US 20220058622A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2022/0058622 A1l

Snow 43) Pub. Date: Feb. 24, 2022
(54) PROTOCOLS IN BLOCKCHAIN GOG6F 16/29 (2006.01)
ENVIRONMENTS GOG6F 21/53 (2006.01)
G06Q 20/38 (2006.01)
(71) Applicant: Inveniam Capital Partners, Inc., New GO6Q 20/12 (2006.01)
York, NY (US) G060 20/40 (2006.01)
HO4L 9/32 (2006.01)
(72) Inventor: Paul Snow, Austin, TX (US) GOG6F 21/64 (2006.01)
. . . (52) U.S. CL
(73) Assignee: glvli“‘;‘&“ C*‘SP‘““ Partners, Inc., New CPC ... GO6Q 20367 (2013.01); HO4L 9/3239
ork, Us) (2013.01); HO4L 67/12 (2013.01); HO4L
. 9/0637 (2013.01); GO6F 16/29 (2019.01);
(21) Appl. No.: 17/451,655 G060 20/0658 (2013.01); GO6F 21/53
29} Filed: Oct. 21. 2021 (2013.01); GO6Q 20/3829 (2013.01); HO4L
(22) File o 2h 9/0643 (2013.01); GO6Q 20/3674 (2013.01);
Related U.S. Application Data G06Q 20/12 (2013.01); GO6Q 20/401
(2013.01); HO4L 9/0618 (2013.01); HO4L
(63) Continuation of application No. 16/351,597, filed on 9/3236 (2013.01); GOGF 21/645 (2013.01);
Mar. 13, 2019, now Pat. No. 11,205,172. HO4L 2209/38 (2013.01); HO4L 2209/56
(60) Provisional application No. 62/714,909, filed on Aug. (2013.01); GO6Q 20/065 (2013.01)
6, 2018.
57 ABSTRACT
Publication Classification A protocol cost effectively separates any blockchain (such as
(51) Int. CL the Bitcoin blockchain) from any cryptocurrency (such as
G06Q 20/36 (2006.01) the Bitcoin cryptocurrency). The protocol provides client-
G06Q 20/06 (2006.01) defined Chains of Entries, client-side validation of Entries,
HO4L 29/08 (2006.01) a distributed consensus algorithm for recording the Entries,
HO4L 9/06 (2006.01) and a blockchain anchoring approach for security.

Factom Lets You Build Applications on the Bitcoin Blockchain

Applications

Lager - Efiﬁf@rmiﬁgﬁ Exghoan

US 2022/0058622 Al

Feb. 24,2022 Sheet 1 of 63

Patent Application Publication

wmﬁﬁﬁﬁm smﬁwﬁyﬁﬁt safioy mﬁﬁuﬁ

suonpapddy

CIDYNI0TG U1oa11g a1 vo suonvapddy prmg nox $197 woiing

1O

Patent Application Publication Feb. 24,2022 Sheet 2 of 63 US 2022/0058622 A1

FIG. 2

US 2022/0058622 Al

Feb. 24,2022 Sheet 3 of 63

Patent Application Publication

SCHUOYD

Japoay

4

,ﬂ

wrut T Rasas pajpes s yoolg Raoisang o

¢ "Old

{7
FI00I 38 Ha0ld Ry
JafioT Aiojoaaig

US 2022/0058622 Al

Feb. 24,2022 Sheet 4 of 63

w0 Bernaesng

syoupg fauy

siog BI0102aK 01 UBYIIM 210 5100]g Rnug Mol

1A K |

Patent Application Publication

PRUIRY I

SHAnd

US 2022/0058622 Al

EEREEFFRRREELRENF ARG EERECE LRSS

SEBTETISO #30880d

A

ltltl‘l!-ll:l‘(l»ltlfl‘l!-ltl‘(l-l}k!&!&&!l‘!t&t!!!&&

Feb. 24,2022 Sheet 5 of 63

syoe1g Baug saInay

SRRSO

s¥ooig RIug 01 Ua1IIIM 31D DID(] PUD SBYSTE MOH

SO

Patent Application Publication

US 2022/0058622 Al

Feb. 24,2022 Sheet 6 of 63

givaps Roug

9O

Patent Application Publication

g |

SHLAEE

s}

sfig wo3dng ;yerduied

wosgddy

£
FTEBUD PRSI DU PO 1Y o

,
&
%,,..,
<
/

AT m,m

US 2022/0058622 Al

FHELREY W i

saop RORE A8

e SIPON W10

Feb. 24,2022 Sheet 7 of 63

UI039D] WO} ST PUIY 01 MOH

LD

Patent Application Publication

US 2022/0058622 Al

Feb. 24,2022 Sheet 8 of 63

Patent Application Publication

v — g, 4—] Jsalig

: f— {0 o3z 4—] Jembig
"

giuzoy? a1 bunndwo)

8 'O

Patent Application Publication Feb. 24,2022 Sheet 9 of 63 US 2022/0058622 A1

22

;
NN

y 24
Contract Identiﬁerr—/"zs }_ 20

Contractual Parameters~—J_ 30

F1G. 9

US 2022/0058622 Al

Feb. 24, 2022 Sheet 10 of 63

Patent Application Publication

0€
8T
0T
ob—"] :cﬁmu:mm« aremyjoq

TARS [eURIL] |
8¢

S

cm\

wonmsuy

\ Epueayy [N~7¢
(44 143 \

01 "OIA

US 2022/0058622 Al

Feb. 24, 2022 Sheet 11 of 63

Patent Application Publication

9p 43y

SIajoWRIR J [BNIIBIJUO))
87 |« IIJIIUIP] JOVLIUO))
JRnu0)) [BHBI
07+

0t

spoeLuo’) Jo
aseqee(q

JIAIOG PPBIUO)

0€
87 be 9z

:cﬁ«uﬁ@@.ﬂ, AIEM}JOS

or—"

AIAIIG [BIOURULY |~ .
8¢

r 3

cm;\\\\

uennsuy

\ fepueuy | -7¢
(44 14 \

I "Old

US 2022/0058622 Al

Feb. 24, 2022 Sheet 12 of 63

Patent Application Publication

05 — | _——edD.INOSIY NI0MIIN
SIajoWRIR J [BNIIBIJUO))
wﬂll\\\..iuwuneg 12e.U0)
oz | —enuo) [ensiq

0t

spoeLuo’) Jo
aseqee(q

JIAIOG PPBIUO)

0€
87 be 9z

:cﬁ«uﬁ@@.ﬂ, AIEM}JOS

or—"

AIAIIG [BIOURULY |~ .
8¢

r 3

cm\

uennsuy

\ fepueuy | -7¢
(44 14 \

ARk

US 2022/0058622 Al

RDIMOSIY HIOMIN |~
0s

0¢
87

BAIS PEJU0) |
(44

0¢

F 3

99— U0, d[qeapei]
9
po—" WO I, NPILD
Jfeu1oa03dia)
™09
o —"] uopwdddy daemyjog

Feb. 24, 2022 Sheet 13 of 63

o

Patent Application Publication

vm\

F 3

cm\

UOnRMSUy
[euBuLg

7€

¢l "OId

08—t—jo0.1q srydeidordiin {8—— 9/
g/ 214198 UGHEPIEA
oL | —ssp1003Y veq

US 2022/0058622 Al

Feb. 24, 2022 Sheet 14 of 63

Patent Application Publication

\ fepuvuyy | N~7¢
(44 123 \

H@?A vl UIBYMOIg _—L

JIAIDS PPEAUO)
pL
1Y w

87 b 92

op—"T :cﬁau:mn.ﬁ AILMIJOS

doAd0Q [EIOURULY ~
8¢

-~

om\

Hon NSy

1 OIA

US 2022/0058622 Al

Feb. 24, 2022 Sheet 15 of 63

Patent Application Publication

(1]

ANfEA
adesn

6

Nw.{?cb

1akery vy Weynpoyg — L

JIAXAG JoAeT viR(
vL
(44

0t
8¢
b9 — UNOL HPIL)
- 3geurod03d£1)
09
or—"1 uonedddy azemyjog

IATIG [eOURUL] I~
8¢

cm\

3

uonnISu}
jeIoUBUL]

~-z¢

vm\

ST O

Ayred pamyL,

™06

US 2022/0058622 Al

Feb. 24, 2022 Sheet 16 of 63

Patent Application Publication

Nw.{?cb

1ake vreq wrypPOlg |—" L

BEYWEINE YN g W1 T¢ |

0 i
8T 97
07 ve
99—+ UINO], d[qrape],
adeurod03dLn)
09
uonedddy azemyjog

IATIG [eOURUL] I~
8¢

A

cm\

3

uonNISuj
epusuyy [\-7¢

vm\

91 "OIAd

Ayred pamyL,

™06

US 2022/0058622 Al

Feb. 24, 2022 Sheet 17 of 63

Patent Application Publication

08 1———j001q oiydess03dAa)

Nw}l?rcb

01— \lmmoag<mwwmwwwcmmmmv dABUS _/.!u??q vl umyporg | Ok
JIARS RAvT vl
0 pL
87 w
S P1023Yy wonpesuei], L4 001 R
ssa1ppv aydeadoydLir)) a[durg . HEd PAYL 06
\ 99— UL AqrIprLL
9
01 $9——1 WO L, HPAL)
IsemodroydAr)
™09
or—"1 uonedddy saemyjos

o

L 3

cm.\

uopnInSuy

vm\

LTOIA

AL [eroueul] |
8¢

ppueng |7

US 2022/0058622 Al

Feb. 24, 2022 Sheet 18 of 63

Patent Application Publication

08 T———j001g Stydeidoydir)
Z01——5524PPV sqdeiderdLr) afsmg
oL | ——esP100Y] T3eQ
01
SSIPPV \
yydeadoydin)
Jdmg \

Nw/ﬁ\ch

™ rafey eyeq By oy

JIAIG d34e] vleQ

0€ %9 8T 07

PlI—1—~——oouspeg
[Tj— oy

uonels Sulpy

SSAIPPV \
smderdoydis)

144

vl
(44

d[suIg \

\

011

\

(411}

o

99—

po 1 TIOL NP

P-1023Y UO[IESUBLY

-

—001

U0 J, A[BIPRA],

a8vu10003dAr)

9

™09

or—"|

wonedpddy aaeagyog

vm\

S

wm\.

uon S|
R

81 "OId

ARG UL |~
8¢

Ayreg payy

US 2022/0058622 Al

Feb. 24, 2022 Sheet 19 of 63

Patent Application Publication

08 ———jo0ag >rydeadoyd£Lr)

B 9L
Z01——55%4PPY aydesdoydLa) o[8ug
| ——sPiodg Bjeq

0L ageu0d03dAa) 071
~f 7L
01 14e] vreq weynporg
SSOIPPYV \
siydeasoydLa) JIAIS 194AET vle(
Idwg \ vL
0€ ® 8T ‘07 o
(4
PII—T——souepeg $82.1ppY \
__|——junoddy , siqdeadoydLa) PI0JY UOLIVSUBA], | _}—001
(41! uone)s ULy Sy \ i
\ \ 99— UPMOL AqEIPELL
9
011 01 N TMOL PO
aseur003dAa)
™09

o

uonedddy aremijos

or—"

3

eml\.

uoynIsuY

vm\

61 “OId

JOAIIG [eouRUL] |
8¢

[eueuly | N-7¢

Apred payL

™06

US 2022/0058622 Al

Feb. 24, 2022 Sheet 20 of 63

Patent Application Publication

08 T——jo0ig s1iydesdoydLia) 4 9L
201——552IPPY sydeasoydia) y3uig
el — SPE0dIY wIR(
0L —=" — << a8emod01dL1) | —0T1
Jfey ejeq wisyndolg
- » F 3 3 F 3
PZOI~ | POT o701~ | T azoi~ 40 ezo1~ | €07
P¥YC T qarz epe
0cT— P09 309+ 909~ €09
ademodoydLa) ademoro}dii) adeuiodeydLin adsuioneydAr)
uopeaddy aremyjog uoneaddy sremyjog uopsddy s1eM3JOg uonedddy saemyyey
— r 3 F 3 3 F 3
INAIIGe uonnISuf
Janjoenuey AISAIAY 971 Jope3dy [BIOUBUL]
871 144! (441 pe
. \
0C O

peor
pvor

p-BT¢

US 2022/0058622 Al

Feb. 24, 2022 Sheet 21 of 63

Patent Application Publication

e pHY]
d PHYL ~—06
= N 8 9/
08 ———jo04J Stydesdoydin)
01— PPV aydexdoydir) 9fuig
14 4 S [——s3dUrjeYg Il\\.lllowm-hcuvvm ejeq
O e 6L aSemodreydii) | —0CT
uopel§ Suniig N
\ 134e] eyeq HIYPolg
y 3 f 3 3
onl 1 POT 202 07 vy 20z
ﬁn.:/f N.:// nmoﬂ;/ 0 T/
Pre HT ayg Byl
PO9 309~ 909~ B9~
agemodoydin) adeuron0ydix)y agemodnydin) adeuwod0pdix)
wonudddy aaemijog vonedddy saemijog uondddy sxemyjog uonedddy aremyjog
» L 3 L 3 »
~—pog ~-a9¢ -a9¢ ~e9¢
AMAIIGe~, uonnISuy
JOINIORFNURA IMNRSYIM -9t eIy JeduRuL]
811 144} (44} Pt

W

1T°DI4

U_Y p-80T
_pvop

pP-8Z¢

US 2022/0058622 Al

Feb. 24, 2022 Sheet 22 of 63

Patent Application Publication

JIAIDS 124AE] vle(q

pL

0t
8T
0¢

9
1%

cv\.

(s)anfea gsego——>"
BIE([IBALI

!\—.mﬂwtou?w Surysge—-T" 8vi

| —eUIByNI0]g 3)BALIJ

Anuge——HvH | 7€
uoneoddy saemijog

/

\

vi

(AN K |

/4

7 LR it i5]

dn

\:«aoxuo_m 3&2.5\% \.

9p1-]

JaAax08 Anuyg

24}

ori

-
-«
a
~
&
0 9¢1
< Z
8 %™ T ”
S RL1E) I d
~ZJood o (4}

N 78— 0014 =
W /uuwvﬁ mgng _\
- 9~ ureyax0[q MG BEYSCISREY S SATT |

0L ——————sp.10da.1 ele(vL

|—wipriodyy surgsey
8¥1 \Lm?— BIBP WRYNPOIY

LT vuvoneonddy 1aodeq ejeq
X.::.uxucﬁ 8?&5\»
\ , vT

Feb. 24, 2022 Sheet 23 of 63

pel

JDALIS Auy

44}

£C"OId

Patent Application Publication

ori

US 2022/0058622 Al

Feb. 24, 2022 Sheet 24 of 63

Patent Application Publication

ShT—"] WPLIOFNY Suiysey
BEYNEIN
P
poT 41

T# 1OAIG PajRIIPI]

—

ureyIdo[g
aigng
P
9L

08
[/

7
q091

i iR) pli (e
Augnd

1# 10AI3S PABIIPIY

7
||w\

\

HIeYII0[g

Jqngd

>

2091 eM\

yC O

L

\vmﬁ

1948} vivp weynpeolg
uopenjddy 1aie7 vieQq

4

IIARG AT vle(

vL

US 2022/0058622 Al

Feb. 24, 2022 Sheet 25 of 63

Patent Application Publication

i

BleQq eje(q
e ere(q
BjeQq ere(Q
viR(eye(q
7€ ool jo joodq
£ 3019
- , J
LY

J

ereq || wieq
eye(g vle(]
ereq || weq
eye(veQq
T€ Y201 Jo Jooiq
/ 8 MoId
\
qo0L1

STOM

vleq Bleq

eye(g e

eye(Bje(q

eje(q wiR(

0€ YOOI Jo Jooig
/ Te o \

P
BOLY

US 2022/0058622 Al

Feb. 24, 2022 Sheet 26 of 63

Patent Application Publication

143

J29LT IA“H L10300.11 K10303.01(LT RER17q] Lropan(g Laopang

BjE(] jo utey) N QEWeY) ~_ gy
FIBd 30 WEL) 5 arwen) |~ ey
glB(] jo wey) - arweyd

JegL]— m PyLl
vIeQ 3o Wy] aruwey) WPLT

eq jo -

eje(f Jo ey (UL O N P
BJE(f JO Wey))

9¢ O

-.Am AW N gy

US 2022/0058622 Al

Feb. 24, 2022 Sheet 27 of 63

Patent Application Publication

981
Yooig Froig Foord
A1033201(] L10322.110 Lxopdaa(/vw~
yoo[g Anug W}oo[g Anug
}oorg Anujy yoorg Anuyg
¥aorg Anugg Moolg Anuy
81
Anuy Anuy Anuy Anuy Anuy Anug Anuy Anug Anuy]
Anuy Anuyg Anuy Anuyg Axuy Anuy Axnyugy Anugy Anugy
~— 081
Anuy Anuyg Anuy Anuy Anug Anug Anuyg Anug Anuyy
Anuy Anuy Anuy Ly Layug Anug Anug Anuyg Anuy

LT

O usy)
AN
LY
guen) N
qTLy
Vv uley)
N\e
Ll
mvi\
(45
0L

US 2022/0058622 Al

Feb. 24, 2022 Sheet 28 of 63

Patent Application Publication

’

JaAI9S J4Aeg viR(

08 ~
NJooad —\

0ST——f—({(s)anjea yssgy
el —}———eunjjr103e Surysey
. 10A8] B)Bp UIBYIYO0[g

\\&Ecu?_ 131744
u

opeonpddy sodey vivQq

vmﬂ\

8T "OIA

vL

-
-«
a
~
\&
0
% k\/V
S N | i
bt 1
Q i 91 n
& ” -
1 "
2 T s s JOAIIG pemmmsmm e 4 881
= ™~791
AN
e 08—t—joo1g siydesSoydLyy f---------=m==-] prmmmmmmm s 1
“ QL -——21A198 uonEpIEA _—9L H
1<)]
| \\I.mvhooom vleqq L i
& 0L e ke eyeq megdOIg ,.\. ezel
~—
m JIAIDS 10AR] vle(
73 vL
L R I
2 ". |
3 " A
P 6 woneonddy aaemgpog { T0€T
> F 3
=
3\

NN\ il N7

67 "OlId

Patent Application Publication

US 2022/0058622 Al

Feb. 24,2022 Sheet 30 of 63

Patent Application Publication

0c w01

N b

Q7 SPA0IY vIE(f

L

oy

adeurosnydiaD |_—0CL

) pumma

\

0L 0t
87
01
09
001

o

JaAeT elB(ureyayoolg ~~— 7L

JIAIIG JoAwe] eje(q

y-

—— L 87

vg—"| 4 4111
op — uoneapddy 21um)jog 09
op1—1 "°APS Anuy 001

L

9¢€—"

Auyg

| -7¢

0¢ "OId

=

~ 981

o

N }

@

Yg]

=

& 3aoig olg oig

m £1030911(L101001(q 87 S Kaepemng [\ ST

N

-

A yoopg Anuyg yoorg Anujy

S

)

- }oo[g Anuy wN\. Wyooig Anugy

2

m ¥}oo[g Anuy yoorg Anug
e

~ 8¢ N 781

o~

&

I 87 g

5 N

= Anuy Anug Anug Anug Anug Anuyg Anuyg Anuyy Anuy

= Anuy Anuyg Anug Ay Anug Lnug Anuy Anuy Anuy

)

ﬁ

.m Anuy Anuy Anuy Anuyf Anuy Anuyg Anuy Anuy Anuyg

=

Dn.... Anugy Anuyg ARy Anuy Anuy Anuy Anuy Anuy Anug

=

8=

~

<

=

=

=

«

=

g I€ "OId

="

— 081

D uey)

LY

g urey)

77

q7Ll

v urey)

BpL m\

eTLY

(45
0L

US 2022/0058622 Al

Feb. 24, 2022 Sheet 32 of 63

Patent Application Publication

r w 61
aseaydssed
0¢ (411}
\ \ aSeuoonydiry |——0¢1
S L) S
JRARG 14T vle(
0L 0 N L /ca
8¢
01
09 14 \

001

e

or— uopedddy d.aMIjog

opT——] “°ARS Lpug

9¢—]

S

Lpuy Sz

(43 & |

US 2022/0058622 Al

Feb. 24,2022 Sheet 33 of 63

Patent Application Publication

0¢ 01

b 5

87— SPI0Y BIB(_

0L

001

or

%aﬁ&&&.ﬁ

L I9Ae] v)e(q Weynojg —~—7,

JOARG AR vl

01—

-~

144

ddeuwtodeydAr) 07

or—1"

openpddy daemyjog

ov1—"

JIARS Anus

[-7¢

£t "Old

961 —— odedgoan

061

uoyelg
surLy
61
1\
vms,:_%mmm/

v P |

| WSTHR IO UL HOIBIUIIINY

-v61

US 2022/0058622 Al

Feb. 24, 2022 Sheet 34 of 63

Patent Application Publication

PL~ 19A13G Jake| vreQ
Vi
cmﬂl/owwﬁcusmfu
09— adeurodoydAa aearg
| ———durpg
v8 19R1U0D [BNSI 07
017 —+——— Alewuing
A0VLINU] I 361
06 I —~}—wsimeysow uoneonuany
SpIoddI e ———__} cN.
uonels Sulpiy
c:I‘\th_.ﬁ e ureypOlg —__7/
uonednddy mley vyeq
122

ve "OId

807
4174

007

US 2022/0058622 Al

Feb. 24,2022 Sheet 35 of 63

Patent Application Publication

0L 87 a0l
oo e P
81 A Woid A10)23a1Q AUIp! [e)8Kq aseaydsseg
781 A Pod Anuyg ngea ysey Jnfea ysvH
» Anug swnueydpy SSAIPPY
081—"1
SSAIPPV
P10y Jannuapy siydeadoydia)
v)eQq Penuo) JduIg
(444
(IRGATM
1adey ejeQq 07t
Jo aseqeieq
Aromwd 1
TN d (491
JOARG 1k vle(Qg
owL—t Jake] vjep ureyayoog L

uonesnddy aadeT ejeqg

\

121!

