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( 57 ) ABSTRACT 

A protocol cost effectively separates any blockchain ( such as 
the Bitcoin blockchain ) from any cryptocurrency ( such as 
the Bitcoin cryptocurrency ) . The protocol provides client 
defined Chains of Entries , client - side validation of Entries , 
a distributed consensus algorithm for recording the Entries , 
and a blockchain anchoring approach for security . 
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PROTOCOLS IN BLOCKCHAIN 
ENVIRONMENTS 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0014 ] FIG . 44 illustrates virtual assignments based on the 
blockchain data layer , according to exemplary embodi 
ments ; 
[ 0015 ] FIGS . 45-51 illustrate an architectural scheme , 
according to exemplary embodiments ; 
[ 0016 ] FIG . 52 illustrates compliance scheme , according 
to exemplary embodiments ; 
[ 0017 ] FIGS . 53-59 illustrate a decisional architecture and 
scheme , according to exemplary embodiments ; 
[ 0018 ] FIG . 60 is a flowchart illustrating a method or 
algorithm for executing of digital contracts , according to 
exemplary embodiments ; and 
[ 0019 ] FIGS . 61-63 depict still more operating environ 
ments for additional aspects of the exemplary embodiments . 

[ 0001 ] This patent application is a continuation filing of 
U.S. application Ser . No. 16 / 351,597 filed Mar. 13 , 2019 , 
since issued as U.S. Patent X , which claimed domestic 
benefit of U.S. Provisional Application No. 62 / 714,909 filed 
Aug. 6 , 2018 , with both patent applications incorporated 
herein by reference in their entireties . This patent application 
relates to U.S. application Ser . No. 15 / 983,572 filed May 18 , 
2018 and incorporated herein by reference in its entirety . 
This patent application also relates to U.S. application Ser . 
No. 15 / 983,595 filed May 18 , 2018 and incorporated herein 
by reference in its entirety . This patent application also 
relates to U.S. application Ser . No. 15 / 983,612 filed May 18 , 
2018 and incorporated herein by reference in its entirety . 
This patent application also relates to U.S. application Ser . 
No. 15 / 983,632 filed May 18 , 2018 and incorporated herein 
by reference in its entirety . This patent application also 
relates to U.S. application Ser . No. 15 / 983,655 filed May 18 , 
2018 and incorporated herein by reference in its entirety . 

DETAILED DESCRIPTION 

now 

BACKGROUND 

[ 0002 ] In today's global economy , trust is in rare supply . 
This lack of trust requires the devotion of a tremendous 
amount of resources to audit and to verify recordsreduc 
ing global efficiency , return on investment , and prosperity . 
Moreover , incidents such as the 2010 United States foreclo 
sure crisis demonstrate that in addition to being inefficient , 
the current processes are also terribly inaccurate and prone 
to failure . 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

[ 0003 ] The features , aspects , and advantages of the exem 
plary embodiments are understood when the following 
Detailed Description is read with reference to the accom 
panying drawings , wherein : 
[ 0004 ] FIGS . 1-8 illustrate a Factom protocol and system , 
according to exemplary embodiments ; 
[ 0005 ) FIGS . 9-21 are simplified illustrations of a digital 
contract in a blockchain environment , according to exem 
plary embodiments ; 
[ 0006 ] FIGS . 22-24 are more detailed illustrations of an 
operating environment , according to exemplary embodi 
ments ; 
[ 0007 ] FIGS . 25-29 illustrate a blockchain data layer , 
according to exemplary embodiments ; 
[ 0008 ] FIGS . 30-32 further illustrate the digital contract , 
according to exemplary embodiments ; 
[ 0009 ] FIGS . 33-35 illustrate an access mechanism , 
according to exemplary embodiments ; 
[ 0010 ] FIG . 36 illustrates a public entity , according to 
exemplary embodiments ; 
[ 0011 ] FIGS . 37-40 illustrate contractual execution , 
according to exemplary embodiments ; 
[ 0012 ] FIGS . 41-42 illustrate virtual execution , according 
to exemplary embodiments ; 
[ 0013 ] FIG . 43 illustrates cryptographic affinities , accord 
ing to exemplary embodiments ; 

[ 0020 ] The exemplary embodiments will be 
described more fully hereinafter with reference to the 
accompanying drawings . The exemplary embodiments may , 
however , be embodied in many different forms and should 
not be construed as limited to the embodiments set forth 
herein . These embodiments are provided so that this disclo 
sure will be thorough and complete and will fully convey the 
exemplary embodiments to those of ordinary skill in the art . 
Moreover , all statements herein reciting embodiments , as 
well as specific examples thereof , are intended to encompass 
both structural and functional equivalents thereof . Addition 
ally , it is intended that such equivalents include both cur 
rently known equivalents as well as equivalents developed 
in the future ( i.e. , any elements developed that perform the 
same function , regardless of structure ) . 
[ 0021 ] Thus , for example , it will be appreciated by those 
of ordinary skill in the art that the diagrams , schematics , 
illustrations , and the like represent conceptual views or 
processes illustrating the exemplary embodiments . The 
functions of the various elements shown in the figures may 
be provided through the use of dedicated hardware as well 
as hardware capable of executing associated software . Those 
of ordinary skill in the art further understand that the 
exemplary hardware , software , processes , methods , and / or 
operating systems described herein are for illustrative pur 
poses and , thus , are not intended to be limited to any 
particular named manufacturer . 
[ 0022 ] As used herein , the singular forms “ a , " " an , ” and 
“ the ” are intended to include the plural forms as well , unless 
expressly stated otherwise . It will be further understood that 
the terms “ includes , " " comprises , ” “ including , " and / or 
" comprising , " when used in this specification , specify the 
presence of stated features , integers , steps , operations , ele 
ments , and / or components , but do not preclude the presence 
or addition of one or more other features , integers , steps , 
operations , elements , components , and / or groups thereof . It 
will be understood that when an element is referred to as 
being " connected ” or “ coupled ” to another element , it can be 
directly connected or coupled to the other element or inter 
vening elements may be present . Furthermore , " connected ” 
or “ coupled ” as used herein may include wirelessly con 
nected or coupled . As used herein , the term “ and / or " 
includes any and all combinations of one or more of the 
associated listed items . 
[ 0023 ] It will also be understood that , although the terms 
first , second , etc. may be used herein to describe various 
elements , these elements should not be limited by these 
terms . These terms are only used to distinguish one element 
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a 

a 

a 

from another . For example , a first device could be termed a 
second device , and , similarly , a second device could be 
termed a first device without departing from the teachings of 
the disclosure . 
[ 0024 ] FIG . 1 illustrates a distributed , autonomous Factom 
protocol , according to exemplary embodiments . The Factom 
protocol cost effectively separates any blockchain ( such as 
the Bitcoin blockchain ) from any cryptocurrency ( such as 
the Bitcoin cryptocurrency ) . The Factom protocol provides 
client - defined Chains of Entries , client - side validation of 
Entries , a distributed consensus algorithm for recording the 
Entries , and a blockchain anchoring approach for security . 
[ 0025 ] When Satoshi Nakamoto launched the Bitcoin 
blockchain he revolutionized the way transactions were 
recorded . There had never before existed a permanent , 
decentralized , and trustless ledger of records . Developers 
have rushed to create applications built on top of this ledger . 
Unfortunately , they have been running into a few core 
constraints intrinsic to the original design tradeoffs of Bit 
coin . 

[ 0026 ] 1 ) Speed — because of the design of the decen 
tralized , proof - of - work consensus method used by Bit 
coin , difficulty requirements are adjusted to maintain 
roughly 10 minute confirmation times . For applications 
that wish greater security , multiple confirmations may 
be required . A common requirement is to wait for 6 
confirmations , which can lead to wait times over an 
hour . 

[ 0027 ] 2 ) Cost — the default transaction cost is around 
0.01 mBTC ( roughly $ 0.003 USD in November 2014 , 
and as much as $ 80 USD per transaction at times in 
2017 ) . The exchange price of BTC has been volatile 
throughout its history . If the price of BTC rises , then the 
cost of transactions can go up . This can prove to be a 
serious cost barrier to applications that need to manage 
very large numbers of transactions . Additionally , many 
factors including constraints on block size and reward 
halving could act to increase transaction fees . 

[ 0028 ] 3 ) Bloat with the Bitcoin blockchain size limit 
of 1 MB per block , transaction throughput is capped at 
7 transactions per second . Any application that wants to 
write and store information using the blockchain will 
add to the traffic . This problem has become politically 
charged as various parties seek to increase the block 
size limit and are met with resistance from those 
concerned about decentralization . 

[ 0029 ] Factom is a protocol designed to address these 
three core constraints . Factom creates a protocol for Appli 
cations that provide functions and features beyond currency 
transactions . Factom constructs a standard , effective , and 
secure foundation for these Applications to run faster , 
cheaper , and without bloating Bitcoin . 
[ 0030 ] Once the system is set up , including issuance of 
Factoids ( i.e. , the cryptocurrency of Factom ) and user 
accounts , token value is transferred among users , Factom , 
and Bitcoin with the following primary interactions : 
[ 0031 ] 1. Application Owner purchases Entry Credits with 
Factoid 
[ 0032 ] 2. Application records an Entry 
[ 0033 ] 3. Factom Servers create Entry Blocks and Direc 
tory Blocks 
[ 0034 ] 4. Factom secures an anchor ( hash of the Directory 
Block ) onto the blockchain 

[ 0035 ] Details of these and other interactions are in the 
upcoming sections . 
[ 0036 ] The Factom protocol secures entries . Factom 
extends Bitcoin's feature set to record events outside of 
monetary transfers . Factom has a minimal ruleset for adding 
permanent Entries . Factom pushes most data validation 
tasks to the client side . The only validation Factom enforces 
are those required by the protocol to trade Factoids , convert 
Factoids to Entry Credits , and to ensure Entries are properly 
paid for and recorded . 

[ 0037 ] Factom has a few rules regarding token incen 
tives for running the network and for internal consis 
tency , but Factom may or may not check the validity of 
statements recorded in the chains used by its users . 

[ 0038 ] Bitcoin limits transactions to those moving value 
from a set of inputs to a set of outputs . Satisfying the script 
required of the inputs ( generally requiring certain signa 
tures ) is enough for the system to ensure validity . This is a 
validation process that can be automated , so the auditing 
process is easy . If Factom were used , for instance , to record 
a deed transfer of real estate , Factom would be used to 
simply record the process occurred . The rules for real estate 
transfers are very complex . For example , a local jurisdiction 
may have special requirements for property if the buyer is a 
foreigner , farmer , or part time resident . A property might 
also fall into a number of categories based on location , price , 
or architecture . Each category could have its own rules 
reflecting the validation process for smart contracts . In this 
example , a cryptographic signature alone is insufficient to 
fully verify the validity of a transfer of ownership . Factom 
then is used to record the process occurred rather than 
validate transfers . 
[ 0039 ] Bitcoin miners perform two primary tasks . First , 
they resolve double spends . Seeing two conflicting transac 
tions that spend the same funds twice , they resolve which 
one is admissible . The second job miners perform ( along 
with the other full nodes ) is auditing . Since Bitcoin miners 
only include valid transactions , one that is included in the 
blockchain can be assumed to have been audited . A thin 
client does not need to know the full history of Bitcoin to see 
if value they receive has already been spent . 
[ 0040 ] Factom splits the two roles that Bitcoin miners do 
into two tasks : 1 - recording Entries in a final order and 
2 — auditing Entries for validity . 

[ 0041 ] 1 — The Factom servers accept Entries , assemble 
them into blocks , and fix their order . After 10 minutes , 
the Entry ordering is made irreversible by inserting an 
anchor into the Bitcoin blockchain . Factom does this by 
creating a hash of the data collected over the 10 
minutes , then recording the hash into the blockchain . 

[ 0042 ] 2 — The auditing of Entries is a separate process 
which can be done either with or without trust . Auditing 
is critical , since Factom is not able to validate Entries 
before they are included in the Factom dataset . 

[ 0043 ] With trust - based auditing , a thin client could trust 
a competent auditor they choose . After an Entry was entered 
into the system , an auditor would verify the Entry was valid . 
Auditors would submit their own cryptographically signed 
Entry . The signature would show that the Entry passed all 
the checks the auditor deemed was required . The audit 
requirements could in fact be part of a Factom Chain as well . 
In the real estate example from earlier , the auditor would 
double check the transfer conformed to local standards . The 
auditor would publicly attest that the transfer was valid . 
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[ 0044 ] Trustless auditing would be similar to Bitcoin . If a 
system is internally consistent with a mathematical defini 
tion of validity like Bitcoin , it can be audited programmati 
cally . If the rules for transfer were able to be audited by a 
computer , then an Application could download the relevant 
data and run the audit itself . The application would build an 
awareness of the system state as it downloaded , verified , and 
decided which Entries were valid or not . 
[ 0045 ] Mastercoin , Counterparty , and Colored Coins have 
a similar trust model . These are all client - side validated 
protocols , meaning transactions are embedded into the Bit 
coin blockchain . Bitcoin miners do not audit them for 
validity ; therefore , invalid transactions designed to look like 
transactions on these protocols can be inserted into the 
blockchain . Clients that support one of these protocols scan 
through the blockchain and find potential transactions , check 
them for validity , and build an interpretation of where the 
control of these assets lie ( usually a Bitcoin address ) . It is up 
to the clients to do their own auditing under these protocols . 
[ 0046 ] Moving any of these client - side validated protocols 
under Factom would be a matter of defining a transaction per 
the protocol and establishing a Chain to hold the transac 
tions . The transaction protocols wouldn't be much different 
under Factom than under Bitcoin , except where Factom 
allows an easy expression of the information needed instead 
of having to encode it in some special way into a Bitcoin 
transaction . 
[ 0047 ] Bitcoin , land registries , and many other systems 
need to solve a fundamental problem : proving a negative . 
They prove something ” has been transferred to one person , 
and prove that thing hasn't been transferred to someone else . 
While proof of the negative is impossible in an unbounded 
system , it is quite possible in a bounded system . Blockchain 
based cryptocurrencies solve this problem by limiting the 
places where transactions can be found . Bitcoin transactions 
can only be found in the Bitcoin blockchain . If a relevant 
transaction is not found in the blockchain , it is defined from 
the Bitcoin protocol perspective not to exist and thus the 
BTC hasn't been sent twice ( double spent ) . 
[ 0048 ] Certain land ownership recording systems are simi 
lar . Assume a system where land transfer is recorded in a 
governmental registry and where the legal system is set up 
so that unrecorded transfers are assumed invalid ( sans 
litigation ) . If an individual wanted to check if a title is clear 
( i.e. , that no one else claims the land ) the answer would be 
in the governmental registry . The individual using the gov 
ernment records could prove the negative ; the land wasn't 
owned by a third party . Where registration of title is not 
required , the governmental registry could only attest to what 
has been registered . A private transfer might very well exist 
that invalidates the understanding of the registry . 
[ 0049 ] In both of the above cases , the negative can be 
proven within a context . With Mastercoin the case is very 
strong . With a land registry , it is limited to the context of the 
Registry , which may be open to challenge . The real world is 
messy , and Factom is designed to accommodate not just the 
precision of digital assets , but the real world's sometimes 
messy reality . 
[ 0050 ] In Factom , there is a hierarchy of data categoriza 
tion . Factom only records Entries in Chains ; the various 
user - defined Chains have no dependencies that Factom 
enforces at the protocol level . This differs from Bitcoin , 
where every transaction is potentially a double - spend , and 
so it must be validated . By organizing Entries into Chains , 

Factom allows Applications to have smaller search spaces 
than if all Factom data were combined together into one 
ledger . 
[ 0051 ] If Factom were to be used to manage land transfers , 
an Application using a Chain to record such registries could 
safely ignore Entries in the other Chains , such as those used 
to maintain security camera logs . Were a governmental court 
ruling to change a land registration , the relevant Chain 
would be updated to reflect the ruling . The history would not 
be lost , and where such changes are actually invalid from a 
legal or other perspective , the record cannot be altered to 
hide the order of events in Factom . 
[ 0052 ] Factom may or may not validate Entries ; Entries 
are instead validated client - side by users and Applications . 
As long as an Application understands and knows the rules 
a Chain should follow , then the existence of invalid Entries 
doesn't cause unreasonable disruption . Entries in a Chain 
that do not follow the rules can be disregarded by the 
Application . 
[ 0053 ] Users can use any set of rules for their Chains , and 
any convention to communicate their rules to the users of 
their Chains . The first Entry in a Chain can hold a set of 
rules , a hash of an audit program , etc. These rules then can 
be understood by Applications running against Factom to 
ignore invalid Entries client - side . 
[ 0054 ] An enforced sequence can be specified . Entries that 
do not meet the requirements of the specified enforced 
sequence will be rejected . However , Entries that might be 
rejected by the rules or the audit program will still be 
recorded . Users of such chains will need to run the audit 
program to validate a chain sequence of this type . The 
Factom servers will not validate rules using the audit pro 
gram . 
[ 0055 ] Validation in the Applications ( in combination with 
user - defined Chains ) provides a number of advantages for 
Applications written on top of Factom : 

[ 0056 ] 1 ) Applications can put into Factom whatever 
Entries make sense for their application . So , a list of 
hashes to validate a list of account statements can be 
recorded as easily as exchanges of an asset . 

[ 0057 ] 2 ) Rule execution is very efficient . Where the 
distributed network must execute your validation rules , 
then validation requires all nodes to do all validation . 
Client - side validation only requires the systems that 
care about those rules to run them . Factom allows a 
Chain to define its rules in whatever language the 
designers choose , to run on whatever platform they 
choose , and to use any external data . None of these 
decisions on the part of one Application has any impact 
on another Application . 

[ 0058 ] 3 ) Factom Servers have little knowledge about 
the Entries being recorded . We use a commitment 
scheme to limit knowledge , where the commitment to 
record an Entry is made prior to revealing what the 
Entry is . This makes Factom's role in recording Entries 
very simple , and makes individual server processes 
public . Factom servers accept information from the 
network of full nodes , and their decisions and behavior 
are in view . Failure to perform can be audited both from 
the network outside Factom , and within Factom . It is 
easy to independently verify that a Factom server is 
fulfilling its Entry - recording responsibility ; Factom 
can't hide potentially errant behavior . 

a 
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[ 0059 ] 4 ) Recording speeds can be very fast , since the 
number of checks made by the Factom servers are 
minimal . 

[ 0060 ] 5 ) Proofs against any particular Chain in Factom 
do not require knowledge of any other Chains . Users 
then only need the sections of Factom they are using 
and can ignore the rest . 

[ 0061 ] At its heart , Factom is a decentralized way to 
collect , package , and secure data into the Bitcoin block 
chain . Factom accomplishes this with a network of Author 
ity servers . Authority Servers are the set of Federated 
Servers and Audit Servers which share responsibility for 
different aspects of the system . The Federated Servers 
actually acknowledge and order entries and transactions in 
Factom , and Audit Servers duplicate and audit the work 
done by the Federated Servers and are always ready to 
replace a Federated Server that might go offline . 
[ 0062 ] The design ensures decentralization . No single 
server is ever in control of the whole system , but only a part 
of the system . All servers verify and double check the work 
of all other servers . And no server is permanently in control 
of any part of the system ; the responsibility for each part of 
Factom cycles among the Federated Servers each minute , 
and the role of being a Federated Server or an Audit Server 
shifts among the servers in the Authority Set ( the set of all 
Authority Servers ) . 
[ 0063 ] The Federated servers take a very active role in 
running the protocol . The Federated servers each take 
responsibility for a subsection of the user Chains at the 
beginning of the creation of a Directory Block . The process 
works like this : 

[ 0064 ] 1. All servers reset their process lists to empty . 
[ 0065 ] 2. The user submits an Entry Payment using a 

public key associated with Entry Credits 
[ 0066 ] 3. Based on the public key used to pay for the 

Entry , one of the servers accepts the payment . 
[ 0067 ] 4. That server broadcasts the acceptance of the 
payment . 

[ 0068 ] 5. The user sees the acceptance and submits the 
Entry . 

[ 0069 ] 6. Based on the ChainID of the Entry , one of the 
servers adds the Entry to its process list , and adds the 
Entry to the appropriate Entry Block for that ChainID 
( creating one if this is the first Entry for that Entry 
Block ) . 

[ 0070 ] 7. The server broadcasts an Entry confirmation , 
containing the process list index of the Entry , the hash 
of the Entry ( linked to the payment ) , and the serial hash 
so far of the server's process list . 

[ 0071 ] 8. All the other servers update their view of the 
server's process list , validate the list , and update their 
view of the Entry Block for that ChainID . 

[ 007 ] 9. As long as the user can validate the relevant 
process list holds their Entry , then they have a fair level 
of assurance it will be successfully entered into Fac 
tom . 

[ 0073 ] 10. At the end of the minute , each server con 
firms the end of their section of the process list . The end 
of the minute is marked in the process list , and the 
responsibility for particular chains shifts around the 
authority set . 

[ 0074 ] 11. At the end of the 10th minute , a Directory 
Block is constructed from all the Entry Blocks defined 

by the process lists built by all the servers . So , each 
server has all Entry Blocks , all Directory Blocks , and 
all Entries . 

[ 0075 ] 12. A deterministic method ( that can be com 
puted by all nodes in protocol ) will shift responsibility 
for particular ChainIDs among the servers for the next 
round . 

[ 0076 ] 13. At the completion of the Directory Block , the 
Merkle root of the Directory block is placed in a 
Bitcoin transaction and submitted to the Bitcoin net 
work for eventual confirmation . 

[ 0077 ] 14. Repeat . ( Go back to 1 ) 
[ 0078 ] The Federated servers for their minute are con 
structing a process list for the Chains for which they are 
responsible , as well as constructing the Entry Blocks that 
will be used to create the Directory Block at the end of the 
10 minutes . The process list is important for broadcasting 
decisions made by a server to the rest of the network . 
[ 0079 ] The servers in the authority set are re - ranked on a 
regular , scheduled basis . The ranking is a function of support 
by the standing parties , who must create a profile Chain in 
Factom . The profile contains any number of signed public 
address Entries . The weight of a standing party's support is 
determined by various public addresses and entries in their 
profile . The function computing the weight of a standing 
party uses a combination of many factors . Such weights may 
be organized in categories to further distribute influence . 
Factors that determine an identity's weight include factors 
that can be measured from the protocol , and audited by the 
protocol . Examples of factors that might be used to calculate 
weight include : 
[ 0080 ] Weighted Number of Entry Credits purchased . 
[ 0081 ] Weighted Number of Entries used . 
[ 0082 ] Tokens “ staked ” to a profile Chain , and not moved 
or transferred . 
[ 0083 ] Tokens used to build infrastructure , support the 
protocol , provide services 
[ 0084 ] Providing guidance and facilitating the operation 
of the protocol . 
[ 0085 ] Support may be specified by the Standing parties at 
any time . At regular intervals , the support of all the servers 
in the Authority set will be evaluated , and the membership 
of the authority set adjusted . The same mechanism can be 
used to measure support in the protocol for decisions about 
the protocol 
[ 0086 ] To maintain a position in the authority set , servers 
must continually demonstrate the ability to maintain their 
ability to monitor and keep up with the operation of the 
protocol . The Federated Servers do this by simply doing 
their job and syncing with the end of minute operations with 
all other Federated Servers . Performance in the protocol's 
ecosystem may also factor into decisions to support or not 
support an authority node . Audit servers may have to issue 
a heartbeat message , that can be monitored by the network . 
Other solutions are possible . 
[ 0087 ] Managing timeouts and monitoring heartbeats will 
be done according to the needs and load on the protocol . 

