table 88
is exactly equal to the split_id of the data split in layoutdata
table 84 that contains this view. When an object is added to a
split in a layout, a view is created in order to regulate how the
object appears in the split. Each view has a user class field,
which is stored in the user_class field of view table 88, that
identifies the user class that has full access to the view.
[0060] Blogviews, stored in blogviews table 86, includes a
view_id column that is keyed to the view_id column of the
corresponding view in view table 88. Each blogview includes
a summary field that specifies the number of words that a
presentation should use to summarize blog entries in the
summary view of the blog. Further, there is a “limit entries”
field that specifies the maximum number of entries to display
in a blog at any given time. Further, a blogview includes a sort
field that determines whether the blog entries should be sorted
(e.g., by date, etc.).

Mar. 12, 2009

[0061] The gallery views, stored in galleryviews table 90,
have a view identifier field that is stored in the view_id col-
umn. The view_id of each respective galleryview in table 90
is identical to the view_id of the view in views table 88 that
corresponds to the respective galleryview. Each galleryview
has x and y dimensions that respectively specify the number
of'images to be displayed on a row and the number of rows to
be displayed. For example, if X, y is 3, 2, two rows of images
are displayed, with three images on each row. If the gallery
has more than six images in the case where X, y is 3, 2, then
remainder of the images are not presented in the galleryview
but can be used, for example, as a separate gallery page. The
thumb_x and thumb_y columns in a galleryview specify the
thumbnail size of each image used in the gallery.

[0062] Insomeembodimentsofthe presentinvention, data-
base 66 is written to and read from using Class::DBI 62 (FIG.
1), which is available from the Comprehensive Perl Archive
Network (CPAN) at http://www.cpan.org/index.html. Class::
DBI 62 is a Per] class that works on the basis that each table
in a database has a corresponding class. Perl is a cross plat-
form programming language. See, for example, Schartz and
Pheonix, Learning Perl, O’Reilly & Associates, 3rd edition,
2001, which is hereby incorporated by reference in its
entirety. In some embodiments, database 66 is a MySQL
database. The advantage of using Class::DBI 62 is that infor-
mation can be written to and read from database 66 without
writing any customized SQL code. However, Class::DBI 62
is merely one example of how the systems and methods of the
present invention can be constructed and do not serve to limit
the invention in any way. Any form of database architecture
can be used in the present invention, including a flat file.
Furthermore, such databases can be updated using any form
of database language, including SQL..

[0063] As illustrated in FIG. 1, some embodiments of the
present invention provide class Tabla::DBI 64 that inherits
from Class:DBI (available form CPAN). In such embodi-
ments, the various modules described in Table 1 inherit from
Tabla::DBI in order to interact with corresponding database
tables present in database 66:

TABLE 1

Tabla::DBI modules

Module Function

Tabla::DBI::Action
Tabla::DBI:: ActionParameter
Tabla::DBI::Configuration
Tabla::DBIL::Cookie

User actions

Action parameters

Site configuration parameters
User cookie management

Tabla::DBI::Layout Layouts
Tabla::DBI::Object Objects
Tabla::DBI::Operation Operations

Tabla::DBI::OperationParameter
Tabla::DBI:Session

Operation parameters
User session management

Tabla::DBIL:Split Splits
Tabla::DBIL:User Users
Tabla::DBI::View Views

Tabla::DBIL::Data::Gallery
Tabla::DBI::Data::Blog
Tabla::DBI::View::Gallery
Tabla::DBI::View::Blog

Gallery data (images)
Blog data (blog entries)
Gallery views

Blog views

5.2. Exemplary Layout Viewing and Editing

[0064] Thearchitecture ofa database 66 in accordance with
one embodiment of the present invention has been described.
What follows is a description of how such a database 66 is

US 2009/0070667 Al

used to create a presentation in a platform and language
independent manner. All information is entered by a user
through a series of actions that perform operations. Opera-
tions are logical units of work done to a layout and any of the
sub-groupings contained within a layout. Performing an
action will alter one of the database 66 tables by either insert-
ing a new row or updating an existing row. For instance
creating a new split inside a layout results in the insertion of
a new row in the layoutdata table. In some embodiments, all
of the user directed interaction with database 66 takes place
through a web based GUI. However, more generally, users
can create and edit information through any type of GUI that
can access and modify database 66.

[0065] Inadditionto altering database 66 when an action is
committed, the operation performed and the action commit-
ted can be recorded in the actionparameters 74 table of data-
base 66. Recording every action and operation a user per-
forms on the system allows for the ability to undo or redo
actions performed so that users can correct mistakes made or
try variations on their design by clicking buttons to undo or
redo actions. Further, this feature allows for the creation of
macros. A macro is a sequence of commonly used actions
specified by a user.

