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INSPECTION AND FAILURE DETECTION OF CORROSION UNDER
FIREPROOFING INSULATION USING A HYBRID SENSORY SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

[001] This application claims priority to U.S. Patent Application No. 16/214,615, filed on
December 10, 2018 and entitled “INSPECTION AND FAILURE DETECTION OF
CORROSION UNDER FIREPROOFING INSULATION USING A HYBRID SENSORY
SYSTEM,” which is a is a continuation-in-part of U.S. Patent Application No. 16/117,937,
filed on August 30, 2018 and entitled “Cloud-based machine learning system and data fusion
for the prediction and detection of corrosion under insulation,” , which are hereby incorporated

by reference in their respective entireties.

FIELD OF THE INVENTION
[002] The present invention relates to inspection technologies, and, more particularly, relates
to a system and method for inspection and failure detection of corrosion-under-fireproofing

insulation (CUF) using hybrid sensing.

BACKGROUND OF THE INVENTION

[003] Corrosion under insulation (CUI), such as fireproof insulation, is a condition in which
an insulated structure such as a metal pipe suffers corrosion on the metal surface beneath the
insulation. As the corrosion cannot be easily observed due to the insulation covering, which
typically surrounds the entire structure, CUI is challenging to detect. The typical causes of
CUI are moisture buildup that infiltrates into the insulation material. Water can accumulate in
the annular space between the insulation and the metal surface, causing surface corrosion.
Sources of water that can induce corrosion include rain, water leaks, and condensation, cooling
water tower drift, deluge systems and steam tracing leaks. While corrosion usually begins
locally, it can progress at high rates if there are repetitive thermal cycles or contaminants in the

water medium such as chloride or acid.

[004] When CUF is undetected, the results can lead to the shutdown of a process unit or an
entire facility and can ultimately lead to catastrophic incidents. Conventionally, corrosion

damage is assessed by physically removing pre-defined portions of insulation from an
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installation, followed by resealing the insulation after inspection. The equipment underneath
the removed insulation is then visually inspected. At large and complex installations, such as
the facility shown in FIG. 6, insulation removal and visual inspection can require extensive
scaffolding to allow personnel to reach all locations subject to inspection. The construction
expenses this entails adds greatly to the time and cost of the inspection process. Additionally,
removal of sections of insulation is typically a somewhat random, hit-or-miss process, since it
is not known ahead of time which sections of equipment have experienced considerable
erosion. The outcome of the inspection can therefore be considered insufficiently reliable as it

is based on random sampling.

[005] Due to these challenges, it has been found that localized visual inspections of assets are
not reliably effective at detecting CUF, and they do not reflect conditions of the assets.
Accordingly, there is a pressing need for improved detection and risk assessment tools to

determine levels of CUF damage and reduce the burdensome costs imposed by this problem.

[006] It is with respect to these and other considerations that the disclosure made herein is

presented.

SUMMARY OF THE INVENTION

[007] Embodiments of the present invention provide a system for predicting and detecting of
corrosion under fireproof insulation (CUF) in an infrastructure asset. The system comprises a
first detection apparatus adapted to capture thermal images of the asset, a second detection
apparatus adapted to receive terahertz (THz) radiation from the asset, at least one ambient
condition sensor for detecting environmental conditions at a location of the asset, a
communication device coupled to the first and second detection apparatus and at least one
ambient condition sensor to receive data there from and adapted to communicate the received
data, and a computing device communicatively coupled to the communication device and
configured with instructions for executing a machine learning algorithm taking as inputs the
thermal image, THz data and ambient condition data received from the communication device,

and to output a CUF prediction regarding the asset.

[008] The first detection apparatus can include an infrared camera, and the second detection
apparatus can include a THz emitter and a THz detector. In some implementations, at least

one ambient sensor is operative to detect at least one of temperature, humidity and air pressure.
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[009] In certain implementations, machine learning algorithm employed by the computing
system includes a deep convolutional neural network. In other implementations, the machine
learning algorithm employed by the at least one computing system includes a deep recurrent
neural network. In further implementations, the machine learning algorithm employed by the
computing system further includes both a deep convolutional neural network and a deep

recurrent neural network.

[0010] The computing system can also be configured with instructions for executing a boosting

algorithm, such as Adaboost to increase prediction accuracy.

[0011] In some arrangements in the field, the first detection apparatus can be positioned in a
range of about 5 to about 15 meters away from the asset while detecting infrared radiation
coming from the asset, and the second detection apparatus can be positioned in a range of 0.1

to about 2.1 meters away from the asset while detection THz radiation coming from the asset.

[0012] Embodiments of the present invention also provide a method of predicting and
detecting of corrosion under fireproof insulation (CUF) in an infrastructure asset. The method
comprises capturing thermal image data emitted or reflected from the asset over time,
capturing THz data of the asset reflected from the asset over time, measuring ambient
conditions to obtain ambient condition data over time, communicating the captured thermal
image, THz and ambient condition data to a computing system configured with a supervised
machine learning algorithm, and executing the machine learning algorithm using the thermal
image, THz and ambient condition data. The execution of the machine learning algorithm

yields a prediction as to whether the asset contains corrosion under fireproofing.

[0013] Insome arrangements in the field, the step of capturing thermal image data is performed
by positioning an infrared detector between about 5 meters to about 15 meters away from the
asset. In further arrangements in the field, the step of capturing THz data is performed by
positioning a THz emitter and THz detector between about 0.1 meters to about 2.2 meters away

from the asset.

[0014] In some implementations, the ambient condition data includes at least one of least one

of temperature, humidity and air pressure.