Factom System Overview 
[ 0088 ] FIG . 3 illustrates the Factom protocol as a set of 
layered data structures , according to exemplary embodi 
ments . Factom is constructed of a hierarchical set of blocks , 
with the highest being Directory Blocks . They constitute a 
micro - chain , consisting primarily of compact references . To 
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[ 0099 ] The Applications must be required to expend more 
Entry Credits than a simple Entry would necessitate to 
discourage bloating the Directory Blocks . 

a 

keep the size small , each reference in the Directory Block is 
just a hash of the Entry Block plus its ChainID . These Entry 
Blocks have references which point to all the Entries with a 
particular ChainID which arrived during a time period . The 
Entry Block for a Chain ID is also part of a micro - chain . The 
bulk of the data in Factom is at the leaves , the Entries 
themselves . These hierarchical data structures are rendered 
unchangeable by Bitcoin's hashpower . They can be concep 
tualized as different layers . The layers and concepts in the 
Factom system are : 
[ 0089 ] 1 ) Directory Layer - Organizes the Merkle Roots 
of Entry Blocks 
[ 0090 ] 2 ) Entry Block Layer - Organizes references to 
Entries 
[ 0091 ] 3 ) Entries Contains an Application's raw data or 
a hash of its private data 
[ 0092 ] 4 ) Chains Grouping of Entries specific to an 
Application 
Directory Layer : How the Directory Layer Organizes 
Merkle Roots 
[ 0093 ] The Directory layer is the first level of hierarchy in 
the Factom system . It defines which Entry ChainIDs have 
been updated during the time period covered by a Directory 
Block . ( ChainIDs identify the user's Chain of Entries ; the 
generation of the ChainID is discussed later . ) It mainly 
consists of a list pairing a ChainID and the Merkle root of a 
the Entry Block containing data for that ChainID . 
[ 0094 ] Each Entry Block referenced in the Directory 
Block takes up 64 bytes ( two 32 byte hashes , the ChainID 
and the Merkle root of the Entry Block ) . A million such 
Entries would result in a set of Directory Blocks roughly 64 
MB in size . If the average Entry Block had 5 Entries , 64 MB 
of Directory Blocks would provide the high level manage 
ment of 5 million distinct Entries . Note that the exact 
implementation of Directory blocks my vary as we build for 
greater scale in the future . 
[ 0095 ] If an Application only has the Directory Blocks , it 
can find Entry Blocks it is interested in without downloading 
every Entry Block . An individual Application would only be 
interested in a small subset of ChainIDs being tracked by 
Factom . This greatly limits the amount of bandwidth an 
individual client would need to use with Factom as their 
system of record . For example , an Application monitoring 
real estate transfers could safely ignore video camera secu 
rity logs . 
[ 0096 ] Factom servers collect Merkle roots of Entry 
Blocks and package them into a Directory Block . Directory 
Block the Merkle roots are recorded into the Bitcoin block 
chain . This allows the most minimum expansion of the 
blockchain , and still allows the ledger to be secured by the 
Bitcoin hash power . The process of adding the Merkle root 
into the Bitcoin blockchain we referred to as “ anchoring ” . 
See the section “ Appendix : Timestamping into Bitcoin ” for 
further details . 
[ 0097 ] Data entered into Directory Blocks is the most 
expensive , from a bandwidth and storage perspective . All 
users of Factom wishing to find data in their Chains need the 
full set of Directory Blocks starting from when their Chain 
began . 
[ 0098 ] Activities that increase the Directory Block size 
include the creation and first update of individual Chains . 
These activities externalize costs of Applications attempting 
finer - grained organization . 

Entry Block Layer : How the Entry Block Layer Organizes 
Hashes and Data 

[ 0100 ] FIG . 4 illustrates entry blocks of the Factom pro 
tocol , according to exemplary embodiments . Entry Blocks 
are the second level of hierarchy in the system . Individual 
Applications will pay attention to various ChainIDs . Entry 
Blocks are the place where an Application looking for 
Entries can expand its search from a ChainID to discover all 
possibly relevant Entries . 
[ 0101 ] There is one Entry Block for each updated ChainID 
per Directory Block . The Entry Blocks contain hashes of 
individual Entries . The hashes of Entries both prove the 
existence of the data and give a key to find the Entries in a 
Distributed Hash Table ( DHT ) network . ( See the below 
explanation of the “ Factom Peer - to - Peer Network ” for more 
detail . ) 
[ 0102 ] The Entry Blocks encompass the full extent of 
possible Entries related to a ChainID . If an Entry is not 
referred to in an Entry Block , it can be assumed not to exist . 
This allows an Application to prove a negative , as described 
in the section Security and Proofs . 
[ 0103 ] The Entry Block intentionally does not contain the 
Entries themselves . This allows the Entry Blocks to be much 
smaller than if all the data was grouped together . Separating 
the Entries from the Entry Blocks also allows for easier 
auditing of auditors . An auditor can post Entries in a separate 
chain that approves or rejects Entries in a common chain . 
The audit can add reasons for rejection in its Entry . If an 
Application trusts the auditor , they can cross reference that 
the auditor has approved or rejected every Entry , without 
knowing what the Entry is . The Application would then only 
attempt to download the Entries which passed the audit . 
Multiple auditors could reference the same Entries , and the 
Entries would only exist once on the Distributed Hash Table 
( DHT ) . Entries are expected to be significantly larger than 
the mere 32 bytes a hash takes up . Lists of things to ignore 
do not have to have the full object being ignored for an 
Application to know to ignore it . The exact implementation 
of entry blocks may vary in the future in response to 
identified improvements possible in the protocol . 
[ 0104 ] An Entry detailing the specifics of a land transfer 
would be entered into a Chain where land transfers of that 
type are expected to be found . One or more auditors could 
then reference the hashes of land transfer in their own 
Chains , adding cryptographic signatures indicating a pass or 
fail . The land transfer document would only need to be 
stored once , and it would be referenced by multiple different 
Chains . 
[ 0105 ] FIG . 5 illustrates how entries are created , according 
to exemplary embodiments . Entries are constructed by users 
and submitted to Factom . By hashing or encoding informa 
tion , the user can ensure the privacy of Entries . The Entries 
can instead be plain text if encoding or obscuring the data 
isn't necessary . By recording a hash of a document , Factom 
can provide basic proof of publication . Presenting the docu 
ment at a later time allows one to create its hash , and 
compare it to the hash recorded in the past . 
[ 0106 ] There is lots of flexibility in the data that is 
accepted . It can be something short like a hyperlink . It could 
also be larger , but not too large , since fees limit the size of 

a 

a 
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Data Preservation and Dissemination the data accepted . This is similar to Bitcoin . Large 100 
kB + Bitcoin transactions are possible , but would need to pay 
a proportionately greater transaction fee . This size , while 
gigantic in Bitcoin , would be moderately sized for Factom . 
Since every Bitcoin full node needs the entire blockchain to 
fully validate , it needs to stay small . In Factom , only the 
highest level Directory Blocks are required to fully validate 
a Chain . If someone is not specifically interested in a 
Chain's data , they would not download it . 
[ 0107 ] Take a simple example of an uneditable Twitter 
like system . A celebrity would craft an Entry as a piece of 
text . They would then sign it with a private key to show it 
came from them . Followers of the celebrity would find 
which Chain they publish in and would monitor it for 
updates . Any new signed Entries would be recognized by 
follower's Application software as a tweet . Others could 
tweet at the celebrity by adding Entries to the celebrity's 
Chain . 
[ 0108 ] FIG . 6 illustrates the complete Factom protocol and 
system , according to exemplary embodiments . Chains in 
Factom are sequences of Entries that reflect the events 
relevant to an Application . These sequences are at the heart 
of Bitcoin 2.0 . Chains document these event sequences and 
provide an audit trail recording that an event sequence 
occurred . With the addition of cryptographic signatures , 
those events would be proof they originated from a known a 

[ 0113 ] Factom data structures ( Directory Blocks , Entry 
Blocks , Entries ) are needed for Factom to be useful . They 
are public and will be preserved in two places . The Authority 
Servers need to maintain this data to make correct decisions 
about adding new Entries . Since they have this data , they can 
provide it as a service , as part of being a full node . As the 
protocol grows the protocol will be able to support partial 
nodes , which share only part of the Factom dataset . The 
partial nodes could share only the data which is relevant to 
their specific application . Peer discovery for the partial 
nodes may be handled by any sort of directory service , such 
as a Distributed Hash Table ( DHT ) . 
[ 0114 ] FIG . 7 illustrates a read operation , according to 
exemplary embodiments . This setup allows for efficient peer 
distribution of data even if the entire Factom dataset grows 
to unwieldy sizes . The Directory Service also allows the data 
to be preserved independent of any Authority servers or full 
nodes . Even if all the full nodes were removed from the 
network , the data could still be shared by a more numerous 
set of parties interested in specific subsets of the data . 
[ 0115 ] FIG . 8 further illustrates the Chain ID , according to 
exemplary embodiments . Factom groups all Entries under a 
ChainID . The ChainID is computed from a Chain Name . 
The ChainID is a hash of the Chain Name . The Chain Name 
is a byte array arbitrarily long in length . See figure below . 
Since the conversion from Chain Name to ChainID is a hash 
operation , it is a simple process . Deriving a Chain Name 
from a ChainID is not simple , so a lookup table would be 
needed . 
[ 0116 ] The user may provide a Chain Name , or the Chain 
Name may be auto - generated . Regardless , that the ChainID 
can be shown to be a hash of something . This prevents 
unhashed data from being a ChainID , which is stored all the 
way up to the Directory Blocks . This convention eliminates 
insertion of obscene plaintext in the block structure . 
[ 0117 ] The Chain Name is fairly arbitrary . It could be a 
random number , a string of text , or a public key . An 
individual Application could derive meaning from different 
Chain Names . 
[ 0118 ] One possible convention would be to use human 
readable text for the Chain Name . This would allow for the 
structuring of Chains in a logical hierarchy , even though 
Chains are not hierarchical by nature . Users can even use the 
same naming conventions , but by making simple modifica 
tions , ensure that there are no accidental intersections 
between their Chains and other Chains . Consider the fol 
lowing path : 

a 

source . 

[ 0109 ] Chains are logical interpretations of data placed 
inside Directory Blocks and Entry Blocks . The Directory 
Blocks indicate which Chains are updated , and the Entry 
Blocks indicate which Entries have been added to the Chain . 
This is somewhat analogous to how Bitcoin full clients 
maintain a local idea of the UTXO ( Unspent Transaction 
Output ) set . The UTXO set is not ( currently ) in the block 
chain itself , but is interpreted by the full client . 

The Factom Peer - to - Peer Network 
[ 0110 ] Factom will have a peer - to - peer ( P2P ) network 
which accomplishes two goals : communication and data 
preservation . 
Factom Peer - to - Peer Communications 

[ 0111 ] Factom will have a P2P network very similar to 
Bitcoin's . It will consist of full nodes which have all the 
Factom data . The full nodes create a gossip network which 
will flood fill valid data throughout the network . The Author 
ity servers would be full nodes , but not all full nodes are 
Authority servers . This is very much like Bitcoin , where 
miners are full nodes , but not all full nodes are miners . This 
will limit the ability to DDOS the Authority servers indi 
vidually . They can connect anywhere inside the network to 
acquire the data needed to build the data structures . 
[ 0112 ] As the servers are coming to consensus and dis 
seminate their signed data , they would publish the data over 
the P2P network . The P2P flood filling also limits the ability 
of Authority servers to censor based on IP addresses , since 
valid traffic is mixed together by the nodes they connect to . 
It also helps to prevent censorship , since all servers can see 
the Entries which should be included in the Entry Blocks . 
Outside organizations campaigning to become Authority 
servers have an incentive to bring bad behavior to light , so 
they can gain support and move up into the set of Authority 
Servers . 

MyFavoriteApp / bin , 
[ 0119 ] where the slash is a convention for another level of 
hierarchy . The slash separating ASCII strings " MyFavor 
iteApp ” and “ bin ” represents transitioning to a deeper level . 
These two strings must be converted to bytes , and there are 
many options for doing so . The strings could be encoded in 
UTF - 16 , UTF - 32 , ASCII , or even something like IBM's 
EPCDIC . Each of these encodings would result in entirely 
different ChainIDs for the same string , since the computa 
tion of the ChainID is done from the bytes . Furthermore , the 
application could utilize a Globally Unique IDentifier 
( GUID ) number as the first byte array in their naming 
convention . This would eliminate overlap of one Applica 
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tion's ChainID “ space ” with another , at the expense of just 
a few more bytes in the Chain creation . 

Using Factoids to Purchase Entry Credits 
[ 0120 ] Factoids are the main internal scarcity token used 
to moderate and reward the system actors . The right to put 
Entries into Factom is represented by Entry Credits . Factom 
separates the two value - holding mechanisms , as they serve 
different purposes . Factoids can be converted into Entry 
Credits , but not vice versa . 
[ 0121 ] Factoids are implemented in much the same way 
Bitcoin is implemented , allowing multiple inputs , multiple 
outputs , etc. where each input requires the proper signature 
for the transaction to be valid . Other sorts of validation 
including multisig is possible . Factoid transactions are man 
aged on a special Factoid Chain . This Factoid Chain is 
handled more restrictively than other Chains . Entries in the 
Factoid Chain must be valid Factoid transactions , or the 
Factom Servers will reject the Entries . 
[ 0122 ] Factoids are included into the protocol to com 
pletely decentralize Factom , and to reduce bloat and spam in 
both Factom and Bitcoin . Factoids can be converted to Entry 
Credits in the protocol , and paid out to Factom servers from 
the protocol . Factoids budgeted but not paid out can remain 
in a “ grant pool ” . These tokens can be issued to support and 
develop the protocol from the protocol . 
[ 0123 ] Factoids also help to bind consensus . If consensus 
is lost , then the Factoids will fall in value , incentivizing the 
support of the protocol . 
[ 0124 ] The conversion of a Factoid to Entry Credits will 
be done via a special purchase transaction on the Factoid 
Chain . This purchase transaction will include : 
[ 0125 ] An Output directing a Factoid amount to be con 
verted 
[ 0126 ] The public key that is to receive the Entry Credits 
[ 0127 ] The Entry Credits , once purchased , cannot be 
transferred to another public key . They can only be used to 
pay for Entries . This greatly reduces their value to thieves , 
since they cannot be resold . Entry Credit private keys can be 
held in low security areas with minimal risk . 

download the minimum data to validate their system . It 
allows users to safely and easily ignore the payment infor 
mation . 
[ 0135 ] Another benefit is censorship resistance . By com 
mitting to accept an Entry before knowing the content makes 
censorship by the Factom servers obvious . Adam Back has 
advocated for a similar mechanism for Bitcoin in a post 
titled “ Blind Symmetric Commitment for Stronger Byzan 
tine Voting Resilience ” ( https://bitcointalk.org/index.php 
? topic = 206303.0 ) . If a user or Audit server can show an 
Entry which has been properly been paid for , but none of the 
Federated servers are accepting it , then the censorship is 
provable . 
[ 0136 ] The transactions deducting Entry Credits will be 
recorded in a special Chain , similar to the Factoid Chain . 
The Federated servers will only fill the Chain with valid 
Entry Credit transactions . 
Setting the Cost of Entries with a Central Server Oracle 
[ 0137 ] The conversion rate of Factoids to Entry Credits 
will be determined by first choosing a target real world value 
for an Entry Credit . This target will be determined by a 
distributed and autonomous process . At minimum it will be 
agreed upon by some process driven by the Authority Set . 
Other parties might be involved through various auditable 
processes in Factom to further decentralize the decision . 
[ 0138 ] Once a target real world target price of an Entry 
Credit has been chosen , an Oracle is required to record into 
Factom the conversion value between Factoids and that EC 
price . That specification and implementation will also go 
through a decentralized decision process . The actual imple 
mentation of the target price , oracle implementation , and 
exchange rate adjustment can vary widely , but will be 
optimized for decentralization , security , and regulatory com 
pliance . 
[ 0139 ] Note that fee calculations and rates are subject to 
change , and don't materially impact the utility of the Factom 
protocol . 
Using Factom without Factoids 
[ 0140 ] Many users of Factom may not want a wallet , and 
will not want to hold any cryptocurrency asset . But they will 
want to create their Chains ( ledgers ) and add their Entries . 
Factom's two step recording process allows for the separa 
tion of Factoids , Factom's tradable token , from the oppor 
tunity to post Entries to Factom , represented by Entry 
Credits . Servers and other recipients of Factom Tokens can 
sell Entry Credits to customers for payment via Bitcoin , 
conventional credit card payments , etc. The user would 
provide a public key to hold the Entry Credits . The seller 
would convert the appropriate amount of Factoids to Entry 
Credits and assign those rights to the user's public key . 
Users could thus buy Entries Credits for Factom without 
ever owning the Factoids that drive the Factom servers . 
[ 0141 ] From a regulation point of view , this is powerful . 
The servers earn Factoids from the protocol . The only 
parties to that transaction are the server and the protocol . 
Then the server sells Entry Credits to users , who eventually 
return Factoids to the rest of the system . Entry Credits are 
non transferable , so the user cannot assign them to another 
user's public key , and selling private keys isn't practical or 
useful . In neither transaction is a tradable token ( the Factoid ) 
transferred between two parties . 
[ 0142 ] Factom is a distributed , autonomous layer residing 
on top of the Bitcoin blockchain . The goal of Factom is to 
provide the power of Bitcoin's blockchain to a nearly 

Using Entry Credits to Write Entries 
[ 0128 ] Adding Entries into Factom requires giving up a 
scarce resource . That resource is Entry Credits , which are 
derived from Factoids . Adding Entries to Factom is a two 
step process . First the Entry is paid for ( committed ) . The 
payment accomplishes two things . It decrements the Entry 
Credits associated with a user's public key . In the same 
operation , the hash of the Entry is specified . After the Entry 
is paid for , the server will wait for the unhashed Entry and 
include it once seen ( revealed ) . 
[ 0129 ] 1. Pay for Entry 

[ 0130 ] Decrement Entry Credits owned by a user 
[ 0131 ] User specifies hash of Entry in payment 

[ 0132 ] 2. Insert Entry 
[ 0133 ] User publishes Entry for inclusion in Entry 
Block 

[ 0134 ] There are many benefits of this two step process . 
One benefit is to separate the payment overhead from the 
recorded data . Future users will not be forced to download 
the data generated by payment minutia . They only need to 
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unlimited range of Applications and uses . Further , Factom is 
architected such that its users do not need any cryptocur 
rency whatsoever . 
[ 0143 ] A distributed , immutable ledger is the radical , 
foundational , and unprecedented technology represented by 
the Bitcoin blockchain . The dream of many is to extend the 
honesty inherent to an immutable ledger validated by math 
to chaotic , real - world interactions . By allowing the construc 
tion of unbounded ledgers backed by the blockchain , Fac 
tom extends the benefits of the blockchain to the real world . 
[ 0144 ] FIGS . 9-21 are simplified illustrations of a digital 
contract 20 in a blockchain environment 22 , according to 
exemplary embodiments . The digital contract 20 is some 
times referred to as a self - executing or “ smart ” contract 
between parties to a transaction . The digital contract 20 may 
be executable code that runs on a blockchain 24. The 
blockchain 24 has one or more blocks 26 of data . A 
conventional smart contract facilitates , executes , and / or 
enforces the terms of an agreement . Whatever the terms , the 
digital contract 20 may automatically execute the terms once 
predetermined logical rules , conditions , or code is satisfied . 
The digital contract 20 may thus be expressed in a program 
ming language . Smart contracts are generally known , so this 
disclosure will not dwell on the known aspects . 
[ 0145 ] Here , though , the blockchain 24 need only refer 
ence the digital contract 20. That is , the actual programming 
language defining the digital contract 20 need not be 
included within or attached to the blockchain 24. Instead , the 
blockchain 24 need only include or specify a contract 
identifier 28 and perhaps one or more contractual parameters 
30. The contract identifier 28 is any digital identifying 
information that uniquely identifies or references the digital 
contract 20. Similarly , the contractual parameters 30 may 
digitally identify the parties to the digital contract 20 , their 
respective performance obligations and terms , and even 
consideration . So , instead of the blockchain 24 carrying or 
conveying the actual code representing the digital contract 
20 , exemplary embodiments need only specify the contract 
identifier 28 and perhaps the contractual parameters 30. The 
blocks 26 of data within the blockchain 24 are thus not 
burdened with the programming code that is required to 
execute the digital contract 20. The blockchain 24 need only 
include or specify the contract identifier 28 and / or the 
contractual parameters 30 ( or their respective hash values ) , 
thus greatly simplifying the blockchain 24 and reducing its 
size ( in bytes ) and processing requirements . 
[ 0146 ] FIG . 10 further illustrates the blockchain 24. Here 
any entity 32 may generate the blockchain 24. While exem 
plary embodiments may be applied to any entity 32 , most 
readers are thought familiar with financial services . That is , 
suppose the entity 32 is a bank , lender , or other financial 
institution 34 ( such as PIMCO? , CITI® , or BANK OF 
AMERICA® ) . As the reader likely understands , the finan 
cial institution 34 creates a massive amount of banking 
records , transaction records , mortgage instruments , and 
other private data 36. The financial institution 34 thus has a 
financial server 38 executing a software application 40 that 
encrypts its private data 36. While the software application 
40 may use any encryption scheme , FIG . 2 illustrates the 
private blockchain 24. That is , the software application 40 
causes the financial server 38 to cryptographically hash the 
private data 36 and to integrate the resulting hash value ( s ) 
into the block 26 of data within the private blockchain 24 . 
Moreover , because the private data 36 may represent con 