[0066] Step 302. In step 302 (FIG. 3), a request is received
for a layout stored in database 66. A check is performed to
determine whether the user making the request has the appro-
priate permission to make such a request. In some embodi-
ments of the invention, this is accomplished by a table lookup
to user table 80 to see if the requesting user is in a user class
that has read/write privileges for the requested layout.
[0067] In some embodiments, the layout collection is
requested by the print_table.pl script 54 (FIG. 1) which, in
turn, invokes various software modules in order to assemble a
full presentation of a layout. Print_table.pl 54 also checks
user permissions and does caching. Caching is used to cache
presentations when they are generated. In this way, the pre-
sentation does not have to be regenerated in cases where the
presentation has not been altered since the last time the pre-
sentation was requested.

[0068] In some embodiments print_table.pl 54 authenti-
cates a user with HTTP browser cookies. In some embodi-
ments, user options and a user session are tracked in two
separate cookies using the Tabla::DBI::Cookie, Tabla::DBI::
Session, and Tabla::DBI::User modules. In some embodi-
ments, when a layout has not changed since the last time it
was viewed, a cached version of the visual representation of
the layout is retrieved from memory 24 or disk 23. When the
layout has not changed since the last time it was viewed it is
stored in a cache (not shown) once it has been generated.
[0069] Step 304. A layout is displayed starting with its top
split. In step 304, layout table 82 is searched for the identity of
the top split that corresponds to the layout requested by the
user.

[0070] Steps 306 and 308. Once the top split for a requested
layout has been identified, the layoutdata table 84 (FIG. 2) is
searched for splits whose parent is the top split. In practice,
this search involves identifying every split in table 84 whose
“parent” identifier is the same as the “top_split” identifier in
the requested layout. In step 308, a determination is made as
to whether any new splits were identified in the layoutdata
table 84 during the last instance of step 306. If so (308—Yes),
then a new query ofthe layoutdata table 84 is made. In the new
query, any split whose parent identifier is the same as the
split_id of a split identified in a previous instance of step 306

Mar. 12, 2009

is selected. To illustrate, consider the case in which the top_
split identifier for a requested split is 1001. In step 306, a
search is made for all splits whose parent identifier equals
1001 and two such split are found. The two splits that are
found have split identifiers (split_ids) 1018 and 1021, respec-
tively. Split 1018 and 1021 each designate split 1001 as the
parent identified (parent). In step 308, a determination is
made that new splits have been found in the last instance of
step 306 (splits 1018 and 1021) (308—Yes). Therefore step
306 is reinvoked to identify any split having a parent id of
1018 or 1021 (1001 has already been searched). If no new
splits are found (308—No) process control passes on to step
310. Steps 306 and 308 collect all the split in a layout in this
iterative manner because the splits in a layout are arranged in
a hierarchical manner, as determined by a treemap algorithm,
discussed in more detail below.

[0071] When steps 306 and 308 have completed, there is a
hierarchy of splits collected. There are two types of splits. The
first type of split defines a branch in the hierarchy and con-
tains no data. The second type of split terminates a branch of
the hierarchy and either includes data or is empty. An empty
terminal split is a container without content. As such, the only
place in the layout that objects can be stored is in terminal
splits that include data. The splits collected in step 306 need
not be arranged in their proper hierarchical order at this stage.
This hierarchical order only has significance when a presen-
tation based on the layout is to be displayed.

[0072] Step 310. Once the layout hierarchy is collected, the
view for each terminal split that has a corresponding view is
retrieved. This is accomplished by searching views table 88
for the view having a view_id that matches or otherwise
corresponds to the terminal split’s split_id. Each view refer-
ences an object through the object column of views table 88 of
database 66. These referenced objects are collected at a later
stage from object table 92.

[0073] In some embodiments, print_table.pl 54 invokes
LayoutAssembler 44 to collect all the splits and views in a
requested layout. LayoutAssembler 44 is a convenience
wrapper around the Tabla::DBI functionality. Data collection
is made possible because the Class::DBI auto-retrieve func-
tionality in the Tabla::DBIl::Layout, Tabla::DBI::Split,
Tabla::DBI::View, and Tabla:DBIL::Object modules
described in Table 1, above, is used to define the relationships
between splits, objects, and views in a given layout. Thus, in
such embodiments, the order of collection flows logically
from these relationships. For example, only once the view
associated with a data split has been collected can Class::DBI
retreive the objects associated with that view. After the layout
is collected, the layout tree is stored in memory (e.g., memory
24 and/or 23) as a Tabla::DBI::Layout object that inherits
from Class::DBI.

[0074] Step 312. In step 312, a determination is made as to
whether want to edit the layout. If so, (312—Yes) control
passes to step 322, which is described in more detail below. If
not, (312—No) control passes to step 314.

[0075] Step 314. Step 314 is reached in the case where the
user has requested to view a layout but does not wish to edit
the layout. In step 314, TableGenerator 56 is invoked to walk
down the layout hierarchy of the requested layout in order to
build a translation that represents the layout. In typical
embodiments, the translation is a set of nested tables. As an
example of this process, a horizontal split that has two mem-
bers is expressed as a table with one column and two rows.
The split view parameters (from layoutdata table 84) such as

US 2009/0070667 Al

width and height are applied to the table that holds the split but
not to the cells inside the table. If one of the two members has
a split (a daughter split), a table, corresponding to this daugh-
ter split, is nested within the cell of the respective member.
This process of nesting tables within the cells of the tables of
parent splits continues until all the splits in the layout are
represented. This form of table representation is referred to
herein as a treemap representation.