[0015] In some embodiments, the step of executing the machine learning algorithm includes
employing a convolutional deep neural network to classify thermal image and THz data. In
some embodiments, the step of executing the machine learning algorithm further includes

employing a recurrent neural network to analyze the thermal image and THz data over time in
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view of the ambient condition data. In further embodiments, the step of executing the machine
learning algorithm includes employing both a convolutional deep neural network to classify
thermal image and THz data and a recurrent deep neural network to analyze the thermal image

and THz data over time in view of the ambient condition data.

[0016] Some implementations of the method further comprise executing a boosting algorithm,

such as Adaboost, to increase accuracy of the machine learning algorithm.

[0017] These and other aspects, features, and advantages can be appreciated from the following
description of certain embodiments of the invention and the accompanying drawing figures

and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 is a schematic illustration of a cloud-based learning system for predicting and

detecting CUI according to an embodiment of the present invention.

[0019] FIG. 2 is a schematic illustration of an embodiment of the cloud-based system in which
four infrared cameras and corresponding smart mounts and computing devices are deployed to

monitor a structure for CUL

[0020] FIG. 3 is a block diagram showing functional elements of a smart mount according to

an exemplary embodiment of the present invention.

[0021] FIG. 4 is a block flow diagram illustrating a method for generating synthetic thermal

image data structures according to an exemplary embodiment of the present invention.

[0022] FIG. 5A is a flow chart of a method for acquiring data for CUI predication performed

using an investigative kit according to an embodiment of the present invention.

[0023] FIG. 5B is a flow chart of a method of real time CUI prediction according to an

embodiment of the present invention.
[0024] FIG. 6 is a perspective view of an exemplary scaffolded oil and gas facility.

[0025] FIG. 7 is a block diagram of a system for detection of CUI or CUF according to another

embodiment of the present invention.

[0026] FIGS. 8A and 8B are perspective views of a Terahertz emitter (FIG. 8A) and Terahertz
detector (FIG. 8B), respectively.
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[0027] FIG. 9 is ablock diagram of an embodiment of the machine learning scheme according

to the present invention.
[0028] FIG. 10 is schematic illustration of an exemplary convolutional neural network (CNN).

[0029] FIG. 11 is a schematic illustration of an exemplary recurrent neural network (RNN)

that can be used in the context of the present invention

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION

[0030] Embodiments of the present invention provide a predictive approach for detecting
corrosion under insulation (CUI) taking into account dependent and independent surrounding

variables. Thermal images of investigated assets are captured over time.

[0031] As thermal images are captured over time, changes in phenomena can be readily
observed, including the impact of temporary issues such as wind. The thermal images show
temperature gradients indicative of locations vulnerable to CUL Additional evaluations are
performed with an independent non-destructive testing (NDT) technique, such as, for example,
electromagnetic detection using a magnetometry sensor, to determine correlative relationships.
This “sensor fusion” increases the accuracy of CUI detection, shadow detection, or abnormal
process activities, the effects of which can be minimized. Ambient condition data such as the
time of day, weather, process conditions, etc. are included as parameter inputs to machine
learning algorithms that are used to generate conclusions from the multiple sources of input.
Additionally, in some embodiments, to reduce the effects of “noise” in the thermal images
caused by shadows, reflections or other artifacts, a noise filter can be employed as a

preprocessing step.

[0032] Through the combination of sensor fusion and time-based analysis non-determinative
or confounding variables can be excluded, allowing the learning algorithms to zero-in on
anomalies that are contrary to ambient conditions, and thus are more likely indicative of CUL
Such anomalies are recorded; afterwards field engineers can perform a verification inspection
upon the locations where such anomalies occur. The results of the field inspection (i.e., a “CUI
verified” or “CUI not verified”) can be stored on cloud-based platforms and used to train
supervised machine learning systems, enabling the systems to become more ‘intelligent’ over
time as parameters (weights, factors) are refined over time by a continually more encompassing

data set.
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[0033] FIG. 1 is a schematic illustration of a cloud-based learning system 100 for prediction
and detection of CUI according an embodiment of the present invention. FIG. 1 shows an
exemplary structure 105 to be tested, in this case a set of insulated pipes. The insulated pipes
of this example can comprise a metallic pipe conduit surrounded by one or more layers of
insulation. Corrosion, when it occurs, tends form in the annular region between the insulation
and the metallic pipe where moisture can become trapped and accumulate. In FIG. 1, one or
more infrared cameras 110 (only one camera is shown in the figure) are situated proximally to
the structure 105 to capture infrared radiation and record thermal images emitted from the
structure. One example of a suitable infrared camera for CUI detection is the C3 Wi-Fi enabled
thermal camera supplied by FLIR Systems, Inc. of Wilsonville, Oregon, although other devices
can also be used. The thermal images captured from the structure 105 reveal internal thermal
contrasts within the structure that are undetectable in the visible spectrum radiation and can be
indicative of moisture accumulation and/or corrosion. The infrared camera 110 preferably
captures thermal images received from regions of the structure continuously over a selected
duration, and/or intermittently at different times or dates. The camera 110 is adapted to convert
the thermal images into a standardized computer-readable file format (i.e., thermograph files,
Jpgs).

[0034] The infrared camera 110 is positioned on a mount 112, which as described in greater
detail below, can be “smart” and have a variety of components and functions. In some
embodiments, the mount can be implemented as a tripod. The mount 112 can be extendable to
reach high elevations on the structure (e.g., by telescoping) and can include a mechanical head
fixture coupling to the camera that has several degrees of freedom to pan and tilt at various
angles with respect to a fixed plane. Field technical personal can set the extension and
orientation of the mount head to capture thermal images from different areas of the structure,

as required.