$€ O

US 2022/0058622 Al

Feb. 24,2022 Sheet 36 of 63

Patent Application Publication

SPA0INY vB(]

0L

9L

L~ ™~ 10A%] B)e(f WIEYIYIOfg

PARS RAETEIRQ

uonelg
011 —"1 Sumg

PL—]
8¢T 0¢
cvul/ 38eui0003dAa)
9¢7—1 uonediddy saemijog
peT——] 2ARSMaAng
F 3
T
Anuy
mgn
Hand p~_ 05T

9¢ "OIA

61
\
omah_%mnﬂv
1 ——08edqa
961 LI P |
061 __-WISTHRYOIW HONeInudpny

-P6l

US 2022/0058622 Al

Feb. 24,2022 Sheet 37 of 63

Patent Application Publication

4

4

SIdjmre.re g [enjoe.nuo).

87 |« YIJUOP] }OBUO))
| —penue) feusiq
07—

SJORIUO)) JO
aseqeleg

JIAIIS JORHU0))

vL

k)V

0¢
8T

yT—"|

LE O

US 2022/0058622 Al

Feb. 24,2022 Sheet 38 of 63

Patent Application Publication

0s 0¢ 87
— — —
QST—T SsoIppv dl YyseH/ojuj/ereq ai
9s7—T IWA/ISA) Lymarmondin) LNuapr fensiq
$ST T JIARG (symaay JN[EA YSBH
op —T A sanaeJ/Aaed Jrournueydpy
A2INOSNY UONCULIOJU] Jaynuapy
MLIOMIIN [Em3oenuo) penuo))

\

05T

07 —T——3enuo)) [ensiq
| ——e.12AE] B)EP UIBY]OO|Y
uoneaddy 1aley ejeq

L]

\

vel

8¢ "OId

SPIBAIUO))
Jo asequie(g

IoAI0S TR ere(]

AN

0c
8¢

Y7 —"|

17

US 2022/0058622 Al

Feb. 24,2022 Sheet 39 of 63

Patent Application Publication

097"

0s 0t 8T
Yt Yt ——
L. Eliitialif] sanaeg/Aaed srrumueydy
INOSNY WO BULIOJU] Iygnuapy
MLIOMIIN [en3oenuo) Penuo))

\

0sT
W T
———]ICAU0)) [BHSIQ
0z \.2_??._ BlEp ursynoIg
rd bt \\J%.Soom BB
uopwoddy 1adey vieQ
0L—

vel

6t "OIAd

$138.13U0))
Jo asequie(g

IoAI0S A Ble(]

2N vL

£

0¢
8T

vT—" |

US 2022/0058622 Al

Feb. 24, 2022 Sheet 40 of 63

Patent Application Publication

0s 0t 8T
oo meen, Y N ey,
po7—1" TN UOLBIIPISUB Y a1
Qo7 Sveerdl sapaug/Apieg 1ax
AIINOSNY UOIRULIOJH] JIIPY
o pep WA0MIIN eRIBIu0)) Penue)
1PRNUO)) (BB e
0t 05T
B?am‘ aoway
asuodsxy
\\ ERTTWEN
97 897
arpdpy Py Bililig 44
IMAIIG JO sseqeje(
0LT JIAIAG 1IRV] vIRQg
a vL
jsanbay
@WN ERIRWE Y
¥e
0¢ \\x.m??_ BIEP WEYINIOY
L SpI6eay vIB(
oL %&E&Aw Xakey vleq

\\

142

0y “Old

US 2022/0058622 Al

Feb. 24, 2022 Sheet 41 of 63

Patent Application Publication

TN
S}IRIUO)) e 44

Jo aseqeje(q

Jdmmmﬂ\l 9¢1 an 761
p1oeuo) £1oeIu0) 719enuoe) 11Peue)
t# INA ¢# INA T# INA # WA

T —p-v0z
T 3——p-eo8T

JIAIIG J0ART] Bl1B(L

AN

P-®0¢
P-¥87

PT—" |

Iv "DIA

US 2022/0058622 Al

Feb. 24, 2022 Sheet 42 of 63

Patent Application Publication

—PST

87 087 8¢
N F N oo
e1ep J2DUdPY $SIIPPY
210D
an[eA 4yse J0 $SIPPV ddy penuo)
ar 1# WA YSeH |
JYNUSPL JUIYIBIA AynuIp|
ANAY [BRIIA PeUO))

7
0sT

sjoRLu0))
Jo sseqee(

P87 —
9%
Pel—m
0f —
0T —

s 031AJ3S DIBMIJOS L—
~————d[1] Joinduio)
- unopeaddy miey ejeq

WA

JIARRS JoAE] BlR(

~-08¢

s O RULIOJU] }0BIUO))
e }PRLUO)) [ENTN[

v 'Ol

vL

US 2022/0058622 Al

Feb. 24, 2022 Sheet 43 of 63

Patent Application Publication

X
— ij00.ug
AT B N
0ST———__ _(s)anpua yseq
8v1 T ——wyiodie Surysey
987 —] «IPYBUIPI WA
QT —|——>1PUBUIPI PPEHUO)
| —1enuo) @siq
07— \\L?’.«_ Blep WEYPOoIg
7L uonenddy 1aley vyeQq

19
WA
B
JOAIIS JoAeT BB
V4N PL

\

pel

3 K |

0¢
87

yT—"|

T

US 2022/0058622 Al

Feb. 24, 2022 Sheet 44 of 63

Patent Application Publication

L —VL1

81

pel—]

067 087 87 (4
€ ey Jypuap] vep SSIPPY
0D
aduey aey ~ $SAIPPV aneA Ysel ddy juag)
212, | 1# WA ax apumeyy)y -
UOIJEB.IIUIY) QUIIRA] JOYNUIP]
Jo ajey JENLHA Penue) ureygoooIg

05T

P8T———pojg Koo
SPo01g Anujf

081

OL———SP1033Y v1B(g
7L __L—a124%] v1Ep UIBIPOOY

—suoneanddy 1de] ejeq
| _—epenuo) [endi|q

0T

Anuy

14 K |

$19RI3U0)
Jo aseqeie(

AIOWIA] _

JIAIIG d3Ae] vleQ

P

di L L zer
pL

o€

87

US 2022/0058622 Al

Feb. 24, 2022 Sheet 45 of 63

Patent Application Publication

00¢ _
\
3

PENUO) [N

uopedddy joenue) 07

Jm L1oudpy |

N-vog

JIAIIS AJOWRY

N

0¢

JIAIIG JoAw] vle(q

L
0L—

\.35,?_ e)ep UiRypIorg

SPA0Y BB
%&.&3 Jfe ejeq

1 4

\
si

OIA

ve

vL

90¢ sy

PRHUO)) [ENBI(fe———]
uonedddy jornuo) 07

\

797 0t

JIAIOY OTNY

US 2022/0058622 Al

Jsuodsoy
AIAIIG

sjaRIuo)) Jjo
aseqele(

JOARG 1AeT Ble(

VL

1sanbayg 144

ERITREIN

0t
87

(s)j001g
z hl..\.io,ma_ Blep uieygnoolg

0L—+——"sP102% v1rq
997 | —JapmeIE [En)IELU0)

0€— LOYBUIP] I9BHUO e | 87
uoneonddy 1afey vivQg

\

pel

—08

Feb. 24, 2022 Sheet 46 of 63

9% "OId

Patent Application Publication

POIE i‘\..\llil..&.:::@ “

E I...t.l.ll—\\ls.l.llxloﬁ:—ﬂw

PLIE ¥ POIE ppyc !
!

¥ AMPOIY;
- wwwt_r

ucmm||||\,\\|......153=O “
AWIE WX IE—~ L ———snduy i

W1 € JMPOIA; _
L. OWN;\.\‘\AHI!..!!!!..!..!L

US 2022/0058622 Al

4 &@ﬁml..xt.\.._\.\.lul::&:@ “
aTIE® W0IE— qpyet—»i—10du |

\4,1 T 3MpolN f
e e i

¥Q[E kg0 :
eTIE R BOIE~ gyt —indu] | b 194305 0WY
42 ! I AMPON _
- NWN[.\\\._.H. lllllllllll 3

9¢

| ——ensoy
90¢ | ———Renu) 2l (]
07 vonesddy jpenuo)

\

e

Feb. 24, 2022 Sheet 47 of 63

1sanbay
NNAIIY

p-egg
P-e87

997

Patent Application Publication

LY "OlId

US 2022/0058622 Al

Feb. 24, 2022 Sheet 48 of 63

Patent Application Publication

i]
H 1
i i
! 90~ !
i
_ ”
i
! PYIE) "
, porg PPN !
! P8z h !
- 1
! _ | —prie
so1c
“ QNWM |~ €2mPow "
“ 287 _| i "
m q91€ | e
ompo !
“ qo1e —L_° _\Mz !
! q87 !
| - - —aris
X 1
! vore L] TOMPON i
1
“ vg7 | AN "
m pe— U e |
, "
e
8y "OIA

US 2022/0058622 Al

15}

| i
i i
| 1
" 90¢ !
i
i |
| 1
i _ 1
, .
T .
2 75 \
- " P8z _| “
° ! | —pprig
m_./ “ 291E) € PO “
> 1 3091 —| i
-]
= " 287 Z4Y “ m@wwvmm JARG aw?d wreQ
1AL
~ " - o1 | :
g 1 q91¢ p—— i
S ! a01e — | e !
M " a8z] . \ | —aiue
C " I arie 1 jooid—0o | oo
_ 91¢ — “ \..LS%E vIEP WILYOOIY
| BIE — | 1 't SP1029Yy B1E(]
" eg7 | AN ! oL %&E&w 1k vreq
o N i
0z pe— U T ~
_ “
1 1

6v "Old

Patent Application Publication

PT9T—— ioa0g ojomay

ﬁcﬂm/* P SMpon *

V97— 10a13g djomay

1\&\

US 2022/0058622 Al

sajepdny
NARS

JIARS RLeT eieq

IJE—— €mpo

qT97—— 10a19g 230wy
k\
qOI¢—— 73mpon

jooug—— | oo
BT9T—— 10a10g ajouray \a.s,h«_ vjep weydyooig

L i rd ot Sp1033Y vie(g

i %&Emaw J1ake] vjeq
L2118 I Ampop " OL—

i

i

\\
PST

Feb. 24,2022 Sheet 50 of 63

0s “OId

Patent Application Publication

US 2022/0058622 Al

Feb. 24, 2022 Sheet 51 of 63

Patent Application Publication

067 ——

HoRBIIUILY

Jo 3By

PT9T—— o195 ajowmay

PYL
xAags ey ee(g

YT 10a105 spomay

SPL
RETR TN EYS g B3 1:Tq |

ucﬂml‘* £ AUPOIN _

q797—— .ioat0g owsy

Illl\&‘

01— 7 ompo

Gyl
RETRCINNEY g §31:7¢]

BT9T—— 10a1ag ayoway

I\N\

&L
1A10G Jade] vinQg

BOIE—— [2Mpop

AN

Jakey vivgg
uRyIolg

= o€ 0€ 87

a r—— N —

% TA/SSIPPV 4 seh/ejup/eieq al

m WA/MSISOL) AxmarasopdLx) APt e

w REFREN (Suaa g, InjeA YSEH

m usIdayy sanaeg/aed surunueydpy

= i3joweaegd uonRuLIojuy JUIp]
swyduadoany [EnIe.nue) JIRHUOD)

ok

T9T —— 13a198 sjomoy

oL

S}ORIFHO))
Jo Iseqeing

IIANIG I9AT] vIRQ

Feb. 24, 2022 Sheet 52 of 63

ey vL
———esakey BiEp WRYIPIOIG
(28 woneaddy ke f vyeq 0ce
\ 0ce —— 0t
0t 97 8¢
1271
(443

Patent Application Publication

¢S O

US 2022/0058622 Al

Feb. 24,2022 Sheet 53 of 63

Patent Application Publication

08— | ——ej00.1g dyderdoydin)
L ——e1a4e] viep uieyO)OIY
w uopenjddy 1aie7 vieQq -
. 13AUIG J34E7] BE(]

\\ O\

el
9L

0PI — seatag Apuy
4

/

e T——ndinQo

nduy
- 8T¢ ——uonpuoryppmy

97¢ _91qe], uoisna(
|_»}oR.1300)) [e}3I(
07—

0ct

€S "OId

pL

US 2022/0058622 Al

Feb. 24, 2022 Sheet 54 of 63

Patent Application Publication

ST T NA/IIST])
141G T VST
08 — 22N059Y NA0MPINe—— |
J/Jmoohm sqdeadoydsia) 0sT
(4% wnding
0£€ ynduy
87€ e HOIPU0 /[y
97§ ———31qBL voIsIQ 8L oL
0z e IR IIUO)) [ENBI(
7L e a34vy eyup mey»pOIg
SpI0dY 'IR(
0L !\ﬂ.wmu__%‘« HLey eeg _/r ARG AR Ble(
\\ PN y vL
1221
7€€ (4%
0€ ~_gz | wrd mm
8¢
pT—"| /
OVl —— soaseg Apuy (44

Ps “OId

US 2022/0058622 Al

Feb. 24, 2022 Sheet 55 of 63

Patent Application Publication

JIAIOG JOTUNY 4

9T¢ QB WOISIA(

Peyuoe) [BISIge—_|
nopednpddy penuo) 0T

\

79T w0¢

$30813U0)) JO
aseqeye(

REYWEINNEYNs R :317¢

i 75

(s)j001g
[— |« 0AR] BRp ureypoig

Nc [- | ———eSPIOONY BIR(
| —IojwRIE] [B1)IENU0)

0¢— JIFIUIP] 1IBIJUO Y|
uoneonddy 1adey vieq

—08

— 8¢

\

142}

SS O

US 2022/0058622 Al

Feb. 24,2022 Sheet 56 of 63

Patent Application Publication

pee 05 0¢ 8¢
TH/ss34ppY
a1 A0180UIGNS ysepj/ojup/eieq al
SQALL 30 s911a3¢ SSAPPV J1 Axsrmooydin) Ampuapt fensiq
RLEERD
30 3wonbayg INA/ASRED {(symaay e Ysepy
141 L REYNEIN sanseg/amg sdwmueydpy
(s)1aynuapy I2NOSTY uonevMLIoyu) REJ BRI
EIGLA S MNI0MIAN jenide.nun) eI

\\

0sT
S}eUC)) JO
aseqereq vy
JIAINS Aef BieQ ../
vL
(s)j001g 08

Z hs&\l&um.\nﬁ B1Ep HIeydsdolg

0 L———sP 202 EIRQ
| —I9j0WRAR] [ENOEHUO)

Q€ A3YPUIPY PERUO Yo | 87
woneapddy iy vieQq

K

147}

9¢ "OIA

(433

mding

-

«

N

o

2 97¢ 3qey, uoIsa(

g Penuo) _ﬁaa.,/lcm
m uoneonddy joevnuo)

o

] JIATIG 030 A /
® 92 ot
-

asuodsay
NI

S19BIIN0)) JO
aseqejeq

JIAIIS AR vle(

i 72

jsanbay
INAIS

0te
pee

(s)y001g

z hl\\lhoz«_ vlEp WRYMPOlYg
0 bl.\\..l..m_:coom vl g

9917 | —IojoumEIR g [BN)OBHUC)

0¢— JYBUSP] JOBHUO Ye—— | 87
woneoddy pake7 vjeq

\

el

—08

Feb. 24, 2022 Sheet 57 of 63

LS O

Patent Application Publication

US 2022/0058622 Al

Feb. 24,2022 Sheet 58 of 63

Patent Application Publication

08¢ 1433 87
P, o Y
JYIuIP] wep $S2UPPY
210D
10 SSAIPPV anjeA yseH ddv 1penuo)
NA ar SeR | P 2711
SUIYORIA Jannuapy JRgpuapy
[enyuA Aqe], FR1:3111T%}
0S¢
SPEHUO) 44
Jo asequle(q
(4%3 s ndjnQ
06t ———— _nduy;
9T¢ T———a1qe], oSy
L~} —3afeT syeq Wweygnpog 08¢
0L ————sprodoy vreq IIAIDS JaKE T vleQ
PS1 ——uoneoyddy Jafey vieq bL