tractual obligations between parties , the software application 
40 may further cause the blockchain 24 to include the 
contract identifier 28 and the contractual parameters 30. The 
contract identifier 28 and the contractual parameters 30 may 
be encoded as data or information contained within the 
block 26 of data , or the contract identifier 28 and the 
contractual parameters 30 may be data or information that is 
separate from the block 26 of data ( such as informational 
content in metadata or in a packet header / body ) . Regardless , 
the blockchain 24 need not include the programming code 
representing the digital contract 20. The blockchain 24 need 
only specify the contract identifier 28 and / or the contractual 
parameters 30 . 
[ 0147 ] FIG . 11 illustrates a contract server 42. The con 
tract server 42 may be responsible for executing the digital 
contract 20 referenced by the contract identifier 28 and / or 
the contractual parameters 30. For example , after the finan 
cial server 38 ( executing the software application 40 ) gen 
erates the block 26 of data within the blockchain 24 , the 
financial server 38 may send the blockchain 24 to the 
network address ( e.g. , Internet protocol address ) associated 
with the contract server 42. When the contract server 42 
receives the blockchain 24 , the contract server 42 inspects 
the blockchain 24 to identify the contract identifier 28 and / or 
the contractual parameters 30. Once the contract identifier 
28 is determined , the contract server 42 may then consult an 
electronic database 44 of contracts . The database 44 of 
contracts has entries that map or relate the contract identifier 
28 to its corresponding digital contract 20. The database 44 
of contracts , in other words , may identify a computer file 46 
that contains the programming language representing the 
digital contract 20 identified by the contract identifier 28. So , 
once the digital contract 20 is determined , the contract server 
42 may retrieve and locally execute the computer file 46 , 
perhaps based on parameters defined or described by the 
contractual parameters 30 ( such as party names , parameters 
associated with their respective performance obligations and 
terms , and consideration ) . Again , then , the blockchain 24 
need only reference the digital contract 20 ( using the con 
tract identifier 28 and / or the contractual parameters 30 ) . The 
actual execution of the digital contract 20 may be offloaded 
or outsourced to the contract server 42 . 
[ 0148 ] FIG . 12 also illustrates the contract server 42. Here , 
though , the contract server 42 may only manage the execu 
tion of the digital contract 20 referenced by the contract 
identifier 28 and / or the contractual parameters 30. That is , 
the contract server 42 may outsource the execution of the 
digital contract 20 to a vendor , a supplier , or a subcontractor 
process . Again , when the contract server 42 receives the 
blockchain 24 , the contract server 42 inspects the blockchain 
24 to identify the contract identifier 28 and / or the contractual 
parameters 30. The contract server 42 may then consult the 
database 44 of contracts . Here , though , the database 44 of 
contracts has entries that map or relate the contract identifier 
28 to a network resource 50 that processes and / or executes 
the digital contract 20 as service ( perhaps as a software 
as - a - service or “ SAAS ” ) . The network resource 50 may thus 
be a remote server , a virtual machine , a web page or web 
server , a client device / machine , or other resource that 
executes the digital contract 20. Once the network resource 
50 is determined , the contract server 42 may retrieve and 
send the contractual parameters 30 to the network resource 
50 for execution . The network resource 50 ( perhaps operated 
on behalf of a third party ) applies the parameters defined or 
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described by the contractual parameters 30 to the program 
ming code representing the digital contract 20 . 
[ 0149 ] Exemplary embodiments thus only need to identify 
the digital contract 20. The contract identifier 28 and the 
contractual parameters 30 need only be informational con 
tent in the private blockchain 24. The contract identifier 28 
is any digital identifying information that uniquely identifies 
or references the digital contract 20. The contract identifier 
28 may be an alphanumeric combination that uniquely 
identifies a vendor and / or version of the digital contract 20 
and / or a processor or executioner of the digital contract 20 . 
The contract identifier 28 may be expressed as a unique hash 
value that is included within , or specified by , the private 
blockchain 24. Similarly , the contractual parameters 30 may 
identify the parties to the digital contract 20 , their respective 
performance obligations and terms , and consideration . 
[ 0150 ] FIG . 13 illustrates consideration . When the digital 
contract 20 is executed , the parties to the digital contract 20 
may be compensated ( perhaps according to the contractual 
parameters 30 describing consideration ) . Moreover , the con 
tract server 42 and / or the network resource 50 may also be 
compensated . While there are many compensation schemes , 
this disclosure mostly explains crypto - compensation . That 
is , when the digital contract 20 successfully executes , per 
haps the parties exchange , trade , or transfer cryptographic 
currencies . Suppose , for example , that the financial institu 
tion 34 creates its own cryptographic coinage 60 in the 
blockchain environment 22. The entity 32 , in other words , 
may establish entity - specific electronic tokens 62 to access 
and / or to use the blockchain environment 22. Because the 
private blockchain 24 represents hashes of the financial 
institution's private data 36 , the private blockchain 24 may 
be considered a private resource or property of the financial 
institution 34. That is , the private blockchain 24 is controlled 
by , or affiliated with , the financial institution 34 , so the 
financial institution 34 may control who adds and / or writes 
to the private blockchain 24 and who reads , accesses , or 
receives the private blockchain 24 . 
[ 0151 ] The entity - specific tokens 62 may thus be control 
mechanisms . While the entity - specific tokens 62 may have 
any functional scheme , FIG . 5 illustrates a private credit 
token 64 and a private tradeable token 66. The entity's credit 
token 64 , for example , may be acquired and then spent or 
burned when accessing the financial institution's private 
blockchain 24. The entity's credit token 64 , in other words , 
represents any credit - based entry system associated with the 
financial institution's private blockchain 24. The tradeable 
token 66 , on the other hand , may be generated for transfer 
among others . The entity 32 generates the tradeable token 66 
to be traded and / or spent . The tradeable token 66 , in other 
words , may be considered as the entity's specific , private 
currency to be used as the entity 32 governs . 
[ 0152 ] Exemplary embodiments may thus trade or 
exchange crypto - compensation . That is , when the digital 
contract 20 successfully executes , perhaps the parties 
exchange , trade , or transfer the credit token 64 and / or the 
tradeable token 66. When any party , or all the parties , 
perform their assigned role in the transaction , value is given 
via the credit token 64 and / or the tradeable token 66 . 
Similarly , the contract server 42 and / or the network resource 
50 may also be compensated via the credit token 64 and / or 
the tradeable token 66 , perhaps as a “ mining ” fee for 
executing the digital contract 20 . 

[ 0153 ] The digital contract 20 is thus a computer program 
or code that verifies and / or enforces negotiation and / or 
performance of a contract between parties . One fundamental 
purpose of so - called smart contracts is to integrate the 
practice of contract law and related business practices with 
electronic commerce protocols between parties or devices 
via the Internet . Smart contracts may leverage a user inter 
face that provides one or more parties or administrators 
access , which may be restricted at varying levels for differ 
ent people , to the terms and logic of the contract . Smart 
contracts typically include logic that emulates contractual 
clauses that are partially or fully self - executing and / or 
self - enforcing . Examples of smart contracts are digital rights 
management ( DRM ) used for protecting copyrighted works , 
financial cryptography schemes for financial contracts , 
admission control schemes , token bucket algorithms , other 
quality of service mechanisms for assistance in facilitating 
network service level agreements , person - to - person network 
mechanisms for ensuring fair contributions of users , and 
others . Smart contract infrastructure can be implemented by 
replicated asset registries and contract execution using cryp 
tographic hash chains and Byzantine fault tolerant replica 
tion . For example , each node in a peer - to - peer network or 
blockchain distributed network may act as a title registry and 
escrow , thereby executing changes of ownership and imple 
menting sets of predetermined rules that govern transactions 
on the network . Each node may also check the work of other 
nodes and in some cases , as noted above , function as miners 
or validators . 
[ 0154 ] FIG . 14 further illustrates the contract server 42 . 
When the contract server 42 receives the blockchain 24 , here 
the contract server 42 may generate data records 70 in a 
blockchain data layer 72 , as later paragraphs will explain . 
The contract server 42 may thus be termed or called a data 
layer server 74. Moreover , the blockchain data layer 72 may 
also add another layer of cryptographic hashing to generate 
a public blockchain 76. The blockchain data layer 72 acts as 
a validation service 78 that validates the digital contract 20 
was executed . Moreover , the blockchain data layer 72 may 
generate a cryptographic proof 80. The public blockchain 76 
thus publishes the cryptographic proof 80 as a public ledger 
82 that establishes chains of blocks of immutable evidence . 
[ 0155 ] FIGS . 15-16 illustrate examples of the entity - spe 
cific tokens 62. Suppose that a third - party 90 wishes to 
receive , read , write to , or otherwise access the financial 
institution's private blockchain 24 and / or the digital contract 
20. As FIG . 15 illustrates , exemplary embodiments may 
require that the third - party 90 spend or burn one or more of 
the credit tokens 64. The credit token 64 may thus control 
access to the financial institution's private blockchain 24 
and / or the digital contract 20. The inventor envisions that 
vendors , service providers , individual users , and other third 
parties 60 may wish to access the hash values of the private 
data 36 contained within the financial institution's private 
blockchain 24. Moreover , the third party may want to access , 
inspect , execute , or verify the digital contract 20. The 
financial institution 34 may thus require that the third - party 
90 redeem the entity's credit token ( s ) 50 before granting 
read , write , or access permission to the digital contract 20 . 
The financial institution 34 may additionally or alternatively 
require redemption of the entity's credit token ( s ) 64 for 
using protocols , rules , and application programming inter 
faces ( " APIs ” ) associated with the private blockchain 24 
and / or the digital contract 20. The financial institution 34 
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may thus establish or issue its own credit tokens 64 and even 
govern their usage restrictions 92 and value 94 , as later 
paragraphs will explain . 
[ 0156 ] FIG . 16 illustrates the tradeable token 66. The 
financial institution 34 may establish the tradeable token 66 
and also govern its usage restrictions 92 and value 94. The 
tradeable token 66 , in other words , is a cryptocurrency or 
“ coin . ” Again , while exemplary embodiments may utilize 
any functional scheme , the tradeable token 66 may be 
earned . That is , anyone ( such as the third party 90 ) may earn 
the tradeable token 66 according to the usage restrictions 92 . 
For example , suppose the data layer server 74 earns the 
entity's tradeable token ( s ) 52 in exchange for processing 
and / or managing an execution of the digital contract 20. The 
data layer server 74 may additionally or alternatively earn 
the entity's tradeable token ( s ) 52 in exchange for the vali 
dation service 78. That is , a provider of the validation 
service 78 is paid , or earns , the entity's tradeable token ( s ) 52 
for processing or executing the digital contract 20 and / or for 
cryptographically hashing the proof 80 of the digital contract 
20. The provider of the validation service 78 may also be 
paid in the entity's tradeable token ( s ) 52 for publishing the 
proof 80. The tradeable token 66 may thus be transferred as 
currency according to the usage restrictions 92 and its value 
94 . 
[ 0157 ] FIG . 17 illustrates transaction records 100. When 
ever the entity - specific tokens 62 are created , owned , or 
transferred , the transaction record 100 may be generated . 
The transaction record 100 may then be documented in the 
blockchain environment 22. For example , the entity - specific 
tokens 62 may be addressable . That is , the credit token 64 
and the tradeable token 66 may be uniquely associated with 
a common , single cryptographic address 102. The crypto 
graphic address 102 may represent an owner or holder ( e.g. , 
the entity 32 or the third - party 90 ) . When the entity - specific 
tokens 62 are created , generated , or assigned , the entity 
specific tokens 62 may be assigned or associated with the 
cryptographic address 102. The cryptographic address 102 
may then be received by , and propagated within , the block 
chain data layer 72 to identify the corresponding data 
records 70. The blockchain data layer 72 may even hash the 
cryptographic address 102 as the cryptographic proof 80 of 
the transaction records 100. Exemplary embodiments thus 
publicly document the transaction records 100 involving the 
entity - specific tokens 62 , based on the single cryptographic 
address 102. In simple words , the blockchain data layer 72 
publishes ownership and transfer proofs 80 of the credit 
token 64 and the tradeable token 66 based on the transaction 
records 100 associated with the single cryptographic address 
102 . 

[ 0158 ] The transaction records 100 may also document the 
digital contract 20. Whenever the digital contract 20 is 
specified , generated , processed , or even executed , the trans 
action record 100 may be generated . The transaction record 
100 may then be documented in the blockchain environment 
22. For example , the entity - specific tokens 62 may be earned 
as payment according to the executable terms of the digital 
contract 20. The entity - specific tokens 62 may additionally 
or alternatively be earned or awarded for processing or 
executing a portion of , or entirely , the digital contract 20 . 
The entity - specific tokens 62 may thus be uniquely associ 
ated with a party to the digital contract 20 and / or with a 
service provider / processor of the digital contract 20. The 
transaction record 100 may document the parties to the 

digital contract 20 , a transactional description describing a 
transaction governed by the digital contract 20 , and any 
financial or performance terms . The transaction record 100 
may thus document an offer , an acceptance , a consideration , 
and terms . For simplicity , then , the single cryptographic 
address 102 may represent a party to the digital contract 20 
and / or with a service provider / processor of the digital con 
tract 20. Regardless , when the entity - specific tokens 62 are 
created , generated , or assigned , the entity - specific tokens 62 
may be received by , and propagated within , the blockchain 
data layer 72 to identify the corresponding data records 70 . 
The blockchain data layer 72 may thus publish the proofs 80 
of the digital contract 20 and any entity - specific tokens 62 
paid or exchanged , according to the transaction records 100 . 
[ 0159 ] FIG . 18 illustrates a filling station 110 in the 
blockchain environment 22. Because the tokens 62 may be 
consumed by users ( such as during or after any processing 
or execution of the digital contract 20 ) , the filling station 110 
allows the third party 90 to replenish or fill an account 112 . 
Recall that the third - party entity 32 may be required to spend 
the tokens 62 to access the financial institution's private 
blockchain 24 and / or the digital contract 20. Moreover , the 
tokens 62 may also be earned or transferred according to the 
terms of the digital contract 20. The account 112 may thus 
be established , and the account 112 maintains a monetary or 
numerical balance 114 of the tokens 62. As the tokens 62 are 
spent , traded , or redeemed , the account 112 may need filling 
to continue using or accessing the blockchain 24 and / or the 
digital contract 20 . 
[ 0160 ] The filling station 110 may access both the trans 
action records 100 and the blockchain data layer 72. Because 
the blockchain data layer 72 may document the data records 
70 using the single cryptographic address 102 , the single 
cryptographic address 102 may serve as a common reference 
or query parameter with the entity's transaction records 100 . 
The filling station 110 , in other words , may use the single 
cryptographic address 102 to identify the transaction records 
100 that correspond to the blockchain data layer 72. The 
filling station 110 may thus present a transaction summary of 
the account 112 and the balance 114. Because blockchain 
data layer 72 may track and / or prove the transaction records 
100 , exemplary embodiments may search the blockchain 
data layer 72 for the single cryptographic address 102. That 
is , the filling station 110 may query the blockchain data layer 
72 for the single cryptographic address 102 , and the block 
chain data layer 72 may identify the transaction records 100 
that match the single cryptographic address 102. Similarly , 
exemplary embodiments may query the blockchain data 
layer 72 for the contract identifier 28 and / or the contractual 
parameters 30 , and the blockchain data layer 72 may identify 
the transaction records 100 that match the contract identifier 
28 and / or the contractual parameters 30. The filling station 
110 may then process the transaction records 100 to provide 
the transaction summary of the account 112 , the balance 114 , 
and any other transactional data . The filling station 110 may 
also allow the user to replenish an amount or value of the 
tokens 62 , thus allowing the user to continue exchanging the 
tokens 62 for access to the private blockchain 24 , the 
blockchain data layer 72 , and / or the digital contract 20. The 
filling station 110 may thus be an access mechanism to the 
blockchain data layer 72 . 
[ 0161 ] FIG . 19 further illustrates the filling station 110 . 
Here the blockchain data layer 72 may have its own cryp 
tocoinage 120. That is , a provider of the blockchain data 
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layer 72 may establish its cryptocoinage 120 for accessing 
and / or using the validation service 78. The cryptocoinage 
120 may thus include a credit token and a tradeable token 
( not shown for simplicity ) . The credit token may be required 
to enter or access the blockchain data layer 72 to receive the 
validation service 78 , and the tradeable token may be earned 
for participating in the validation service 78. Regardless , the 
filling station 110 may use the single cryptographic address 
102. The third party 90 may use the single cryptographic 
address 102 to access the entity's cryptocoinage 60 and the 
blockchain data layer's cryptocoinage 120. Exemplary 
embodiments may thus identify and track the transaction 
records 100 and the blockchain data layer's cryptocoinage 
120 using the same , single cryptographic address 102 . 
[ 0162 ] Exemplary embodiments thus present elegant solu 
tions . Any entity 32 may create its own private blockchain 
24 and offer or present the digital contract 20 for self 
execution . The entity 32 may then establish or create the 
tokens 62 for using , accessing , or processing the entity's 
private blockchain 24 and / or the digital contract 20. The 
tokens 62 may have the value 94 , thus fostering a market for 
entity - specific tradeable assets in the blockchain environ 
ment 22. The tradable value 94 of the tokens 62 may thus 
drive demand to use the digital contracts 20. Exemplary 
embodiments may thus provide a two - token system that 
isolates any use of the entity's private blockchain 24 from 
the entity's tradeable token 66. Moreover , the credit token 
64 may be associated with the third party 90 ( perhaps via the 
single cryptographic address 102 ) , thus allowing the third 
party 90 to retrieve the account balance 114 from the filling 
station 110 and sign entries or other transactions . Moreover , 
the third party 90 may also use the single cryptographic 
address 102 to access the blockchain data layer 72 via the 
filling station 110. The filling station 110 is a single resource 
or destination ( such as a secure website ) for managing a 
user's cryptographic coinage 60 and defining payments 
according to the digital contract 20 . 
[ 0163 ] FIG . 20 expands the entity concept . Here multiple , 
different entities 32a - d provide their respective software 
applications 40a - d that encrypt their respective private data 
36a - d as their individual , private blockchains 24a - d . While 
exemplary embodiments may be applied to any number of 
industries or services , FIG . 20 illustrates a simple example 
of four ( 4 ) different entities 32a - d . First entity 32a , for 
example , again represents the bank , lender , or other financial 
institution 34 that encrypts its private data 36a as its private 
blockchain 24a . Second entity 32b represents any retailer 
122 ( such as HOME DEPOT® , KOHL'S® , or WAL 
MART® ) that encrypts its private data 36b as its private 
blockchain 24b . Third entity 32c represents a web site 124 
offering a service 126 ( such as AMAZON® , NETFLIX® , or 
GOOGLE® ) that encrypts its private data 36c as the private 
blockchain 24c . Fourth entity 32d represents an automotive 
or other manufacturer or supplier 128 ( such as FORD® , 
TOYOTA® , or DELPHI® ) that encrypts its private data 360 
as the private blockchain 24d . The entities 32a - d thus use 
their respective software applications 40a - d to provide a first 
layer 130 of cryptographic hashing . The entities 32a - d may 
also use their respective software applications 40a - d to issue 
their own private and entity - specific cryptocoinage 60a - d . 
Each entity 32a - d may then send their respective private 
blockchains 24a - d to the blockchain data layer 72 , and the 
blockchain data layer 72 may add a second layer 132 of 
cryptographic hashing . The blockchain data layer 72 thus 

generates the public blockchain 76 as a public resource or 
utility for record keeping . Any entity 32 that subscribes to 
the blockchain data layer 72 ( such as by acquiring and / or 
spending the cryptocoinage 120 ) may thus access , read , 
and / or store the proofs 80 of its private data 36 to the public 
blockchain 76. The blockchain data layer 72 , in other words , 
acts as the public ledger 82 that establishes chain of blocks 
of immutable evidence . 
[ 0164 ] As FIG . 20 also illustrates , each entity 32a - d may 
establish its own private cryptocoinage 60a - d . Each entity's 
private software application 40a - d may create and / or issue 
its cryptocoinage 60a - d ( such as respective entity - specific 
tokens 62 above explained ) . Each entity 32a - d may also 
establish its own usage restrictions and value ( illustrated as 
reference numerals 92 and 94 in FIGS . 15-16 ) according to 
rules governing ownership , trade , and other policies . Each 
entity 32a - d may generate and sends its respective transac 
tion records 100a - d which reference each entity's single 
cryptographic address 102a - d to the blockchain data layer 
72 for documentation . 
[ 0165 ] As FIG . 20 further illustrates , each entity 32a - d 
may also specify their respective digital contract 20a - d . 
When any of the private blockchains 24a - d is received , the 
blockchain data layer 72 may coordinate execution of any 
digital contract 20a - d . The blockchain data layer 72 , for 
example , may inspect any private blockchain 24a - d and 
identify any information associated with the digital contract 
20a - d . The blockchain data layer 72 may then execute the 
digital contract 20a - d , and / or the blockchain data layer 72 
may identify a service provider that executes the digital 
contract 20a - d . The blockchain data layer 72 , in other words , 
may manage the execution of the digital contracts 20a - d 
according to a subcontractor relationship . A provider of the 
blockchain data layer 72 may then be compensated via any 
entity's cryptocoinage 60a - d and / or the blockchain data 
layer's cryptocoinage 120 . 
[ 0166 ] As FIG . 21 illustrates , the filling station 110 may be 
agnostic . Any user ( such as the entity 32a - d or the third party 
90 ) may authenticate to the filling station 110. Once authen 
ticated , the user need only enter or provide the correct single 
cryptographic address 102a - d to access the entity's private 
cryptocoinage 60a - d , the blockchain data layer's crypto 
coinage 120 , and / or the entity's digital contract 20a - d . The 
single cryptographic address 102a - d , in other words , allows 
the user to access her account 112 and balance 114 for the 
entity's private cryptocoinage 60a - d , the blockchain data 
layer's cryptocoinage 120 , and / or the entity's digital con 
tract 20a - d . The user may thus easily conduct transactions 
between the entity's private cryptocoinage 60a - d and the 
blockchain data layer's cryptocoinage 120. The entity 32a - d , 
for example , may fuel or replenish its supply of the block 
chain data layer's cryptocoinage 120 , perhaps by redeeming 
or exchanging the entity's private cryptocoinage 60a - d 
( perhaps according to an exchange rate or other value ) . 
Similarly , the provider of the blockchain data layer 72 may 
fuel or replenish its supply of the entity's private crypto 
coinage 60a - d by purchasing or exchanging the blockchain 
data layer's cryptocoinage 120. The provider of the block 
chain data layer 72 may also earn the entity's private 
cryptocoinage 60a - d by processing any portion of , or by 
executing , the entity's digital contract 20a - d . Moreover , the 
respective private blockchains 24a - d and the blockchain 
data layer 72 would contain the data records 70 confirming 
the processing and / or execution of the digital contract 20a - d , 
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so the transaction records 100a - d thus propagate into the 
blockchain data layer 72 for public disclosure via the public 
blockchain 76. Any user that successfully authenticates to 
the filling station 110 may access a full accounting of his or 
her digital cryptocoinages 60a - d and / or 120 and any digital 
contracts 20 , perhaps according to the respective single 
cryptographic address 102a - d . The user may thus buy , sell , 
trade , and / or redeem any entity - specific cryptocoinages 
20a - d and / or 90 , all by accessing the filling station 110. The 
user may buy or sell any entity's coins or replenish credits , 
all by accessing the filling station 110. The user may also 
track performance or obligations defined by the digital 
contracts 20a - d and any payments or consideration received 
or paid . 
[ 0167 ] Exemplary embodiments thus present another 
elegant solution . The filling station 110 is another service 
offered by the blockchain data layer 72. Because all the 
transaction records 100 in the blockchain data layer 72 are 
identifiable ( perhaps via the single cryptographic address 
102 ) , the filling station 110 can present the summary of the 
user's credit tokens and tradeable tokens . The filling station 
110 may thus provide a single or universal electronic wallet 
for all of a user's digital coinage and credits , regardless of 
the issuing entity 32a - d . The user may thus only perform a 
single authentication to the blockchain data layer 72 and 
access all her cryptofunds . 
[ 0168 ] FIGS . 22-24 are more detailed illustrations of an 
operating environment , according to exemplary embodi 
ments . FIG . 22 illustrates an entity server 140 communicat 
ing with the data layer server 74 via a communications 
network 142. The entity server 140 operates on behalf of the 
entity 32 and generates the entity's private blockchain 24 
( such as the financial server 38 explained with reference to 
FIGS . 10-19 ) . The entity server 140 , in other words , has a 
processor 144 ( e.g. , " uP ) , application specific integrated 
circuit ( ASIC ) , or other component that executes the entity's 
software application 40 stored in a local memory device 146 . 
The entity server 140 has a network interface to the com 
munications network 142 , thus allowing two - way , bidirec 
tional communication with the data layer server 74. The 
entity's software application 40 includes instructions , code , 
and / or programs that cause the entity server 140 to perform 
operations , such as calling , invoking , and / or applying an 
electronic representation of a hashing algorithm 148 to the 
entity's private data 36. The hashing algorithm 148 thus 
generates one or more hash values 150 , which are incorpo 
rated into the entity's private blockchain 24. The entity's 
software application 40 then instructs the entity server 140 
to send the private blockchain 24 via the communications 
network 142 to a network address ( e.g. , Internet protocol 
address ) associated with the data layer server 74 . 
[ 0169 ] The digital contract 20 may also be identified . The 
entity's software application 40 may also instruct the entity 
server 140 to specify the digital contract 20 as informational 
content in the private blockchain 24. For example , the digital 
contract 20 may be identified by the contract identifier 28 
and contractual parameters 30. The contract identifier 28 is 
any digital identifying information that uniquely identifies 
or references the digital contract 20. The contract identifier 
28 may be an alphanumeric combination that uniquely 
identifies a vendor and / or version of the digital contract 20 
and / or a processor or executioner of the digital contract 20 . 
The contract identifier 28 may also be one of the unique hash 
values 150 ( perhaps generated by the hashing algorithm 