[0076] When a terminal split in the layout that references
one or more objects through a corresponding view is encoun-
tered, TableGenerator 56 invokes ViewGenerator module 58
to retrieve the objects referenced by the view. ViewGenerator
module 58 uses the retrieved objects to build a cell for the
terminal split. This cell, in turn, is positioned within the table
that hosts the terminal split. ViewGenerator module 58
retrieves objects by using the object identifier field in the view
(of views table 88) associated with the terminal split to iden-
tify objects from object table 92. In cases where the object is
a complex object (e.g., a blog or gallerydata) the view asso-
ciated with the complex object is used to determine what
components of the object are collected. For example, in the
case where a gallery view specifies a two by three matrix of
images, only the first six referenced images are collected
regardless of how many images are available for the complex
object.

[0077] In some embodiments ViewGenerator module 58
generates a cell from object data by a applying a template
from Template Toolkit 60 to the object, object data and the
view. Template toolkit 60 is a public domain template pro-
cessing system written in Perl with certain elements coded in
the C programming language to enhance speed. The template
toolkit is capable of creating static and dynamic web content
and incorporates various modules and tools to simplify this
process. It is available from www.template-toolkit.org.
[0078] Step 316. In step 316 a web page (presentation) that
includes the translation generated in step 314 is displayed.
The modules used to generate the translation in step 314
determine what language the web page is written in (e.g.,
HTML, XML, text, etc.). The exemplary ViewGenerator
module 58 and the Template toolkit 60, described above, are
specific implementations that generate translations written in
HTML. However, any presentation language of interest
(XML, text, etc.) can be used to make a presentation (trans-
lation) from the layout tree. Furthermore, the presentation
language does not have to support tables or graphics. For
instance, in text, the nested tables can be drawn with the
symbols “/-\I” and images in image galleries can be simply
shown as URLs. The particulars of the presentation language,
therefore, dictate the view of the layout and the view of the
individual objects, but the format of the layout tree remains
unaltered regardless of the nature of the target presentation
language.

[0079] Step 322. Step 322 is reached in the case where the
user has requested to view a layout but and wishes to edit the
layout. In step 322, TableGenerator 56 is invoked to walk
down the layout hierarchy of the requested layout in order to
build a translation that represents the layout in the manner
described in step 314, above.

[0080] Step 324. In step 324, a menu of edit options is
associated with each object, view and split in the layout. The
menu options in each menu is dependent upon the character-
istics of the object, view, or split to which the menu is asso-
ciated. FIG. 4M provides an illustration of such menus. In
FIG. 4M, menus are attached to each object, view and split
within a given layout. For example, menu 430 is associated
with split 428. Furthermore, the options available in each
respective menu is dependent upon whether the respective

Mar. 12, 2009

menu is associated with an object, view or split. The options
available in each menu are further dependent upon the nature
of the these objects, views and splits. For example, if the
options available for a blog will differ from the options avail-
able for a gallery.

[0081] In some embodiments TableFormatter module 46
(FIG. 1) is used to associate menu options with editable
portions of the requested layout. For every respective object,
view or split in the requested layout, TableFormatter module
46 requests a list of operations that can be performed on the
respective object, view, or split. In one embodiment of the
present invention, this request is serviced by Tabla::DBI::
Operation module (Table 1). For an object, the Tabla::DBI::
Operation module uses the Tabla::DBI::Object module
(Table 1) to understand the nature of the object (e.g., whether
itis a simple object or a complex object). For a split (or view),
the Tabla::DBI::Operation module uses the Tabla::DBI:: Split
module (Table 1) to understand the nature of the split as well
as the views within the split.

[0082] For each respective object, view, or split in a layout,
Tabla::DBI::Operation returns to TableFormatter module 46
a list of operations that can be performed on the respective
object, view, or split. In a preferred embodiment, each of
these operations is encoded as a URL. Each returned opera-
tion specifies the appropriate editor that is to be used to
perform the operation on the associated object, view, or split.
The types of editors available in one embodiment of the
invention are described in more detail below. Further, opera-
tions can include parameters that provide information such as
the appropriate layout name, the target ID, and the operation
1D for the object, view, or split. In some embodiments of the
invention, Template Toolkit 60 is used to associate the opera-
tions as menu options next to the particular object, view, or
split to which they are associated.

[0083] Step 326. In step 326 a web page (presentation) of
the translation generated in step 322 and appended to in step
324 is displayed using procedures and modules that are the
same as or similar to those described in step 316, above.
However, in a preferred embodiment the web page provides
simplified versions of the objects, views, and splits in the
translation rather than the full version created in step 316. The
purpose of the simplified version of the web page is to provide
a working template of the presentation that can be edited and
modified as described in subsequent steps below.

[0084] Step 328. In step 328, a menu selection designating
an operation associated with an object, view or split within a
given layout is received.