0§ —+——=UONeULIOJU] JOeU0))
07 | _——epR0U0)) [BUSI(J

8¢ O

US 2022/0058622 Al

Feb. 24,2022 Sheet 59 of 63

Patent Application Publication

| —PS1

$1IRHUO))
Jo aseqeje(

RETREIR BTNy Rt |

087 067 pee 8¢
—t — y e A
JOYBUIPY N ey v)ep SSAIPPY
2107y
10 SSAIPPY 7 NeyY anfeA YyseH ddy yoenuo)H
WA I ey ax gseH -
JuyIR|N HONRIIUIY) OUYBUIPY JYHUIPY
[ENLHA Jo ey Jfqey, JPRAIUO))
057
(4% ~—————ndjngQ
0L¢ ————jndug
9TE T———ajqe], uoIsIa(Q
T e 13ARTT BYR(WRYYIOIG
0L~ ——spaoday vreq
pS1 ——+—uoneoddy 1afe vleq
0§ —F——UonEULIOJU] JoeNU0D)
07 ————=1ruue) ensiq

6S "OIAd

US 2022/0058622 Al

wpae iy Bamas papansag

swaom Bty swaon Baosaaany

sy Baoteesgy

g
x

e Z.\
gt

Jafiv Buidwipyg swiyl

Feb. 24,2022 Sheet 60 of 63

Patent Application Publication

US 2022/0058622 Al

Feb. 24, 2022 Sheet 61 of 63

Patent Application Publication

dJOLS

uregoo§y siqnd oyur spIedas eyep paysey auiodioduy ~—peE

A

SPI0II BIEP YSBH [~~—7GE
' 3

49£u] BIEP WIRYINIOY I SPIOIAL BJEP NBIDWD) [~ (S¢

r

IsundsIx DAL BAIOIY ~—gp¢

3

ajepdn 3214138 DAY ~—0p¢

L

1055900.4d 3ou.0H00 0) 35a0bdT DA PG |~ Phe

F 3

Jossyvoad 3oenuod Auwapy ~7$C

»

aopwered orgdeaS5od3 10,29 1ojowvard [EMILIIHOD SIDPRUIPI JIVIHOI JARINY

Bl t2%

19 'OI4

314

[BUIXF 1SOS ELIEET HiG]
[I _ snd

sng

j10 PreIed

v

AIOWIIN
ysel g

US 2022/0058622 Al

I9fj0.U0)D)

sng
feroyduiag ¥

asn

A

\ 4

A 4

10 [ELI9g

F

2

AAId - OIS

L 1104 ISNOIN

v
wasdsqng

opny » 1104 preoqAay

vonedddy

PRI woneyddy 1221

1ake] vieq

Feb. 24, 2022 Sheet 62 of 63

waysAsqng

WISASANS AIOUDT |] JI[OIUO,) UIDISES | el soryde.iny

uoneaddy /

AIBM)JOS ” ” 09¢
/ 10883304 10882201

oy

9 'Ol

Patent Application Publication

US 2022/0058622 Al

Feb. 24,2022 Sheet 63 of 63

Patent Application Publication

———
-~

, HAG/HAL

] TLE dSa ~99¢

uoneaddy
jaRAu0)

\
Za
uopeonddy .

ps1”| kw1 eIRG

(4113

uopeoddy
2IBMIJOS

/
0¥

€9 "Old

auoydirewrg

N - -~

-

US 2022/0058622 Al

PROTOCOLS IN BLOCKCHAIN
ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application is a continuation filing of
U.S. application Ser. No. 16/351,597 filed Mar. 13, 2019,
since issued as U.S. Patent X, which claimed domestic
benefit of U.S. Provisional Application No. 62/714,909 filed
Aug. 6, 2018, with both patent applications incorporated
herein by reference in their entireties. This patent application
relates to U.S. application Ser. No. 15/983,572 filed May 18,
2018 and incorporated herein by reference in its entirety.
This patent application also relates to U.S. application Ser.
No. 15/983,595 filed May 18, 2018 and incorporated herein
by reference in its entirety. This patent application also
relates to U.S. application Ser. No. 15/983,612 filed May 18,
2018 and incorporated herein by reference in its entirety.
This patent application also relates to U.S. application Ser.
No. 15/983,632 filed May 18, 2018 and incorporated herein
by reference in its entirety. This patent application also
relates to U.S. application Ser. No. 15/983,655 filed May 18,
2018 and incorporated herein by reference in its entirety.

BACKGROUND

[0002] In today’s global economy, trust is in rare supply.
This lack of trust requires the devotion of a tremendous
amount of resources to audit and to verify records—reduc-
ing global efficiency, return on investment, and prosperity.
Moreover, incidents such as the 2010 United States foreclo-
sure crisis demonstrate that in addition to being inefficient,
the current processes are also terribly inaccurate and prone
to failure.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0003] The features, aspects, and advantages of the exem-
plary embodiments are understood when the following
Detailed Description is read with reference to the accom-
panying drawings, wherein:

[0004] FIGS. 1-8 illustrate a Factom protocol and system,
according to exemplary embodiments;

[0005] FIGS. 9-21 are simplified illustrations of a digital
contract in a blockchain environment, according to exem-
plary embodiments;

[0006] FIGS. 22-24 are more detailed illustrations of an
operating environment, according to exemplary embodi-
ments;

[0007] FIGS. 25-29 illustrate a blockchain data layer,
according to exemplary embodiments;

[0008] FIGS. 30-32 further illustrate the digital contract,
according to exemplary embodiments;

[0009] FIGS. 33-35 illustrate an access mechanism,
according to exemplary embodiments;

[0010] FIG. 36 illustrates a public entity, according to
exemplary embodiments;

[0011] FIGS. 37-40 illustrate contractual execution,
according to exemplary embodiments;

[0012] FIGS. 41-42 illustrate virtual execution, according
to exemplary embodiments;

[0013] FIG. 43 illustrates cryptographic affinities, accord-
ing to exemplary embodiments;

Feb. 24, 2022

[0014] FIG. 44 illustrates virtual assignments based on the
blockchain data layer, according to exemplary embodi-
ments;

[0015] FIGS. 45-51 illustrate an architectural scheme,
according to exemplary embodiments;

[0016] FIG. 52 illustrates compliance scheme, according
to exemplary embodiments;

[0017] FIGS. 53-59 illustrate a decisional architecture and
scheme, according to exemplary embodiments;

[0018] FIG. 60 is a flowchart illustrating a method or
algorithm for executing of digital contracts, according to
exemplary embodiments; and

[0019] FIGS. 61-63 depict still more operating environ-
ments for additional aspects of the exemplary embodiments.

DETAILED DESCRIPTION

[0020] The exemplary embodiments will now be
described more fully hereinafter with reference to the
accompanying drawings. The exemplary embodiments may,
however, be embodied in many different forms and should
not be construed as limited to the embodiments set forth
herein. These embodiments are provided so that this disclo-
sure will be thorough and complete and will fully convey the
exemplary embodiments to those of ordinary skill in the art.
Moreover, all statements herein reciting embodiments, as
well as specific examples thereof, are intended to encompass
both structural and functional equivalents thereof. Addition-
ally, it is intended that such equivalents include both cur-
rently known equivalents as well as equivalents developed
in the future (i.e., any elements developed that perform the
same function, regardless of structure).

[0021] Thus, for example, it will be appreciated by those
of ordinary skill in the art that the diagrams, schematics,
illustrations, and the like represent conceptual views or
processes illustrating the exemplary embodiments. The
functions of the various elements shown in the figures may
be provided through the use of dedicated hardware as well
as hardware capable of executing associated software. Those
of ordinary skill in the art further understand that the
exemplary hardware, software, processes, methods, and/or
operating systems described herein are for illustrative pur-
poses and, thus, are not intended to be limited to any
particular named manufacturer.

[0022] As used herein, the singular forms “a,” “an,” and
“the” are intended to include the plural forms as well, unless
expressly stated otherwise. It will be further understood that
the terms “includes,” “comprises,” “including,” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof. It
will be understood that when an element is referred to as
being “connected” or “coupled” to another element, it can be
directly connected or coupled to the other element or inter-
vening elements may be present. Furthermore, “connected”
or “coupled” as used herein may include wirelessly con-
nected or coupled. As used herein, the term “and/or”
includes any and all combinations of one or more of the
associated listed items.

[0023] It will also be understood that, although the terms
first, second, etc. may be used herein to describe various
elements, these elements should not be limited by these
terms. These terms are only used to distinguish one element

US 2022/0058622 Al

from another. For example, a first device could be termed a
second device, and, similarly, a second device could be
termed a first device without departing from the teachings of
the disclosure.

[0024] FIG. 1 illustrates a distributed, autonomous Factom
protocol, according to exemplary embodiments. The Factom
protocol cost effectively separates any blockchain (such as
the Bitcoin blockchain) from any cryptocurrency (such as
the Bitcoin cryptocurrency). The Factom protocol provides
client-defined Chains of Entries, client-side validation of
Entries, a distributed consensus algorithm for recording the
Entries, and a blockchain anchoring approach for security.
[0025] When Satoshi Nakamoto launched the Bitcoin
blockchain he revolutionized the way transactions were
recorded. There had never before existed a permanent,
decentralized, and trustless ledger of records. Developers
have rushed to create applications built on top of this ledger.
Unfortunately, they have been running into a few core
constraints intrinsic to the original design tradeoffs of Bit-
coin.

[0026] 1) Speed—Dbecause of the design of the decen-
tralized, proof-of-work consensus method used by Bit-
coin, difficulty requirements are adjusted to maintain
roughly 10 minute confirmation times. For applications
that wish greater security, multiple confirmations may
be required. A common requirement is to wait for 6
confirmations, which can lead to wait times over an
hour.

[0027] 2) Cost—the default transaction cost is around
0.01 mBTC (roughly $0.003 USD in November 2014,
and as much as $80 USD per transaction at times in
2017). The exchange price of BTC has been volatile
throughout its history. If the price of BTC rises, then the
cost of transactions can go up. This can prove to be a
serious cost barrier to applications that need to manage
very large numbers of transactions. Additionally, many
factors including constraints on block size and reward
halving could act to increase transaction fees.

[0028] 3) Bloat—with the Bitcoin blockchain size limit
of' 1 MB per block, transaction throughput is capped at
7 transactions per second. Any application that wants to
write and store information using the blockchain will
add to the traffic. This problem has become politically
charged as various parties seek to increase the block
size limit and are met with resistance from those
concerned about decentralization.

[0029] Factom is a protocol designed to address these
three core constraints. Factom creates a protocol for Appli-
cations that provide functions and features beyond currency
transactions. Factom constructs a standard, effective, and
secure foundation for these Applications to run faster,
cheaper, and without bloating Bitcoin.

[0030] Once the system is set up, including issuance of
Factoids (i.e., the cryptocurrency of Factom) and user
accounts, token value is transferred among users, Factom,
and Bitcoin with the following primary interactions:

[0031] 1. Application Owner purchases Entry Credits with
Factoid

[0032] 2. Application records an Entry

[0033] 3. Factom Servers create Entry Blocks and Direc-
tory Blocks

[0034] 4. Factom secures an anchor (hash of the Directory

Block) onto the blockchain

Feb. 24, 2022

[0035] Details of these and other interactions are in the
upcoming sections.

[0036] The Factom protocol secures entries. Factom
extends Bitcoin’s feature set to record events outside of
monetary transfers. Factom has a minimal ruleset for adding
permanent Entries. Factom pushes most data validation
tasks to the client side. The only validation Factom enforces
are those required by the protocol to trade Factoids, convert
Factoids to Entry Credits, and to ensure Entries are properly
paid for and recorded.

[0037] Factom has a few rules regarding token incen-
tives for running the network and for internal consis-
tency, but Factom may or may not check the validity of
statements recorded in the chains used by its users.

[0038] Bitcoin limits transactions to those moving value
from a set of inputs to a set of outputs. Satisfying the script
required of the inputs (generally requiring certain signa-
tures) is enough for the system to ensure validity. This is a
validation process that can be automated, so the auditing
process is easy. If Factom were used, for instance, to record
a deed transfer of real estate, Factom would be used to
simply record the process occurred. The rules for real estate
transfers are very complex. For example, a local jurisdiction
may have special requirements for property if the buyer is a
foreigner, farmer, or part time resident. A property might
also fall into a number of categories based on location, price,
or architecture. Each category could have its own rules
reflecting the validation process for smart contracts. In this
example, a cryptographic signature alone is insufficient to
fully verify the validity of a transfer of ownership. Factom
then is used to record the process occurred rather than
validate transfers.

[0039] Bitcoin miners perform two primary tasks. First,
they resolve double spends. Seeing two conflicting transac-
tions that spend the same funds twice, they resolve which
one is admissible. The second job miners perform (along
with the other full nodes) is auditing. Since Bitcoin miners
only include valid transactions, one that is included in the
blockchain can be assumed to have been audited. A thin
client does not need to know the full history of Bitcoin to see
if value they receive has already been spent.

[0040] Factom splits the two roles that Bitcoin miners do
into two tasks: 1—recording Entries in a final order and
2—auditing Entries for validity.

[0041] 1—The Factom servers accept Entries, assemble
them into blocks, and fix their order. After 10 minutes,
the Entry ordering is made irreversible by inserting an
anchor into the Bitcoin blockchain. Factom does this by
creating a hash of the data collected over the 10
minutes, then recording the hash into the blockchain.

[0042] 2—The auditing of Entries is a separate process
which can be done either with or without trust. Auditing
is critical, since Factom is not able to validate Entries
before they are included in the Factom dataset.

[0043] With trust-based auditing, a thin client could trust
a competent auditor they choose. After an Entry was entered
into the system, an auditor would verify the Entry was valid.
Auditors would submit their own cryptographically signed
Entry. The signature would show that the Entry passed all
the checks the auditor deemed was required. The audit
requirements could in fact be part of a Factom Chain as well.
In the real estate example from earlier, the auditor would
double check the transfer conformed to local standards. The
auditor would publicly attest that the transfer was valid.

US 2022/0058622 Al

[0044] Trustless auditing would be similar to Bitcoin. If a
system is internally consistent with a mathematical defini-
tion of validity like Bitcoin, it can be audited programmati-
cally. If the rules for transfer were able to be audited by a
computer, then an Application could download the relevant
data and run the audit itself. The application would build an
awareness of the system state as it downloaded, verified, and
decided which Entries were valid or not.

[0045] Mastercoin, Counterparty, and Colored Coins have
a similar trust model. These are all client-side validated
protocols, meaning transactions are embedded into the Bit-
coin blockchain. Bitcoin miners do not audit them for
validity; therefore, invalid transactions designed to look like
transactions on these protocols can be inserted into the
blockchain. Clients that support one of these protocols scan
through the blockchain and find potential transactions, check
them for validity, and build an interpretation of where the
control of these assets lie (usually a Bitcoin address). It is up
to the clients to do their own auditing under these protocols.
[0046] Moving any of these client-side validated protocols
under Factom would be a matter of defining a transaction per
the protocol and establishing a Chain to hold the transac-
tions. The transaction protocols wouldn’t be much different
under Factom than under Bitcoin, except where Factom
allows an easy expression of the information needed instead
of having to encode it in some special way into a Bitcoin
transaction.

[0047] Bitcoin, land registries, and many other systems
need to solve a fundamental problem: proving a negative.
They prove some “thing” has been transtferred to one person,
and prove that thing hasn’t been transferred to someone else.
While proof of the negative is impossible in an unbounded
system, it is quite possible in a bounded system. Blockchain
based cryptocurrencies solve this problem by limiting the
places where transactions can be found. Bitcoin transactions
can only be found in the Bitcoin blockchain. If a relevant
transaction is not found in the blockchain, it is defined from
the Bitcoin protocol perspective not to exist and thus the
BTC hasn’t been sent twice (double spent).

[0048] Certain land ownership recording systems are simi-
lar. Assume a system where land transfer is recorded in a
governmental registry and where the legal system is set up
so that unrecorded transfers are assumed invalid (sans
litigation). If an individual wanted to check if a title is clear
(i.e., that no one else claims the land) the answer would be
in the governmental registry. The individual using the gov-
ernment records could prove the negative; the land wasn’t
owned by a third party. Where registration of title is not
required, the governmental registry could only attest to what
has been registered. A private transfer might very well exist
that invalidates the understanding of the registry.

[0049] In both of the above cases, the negative can be
proven within a context. With Mastercoin the case is very
strong. With a land registry, it is limited to the context of the
Registry, which may be open to challenge. The real world is
messy, and Factom is designed to accommodate not just the
precision of digital assets, but the real world’s sometimes
messy reality.

[0050] In Factom, there is a hierarchy of data categoriza-
tion. Factom only records Entries in Chains; the various
user-defined Chains have no dependencies that Factom
enforces at the protocol level. This differs from Bitcoin,
where every transaction is potentially a double-spend, and
so it must be validated. By organizing Entries into Chains,

Feb. 24, 2022

Factom allows Applications to have smaller search spaces
than if all Factom data were combined together into one
ledger.

[0051] IfFactom were to be used to manage land transfers,
an Application using a Chain to record such registries could
safely ignore Entries in the other Chains, such as those used
to maintain security camera logs. Were a governmental court
ruling to change a land registration, the relevant Chain
would be updated to reflect the ruling. The history would not
be lost, and where such changes are actually invalid from a
legal or other perspective, the record cannot be altered to
hide the order of events in Factom.

[0052] Factom may or may not validate Entries; Entries
are instead validated client-side by users and Applications.
As long as an Application understands and knows the rules
a Chain should follow, then the existence of invalid Entries
doesn’t cause unreasonable disruption. Entries in a Chain
that do not follow the rules can be disregarded by the
Application.

[0053] Users can use any set of rules for their Chains, and
any convention to communicate their rules to the users of
their Chains. The first Entry in a Chain can hold a set of
rules, a hash of an audit program, etc. These rules then can
be understood by Applications running against Factom to
ignore invalid Entries client-side.

[0054] An enforced sequence can be specified. Entries that
do not meet the requirements of the specified enforced
sequence will be rejected. However, Entries that might be
rejected by the rules or the audit program will still be
recorded. Users of such chains will need to run the audit
program to validate a chain sequence of this type. The
Factom servers will not validate rules using the audit pro-
gram.

[0055] Validation in the Applications (in combination with
user-defined Chains) provides a number of advantages for
Applications written on top of Factom:

[0056] 1) Applications can put into Factom whatever
Entries make sense for their application. So, a list of
hashes to validate a list of account statements can be
recorded as easily as exchanges of an asset.

[0057] 2) Rule execution is very efficient. Where the
distributed network must execute your validation rules,
then validation requires all nodes to do all validation.
Client-side validation only requires the systems that
care about those rules to run them. Factom allows a
Chain to define its rules in whatever language the
designers choose, to run on whatever platform they
choose, and to use any external data. None of these
decisions on the part of one Application has any impact
on another Application.

[0058] 3) Factom Servers have little knowledge about
the Entries being recorded. We use a commitment
scheme to limit knowledge, where the commitment to
record an Entry is made prior to revealing what the
Entry is. This makes Factom’s role in recording Entries
very simple, and makes individual server processes
public. Factom servers accept information from the
network of full nodes, and their decisions and behavior
are in view. Failure to perform can be audited both from
the network outside Factom, and within Factom. It is
easy to independently verify that a Factom server is
fulfilling its Entry-recording responsibility; Factom
can’t hide potentially errant behavior.

US 2022/0058622 Al

[0059] 4) Recording speeds can be very fast, since the
number of checks made by the Factom servers are
minimal.

[0060] 5) Proofs against any particular Chain in Factom
do not require knowledge of any other Chains. Users
then only need the sections of Factom they are using
and can ignore the rest.