148 ) that is included within , or specified by , the private 
blockchain 24. Similarly , the contractual parameters 30 may 
identify the parties to the digital contract 20 , their respective 
performance obligations and terms , and consideration . 
[ 0170 ] FIG . 23 illustrates the blockchain data layer 72 . 
The data layer server 74 has a processor 152 ( e.g. , “ UP ” ) , 
application specific integrated circuit ( ASIC ) , or other com 
ponent that executes a data layer application 154 stored in a 
local memory device 156. The data layer server 74 has a 
network interface to the communications network 142. The 
data layer application 154 includes instructions , code , and / or 
programs that cause the data layer server 74 to perform 
operations , such as receiving the entity's private blockchain 
24 , the digital contract 20 , the contract identifier 28 , and / or 
the contractual parameters 30. The data layer application 
154 then causes the data layer server 74 to generate the 
blockchain data layer 72. The data layer application 154 may 
optionally call , invoke , and / or apply the hashing algorithm 
148 to the data records 70 contained within the blockchain 
data layer 72. The data layer application 154 may also 
generate the public blockchain 76. The data layer application 
154 may thus generate the public ledger 82 that publishes , 
records , or documents the digital contract 20 , the contract 
identifier 28 , and / or the contractual parameters 30. Indeed , 
if the data layer application 154 processes and / or manages 
the digital contract 20 , the data records 70 may document 
any processing or execution , and the data layer application 
154 may optionally apply the hashing algorithm 148 to the 
data records 70 to generate the cryptographic proof 80 of the 
digital contract 20 . 
[ 0171 ] FIG . 24 illustrates additional publication mecha 
nisms . Once the blockchain data layer 72 is generated , the 
blockchain data layer 72 may be published in a decentralized 
manner to any destination . The data layer server 74 , for 
example , may generate and distribute the public blockchain 
76 ( via the communications network 142 illustrated in FIGS . 
22-23 ) to one or more federated servers 160. While there 
may be many federated servers 160 , for simplicity FIG . 24 
only illustrates two ( 2 ) federated servers 160a and 1606. The 
federated servers 160a and 160b provide a service and , in 
return , they are compensated according to a compensation or 
services agreement or scheme . 
[ 0172 ] Exemplary embodiments include still more publi 
cation mechanisms . For example , the cryptographic proof 80 
and / or the public blockchain 76 may be sent ( via the 
communications network 142 illustrated in FIGS . 22-23 ) to 
a server 162. The server 162 may then add another , third 
layer of cryptographic hashing ( perhaps using the hashing 
algorithm 148 ) and generate another or second public block 
chain 164. While the server 162 and / or the public blockchain 
164 may be operated by , or generated for , any entity , 
exemplary embodiments may integrate another crypto 
graphic coin mechanism . That is , the server 162 and / or the 
public blockchain 164 may be associated with BITCOIN® , 
ETHEREUM® , RIPPLE® , or other cryptographic coin 
mechanism . The cryptographic proof 80 and / or the public 
blockchain 76 may be publicly distributed and / or docu 
mented as evidentiary validation . The cryptographic proof 
80 and / or the public blockchain 76 may thus be historically 
and publicly anchored for public inspection and review . 
[ 0173 ] Exemplary embodiments may be applied regard 
less of networking environment . Exemplary embodiments 
may be easily adapted to stationary or mobile devices having 
cellular , wireless local area network ( WI - FI® ) , near field , 

? 
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and / or BLUETOOTH® capability . Exemplary embodiments 
may be applied to mobile devices utilizing any portion of the 
electromagnetic spectrum and any signaling standard ( such 
as the IEEE 802 family of standards , GSM / CDMA / TDMA 
or any cellular standard , and / or the ISM band ) . Exemplary 
embodiments , however , may be applied to any processor 
controlled device operating in the radio - frequency domain 
and / or the Internet Protocol ( IP ) domain . Exemplary 
embodiments may be applied to any processor - controlled 
device utilizing a distributed computing network , such as the 
Internet ( sometimes alternatively known as the “ World Wide 
Web ” ) , an intranet , a local - area network ( LAN ) , and / or a 
wide - area network ( WAN ) . Exemplary embodiments may 
be applied to any processor - controlled device utilizing 
power line technologies , in which signals are communicated 
via electrical wiring . Indeed , exemplary embodiments may 
be applied regardless of physical componentry , physical 
configuration , or communications standard ( s ) . 
[ 0174 ] Exemplary embodiments may utilize any process 
ing component , configuration , or system . Any processor 
could be multiple processors , which could include distrib 
uted processors or parallel processors in a single machine or 
multiple machines . The processor can be used in supporting 
a virtual processing environment . The processor could 
include a state machine , application specific integrated cir 
cuit ( ASIC ) , programmable gate array ( PGA ) including a 
Field PGA , or state machine . When any of the processors 
execute instructions to perform “ operations , ” this could 
include the processor performing the operations directly 
and / or facilitating , directing , or cooperating with another 
device or component to perform the operations . 
[ 0175 ] Exemplary embodiments may packetize . When the 
entity server 140 and the data layer server 74 communicate 
via the communications network 142 , the entity server 140 
and the data layer server 74 may collect , send , and retrieve 
information . The information may be formatted or generated 
as packets of data according to a packet protocol ( such as the 
Internet Protocol ) . The packets of data contain bits or bytes 
of data describing the contents , or payload , of a message . A 
header of each packet of data may contain routing informa 
tion identifying an origination address and / or a destination 
address . 
[ 0176 ] FIGS . 25-29 further illustrate the blockchain data 
layer 72 , according to exemplary embodiments . The block 
chain data layer 72 chains hashed directory blocks 170 of 
data into the public blockchain 76. For example , the block 
chain data layer 72 accepts input data ( such as the entity's 
private blockchain 24 illustrated in FIGS . 9-21 ) within a 
window of time . While the window of time may be config 
urable from fractions of seconds to hours , exemplary 
embodiments use ten ( 10 ) minute intervals . FIG . 25 illus 
trates a simple example of only three ( 3 ) directory blocks 
170a - c of data , but in practice there may be millions or 
billions of different blocks . Each directory block 184 of data 
is linked to the preceding blocks in front and the following 
or trailing blocks behind . The links are created by hashing all 
the data within a single directory block 184 and then 
publishing that hash value within the next directory block . 
[ 0177 ] As FIG . 26 illustrates , published data may be 
organized within chains 172. Each chain 172 is created with 
an entry that associates a corresponding chain identifier 174 . 
Each entity 32a - f , in other words , may have its correspond 
ing chain identifier 174a - d . The blockchain data layer 72 
may thus track any data associated with the entity 32a - f with 

its corresponding chain identifier 174a - d . New and old data 
in time may be associated with , linked to , identified by , 
and / or retrieved using the chain identifier 174a - d . Each 
chain identifier 174a - d thus functionally resembles a direc 
tory 176a - d ( e.g. , files and folders ) for organized data entries 
according to the entity 32a - f . 
[ 0178 ] FIG . 27 illustrates the data records 70 in the 
blockchain data layer 72. As data is received as an input 
( such as the private blockchain 24 and / or the digital contract 
20 illustrated in FIGS . 9-21 ) , data is recorded within the 
blockchain data layer 72 as an entry 180. While the data may 
have any size , small chunks ( such as 10KB ) may be pieced 
together to create larger file sizes . One or more of the entries 
180 may be arranged into entry blocks 182 representing each 
chain 172 according to the corresponding chain identifier 
174. New entries for each chain 172 are added to their 
respective entry block 182 ( again perhaps according to the 
corresponding chain identifier 174 ) . After the entries 180 
have been made within the proper entry blocks 182 , all the 
entry blocks 182 are then placed within in the directory 
block 184 generated within or occurring within a window 
186 of time . While the window 186 of time may be chosen 
within any range from seconds to hours , exemplary embodi 
ments may use ten ( 10 ) minute intervals . That is , all the entry 
blocks 182 generated every ten minutes are placed within in 
the directory block 184 . 
[ 0179 ] FIG . 28 illustrates cryptographic hashing . The data 
layer server 74 executes the data layer application 154 to 
generate the data records 70 in the blockchain data layer 72 . 
The data layer application 154 may then instruct the data 
layer server 74 to execute the hashing algorithm 148 on the 
data records 70 ( such as the directory block 184 illustrated 
in FIGS . 25-27 ) . The hashing algorithm 148 thus generates 
one or more hash values 150 as a result , and the hash values 
150 represent the hashed data records 70. As one example , 
the blockchain data layer 72 may apply a Merkle tree 
analysis to generate a Merkle root ( representing a Merkle 
proof 80 ) representing each directory block 184. The block 
chain data layer 72 may then publish the Merkle proof 80 ( as 
this disclosure explains ) . 
[ 0180 ] FIG . 29 illustrates hierarchical hashing . The enti 
ty's private software application 40 provides the first layer 
130 of cryptographic hashing and generates the private 
blockchain 24. The entity 32 then sends its private block 
chain 24 ( perhaps referencing or specifying the digital 
contract 20 ) to the data layer server 74. The data layer server 
74 , executing the data layer application 154 , generates the 
blockchain data layer 72. The data layer application 154 may 
optionally provide the second or intermediate layer 132 of 
cryptographic hashing to generate the cryptographic proof 
80. The data layer application 154 may also publish any of 
the data records 70 as the public blockchain 76 , and the 
cryptographic proof 80 may or may not also be published via 
the public blockchain 76. The public blockchain 76 and / or 
the cryptographic proof 80 may be optionally sent to the 
server 162 as an input to yet another public blockchain 164 
( again , such as BITCOIN® , ETHEREUM® , or RIPPLE® ) 
for a third layer 188 of cryptographic hashing and public 
publication . The first layer 130 and the second layer 132 thus 
ride or sit atop a conventional public blockchain 164 ( again , 
such as BITCOIN® , ETHEREUM® , or RIPPLE® ) and 
provide additional public and / or private cryptographic 
proofs 80 . 
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[ 0181 ] Exemplary embodiments may use any hashing 
function . Many readers may be familiar with the SHA - 256 
hashing algorithm . The SHA - 256 hashing algorithm acts on 
any electronic data or information to generate a 256 - bit hash 
value as a cryptographic key . The key is thus a unique digital 
signature . There are many hashing algorithms , though , and 
exemplary embodiments may be adapted to any hashing 
algorithm . 
[ 0182 ] FIGS . 30-32 are more detailed illustrations of the 
digital contract 20 , according to exemplary embodiments . 
The private entity 32 sends its private blockchain 24 to the 
network address associated with the data layer server 74 that 
generates the blockchain data layer 72. The private block 
chain 24 may contain information representing the transac 
tion records 100 associated with the entity's private cryp 
tocoinage 60 ( perhaps as one or more privately hashed 
blocks of data ) . The private blockchain 24 may also specify , 
or incorporate , information or data representing the single 
cryptographic address 102 and / or the digital contract 20 
( e.g. , the contract identifier 28 and the contractual param 
eters 30 ) . The single cryptographic address 102 and / or the 
digital contract 20 ( e.g. , the contract identifier 28 and the 
contractual parameters 30 ) may additionally or alternatively 
be separately sent from the entity server 140 to the data layer 
server 74 ( perhaps via the communications network 142 
illustrated by FIGS . 22-23 ) . Regardless , the entity's private 
cryptocoinage 60 may be associated with the digital contract 
20 ( e.g. , the contract identifier 28 and the contractual param 
eters 30 ) and / or the single cryptographic address 102. The 
transaction records 100 and / or their privately hashed blocks 
of data may thus specify , include , reference , and / or be 
associated with , and / or identified by , the single crypto 
graphic address 102 , the digital contract 20 , the contract 
identifier 28 , and / or the contractual parameters 30. Because 
the contract identifier 28 ( and / or its corresponding hash 
value ) is an identifiable input to the data layer server 74 
generating the blockchain data layer 72 , the data records 70 
may also carry or reference the contract identifier 28 and / or 
the contractual parameters 30. So , should the blockchain 
data layer 72 create or issue its own cryptocoinage 120 , the 
cryptocoinage 120 may also reference , be identified by , or be 
associated with the single cryptographic address 102 and / or 
the contract identifier 28 and / or the contractual parameters 
30. The single cryptographic address 102 , the contract 
identifier 28 , and / or the contractual parameters 30 may thus 
common indicators or reference data for tracking both the 
entity's private cryptocoinage 60 and the cryptocoinage 120 
issued by the blockchain data layer 72 , according to the 
terms of the digital contract 20. The transaction records 100 
( representing entity's private cryptocoinage 60 ) may thus be 
commonly mapped or identified to the cryptocoinage 120 
issued by the blockchain data layer 72 and to the digital 
contract 20 . 
[ 0183 ] FIG . 31 illustrates a simple illustration . Once the 
contract identifier 28 ( and / or its corresponding hash value ) 
is received , the contract identifier 28 may propagate and be 
recorded within the blockchain data layer 72. The contract 
identifier 28 , for example , may be recorded in any of the 
entries 180. The entry 180 , and thus the contract identifier 
28 , may then be recorded and / or arranged as the entry block 
182 and placed within the directory block 184. The entry 
180 , the entry block 182 , and the directory block 184 may 
thus reference , specify , or be associated with , the contract 
identifier 28. The contract identifier 28 has thus propagated 

as informational content from the private blockchain 24 and 
into and through the blockchain data layer 72. The contract 
identifier 28 thus hierarchically moves through the multiple 
layers of cryptographic hashing for public publication . The 
blockchain data layer 72 thus tracks the transaction records 
100 involving the contract identifier 28. In simple words , the 
blockchain data layer 72 may track contractual performance 
of the digital contract 20 via the transaction records 100 that 
reference or contain the contract identifier 28. Moreover , the 
blockchain data layer 72 may also track ownership and 
transfer of the entity's private cryptocoinage 60 and the 
cryptocoinage 120 issued by the blockchain data layer 72 , all 
via the common single cryptographic address 102 and / or the 
contract identifier 28 . 
[ 0184 ] FIG . 32 illustrates more details . While the single 
cryptographic address 102 and / or the contract identifier 28 
may be any alphanumeric entry or biometric input , FIG . 24 
illustrates a common authentication mechanism 190. Here 
the same or similar authentication mechanism 190 is used to 
access both the entity's private cryptocoinage 60 and the 
cryptocoinage 120 issued by the blockchain data layer 72. If 
a user of the blockchain data layer 72 satisfies the authen 
tication mechanism 190 , then exemplary embodiments may 
access both the private cryptocoinage 60 , the cryptocoinage 
120 , and / or the data records 70 associated with the contract 
identifier 28. As a simple example , suppose the user of the 
authentication mechanism 190 supplies information or data 
representing the single cryptographic address 102 and / or the 
contract identifier 28. The single cryptographic address 102 
and / or the contract identifier 28 may be any unique alpha 
numeric entry , biometric input , user identifier , or other 
authentication credential . For example , most readers are 
likely familiar with an alphanumeric username and pass 
word , which is a common authentication mechanism 190 . 
FIG . 32 , though , illustrates a passphrase 192 ( such as a 
multi - word mnemonic ) . When the entity's private crypto 
coinage 60 is / are created , generated , or assigned , the entity's 
private cryptocoinage 60 may be assigned or associated with 
the passphrase 192. The passphrase 192 is unique to the 
registered owner , possessor , or user of the entity's private 
cryptocoinage 60. The passphrase 192 may even be hashed 
as a hash value and supplied to the blockchain data layer 72 
( as above explained ) . The passphrase 192 , in other words , 
may be hashed as the single cryptographic address 102 and 
propagated within the blockchain environment 22 to docu 
ment the transaction records 100 involving the entity's 
private cryptocoinage 60 . 
[ 0185 ] The passphrase 192 may also authenticate to the 
cryptocoinage 120. If the user correctly supplies the 
passphrase 192 , then the same user may conduct transac 
tions involving the cryptocoinage 120 issued by the block 
chain data layer 72 and / or involving the contract identifier 
28 associated with the digital contract 20. Exemplary 
embodiments thus allow the user to order transactions and 
exchanges involving the entity's private cryptocoinage 60 , 
the cryptocoinage 120 issued by the blockchain data layer 
72 , and / or the digital contract 20 . 
[ 0186 ] FIGS . 33-35 further illustrate the access mecha 
nism , according to exemplary embodiments . The filling 
station 110 may be a public and / or private service for 
financial transactions involving the entity's private crypto 
coinage 60 , the cryptocoinage 120 issued by the blockchain 
data layer 72 , and / or the digital contract 20. FIG . 33 illus 
trates the filling station 110 as a software - as - a - service 
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offered by the secure data layer server 74 for accessing the 
blockchain data layer 72. The filling station 110 , for 
example , may be a module within , or called by , the data 
layer application 154. A user accesses the filling station 110 
to conduct transactions involving her private cryptocoinage 
60 , the cryptocoinage 120 ( issued by the blockchain data 
layer 72 ) , and / or the digital contract 20. While the filling 
station 110 may have any user interface , FIG . 33 illustrates 
a web interface 194. That is , the filling station 110 may be 
accessed via a webpage 196. The webpage 196 prompts the 
user to input her authentication credentials according to the 
authentication mechanism 190 ( such as typing the 
passphrase 192 into a data field or audibly speaking the 
passphrase 192 ) 
[ 0187 ] FIG . 34 further illustrates the web interface 194 . 
The user accesses the filling station 110 using a user device 
200. While the user device 200 may be any processor 
controlled device , most readers are familiar with a smart 
phone 202. If the smartphone 202 correctly sends authenti 
cation credentials ( such as the single cryptographic address 
102 and / or passphrase 192 , as above explained ) , then the 
smartphone 202 may utilize the web interface 194 to the data 
layer server 74 and / or the blockchain data layer 72. The 
smartphone 202 executes a web browser and / or a mobile 
application to send a request 204 specifying an address or 
domain name associated with or representing the filling 
station 110. The web interface 194 to the data layer server 74 
thus sends the webpage 196 as a response , and the user's 
smartphone 202 downloads the webpage 196. The smart 
phone 202 has a processor and memory device ( not shown 
for simplicity ) that causes a display of the webpage 196 as 
a graphical user interface ( or “ GUI ” ) 206 on its display 
device 208. The GUI 206 may generate one or more prompts 
or fields for specifying the authentication mechanism 190 
and transactional options . For example , the user preferably 
enters , speaks , or otherwise provides the passphrase 192 . 
Exemplary embodiments may or may not hash the authen 
tication passphrase ( using the hashing algorithm 148 above 
explained ) to produce or generate a hashed passphrase . 
Exemplary embodiments may then search the blockchain 
data layer 72 for the data records 70. That is , exemplary 
embodiments may query the blockchain data layer 72 for a 
query parameter ( such as the contract identifier 28 and / or its 
hashed value ) and the blockchain data layer 72 identifies the 
data records 70 that match or reference the query parameter . 
The filling station 110 may then process the data records 70 
to provide a transactional summary 210 of the digital 
contract 20. The filling station 110 may also allow the user 
to replenish an amount or value of the private cryptocoinage 
60 and / or the cryptocoinage 120 , even allowing the user to 
continue exchanging the cryptocoinage 60 for access to the 
blockchain data layer 72 . 
[ 0188 ] Exemplary embodiments may thus share the com 
mon authentication mechanism 190. If the entity's private 
software application 40 requires the same passphrase 192 to 
establish any terms of the digital contract 20 , then the 
passphrase 192 may have been hashed and recorded within 
the blockchain data layer 72. The single cryptographic 
address 102 , the contract identifier 28 , and / or the passphrase 
192 may be associated with the data records 70 representing 
the digital contract 20 , the private cryptocoinage 60 ( issued 
by the entity 32 ) , and the cryptocoinage 120 ( issued by the 
blockchain data layer 72 ) . The filling station 110 may thus 
identify any of the data records 70 that are commonly 