[0035] In some facilities, identification tags can be posted on assets, or portions thereof. The
precise geographical location of each tag can be determined using GPS. The identification tags
can be implemented using image-based tags such as QR codes that are readable from a distance.
To take advantage of the tagging feature, in some embodiments, a standard camera can be
included along with the infrared camera on the mount to scan tags on the assets. Depending
on the size of tags (of known size) in the image, distances from the camera to the tags can be
determined. Tagging enables simultaneous scanning and localization of the facility assets

without the need to create complex three-dimensional CAD models of the facility.
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[0036] The infrared camera 110 can be physically and communicatively coupled to the mount
112 (e.g., wirelessly by Bluetooth or Wi-Fi communication). The mount 112 also includes or
is coupled to one or more additional detectors, such as electromagnetic sensors (not shown in
FIG. 1), which can be used to probe the structure and obtain supplemental readings to
complement the data obtained by thermal imaging. In this manner, data from two or more
distinct and independent sensing modes can be combined, referred to as “sensor fusion”, that
can make downstream prediction and detection much more robust by reduction of false positive
classifications. The mount 112 also includes sensors for detecting ambient conditions
including temperature, humidity, and air pressure. Received thermal images can be associated
with the ambient conditions and the current time at which the ambient conditions are recorded.
This data comprises parameters used by the machine learning algorithms that contribute to the

interpretation and classification of the thermal images captured from the structure.

[0037] The mount 112 is communicatively coupled to a computing device 115, which can be
a tablet, laptop or any other suitable computing device with sufficient processing and memory
capability that can be conveniently taken onsite in the field for use by field technical
professionals. The mount 112 is operative to transmit thermographic files received from the
camera 110 to the computing device 115. The computing device 115 preferably stores
executable applications for preprocessing and predictive analysis. Preprocessing can include
image filtering steps for reducing noise in the images that can arise from many causes. The
computer device also executes one or more machine learning algorithms that take the received
thermograph files (thermal images) as inputs and output a prediction as to the probability that
the thermal images contain anomalies of interest in real time. As discussed in related
commonly-owned application, U.S. Patent Application Serial No. 15/712,490, entitled
“Thermography Image Processing with Neural Networks to Identify Corrosion Under
Insulation (CUI)”, a plurality of machine learning algorithms, including deep learning
algorithms can be used for CUI detection. In some implementations, convolutional networks,
which are useful for classifying images in detail, are used in a first stage, and recurrent neural
networks, which are useful for tracking changes over time, are used in an additional stage. The
computing device 115 provides the output of the machine learning algorithms in an application
user interface that can be conveniently consulted by field technical personnel. Real time
predicative analysis in the field allows field technical personal to support observations and
focus rapidly on high-risk areas of the structure that are more likely subject to corrosion

damage.
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[0038] The computing device 115 communicates wirelessly via a network switch 120 (via
wireless communication network 122) with a cloud computing platform 125. Wireless network
122 can be a wireless local area network (WLAN), wireless wide area networks (WWAN),
cellular networks or a combination of such networks. The cloud computing platform 125
comprises computing resources, typically dynamically allocated, including one or more
processors (e.g., one or more servers or server clusters), that can operate independently or
collaboratively in a distributed computing configuration. The cloud computing platform 125
includes database storage capacity for storing computer-executable instructions for hosting
applications and for archiving received data for long term storage. For example, computing
device 115 in the field can upload all thermal image and other data received to the cloud
computing platform 125 for secure storage and for further processing and analysis. More
specifically, the computing device 115 can format and send data records in, for example,
MySQL or another database format. An example database record can include, among other
fields, a tagged asset location, a series of thermal images taken over time at a particular asset
location (or a link thereto), the data value for the camera’s ID (cameralD) of the camera that
captured the thermal images, the time/date at which each image was captured, ambient
conditions at the time/date (e.g., temperature), sensor fusion data (e.g., electromagnetic sensor
data). The cloud database can store include a detailed geographical mapping of the location
and layout of the infrastructure assets (e.g., from LiDAR data) and applications executed on
the cloud platform can perform detailed analyses that combine the sensor data and predictive
analyses with the detailed mapping of the assets to make risk assessments covering entire
structures or groups of structures. Reports of such assessments and results of other processing
performed at the cloud computing platform 125 are accessible to a control station 130
communicatively coupled to the cloud computing platform. In alternative embodiments, it is
possible for the smart mount 112 to format and transmit the received data to the cloud

computing platform directly before analysis of the data is performed on site.

[0039] FIG. 2 depicts an exemplary implementation of a cloud-based learning system for CUI
prediction and detection more generally shown in FIG. 1. In FIG. 2, this system 150 includes
four sets of cameras, mounts and computing devices (“investigative kits’) positioned at various
positions in proximity to structure 105 for capturing thermal image and other data. Although
four investigative kits are used in this embodiment, it is again noted that fewer or a greater
number of kits can be employed depending, for example, on the size of the structure or

installation investigated. More specifically, the system 150 is configured using a first infrared
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camera 152 associated with a first mount 154 and first computing device 156 positioned at a
first location; a second infrared camera 162 associated with a second mount 164 and second
computing device 166 positioned at a second location; a third infrared camera 172 associated
with a third mount 174 and third computing device 176 positioned at a third location; and a
fourth infrared camera 182 associated with a fourth mount 184 and fourth computing device
186 positioned at a forth location proximal to the asset 105. Two-way wireless
communications can be supported by all the mounts and computing devices of the system, each
of which can thus communicate with each other. For example, thermal image data received by
the computing devices 156, 166, 176, 186, can be transmitted to the cloud computing platform
125 via network switch 120, and to control station 130. Alternatively, the smart mounts 154,
164, 174, 184 can communicate directly with the control station when wireless connectivity is
available. By providing redundant connectivity, each smart mount or computing device in the
system can act as a communication node in a multi-node system, so that if one or more of the
mounts or computing devices loses connectivity with the control station, data can be forwarded
to other nodes that maintain connectivity. The control station 130 is configured to provide
configuration and control commands to the smart mounts 154, 164, 174, 184 or computing

devices 156, 166, 176, 186.