[0061] At its heart, Factom is a decentralized way to
collect, package, and secure data into the Bitcoin block-
chain. Factom accomplishes this with a network of Author-
ity servers. Authority Servers are the set of Federated
Servers and Audit Servers which share responsibility for
different aspects of the system. The Federated Servers
actually acknowledge and order entries and transactions in
Factom, and Audit Servers duplicate and audit the work
done by the Federated Servers and are always ready to
replace a Federated Server that might go offline.

[0062] The design ensures decentralization. No single
server is ever in control of the whole system, but only a part
of the system. All servers verify and double check the work
of all other servers. And no server is permanently in control
of any part of the system; the responsibility for each part of
Factom cycles among the Federated Servers each minute,
and the role of being a Federated Server or an Audit Server
shifts among the servers in the Authority Set (the set of all
Authority Servers).

[0063] The Federated servers take a very active role in
running the protocol. The Federated servers each take
responsibility for a subsection of the user Chains at the
beginning of the creation of a Directory Block. The process
works like this:

[0064] 1. All servers reset their process lists to empty.

[0065] 2. The user submits an Entry Payment using a
public key associated with Entry Credits

[0066] 3. Based on the public key used to pay for the
Entry, one of the servers accepts the payment.

[0067] 4. That server broadcasts the acceptance of the
payment.

[0068] 5. The user sees the acceptance and submits the
Entry.

[0069] 6. Based on the ChainlD of the Entry, one of the
servers adds the Entry to its process list, and adds the
Entry to the appropriate Entry Block for that ChainlD
(creating one if this is the first Entry for that Entry
Block).

[0070] 7. The server broadcasts an Entry confirmation,
containing the process list index of the Entry, the hash
of'the Entry (linked to the payment), and the serial hash
so far of the server’s process list.

[0071] 8. All the other servers update their view of the
server’s process list, validate the list, and update their
view of the Entry Block for that ChainID.

[0072] 9. As long as the user can validate the relevant
process list holds their Entry, then they have a fair level
of assurance it will be successfully entered into Fac-
tom.

[0073] 10. At the end of the minute, each server con-
firms the end of their section of the process list. The end
of the minute is marked in the process list, and the
responsibility for particular chains shifts around the
authority set.

[0074] 11. At the end of the 10th minute, a Directory
Block is constructed from all the Entry Blocks defined

Feb. 24, 2022

by the process lists built by all the servers. So, each
server has all Entry Blocks, all Directory Blocks, and
all Entries.

[0075] 12. A deterministic method (that can be com-
puted by all nodes in protocol) will shift responsibility
for particular ChainlDs among the servers for the next
round.

[0076] 13. Atthe completion of the Directory Block, the
Merkle root of the Directory block is placed in a
Bitcoin transaction and submitted to the Bitcoin net-
work for eventual confirmation.

[0077] 14. Repeat. (Go back to 1)

[0078] The Federated servers for their minute are con-
structing a process list for the Chains for which they are
responsible, as well as constructing the Entry Blocks that
will be used to create the Directory Block at the end of the
10 minutes. The process list is important for broadcasting
decisions made by a server to the rest of the network.
[0079] The servers in the authority set are re-ranked on a
regular, scheduled basis. The ranking is a function of support
by the standing parties, who must create a profile Chain in
Factom. The profile contains any number of signed public
address Entries. The weight of a standing party’s support is
determined by various public addresses and entries in their
profile. The function computing the weight of a standing
party uses a combination of many factors. Such weights may
be organized in categories to further distribute influence.
Factors that determine an identity’s weight include factors
that can be measured from the protocol, and audited by the
protocol. Examples of factors that might be used to calculate
weight include:

[0080] Weighted Number of Entry Credits purchased.
[0081] Weighted Number of Entries used.

[0082] Tokens “staked” to a profile Chain, and not moved
or transferred.

[0083] Tokens used to build infrastructure, support the

protocol, provide services

[0084] Providing guidance and facilitating the operation
of the protocol.
[0085] Support may be specified by the Standing parties at

any time. At regular intervals, the support of all the servers
in the Authority set will be evaluated, and the membership
of the authority set adjusted. The same mechanism can be
used to measure support in the protocol for decisions about
the protocol.

[0086] To maintain a position in the authority set, servers
must continually demonstrate the ability to maintain their
ability to monitor and keep up with the operation of the
protocol. The Federated Servers do this by simply doing
their job and syncing with the end of minute operations with
all other Federated Servers. Performance in the protocol’s
ecosystem may also factor into decisions to support or not
support an authority node. Audit servers may have to issue
a heartbeat message, that can be monitored by the network.
Other solutions are possible.

[0087] Managing timeouts and monitoring heartbeats will
be done according to the needs and load on the protocol.

Factom System Overview

[0088] FIG. 3 illustrates the Factom protocol as a set of
layered data structures, according to exemplary embodi-
ments. Factom is constructed of a hierarchical set of blocks,
with the highest being Directory Blocks. They constitute a
micro-chain, consisting primarily of compact references. To

US 2022/0058622 Al

keep the size small, each reference in the Directory Block is
just a hash of the Entry Block plus its ChainID. These Entry
Blocks have references which point to all the Entries with a
particular ChainID which arrived during a time period. The
Entry Block for a Chain ID is also part of a micro-chain. The
bulk of the data in Factom is at the leaves, the Entries
themselves. These hierarchical data structures are rendered
unchangeable by Bitcoin’s hashpower. They can be concep-
tualized as different layers. The layers and concepts in the
Factom system are:

[0089] 1) Directory Layer—Organizes the Merkle Roots
of Entry Blocks

[0090] 2) Entry Block Layer—Organizes references to
Entries
[0091] 3) Entries—Contains an Application’s raw data or

a hash of its private data
[0092] 4) Chains—Grouping of Entries specific to an
Application

Directory Layer: How the Directory Layer Organizes
Merkle Roots

[0093] The Directory layer is the first level of hierarchy in
the Factom system. It defines which Entry ChainlDs have
been updated during the time period covered by a Directory
Block. (ChainlDs identify the user’s Chain of Entries; the
generation of the ChainlD is discussed later.) It mainly
consists of a list pairing a ChainID and the Merkle root of
the Entry Block containing data for that ChainID.

[0094] Each Entry Block referenced in the Directory
Block takes up 64 bytes (two 32 byte hashes, the ChainlD
and the Merkle root of the Entry Block). A million such
Entries would result in a set of Directory Blocks roughly 64
MB in size. If the average Entry Block had 5 Entries, 64 MB
of Directory Blocks would provide the high level manage-
ment of 5 million distinct Entries. Note that the exact
implementation of Directory blocks my vary as we build for
greater scale in the future.

[0095] If an Application only has the Directory Blocks, it
can find Entry Blocks it is interested in without downloading
every Entry Block. An individual Application would only be
interested in a small subset of ChainlDs being tracked by
Factom. This greatly limits the amount of bandwidth an
individual client would need to use with Factom as their
system of record. For example, an Application monitoring
real estate transfers could safely ignore video camera secu-
rity logs.

[0096] Factom servers collect Merkle roots of Entry
Blocks and package them into a Directory Block. Directory
Block the Merkle roots are recorded into the Bitcoin block-
chain. This allows the most minimum expansion of the
blockchain, and still allows the ledger to be secured by the
Bitcoin hash power. The process of adding the Merkle root
into the Bitcoin blockchain we referred to as “anchoring”.
See the section “Appendix: Timestamping into Bitcoin” for
further details.

[0097] Data entered into Directory Blocks is the most
expensive, from a bandwidth and storage perspective. All
users of Factom wishing to find data in their Chains need the
full set of Directory Blocks starting from when their Chain
began.

[0098] Activities that increase the Directory Block size
include the creation and first update of individual Chains.
These activities externalize costs of Applications attempting
finer-grained organization.

Feb. 24, 2022

[0099] The Applications must be required to expend more
Entry Credits than a simple Entry would necessitate to
discourage bloating the Directory Blocks.

Entry Block Layer: How the Entry Block Layer Organizes
Hashes and Data

[0100] FIG. 4 illustrates entry blocks of the Factom pro-
tocol, according to exemplary embodiments. Entry Blocks
are the second level of hierarchy in the system. Individual
Applications will pay attention to various ChainlDs. Entry
Blocks are the place where an Application looking for
Entries can expand its search from a ChainID to discover all
possibly relevant Entries.

[0101] There is one Entry Block for each updated ChainID
per Directory Block. The Entry Blocks contain hashes of
individual Entries. The hashes of Entries both prove the
existence of the data and give a key to find the Entries in a
Distributed Hash Table (DHT) network. (See the below
explanation of the “Factom Peer-to-Peer Network™ for more
detail.)

[0102] The Entry Blocks encompass the full extent of
possible Entries related to a ChainID. If an Entry is not
referred to in an Entry Block, it can be assumed not to exist.
This allows an Application to prove a negative, as described
in the section Security and Proofs.

[0103] The Entry Block intentionally does not contain the
Entries themselves. This allows the Entry Blocks to be much
smaller than if all the data was grouped together. Separating
the Entries from the Entry Blocks also allows for easier
auditing of auditors. An auditor can post Entries in a separate
chain that approves or rejects Entries in a common chain.
The audit can add reasons for rejection in its Entry. If an
Application trusts the auditor, they can cross reference that
the auditor has approved or rejected every Entry, without
knowing what the Entry is. The Application would then only
attempt to download the Entries which passed the audit.
Multiple auditors could reference the same Entries, and the
Entries would only exist once on the Distributed Hash Table
(DHT). Entries are expected to be significantly larger than
the mere 32 bytes a hash takes up. Lists of things to ignore
do not have to have the full object being ignored for an
Application to know to ignore it. The exact implementation
of entry blocks may vary in the future in response to
identified improvements possible in the protocol.

[0104] An Entry detailing the specifics of a land transfer
would be entered into a Chain where land transfers of that
type are expected to be found. One or more auditors could
then reference the hashes of land transfer in their own
Chains, adding cryptographic signatures indicating a pass or
fail. The land transfer document would only need to be
stored once, and it would be referenced by multiple different
Chains.

[0105] FIG. 5 illustrates how entries are created, according
to exemplary embodiments. Entries are constructed by users
and submitted to Factom. By hashing or encoding informa-
tion, the user can ensure the privacy of Entries. The Entries
can instead be plain text if encoding or obscuring the data
isn’t necessary. By recording a hash of a document, Factom
can provide basic proof of publication. Presenting the docu-
ment at a later time allows one to create its hash, and
compare it to the hash recorded in the past.

[0106] There is lots of flexibility in the data that is
accepted. It can be something short like a hyperlink. It could
also be larger, but not too large, since fees limit the size of

US 2022/0058622 Al

the data accepted. This is similar to Bitcoin. Large 100
kB+Bitcoin transactions are possible, but would need to pay
a proportionately greater transaction fee. This size, while
gigantic in Bitcoin, would be moderately sized for Factom.
Since every Bitcoin full node needs the entire blockchain to
fully validate, it needs to stay small. In Factom, only the
highest level Directory Blocks are required to fully validate
a Chain. If someone is not specifically interested in a
Chain’s data, they would not download it.

[0107] Take a simple example of an uneditable Twitter-
like system. A celebrity would craft an Entry as a piece of
text. They would then sign it with a private key to show it
came from them. Followers of the celebrity would find
which Chain they publish in and would monitor it for
updates. Any new signed Entries would be recognized by
follower’s Application software as a tweet. Others could
tweet at the celebrity by adding Entries to the celebrity’s
Chain.

[0108] FIG. 6 illustrates the complete Factom protocol and
system, according to exemplary embodiments. Chains in
Factom are sequences of Entries that reflect the events
relevant to an Application. These sequences are at the heart
of Bitcoin 2.0. Chains document these event sequences and
provide an audit trail recording that an event sequence
occurred. With the addition of cryptographic signatures,
those events would be proof they originated from a known
source.

[0109] Chains are logical interpretations of data placed
inside Directory Blocks and Entry Blocks. The Directory
Blocks indicate which Chains are updated, and the Entry
Blocks indicate which Entries have been added to the Chain.
This is somewhat analogous to how Bitcoin full clients
maintain a local idea of the UTXO (Unspent Transaction
Output) set. The UTXO set is not (currently) in the block-
chain itself, but is interpreted by the full client.

The Factom Peer-to-Peer Network

[0110] Factom will have a peer-to-peer (P2P) network
which accomplishes two goals: communication and data
preservation.

Factom Peer-to-Peer Communications

[0111] Factom will have a P2P network very similar to
Bitcoin’s. It will consist of full nodes which have all the
Factom data. The full nodes create a gossip network which
will flood fill valid data throughout the network. The Author-
ity servers would be full nodes, but not all full nodes are
Authority servers. This is very much like Bitcoin, where
miners are full nodes, but not all full nodes are miners. This
will limit the ability to DDOS the Authority servers indi-
vidually. They can connect anywhere inside the network to
acquire the data needed to build the data structures.

[0112] As the servers are coming to consensus and dis-
seminate their signed data, they would publish the data over
the P2P network. The P2P flood filling also limits the ability
of Authority servers to censor based on IP addresses, since
valid traffic is mixed together by the nodes they connect to.
It also helps to prevent censorship, since all servers can see
the Entries which should be included in the Entry Blocks.
Outside organizations campaigning to become Authority
servers have an incentive to bring bad behavior to light, so
they can gain support and move up into the set of Authority
Servers.

Feb. 24, 2022

Data Preservation and Dissemination

[0113] Factom data structures (Directory Blocks, Entry
Blocks, Entries) are needed for Factom to be useful. They
are public and will be preserved in two places. The Authority
Servers need to maintain this data to make correct decisions
about adding new Entries. Since they have this data, they can
provide it as a service, as part of being a full node. As the
protocol grows the protocol will be able to support partial
nodes, which share only part of the Factom dataset. The
partial nodes could share only the data which is relevant to
their specific application. Peer discovery for the partial
nodes may be handled by any sort of directory service, such
as a Distributed Hash Table (DHT).

[0114] FIG. 7 illustrates a read operation, according to
exemplary embodiments. This setup allows for efficient peer
distribution of data even if the entire Factom dataset grows
to unwieldy sizes. The Directory Service also allows the data
to be preserved independent of any Authority servers or full
nodes. Even if all the full nodes were removed from the
network, the data could still be shared by a more numerous
set of parties interested in specific subsets of the data.

[0115] FIG. 8 further illustrates the Chain ID, according to
exemplary embodiments. Factom groups all Entries under a
ChainID. The ChainlID is computed from a Chain Name.
The ChainlD is a hash of the Chain Name. The Chain Name
is a byte array arbitrarily long in length. See figure below.
Since the conversion from Chain Name to ChainlD is a hash
operation, it is a simple process. Deriving a Chain Name
from a ChainlD is not simple, so a lookup table would be
needed.

[0116] The user may provide a Chain Name, or the Chain
Name may be auto-generated. Regardless, that the ChainlD
can be shown to be a hash of something. This prevents
unhashed data from being a ChainID, which is stored all the
way up to the Directory Blocks. This convention eliminates
insertion of obscene plaintext in the block structure.

[0117] The Chain Name is fairly arbitrary. It could be a
random number, a string of text, or a public key. An
individual Application could derive meaning from different
Chain Names.

[0118] One possible convention would be to use human
readable text for the Chain Name. This would allow for the
structuring of Chains in a logical hierarchy, even though
Chains are not hierarchical by nature. Users can even use the
same naming conventions, but by making simple modifica-
tions, ensure that there are no accidental intersections
between their Chains and other Chains. Consider the fol-
lowing path:

MyFavoriteApp/bin,

[0119] where the slash is a convention for another level of
hierarchy. The slash separating ASCII strings “MyFavor-
iteApp” and “bin” represents transitioning to a deeper level.
These two strings must be converted to bytes, and there are
many options for doing so. The strings could be encoded in
UTF-16, UTF-32, ASCII, or even something like IBM’s
EPCDIC. Each of these encodings would result in entirely
different ChainlIDs for the same string, since the computa-
tion of the ChainID is done from the bytes. Furthermore, the
application could utilize a Globally Unique IDentifier
(GUID) number as the first byte array in their naming
convention. This would eliminate overlap of one Applica-

US 2022/0058622 Al

tion’s ChainID “space” with another, at the expense of just
a few more bytes in the Chain creation.

Using Factoids to Purchase Entry Credits

[0120] Factoids are the main internal scarcity token used
to moderate and reward the system actors. The right to put
Entries into Factom is represented by Entry Credits. Factom
separates the two value-holding mechanisms, as they serve
different purposes. Factoids can be converted into Entry
Credits, but not vice versa.

[0121] Factoids are implemented in much the same way
Bitcoin is implemented, allowing multiple inputs, multiple
outputs, etc. where each input requires the proper signature
for the transaction to be valid. Other sorts of validation
including multisig is possible. Factoid transactions are man-
aged on a special Factoid Chain. This Factoid Chain is
handled more restrictively than other Chains. Entries in the
Factoid Chain must be valid Factoid transactions, or the
Factom Servers will reject the Entries.

[0122] Factoids are included into the protocol to com-
pletely decentralize Factom, and to reduce bloat and spam in
both Factom and Bitcoin. Factoids can be converted to Entry
Credits in the protocol, and paid out to Factom servers from
the protocol. Factoids budgeted but not paid out can remain
in a “grant pool”. These tokens can be issued to support and
develop the protocol from the protocol.

[0123] Factoids also help to bind consensus. If consensus
is lost, then the Factoids will fall in value, incentivizing the
support of the protocol.

[0124] The conversion of a Factoid to Entry Credits will
be done via a special purchase transaction on the Factoid
Chain. This purchase transaction will include:

[0125] An Output directing a Factoid amount to be con-
verted

[0126] The public key that is to receive the Entry Credits
[0127] The Entry Credits, once purchased, cannot be

transferred to another public key. They can only be used to
pay for Entries. This greatly reduces their value to thieves,
since they cannot be resold. Entry Credit private keys can be
held in low security areas with minimal risk.

Using Entry Credits to Write Entries

[0128] Adding Entries into Factom requires giving up a
scarce resource. That resource is Entry Credits, which are
derived from Factoids. Adding Entries to Factom is a two
step process. First the Entry is paid for (committed). The
payment accomplishes two things. It decrements the Entry
Credits associated with a user’s public key. In the same
operation, the hash of the Entry is specified. After the Entry
is paid for, the server will wait for the unhashed Entry and
include it once seen (revealed).

[0129] 1. Pay for Entry
[0130] Decrement Entry Credits owned by a user
[0131] User specifies hash of Entry in payment
[0132] 2. Insert Entry
[0133] User publishes Entry for inclusion in Entry
Block
[0134] There are many benefits of this two step process.

One benefit is to separate the payment overhead from the
recorded data. Future users will not be forced to download
the data generated by payment minutia. They only need to

Feb. 24, 2022

download the minimum data to validate their system. It
allows users to safely and easily ignore the payment infor-
mation.

[0135] Another benefit is censorship resistance. By com-
mitting to accept an Entry before knowing the content makes
censorship by the Factom servers obvious. Adam Back has
advocated for a similar mechanism for Bitcoin in a post
titled “Blind Symmetric Commitment for Stronger Byzan-
tine Voting Resilience” (https://bitcointalk.org/index.php-
?topic=206303.0). If a user or Audit server can show an
Entry which has been properly been paid for, but none of the
Federated servers are accepting it, then the censorship is
provable.