associated with the contract identifier 28 , the private cryp 
tocoinage 60 ( issued by the entity 32 ) , and / or the crypto 
coinage 120. The filling station 110 thus allows the user to 
exchange cryptocoinage 60 and 90 for access to the private 
blockchain 24 and / or the blockchain data layer 72 . 
[ 0189 ] FIG . 35 illustrates a query mechanism . Here the 
data layer server 74 may access a database 220 of data layer 
records . The database 220 of data layer records provides a 
referential record of the informational content contained 
within the blockchain data layer 72. FIG . 35 illustrates the 
data layer server 74 locally storing the database 220 of data 
layer records in its local memory device 156 , but the 
database 220 of data layer records may be remotely stored 
and accessed via the communications network 142. Regard 
less , the data layer server 74 may query the database 220 of 
data layer records for the single cryptographic address 102 
and / or the contract identifier 28 and identify and / or retrieve 
any corresponding data records 70. While the database 220 
of data layer records may have any logical structure , FIG . 35 
illustrates the database 220 of data layer records as a table 
222 that maps , converts , or translates the single crypto 
graphic address 102 and / or the contract identifier 28 to its 
corresponding entry 180 , entry block 182 , and / or directory 
block 184 within the blockchain data layer 72. Whenever the 
data layer server 74 generates the entry 180 , entry block 182 , 
and / or directory block 184 , the data layer server 74 may add 
an entry to the database 220 of data layer records . Over time , 
then , the database 220 of data layer tracks a comprehensive 
historical repository of information that is electronically 
associated with its corresponding contract identifier 28. The 
data layer server 74 may then read or retrieve the entry 180 , 
entry block 182 , and / or directory block 184 containing or 
corresponding to the contract identifier 28 . 
[ 0190 ] Exemplary embodiments thus present the entity 
specific cryptocoinage 60. Any entity 32 may create its own 
private blockchain 24 , establish its entity - specific tokens 62 , 
and define or offer digital contracts 20. The entity - specific 
tokens 62 may or may not have the value 94. The tradeable 
token 66 , for example , may have a market value based on 
supply and / or demand , thus allowing or causing the value 94 
of the tradeable token 66 to rise / fall or to increase / decrease , 
based on market forces . The credit token 64 , however , may 
have a constant price or value , perhaps set by the entity 32 . 
The entity - specific tokens 62 may be associated with the 
contract identifier 28 , thus allowing a faster and simpler 
accounting scheme for machine executable contractual 
terms . 
[ 0191 ] Exemplary embodiments may thus create coinage 
on top of coinage . The hierarchical scheme ( explained with 
reference to FIG . 29 ) allows the private entity 32 to establish 
its private cryptocoinage 60 hierarchically above the tradi 
tional BITCOIN® , ETHEREUM® , or RIPPLE® coinage . 
The entity's private data 36 remains private , but the trans 
action records 100 may be publicly documented or proved 
via the traditional BITCOIN® , ETHEREUM® , 
RIPPLE? environment . The private entity 32 , in other 
words , need to worry about or concern itself with public 
publication . The private entity 32 need only subscribe ( e.g. , 
pay for write access ) to the blockchain data layer 72. The 
digital contract 20 may also be offered , executed , and 
documented by the transaction records 100 . 
[ 0192 ] FIG . 36 illustrates a public entity 230 , according to 
exemplary embodiments . Here exemplary embodiments 
may be applied to public data 232 generated by the public 

or 
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entity 230. The public entity 230 may be a city , state , or 
federal governmental agency , but the public entity 230 may 
also be a contractor , non - governmental organization , or 
other actor that acts on behalf of the governmental agency . 
The public entity 230 operates a public server 234 and 
applies its software application 236 to its public data 232 to 
generate its governmental blockchain 238. The public entity 
230 may further generate / issue its cryptocoinage 240 and 
offer digital contracts 20 for governmental , public services . 
The data layer server 74 receives the governmental block 
chain 238 and generates the blockchain data layer 72. The 
data layer server 74 may then generate the public blockchain 
76 representing any data records 70 representing the public 
data 232 and / or the cryptocoinage 240 . 
[ 0193 ] FIGS . 37-40 further illustrate contractual execu 
tion , according to exemplary embodiments . When the con 
tract server 42 ( such as the data layer server 74 ) receives the 
blockchain 24 , exemplary embodiments inspect the block 
chain 24 to identify the contract identifier 28 and / or the 
contractual parameters 30. The contract identifier 28 and / or 
the contractual parameters 30 may be contained within the 
block 26 of data within the blockchain 24. The contract 
identifier 28 and / or the contractual parameters 30 may be 
additionally or alternatively be metadata contained within 
the block 26 of data , and / or the contract identifier 28 and / or 
the contractual parameters 30 may be a data , data field , 
and / or a file attachment . The contract identifier 28 and / or the 
contractual parameters 30 may be information or data speci 
fied by the blockchain 24 and / or by a packet header or body . 
Regardless , once the contract identifier 28 and / or the con 
tractual parameters 30 are determined , exemplary embodi 
ments may consult the electronic database 44 of contracts . 
[ 0194 ] FIG . 38 illustrates the database 44 of contracts . 
While the database 44 of contracts may have any logical 
structure , a relational database is perhaps easiest to under 
stand . FIG . 38 thus illustrates the database 44 of contracts as 
an electronic table 250 that maps , converts , or translates the 
contract identifier 28 and / or the contractual parameters 30 to 
their corresponding network resource ( s ) 50. The database 44 
of contracts may thus be preconfigured or preloaded with 
entries that assign or associate different contract identifiers 
28 and / or contractual parameters 30 to their corresponding 
network resource 50 that provides , processes , and / or 
executes the corresponding digital contract 20. As the data 
layer server 74 receives any blockchain 24 , the data layer 
server 74 may inspect the blockchain 24 for the contract 
identifier 28 and / or the contractual parameters 30. The data 
layer server 74 may then query the database 44 of contracts 
for the contract identifier 28 and / or the contractual param 
eters 30 to identify the computer file 46 , server 254 , virtual 
machine 256 , Internet protocol address 258 , or other net 
work resource 50 that is responsible for executing the digital 
contract 20. The database 44 of contracts may optionally 
contain entries that relate hashed values of the contract 
identifier 28 and / or the contractual parameters 30. Regard 
less , once the network resource 50 is identified , the data 
layer server 74 may direct , assign , or outsource the contrac 
tual information 30 to the network resource 50 for process 
ing . 
[ 0195 ] FIG . 39 illustrates a simple example . Here the 
contract identifier 28 maps to a filename 260 that is asso 
ciated with , or that represents , the computer file 46 that 
contains the programming language representing the digital 
contract 20. So , once the filename 260 is determined , the 

data layer server 74 may locally retrieve and execute the 
computer file 46 that corresponds to , or is associated with , 
the filename 260. The data layer server 74 may then execute 
the computer file 46 , perhaps based on parameters defined or 
described by the contractual parameters 30 ( such as party 
names , parameters associated with their respective perfor 
mance obligations and terms , and consideration ) . Option 
ally , the data layer server 74 may retrieve the computer file 
46 ( perhaps via the communications network 146 illustrated 
by FIGS . 22-23 ) from a remote server , database , or other 
device . Regardless , as the computer file 46 is executed , the 
data layer server 74 may generate the data records 70 in the 
blockchain data layer 72 describing the execution of the 
computer file 46. For example , the data records 70 may 
sequentially and / or serially track the execution of the com 
puter file 46 , perhaps logging or documenting periodic or 
random updates as the computer file 46 executes , perhaps 
along with timestamps toward completion . The data records 
70 may also log or document a final step or outcome of the 
programming language representing the digital contract 20 . 
Again , then , the blockchain 24 only referenced the digital 
contract 20 ( using the contract identifier 28 and / or the 
contractual parameters 30 ) . The actual execution of the 
digital contract 20 may be offloaded or outsourced to the 
data layer server 74 . 
[ 0196 ] FIG . 40 illustrates another example . Here the data 
layer server 74 may only manage the execution of the digital 
contract 20 referenced by the contract identifier 28 and / or 
the contractual parameters 30. That is , the data layer server 
74 may outsource the execution of the digital contract 20 to 
a vendor or supplier as a subcontractor process . Again , when 
the data layer server 74 receives the blockchain 24 , the data 
layer server 74 inspects the blockchain 24 to identify the 
contract identifier 28 and / or the contractual parameters 30 . 
The data layer server 74 may then consult the database 44 of 
contracts . Here , though , the database 44 of contracts has 
entries that map or relate the contract identifier 28 to a 
remote server 262 that executes the digital contract 20 as a 
cloud - based service ( perhaps as a software - as - a - service or 
SAAS ) . The database 44 of contracts may thus associate the 
contract identifier 28 to the Internet protocol address 258 
representing the remote server 262 that executes the digital 
contract 20. The database 44 of contracts may additionally 
or alternatively associate the contract identifier 28 to a 
uniform resource locator ( or “ URL ” ) 264 representing the 
remote server 262 that executes the digital contract 20 . 
Regardless , once the remote server 262 is determined , the 
data layer server 74 may retrieve and send a service request 
266 to the remote server 262 ( via the Internet protocol 
address 258 and / or the URL 264 representing the remote 
server 262 ) . The service request 266 specifies the contract 
identifier 28 and requests an execution of the corresponding 
digital contract 20. The service request 266 may also specify 
the contractual parameters 30. When the remote server 262 
( perhaps operated on behalf of a third party ) receives the 
service request 266 , the remote server 262 applies the 
parameters defined or described by the contractual param 
eters 30 to the programming code ( such as the computer file 
46 ) representing the digital contract 20. Once the digital 
contract 20 is executed , the remote server 262 may then send 
a service response 268 back to the data layer server 74 , and 
the service response 268 comprises data or information 
describing an outcome of the digital contract 20 ( such as 
consideration , payment , or performance terms ) . 
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[ 0197 ] The data layer server 74 may generate the data 
records 70 in the blockchain data layer 72. For example , the 
data records 70 may document the date and time that the 
service request 266 was sent to the remote server 262 . 
Moreover , as the remote server 262 provides the digital 
contract 20 as a service , the remote server 262 may send 
periodic or random service updates 270 as the service is 
provided along with timestamps toward completion . The 
data layer server 74 may thus generate the data records 70 
describing the service updates 270 received from the remote 
server 262. The data layer server 74 may also generate the 
data records 70 describing the service response 268 sent 
from the remote server 262 describing an outcome of the 
digital contract 20 . 
[ 0198 ] FIGS . 41-42 illustrate virtual execution , according 
to exemplary embodiments . Here the data layer server 74 
may outsource or subcontract the execution of the digital 
contract 20 to a virtual machine ( or “ VM ” ) 280. For 
example , the data layer server 74 may implement different 
virtual machines 190 , with each virtual machine 190 pro 
cessing and / or executing a particular digital contract 20 , 
perhaps as a software service . The data layer server 74 may 
provide virtual computing and / or virtual hardware resources 
to client devices , thus lending or sharing its hardware , 
computing , and programming resources . The data layer 
server 74 may thus operate or function as a virtual , remote 
resource for providing contractual execution as software 
services . Suppose , for example , that the data layer server 74 
implements four ( 4 ) virtual machines 280a - d . In practice , 
though , the data layer server 74 may implement any number 
or instantiations of different virtual machines 280 and / or 
digital contracts 20 , depending on complexity and resources . 
Moreover , as a further simplification , assume that each 
virtual machine 280a - d executes a different corresponding 
digital contract 20a - d . So , when the data layer server 74 
receives the blockchain 24 , the data layer server 74 may 
inspect the blockchain 24 for each contract identifier 28a - d 
and / or the corresponding contractual information 28a - d and 
consult the database 44 of contracts . 
[ 0199 ] FIG . 42 further illustrates the database 44 of con 
tracts . Here the database 44 of contracts may include entries 
that map the contract identifier 28 to the corresponding 
virtual machine 280. The database 44 of contracts may thus 
be preconfigured or preloaded with entries that assign or 
associate each virtual machine 280 to its corresponding 
contract identifier 28. Once the virtual machine 280 is 
identified , the data layer server 74 may then coordinate 
and / or manage the execution of the corresponding digital 
contract 20 , perhaps based on the contract information 30 . 
Suppose , for example , that the data layer application 154 has 
programming or code that functions or performs as a query 
handler . The data layer application 154 inspects the block 
chain 24 for the contract identifier 28 and queries the 
database 44 of contracts ( as above explained ) . The data layer 
application 154 thus identifies and / or retrieves the corre 
sponding virtual machine 280. Exemplary embodiments 
may thus determine whether contract identifier 28 matches 
or satisfies any of the entries specified by the database 44 of 
contracts . FIG . 42 illustrates entries that map the contract 
identifier 28 to its corresponding virtual machine 280 ( e.g. , 
an address , processor core , identifier , or other indicator ) . 
[ 0200 ] The digital contract 20 may then be executed . For 
example , once the contract identifier 28 and the virtual 
machine 280 are determined , the virtual machine 280 may 

then call , retrieve , and / or execute the computer file 46 that 
provides the digital contract 20 as a virtual service or 
process . FIG . 42 illustrates the computer file 46 locally 
stored and executed by the data layer server 74 , but the 
computer file 46 may be remotely stored , retrieved , and / or 
executed . Regardless , the virtual machine 280 may be 
instructed to retrieve , execute , and / or apply the computer file 
46 , perhaps based on the contractual information 30 . 
[ 0201 ] FIG . 42 also illustrates software services . Here the 
database 44 of contracts may include entries that map the 
contract identifier 28 to a corresponding software service 
provided by the virtual machine 280. Exemplary embodi 
ments , in other words , may relate the contract identifier 28 
to a service identifier 282. The service identifier 282 is any 
alphanumeric combination , data , or hash value that uniquely 
identifies a software service 284 provided by the virtual 
machine 280. Once the contract identifier 28 , the software 
service 284 , and / or the virtual machine 280 are determined , 
the virtual machine 280 may then provide the software 
service 284. The software service 284 may execute the 
digital contract 20 , perhaps based on the contractual infor 
mation 30 . 
[ 0202 ] FIG . 43 illustrates cryptographic affinities , accord 
ing to exemplary embodiments . Here the data layer server 74 
may create or generate a cryptographic affinity 290 describ 
ing contractual execution . This disclosure above explained 
how the data layer server 74 may generate the data records 
70 in the blockchain data layer 72. This disclosure also 
above explained how the data records 70 may document 
execution of the digital contract 20. Here , then , the crypto 
graphic affinity 290 may uniquely identify the digital con 
tract 20 executed by the virtual machine 280. For example , 
once the contract identifier 28 and the virtual machine 280 
are determined ( as above explained ) , the hashing algorithm 
148 may generate a unique hash value 150. That is , the 
hashing algorithm 148 may hash the contract identifier 28 
with a virtual machine ( “ VM ” ) identifier 292 to generate the 
cryptographic affinity 290. The virtual machine identifier 
292 is any alphanumeric combination , data , or hash value 
that uniquely identifies the virtual machine 280. The cryp 
tographic affinity 290 may then be documented by the data 
records 70 in the blockchain data layer 72 , thus evidencing 
the execution of the digital contract 20. Indeed , the crypto 
graphic affinity 290 may be published via the public block 
chain 76 as the cryptographic proof 80 , thus further publicly 
evidencing the execution of the digital contract 20 . 
[ 0203 ] FIG . 44 illustrates virtual assignments based on the 
blockchain data layer 72 , according to exemplary embodi 
ments . As this disclosure previously explained , exemplary 
embodiments may generate the data records 70 representing 
the blockchain data layer 72 ( such as the entries 180 , the 
entry blocks 182 , and / or the directory blocks 184 explained 
with reference to FIGS . 25-27 ) . Exemplary embodiments 
may thus assign the blockchain 24 and / or the virtual 
machine 280 that executes the digital contract 20 , based on 
the number of the entries 180 , the entry blocks 182 , and / or 
the directory blocks 184 generated within the blockchain 
data layer 72. For example , as the data records 70 are 
generated , the data layer server 74 may determine a rate 290 
of generation . That is , as the data records 70 are generated 
when or while executing the digital contract 20 , exemplary 
embodiments may sum or count the entries 180 , the entry 
blocks 182 , and / or the directory blocks 184 that are gener 
ated over time ( such as per second , per minute , or other 
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interval ) . Exemplary embodiments , for example , may call or 
initialize a counter having an initial value ( such as zero ) . At 
an initial time ( such as when the blockchain 24 is received 
or when the contract identifier 28 is determined ) , the counter 
commences or starts counting or summing the number of the 
entries 180 , the entry blocks 182 , and / or the directory blocks 
184 ( generated within the blockchain data layer 72 ) that are 
commonly associated with or reference the blockchain 24 
( perhaps according to the chain ID 174 ) and / or the contract 
identifier 28. The counter stops counting or incrementing at 
a final time and exemplary embodiments determine or read 
the final value or count . Exemplary embodiments may then 
calculate the rate 290 of generation as the sum or count over 
time and consult or query the electronic database 44 of 
contracts for the rate 290 of generation . Exemplary embodi 
ments may thus define entries that map or associate different 
rates 290 of generation and / or ranges to their corresponding 
contract identifier 28 and / or virtual machines 280. If the 
database 44 of contracts has an entry that matches or satisfies 
the rate 290 of generation , exemplary embodiments identify 
the corresponding virtual machine 280 . 
[ 0204 ] The rate 290 of generation may thus be a feedback 
mechanism . As the blockchain 24 is received . the data 
records 70 are requested , and / or the digital contract 20 is 
executed , the rate 290 of generation of the data records 70 
may determine the virtual machine 280 that is assigned 
adequate capacity or bandwidth . One of the blockchains 24 
and / or virtual machines 280 , for example , may be reserved 
for digital contracts 20 having a heavy , disproportionate , or 
abnormally large rate 290 of generation . Another of the 
blockchains 24 and / or virtual machines 280 may be reserved 
for digital contracts 20 having a medium , intermediate , or 
historically average rate 290 of generation . Still another 
blockchain 24 and / or virtual machine 280 may be reserved 
for the digital contracts 20 having a light , low , or historically 
below average rate 290 of generation . The rate 290 of 
generation may thus be a gauge or measure of which 
blockchain 24 , digital contract 20 , and / or virtual machine 
280 is assigned the resources . 
[ 0205 ] Exemplary embodiments thus include a service 
environment . Exemplary embodiments may manage and / or 
execute many different digital contracts 20 offered by many 
different vendors or suppliers . Indeed , the data layer server 
74 may manage or even execute the digital contracts 20 
while also generating the blockchain data layer 72 as still 
another service . The data layer server 74 may thus acts as a 
subcontractor or service provider , perhaps in a subscription 
or other compensation scheme . Any customer or client ( such 
as the entity server 140 explained with reference to FIGS . 
22-23 ) may thus send or forward its private blockchain 24 
( generated from its private data 36 ) to the data layer server 
74 for management or execution of any digital contract 20 . 
The data layer server 74 may generate the data records 70 of 
the blockchain data layer 72 that document the management 
or execution of any digital contract 20. Moreover , the data 
layer server 74 may publicly publish the cryptographic proof 
80 within the public blockchain 76 , thus further document 
ing immutable evidence of the management or execution of 
any digital contract 20. Indeed , the entity server 140 may 
also generate the blocks 26 of data within the private 
blockchain 24 that also document the date and time that the 
management or execution of any digital contract 20 was 
sent / requested . The entity server 140 may then pay or 
reward the data layer server 74 in exchange for the digital 

contract 20 and / or the data records 70 in the blockchain data 
layer 72 ( such as granting its crytpocoinage 60 and 120 , as 
explained with reference to FIG . 19 ) . 
[ 0206 ] The data layer server 74 may thus serve many 
blockchains 24 requesting many different contractual ser 
vices . The financial institution 34 , for example , may send or 
forward its private blockchain 36a ( as illustrated with ref 
erence to FIGS . 20-21 ) to the data layer server 74 for 
application or execution of any digital contract 20 ( by 
specifying the contract identifier 20 , as above explained ) . 
The retailer 122 may similarly send or forward its private 
blockchain 36b to the data layer server 74 for application or 
execution of any digital contract 20. The online website 124 
may also send or forward its private blockchain 36c to the 
data layer server 74 for application or execution of any 
digital contract 20. The data layer server 74 may generate the 
data records 70 of the blockchain data layer 72 that docu 
ment the management and / or execution of any digital con 
tract 20 , and the data layer server 74 may publicly publish 
each cryptographic proof 80 within the public blockchain 
76 , thus further documenting immutable evidence of the 
management and / or execution of any digital contract 20. The 
entity 32 may then pay or reward the data layer server 74 via 
their respective crytpocoinage 60 and 120 . 
[ 0207 ] Exemplary embodiments thus only need to identify 
the digital contract 20. The contract identifier 28 and the 
contractual parameters 30 need only be informational con 
tent in the private blockchain 24. The contract identifier 28 
is any digital identifying information that uniquely identifies 
or references the digital contract 20. The contract identifier 
28 may be an alphanumeric combination that uniquely 
identifies a vendor and / or version of the digital contract 20 
and / or a processor or executioner of the digital contract 20 . 
The contract identifier 28 may be expressed as a unique hash 
value that is included within , or specified by , the private 
blockchain 24. Similarly , the contractual parameters 30 may 
identify the parties to the digital contract 20 , their respective 
performance obligations and terms , and consideration . 
[ 0208 ] FIGS . 45-51 illustrate an architectural scheme , 
according to exemplary embodiments . This disclosure above 
explained that the data layer server 74 may only manage the 
execution of the digital contract 20. The implementation 
and / or actual execution of the digital contract 20 may thus 
be separate from the data layer server 74 that generates the 
blockchain data layer 72. FIG . 45 , for example , illustrates 
the data layer server 74 communicating via the communi 
cations network 142 with the remote server 262. The data 
layer server 74 generates the blockchain data layer 72 , and 
the remote server 262 executes at least some portion of the 
digital contract 20. The remote server 262 may thus have a 
hardware processor 300 ( e.g. , " uP ) , application specific 
integrated circuit ( ASIC ) , or other component that executes 
a contract application 302 stored in a local memory device 
304. The remote server 262 has a network interface to the 
communications network 142 , thus allowing two - way , bidi 
rectional communication with the data layer server 74. The 
contract application 302 includes instructions , code , and / or 
programs that cause the remote server 262 to perform 
operations , such as executing at least some portion of the 
digital contract 20 . 
[ 0209 ] FIG . 46 illustrates a request mechanism . The data 
layer application 154 , for example , identifies the contract 
identifier ( s ) 28 and / or the contractual parameters 30 asso 
ciated with or representing the digital contract 20. The 
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contract identifier ( s ) 28 and / or the contractual parameters 30 
may be sent to the data layer server 74 as an input ( such as 
from the entity server 140 , as explained with reference to 
FIGS . 22-24 ) , or the contract identifiers 28 and / or the 
contractual parameters 30 may be contained as information 
in the private blockchain 24. Regardless , the data layer 
server 74 may then identify the network address , IP address , 
URL , or other nomenclature representing the remote server 
262 that executes at least some portion of the digital contract 
20 ( perhaps via the database 44 of contracts , as earlier 
explained ) . The data layer server 74 sends the service 
request 266 to the remote server 262 , and the service request 
266 may include or specify the contract identifier 28 and / or 
the contractual parameters 30. When the remote server 262 
receives the service request 266 , the remote server 262 
applies the contractual parameters 30 to the portion of the 
digital contract 20 and generates a contractual result 306 . 
The remote server 262 may then send the service response 
268 back to the data layer server 74 , and the service response 
268 may comprise the contractual result 306 . 
[ 0210 ] Exemplary embodiments may thus exchange 
inputs and outputs . When the data layer server 74 sends the 
service request 266 to the remote server 262 , the service 
request 266 may include or specify one or more of the 
contract identifiers 28 and / or the contractual parameters 30 . 
Suppose , for example , that the contract identifiers 28 and / or 
the contractual parameters 30 are represented as hash values . 
The hash values may be identified from , or specified by , the 
private blockchain 24. The hash values may additionally or 
alternatively be generated by the data layer application 154 
( such as by calling , invoking , or executing the hashing 
algorithm 148 , as above explained ) . Regardless , the service 
request 266 may thus include or specify the hash values 
representing the contract identifiers 28 and / or the contractual 
parameters 30. When the remote server 262 receives the 
service request 266 , the contract application 302 may use or 
accept the hash values as inputs to generate the contractual 
result 306 as an output . The contract application 302 may 
further encrypt the contractual result 306 ( such as calling , 
invoking , or executing the hashing algorithm 148 ) to gen 
erate another hash value representing the contractual result 
306 . 