[0085] Step 330. In step 330, a determination is made as to
whether the operation designated in step 328 has parameters
(330—Yes) or is a simple parameterless operation (330—
No). If the operation designated in step 328 has parameters
(330—Yes), control passes to step 332. Otherwise (330—
No), control passes directly to step 334.

[0086] Step 332. If the operation designated in step 328 has
parameters, the edit_split_data.pl 48 (FIG. 1) editor is
invoked. The edit_split_data.pl 48 editor is a Perl script that
uses the CGI::FormBuilder module 50 to build an HTML
form that can be filled in or edited by a user. CGIL::Form-
Builder module 50 is a Perl module that is designed to gen-
erate and process CGI form-based applications. It is available
from www.formbuilder.org. Thus, in step 332, a form that
includes the parameters associated with the designated option
are presented to the user. When the user has finished editing
the form, it is submitted.

[0087] Step 334. Inthe case where step 332 was not invoked
for a given requested operation, no form page is generated
when because the requested operation does not have param-

US 2009/0070667 Al

eters. The edit_split_simple.pl module 52 is invoked to pro-
cess parameterless operations.

[0088] In the case where step 332 was invoked, the results
of'the form submission from step 332 are used by edit_split_
data.pl module 48 to create a Tabla::DBI:: Action object. In
other words, edit split data.pl module 48 creates an entry (a
row) corresponding to the form submission in the actions
table 72 (FIG. 1). In the case where step 332 was not invoked,
the edit_split_simple.pl module 52 is used to create the
Tabla::DBI:: Action object.

[0089] Regardless of whether edit_split_data.pl module 48
or edit_split_simple.pl module 52 is used, the newly created
Tabla::DBI::Action object is assigned a unique action_id
value that is stored in the action_id column of actions table 72.
The newly created action is also given a target. In some
embodiments, the target is passed down to edit_split_data.pl
module 48 (or edit_split_simple.pl module 52) in the “target”
CGI parameter, embedded in the URL link by TableFormatter
module 46. The target is the identifier for the object (object_
id), view (view_id), or split (split_id) that the action operates
on. A reference to the operation requested (e.g., edit, delete,
add, etc.) is also stored in the newly created action in the
operation column of actions table 72.

[0090] Inthecase where the operation includes parameters,
the edit_split_data.pl module 48 stores each parameter as a
row in the actionparameters table 74 and each parameter
receives a unique parameter_id that is stored in the param-
eter_id column of actionparameters table 74. The parameters
stored in the actionparameters table 74 for a given action are
joined to the action based upon the action_id value.

[0091] Step 336. After an action has been stored in database
66, the layout is modified in accordance with the newly stored
action. In some embodiments, this is accomplished by the
do_action() routine of the Tabla::DBI:: Action module. After
the action is processed and the layout modified, process con-
trol passes to step 304 where the layout is recollected and
represented to the user in order to reflect the changes made to
the layout.

5.3. Exemplary Construction of a Layout

[0092] Methods for viewing and editing layouts in accor-
dance with one embodiment of the invention have been
described with reference to FIG. 3. FIG. 4 illustrates the
construction of layout using such methods.

[0093] To create a new layout, a user provides a name for
the layout. FIG. 4A illustrates a form in which the user pro-
vides a name for a new layout that they wish to create. Sub-
mission of form 402 triggers an action that is stored in actions
table 72 of database 66 (FIG. 2). When the action is executed
(e.g., by the do_action() routine of the Tabla::DBI::Action
module), a new row is added to layouts table 82 for the new
layout. In addition to creating a row in layouts table 82 of
database 66, a row is also inserted into layoutdata table 84 to
represent the top split in the newly created layout.

[0094] FIG. 4B shows the web page 406 that results when
the submit button of form 402 is selected by a user. Web page
406 contains operations that can be performed on the entire
layout. These operations includes delete layout operation
408, modify layout operation 410, and change layout name
operation 412. Inside bordered box 414 is top split 416, along
with dropdown menu 418 that contains menu options for all
of the operations that can be performed on top split 416.
[0095] FIG. 4C shows the results of inserting split 420 into
top split 416. Split 420 is inserted in top split 416 by selecting
the “insert container” option from dropdown menu 418.
There are now two dropdown menus, one for the top split 416
(menu 418) and one for split 420 (menu 422). Split 420 is a

Mar. 12, 2009

child of top split 416. When split 420 was created, a new row
was added to layoutdata table 84 (FIG. 2) using the proce-
dures described in Section 5.2, above. The parent identifier in
the new row in layoutdata table 84, corresponding to split 420,
is assigned the split_id of top split 416.