[0040] FIG. 3 is a block diagram showing functional elements of a smart mount according to
an exemplary embodiment of the present invention. The smart mount 112 includes a camera
coupling or mount 202 by means of which the infrared camera 110 can be securely mechanical
affixed and electrically connected to the mount 112. As noted above, the camera coupling 202
can include expandable and rotatable elements, such as telescoping shafts, and various joints
with degrees of freedom for enabling the camera to be translated and tilted to a desired position
and orientation. In some implementations, the smart mount can be supported on a

counterweighted movable to provide a steering sub-system on the ground.

[0041] To enable inter-communication with other elements of the system, the smart mount
112 also includes a communication module 204 which can include an antenna, a transceiver,
and electronic components configured to support two-way wireless communication with other
smart mounts, computing devices, and the control station 13(0. The smart mount also includes
a memory module 206 which can be implemented using SSD card memory. If the infrared
cameras are mounted in locations where signal obstructions result in suboptimal data rates that

are inferior to the actual thermal image streaming rate, the onboard memory module can be
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used to store the thermal image stream to provide latency while the wireless attempts to support

the data download.

[0042] The smart mount 112 further includes an ambient sensor module 210 that can include
temperature, humidity and pressure sensors. An additional structural probe sensor module 212
includes detectors that can be used to probe the structure for CUI using modes distinct from
thermal imaging, including, without limitation, magnetic (magnetometry) and ultrasonic
detectors. Together with the thermal images from the infrared camera, the structural probe
sensor module provides the sensor fusion that enhances CUI prediction and risk assessment.
An electrical power module 220 includes a battery module 222 of sufficient size to provide
electrical power for the smart mount components and to charge the infrared camera battery via
a power supply circuit 224 for a suitable data gathering period before requiring recharging. A
suitable duration for data gathering can be for example, about 45 minutes to about 90 minutes.

Larger or smaller batteries can be employed for longer or shorter data gathering periods.

[0043] In operation, the field computing devices receive (ingest) thermal image, probe sensor
and ambient condition data from the infrared cameras and smart mounts. The initial data ingest
can be affected by conditions at the site, including, shadows, reflections and spurious signals.
Before executing machine learning algorithms, it can be useful to filter incoming data for noise
using noise filtering mechanism integrated within the software as a preprocessing step to filter
out noise and amplify the signal-to-noise ratio. In some embodiments, ingested data can be
filtered by dimensionality reduction and autoencoding techniques. In other embodiments,
linear or non-linear smoothing filters can be applied instead of or in addition to dimensionality
reduction techniques. The noise filtering step helps discriminate CUI signals from shadows,
reflections as well as normal near infrared thermal signals. While such noise and other artifacts
in the data can be eventually recognized and compensated for in the machine learning process
using multi-context embedding in the neural network stage, it can be more time and resource

efficient to preprocess the data by filtering in this manner.

[0044] Another refinement which can be used to enhance robustness to noise, is the
introduction of synthetic training data to supplement data taken from the field. Mathematical
models including finite element analyses are based on the thermal dynamics of insulated metal
structures and on thermal images taken in the field as a basis for calibration and comparison.
The synthetic data can be to simulate and augment the thermal image training dataset. The

synthetic data can also make the learning system more robust to different environmental
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conditions such as weather conditions, temperature, exposure to sun light, and material
temperature behind the insulation, for example. The synthetic data can be generated locally by
the computing devices or the cloud computing platform. In either case the synthetic data can

incorporated in the training and application database at the cloud computing platform.

[0045] FIG. 4 is a block flow diagram illustrating a method for generating synthetic thermal
image data structures according to the present invention for supplementing a training set for a
predictive machine learning model. The inputs for generating synthetic thermal images include
environmental variables 302 (e.g., temperature, humidity, air pressure, time of day), asset
parameters 304 (e.g., dimensions, position, material, insulation), and a set of thermal images
306 of various assets captured in the field (“field thermographs™). The environmental variables
302 and asset parameters 304 are input to a thermal dynamics model 310 that uses known
thermodynamic properties of materials based on environmental conditions to generate a
synthetic temperature map 315 of insulated assets over time, based on a random probability
distribution of temperature and humidity conditions. The synthetic temperature map 315 and
the field thermographs are inputs to an imaging model 320. While images can be created from
the temperature map alone, the field thermographs can be used as a basis of calibration and
comparison. As an example, if a temperature maps of assets exhibits a tendency toward greater
temperature contrasts than shown in field thermographs of similar asset under similar
conditions, the imaging model can make weighting adjustments to bring the temperature map
closer to the field thermographs. After such adjustments are made, the imaging model
generates a set of synthetic thermal images 325 that can be used to supplement the field

thermographs during training.

[0046] FIG. 5A is a flow chart of a method for acquiring data for CUI predication performed
using an investigative kit according to an embodiment of the present invention. The method
begins in step 400. In step 402, smart mounts and cameras (infrared, standard) are installed at
suitable locations to monitor assets at a facility. In step 404, any tags posted on the assets are
scanned. In step 406, thermal image, sensor fusion, and ambient condition data are captured
and stored in memory. In step 408, this information is transmitted to a local computing device

for real time analysis. The method ends in step 410.