[ 0211 ] Exemplary embodiments provide contractual 
proofs . When the data layer server 74 sends the service 
request 266 to the remote server 262 , the data records 70 
may document the service request 266 as one of the cryp 
tographic proofs 80. When the data layer server 74 receives 
the service response 268 , the data records 70 document that 
receipt and the contractual result 306 as another one of the 
cryptographic proofs 80. The data records 70 thus prove that 
at least the portion of the digital contract 20 was outsourced 
to a vendor or supplier as a subcontractor process or assign 
ment . The data records 70 also prove that at least the portion 
of the digital contract 20 was executed to provide the 
contractual result 306. The data layer server 74 may then 
compare the contractual result 306 ( such as its hash value ) 
to a predefined or expect value . If the contractual result 306 
matches or equals the predefined or expect value , then the 
data layer application 154 may be programmed or coded to 
infer that the contract successfully executed and / or the 
vendor or supplier performed as obligated . However , if the 
contractual result 306 fails to match or equal the predefined 
or expect value , then the data layer application 154 may be 

programmed or coded to infer that the contract is not 
satisfied and / or the vendor or supplier failed to perform as 
obligated . 
[ 0212 ] FIG . 47 illustrates a layered contractual process . 
Here the digital contract 20 may have different or individual 
components , portions , or sub - parts that cumulatively com 
bine to produce the contractual result 306. The different 
components , portions , or sub - parts may be software modules 
310 that can be separately executed to generate the overall 
or final contractual result 306. A simple digital contract 20 , 
for example , may only have a few or several software 
subroutines or modules 310 , while a complex or compli 
cated digital contract 20 may have many or hundreds of 
different software subroutines or modules 310. As the reader 
likely understands , such a complicated software structure is 
too difficult to illustrate . For simplicity , then , FIG . 47 
illustrates the digital contract 20 having four ( 4 ) software 
modules 310a - d . The entire contract application 302 , in 
other words , may have four ( 4 ) different application layers 
312a - d . Each componentry module 310a - d or layer 312a - d 
may have its own corresponding contract identifier 28a - d . 
When the remote server 262 receives the service request 
266 , exemplary embodiments may then feed the contractual 
parameters 30 as inputs 314a - d to the software modules 
310a - d . Each different software module 310 may thus gen 
erate its respective or corresponding output 316a - d , which 
may be combined or processed to generate the overall or 
final contractual result 306 . 
[ 0213 ] FIG . 48 illustrates hierarchical execution . Here the 
different software modules 310 may be serially or sequen 
tially executed to generate the overall or final contractual 
result 306. For example , the software module 310a may 
accept at least some of the contractual parameters 30 as the 
input 314a , execute its respective programming code , and 
generate its corresponding output 316a . Here , though , the 
output 316a may then be routed or sent to the software 
module 310b ( illustrated as the application layer 312b ) as its 
input 314b . Its respective programming code is then 
executed to generate its corresponding output 316b , based 

316a generated by or received from the 
software module 310a . Similarly , software module 3100 
accepts the output 316b and generates output 316c , which is 
received by software module 310d as input 314d and used to 
generate the output 316d . While exemplary embodiments 
may continue processing the outputs 316a - d to generate any 
desired outcome , for simplicity FIG . 40 illustrates the output 
316d as the final contractual result 306. Exemplary embodi 
ments may thus use the software modules 310a - d as feed 
back mechanisms to monitor or even enforce contractual 
rule - based obligations defined or specified by the digital 
contract 20 . 
[ 0214 ] FIG . 49 illustrates the blockchain data layer 72 . 
Here the blockchain data layer 72 may document the pro 
cessing and / or execution of each software module 310a - d , 
its respective input ( s ) 314a - d , its respective output ( s ) 316a 
d , and perhaps a corresponding timestamp ( not shown for 
simplicity ) . The data records 70 may further document or 
record the corresponding contract identifier 28a - d and / or the 
chain identifier 174. The data layer server 74 may thus 
receive the service updates 270 ( via the communications 
network 142 ) as each software module 310a - d performs or 
executes its corresponding contractual service . The data 
layer server 74 may then generate the data records 70 in the 
blockchain data layer 72 , thus documenting each software 
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component's contribution toward the overall or final con 
tractual result 306. The data records 70 may also be hashed 
to generate the cryptographic proofs 80 , as above explained . 
[ 0215 ] FIG . 50 also illustrates contractual execution . Here , 
though , the different software modules 310 may be executed 
by different devices . Suppose , for example , that the remote 
server 262a locally stores and executes the software module 
310a , while the remote server 262b locally stores and 
executes the software module 310b . Suppose also that the 
remote server 262c locally stores and executes the software 
module 310c and the remote server 262d locally stores and 
executes the software module 310d . Exemplary embodi 
ments may thus source or subcontract the different portions 
of the digital contract 20 to different machines for execution . 
The remote server 262a , for example , may specialize in the 
software module 310a . The remote server 262a may thus 
accept the service request 266 from clients , execute the 
software module 310a , and return send the service response 
268 ( as explained with reference to FIG . 46 ) . The remote 
server 262a may also send the service update ( s ) 270 to the 
data layer server 74 , thus allowing the blockchain data layer 
72 to document the contractual service provided by the 
software module 310a . The remote servers 262b - d may 
similarly specialize in the software modules 310b - d to 
provide their respective contractual services . 
[ 0216 ] FIG . 51 illustrates an overall architectural scheme . 
As the reader may envision , there may be hundreds , thou 
sands , millions , or even billions of contractual relationships 
between many different parties . As smart , digital contracts 
grow in acceptance and usage , the blockchain data layer 72 
is expected to exponentially grow , thus requiring ever 
increasing hardware and software resources . In plain words , 
there may be many data layer servers 74 generating the data 
records 70 in the blockchain data layer 72. While there may 
be hundreds or even thousands of data layer servers 74 , FIG . 
51 simply illustrates four ( 4 ) data layer servers 74a - d that 
cooperate to generate the blockchain data layer 72. As the 
processing load increases or grows ( such as according to the 
rate 290 of generation , as above explained ) , the number of 
data layer servers 74 may also grow . 
[ 0217 ] The blockchain data layer 72 may thus be separate 
from an implementation and execution of the digital contract 
20. The data layer servers 74 , in other words , may be 
separately networked and / or addressed from the remote 
servers 262 providing the contractual services representing 
the software modules 310 of the digital contract 20. Any of 
the data layer servers 74 may send data or information as 
inputs to any one of the remote servers 262 , and the 
corresponding software module 310 performs its contractual 
service and sends its output 316 back to the blockchain data 
layer 72 ( perhaps via the service request 266 , the service 
response 268 , and the service update 270 as earlier explained 
and illustrated ) . Some of the remote servers 262 may pro 
vide virtual services , such as a virtual machine ( as above 
explained ) that executes any of the software modules 310 . 
[ 0218 ] FIG . 52 illustrates compliance scheme , according 
to exemplary embodiments . As the reader may understand , 
some smart , digital contracts have jurisdictional require 
ments . For example , the digital contract 20 may have 
programming code that requires an execution or processing 
in a particular region or country . That is , the digital contract 
20 may have contractual rules and / or provisions that must be 
enforced in the United States , the European Union , or the 
Isle of Man . Components or portions of the digital contract 

20 may require execution or location in the Cayman Islands , 
Idaho , or Hong Kong . The digital contract 20 , in other 
words , may have a geographic parameter 320. The geo 
graphic parameter 320 may be a locational requirement , 
restriction , or preference for at least some portion of the 
digital contract 20. The geographic parameter 320 can be 
any data , information , field , metadata , or code for enforcing 
the locational requirement , restriction , or preference . 
Indeed , the geographic parameter 320 may even be finely 
expressed or defined as global positioning system ( “ GPS " ) 
information or coordinates at which at least some portion of 
the digital contract 20 must be processed or executed . 
[ 0219 ] The geographic parameter 320 may be an input 
value . As FIG . 52 illustrates , the geographic parameter 320 
may be read or received via the private blockchain 24 
( perhaps along with the contract identifier 28 and / or the 
contractual parameter 30 ) . The data layer server 74 , in other 
words , may identify the geographic parameter 320 as data , 
information , or a hash value contained within the block 26 
of data . However , the geographic parameter 320 may addi 
tionally or alternatively be received and / or identified within 
a header of body / payload of a packet 322 of data ( packetized 
according to the Internet Protocol , just as the contract 
identifier 28 and / or the contractual parameter 30 may be 
identified ) 
[ 0220 ] Regardless , once the geographic parameter 320 is 
determined , exemplary embodiments may again consult the 
database 44 of contracts . The database 44 of contracts may 
have entries that electronically associate the contract iden 
tifier ( s ) 28 and / or the contractual parameter ( s ) 30 to the 
geographic parameter 320. The data layer application 154 
may instruct the data layer server 74 to query the database 
44 of contracts for either , any , or all of the contract identi 
fiers 28 , the contractual parameters 30 , and / or the geo 
graphic parameters 320 to identify and / or retrieve the cor 
responding database entries . As a simple example , suppose 
a file component of the digital contract 20 must be processed 
in a particular geographic region ( such as the British Virgin 
Islands or Canada ) . The corresponding contract identifier 28 , 
in other words , may be electronically associated with a 
particular geographic region , as defined by a tabular entry in 
the database 44 of contracts . Once the region is determined , 
the data layer server 74 may then route the contract identifier 
28 , the contractual parameter 30 , and / or the geographic 
parameter 320 to the remote server 262 that is associated 
with , or even located within , the region . Exemplary embodi 
ments , for example , may implement the service request 266 , 
the service response 268 , and the service update 270 ( as 
earlier explained ) . The remote server 262 may then process 
or execute the digital contract 20 using the contract identifier 
28 and / or the contractual parameter 30 ( as this disclosure 
earlier explained ) . 
[ 0221 ] Other examples explain the geographic parameter 
320. Suppose that the contract identifier 28 and / or the 
contractual parameter 30 map ( s ) to a particular server , 
cluster of servers , and / or a particular virtual machine 
( “ VM ” ) . The data layer server 74 may then route the contract 
identifier 28 , the contractual parameter 30 , and / or the geo 
graphic parameter 320 to the remote server 262 that is 
associated with the cluster of servers and / or the virtual 
machine . The remote server 262 may then process or 
execute the digital contract 20 using the contract identifier 
28 and / or the contractual parameter 30 ( as this disclosure 
earlier explained ) . More likely , though , the contract identi 
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fier 28 and / or the contractual parameter 30 will relate to a 
particular IP address or uniform resource locator ( " URL " ) . 
The data layer server 74 may then route the contract iden 
tifier 28 , the contractual parameter 30 , and / or the geographic 
parameter 320 to the remote server 262 that is associated 
with the IP address or URL for processing ( again , as this 
disclosure earlier explained ) . 
[ 0222 ] Exemplary embodiments may thus implement con 
tractual provisions . Some digital contracts 20 may require a 
particular server , perhaps implementing or hosting a par 
ticular website , network , authentication scheme , program 
ming , or other geographic parameter 320. Some parties to 
the digital contract 20 may also require a particular server , 
perhaps as specified by the geographic parameter 320. Some 
digital contracts 20 may have compliance obligations , per 
haps defined by a particular jurisdiction and expressed as the 
geographic parameter 320. Servers , webpages , networks and 
other resources may be dedicated to specific jurisdictions , as 
expressed by the geographic parameter 320 . 
[ 0223 ] FIGS . 53-59 illustrate a decisional architecture and 
scheme , according to exemplary embodiments . Even though 
the blockchain environment 22 enables an execution of the 
smart , digital contract 20 , some digital contracts may be too 
complex and / or too cumbersome to implement on the block 
chain 24. As this disclosure above explains , exemplary 
embodiments may thus put smaller contractual components 
of the digital contract 20 on any blockchain ( such as the 
private blockchain 24 or the public blockchain 76 ) , validate 
the contractual components ( perhaps via the cryptographic 
proof 80 ) , incorporate the cryptographic proof 80 into a 
larger component of the digital contract 20 , and then validate 
the larger component . 
[ 0224 ] Exemplary embodiments may further implement 
one or more decision tables 326. As the reader may under 
stand , the decision table 326 may be used to implement at 
least a component of the digital contract 20. That is , the 
decision table 326 may represent one or more rules or logic 
conditions 328 , one or more inputs 330 , and one or more 
decisional outputs 332. The decision table 326 may thus be 
visually represented as a table having rows and columns . In 
simple words , once the input 330 is known , a processing or 
execution engine ( such as the entity server 140 or other 
device ) electronically maps or associates the input 330 to the 
appropriate rule or logic condition 328 and generates the 
decisional output 332. Exemplary embodiments may then 
log or record the decisional output 332 , along with its 
corresponding the input 330 , rule or logic condition 328 , and 
a date / time stamp . 
[ 0225 ] Exemplary embodiments may thus document any 
decision . In general , the smart , digital contract 20 is an 
agreement between parties / participants about services , prod 
ucts , and / or money . In order to make the decisional output 
332 , information is provided ( such as the input 330 ) and the 
rule or logic condition 328 is executed . In an interactive 
process , each party / participant might contribute data to a 
single decision . In other words , the parties may exchange 
data to perform the decisional output 332. Exemplary 
embodiments may thus map each decisional output 332 
( perhaps representing a decision model ) to a decision taken 
by a single party . Each party , in other words , may commu 
nicatively exchange the result of its decision such that others 
can base their decisions on their decisional output 332 , thus 
collaboratively executing the different components of the 
digital contract 20 . 

[ 0226 ] FIG . 54 illustrates an impartial , trusted intermedi 
ary . When any party or participant to the digital contract 20 
acts or executes , exemplary embodiments may log or 
archive their respective action ( s ) . For example , the data 
layer server 74 may be informed of any decision - making 
process . Suppose , for example , that the entity 32 ( acting as 
a party to the digital contract 20 ) wishes to document or 
prove its contractual performance . That is , the entity server 
140 sends its decisional output 332 ( perhaps via the com 
munications network 142 illustrated in FIGS . 22-23 ) to the 
data layer server 74 for documentation . The decisional 
output 332 may thus be read or received via the private 
blockchain 24 ( perhaps along with the contract identifier 28 
and / or the contractual parameter 30 ) . The data layer server 
74 , in other words , may identify the decisional output 332 , 
along with its corresponding input 330 , its rule or logic 
condition 328 , and the date / time stamp , as data , information , 
or hash values contained within the block 26 of data ( as FIG . 
53 illustrated ) . However , the decisional output 332 ( and / or 
the contract identifier 28 , the contractual parameter 30 , the 
input 330 , the rule or logic condition 328 , and the date / time 
stamp ) may additionally or alternatively be received and / or 
identified within a header of body / payload of the packet 322 
of data ( packetized according to the Internet Protocol ) . 
[ 0227 ] Regardless , the data layer server 74 may then 
generate the data records 70 in the blockchain data layer 72 , 
as this disclosure above explained . The data records 70 log 
or record the decisional output 332 ( sent from the party 
participant ) , along with its corresponding input 330 , the 
decision table 326 , the rule or logic condition 328 , and the 
date / time stamp of performance . The blockchain data layer 
72 , in other words , provides neutral , documentary evidence 
that the party executed its transactional portion of the smart , 
digital contract 20. Moreover , the blockchain data layer 72 
may also add another layer of cryptographic hashing to 
generate the public blockchain 76 and the cryptographic 
proof 80. The blockchain data layer 72 thus may again act 
as the validation service 78 that validates the party per 
formed its portion of the digital contract 20. Exemplary 
embodiments may thus be used as an audit trail to recon 
struct the party's decision - making process and who provided 
the input 330 . 
[ 0228 ] Exemplary embodiments may even document fine 
granularity . When the data layer server 74 receives the 
decisional output 332 , the data or information may even 
identify or pinpoint the network resource 250. That is , when 
entity 32 ( acting as a party to the digital contract 20 ) wishes 
to document or prove its contractual performance , the deci 
sional output 332 may even include data or information 
identifying the particular server 254 or cluster or virtual 
machine 256 that generated the decisional output 332 . 
Indeed , the data or information may even identify or pin 
point the particular IP address or uniform resource locator 
( " URL " ) . The data records 70 may thus document the 
machine , manufacturer , model , and / or chassis hardware 
inventory that performed the portion of the digital contract 
20 . 
[ 0229 ] FIG . 55 illustrates contractual management . Here 
again the data layer server 74 may manage the execution of 
the digital contract 20. When any party , participant , or 
subcontractor performs a portion or component of the digital 
contract 20 , the data layer server 74 may coordinate and 
validate the contractual components . Suppose again that the 
data layer server 74 receives the contract identifier 28 and / or 
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the contractual parameters 30 ( as earlier explained ) . The 
contract identifier 28 may represent a single , large digital 
contract 20. The contract identifier 28 , however , may rep 
resent only a single or a few contractual components of the 
digital contract 20. The contract identifier 28 , in other words , 
may map or relate to a sequence or series of one or more 
table identifiers 334. Each table identifier 334 may be an 
alphanumeric combination or a unique hash value . Regard 
less , each table identifier 334 uniquely identifies the corre 
sponding decision table 326 that decides a componentry 
portion of the digital contract 20. When the data layer server 
74 receives the one or more contract identifiers 28 , the data 
layer server 74 may then consult the database 44 of con 
tracts . 
[ 0230 ] FIG . 56 further illustrates the database 44 of con 
tracts . Here the database 44 of contracts may have additional 
entries that map or relate the contract identifier 28 to the 
table identifier 334 and / or to the network resource 250 that 
executes the corresponding componentry portion of the 
digital contract 20 ( perhaps again as a cloud - based service ) . 
The contract identifier 28 , in other words , may map or relate 
to a sequence or series of one or more table identifiers 334 . 
Each table identifier 334 may be an alphanumeric combi 
nation or a unique hash value . Regardless , each table iden 
tifier 334 uniquely identifies the corresponding decision 
table 326 that decides a componentry portion of the digital 
contract 20. When the data layer server 74 receives the one 
or more contract identifiers 28 , the data layer server 74 may 
then consult the database 44 of contracts to determine any 
corresponding entry ( as this disclosure above explains ) . 
[ 0231 ] FIG . 57 illustrates outsourcing . Once the network 
resource 50 is determined ( recall that the network resource 
50 may execute the corresponding componentry portion of 
the digital contract 20 ) , the data layer server 74 may utilize 
the request mechanism . Suppose , for example , that the 
database 44 of contracts identifies the remote server 262 as 
the network resource 50. The data layer server 74 may thus 
instruct the remote server 262 to execute the corresponding 
decision table 326. The data layer server 74 , for example , 
sends the service request 266 ( as earlier explained ) , and the 
service request 266 may specify the table identifier 334 
and / or the input 330 as the contractual parameters 30. When 
the remote server 262 receives the service request 266 , the 
remote server 262 applies the input 330 to the decision table 
326 representing the digital contract 20. Once the decisional 
output 332 is determined , the remote server 262 may then 
send the service response 268 back to the data layer server 
74 , and the service response 268 comprises data or infor 
mation describing the decisional output 332. The data layer 
server 74 may generate the data records 70 in the blockchain 
data layer 72 that document the service request 266 and the 
service response 268 , perhaps including any service updates 
270 as the decision table 326 is executed . 
[ 0232 ] FIG . 58 illustrates contractual participation . Here 
the data layer server 74 may execute at least a componentry 
portion of the digital contract 20. That is , the data layer 
server 74 may locally store and / or access one or more of the 
decision tables 326 representing the digital contract 20 . 
When the data layer server 74 receives the contract identifier 
28 and / or the contractual parameters 30 ( as earlier 
explained ) , the data layer server 74 may consult the database 
44 of contracts . Here , though , the database 44 of contracts 
has one or more entries that map or relate the contract 
identifier 28 to the virtual machine 280 that executes the 