[0096] FIG. 4D shows the results of inserting a second split
(split 424) into top split 416. Split 424 is inserted in top split
416 by selecting the “insert container” option from dropdown
menu 418. When split 424 was created, a new row was added
to layoutdata table 84 (FIG. 2) using the procedures described
in Section 5.2, above. The parent identifier in the new row in
layoutdata table 84, corresponding to split 424, is assigned
the split_id of top split 416. At this point the borders of each
split are more readily identifiable. The border of top split 416
is directly outside of and encircles for splits 420 and 424.
Splits 420 and 424 are surrounded by their own border boxes.
[0097] FIG. 4D provides a good illustration of the treemap
algorithm that is used to create the presentations of the present
invention. Splits are inserted either into top split 416 or into a
split that is within top split 416 in a hierarchical manner. Each
split at a given level in a branch of the hierarchy are either
arranged in a row (as illustrated in FI1G. 4D by splits 420 and
424) or they are arranged in a column. Menu options in the
parent split designate whether the splits will be arranged in
rows or columns. FIG. 4E illustrates this feature. In FIG. 4E,
the user selects the dropdown option in menu 418 of the top
split called “switch orientation”. This changes the orientation
of daughter splits 420 and 424. This new orientation is noted
by changing the value in the “type” column of layoutsdata
table 84 in the rows that correspond to splits 420 and 424. In
one embodiment, the value in the “type” column of layouts-
data table 84 is defaulted to H for horizontal but can be
toggled to V for vertical and back again by clicking the
“switch orientation” button in the appropriate menu. The
“type” parameter is referred to herein as an orientation param-
eter. FIG. 4F shows the results of changing the orientation of
the daughter splits of top split 416 from horizontal to vertical.
[0098] FIG. 4G shows the results of adding splits 428 and
432 inside split 424. As per the default, splits 428 and 432 are
arranged horizontally within parent split 424. However, this
arrangement can be changed to a vertical arrangement using
menu 426.

[0099] FIG. 4H shows the user selecting a dropdown option
from menu 430 of split 428 in order to add a data split into
split 428. The insertion of a data split is referenced by the
menu option “insert object” in menu 430. Selection of the
“insert object” menu option results in the creation of a row in
layoutdata table 84 to record the data split in the same manner
that the other splits were recorded in table 84 with one excep-
tion. The “type” field in table 84 for the newly created data
split is assigned the type value of “D” for data. A type desig-
nation of “D” means that only an object can be contained
inside the split, and additional splits cannot be inserted inside
the split.

[0100] Users have the option to either “insert existing
object” to insert previously created data into a data split or
“create new object” to insert a new object into a data split.
FIG. 41 illustrates a page 440 where the user can select the
type of new object to insert into the data split created by action
taken in FIG. 4H. Specifically, the user can insert an entire
layout (but not a split), text, a gallery, and a blog.

[0101] FIG. 4] is a close up of splits 428 and 432 after the
user has selected to insert a new “text” object into data split
442. Specifically, inside split 428, there is a holder for data
split 442 that displays some meta-information about the
object. The creation of a new object, as illustrated by FIGS. 41
and 4], causes the creation of a row in objects table 92 and a

US 2009/0070667 Al

row that corresponds to the object in views table 88 of data-
base 66. Every data split that has an object also has a view that
is unique to that data split. At this step, the text object has been
created, but no information has been entered into the object.

[0102] To enter information, the user selects the “modify
text object” option from menu 444. This will bring the user to
form 446 (F1G. 4K). The user enters information into box 448
and then hits submit button 450. Submitting form 446 creates
an action that, when executed, updates the obj_data field for
the row in objects table 92 that represents the object. A text
object is a simple object so all of the data for that object is
contained in objects table 92. FIG. 4L is a close-up of data
split 442 after the text entered into box 448 (FIG. 4K) has
been associated with the data split. A small preview of the text
entered is displayed inside data split 442.

[0103] FIG. 4M illustrates the instance where the user has
created a data split 450 inside split 432 in the same manner as
data split 442 was created in split 428. Further, FIG. 4M
illustrates how the user has selected to the create an object
option from the menu 452 associated with data split 450.
Upon submitting the “create object” option, the user is
brought to the page displayed in FIG. 41. At this point, the user
selects the “gallery” option and hits the submit button. This
submission creates an action in action table 72 that, when
executed, creates a row in objects table 92, and a row in views
table 88 for the gallery. FIG. 4N provides a close up view of
splits 428 and 432. The holder 454 for data split 450 is now
seeninsplit432. Holder 454 displays meta-information about
the object. However, none of the fields in the meta-informa-
tion are populated at this stage because the user has not
provided the information. To provide such information, the
user selects the option to “upload an image” from menu 452
(menu option not shown). This action takes the user to the
upload image page 460 of FIG. 40. Page 460 allows the user
to browse their computer or, more preferably, any computer
addressable by system 20, and select an image to upload into
the gallery. There is also an open text field 462 where a
description of the image can be added.

[0104] A photo gallery object is a complex object meaning
that multiple pieces of data make up the object. This com-
plexity requires that a separate table, called gallerydata table
96 (FIG. 2), store each individual picture that makes up the
gallery object. Thus, there is a one to many relationship
between rows in objects table 92 and rows in gallerydata table
96. In some embodiments, uploading an image saves the
image to file system 42. In other embodiments, the image is
not uploaded to file system 42. Rather, the address of the
image in system 20 is noted. Regardless of whether the image
is uploaded to file system 42, a row is written to the gallery-
data table 96 upon execution of the action. The newly added
row in the gallerydata table 96 contains the field “image_url”
that records the path to where the image is stored in system 20.
Further, the newly added row in the gallerydata table 96
includes a lookup field entitled “object_id” to the object in
object table 92 that it belongs to, and other information such
as the image description (image_name, image_position).