[0136] The transactions deducting Entry Credits will be
recorded in a special Chain, similar to the Factoid Chain.
The Federated servers will only fill the Chain with valid
Entry Credit transactions.

Setting the Cost of Entries with a Central Server Oracle
[0137] The conversion rate of Factoids to Entry Credits
will be determined by first choosing a target real world value
for an Entry Credit. This target will be determined by a
distributed and autonomous process. At minimum it will be
agreed upon by some process driven by the Authority Set.
Other parties might be involved through various auditable
processes in Factom to further decentralize the decision.
[0138] Once a target real world target price of an Entry
Credit has been chosen, an Oracle is required to record into
Factom the conversion value between Factoids and that EC
price. That specification and implementation will also go
through a decentralized decision process. The actual imple-
mentation of the target price, oracle implementation, and
exchange rate adjustment can vary widely, but will be
optimized for decentralization, security, and regulatory com-
pliance.

[0139] Note that fee calculations and rates are subject to
change, and don’t materially impact the utility of the Factom
protocol.

Using Factom without Factoids

[0140] Many users of Factom may not want a wallet, and
will not want to hold any cryptocurrency asset. But they will
want to create their Chains (ledgers) and add their Entries.
Factom’s two step recording process allows for the separa-
tion of Factoids, Factom’s tradable token, from the oppor-
tunity to post Entries to Factom, represented by Entry
Credits. Servers and other recipients of Factom Tokens can
sell Entry Credits to customers for payment via Bitcoin,
conventional credit card payments, etc. The user would
provide a public key to hold the Entry Credits. The seller
would convert the appropriate amount of Factoids to Entry
Credits and assign those rights to the user’s public key.
Users could thus buy Entries Credits for Factom without
ever owning the Factoids that drive the Factom servers.
[0141] From a regulation point of view, this is powerful.
The servers earn Factoids from the protocol. The only
parties to that transaction are the server and the protocol.
Then the server sells Entry Credits to users, who eventually
return Factoids to the rest of the system. Entry Credits are
non transferable, so the user cannot assign them to another
user’s public key, and selling private keys isn’t practical or
useful. In neither transaction is a tradable token (the Factoid)
transferred between two parties.

[0142] Factom is a distributed, autonomous layer residing
on top of the Bitcoin blockchain. The goal of Factom is to
provide the power of Bitcoin’s blockchain to a nearly

US 2022/0058622 Al

unlimited range of Applications and uses. Further, Factom is
architected such that its users do not need any cryptocur-
rency whatsoever.

[0143] A distributed, immutable ledger is the radical,
foundational, and unprecedented technology represented by
the Bitcoin blockchain. The dream of many is to extend the
honesty inherent to an immutable ledger validated by math
to chaotic, real-world interactions. By allowing the construc-
tion of unbounded ledgers backed by the blockchain, Fac-
tom extends the benefits of the blockchain to the real world.

[0144] FIGS. 9-21 are simplified illustrations of a digital
contract 20 in a blockchain environment 22, according to
exemplary embodiments. The digital contract 20 is some-
times referred to as a self-executing or “smart” contract
between parties to a transaction. The digital contract 20 may
be executable code that runs on a blockchain 24. The
blockchain 24 has one or more blocks 26 of data. A
conventional smart contract facilitates, executes, and/or
enforces the terms of an agreement. Whatever the terms, the
digital contract 20 may automatically execute the terms once
predetermined logical rules, conditions, or code is satisfied.
The digital contract 20 may thus be expressed in a program-
ming language. Smart contracts are generally known, so this
disclosure will not dwell on the known aspects.

[0145] Here, though, the blockchain 24 need only refer-
ence the digital contract 20. That is, the actual programming
language defining the digital contract 20 need not be
included within or attached to the blockchain 24. Instead, the
blockchain 24 need only include or specify a contract
identifier 28 and perhaps one or more contractual parameters
30. The contract identifier 28 is any digital identifying
information that uniquely identifies or references the digital
contract 20. Similarly, the contractual parameters 30 may
digitally identify the parties to the digital contract 20, their
respective performance obligations and terms, and even
consideration. So, instead of the blockchain 24 carrying or
conveying the actual code representing the digital contract
20, exemplary embodiments need only specify the contract
identifier 28 and perhaps the contractual parameters 30. The
blocks 26 of data within the blockchain 24 are thus not
burdened with the programming code that is required to
execute the digital contract 20. The blockchain 24 need only
include or specify the contract identifier 28 and/or the
contractual parameters 30 (or their respective hash values),
thus greatly simplifying the blockchain 24 and reducing its
size (in bytes) and processing requirements.

[0146] FIG. 10 further illustrates the blockchain 24. Here
any entity 32 may generate the blockchain 24. While exem-
plary embodiments may be applied to any entity 32, most
readers are thought familiar with financial services. That is,
suppose the entity 32 is a bank, lender, or other financial
institution 34 (such as PIMCO®, CITI®, or BANK OF
AMERICA®). As the reader likely understands, the finan-
cial institution 34 creates a massive amount of banking
records, transaction records, mortgage instruments, and
other private data 36. The financial institution 34 thus has a
financial server 38 executing a software application 40 that
encrypts its private data 36. While the software application
40 may use any encryption scheme, FIG. 2 illustrates the
private blockchain 24. That is, the software application 40
causes the financial server 38 to cryptographically hash the
private data 36 and to integrate the resulting hash value(s)
into the block 26 of data within the private blockchain 24.
Moreover, because the private data 36 may represent con-

Feb. 24, 2022

tractual obligations between parties, the software application
40 may further cause the blockchain 24 to include the
contract identifier 28 and the contractual parameters 30. The
contract identifier 28 and the contractual parameters 30 may
be encoded as data or information contained within the
block 26 of data, or the contract identifier 28 and the
contractual parameters 30 may be data or information that is
separate from the block 26 of data (such as informational
content in metadata or in a packet header/body). Regardless,
the blockchain 24 need not include the programming code
representing the digital contract 20. The blockchain 24 need
only specify the contract identifier 28 and/or the contractual
parameters 30.

[0147] FIG. 11 illustrates a contract server 42. The con-
tract server 42 may be responsible for executing the digital
contract 20 referenced by the contract identifier 28 and/or
the contractual parameters 30. For example, after the finan-
cial server 38 (executing the software application 40) gen-
erates the block 26 of data within the blockchain 24, the
financial server 38 may send the blockchain 24 to the
network address (e.g., Internet protocol address) associated
with the contract server 42. When the contract server 42
receives the blockchain 24, the contract server 42 inspects
the blockchain 24 to identify the contract identifier 28 and/or
the contractual parameters 30. Once the contract identifier
28 is determined, the contract server 42 may then consult an
electronic database 44 of contracts. The database 44 of
contracts has entries that map or relate the contract identifier
28 to its corresponding digital contract 20. The database 44
of contracts, in other words, may identify a computer file 46
that contains the programming language representing the
digital contract 20 identified by the contract identifier 28. So,
once the digital contract 20 is determined, the contract server
42 may retrieve and locally execute the computer file 46,
perhaps based on parameters defined or described by the
contractual parameters 30 (such as party names, parameters
associated with their respective performance obligations and
terms, and consideration). Again, then, the blockchain 24
need only reference the digital contract 20 (using the con-
tract identifier 28 and/or the contractual parameters 30). The
actual execution of the digital contract 20 may be offloaded
or outsourced to the contract server 42.

[0148] FIG. 12 also illustrates the contract server 42. Here,
though, the contract server 42 may only manage the execu-
tion of the digital contract 20 referenced by the contract
identifier 28 and/or the contractual parameters 30. That is,
the contract server 42 may outsource the execution of the
digital contract 20 to a vendor, a supplier, or a subcontractor
process. Again, when the contract server 42 receives the
blockchain 24, the contract server 42 inspects the blockchain
24 to identify the contract identifier 28 and/or the contractual
parameters 30. The contract server 42 may then consult the
database 44 of contracts. Here, though, the database 44 of
contracts has entries that map or relate the contract identifier
28 to a network resource 50 that processes and/or executes
the digital contract 20 as a service (perhaps as a software-
as-a-service or “SAAS”). The network resource 50 may thus
be a remote server, a virtual machine, a web page or web
server, a client device/machine, or other resource that
executes the digital contract 20. Once the network resource
50 is determined, the contract server 42 may retrieve and
send the contractual parameters 30 to the network resource
50 for execution. The network resource 50 (perhaps operated
on behalf of a third party) applies the parameters defined or

US 2022/0058622 Al

described by the contractual parameters 30 to the program-
ming code representing the digital contract 20.

[0149] Exemplary embodiments thus only need to identify
the digital contract 20. The contract identifier 28 and the
contractual parameters 30 need only be informational con-
tent in the private blockchain 24. The contract identifier 28
is any digital identifying information that uniquely identifies
or references the digital contract 20. The contract identifier
28 may be an alphanumeric combination that uniquely
identifies a vendor and/or version of the digital contract 20
and/or a processor or executioner of the digital contract 20.
The contract identifier 28 may be expressed as a unique hash
value that is included within, or specified by, the private
blockchain 24. Similarly, the contractual parameters 30 may
identify the parties to the digital contract 20, their respective
performance obligations and terms, and consideration.

[0150] FIG. 13 illustrates consideration. When the digital
contract 20 is executed, the parties to the digital contract 20
may be compensated (perhaps according to the contractual
parameters 30 describing consideration). Moreover, the con-
tract server 42 and/or the network resource 50 may also be
compensated. While there are many compensation schemes,
this disclosure mostly explains crypto-compensation. That
is, when the digital contract 20 successfully executes, per-
haps the parties exchange, trade, or transfer cryptographic
currencies. Suppose, for example, that the financial institu-
tion 34 creates its own cryptographic coinage 60 in the
blockchain environment 22. The entity 32, in other words,
may establish entity-specific electronic tokens 62 to access
and/or to use the blockchain environment 22. Because the
private blockchain 24 represents hashes of the financial
institution’s private data 36, the private blockchain 24 may
be considered a private resource or property of the financial
institution 34. That is, the private blockchain 24 is controlled
by, or affiliated with, the financial institution 34, so the
financial institution 34 may control who adds and/or writes
to the private blockchain 24 and who reads, accesses, or
receives the private blockchain 24.

[0151] The entity-specific tokens 62 may thus be control
mechanisms. While the entity-specific tokens 62 may have
any functional scheme, FIG. 5 illustrates a private credit
token 64 and a private tradeable token 66. The entity’s credit
token 64, for example, may be acquired and then spent or
burned when accessing the financial institution’s private
blockchain 24. The entity’s credit token 64, in other words,
represents any credit-based entry system associated with the
financial institution’s private blockchain 24. The tradeable
token 66, on the other hand, may be generated for transfer
among others. The entity 32 generates the tradeable token 66
to be traded and/or spent. The tradeable token 66, in other
words, may be considered as the entity’s specific, private
currency to be used as the entity 32 governs.

[0152] Exemplary embodiments may thus trade or
exchange crypto-compensation. That is, when the digital
contract 20 successfully executes, perhaps the parties
exchange, trade, or transfer the credit token 64 and/or the
tradeable token 66. When any party, or all the parties,
perform their assigned role in the transaction, value is given
via the credit token 64 and/or the tradeable token 66.
Similarly, the contract server 42 and/or the network resource
50 may also be compensated via the credit token 64 and/or
the tradeable token 66, perhaps as a “mining” fee for
executing the digital contract 20.

Feb. 24, 2022

[0153] The digital contract 20 is thus a computer program
or code that verifies and/or enforces negotiation and/or
performance of a contract between parties. One fundamental
purpose of so-called smart contracts is to integrate the
practice of contract law and related business practices with
electronic commerce protocols between parties or devices
via the Internet. Smart contracts may leverage a user inter-
face that provides one or more parties or administrators
access, which may be restricted at varying levels for differ-
ent people, to the terms and logic of the contract. Smart
contracts typically include logic that emulates contractual
clauses that are partially or fully self-executing and/or
self-enforcing. Examples of smart contracts are digital rights
management (DRM) used for protecting copyrighted works,
financial cryptography schemes for financial contracts,
admission control schemes, token bucket algorithms, other
quality of service mechanisms for assistance in facilitating
network service level agreements, person-to-person network
mechanisms for ensuring fair contributions of users, and
others. Smart contract infrastructure can be implemented by
replicated asset registries and contract execution using cryp-
tographic hash chains and Byzantine fault tolerant replica-
tion. For example, each node in a peer-to-peer network or
blockchain distributed network may act as a title registry and
escrow, thereby executing changes of ownership and imple-
menting sets of predetermined rules that govern transactions
on the network. Each node may also check the work of other
nodes and in some cases, as noted above, function as miners
or validators.

[0154] FIG. 14 further illustrates the contract server 42.
When the contract server 42 receives the blockchain 24, here
the contract server 42 may generate data records 70 in a
blockchain data layer 72, as later paragraphs will explain.
The contract server 42 may thus be termed or called a data
layer server 74. Moreover, the blockchain data layer 72 may
also add another layer of cryptographic hashing to generate
a public blockchain 76. The blockchain data layer 72 acts as
a validation service 78 that validates the digital contract 20
was executed. Moreover, the blockchain data layer 72 may
generate a cryptographic proof 80. The public blockchain 76
thus publishes the cryptographic proof 80 as a public ledger
82 that establishes chains of blocks of immutable evidence.

[0155] FIGS. 15-16 illustrate examples of the entity-spe-
cific tokens 62. Suppose that a third-party 90 wishes to
receive, read, write to, or otherwise access the financial
institution’s private blockchain 24 and/or the digital contract
20. As FIG. 15 illustrates, exemplary embodiments may
require that the third-party 90 spend or burn one or more of
the credit tokens 64. The credit token 64 may thus control
access to the financial institution’s private blockchain 24
and/or the digital contract 20. The inventor envisions that
vendors, service providers, individual users, and other third-
parties 60 may wish to access the hash values of the private
data 36 contained within the financial institution’s private
blockchain 24. Moreover, the third party may want to access,
inspect, execute, or verify the digital contract 20. The
financial institution 34 may thus require that the third-party
90 redeem the entity’s credit token(s) 50 before granting
read, write, or access permission to the digital contract 20.
The financial institution 34 may additionally or alternatively
require redemption of the entity’s credit token(s) 64 for
using protocols, rules, and application programming inter-
faces (“APIs”) associated with the private blockchain 24
and/or the digital contract 20. The financial institution 34

US 2022/0058622 Al

may thus establish or issue its own credit tokens 64 and even
govern their usage restrictions 92 and value 94, as later
paragraphs will explain.

[0156] FIG. 16 illustrates the tradeable token 66. The
financial institution 34 may establish the tradeable token 66
and also govern its usage restrictions 92 and value 94. The
tradeable token 66, in other words, is a cryptocurrency or
“coin.” Again, while exemplary embodiments may utilize
any functional scheme, the tradeable token 66 may be
earned. That is, anyone (such as the third party 90) may earn
the tradeable token 66 according to the usage restrictions 92.
For example, suppose the data layer server 74 earns the
entity’s tradeable token(s) 52 in exchange for processing
and/or managing an execution of the digital contract 20. The
data layer server 74 may additionally or alternatively earn
the entity’s tradeable token(s) 52 in exchange for the vali-
dation service 78. That is, a provider of the validation
service 78 is paid, or earns, the entity’s tradeable token(s) 52
for processing or executing the digital contract 20 and/or for
cryptographically hashing the proof 80 of the digital contract
20. The provider of the validation service 78 may also be
paid in the entity’s tradeable token(s) 52 for publishing the
proof 80. The tradeable token 66 may thus be transferred as
currency according to the usage restrictions 92 and its value
94.

[0157] FIG. 17 illustrates transaction records 100. When-
ever the entity-specific tokens 62 are created, owned, or
transferred, the transaction record 100 may be generated.
The transaction record 100 may then be documented in the
blockchain environment 22. For example, the entity-specific
tokens 62 may be addressable. That is, the credit token 64
and the tradeable token 66 may be uniquely associated with
a common, single cryptographic address 102. The crypto-
graphic address 102 may represent an owner or holder (e.g.,
the entity 32 or the third-party 90). When the entity-specific
tokens 62 are created, generated, or assigned, the entity-
specific tokens 62 may be assigned or associated with the
cryptographic address 102. The cryptographic address 102
may then be received by, and propagated within, the block-
chain data layer 72 to identify the corresponding data
records 70. The blockchain data layer 72 may even hash the
cryptographic address 102 as the cryptographic proof 80 of
the transaction records 100. Exemplary embodiments thus
publicly document the transaction records 100 involving the
entity-specific tokens 62, based on the single cryptographic
address 102. In simple words, the blockchain data layer 72
publishes ownership and transfer proofs 80 of the credit
token 64 and the tradeable token 66 based on the transaction
records 100 associated with the single cryptographic address
102.

[0158] The transaction records 100 may also document the
digital contract 20. Whenever the digital contract 20 is
specified, generated, processed, or even executed, the trans-
action record 100 may be generated. The transaction record
100 may then be documented in the blockchain environment
22. For example, the entity-specific tokens 62 may be earned
as payment according to the executable terms of the digital
contract 20. The entity-specific tokens 62 may additionally
or alternatively be earned or awarded for processing or
executing a portion of, or entirely, the digital contract 20.
The entity-specific tokens 62 may thus be uniquely associ-
ated with a party to the digital contract 20 and/or with a
service provider/processor of the digital contract 20. The
transaction record 100 may document the parties to the

Feb. 24, 2022

digital contract 20, a transactional description describing a
transaction governed by the digital contract 20, and any
financial or performance terms. The transaction record 100
may thus document an offer, an acceptance, a consideration,
and terms. For simplicity, then, the single cryptographic
address 102 may represent a party to the digital contract 20
and/or with a service provider/processor of the digital con-
tract 20. Regardless, when the entity-specific tokens 62 are
created, generated, or assigned, the entity-specific tokens 62
may be received by, and propagated within, the blockchain
data layer 72 to identify the corresponding data records 70.
The blockchain data layer 72 may thus publish the proofs 80
of the digital contract 20 and any entity-specific tokens 62
paid or exchanged, according to the transaction records 100.

[0159] FIG. 18 illustrates a filling station 110 in the
blockchain environment 22. Because the tokens 62 may be
consumed by users (such as during or after any processing
or execution of the digital contract 20), the filling station 110
allows the third party 90 to replenish or fill an account 112.
Recall that the third-party entity 32 may be required to spend
the tokens 62 to access the financial institution’s private
blockchain 24 and/or the digital contract 20. Moreover, the
tokens 62 may also be earned or transferred according to the
terms of the digital contract 20. The account 112 may thus
be established, and the account 112 maintains a monetary or
numerical balance 114 of the tokens 62. As the tokens 62 are
spent, traded, or redeemed, the account 112 may need filling
to continue using or accessing the blockchain 24 and/or the
digital contract 20.