decision table 326. The database 44 of contracts may thus 
electronically associate the contract identifier 28 to the table 
identifier ( s ) 334 and the virtual machine ( s ) 280 that locally 
execute the decision table ( s ) 326. The decisions table 326 
may thus have virtual assignments . Once the virtual machine 
280 and / or the decision table 326 is determined , the virtual 
machine 280 is requested or instructed to apply the input 330 
to the corresponding decision table 326 to generate the 
decisional output 332. The data layer server 74 may then 
generate the data records 70 in the blockchain data layer 72 
that document the local contractual performance ( as earlier 
explained ) . 
[ 0233 ] As FIG . 58 illustrates , feedback may be used . 
Exemplary embodiments may assign the virtual machine 
280 based on the data records 70 in the blockchain data layer 
72. That is , as the decision table 326 consumes more and 
more of the data records 70 ( e.g. , the number of the entries 
180 , the entry blocks 182 , and / or the directory blocks 184 
generated within the blockchain data layer 72 , as earlier 
explained ) , the rate 290 of generation may be used as a 
feedback mechanism ( as this disclosure earlier explained ) . 
Highly used or called decision tables 326 , in other words , 
may be assigned to virtual machines 280 having greater 
capacity or bandwidth . The database 44 of contracts may 
thus define entries that map or associate different rates 290 
of generation and / or ranges to their corresponding table 
identifier 334 and / or virtual machines 280. If the database 44 
of contracts has an entry that matches or satisfies the rate 290 
of generation , exemplary embodiments identify the corre 
sponding virtual machine 280. Some virtual machines 280 , 
for example , may be reserved for decision tables 326 having 
a heavy , disproportionate , or abnormally large rate 290 of 
generation . Other virtual machines 280 may be reserved for 
decision tables 326 having intermediate and low rates 290 of 
generation . The rate 290 of generation may thus be a gauge 
or measure of which virtual machine 280 is assigned the 
decision table 326 . 
[ 0234 ] Exemplary embodiments thus include a service 
environment . Exemplary embodiments may manage and / or 
execute many different decision tables 326 offered by many 
different vendors or suppliers . Indeed , the data layer server 
74 may manage or even execute the digital contracts 20 
while also generating the blockchain data layer 72 as still 
another service . The data layer server 74 may thus acts as a 
subcontractor or service provider , perhaps in a subscription 
or other compensation scheme . Any customer or client may 
thus send or forward its input 330 and / or its decisional 
output 332 to the data layer server 74 for management or 
execution of any digital contract 20. The data layer server 74 
may generate the data records 70 of the blockchain data 
layer 72 that document the management or execution of any 
portion of component of the digital contract 20. Moreover , 
the data layer server 74 may publicly publish the crypto 
graphic proof 80 within the public blockchain 76 , thus 
further documenting immutable evidence of the manage 
ment or execution of any digital contract 20. Any party , 
participant , or vendor / subcontractor may then pay or reward 
the data layer server 74 ( such as granting its crytpocoinage 
60 and 120 , as explained with reference to FIG . 19 ) . 
[ 0235 ] The data layer server 74 may thus provide contrac 
tual services . The financial institution 34 , for example , may 
send or forward its input 330 and / or its decisional output 332 
to the data layer server 74 for contractual documentation . 
Similarly , the retailer 122 , the online website 124 , and the 
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manufacturer 128 may also send its input 330 and / or its 
decisional output 332 to the data layer server 74 for con 
tractual documentation . The data layer server 74 may gen 
erate the data records 70 of the blockchain data layer 72 that 
document the management and / or execution of any decision 
table 326 representing any portion of the digital contract 20 . 
The data layer server 74 may also publicly publish each 
cryptographic proof 80 within the public blockchain 76 , thus 
further documenting immutable evidence of the manage 
ment and / or execution of any digital contract 20. The data 
layer server 74 may be paid or rewarded via their respective 
crytpocoinage 60 and 120 . 
[ 0236 ] Exemplary embodiments may thus create factored 
decision tables driven by a table engine . Smart , digital 
contracts are notoriously dangerous . Decision tables are 
significantly easier to verify and validate . However , decision 
tables may be large and perhaps cannot be placed on a 
blockchain . Exemplary embodiments may thus put smaller 
contractual components of the digital contract 20 on any 
blockchain ( such as the private blockchain 24 or the public 
blockchain 76 ) , validate the contractual components ( per 
haps via the cryptographic proof 80 ) , incorporate the cryp 
tographic proof 80 into a larger component of the digital 
contract 20 , and then validate the larger component . 
[ 0237 ] Exemplary embodiments thus may separate the 
blockchain data layer data 72 from contractual execution . 
The data layer server 74 ( generating the blockchain data 
layer data 72 ) may thus accept inputs from the servers ( such 
as the remote server 262 ) executing any component of the 
digital contract 20. The servers ( such as the remote server 
262 ) executing any component of the digital contract 20 may 
also send data to the data layer server 74. The data layer 
server 74 may thus execute the decision table . The remote 
server 262 may additionally or alternatively execute the 
decision table when processing the digital contract 20. The 
decision table may thus be sent and / or received as an 
input / output . Even a virtual machine may access and use the 
decision table . 
[ 0238 ] Exemplary embodiments thus establish the digital 
contract 20 as an identity . Because only the contract iden 
tifier 28 is needed , the digital contract 20 may be separated 
into various smaller components ( such as the software 
modules 310 and / or layers 312 , as above explained ) . Each 
software module 310 and / or layer 312 may have its own 
contract identifier 28. The digital contract 20 is thus trans 
formed to an identity , which may be easily updated after 
software bugs are found and consensus is documented by 
stake holders . Exemplary embodiments thus provide an 
ability to repair bugs and to claw back or backup spurious 
results . The separation of the blockchain data layer data 72 
thus isolates and protects the data records 70 . 
[ 0239 ] Exemplary embodiments thus describe a novel 
smart contract architecture to be run on blockchains . The 
digital contract 20 , and / or its contractual components , may 
each have its own digital identity defined within the block 
chain data layer data 72. The contract identifier 28 , in other 
words , may uniquely identity a version , thus allowing stake 
holders ( using their digital identities ) to approve updates to 
respond to changes in business , to approve bug resolution , 
and to accommodate new participants in the digital contract 
20 , without having to dissolve the original version and 
without redeploying or requiring the blockchain to be 
reversed and modified to avoid an incorrect , improper , or 
unacceptable result by perhaps a majority of users . As the 

reader may understand , modifying a blockchain to resolve 
an issue involves many more stakeholders with an interest in 
the blockchain but having no interest in the smart contract . 
This has been a problem with conventional blockchain 
architectures . 
[ 0240 ] Exemplary embodiments may separate the block 
chain data layer data 72 from the rules engine architecture 
that executes the digital contract 20. Exemplary embodi 
ments allow for light weight , secure , and extendible digital 
identity . Digital identity can be applied to implementation of 
the virtual machine that runs the digital contract 20. Digital 
identity can be applied to any smart contract and / or to any 
stakeholder ( s ) . Stakeholders may thus be paid ( perhaps via 
the cryptocurrencies as explained with reference to FIGS . 13 
& 15-21 ) for who they are , such as to a particular blockchain 
address , meaning if a stakeholder's address is compromised , 
then the stakeholder can update the address without having 
to modify the digital contract 20. This virtual address 
modification is similar to the real world for when a business 
moves from one geographic location to another , the business 
does not invalidate all its contracts . In the real world , the 
business merely informs parties of its new physical address 
and contact information . Exemplary embodiments allow 
management of the digital contract 20 in a flexible fashion , 
similar to management of contracts in the real world , but 
with blockchain security and data integrity of the actual 
digital contract 20 , automation of provisions in the digital 
contract 20 , and cryptopayment support . 
[ 0241 ] Exemplary embodiments are also scalable . Layers 
or modules 310 and 312 can be created in the digital contract 
20 and / or in the private blockchain 24 or the public block 
chain 76 for improved flexibility and management via 
hardware computers . The data records 70 in the blockchain 
data layer data 72 are safely separated from the servers that 
execute the digital contract 20. Contract servers ( e.g. , the 
contractual application layer ) may perform a decentralized 
evaluation of digital contract 20 , using the proper virtual 
machine and proper rules , and manage interests of majority 
or all stakeholders . Values of cryptotokens may be defined 
and / or distributed , but allowing greater scalability . 
[ 0242 ] Exemplary embodiments provide numerous advan 
tages . Because the contractual execution is separate from the 
blockchain data layer data 72 , the results of the digital 
contract 20 are securely documented and may be exported to 
other contractual components or to other digital contracts . 
Exemplary embodiments may thus implement and offer 
multiple modules 310 , layers 312 , or instances of different 
contractual components that can exchange inputs and out 
puts to build a networking effect between different layers , 
modules , and smart contracts . A first server running a first 
application layer ( and perhaps executing a first smart con 
tract ) can be entirely separate a second server running a 
second smart contract and a third server running a third 
smart contract . The blockchain data layer 72 , though , 
exchanges and thus documents their respective inputs and 
outputs . The various servers may thus manage and / or share 
the same cryptotokens , or different entity tokens may be 
exchanged within each layer . Regardless , exemplary 
embodiments may coordinate exchanges of value for ser 
vices performed . Great flexibility in defining the value of 
cryptotokens and the value into and out of smart contract . 
[ 0243 ] Exemplary embodiments may also have jurisdic 
tional advantages . Particular servers may be specific to 
particular jurisdictions and / or particular smart contracts . For 
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example , some application layers may cross jurisdictional 
servers with different compliances . As another example , 
suppose that one application layer may require qualified 
investors with full know your client ( or “ KYC ” ) compli 
ance . Another application layer may be anonymous and / or 
allow all corners . Even if the blockchain data layer 72 has 
a small set of users / clients , large smart contracts may be 
managed , implemented , and / or documented . 
[ 0244 ] The digital contract 20 may utilize conventional 
programming languages and / or decision tables . In particular , 
some programming languages and decision tables , like 
purely functional languages , may mathematically prove 
contractual algorithms . These mathematical proofs may 
yield much more secure smart contracts than conventional 
languages that run on today's blockchains . Previously , smart 
contracts were often too big in size to execute on a block 
chain . The separate blockchain data layer 72 , though , allows 
scaling and implementing smart contracts “ off chain . ” The 
proof 80 of the digital contract 20 , for example , is a hash 
value , perhaps in association with the contract identifier 28 
and / or the chain identifier 174 , as documented by the data 
records 70 in the blockchain data layer 72. The hash value 
of the proof 80 , in other words , is a very small value ( in 
relation to the size of the smart contract ) . The digital contract 
20 may thus be provided to any or all parties and / or any or 
all stakeholders for validation of its terms , obligations , and 
performance . The cryptographic proof 80 thus verifies 
execution without stuffing large amounts of data onto the 
private blockchain 24 or the public blockchain 76 . 
[ 0245 ] Exemplary embodiments may use decision tables 
for smart contracts . Decision tables are well understood , 
perform well , and are verifiable relative to brute - force code 
writing . Simply put , custom programming code introduces 
many variables and software bugs are inevitable . Decision 
tables are also very amenable to domain - specific languages . 
As the reader may understand , domain - specific languages 
accept near - English statements as inputs and generate com 
puter code as outputs . Subject matter experts may thus 
define the functionality of the digital contract 20 , perhaps 
without relying on the skills of computer programmers ( who 
may not fully understand the subject matter ) . Decision tables 
are thus approachable to subject matter experts and easily 
implemented . Decision tables may also be combined with 
other decision tables , which allows performance proven and 
validated functions may be incorporated into smart contracts 
for many objectives and outcomes . Decision tables may thus 
be mixed and matched as components to a composite digital 
contract 20 , and a collection of decision tables representing 
the digital contract 20 may still be validated to ensure correct 
operation . Decision tables define much smaller numbers of 
programming paths through the software code representing 
the digital contract 20 , which ensures that all contractual 
combinations may be enumerated and proper results can be 
expected for a range of values . On blockchains , though , 
decision tables may be big in size , so some decision tables 
may not be feasible as a smart contract on a conventional 
blockchain . But , because the blockchain data layer 74 is 
separate from the remote servers 262 executing the digital 
contract 20 , the digital identity ( e.g. , the contract identifier 
28 ) for the digital contract 20 ( that allows the smart contract 
to exist off chain ) provides the servers ( each perhaps having 
its own identity ) to certify execution of the digital contract 
20. Exemplary embodiments may also define the mechanism 
for cryptotoken - based payments that incentivize the remote 

server 262 to perform the digital contract 20 and to verify 
and validate the digital contract 20. Component and com 
posite performance may be tracked , recorded , and proved . 
For example , if a virtual machine runs the digital contract 20 
( as above explained ) , execution in the virtual environment 
can be tracked . Virtual machines may often have software 
bugs that affect an interpretation of the decision tables . The 
virtual machine may thus have its own digital identity , as 
defined by the database 44 of contracts ( as above explained ) . 
Different versions of the virtual machine and / or the decision 
table may thus be mapped within the database 44 of con 
tracts , thus allowing redirection after software bugs have 
been resolved . The database 44 of contracts , in other words , 
may be updated with entries that point to different versions 
for different parties and / or to corrected or improved ver 
sions . 
[ 0246 ] Digital identities extend to engines and decision 
tables . The database 44 of contracts may map or point to 
servers , domains , decision tables , and their respective ver 
sions . The digital contract 20 ( and / or its components , as 
represented by their respective contract identifiers 28 ) 
ensures execution , regardless of the environment . Because 
the blockchain data layer 72 documents all this component 
processing , the data records 70 may prove ( via the crypto 
graphic proof 80 ) that the correct contractual component 
was used , the correct decision table ( s ) was / were used , the 
correct virtual machine was used , and the correct input or 
output data was used . Verification may driven from the 
contractual components , the data components , and the hard 
ware components at the correct time for the correct time 
period . 
[ 0247 ] Another audit application example is provided . A 
software application may be a generic term for user - side 
software that reads from and / or writes to the Factom system . 
It could be software with a human interface , or could be 
completely automated . The Application is interested in the 
data organized by the Chains it needs . 
[ 0248 ] Applications are possibly Distributed Applications 
( DApps ) interacting with Factom to provide additional ser 
vices . For example , one might imagine a trading engine that 
processes transactions very fast , with very accurate time 
stamping . Such an Application may nonetheless stream 
transactions out into Factom chains to document and secure 
the ledger for the engine . Such a mechanism could provide 
real - time cryptographic proof of process , of reserves , and of 
communications . 
[ 0249 ] Let us explore two separate applications that could 
have immediate demand in the current Bitcoin ecosystem . 
[ 0250 ] Let us see how to implement a secure and distrib 
uted log platform . Log analysis is a complex task . Addition 
ally , logs tend to be easily forgeable and also heterogeneous 
as they are produced by each system independently and 
stored in a variety of media ( files , databases , cloud services 
etc. ) . With Factom and a few uniquely designed crypto - audit 
tools an entities log analysis can become safer , simpler , and 
much more powerful . Let's see this with an example . 
Suppose a Bank ( B ) , a Payment Provider ( PP ) , and a Bitcoin 
company ( BC ) are interacting together as follows : 

[ 0251 ] 1 — The User goes to the BC website and wants 
to buy some bitcoins 

[ 0252 ] 2 — He asks for a quote , which is valid for 5 
minutes 

[ 0253 ] 3 — Then he is redirected to the PP website 
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[ 0254 ] 4Then the PP connects with the B platform so 
that the money of the user account is debited 

[ 0255 ] 5 — B notifies PP that the user account has been 
debited 

[ 0256 ] 6PP notifies BC 
[ 0257 ] 7 – BC sends the bitcoins to the user 

[ 0258 ] This is the normal scenario for many fixed - rate 
Bitcoin exchanges globally . But assume now that for some 
reason the BC receives the payment notification 4 hours 
after the user transfers via the PP . Who is faulty ? The User ? 
The Bank ? The Payment Provider ? What if a similar pay 
ment problem happened for hundreds or thousands of pay 
ments over a period of days or weeks before the issue was 
identified and resolved ? Who is “ provably ” liable for those 
loses / damages ? 
[ 0259 ] With current techniques a manual auditing of logs 
would be necessary and would probably require legal autho 
rizations . With Factom and the right audit applications , it 
would be trivial to detect where the problem came from , and 
also make the changing of records impossible post - issue . 
Basically , every system ( BB , PP , BC ) will publish their 
relevant traces in the secure broadcast channel ( Factom ) in 
real time . 
[ 0260 ] Here's another example of how Factom will be 
useful for Bitcoin exchanges audits . The so - called “ Proof of 
Solvency " method for conducting Bitcoin exchange audits is 
a growing and important trend . However , there are signifi 
cant weaknesses to this approach only solved by having the 
Factom secure broadcast channel functioning properly . 
[ 0261 ] In the Merkle tree approach for Solvency Proofs 
suggested by the Maxwell - Todd proposal , users must manu 
ally report that their balances ( user's leaf ) have been cor 
rectly incorporated in the liability declaration of the Finan 
cial Institution ( FI ) ( the Merkle hash of the FI's database of 
user balances ) . The proposed solution works if enough users 
verify that their account was included in the tree , and in a 
case where their account is not included , it's assumed that 
this instance would be reported . One potential risk with this 
process is that an exchange database owner could produce a 
hash that is not the true representation of the database at all ; 
the exchange hashes an incomplete database which would 
reduce its apparent liabilities to customers , thereby making 
them appear solvent to a verifying party . Here are some 
scenarios where a fraudulent exchange could easily exclude 
accounts : 

[ 0262 ] “ Colluding Whales ” Attack : There is evidence 
that large Bitcoin traders are operating on various 
exchanges and moving markets significantly . Such 
traders need to have capital reserves at the largest 
exchanges to quickly execute orders . Often , traders 
choose exchanges that they “ trust ” . In this way they can 
be assured that should a hack or liquidity issue arise , 
they have priority to get their money out first . In this 
case , the exchange and trader could collude to remove 
the whales account balance from the database before 
it's hashed . An exchange's top 10 whales could easily 
represent 5 to 20 % of an exchanges liabilities , so 
colluding with just a few of them could have a signifi 
cant impact . 

[ 0263 ] “ Site Manipulation ” Attack : To date , each Proof 
of Solvency audit has reported ( the hash tree ) on the 
institution's website . This gives no guarantee at all to 
users , since a malicious exchange could publish differ 
ent states / balances to different groups of users , or 

retroactively change the state . Thus it is fundamental to 
publish this data through Factom's secure broadcast 
channel , and publish it frequently . 

[ 0264 ] The second attack is obviously solved by using 
Factom , while the first is not so obvious . As this paper 
doesn't focus on the mechanics of exchanges audits , we 
won't delve in the nitty - gritty details . However , the basic 
concept is that by having frequent time - stamped copies of 
the exchanges database Merkle hash , one could detect the 
inclusion or exclusive of large balances before or after 
audits . Then , the auditor could simply look into those large 
inclusions or exclusions , manually . Remember , the trader 
will ultimately need to get his money on or off the exchange 
at some point , and that'll show up in either the bank history 
or the Bitcoin transfer history . 
[ 0265 ] There are established process for detecting such 
fraudulent tactics in the traditional audit industry ; however , 
it all starts with having accurate , verifiable , immutable 
time - series of the information in question . 
[ 0266 ] Other examples are provided of attacks on Factom . 
The reader , for example , may be familiar with a denial of 
service from spam . Since Factom is an open system , any 
user can put Entries into almost any Chain . Bitcoin has a 
similar phenomenon . In order for an Application to reject 
those transactions , the Application would first need to down 
load and process them . A large number of bogus Entries 
could slow down the initial processing of the Application's 
transactions . This threat is mitigated by an attacker needing 
to spend money ( resources ) to carry it out . This is similar to 
Adam Back's Hashcash solution to email spam . 
[ 0267 ] Audits are another useful tool against spam , if the 
application is willing to trade off security versus conve 
nience . Auditors could post “ ignore ” lists on the same chain , 
or create their own audit chains with those lists . An auditor 
could use a profile chain to develop their reputation , which 
would also allow review by other auditors . If any auditor 
made a bad call , it would be easily verifiable and the record 
of it would be permanent . Some validity processing is gray , 
in the sense that opinions may vary . Solving that problem 
would be implementation specific . 
[ 0268 ] Another example is a sybil attack of the DHT . 
Distributed Hash Tables in general are particularly suscep 
tible to sybil attacks . An attacker could create many peers 
which make it difficult for honest nodes to communicate . In 
a simplistic DHT architecture , attackers can isolate a 
required piece of data from honest nodes . Sybil attacks have 
been observed on the BitTorrent network routing table . The 
paper “ Real - World Sybil Attacks in BitTorrent Mainline 
DHT ” detail these attacks . Fighting this type of attack is an 
active topic in academic research . One mitigation technique 
uses complex lookup techniques to find honest nodes among 
the sybils , studied in “ Sybil - resistant DHT routing ” . Some 
sybil mitigation techniques rely on a web - of - trust by adding 
a social network to the routing table , as explored in “ A 
Sybil - proof one - hop DHT " . Factom will rely on the latest 
academic and open - source research in this topic to secure its 
DHT . 
[ 0269 ] A dictionary attack is now discussed . In this case , 
the attacker runs through all the Chain Names deemed to be 
possible or desirable and creates their ChainIDs , and the 
hashes of those ChainIDs . Then they watch for someone 
trying to create those Chains . Now the attacker can front run 
on a match . Because on a match , they know the ChainID , so 
they can construct a proper , but malicious Entry of their 
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a a own , create the proper Chain payment and submit it rather 
than the users payment . If the attacker gets ahead of the user , 
then they will win . The defense against a dictionary attack 
is to avoid common name spaces and to submit your 
payment to multiple , long standing nodes in the network . In 
Factom , the flexibility of defining the Chain namespace 
makes efforts to hog the namespace ineffective . 
[ 0270 ] Fraudulent servers are now discussed . All Entries 
in Factom require signatures from the users , or must match 
a hash that has been signed by the users . This means that 
fraudulent Federated servers in the Federation pool have 
very limited attacks they can make on the protocol . Invalid 
Entries do not validate , and upon broadcasting an invalid 
Entry , the honest Federated Servers will immediately broad 
cast a Server Fault Message ( SFM ) on the fraudulent server . 
If a majority detect a fault , the faulty server is removed . As 
long as the majority do not collude , then the protocol will 
remain honest . Any Federated server that failed detect the 
fault likewise risks losing its support from Factom users , and 
dropping from the Federated server pool . 
[ 0271 ] Federated servers can delay recording of Entry 
payments . But because Entry payments are submitted via a 
distributed set of Factom Nodes , delaying of Entry payments 
will be noted . Users may withdraw support from servers 
without reasonable performance compared to the rest of the 
network . 
[ 0272 ] Federated servers can delay the recording of 
Entries . Here the payment is accepted ( generally by another 
server ) fairly quickly . But for one reason or another , a 
Federated server refuses to record the Entry . In the next 
minute , responsibility for that Chain will shift to another 
server . As long as most servers are honest , the Entry will be 
recorded . Then the data over time will show that a server is 
delaying Entries . This will cause them potentially to lose 
support . 
[ 0273 ] Federated servers can at any point send false mes 
sages . The other Federated servers then would issue a SFR 
on the on the rogue server when those messages didn't make 
sense . A majority of the servers issuing an SFR would boot 
the rogue server , then the network would ignore their 
messages and not forward them on . 
[ 0274 ] Federated servers can refuse to accept valid Entry 
payment messages based on the public address , under the 
assumption that the public address is associated with some 
party . Again , assuming a majority of servers are honest , the 
payment will be accepted when the control shifts to an 
honest server . Furthermore , nodes watching will see the 
delay , and perhaps a pattern of delays , and support will be 
lost for the misbehaving servers . 
[ 0275 ] FIG . 60 illustrates timestamping into Bitcoin , 
according to exemplary embodiments . The Factom time 
stamping mechanism secures transaction in the blockchain . 
Factom data is timestamped and made irreversible by the 
Bitcoin network . A user's data is as secure as any other 
Bitcoin transaction , once published to the Bitcoin block 
chain . A compact proof of publication is possible for any 
data entered into the Factom system . 
[ 0276 ] As this disclosure above explained , data is orga 
nized into block structures , the highest level being Directory 
Blocks , which are created using Merkle trees . Every 10 
minutes , the data set is frozen and submitted to the Bitcoin 
network . Since Bitcoin has an unpredictable block time , 
there may be more or fewer than one Factom timestamp per 
Bitcoin block . Bitcoin internal header block times them 