[0047] FIG. 5B is a flow chart of a method of real time CUI prediction according to an
embodiment of the present invention. In step 500 the method begins. In step 502, the

computing device receives the captured data from the smart mounts. In step 504, the received
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data is filtered for noise. In step 506, CUI prediction and detection is conducted using machine
learning algorithms based on the filtered data and parameter weights from prior training. The
machine learning algorithms can include deep learning techniques such as convolutional and
recurrent neural networks. In an optional step 508, synthetic data is generated to supplement
the data received from the smart mounts. In step 510, prediction output is generated on a
graphical user interface to be viewed by field technical personnel. In a following step 512, the
received data and the prediction output is transmitted to the cloud computing platform. In step

514, the method ends.

SENSOR FUSION USING THz AND INFRARED DETECTORS

[0048] FIG. 7 is a block diagram of a system for detection of CUI or CUF according to another
embodiment of the present invention. A facility structure to be monitored 105 comprises an
inner asset 710, which is typically a section of metallic equipment such as piping or a tank, and
a covering of fireproof insulation 715, that surrounds the asset. The fireproof insulation can be
composed of fiberglass, mineral wool, polystyrene foam, combinations thereof and other
materials that are fire-resistant. A first detection apparatus 720 is positioned remotely (i.e., not
in contact) from the structure 105. In the embodiment depicted, the first detection apparatus
720 includes a Terahertz emitter and detector. A second detection apparatus 725 is also
positioned from remotely from the structure 105. In the embodiment depicted, the second
detection apparatus 725 comprises an infrared camera. The first detection apparatus 720 can
be positioned about 0.8 to about 2.2 meters away from the monitored structure to achieve
optimal results, while the second detection apparatus 725 can be positioned further from the
monitored structure to achieve optimal results, for example, up to about 10 meters. The first
and second detector apparatus 720, 725 can be positioned and secured on a platform, or
alternatively, can be placed on moving devices, such as a robotic drone, to remain in a particular
location for a duration. While the duration persists, both the first and second apparatus 720,
725 can record a series detected THz and infrared signals over time. The signals received by
the detector apparatus 720, 725 can be resolved and formatted into 2-dimensional images by

the apparatus.

[0049] The first and second apparatus 720, 725 are communicatively coupled, via a wired

connection or wirelessly, to a computing system 730 which executes a machine learning
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algorithm. THz and infrared image data acquired by the first and second detector apparatus is
communicated offline and/or in real time to the computing system 730. The computing system
730 also receives data concerning ambient conditions at the facility such as temperature,
humidity and windspeed from ambient condition sensors 735. The ambient condition sensors
735 are for measuring these conditions and, as known in the art, can be co-located with the

detector apparatus or located elsewhere at or near the facility.

[0050] As described further below, the machine learning algorithm executed on computing
system 730 is a learning system that improves in ability to determine whether a monitored
structure has corrosion under fireproof insulation over time. In one implementation, an
iterative supervised learning procedure is used in which the machine learning algorithm makes
use of both THz and infrared images (along with ambient sensor data) as well as prior
inspection results to determine learning model parameters. The learning model can then be
used to predict whether newly monitored structures have CUF based on the images acquired

by the first and second detection apparatus.

[0051] The first detection apparatus 720 can include a Terahertz (THz) source (emitter) and
detector. Terahertz radiation, which is typically defined as the part of the electromagnetic
spectrum ranging between about 0.3 and 20 THz, falls between the microwave and infrared
portions of the electromagnetic spectrum and typically can penetrate materials such as textiles
and plastics. Terahertz radiation is also non-ionizing and is relatively safe to employ for
frequent inspections. Using the combination of an infrared sensor with a THz emitter and
detector is particularly suitable for CUF inspection because of the way in which the two
detection modes complement each other. FIG. 8A and 8B are perspective views of an
exemplary THz emitter 722 and THz detector 724, respectively, available from EKSPLA of
Vilnius

Lithuania. There are different types of THz emitters that operate to deliver broadband THz
radiation based on different principles including the photo-Dember effect, current transients,
optical rectification and quantum cascade lasers, among others. The quantum cascade laser
technique uses a laser as an energy source to pump phonons to an energy at which THz is

emitted. THz detectors typically detector current transients using a specialized antenna.

[0052] THz detection technology has the advantage that it can “see through™ fireproof coating
which is typically transparent to THz radiation to the metallic surface of the underlying asset.

The metallic surface partially absorbs and reflects the THz radiation. The reflections are picked
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up the THz detector and converted into 2-dimensional data. To best capture the reflected THz
radiation, the THz detection apparatus can be arranged so that both the THz detector and THz
emitted are located on the same side of the monitored structure. The images are fed into the
machine learning algorithm and an image analysis can be carried out to on the data determine
the presence of corrosion. By contrast, the infrared detector apparatus 725 cannot see through
the insulation coating but can detect thermal gradients on the surface of the structure.
Variations in the thermal gradient observed at the surface are often caused by anomalies either
on the metallic surface under inspection or within the insulation layer as thermal energy is

conveyed to the surface of the structure.

[0053] Due to their differing characteristics, the THz detection mode of the first detector
apparatus 720 and the infrared detection mode of the second detector apparatus 725 are
complementary. FEach apparatus, having a different detection technology, is designed to
overcome challenges associated with the other of the sensor fusion pair. Terahertz detection
via the first detection apparatus 720, typically has a lower resolution compared to infrared or
visible light detection. Infrared thermography via the second detection apparatus 725 typically
detects the presence of moisture and not degradation or corrosion of the metallic asset. Using
sensor fusion with a machine learning system, the weakness of each can be compensated for
using the other detection modality. For example, if it is found that thermal images depicting
certain patterns of water intrusion often results in false positives with respect to corrosion
damage (i.e., the water intrusion often is not associated with actual metal corrosion), the
Terahertz images of the same feature can provide additional indications to the machine learning
algorithms as to whether corrosion has occurred. In other words, when both THz and infrared
images indicate the presence of corrosion damage, the likelihood is much greater that the
indication is accurate than if only one of the two detection modalities is indicative of corrosion.
In this manner, sensor fusion aids in reducing the rate of false positives and improving the rate

of true positives.