[0160] The filling station 110 may access both the trans-
action records 100 and the blockchain data layer 72. Because
the blockchain data layer 72 may document the data records
70 using the single cryptographic address 102, the single
cryptographic address 102 may serve as a common reference
or query parameter with the entity’s transaction records 100.
The filling station 110, in other words, may use the single
cryptographic address 102 to identify the transaction records
100 that correspond to the blockchain data layer 72. The
filling station 110 may thus present a transaction summary of
the account 112 and the balance 114. Because blockchain
data layer 72 may track and/or prove the transaction records
100, exemplary embodiments may search the blockchain
data layer 72 for the single cryptographic address 102. That
is, the filling station 110 may query the blockchain data layer
72 for the single cryptographic address 102, and the block-
chain data layer 72 may identify the transaction records 100
that match the single cryptographic address 102. Similarly,
exemplary embodiments may query the blockchain data
layer 72 for the contract identifier 28 and/or the contractual
parameters 30, and the blockchain data layer 72 may identify
the transaction records 100 that match the contract identifier
28 and/or the contractual parameters 30. The filling station
110 may then process the transaction records 100 to provide
the transaction summary of the account 112, the balance 114,
and any other transactional data. The filling station 110 may
also allow the user to replenish an amount or value of the
tokens 62, thus allowing the user to continue exchanging the
tokens 62 for access to the private blockchain 24, the
blockchain data layer 72, and/or the digital contract 20. The
filling station 110 may thus be an access mechanism to the
blockchain data layer 72.

[0161] FIG. 19 further illustrates the filling station 110.
Here the blockchain data layer 72 may have its own cryp-
tocoinage 120. That is, a provider of the blockchain data

US 2022/0058622 Al

layer 72 may establish its cryptocoinage 120 for accessing
and/or using the validation service 78. The cryptocoinage
120 may thus include a credit token and a tradeable token
(not shown for simplicity). The credit token may be required
to enter or access the blockchain data layer 72 to receive the
validation service 78, and the tradeable token may be earned
for participating in the validation service 78. Regardless, the
filling station 110 may use the single cryptographic address
102. The third party 90 may use the single cryptographic
address 102 to access the entity’s cryptocoinage 60 and the
blockchain data layer’s cryptocoinage 120. Exemplary
embodiments may thus identify and track the transaction
records 100 and the blockchain data layer’s cryptocoinage
120 using the same, single cryptographic address 102.

[0162] Exemplary embodiments thus present elegant solu-
tions. Any entity 32 may create its own private blockchain
24 and offer or present the digital contract 20 for self-
execution. The entity 32 may then establish or create the
tokens 62 for using, accessing, or processing the entity’s
private blockchain 24 and/or the digital contract 20. The
tokens 62 may have the value 94, thus fostering a market for
entity-specific tradeable assets in the blockchain environ-
ment 22. The tradable value 94 of the tokens 62 may thus
drive demand to use the digital contracts 20. Exemplary
embodiments may thus provide a two-token system that
isolates any use of the entity’s private blockchain 24 from
the entity’s tradeable token 66. Moreover, the credit token
64 may be associated with the third party 90 (perhaps via the
single cryptographic address 102), thus allowing the third
party 90 to retrieve the account balance 114 from the filling
station 110 and sign entries or other transactions. Moreover,
the third party 90 may also use the single cryptographic
address 102 to access the blockchain data layer 72 via the
filling station 110. The filling station 110 is a single resource
or destination (such as a secure website) for managing a
user’s cryptographic coinage 60 and defining payments
according to the digital contract 20.

[0163] FIG. 20 expands the entity concept. Here multiple,
different entities 32a-d provide their respective software
applications 40a-d that encrypt their respective private data
36a-d as their individual, private blockchains 24a-d. While
exemplary embodiments may be applied to any number of
industries or services, FIG. 20 illustrates a simple example
of four (4) different entities 32a-d. First entity 32a, for
example, again represents the bank, lender, or other financial
institution 34 that encrypts its private data 36q as its private
blockchain 24a. Second entity 324 represents any retailer
122 (such as HOME DEPOT®, KOHL’S®, or WAL-
MART®) that encrypts its private data 365 as its private
blockchain 2454. Third entity 32¢ represents a web site 124
offering a service 126 (such as AMAZON®, NETFLIX®, or
GOOGLE®) that encrypts its private data 36¢ as the private
blockchain 24c¢. Fourth entity 324 represents an automotive
or other manufacturer or supplier 128 (such as FORD®,
TOYOTA®, or DELPHI®) that encrypts its private data 364
as the private blockchain 24d. The entities 32a-d thus use
their respective software applications 40a-d to provide a first
layer 130 of cryptographic hashing. The entities 32a-d may
also use their respective software applications 40a-d to issue
their own private and entity-specific cryptocoinage 60a-d.
Each entity 32a-d may then send their respective private
blockchains 24a-d to the blockchain data layer 72, and the
blockchain data layer 72 may add a second layer 132 of
cryptographic hashing. The blockchain data layer 72 thus

Feb. 24, 2022

generates the public blockchain 76 as a public resource or
utility for record keeping. Any entity 32 that subscribes to
the blockchain data layer 72 (such as by acquiring and/or
spending the cryptocoinage 120) may thus access, read,
and/or store the proofs 80 of its private data 36 to the public
blockchain 76. The blockchain data layer 72, in other words,
acts as the public ledger 82 that establishes chain of blocks
of immutable evidence.

[0164] As FIG. 20 also illustrates, each entity 32a-d may
establish its own private cryptocoinage 60a-d. Each entity’s
private software application 40a-d may create and/or issue
its cryptocoinage 60a-d (such as respective entity-specific
tokens 62 above explained). Each entity 32a-d may also
establish its own usage restrictions and value (illustrated as
reference numerals 92 and 94 in FIGS. 15-16) according to
rules governing ownership, trade, and other policies. Each
entity 32a-d may generate and sends its respective transac-
tion records 100a-d which reference each entity’s single
cryptographic address 102a-d to the blockchain data layer
72 for documentation.

[0165] As FIG. 20 further illustrates, each entity 32a-d
may also specify their respective digital contract 20a-d.
When any of the private blockchains 24a-d is received, the
blockchain data layer 72 may coordinate execution of any
digital contract 20a-d. The blockchain data layer 72, for
example, may inspect any private blockchain 24a-d and
identify any information associated with the digital contract
20a-d. The blockchain data layer 72 may then execute the
digital contract 20a-d, and/or the blockchain data layer 72
may identify a service provider that executes the digital
contract 20a-d. The blockchain data layer 72, in other words,
may manage the execution of the digital contracts 20a-d
according to a subcontractor relationship. A provider of the
blockchain data layer 72 may then be compensated via any
entity’s cryptocoinage 60a-d and/or the blockchain data
layer’s cryptocoinage 120.

[0166] As FIG. 21 illustrates, the filling station 110 may be
agnostic. Any user (such as the entity 32a-d or the third party
90) may authenticate to the filling station 110. Once authen-
ticated, the user need only enter or provide the correct single
cryptographic address 102a-d to access the entity’s private
cryptocoinage 60a-d, the blockchain data layer’s crypto-
coinage 120, and/or the entity’s digital contract 20a-d. The
single cryptographic address 102a-d, in other words, allows
the user to access her account 112 and balance 114 for the
entity’s private cryptocoinage 60a-d, the blockchain data
layer’s cryptocoinage 120, and/or the entity’s digital con-
tract 20a-d. The user may thus easily conduct transactions
between the entity’s private cryptocoinage 60a-d and the
blockchain data layer’s cryptocoinage 120. The entity 32a-d,
for example, may fuel or replenish its supply of the block-
chain data layer’s cryptocoinage 120, perhaps by redeeming
or exchanging the entity’s private cryptocoinage 60a-d
(perhaps according to an exchange rate or other value).
Similarly, the provider of the blockchain data layer 72 may
fuel or replenish its supply of the entity’s private crypto-
coinage 60a-d by purchasing or exchanging the blockchain
data layer’s cryptocoinage 120. The provider of the block-
chain data layer 72 may also earn the entity’s private
cryptocoinage 60a-d by processing any portion of, or by
executing, the entity’s digital contract 20a-d. Moreover, the
respective private blockchains 24a-d and the blockchain
data layer 72 would contain the data records 70 confirming
the processing and/or execution of the digital contract 20a-d,

US 2022/0058622 Al

so the transaction records 100a-d thus propagate into the
blockchain data layer 72 for public disclosure via the public
blockchain 76. Any user that successfully authenticates to
the filling station 110 may access a full accounting of his or
her digital cryptocoinages 60a-d and/or 120 and any digital
contracts 20, perhaps according to the respective single
cryptographic address 102a-d. The user may thus buy, sell,
trade, and/or redeem any entity-specific cryptocoinages
20a-d and/or 90, all by accessing the filling station 110. The
user may buy or sell any entity’s coins or replenish credits,
all by accessing the filling station 110. The user may also
track performance or obligations defined by the digital
contracts 20a-d and any payments or consideration received
or paid.

[0167] Exemplary embodiments thus present another
elegant solution. The filling station 110 is another service
offered by the blockchain data layer 72. Because all the
transaction records 100 in the blockchain data layer 72 are
identifiable (perhaps via the single cryptographic address
102), the filling station 110 can present the summary of the
user’s credit tokens and tradeable tokens. The filling station
110 may thus provide a single or universal electronic wallet
for all of a user’s digital coinage and credits, regardless of
the issuing entity 32a-d. The user may thus only perform a
single authentication to the blockchain data layer 72 and
access all her cryptofunds.

[0168] FIGS. 22-24 are more detailed illustrations of an
operating environment, according to exemplary embodi-
ments. FIG. 22 illustrates an entity server 140 communicat-
ing with the data layer server 74 via a communications
network 142. The entity server 140 operates on behalf of the
entity 32 and generates the entity’s private blockchain 24
(such as the financial server 38 explained with reference to
FIGS. 10-19). The entity server 140, in other words, has a
processor 144 (e.g., “uP”), application specific integrated
circuit (ASIC), or other component that executes the entity’s
software application 40 stored in a local memory device 146.
The entity server 140 has a network interface to the com-
munications network 142, thus allowing two-way, bidirec-
tional communication with the data layer server 74. The
entity’s software application 40 includes instructions, code,
and/or programs that cause the entity server 140 to perform
operations, such as calling, invoking, and/or applying an
electronic representation of a hashing algorithm 148 to the
entity’s private data 36. The hashing algorithm 148 thus
generates one or more hash values 150, which are incorpo-
rated into the entity’s private blockchain 24. The entity’s
software application 40 then instructs the entity server 140
to send the private blockchain 24 via the communications
network 142 to a network address (e.g., Internet protocol
address) associated with the data layer server 74.

[0169] The digital contract 20 may also be identified. The
entity’s software application 40 may also instruct the entity
server 140 to specify the digital contract 20 as informational
content in the private blockchain 24. For example, the digital
contract 20 may be identified by the contract identifier 28
and contractual parameters 30. The contract identifier 28 is
any digital identifying information that uniquely identifies
or references the digital contract 20. The contract identifier
28 may be an alphanumeric combination that uniquely
identifies a vendor and/or version of the digital contract 20
and/or a processor or executioner of the digital contract 20.
The contract identifier 28 may also be one of the unique hash
values 150 (perhaps generated by the hashing algorithm

Feb. 24, 2022

148) that is included within, or specified by, the private
blockchain 24. Similarly, the contractual parameters 30 may
identify the parties to the digital contract 20, their respective
performance obligations and terms, and consideration.
[0170] FIG. 23 illustrates the blockchain data layer 72.
The data layer server 74 has a processor 152 (e.g., “uP”),
application specific integrated circuit (ASIC), or other com-
ponent that executes a data layer application 154 stored in a
local memory device 156. The data layer server 74 has a
network interface to the communications network 142. The
data layer application 154 includes instructions, code, and/or
programs that cause the data layer server 74 to perform
operations, such as receiving the entity’s private blockchain
24, the digital contract 20, the contract identifier 28, and/or
the contractual parameters 30. The data layer application
154 then causes the data layer server 74 to generate the
blockchain data layer 72. The data layer application 154 may
optionally call, invoke, and/or apply the hashing algorithm
148 to the data records 70 contained within the blockchain
data layer 72. The data layer application 154 may also
generate the public blockchain 76. The data layer application
154 may thus generate the public ledger 82 that publishes,
records, or documents the digital contract 20, the contract
identifier 28, and/or the contractual parameters 30. Indeed,
if the data layer application 154 processes and/or manages
the digital contract 20, the data records 70 may document
any processing or execution, and the data layer application
154 may optionally apply the hashing algorithm 148 to the
data records 70 to generate the cryptographic proof 80 of the
digital contract 20.

[0171] FIG. 24 illustrates additional publication mecha-
nisms. Once the blockchain data layer 72 is generated, the
blockchain data layer 72 may be published in a decentralized
manner to any destination. The data layer server 74, for
example, may generate and distribute the public blockchain
76 (via the communications network 142 illustrated in FIGS.
22-23) to one or more federated servers 160. While there
may be many federated servers 160, for simplicity FIG. 24
only illustrates two (2) federated servers 160a and 1605. The
federated servers 160a and 1606 provide a service and, in
return, they are compensated according to a compensation or
services agreement or scheme.

[0172] Exemplary embodiments include still more publi-
cation mechanisms. For example, the cryptographic proof 80
and/or the public blockchain 76 may be sent (via the
communications network 142 illustrated in FIGS. 22-23) to
a server 162. The server 162 may then add another, third
layer of cryptographic hashing (perhaps using the hashing
algorithm 148) and generate another or second public block-
chain 164. While the server 162 and/or the public blockchain
164 may be operated by, or generated for, any entity,
exemplary embodiments may integrate another crypto-
graphic coin mechanism. That is, the server 162 and/or the
public blockchain 164 may be associated with BITCOIN®,
ETHEREUM®, RIPPLE®, or other cryptographic coin
mechanism. The cryptographic proof 80 and/or the public
blockchain 76 may be publicly distributed and/or docu-
mented as evidentiary validation. The cryptographic proof
80 and/or the public blockchain 76 may thus be historically
and publicly anchored for public inspection and review.
[0173] Exemplary embodiments may be applied regard-
less of networking environment. Exemplary embodiments
may be easily adapted to stationary or mobile devices having
cellular, wireless local area network (WI-FI®), near field,

US 2022/0058622 Al

and/or BLUETOOTH® capability. Exemplary embodiments
may be applied to mobile devices utilizing any portion of the
electromagnetic spectrum and any signaling standard (such
as the IEEE 802 family of standards, GSM/CDMA/TDMA
or any cellular standard, and/or the ISM band). Exemplary
embodiments, however, may be applied to any processor-
controlled device operating in the radio-frequency domain
and/or the Internet Protocol (IP) domain. Exemplary
embodiments may be applied to any processor-controlled
device utilizing a distributed computing network, such as the
Internet (sometimes alternatively known as the “World Wide
Web”), an intranet, a local-area network (LAN), and/or a
wide-area network (WAN). Exemplary embodiments may
be applied to any processor-controlled device utilizing
power line technologies, in which signals are communicated
via electrical wiring. Indeed, exemplary embodiments may
be applied regardless of physical componentry, physical
configuration, or communications standard(s).

[0174] Exemplary embodiments may utilize any process-
ing component, configuration, or system. Any processor
could be multiple processors, which could include distrib-
uted processors or parallel processors in a single machine or
multiple machines. The processor can be used in supporting
a virtual processing environment. The processor could
include a state machine, application specific integrated cir-
cuit (ASIC), programmable gate array (PGA) including a
Field PGA, or state machine. When any of the processors
execute instructions to perform “operations,” this could
include the processor performing the operations directly
and/or facilitating, directing, or cooperating with another
device or component to perform the operations.

[0175] Exemplary embodiments may packetize. When the
entity server 140 and the data layer server 74 communicate
via the communications network 142, the entity server 140
and the data layer server 74 may collect, send, and retrieve
information. The information may be formatted or generated
as packets of data according to a packet protocol (such as the
Internet Protocol). The packets of data contain bits or bytes
of data describing the contents, or payload, of a message. A
header of each packet of data may contain routing informa-
tion identifying an origination address and/or a destination
address.

[0176] FIGS. 25-29 further illustrate the blockchain data
layer 72, according to exemplary embodiments. The block-
chain data layer 72 chains hashed directory blocks 170 of
data into the public blockchain 76. For example, the block-
chain data layer 72 accepts input data (such as the entity’s
private blockchain 24 illustrated in FIGS. 9-21) within a
window of time. While the window of time may be config-
urable from fractions of seconds to hours, exemplary
embodiments use ten (10) minute intervals. FIG. 25 illus-
trates a simple example of only three (3) directory blocks
170a-c of data, but in practice there may be millions or
billions of different blocks. Each directory block 184 of data
is linked to the preceding blocks in front and the following
or trailing blocks behind. The links are created by hashing all
the data within a single directory block 184 and then
publishing that hash value within the next directory block.
[0177] As FIG. 26 illustrates, published data may be
organized within chains 172. Each chain 172 is created with
an entry that associates a corresponding chain identifier 174.
Each entity 32a-f, in other words, may have its correspond-
ing chain identifier 174a-d. The blockchain data layer 72
may thus track any data associated with the entity 32a-f ' with

Feb. 24, 2022

its corresponding chain identifier 174a-d. New and old data
in time may be associated with, linked to, identified by,
and/or retrieved using the chain identifier 174a-d. Each
chain identifier 174a-d thus functionally resembles a direc-
tory 176a-d (e.g., files and folders) for organized data entries
according to the entity 32a-f.

[0178] FIG. 27 illustrates the data records 70 in the
blockchain data layer 72. As data is received as an input
(such as the private blockchain 24 and/or the digital contract
20 illustrated in FIGS. 9-21), data is recorded within the
blockchain data layer 72 as an entry 180. While the data may
have any size, small chunks (such as 10KB) may be pieced
together to create larger file sizes. One or more of the entries
180 may be arranged into entry blocks 182 representing each
chain 172 according to the corresponding chain identifier
174. New entries for each chain 172 are added to their
respective entry block 182 (again perhaps according to the
corresponding chain identifier 174). After the entries 180
have been made within the proper entry blocks 182, all the
entry blocks 182 are then placed within in the directory
block 184 generated within or occurring within a window
186 of time. While the window 186 of time may be chosen
within any range from seconds to hours, exemplary embodi-
ments may use ten (10) minute intervals. That is, all the entry
blocks 182 generated every ten minutes are placed within in
the directory block 184.

[0179] FIG. 28 illustrates cryptographic hashing. The data
layer server 74 executes the data layer application 154 to
generate the data records 70 in the blockchain data layer 72.
The data layer application 154 may then instruct the data
layer server 74 to execute the hashing algorithm 148 on the
data records 70 (such as the directory block 184 illustrated
in FIGS. 25-27). The hashing algorithm 148 thus generates
one or more hash values 150 as a result, and the hash values
150 represent the hashed data records 70. As one example,
the blockchain data layer 72 may apply a Merkle tree
analysis to generate a Merkle root (representing a Merkle
proof 80) representing each directory block 184. The block-
chain data layer 72 may then publish the Merkle proof 80 (as
this disclosure explains).

[0180] FIG. 29 illustrates hierarchical hashing. The enti-
ty’s private software application 40 provides the first layer
130 of cryptographic hashing and generates the private
blockchain 24. The entity 32 then sends its private block-
chain 24 (perhaps referencing or specifying the digital
contract 20) to the data layer server 74. The data layer server
74, executing the data layer application 154, generates the
blockchain data layer 72. The data layer application 154 may
optionally provide the second or intermediate layer 132 of
cryptographic hashing to generate the cryptographic proof
80. The data layer application 154 may also publish any of
the data records 70 as the public blockchain 76, and the
cryptographic proof 80 may or may not also be published via
the public blockchain 76. The public blockchain 76 and/or
the cryptographic proof 80 may be optionally sent to the
server 162 as an input to yet another public blockchain 164
(again, such as BITCOIN®, ETHEREUM®, or RIPPLE®)
for a third layer 188 of cryptographic hashing and public
publication. The first layer 130 and the second layer 132 thus
ride or sit atop a conventional public blockchain 164 (again,
such as BITCOIN®, ETHEREUM®, or RIPPLE®) and
provide additional public and/or private cryptographic
proofs 80.