selves have a fluid idea of time . They have a 2 hour possible 
drift from reality . Factom will provide its own internal 
timestamps , adhering with standard time systems . 
[ 0277 ] The user data ordering will be assigned when 
received at the Federated servers . Factom organizes the 
submitted Entry references into sets of blocks . The block 
time for Factom is ten minutes . On closing , the Federated 
Server network generates consensus and the Entries that are 
part of that block structure are timestamped to a minute 
within the block . As a general note , the data could have 
existed long before it was timestamped . An Application 
running on top of Factom could provide finer and more 
accurate timestamping services prior to Entries being 
recorded in Factom . The Factom timestamp only proves the 
data did not originate after the Factom timestamp . 
[ 0278 ] The Merkle root of the Directory Block is entered 
into the Bitcoin blockchain with a spending transaction . The 
spend includes an output with an OP_RETURN . We refer to 
this as “ anchoring ” the Directory Block to the Bitcoin 
blockchain . This method is the least damaging to the Bitcoin 
network of the various ways to timestamp data . 
[ 0279 ] Two possible alternatives to the OP_RETURN data 
in the blockchain is anchored to the P2Pool headers ( as in 
chronobit ) or in the Bitcoin block header coinbase . The 
P2Pool headers would require several hours of mining to 
find a block which satisfies the P2Pool rules , and the added 
complexity to the Factom protocol would not be worth the 
benefits . Including the Merkle root into the coinbase of a 
block would require cooperation with miners , above and 
beyond the transaction processing they are already doing . 
The coinbase entry would still need to have a crypto 
signature from the Factom system , so would not save on 
much space relative to a signed transaction . 
[ 0280 ] The first two bytes of the available 40 in the anchor 
will be a designator tag ( 2 bytes with the value “ Fa ” ) . The 
Factom anchor ( 32 bytes ) is concatenated onto the tag , then 
the block height is added ( up to 6 bytes , allowing for 
> 500,000 years ) . The designator tag indicates the transaction 
could be a Factom anchor . Other qualifiers are required , but 
the tag and Factom block height eliminates most of the 
OP_RETURN transactions that would otherwise need to be 
inspected . The block height in the OP_RETURN helps to fix 
the order in those cases where the Bitcoin blockchain 
records the anchors out of order . 
[ 0281 ] The anchored data is the Merkle root of list con 
taining the Directory Block's Merkle root . Querying a 
database or DHT for the anchored data will return the 
Directory Block which can be used to find the rest of the data 
in the block . The Merkle root timestamp will be entered into 
the Bitcoin blockchain by one of the Federated servers . The 
server delegated to timestamp the federation's collected data 
creates a Bitcoin transaction . The transaction will be broad 
cast to the Bitcoin network , and be included in a Bitcoin 
block . Bitcoin transactions that look like a Factom anchor , 
but are not spent from an address known as a Factom server 
would either be junk , or an attempt to fork Factom . Most 
users / applications would ignore such anchors . 
[ 0282 ] Bitcoin blocks are generated with a statistical pro 
cess , and as such their timing cannot be predicted . This 
means that the anchors are only roughly time - bound by the 
OP_RETURNs inserted into the Bitcoin blockchain , and its 
timestamping mechanism . The real value of anchoring Fac 
tom to Bitcoin is to prevent anyone from generating false 
Factom histories . Due to bad luck of Bitcoin miners , or 
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delayed inclusion of Factom transactions , the time between 
when the Factom state is frozen for a particular 10 minute 
period and when the anchor appears in Bitcoin can vary , 
perhaps significantly . 
[ 0283 ] Now the ramifications of federated servers and 
anchoring verses proof of work is discussed . Proof of Work 
( PoW ) is optimized for permissionless participation and 
validation of the historical record of a blockchain . The 
typical implementation of Proof of Work is to repeatedly 
hash blocks until one of the parties mining finds a hash with 
the difficulty required by the current requirements of a 
blockchain . This allows anyone to serve as a miner , to 
collect and validate transactions , pack them into blocks , and 
repeatedly hash that block looking for a solution that meets 
the difficulty requirement . 
[ 0284 ] The shortcomings of PoW have been widely dis 
cussed in the media as requiring unnecessary amounts of 
power , when other sorts of problem solving and work could 
result in benefits to blockchain users , the ecosystem , and 
society . Such is the goal of various Proof of Stake ( PoS ) 
systems used by various blockchains . But Proof of Stake 
alone makes the historical record hard to validate , and does 
not work well for a data recording system like Factom . This 
is because validating the historical Stake of parties involved 
the entire blockchain , and an understanding of the Stake that 
existed at each point in time historically . Factom needs small 
cryptographic proofs that validate sets of data , which PoW 
provides . Because PoW is validated solely by evaluating the 
difficulty of a hash . 
[ 0285 ] Anchoring is the solution Factom uses to secure the 
historical record , and at the same time avoid duplicating the 
massive expenditure of resources required of mining . A 
system like PoS can be used in the present , while anchoring 
secures the historical record . The idea of supporting parties 
allows permissionless participation in the Factom protocol 
beyond that of the Authority Set . 
[ 0286 ] The Authority Set and Anchoring means that run 
ning the Authority Servers is less expensive in resources by 
orders of magnitude compared to mining . Greater efficiency 
means that the rewards paid out by the Factom protocol can 
do more for the ecosystem than pay very large utility bills . 
Factom may use various voluntary but auditable methods to 
incentivize using the efficiency of the authority set to set 
aside resources within the protocol for productive real world 
work . A sort of Proof of Development could be used to 
receive these rewards using distributed support to identify 
work to be done , and evaluate the quality of the work that 
results . Such a system could provide rewards for develop 
ment alongside the rewards generated for the authority set . 
[ 0287 ] A “ Proof of Development comes with its own 
issues . The main issue is the “ Oracle Problem , ” where it is 
very hard to know from within the programming of a 
blockchain protocol what might be useful development in 
the real - world and evaluate the quality of such development 
once it is done . Factom may develop mechanisms to incen 
tivize supporting parties in the protocol to create evaluation 
processes , audit trails , and certifications at every stage of 
development to address the Oracle Problem , and allow a 
self - correcting process to manage a viable “ Proof of Devel 
opment ” that is more productive and ecologically friendly 
than simply rewarding the burning of energy resources for 
security . 
[ 0288 ] The Factom protocol and system are now com 
pared with other blockchain technologies . For example , 

Factom differs from Bitcoin and Sidechains . Factom is very 
different from Bitcoin , and in fact very different from any 
current cryptocurrency project . Cryptocurrencies like Bit 
coin implement a strict , distributed method for the validation 
of transactions , where anyone can validate each transaction , 
and the validity of every input into a transaction can be 
verified . Because each transaction is authorized via crypto 
graphic proof , no transaction can be forged . Each transaction 
can be checked for validity by verifying signatures of each 
transaction , and the miners hold each other accountable for 
only including valid transactions . 
[ 0289 ] The Bitcoin protocol is transactionally complete . In 
other words , the creation and distribution of Bitcoins 
through transactions is completely defined within the Bit 
coin protocol . Transactions ( which specify movement of 
bitcoin ) and block discovery ( which move bitcoin via min 
ing fees and provide block rewards ) are the only inputs into 
the Bitcoin Protocol , and nothing leaves the Bitcoin Proto 
col . In other words , the 21 million bitcoins that will ulti 
mately exist will always and forever exist within the proto 
col . Pegged sidechains , when implemented , will provide 
additional movement of bitcoin value outside the block 
chain , while the pegged value is in stasis in the blockchain . 
[ 0290 ] The sidechains proposal describes a solution to 
increase the scalability of Bitcoin by allowing value control 
to move off the blockchain and onto a sidechain . In the 
sidechain , many trades can occur . Later , a cryptographic 
proof ( not all the transactions in between ) can be recorded 
in the blockchain which moves the BTC out of stasis in 
Bitcoin . This proof would have to be available to the Bitcoin 
miners , but the bulk of the transaction data would be left 
behind in the sidechain . 
[ 0291 ] Factom is in some sense attempting to increase 
scalability , but not by enabling more value transactions , but 
by moving non - BTC transactions off blockchain . This 
would be transactions that are not primarily intended to 
transfer Bitcoin value . For example transactions could man 
age domain name registrations , log security camera footage , 
track the provenance for art work , and even establish the 
value of show horses by documenting their history . Some of 
these do not move a value at all , like transactions establish 
ing a proof of publication . 
[ 0292 ] Sidechains and Factom are both trying to move 
transactions off the blockchain , but to achieve similar ends 
via completely different mechanisms . At some point , Factom 
may integrate with a Bitcoin sidechain in order to take 
advantage of the atomic swaps from BTC to Factoids . 
[ 0293 ] Factom is also different from other blockchain 
technologies . Many different groups are looking to find ways 
to leverage the Bitcoin approach for managing other sorts of 
transactions besides tracking bitcoin balances . For example , 
the trading of assets such as houses or cars can be done 
digitally using Bitcoin extensions . Even the trading of 
commodities such as precious metals , futures , or securities 
might be done via clever encoding and inserting of infor 
mation into the Bitcoin blockchain . Efforts to expand Bit 
coin to cover these kinds of trades include Colored Coins , 
Mastercoin , and Counterparty . Some developers choose to 
build their own cryptocurrency with a more flexible protocol 
that can handle trades beyond currency . These include 
Namecoin , Ripple , Ethereum , BitShares , NXT , and others . 
Open Transactions ( OT ) uses Cryptographic signatures , 
signed receipts and proof of balance for users ( i.e. , 
does not need the transaction history to prove their balance , 
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just the last receipt ) . In this way , OT can provide the spend 
of centralized servers without the risk of a centralized server 
that can alter client balances . Factom is decentralized , and 
only records Entries . So Factom can record data that would 
not meet OT's rules . But Factom will not execute at the rate 
OT can initially . Factom is distributed , and we expect that 
some , but not all users will employ cryptographic techniques 
similar to OT with their records . 
[ 0294 ] The great advantage to an independent platform 
over trying to build upon Bitcoin is found in flexibility . The 
Bitcoin protocol isn't optimized to allow for recording of 
arbitrary pieces of data , so the “ bookkeeping ” necessary for 
non - Bitcoin type transactions isn't necessarily supported by 
Bitcoin . Furthermore , Bitcoin's Proof of Work ( PoW ) based 
consensus method is not a “ one size fits all ” solution , given 
that some transactions must resolve much faster than 10 
minutes . Ripple and Open Transactions vastly speed up 
confirmation times by changing the consensus method . 
[ 0295 ] An Application built upon Factom seeks to gain the 
ability to track assets and implement contracts , by leverag 
ing the blockchain directly . Instead of inserting transactions 
into the blockchain ( viewed as " blockchain bloat ” by many ) , 
Factom records its Entries within its own structures . At the 
base level , Factom records what Chains have had Entries 
added to Factom within the Directory Block time . Scanning 
these records , Applications can pick out the Chains in which 
they are interested . Factom records each Chain indepen 
dently , so Applications can then pull the Chain data they 
need . 
[ 0296 ] Factom is organized in a way that minimizes con 
nections between user Chains . A Chain in Factom can be 
validated without any of the information held in other , 
unrelated Chains . This minimizes the information a Factom 
user has to maintain to validate the Chains they are inter 
ested in . 
[ 0297 ] Now Factom Consensus Similarities and Differ 
ences from Proof of Stake are discussed . The policy and 
reward mechanism in Factom is similar to Proof of Stake 
( PoS ) . Factom differs from most PoS systems in that many 
subsets of user stake and / or contribution may be recognized . 
Individual categories of stake can be weighted against each 
other to further decentralized Factom . This is an attempt to 
make the servers answerable to the users actively using and 
contributing to the protocol . The individual users would 
delegate their support to a server . The Federated servers with 
the top numbers of support would be responsible for coming 
to consensus . 

[ 0298 ] Some with a deep understand of Bitcoin have 
recognized that pure PoS consensus mechanisms are funda 
mentally flawed . There are two attacks that make pure Pos 
unworkable . The problems are referred to as “ Stake Grind 
ing ” and “ Nothing at Stake ” . Although Factom has Pos 
elements , it does not suffer from these problems . 
[ 0299 ] Stake grinding is a problem where an attacker with 
a sizable ( say 10 % ) , but not majority share can formulate 
false histories . From some point in history , they can cost 
lessly fork the blockchain , choosing to reorder past trans 
actions such that their stake is always selected to create the 
subsequent blocks . They would be able to present this 
alternate version of history as part of an attack to steal value 
by double spending . Bitcoin solves this problem by strongly 
linking the information domain , where computers make 
decisions , with the thermodynamic domain , where humans 
burn energy . Considerable resources are expended in the 

thermodynamic domain , and is provable in the information 
domain . Bitcoin makes forming false histories hugely 
expensive . 
[ 0300 ] Factom is unable to create alternate histories after 
the fact , since it is unable to insert transactions into historical 
Bitcoin blocks . It is also unable to create parallel histories 
without being detected , since Factom is linked to Bitcoin 
with known Bitcoin private keys . 
[ 0301 ] The Nothing at Stake problem is more subtle . With 
a policy disagreement in Bitcoin , miners must choose either 
one policy or the other . If they choose against the majority , 
they will be burning lots of electricity without a chance of 
recouping costs . PoS miners do not face this dilemma . They 
can hedge their bets and costlessly create forks complying 
with each side of the policy . They would simultaneously 
agree with both sides of the disagreement . This would open 
up the economy to double spend attacks . One of two 
merchants following different forks will ultimately have that 
money becomes worthless . 
[ 0302 ] Bitcoin solves this problem by having unintelligent 
unambiguous automatable rules for selecting the correct 
fork . In Bitcoin , the correct fork is the one with the most 
Proof of Work ( PoW ) . Factom will also have unintelligent 
unambiguous automatable rules to select a correct fork , 
should one arise . 
[ 0303 ] FIG . 61 is a flowchart illustrating a method or algorithm for processing of the digital contract 20 , according 
to exemplary embodiments . The contract identifier 28 , the 
contractual parameter 30 , and / or the table identifier 334 
is / are received ( Block 340 ) . The network resource 50 is 
identified ( Block 342 ) , and the contract processor may be an 
IP address , URL , virtual machine , or other network desti 
nation representing a vendor , contractor , server , or service 
that executes the decision table 326 and / or the digital 
contract 20. The service request 266 is sent ( Block 344 ) , the 
service update 270 is received ( Block 346 ) , and the service 
response 268 is received ( Block 348 ) . The data records 70 in 
the blockchain data layer 72 are generated ( Block 350 ) , and 
the data records 70 describe the execution of the digital 
contract 20. The data records 70 may be hashed ( Block 352 ) 
and incorporated into the public blockchain 24 ( Block 354 ) . 
[ 0304 ] FIG . 62 is a schematic illustrating still more exem 
plary embodiments . FIG . 62 is a more detailed diagram 
illustrating a processor - controlled device 360. As earlier 
paragraphs explained , the entity's private software applica 
tion 40 , the data layer application 154 , and / or the contract 
application 302 may partially or entirely operate in any 
mobile or stationary processor - controlled device . FIG . 62 , 
then , illustrates the entity's private software application 40 , 
the data layer application 154 , and / or the contract applica 
tion 302 stored in a memory subsystem of the processor 
controlled device 360. One or more processors communicate 
with the memory subsystem and execute either , some , or all 
applications . Because the processor - controlled device 360 is 
well known to those of ordinary skill in the art , no further 
explanation is needed . 
[ 0305 ] FIG . 63 depicts other possible operating environ 
ments for additional aspects of the exemplary embodiments . 
FIG . 63 illustrates the entity's private software application 
40 , the data layer application 154 , and / or the contract 
application 302 operating within various other processor 
controlled devices 360. FIG . 63 , for example , illustrates that 
the entity's private software application 40 , the data layer 
application 154 , and / or the contract application 302 may 
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entirely or partially operate within a smartphone 362 , a 
personal / digital video recorder ( PVR / DVR ) 364 , a Global 
Positioning System ( GPS ) device 366 , an interactive tele 
vision 368 , a tablet computer 370 , or any computer system , 
communications device , or processor - controlled device uti 
lizing any of the processors above described and / or a digital 
signal processor ( DP / DSP ) 372. Moreover , the processor 
controlled device 360 may also include wearable devices 
( such as watches ) , radios , vehicle electronics , clocks , print 
ers , gateways , mobile / implantable medical devices , and 
other apparatuses and systems . Because the architecture and 
operating principles of the various devices 360 are well 
known , the hardware and software componentry of the 
various devices 360 are not further shown and described . 
[ 0306 ] Exemplary embodiments may be applied to any 
signaling standard . Most readers are thought familiar with 
the Global System for Mobile ( GSM ) communications sig 
naling standard . Those of ordinary skill in the art , however , 
also recognize that exemplary embodiments are equally 
applicable to any communications device utilizing the Time 
Division Multiple Access signaling standard , the Code Divi 
sion Multiple Access signaling standard , the “ dual - mode ” 
GSM - ANSI Interoperability Team ( GAIT ) signaling stan 
dard , or any variant of the GSM / CDMA / TDMA signaling 
standard . Exemplary embodiments may also be applied to 
other standards , such as the I.E.E.E. 802 family of standards , 
the Industrial , Scientific , and Medical band of the electro 
magnetic spectrum , BLUETOOTH® , and any other . 
[ 0307 ] Exemplary embodiments may be physically 
embodied on or in a computer - readable storage medium . 
This computer - readable medium , for example , may include 
CD - ROM , DVD , tape , cassette , floppy disk , optical disk , 
memory card , memory drive , and large - capacity disks . This 
computer - readable medium , or media , could be distributed 
to end - subscribers , licensees , and assignees . A computer 
program product comprises processor - executable instruc 
tions for execution of digital contracts , as the above para 
graphs explain . 
[ 0308 ] While the exemplary embodiments have been 
described with respect to various features , aspects , and 
embodiments , those skilled and unskilled in the art will 
recognize the exemplary embodiments are not so limited . 
Other variations , modifications , and alternative embodi 
ments may be made without departing from the spirit and 
scope of the exemplary embodiments . 

1. A method performed by a server that records crypto 
graphic transactions conducted by computers , the method 
comprising : 

receiving , by the server , a cryptographic transaction of the 
cryptographic transactions ; 

determining , by the server , a chain identifier that is 
associated with the cryptographic transaction ; 

determining , by the server , an entry block in a blockchain 
data layer that is associated with the chain identifier ; 

adding , by the server , the cryptographic transaction to the 
entry block in the blockchain data layer that is associ 
ated with the chain identifier ; 

generating , by the server , a directory block in the block 
chain data layer based on the entry block and the chain 
identifier ; and 

recording , by the server , the directory block to a block 
chain ; 

wherein the directory block records the cryptographic 
transaction . 

2. The method of claim 1 , further comprising generating 
a hash value representing the directory block . 

3. The method of claim 2 , further comprising recording 
the hash value representing the directory block to the 
blockchain . 

4. The method of claim 1 , further comprising recording 
the chain identifier to the blockchain . 

5. The method of claim 1 , further comprising timestamp 
ing the cryptographic transaction . 

6. The method of claim 1 , further comprising timestamp 
ing the entry block . The method of claim 1 , further com 
prising timestamping the directory block . 

8. A system , comprising : 
a hardware processor , and 
a memory device storing instructions that when executed 

by the hardware processor perform operations , the 
operations comprising : 

receiving a cryptographic transaction conducted by com 
puters via a network ; 

determining a chain identifier that is associated with the 
cryptographic transaction ; 

determining an entry block in a blockchain data layer that 
is associated with the chain identifier ; 

adding the cryptographic transaction to the entry block in 
the blockchain data layer that is associated with the 
chain identifier ; 

generating a directory block in the blockchain data layer 
based on the entry block and the chain identifier ; and 

recording the directory block to a blockchain ; 
wherein the directory block records the cryptographic 

transaction . 
9. The system of claim 8 , wherein the operations further 

comprise generating a hash value representing the directory 
block . 

10. The system of claim 9 , wherein the operations further 
comprise recording the hash value representing the directory 
block to the blockchain . 

11. The system of claim 8 , wherein the operations further 
comprise recording the chain identifier to the blockchain . 

12. The system of claim 8 , wherein the operations further 
comprise timestamping the cryptographic transaction . 

13. The system of claim 8 , wherein the operations further 
comprise timestamping the entry block . 

14. The system of claim 8 , wherein the operations further 
comprise timestamping the directory block . 

15. A memory device storing instructions that when 
executed by a hardware processor perform operations , the 
operations comprising : 

receiving cryptographic transactions conducted by com 
puters via a network ; 

determining a chain identifier that is associated with the 
cryptographic transactions ; 

determining a directory block that is associated with the 
chain identifier ; 

recording the cryptographic transactions to the directory 
block ; 

determining a rate of generation associated with the 
directory block ; 

identifying a virtual machine that is associated with the 
rate of generation ; and 

assigning the virtual machine to the cryptographic trans 
actions . 

16. The memory device of claim 15 , wherein the opera 
tions further comprise hashing the directory block . 
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17. The memory device of claim 15 , wherein the opera 
tions further comprise executing the virtual machine . 

18. The memory device of claim 15 , wherein the opera 
tions further comprise recording the virtual machine to a 
blockchain . 

19. The memory device of claim 15 , wherein the opera 
tions further comprise recording the cryptographic transac 
tions to the blockchain . 

20. The memory device of claim 15 , wherein the opera 
tions further comprise recording the rate of generation to the 
blockchain . 
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