[0054] To take readings from numerous assets and locations in a facility, the first and second
apparatus can be moved manually or automatically. In some implementations, the first and
second apparatus can be coupled to drones or crawling devices that can move along curved
surfaces without falling. As the first and second apparatus are moved to different positions,
THz readings at several or each location in a given space (i.e., a Cartesian space, X, y and z)
and infrared images at corresponding locations can be obtained. The sensor data initially

produces two sets of vector data (x1, y1, z1, {THZ)1) . . . .(Xn, Yn, Zn, i(THZ),) for the THz image
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data and (x1,y1, Z1, i(inf)1 ) . . .( Xn, ¥n, Zn, i(inf),) for the infrared image data. The two sets of
data can be combined in a single vector, i.e., (Xu, Yn, Zn, i(THZ)y, i(inf),), when the data is
captured from substantially the same location (i.e., there is no offset, or there is a finite offset,
between the areas sensed by the THz and infrared sensors, respectively). As described further
below, for each THz/infrared pair for a given location, the computing system makes a
prediction as to whether the asset location has been subject to corrosion. The data mappings
are thereby supplemented with a prediction obtained by feeding a prediction engine with a
model such as, for example, Xn,yn,Zn,i THZp,i(inf)n, Prediction,. As predictions are determined
over a large three-dimensional space at a facility, in some instances “hot” areas in which several
data points in the same vicinity are associated with a positive prediction of corrosion can be
identified. Likewise, contiguous areas in which comparatively less or no corrosion has been
predicted can also be identified. Remedial measures can then be applied to such hot areas and
not to the other areas in which comparatively less corrosion has been determined. In this
manner, insulation removal and other remedial measures can be performed on specific sections
in which there is a high probability of corrosion damage, eliminating the need to remove
sections of insulation randomly or according to a statistical pattern to determine the presence

of corrosion.

[0055] FIG. 9 is ablock diagram of an embodiment of the machine learning scheme according
to the present invention. As shown, THz image data 810 from the first detection apparatus,
thermal image data 815 from the second detection apparatus, and ambient condition data 820
are supplied to a machine learning model 830. The model includes a set of numerical weights
that are used as coefficients for the set of parameters that are used by the machine learning
algorithm 840 to predict corrosion. In some implementations, parameters can include all of the
pixels of the 2-dimensional images obtained from the THz and infrared detectors. The weights
are applied to the pixel values. The parameters of the model also can include numerous other
features, including the outside temperature, humidity, etc. received from the ambient sensors.
The ambient conditions can be monitored using standard measurement techniques. The
ambient condition information is fed to the model to account for features and behaviors that

may arise and are consistent with the surroundings at which the structure is located.

[0056] The model 830 is also informed by training data 850 and test data 860. It is noted that
the inputs to the model are asynchronous. The training data 850 is initially used to set the
parameters of the model 830. Test data 860 is used then used in the model to determine the

soundness and applicability of the model. This is done because in the process of training the
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model 830 using training data 850, the parameters of the model may too closely conform to the
training data. This phenomenon is known as overfitting. The test data 860 is used to determine
whether in fact the initial model 830 has overfit the training data and can help retrain the model
to reduce any overfitting. After both the training data 850 and test data 860 have been used to
train the model 830, current data received from onsite detection apparatus and ambient sensors
can be entered into the model 830. From this information, the model outputs a prediction 870
as to whether the input data indicates the presence or absence of corrosion under fireproof
insulation. As with all applications involving Artificial Intelligence, suitable accuracy in the
prediction can generally be achieved when sufficient data is used to teach/train the algorithms
on the expected outcomes from particular features. In the case of deep learning algorithms, in
which the algorithms are capable of extracting new features and thereby “teaching” themselves,
sufficient training data is still an important factor. Therefore, each inspection performed is not
only useful in and of itself, but also because it provides additional data which can be used to

refine the machine learning model.

[0057] As noted above, the predictions output from the model can cover localized or wide
areas of a facility. For instance, there may be a concern with a particular asset and monitoring
of THz and infrared radiation can be limited to the particular asset of concern. In other
instances, a broad facility monitoring program is implemented, in which the purpose is to
determine which areas and assets of the facility have the greatest likelihood of having corrosion
damage. In the latter case, the model prediction can be used as a guide for remediation, in that
areas or assets having a determined likelihood of corrosion damage which is greater than those
areas or assets with comparatively less likelihood of corrosion damage can be distinguished
from one another. Remediation efforts, including insulation removal, asset replacement, onsite
repair, or other measures such as applying anti-corrosive chemicals, can be targeted to high-
likelihood of corrosion assets and locations, saving a great deal of cost, man-power and time.
Since the costs of damage can be very extensive, a “high” likelihood does not necessarily mean
more likely than not, but can be set to a lower threshold such as a 25 percent likelihood of have
corrosion damage. This measure aids in avoiding false negative readings and, therefore, the

risk of preventing damage from going undetected.

[0058] The machine learning algorithm 840 can comprise one or more supervised deep
learning algorithms that have been investigated and deemed suitable or corrosion detection
including, for example, Convolutional Neural Networks (CNNs), Recurrent Neural Networks

(RNNs), Ensemble Learning Methods, boosting methods such as Adaboost, Decision Trees
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and Support Vector Machines (SVMs). A combination of Convolutional and Recurrent Neural
Networks is particularly suitable to CUF detection in that it combines the image-classification
capabilities of Convolutional Neural Networks with the ability of Recurrent Neural Networks
to classify patterns that occur over time. Using this combination, the focus is not only on
detection of hotspots (corrosion incidents and susceptible locations to corrosion), but also on

capturing the creation and development of these hotspots over time.