US 2022/0058622 Al

[0181] Exemplary embodiments may use any hashing
function. Many readers may be familiar with the SHA-256
hashing algorithm. The SHA-256 hashing algorithm acts on
any electronic data or information to generate a 256-bit hash
value as a cryptographic key. The key is thus a unique digital
signature. There are many hashing algorithms, though, and
exemplary embodiments may be adapted to any hashing
algorithm.

[0182] FIGS. 30-32 are more detailed illustrations of the
digital contract 20, according to exemplary embodiments.
The private entity 32 sends its private blockchain 24 to the
network address associated with the data layer server 74 that
generates the blockchain data layer 72. The private block-
chain 24 may contain information representing the transac-
tion records 100 associated with the entity’s private cryp-
tocoinage 60 (perhaps as one or more privately hashed
blocks of data). The private blockchain 24 may also specify,
or incorporate, information or data representing the single
cryptographic address 102 and/or the digital contract 20
(e.g., the contract identifier 28 and the contractual param-
eters 30). The single cryptographic address 102 and/or the
digital contract 20 (e.g., the contract identifier 28 and the
contractual parameters 30) may additionally or alternatively
be separately sent from the entity server 140 to the data layer
server 74 (perhaps via the communications network 142
illustrated by FIGS. 22-23). Regardless, the entity’s private
cryptocoinage 60 may be associated with the digital contract
20 (e.g., the contract identifier 28 and the contractual param-
eters 30) and/or the single cryptographic address 102. The
transaction records 100 and/or their privately hashed blocks
of data may thus specify, include, reference, and/or be
associated with, and/or identified by, the single crypto-
graphic address 102, the digital contract 20, the contract
identifier 28, and/or the contractual parameters 30. Because
the contract identifier 28 (and/or its corresponding hash
value) is an identifiable input to the data layer server 74
generating the blockchain data layer 72, the data records 70
may also carry or reference the contract identifier 28 and/or
the contractual parameters 30. So, should the blockchain
data layer 72 create or issue its own cryptocoinage 120, the
cryptocoinage 120 may also reference, be identified by, or be
associated with the single cryptographic address 102 and/or
the contract identifier 28 and/or the contractual parameters
30. The single cryptographic address 102, the contract
identifier 28, and/or the contractual parameters 30 may thus
common indicators or reference data for tracking both the
entity’s private cryptocoinage 60 and the cryptocoinage 120
issued by the blockchain data layer 72, according to the
terms of the digital contract 20. The transaction records 100
(representing entity’s private cryptocoinage 60) may thus be
commonly mapped or identified to the cryptocoinage 120
issued by the blockchain data layer 72 and to the digital
contract 20.

[0183] FIG. 31 illustrates a simple illustration. Once the
contract identifier 28 (and/or its corresponding hash value)
is received, the contract identifier 28 may propagate and be
recorded within the blockchain data layer 72. The contract
identifier 28, for example, may be recorded in any of the
entries 180. The entry 180, and thus the contract identifier
28, may then be recorded and/or arranged as the entry block
182 and placed within the directory block 184. The entry
180, the entry block 182, and the directory block 184 may
thus reference, specify, or be associated with, the contract
identifier 28. The contract identifier 28 has thus propagated

Feb. 24, 2022

as informational content from the private blockchain 24 and
into and through the blockchain data layer 72. The contract
identifier 28 thus hierarchically moves through the multiple
layers of cryptographic hashing for public publication. The
blockchain data layer 72 thus tracks the transaction records
100 involving the contract identifier 28. In simple words, the
blockchain data layer 72 may track contractual performance
of'the digital contract 20 via the transaction records 100 that
reference or contain the contract identifier 28. Moreover, the
blockchain data layer 72 may also track ownership and
transfer of the entity’s private cryptocoinage 60 and the
cryptocoinage 120 issued by the blockchain data layer 72, all
via the common single cryptographic address 102 and/or the
contract identifier 28.

[0184] FIG. 32 illustrates more details. While the single
cryptographic address 102 and/or the contract identifier 28
may be any alphanumeric entry or biometric input, FIG. 24
illustrates a common authentication mechanism 190. Here
the same or similar authentication mechanism 190 is used to
access both the entity’s private cryptocoinage 60 and the
cryptocoinage 120 issued by the blockchain data layer 72. If
a user of the blockchain data layer 72 satisfies the authen-
tication mechanism 190, then exemplary embodiments may
access both the private cryptocoinage 60, the cryptocoinage
120, and/or the data records 70 associated with the contract
identifier 28. As a simple example, suppose the user of the
authentication mechanism 190 supplies information or data
representing the single cryptographic address 102 and/or the
contract identifier 28. The single cryptographic address 102
and/or the contract identifier 28 may be any unique alpha-
numeric entry, biometric input, user identifier, or other
authentication credential. For example, most readers are
likely familiar with an alphanumeric username and pass-
word, which is a common authentication mechanism 190.
FIG. 32, though, illustrates a passphrase 192 (such as a
multi-word mnemonic). When the entity’s private crypto-
coinage 60 is/are created, generated, or assigned, the entity’s
private cryptocoinage 60 may be assigned or associated with
the passphrase 192. The passphrase 192 is unique to the
registered owner, possessor, or user of the entity’s private
cryptocoinage 60. The passphrase 192 may even be hashed
as a hash value and supplied to the blockchain data layer 72
(as above explained). The passphrase 192, in other words,
may be hashed as the single cryptographic address 102 and
propagated within the blockchain environment 22 to docu-
ment the transaction records 100 involving the entity’s
private cryptocoinage 60.

[0185] The passphrase 192 may also authenticate to the
cryptocoinage 120. If the user correctly supplies the
passphrase 192, then the same user may conduct transac-
tions involving the cryptocoinage 120 issued by the block-
chain data layer 72 and/or involving the contract identifier
28 associated with the digital contract 20. Exemplary
embodiments thus allow the user to order transactions and
exchanges involving the entity’s private cryptocoinage 60,
the cryptocoinage 120 issued by the blockchain data layer
72, and/or the digital contract 20.

[0186] FIGS. 33-35 further illustrate the access mecha-
nism, according to exemplary embodiments. The filling
station 110 may be a public and/or private service for
financial transactions involving the entity’s private crypto-
coinage 60, the cryptocoinage 120 issued by the blockchain
data layer 72, and/or the digital contract 20. FIG. 33 illus-
trates the filling station 110 as a software-as-a-service

US 2022/0058622 Al

offered by the secure data layer server 74 for accessing the
blockchain data layer 72. The filling station 110, for
example, may be a module within, or called by, the data
layer application 154. A user accesses the filling station 110
to conduct transactions involving her private cryptocoinage
60, the cryptocoinage 120 (issued by the blockchain data
layer 72), and/or the digital contract 20. While the filling
station 110 may have any user interface, FIG. 33 illustrates
a web interface 194. That is, the filling station 110 may be
accessed via a webpage 196. The webpage 196 prompts the
user to input her authentication credentials according to the
authentication mechanism 190 (such as typing the
passphrase 192 into a data field or audibly speaking the
passphrase 192).

[0187] FIG. 34 further illustrates the web interface 194.
The user accesses the filling station 110 using a user device
200. While the user device 200 may be any processor-
controlled device, most readers are familiar with a smart-
phone 202. If the smartphone 202 correctly sends authenti-
cation credentials (such as the single cryptographic address
102 and/or passphrase 192, as above explained), then the
smartphone 202 may utilize the web interface 194 to the data
layer server 74 and/or the blockchain data layer 72. The
smartphone 202 executes a web browser and/or a mobile
application to send a request 204 specifying an address or
domain name associated with or representing the filling
station 110. The web interface 194 to the data layer server 74
thus sends the webpage 196 as a response, and the user’s
smartphone 202 downloads the webpage 196. The smart-
phone 202 has a processor and memory device (not shown
for simplicity) that causes a display of the webpage 196 as
a graphical user interface (or “GUI”) 206 on its display
device 208. The GUI 206 may generate one or more prompts
or fields for specifying the authentication mechanism 190
and transactional options. For example, the user preferably
enters, speaks, or otherwise provides the passphrase 192.
Exemplary embodiments may or may not hash the authen-
tication passphrase (using the hashing algorithm 148 above
explained) to produce or generate a hashed passphrase.
Exemplary embodiments may then search the blockchain
data layer 72 for the data records 70. That is, exemplary
embodiments may query the blockchain data layer 72 for a
query parameter (such as the contract identifier 28 and/or its
hashed value) and the blockchain data layer 72 identifies the
data records 70 that match or reference the query parameter.
The filling station 110 may then process the data records 70
to provide a transactional summary 210 of the digital
contract 20. The filling station 110 may also allow the user
to replenish an amount or value of the private cryptocoinage
60 and/or the cryptocoinage 120, even allowing the user to
continue exchanging the cryptocoinage 60 for access to the
blockchain data layer 72.

[0188] Exemplary embodiments may thus share the com-
mon authentication mechanism 190. If the entity’s private
software application 40 requires the same passphrase 192 to
establish any terms of the digital contract 20, then the
passphrase 192 may have been hashed and recorded within
the blockchain data layer 72. The single cryptographic
address 102, the contract identifier 28, and/or the passphrase
192 may be associated with the data records 70 representing
the digital contract 20, the private cryptocoinage 60 (issued
by the entity 32), and the cryptocoinage 120 (issued by the
blockchain data layer 72). The filling station 110 may thus
identify any of the data records 70 that are commonly

Feb. 24, 2022

associated with the contract identifier 28, the private cryp-
tocoinage 60 (issued by the entity 32), and/or the crypto-
coinage 120. The filling station 110 thus allows the user to
exchange cryptocoinage 60 and 90 for access to the private
blockchain 24 and/or the blockchain data layer 72.

[0189] FIG. 35 illustrates a query mechanism. Here the
data layer server 74 may access a database 220 of data layer
records. The database 220 of data layer records provides a
referential record of the informational content contained
within the blockchain data layer 72. FIG. 35 illustrates the
data layer server 74 locally storing the database 220 of data
layer records in its local memory device 156, but the
database 220 of data layer records may be remotely stored
and accessed via the communications network 142. Regard-
less, the data layer server 74 may query the database 220 of
data layer records for the single cryptographic address 102
and/or the contract identifier 28 and identify and/or retrieve
any corresponding data records 70. While the database 220
of data layer records may have any logical structure, FIG. 35
illustrates the database 220 of data layer records as a table
222 that maps, converts, or translates the single crypto-
graphic address 102 and/or the contract identifier 28 to its
corresponding entry 180, entry block 182, and/or directory
block 184 within the blockchain data layer 72. Whenever the
data layer server 74 generates the entry 180, entry block 182,
and/or directory block 184, the data layer server 74 may add
an entry to the database 220 of data layer records. Over time,
then, the database 220 of data layer tracks a comprehensive
historical repository of information that is electronically
associated with its corresponding contract identifier 28. The
data layer server 74 may then read or retrieve the entry 180,
entry block 182, and/or directory block 184 containing or
corresponding to the contract identifier 28.

[0190] Exemplary embodiments thus present the entity-
specific cryptocoinage 60. Any entity 32 may create its own
private blockchain 24, establish its entity-specific tokens 62,
and define or offer digital contracts 20. The entity-specific
tokens 62 may or may not have the value 94. The tradeable
token 66, for example, may have a market value based on
supply and/or demand, thus allowing or causing the value 94
of the tradeable token 66 to rise/fall or to increase/decrease,
based on market forces. The credit token 64, however, may
have a constant price or value, perhaps set by the entity 32.
The entity-specific tokens 62 may be associated with the
contract identifier 28, thus allowing a faster and simpler
accounting scheme for machine executable contractual
terms.

[0191] Exemplary embodiments may thus create coinage
on top of coinage. The hierarchical scheme (explained with
reference to FIG. 29) allows the private entity 32 to establish
its private cryptocoinage 60 hierarchically above the tradi-
tional BITCOIN®, ETHEREUM®, or RIPPLE® coinage.
The entity’s private data 36 remains private, but the trans-
action records 100 may be publicly documented or proved
via the traditional BITCOIN®, ETHEREUM®, or
RIPPLE® environment. The private entity 32, in other
words, need to worry about or concern itself with public
publication. The private entity 32 need only subscribe (e.g.,
pay for write access) to the blockchain data layer 72. The
digital contract 20 may also be offered, executed, and
documented by the transaction records 100.

[0192] FIG. 36 illustrates a public entity 230, according to
exemplary embodiments. Here exemplary embodiments
may be applied to public data 232 generated by the public

US 2022/0058622 Al

entity 230. The public entity 230 may be a city, state, or
federal governmental agency, but the public entity 230 may
also be a contractor, non-governmental organization, or
other actor that acts on behalf of the governmental agency.
The public entity 230 operates a public server 234 and
applies its software application 236 to its public data 232 to
generate its governmental blockchain 238. The public entity
230 may further generate/issue its cryptocoinage 240 and
offer digital contracts 20 for governmental, public services.
The data layer server 74 receives the governmental block-
chain 238 and generates the blockchain data layer 72. The
data layer server 74 may then generate the public blockchain
76 representing any data records 70 representing the public
data 232 and/or the cryptocoinage 240.

[0193] FIGS. 37-40 further illustrate contractual execu-
tion, according to exemplary embodiments. When the con-
tract server 42 (such as the data layer server 74) receives the
blockchain 24, exemplary embodiments inspect the block-
chain 24 to identify the contract identifier 28 and/or the
contractual parameters 30. The contract identifier 28 and/or
the contractual parameters 30 may be contained within the
block 26 of data within the blockchain 24. The contract
identifier 28 and/or the contractual parameters 30 may be
additionally or alternatively be metadata contained within
the block 26 of data, and/or the contract identifier 28 and/or
the contractual parameters 30 may be a data, data field,
and/or a file attachment. The contract identifier 28 and/or the
contractual parameters 30 may be information or data speci-
fied by the blockchain 24 and/or by a packet header or body.
Regardless, once the contract identifier 28 and/or the con-
tractual parameters 30 are determined, exemplary embodi-
ments may consult the electronic database 44 of contracts.

[0194] FIG. 38 illustrates the database 44 of contracts.
While the database 44 of contracts may have any logical
structure, a relational database is perhaps easiest to under-
stand. FIG. 38 thus illustrates the database 44 of contracts as
an electronic table 250 that maps, converts, or translates the
contract identifier 28 and/or the contractual parameters 30 to
their corresponding network resource(s) 50. The database 44
of contracts may thus be preconfigured or preloaded with
entries that assign or associate different contract identifiers
28 and/or contractual parameters 30 to their corresponding
network resource 50 that provides, processes, and/or
executes the corresponding digital contract 20. As the data
layer server 74 receives any blockchain 24, the data layer
server 74 may inspect the blockchain 24 for the contract
identifier 28 and/or the contractual parameters 30. The data
layer server 74 may then query the database 44 of contracts
for the contract identifier 28 and/or the contractual param-
eters 30 to identify the computer file 46, server 254, virtual
machine 256, Internet protocol address 258, or other net-
work resource 50 that is responsible for executing the digital
contract 20. The database 44 of contracts may optionally
contain entries that relate hashed values of the contract
identifier 28 and/or the contractual parameters 30. Regard-
less, once the network resource 50 is identified, the data
layer server 74 may direct, assign, or outsource the contrac-
tual information 30 to the network resource 50 for process-
ing.

[0195] FIG. 39 illustrates a simple example. Here the
contract identifier 28 maps to a filename 260 that is asso-
ciated with, or that represents, the computer file 46 that
contains the programming language representing the digital
contract 20. So, once the filename 260 is determined, the

Feb. 24, 2022

data layer server 74 may locally retrieve and execute the
computer file 46 that corresponds to, or is associated with,
the filename 260. The data layer server 74 may then execute
the computer file 46, perhaps based on parameters defined or
described by the contractual parameters 30 (such as party
names, parameters associated with their respective perfor-
mance obligations and terms, and consideration). Option-
ally, the data layer server 74 may retrieve the computer file
46 (perhaps via the communications network 146 illustrated
by FIGS. 22-23) from a remote server, database, or other
device. Regardless, as the computer file 46 is executed, the
data layer server 74 may generate the data records 70 in the
blockchain data layer 72 describing the execution of the
computer file 46. For example, the data records 70 may
sequentially and/or serially track the execution of the com-
puter file 46, perhaps logging or documenting periodic or
random updates as the computer file 46 executes, perhaps
along with timestamps toward completion. The data records
70 may also log or document a final step or outcome of the
programming language representing the digital contract 20.
Again, then, the blockchain 24 only referenced the digital
contract 20 (using the contract identifier 28 and/or the
contractual parameters 30). The actual execution of the
digital contract 20 may be offloaded or outsourced to the
data layer server 74.

[0196] FIG. 40 illustrates another example. Here the data
layer server 74 may only manage the execution of the digital
contract 20 referenced by the contract identifier 28 and/or
the contractual parameters 30. That is, the data layer server
74 may outsource the execution of the digital contract 20 to
a vendor or supplier as a subcontractor process. Again, when
the data layer server 74 receives the blockchain 24, the data
layer server 74 inspects the blockchain 24 to identify the
contract identifier 28 and/or the contractual parameters 30.
The data layer server 74 may then consult the database 44 of
contracts. Here, though, the database 44 of contracts has
entries that map or relate the contract identifier 28 to a
remote server 262 that executes the digital contract 20 as a
cloud-based service (perhaps as a software-as-a-service or
SAAS). The database 44 of contracts may thus associate the
contract identifier 28 to the Internet protocol address 258
representing the remote server 262 that executes the digital
contract 20. The database 44 of contracts may additionally
or alternatively associate the contract identifier 28 to a
uniform resource locator (or “URL”) 264 representing the
remote server 262 that executes the digital contract 20.
Regardless, once the remote server 262 is determined, the
data layer server 74 may retrieve and send a service request
266 to the remote server 262 (via the Internet protocol
address 258 and/or the URL 264 representing the remote
server 262). The service request 266 specifies the contract
identifier 28 and requests an execution of the corresponding
digital contract 20. The service request 266 may also specify
the contractual parameters 30. When the remote server 262
(perhaps operated on behalf of a third party) receives the
service request 266, the remote server 262 applies the
parameters defined or described by the contractual param-
eters 30 to the programming code (such as the computer file
46) representing the digital contract 20. Once the digital
contract 20 is executed, the remote server 262 may then send
a service response 268 back to the data layer server 74, and
the service response 268 comprises data or information
describing an outcome of the digital contract 20 (such as
consideration, payment, or performance terms).

US 2022/0058622 Al

[0197] The data layer server 74 may generate the data
records 70 in the blockchain data layer 72. For example, the
data records 70 may document the date and time that the
service request 266 was sent to the remote server 262.
Moreover, as the remote server 262 provides the digital
contract 20 as a service, the remote server 262 may send
periodic or random service updates 270 as the service is
provided along with timestamps toward completion. The
data layer server 74 may thus generate the data records 70
describing the service updates 270 received from the remote
server 262. The data layer server 74 may also generate the
data records 70 describing the service response 268 sent
from the remote server 262 describing an outcome of the
digital contract 20.