[0105] FIG. 4P shows gallery parameters editing page 470
that can be invoked for any gallery object. Between FIG. 40
and FIG. 4P, the user has uploaded three more images into the
gallery in the same manner as described in screenshot FIG.
40. The user then selected the “edit container parameters”
option of the dropdown menu 452 of data split 450 to get the
gallery parameters editing page 470 of FIG. 4P. Page 470
allows the user to change the display parameters associated
with the gallery. The gallery height and gallery width options,
which can be modified by the user, respectively determine the
number of rows and the number of columns of images that are

Mar. 12, 2009

to be displayed in the associated gallery. Further, the thumb-
nail width and thumbnail height options, which can also be
modified by the user, determine the thumbnail size of all
images displayed in the associated gallery.

[0106] As described above, each data split has its own view
that determines the style properties to associate with that data
split. The object inside the data view will determine what
style properties are available. Some objects, like a text object,
can store all of those properties in columns in views table 88,
but some object types, like the gallery object, require an
additional table to support more specific style property
instructions. Setting the gallery width, gallery height, thumb-
nail width, and thumbnail height values as done in FIG. 4P
creates a row in galleryviews table 90. Table 90 has one
column that serves as a key to the views table (view_id), and
then a column for each property value (x, y, thumb_x, and
thumb_y). In other words, when the user submits page 470,
the information is stored as an action in actions table 72.
Then, when the action is executed, the X, y, thumb_x, and
thumb_y fields of the row in the galleryviews table 90 that
corresponds to the view for the gallery is modified with the
updated values.

[0107] FIG. 4Q a close up of 420. The user is selecting the
“insert object” option from dropdown menu 422. This creates
data split 480 within split 420. Instead of selecting the “create
new object” option that was shown previously, the user selects
the “insert existing object” from the dropdown menu 482 of
data split 420. This brings the user to page 490 where the
desired object can be selected from a dropdown display 490
of that user’s objects (FIG. 4R).

[0108] As illustrated in FIG. 4R, the user selects object
00014 and hits a submit button. This creates an action in
actions table 72 (FIG. 2). When the action is executed, a row
in views table 88 is created. The newly created row stores the
object_id for object 00014. FIG. 48 is a close up of split 420
after the existing object has been added to data split 480 Top
split 416 now contains split 420 and split 424. Split 420
contains data split 480 that has an object and a view of that
object inside it. As illustrated in FIG. 4G, split 424 contains
split 428 and split 432. As illustrated in FIG. 4], split 428
contains data split 442 that has an object and a view of that
object inside it. As illustrated in FIG. 4N, split 432 contains
data split 450 that has an object and a view of that object
inside it.

[0109] The user has finished creating the layout and is now
ready to view it as an HTML page. The user selects the
“Visitor view of layout demo_test” link 496 at the top of the
main work page (FIG. 4C). As a result, a layout collection
process takes place and the layout tree is converted to HTML
steps in accordance with step 302 through 316 of FIG. 3A.
The full HTML version of the newly created layout is illus-
trated as FIG. 4T.

5.4. Exemplary Operation Processing

[0110] The following is an example of the steps taken when
auser submits form 470 of FIG. 4P. In this case, the operation
that is being performed is operation_id=30 which is gallery
view editing. Gallery view editing is a form of a complex
operation. Operations table 76 stores information relating to
the top level of this operation. In particular, the type column
of operations table 76 indicates that operation_id=30 modi-
fies a view and, more particularly, the subtype column of
operations table 76 indicates that operation_id=30 affects a
gallery. Thus, the values in the row in operations table 76 that
is created upon submission of form 470 are as described in
Table 2 below.

US 2009/0070667 A1l Mar. 12, 2009
10
TABLE 2
values in operations table 76
operation__id Name text button type subtype

30 EDIT__VIEW__GALLERY Edit Gallery View
Parameters

view gallery

[0111] As seen in FIG. 4P, operation_id=30 updates four
fields. They are gallery width, gallery height, thumbnail
width, and thumbnail height. Each of these fields is repre-
sented by a unique row in operationparameters table 78 (FIG.
2) that is created upon submission of form 470. Thus, for
operation_id=30, the entries shown in Table 3 are placed in
operationparameters table 78.