[0059] A schematic illustration of an exemplary convolutional neural network (CNN) 900 that
can be used in the context of the present invention is shown in FIG. 10. In the example shown,
CNN 900 receives as input a localized section of an image 902. As shown, CNN 900 includes
three hierarchical levels 912, 914, 916. It is noted that fewer or a larger number of hierarchical
levels can be used. The first hierarchical level 912 includes three parallel processing paths,
each processing path in turn including three distinct processing stages. This complex scheme
can be clarified by explanation of the stages of a single processing path at a single level.
Referring now to the leftmost path at the first hierarchical level, a first convolutional stage 922
applies a first convolution function (filter) to the input image data. It is noted that the other
processing paths operate on another localized section of the input image. Each hierarchical
level can apply a different convolution function to the data it receives to better identify features
in the image. The filters can, for example, blur contrasts between neighboring image values
by averaging, or, conversely, some filters can enhance differences to clarify edges. Each filter
composes a local patch of lower-level features into higher-level representation. In this manner,

edges can be discerned from pixels, shapes from can be discerned from edges, and so on.

[0060] The next stage of hierarchical layer 912 applies a non-linear function 924 to the data
of the convolutional stage, such as a ReLU(rectified linear unit) or tanh function. This stage
can be represented as yi,j = f (ai,j), in which f represents the non-linear function and ai,j
represents is a pixel of the ith row and jth column from the output matrix of the convolution
stage. The output of the non-linear function stage 924 is thus a modified version of the matrix
output from convolutional stage 922. The final stage of hierarchical level 912 is a pooling
stage 926 that can be used to simplify the data. For example, the pooling stage can apply a
maximum function to output only the maximum value of the non-linear function of a number
of rows and columns of pixels of the output matrix from the non-linear stage. After simplifying
the data, the outputs of the pooling stages of all three processing paths can be summed and then
input to the convolution stage 932 of one of the processing paths of the next hierarchical layer

914. In hierarchical layer 914, similar or different convolution matrices can be used to process
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the data received from the first hierarchical layer 912, and the same or different non-linear
functions and simplification functions can be used in the following non-linear stage 934 and
pooling stage 936. Output from the parallel processing paths of the second hierarchical layer
914 can be similarly pooled and then provided as an output matrix to the third hierarchical layer
916, in which further processing takes place. The final output 950 can be interpreted as a class
label probability, or put another way, the most likely classification for the image.
Classifications can include different types of hot spots indicative of temperature differentials

and possible CUI.

[0061] The CNN learns by validation and backward propagation. This is equivalent to setting
values of the output 950 and then running the algorithm backwards from the higher hierarchical
layers to the lower layers and modifying the convolution matrices to yield better results using
an optimization function. After training, the CNN should be able to accurately classify an input
thermograph into one of the preset categories such as a hot spot, non-hot spot, etc. While the
CNN is an efficient and useful methodology for stratifying input images into abstraction levels
according to the thermograph image topology, it is not best suited for detecting patterns over
time. Embodiments of the present invention therefore employ a recurrent neural network

(RNN) in association with the CNN to improve time-based pattern recognition.

[0062] FIG. 11 is a schematic illustration of an exemplary recurrent neural network (RNN)
1000 that can be used in the context of the present invention. The RNN 1000 includes a
number of layers of which three layers 1002, 1004, 1006 are explicitly shown. The RNN is
best explained with reference to the second layer 1004. In this layer, xt is the input to the
layer at time step t. The input xt 1012 can be a vector or matrix of values. St 514 represents
the hidden state at time step t. The hidden state can be considered as the “memory” of the
RNN. The hidden state is calculated based on the previous hidden state and the input at the
current step: st=f(Uxt + Wst-1). The function f is a typically a nonlinear function such as tanh
or ReLU. The first hidden state is typically initialized to all zeroes. St is modified by
parameter vector V to yield Ot, which is the output at step t. Ot can be interpreted as a matrix
or vector of probabilities for the next state s+1. The RNN 1000 shares the same parameters
(U, V, W above) across all steps. This reflects the fact that the same task at each step is
performed at each step but with different inputs. This reduces the total number of parameters
to learn, and thus also reduces processing time. While in the example shown, each layer has
outputs at each time step, this is not necessary as in some implementation only the final

output is of interest.
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[0063] Furthermore, boosting algorithms, such as Adaboost, can be used in conjunction with
neural network algorithms such as CNNs and RNNs to achieve higher accuracies at the expense
of more computational time. Since boosting is mainly for combining and improving a big
number of weak learners, the use of CNNs and RNNS would conventionally weigh against
boosting, as both CNNs and RNNs are “strong” learners and require a significant time to train.
However, with regard to corrosion detection, mistakes are extremely costly and thus increasing
the accuracy at the expense of greater computational time is considered to be an acceptable
trade-off. Additionally, use of boosting algorithms is helpful during the design phase neural

network algorithms and for selecting optical architectures for both CNNs and RNNs.

[0064] Aspects of the present invention provide numerous additional advantages over the
related art. Since physical removal of the insulation is not required, and monitoring occurs at
a distance from the structure, extensive scaffolding is not required for facility corrosion
monitoring. Because monitoring occurs remotely and there is no requirement for visual
inspection, the techniques disclosed can provide an inspection platform that can be operated at
any time. Furthermore, inspection is not limited as is the conventional approach to localized
regions of possible interest based on prior experience and assumptions. The level of training
and expertise required to operate the THz and infrared detector apparatus of the present
invention and related user platforms is not particularly high, especially when compared to other

attempted remote detection techniques such as X-ray and neutron back-scattering.