TABLE 3

operation_id=19 has a value “X” that represents how many
images across a gallery view should be displayed in the pre-
sentation. The modification to gallery height is operation_
id=20. The name field for the row corresponding to opera-
tion_id=20 has a value of “Y” that represents how many
images down a gallery view should be displayed in a presen-
tation. A modification to thumbnail width is operation_id=21.

values in operationsparameters table 78

operation__id name text Magic
19 X Gallery Width Tabla::DBI::View::Gallery->retrieve($id)->
X(NEWDATA)
20 Y Gallery Height Tabla::DBI::View::Gallery->retrieve($id)->

y(NEWDATA)
21 thumb_ x
thumb_ x(NEWDATA)

22 thumb_y
thumb__y(NEWDATA)

Thumbnail Width Tabla::DBI::View::Gallery->retrieve($id)->

Thumbnail Height Tabla::DBI::View::Gallery->retrieve($id)->

[0112] The “text” field in each of these four rows displays
the corresponding field name seen in the screenshot. So, for
example, the “text” field for the row in operationparameters
table 78 that represents the gallery width field will be “Gallery
Width”, the “text” field for the row in operationparameters
table 78 that represents the gallery height field will be “Gal-
lery Height” and so forth.

[0113] A modification to gallery width is operation_id=19.
The name field for the row in table 78 corresponding to

The name field for the row corresponding to operation_id=21
has a value of “thumb_x" that specifies the width, in pixels, of
all image in the gallery object. A modification to thumbnail
width is operation_id=22. The name field for the row corre-
sponding to operation_id=22 has a value of “thumb_y” that
specifies the height, in pixels, of all images in the gallery.
[0114] When a user enters information into all four fields in
form 470 of FIG. 4P and hits submit, an operation_id=30 row
is created in actions table 72:

TABLE 4

action__id

values in action table 72

operation target Date session__id

1808

30 311 1061272184 adef0384be7cb2609792af6e70c91900

US 2009/0070667 Al

The Tabla::DBI:: Action module (Table 1) creates this row.
The value “30” in the “operation” column specifies that the
operation is editing a gallery view and the value “311” in the
“target” column specifies that the gallery view that is being
modified is view_id 311. The identity of the table that the
target is pointing to (galleryviews table 90) is known because
operation 30 is specific to table 90. The date of the action and
the session committing the action are also stored in the newly
created operation_id=30 row in actions table 72.

[0115] Correspondingly, four rows are created in actionpa-
rameters table 74, one for each field in the form:

TABLE §

values in actionparameters table 74

operation
parameter__id action__id data parameters
1841 1808 2 19
1842 1808 2 20
1843 1808 225 21
1844 1808 200 22

[0116] In some embodiments, edit_split_data.pl script 48
(FIG. 1) creates the four rows in actionparameters table 74.
The “parameter_id” column is a unique value for each action
parameter. The value in the “action_id” field of each of the
fours rows is a link to the parent action in action table 72. Thus
the value in this field will be identical for all four action
parameters. The “data” column contains the data entered into
each field by the user of form 470. The “operation_param-
eters” column in actionparameters table 74 (Table 5) is used
to join over to the corresponding rows in operationparameters
table 78 (Table 3) to identify what fields were updated in the
form and what target database table is to be updated.

[0117] Now that the relevant database tables that are
affected by a complex action have been outlined, a process for
applying this action in order to update the target tables in
database 66 will be described for one of the rows in action-
parameters table 74. This process is repeated for each row in
actionparameters table 74 (Table 5). The process will be
illustrated for the action with parameter_id 1843, which
changes the width of all thumbnails in the target gallery object
to 225 pixels. In order to accomplish this, the “thumb_x" field
for the row in galleryviews table 90 (FIG. 2) that corresponds
to the correct target view needs to be updated.

[0118] Onceedit_split_data.pl module 48 has written a row
for each action parameter in actionparameters table 74, it
invokes the Tabla::DBI::Action method do_action(). Meth-
od_do_action() is responsible for updating the rows in data-
base 66 based on any unprocessed actions in actions table 72.
Method do_action() accomplishes this by first determining
the target of a subject action parameter (the action with
parameter_id 1843 in Table 5). To get this information,
do_action() relies on the “target” field for the action in action
table 72 (Table 4) corresponding to the action parameter, in
actions table 72, as well as the corresponding “magic” field
for the action parameter in operationparameters table 78. The
magic field in operationparameters table 78 contains a string
of Perl code that invokes a module and inserts parameters that
do_action() knows how to handle and apply. In this case, the
Tabla::DBI::View::Gallery module is invoked and passed
three parameters: the “target” from the actions table 72 (Table
4), which goes in “retrieve($id)”, the column to be updated
“thumb_x" which is specified in the magic code string, and
the data from actionparameters table 74 (Table 5) to update
the column. Based on that data, Tabla::DBI::View::Gallery

Mar. 12, 2009

knows to update, to the value of 225, the “thumb_x" field in
the row of galleryviews table 90 representing view_id “311”.
This process is repeated for each of the remaining actionpa-
rameters in actionparameters table 74 (Table 5) in order to
update the target gallery view in galleryviews table 90. As a
result, the target gallery view will be a two by two display
with thumbnails that are 225 by 200 pixels in the presentation.