[0065] To increase convenience of use, the present system and methods are implemented on a
user-friendly platform with user interfaces that require minimum operator training. In addition,
results generated from the machine learning algorithm can be fed directly to an on-site/off-site

control room where the health of all fireproofed assets can be monitored continuously.

[0066] It is to be understood that any structural and functional details disclosed herein are not
to be interpreted as limiting the systems and methods, but rather are provided as a representative
embodiment and/or arrangement for teaching one skilled in the art one or more ways to

implement the methods.

[0067] It is to be further understood that like numerals in the drawings represent like elements
through the several figures, and that not all components and/or steps described and illustrated
with reference to the figures are required for all embodiments or arrangements

[0068] The terminology used herein is for describing particular embodiments only and is not

ot oon

intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the"
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are intended to include the plural forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms "comprises” and/or "comprising", when used in this
specification, specify the presence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or addition of one or more other features,

integers, steps, operations, elements, components, and/or groups thereof.

[0069] Terms of orientation are used herein merely for purposes of convention and referencing
and are not to be construed as limiting. However, it is recognized these terms could be used

with reference to a viewer. Accordingly, no limitations are implied or to be inferred.

[0070] Also, the phraseology and terminology used herein is for the purpose of description and

"on

should not be regarded as limiting. The use of "including," "comprising," or "having,"

LU L

"containing," "involving," and variations thereof herein, is meant to encompass the items listed

thereafter and equivalents thereof as well as additional items.

[0071] While the invention has been described with reference to exemplary embodiments, it
will be understood by those skilled in the art that various changes can be made and equivalents
can be substituted for elements thereof without departing from the scope of the invention. In
addition, many modifications will be appreciated by those skilled in the art to adapt a particular
instrument, situation or material to the teachings of the invention without departing from the
essential scope thereof. Therefore, it is intended that the invention not be limited to the
particular embodiment disclosed as the best mode contemplated for carrying out this invention,
but that the invention will include all embodiments falling within the scope of the appended

claims.



WO 2020/123505 PCT/US2019/065477

WHAT IS CLAIMED IS:

1. A system for predicting and detecting of corrosion under fireproof insulation (CUF) in an
infrastructure asset comprising:

a first detection apparatus adapted to capture thermal images of the asset;

a second detection apparatus adapted to receive THz radiation from the asset;

at least one ambient condition sensor for detecting environmental conditions at a
location of the asset;

a communication device coupled to the first and second detection apparatus and at
least one ambient condition sensor to receive data therefrom and adapted to communicate the
received data; and

a computing device communicatively coupled to the communication device and
configured with instructions for executing a machine learning algorithm taking as inputs the
thermal image, THz and ambient condition data received from the communication device,
and to output a CUF prediction regarding the asset;

wherein the prediction distinguishes locations on the asset that have a high likelihood

of CUF from those having a low likelihood of CUF.

2. The system of claim 1, wherein the first detection apparatus includes an infrared camera.

3. The system of claim 1, wherein the second detection apparatus includes a THz emitter and

a THz detector.

4. The system of claim 1, wherein the at least one ambient sensor is operative to detect at

least one of temperature, humidity and air pressure.

5. The system of claim 1, wherein the machine learning algorithm employed by the

computing system includes a deep convolutional neural network.

6. The system of claim 1, wherein the machine learning algorithm employed by the at least

one computing system includes a deep recurrent neural network.
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7. The system of claim 6, wherein the machine learning algorithm employed by the

computing system further includes a deep convolutional neural network.

8. The system of claim 7, wherein the computing system is configured with instructions for

executing a boosting algorithm to increase prediction accuracy.

9. The system of claim 8, wherein the boosting algorithm is Adaboost.

10. The system of claim 1, wherein the first detection apparatus is positioned in a range of
about 5 to about 15 meters away from the asset while detecting infrared radiation coming
from the asset, and the second detection apparatus is positioned in a range of 0.1 to about 2.2

meters away from the asset while detection THz radiation coming from the asset.

11. A method of predicting and detecting of corrosion under fireproof insulation (CUF) in an
infrastructure asset:

capturing thermal image data emitted or reflected from the asset over time;

capturing THz data of the asset reflected from the asset over time;

measuring ambient conditions to obtain ambient condition data over time;

communicating the captured thermal image, THz and ambient condition data to a
computing system configured with a supervised machine learning algorithm;

executing the machine learning algorithm using the thermal image, THz and ambient
condition data, wherein execution of the machine learning algorithm yields a prediction as to
whether the asset contains corrosion under the insulation; and

performing remedial measures on the asset if it is predicted that the asset contains

corrosion under the insulation.

12. The method of claim 11, wherein the step of capturing thermal image data is performed
by positioning an infrared detector between about 5 meters to about 15 meters away from the

asset.

13. The method of claim 11, wherein the step of capturing THz data is performed by
positioning a THz emitter and THz detector between about 0.1 meters to about 2.2 meters

away from the asset.
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14. The method of claim 11, wherein the ambient condition data includes at least one of least

one of temperature, humidity and air pressure.

15. The method of claim 11, wherein the step of executing the machine learning algorithm
includes employing a convolutional deep neural network to classify thermal image and THz

data.

16. The method of claim 11, wherein the step of executing the machine learning algorithm
further includes employing a recurrent deep neural network to analyze the thermal image and

THz data over time in view of the ambient condition data.

17. The method of claim 11, wherein the step of executing the machine learning algorithm
includes employing both a convolutional deep neural network to classify thermal image and
THz data and a recurrent deep neural network to analyze the thermal image and THz data

over time in view of the ambient condition data.

18. The method of claim 17, further comprising executing a boosting algorithm to increase

accuracy of the machine learning algorithm.

19. The method of claim 18, wherein the boosting algorithm is Adaboost.
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