6. REFERENCES CITED

[0119] All references cited herein are incorporated herein
by reference in their entirety and for all purposes to the same
extent as if each individual publication or patent or patent
application was specifically and individually indicated to be
incorporated by reference in its entirety for all purposes.
[0120] The present invention can be implemented as a com-
puter program product that comprises a computer program
mechanism embedded in a computer readable storage
medium. For instance, the computer program product could
contain the program modules shown in FIG. 1. These pro-
gram modules may be stored on a CD-ROM, magnetic disk
storage product, or any other computer readable data or pro-
gram storage product. The software modules in the computer
program product can also be distributed electronically, viathe
Internet or otherwise, by transmission of a computer data
signal (in which the software modules are embedded) on a
carrier wave.

[0121] Many modifications and variations of this invention
can be made without departing from its spirit and scope, as
will be apparent to those skilled in the art. The specific
embodiments described herein are offered by way of example
only, and the invention is to be limited only by the terms ofthe
appended claims, along with the full scope of equivalents to
which such claims are entitled.

1. A method of constructing a presentation in a platform
independent manner, the method comprising:

defining a layout that includes a top split, wherein said top

split includes a first orientation parameter specifying an
orientation for any daughter split created within said top
split;

receiving a request to create a daughter split within said top

split;

generating said daughter split within said top split in accor-

dance with said first orientation parameter, wherein said
daughter split includes a second orientation parameter
specifying an orientation for any child split created
within said daughter split; and

converting said layout to said presentation.

2. The method of claim 1 wherein said first orientation
parameter specifies that each daughter splits created within
said top split is arranged either horizontally or vertically
within said top split.

3. The method of claim 1 wherein said second orientation
parameter specifies that each child split created within said
daughter split is arranged either horizontally or vertically
within said daughter split.

4. The method of claim 1 wherein said daughter split is a
data split, the method further comprising:

inserting a data object in said data split; and

associating a view with said data object, wherein said view

determines how said data object is presented in said data
split.

5. The method of claim 4 wherein said data object is a
complex object.

US 2009/0070667 Al

6. The method of claim 5 wherein said complex object is a
blog or a gallery.

7. The method of claim 1 wherein said presentation is
written in a target language for a target platform.

8. The method of claim 7 wherein said target language is
HTML, XML, Java, ASP, PHP, or ASCII text.

9. A computer program product for use in conjunction with
a computer system, the computer program product compris-
ing a computer readable storage medium and a computer
program mechanism embedded therein, the computer pro-
gram mechanism for constructing a presentation in a platform
independent manner, the computer program mechanism com-
prising:

instructions for defining a layout that includes a top split,

wherein said top split includes a first orientation param-
eter specifying an orientation for any daughter split cre-
ated within said top split;

instructions for receiving a request to create a daughter

split within said top split;

instructions for generating said daughter split within said

top split in accordance with said first orientation param-
eter, wherein said daughter split includes a second ori-
entation parameter specifying an orientation for any
child split created within said daughter split; and
instructions for converting said layout to said presentation.

10. The computer program product of claim 9 wherein said
daughter split is a data split, the computer program mecha-
nism further comprising:

instructions for inserting a data object in said data split; and

instructions for associating a view with said data object,

wherein said view determines how said data object is
presented in said data split.

11. A computer system for constructing a presentation in a
platform independent manner, the computer system compris-
ing:

a central processing unit;

a memory, coupled to the central processing unit, the

memory storing:

instructions for defining a layout that includes a top split,

wherein said top split includes a first orientation param-
eter specifying an orientation for any daughter split cre-
ated within said top split;

instructions for receiving a request to create a daughter

split within said top split;

instructions for generating said daughter split within said

top split in accordance with said first orientation param-
eter, wherein said daughter split includes a second ori-

Mar. 12, 2009

entation parameter specifying an orientation for any
child split created within said daughter split; and
instructions for converting said layout to said presentation.

12. The computer system of claim 11 wherein said daugh-
ter split is a data split, the memory further storing:

instructions for inserting a data object in said data split; and

instructions for associating a view with said data object,
wherein said view determines how said data object is
presented in said data split.

13. A method of editing a layout, which defines a presen-
tation in a platform independent manner, the layout compris-
ing a split hierarchy, the method comprising:

(A) beginning at the top split in the split hierarchy, for each
split encountered in the split hierarchy, building a trans-
lation of the split, wherein, when the split is a data split,
the building comprises,

(1) retrieving object data in accordance with a view for
the data split; and

(ii) applying a template to the data associated with the
data split;

(B) associating a different menu of options with each split
in the split hierarchy as well as retrieved object data;
(C) receiving a menu selection from any one of the difter-

ent menus of options and,
(1) when the menu selection specifies an action that has
parameters:

(1) presenting the parameters in a form;

(2) adding, in response to a submission of said form,
an entry in an actions table of a database to reflect
said submission; and

(3) modifying the layout in the database in accordance
with said submission; and

(i1) when the menu option is associated with a param-
eterless action:

(1) adding, in response to said menu selection, an
entry in said actions table of said database to reflect
said menu selection; and

(2) modifying the layout in the database based upon
said menu selection.

14. (canceled)

15. (canceled)

16. (canceled)

17. (canceled)

18. (canceled)

19. (canceled)

20. (canceled)