[0198] FIGS. 41-42 illustrate virtual execution, according
to exemplary embodiments. Here the data layer server 74
may outsource or subcontract the execution of the digital
contract 20 to a virtual machine (or “VM”) 280. For
example, the data layer server 74 may implement different
virtual machines 190, with each virtual machine 190 pro-
cessing and/or executing a particular digital contract 20,
perhaps as a software service. The data layer server 74 may
provide virtual computing and/or virtual hardware resources
to client devices, thus lending or sharing its hardware,
computing, and programming resources. The data layer
server 74 may thus operate or function as a virtual, remote
resource for providing contractual execution as software
services. Suppose, for example, that the data layer server 74
implements four (4) virtual machines 280a-d. In practice,
though, the data layer server 74 may implement any number
or instantiations of different virtual machines 280 and/or
digital contracts 20, depending on complexity and resources.
Moreover, as a further simplification, assume that each
virtual machine 280a-d executes a different corresponding
digital contract 20a-d. So, when the data layer server 74
receives the blockchain 24, the data layer server 74 may
inspect the blockchain 24 for each contract identifier 28a-d
and/or the corresponding contractual information 28a-d and
consult the database 44 of contracts.

[0199] FIG. 42 further illustrates the database 44 of con-
tracts. Here the database 44 of contracts may include entries
that map the contract identifier 28 to the corresponding
virtual machine 280. The database 44 of contracts may thus
be preconfigured or preloaded with entries that assign or
associate each virtual machine 280 to its corresponding
contract identifier 28. Once the virtual machine 280 is
identified, the data layer server 74 may then coordinate
and/or manage the execution of the corresponding digital
contract 20, perhaps based on the contract information 30.
Suppose, for example, that the data layer application 154 has
programming or code that functions or performs as a query
handler. The data layer application 154 inspects the block-
chain 24 for the contract identifier 28 and queries the
database 44 of contracts (as above explained). The data layer
application 154 thus identifies and/or retrieves the corre-
sponding virtual machine 280. Exemplary embodiments
may thus determine whether contract identifier 28 matches
or satisfies any of the entries specified by the database 44 of
contracts. FIG. 42 illustrates entries that map the contract
identifier 28 to its corresponding virtual machine 280 (e.g.,
an address, processor core, identifier, or other indicator).

[0200] The digital contract 20 may then be executed. For
example, once the contract identifier 28 and the virtual
machine 280 are determined, the virtual machine 280 may

Feb. 24, 2022

then call, retrieve, and/or execute the computer file 46 that
provides the digital contract 20 as a virtual service or
process. FIG. 42 illustrates the computer file 46 locally
stored and executed by the data layer server 74, but the
computer file 46 may be remotely stored, retrieved, and/or
executed. Regardless, the virtual machine 280 may be
instructed to retrieve, execute, and/or apply the computer file
46, perhaps based on the contractual information 30.

[0201] FIG. 42 also illustrates software services. Here the
database 44 of contracts may include entries that map the
contract identifier 28 to a corresponding software service
provided by the virtual machine 280. Exemplary embodi-
ments, in other words, may relate the contract identifier 28
to a service identifier 282. The service identifier 282 is any
alphanumeric combination, data, or hash value that uniquely
identifies a software service 284 provided by the virtual
machine 280. Once the contract identifier 28, the software
service 284, and/or the virtual machine 280 are determined,
the virtual machine 280 may then provide the software
service 284. The software service 284 may execute the
digital contract 20, perhaps based on the contractual infor-
mation 30.

[0202] FIG. 43 illustrates cryptographic affinities, accord-
ing to exemplary embodiments. Here the data layer server 74
may create or generate a cryptographic affinity 290 describ-
ing contractual execution. This disclosure above explained
how the data layer server 74 may generate the data records
70 in the blockchain data layer 72. This disclosure also
above explained how the data records 70 may document
execution of the digital contract 20. Here, then, the crypto-
graphic affinity 290 may uniquely identify the digital con-
tract 20 executed by the virtual machine 280. For example,
once the contract identifier 28 and the virtual machine 280
are determined (as above explained), the hashing algorithm
148 may generate a unique hash value 150. That is, the
hashing algorithm 148 may hash the contract identifier 28
with a virtual machine (“VM”) identifier 292 to generate the
cryptographic affinity 290. The virtual machine identifier
292 is any alphanumeric combination, data, or hash value
that uniquely identifies the virtual machine 280. The cryp-
tographic affinity 290 may then be documented by the data
records 70 in the blockchain data layer 72, thus evidencing
the execution of the digital contract 20. Indeed, the crypto-
graphic affinity 290 may be published via the public block-
chain 76 as the cryptographic proof 80, thus further publicly
evidencing the execution of the digital contract 20.

[0203] FIG. 44 illustrates virtual assignments based on the
blockchain data layer 72, according to exemplary embodi-
ments. As this disclosure previously explained, exemplary
embodiments may generate the data records 70 representing
the blockchain data layer 72 (such as the entries 180, the
entry blocks 182, and/or the directory blocks 184 explained
with reference to FIGS. 25-27). Exemplary embodiments
may thus assign the blockchain 24 and/or the virtual
machine 280 that executes the digital contract 20, based on
the number of the entries 180, the entry blocks 182, and/or
the directory blocks 184 generated within the blockchain
data layer 72. For example, as the data records 70 are
generated, the data layer server 74 may determine a rate 290
of generation. That is, as the data records 70 are generated
when or while executing the digital contract 20, exemplary
embodiments may sum or count the entries 180, the entry
blocks 182, and/or the directory blocks 184 that are gener-
ated over time (such as per second, per minute, or other

US 2022/0058622 Al

interval). Exemplary embodiments, for example, may call or
initialize a counter having an initial value (such as zero). At
an initial time (such as when the blockchain 24 is received
or when the contract identifier 28 is determined), the counter
commences or starts counting or summing the number of the
entries 180, the entry blocks 182, and/or the directory blocks
184 (generated within the blockchain data layer 72) that are
commonly associated with or reference the blockchain 24
(perhaps according to the chain ID 174) and/or the contract
identifier 28. The counter stops counting or incrementing at
a final time and exemplary embodiments determine or read
the final value or count. Exemplary embodiments may then
calculate the rate 290 of generation as the sum or count over
time and consult or query the electronic database 44 of
contracts for the rate 290 of generation. Exemplary embodi-
ments may thus define entries that map or associate different
rates 290 of generation and/or ranges to their corresponding
contract identifier 28 and/or virtual machines 280. If the
database 44 of contracts has an entry that matches or satisfies
the rate 290 of generation, exemplary embodiments identify
the corresponding virtual machine 280.

[0204] The rate 290 of generation may thus be a feedback
mechanism. As the blockchain 24 is received. the data
records 70 are requested, and/or the digital contract 20 is
executed, the rate 290 of generation of the data records 70
may determine the virtual machine 280 that is assigned
adequate capacity or bandwidth. One of the blockchains 24
and/or virtual machines 280, for example, may be reserved
for digital contracts 20 having a heavy, disproportionate, or
abnormally large rate 290 of generation. Another of the
blockchains 24 and/or virtual machines 280 may be reserved
for digital contracts 20 having a medium, intermediate, or
historically average rate 290 of generation. Still another
blockchain 24 and/or virtual machine 280 may be reserved
for the digital contracts 20 having a light, low, or historically
below average rate 290 of generation. The rate 290 of
generation may thus be a gauge or measure of which
blockchain 24, digital contract 20, and/or virtual machine
280 is assigned the resources.

[0205] Exemplary embodiments thus include a service
environment. Exemplary embodiments may manage and/or
execute many different digital contracts 20 offered by many
different vendors or suppliers. Indeed, the data layer server
74 may manage or even execute the digital contracts 20
while also generating the blockchain data layer 72 as still
another service. The data layer server 74 may thus acts as a
subcontractor or service provider, perhaps in a subscription
or other compensation scheme. Any customer or client (such
as the entity server 140 explained with reference to FIGS.
22-23) may thus send or forward its private blockchain 24
(generated from its private data 36) to the data layer server
74 for management or execution of any digital contract 20.
The data layer server 74 may generate the data records 70 of
the blockchain data layer 72 that document the management
or execution of any digital contract 20. Moreover, the data
layer server 74 may publicly publish the cryptographic proof
80 within the public blockchain 76, thus further document-
ing immutable evidence of the management or execution of
any digital contract 20. Indeed, the entity server 140 may
also generate the blocks 26 of data within the private
blockchain 24 that also document the date and time that the
management or execution of any digital contract 20 was
sent/requested. The entity server 140 may then pay or
reward the data layer server 74 in exchange for the digital

Feb. 24, 2022

contract 20 and/or the data records 70 in the blockchain data
layer 72 (such as granting its crytpocoinage 60 and 120, as
explained with reference to FIG. 19).

[0206] The data layer server 74 may thus serve many
blockchains 24 requesting many different contractual ser-
vices. The financial institution 34, for example, may send or
forward its private blockchain 36a (as illustrated with ref-
erence to FIGS. 20-21) to the data layer server 74 for
application or execution of any digital contract 20 (by
specifying the contract identifier 20, as above explained).
The retailer 122 may similarly send or forward its private
blockchain 365 to the data layer server 74 for application or
execution of any digital contract 20. The online website 124
may also send or forward its private blockchain 36¢ to the
data layer server 74 for application or execution of any
digital contract 20. The data layer server 74 may generate the
data records 70 of the blockchain data layer 72 that docu-
ment the management and/or execution of any digital con-
tract 20, and the data layer server 74 may publicly publish
each cryptographic proof 80 within the public blockchain
76, thus further documenting immutable evidence of the
management and/or execution of any digital contract 20. The
entity 32 may then pay or reward the data layer server 74 via
their respective crytpocoinage 60 and 120.

[0207] Exemplary embodiments thus only need to identify
the digital contract 20. The contract identifier 28 and the
contractual parameters 30 need only be informational con-
tent in the private blockchain 24. The contract identifier 28
is any digital identifying information that uniquely identifies
or references the digital contract 20. The contract identifier
28 may be an alphanumeric combination that uniquely
identifies a vendor and/or version of the digital contract 20
and/or a processor or executioner of the digital contract 20.
The contract identifier 28 may be expressed as a unique hash
value that is included within, or specified by, the private
blockchain 24. Similarly, the contractual parameters 30 may
identify the parties to the digital contract 20, their respective
performance obligations and terms, and consideration.
[0208] FIGS. 45-51 illustrate an architectural scheme,
according to exemplary embodiments. This disclosure above
explained that the data layer server 74 may only manage the
execution of the digital contract 20. The implementation
and/or actual execution of the digital contract 20 may thus
be separate from the data layer server 74 that generates the
blockchain data layer 72. FIG. 45, for example, illustrates
the data layer server 74 communicating via the communi-
cations network 142 with the remote server 262. The data
layer server 74 generates the blockchain data layer 72, and
the remote server 262 executes at least some portion of the
digital contract 20. The remote server 262 may thus have a
hardware processor 300 (e.g., “uP”), application specific
integrated circuit (ASIC), or other component that executes
a contract application 302 stored in a local memory device
304. The remote server 262 has a network interface to the
communications network 142, thus allowing two-way, bidi-
rectional communication with the data layer server 74. The
contract application 302 includes instructions, code, and/or
programs that cause the remote server 262 to perform
operations, such as executing at least some portion of the
digital contract 20.

[0209] FIG. 46 illustrates a request mechanism. The data
layer application 154, for example, identifies the contract
identifier(s) 28 and/or the contractual parameters 30 asso-
ciated with or representing the digital contract 20. The

US 2022/0058622 Al

contract identifier(s) 28 and/or the contractual parameters 30
may be sent to the data layer server 74 as an input (such as
from the entity server 140, as explained with reference to
FIGS. 22-24), or the contract identifiers 28 and/or the
contractual parameters 30 may be contained as information
in the private blockchain 24. Regardless, the data layer
server 74 may then identify the network address, IP address,
URL, or other nomenclature representing the remote server
262 that executes at least some portion of the digital contract
20 (perhaps via the database 44 of contracts, as earlier
explained). The data layer server 74 sends the service
request 266 to the remote server 262, and the service request
266 may include or specify the contract identifier 28 and/or
the contractual parameters 30. When the remote server 262
receives the service request 266, the remote server 262
applies the contractual parameters 30 to the portion of the
digital contract 20 and generates a contractual result 306.
The remote server 262 may then send the service response
268 back to the data layer server 74, and the service response
268 may comprise the contractual result 306.

[0210] Exemplary embodiments may thus exchange
inputs and outputs. When the data layer server 74 sends the
service request 266 to the remote server 262, the service
request 266 may include or specify one or more of the
contract identifiers 28 and/or the contractual parameters 30.
Suppose, for example, that the contract identifiers 28 and/or
the contractual parameters 30 are represented as hash values.
The hash values may be identified from, or specified by, the
private blockchain 24. The hash values may additionally or
alternatively be generated by the data layer application 154
(such as by calling, invoking, or executing the hashing
algorithm 148, as above explained). Regardless, the service
request 266 may thus include or specify the hash values
representing the contract identifiers 28 and/or the contractual
parameters 30. When the remote server 262 receives the
service request 266, the contract application 302 may use or
accept the hash values as inputs to generate the contractual
result 306 as an output. The contract application 302 may
further encrypt the contractual result 306 (such as calling,
invoking, or executing the hashing algorithm 148) to gen-
erate another hash value representing the contractual result
306.

[0211] Exemplary embodiments provide contractual
proofs. When the data layer server 74 sends the service
request 266 to the remote server 262, the data records 70
may document the service request 266 as one of the cryp-
tographic proofs 80. When the data layer server 74 receives
the service response 268, the data records 70 document that
receipt and the contractual result 306 as another one of the
cryptographic proofs 80. The data records 70 thus prove that
at least the portion of the digital contract 20 was outsourced
to a vendor or supplier as a subcontractor process or assign-
ment. The data records 70 also prove that at least the portion
of the digital contract 20 was executed to provide the
contractual result 306. The data layer server 74 may then
compare the contractual result 306 (such as its hash value)
to a predefined or expect value. If the contractual result 306
matches or equals the predefined or expect value, then the
data layer application 154 may be programmed or coded to
infer that the contract successfully executed and/or the
vendor or supplier performed as obligated. However, if the
contractual result 306 fails to match or equal the predefined
or expect value, then the data layer application 154 may be

Feb. 24, 2022

programmed or coded to infer that the contract is not
satisfied and/or the vendor or supplier failed to perform as
obligated.

[0212] FIG. 47 illustrates a layered contractual process.
Here the digital contract 20 may have different or individual
components, portions, or sub-parts that cumulatively com-
bine to produce the contractual result 306. The different
components, portions, or sub-parts may be software modules
310 that can be separately executed to generate the overall
or final contractual result 306. A simple digital contract 20,
for example, may only have a few or several software
subroutines or modules 310, while a complex or compli-
cated digital contract 20 may have many or hundreds of
different software subroutines or modules 310. As the reader
likely understands, such a complicated software structure is
too difficult to illustrate. For simplicity, then, FIG. 47
illustrates the digital contract 20 having four (4) software
modules 310a-d. The entire contract application 302, in
other words, may have four (4) different application layers
312a-d. Each componentry module 310a-d or layer 312a-d
may have its own corresponding contract identifier 28a-d.
When the remote server 262 receives the service request
266, exemplary embodiments may then feed the contractual
parameters 30 as inputs 314a-d to the software modules
310a-d. Each different software module 310 may thus gen-
erate its respective or corresponding output 316a-d, which
may be combined or processed to generate the overall or
final contractual result 306.

[0213] FIG. 48 illustrates hierarchical execution. Here the
different software modules 310 may be serially or sequen-
tially executed to generate the overall or final contractual
result 306. For example, the software module 310a may
accept at least some of the contractual parameters 30 as the
input 314a, execute its respective programming code, and
generate its corresponding output 316a. Here, though, the
output 3164 may then be routed or sent to the software
module 3105 (illustrated as the application layer 3125) as its
input 314b. Its respective programming code is then
executed to generate its corresponding output 3165, based
on the output 316a generated by or received from the
software module 310q. Similarly, software module 310c¢
accepts the output 3165 and generates output 316¢, which is
received by software module 3104 as input 3144 and used to
generate the output 3164. While exemplary embodiments
may continue processing the outputs 316a-d to generate any
desired outcome, for simplicity FIG. 40 illustrates the output
3164 as the final contractual result 306. Exemplary embodi-
ments may thus use the software modules 310a-d as feed-
back mechanisms to monitor or even enforce contractual
rule-based obligations defined or specified by the digital
contract 20.

[0214] FIG. 49 illustrates the blockchain data layer 72.
Here the blockchain data layer 72 may document the pro-
cessing and/or execution of each software module 310a-d,
its respective input(s) 314a-d, its respective output(s) 316a-
d, and perhaps a corresponding timestamp (not shown for
simplicity). The data records 70 may further document or
record the corresponding contract identifier 28a-d and/or the
chain identifier 174. The data layer server 74 may thus
receive the service updates 270 (via the communications
network 142) as each software module 310a-d performs or
executes its corresponding contractual service. The data
layer server 74 may then generate the data records 70 in the
blockchain data layer 72, thus documenting each software

US 2022/0058622 Al

component’s contribution toward the overall or final con-
tractual result 306. The data records 70 may also be hashed
to generate the cryptographic proofs 80, as above explained.
[0215] FIG. 50 also illustrates contractual execution. Here,
though, the different software modules 310 may be executed
by different devices. Suppose, for example, that the remote
server 262a locally stores and executes the software module
310a, while the remote server 2625 locally stores and
executes the software module 3105. Suppose also that the
remote server 262¢ locally stores and executes the software
module 310c¢ and the remote server 2624 locally stores and
executes the software module 310d4. Exemplary embodi-
ments may thus source or subcontract the different portions
of'the digital contract 20 to different machines for execution.
The remote server 262a, for example, may specialize in the
software module 310a. The remote server 262a may thus
accept the service request 266 from clients, execute the
software module 3104, and return send the service response
268 (as explained with reference to FIG. 46). The remote
server 262a may also send the service update(s) 270 to the
data layer server 74, thus allowing the blockchain data layer
72 to document the contractual service provided by the
software module 310a. The remote servers 26256-d may
similarly specialize in the software modules 3104-d to
provide their respective contractual services.

[0216] FIG. 51 illustrates an overall architectural scheme.
As the reader may envision, there may be hundreds, thou-
sands, millions, or even billions of contractual relationships
between many different parties. As smart, digital contracts
grow in acceptance and usage, the blockchain data layer 72
is expected to exponentially grow, thus requiring ever-
increasing hardware and software resources. In plain words,
there may be many data layer servers 74 generating the data
records 70 in the blockchain data layer 72. While there may
be hundreds or even thousands of data layer servers 74, F1G.
51 simply illustrates four (4) data layer servers 74a-d that
cooperate to generate the blockchain data layer 72. As the
processing load increases or grows (such as according to the
rate 290 of generation, as above explained), the number of
data layer servers 74 may also grow.

[0217] The blockchain data layer 72 may thus be separate
from an implementation and execution of the digital contract
20. The data layer servers 74, in other words, may be
separately networked and/or addressed from the remote
servers 262 providing the contractual services representing
the software modules 310 of the digital contract 20. Any of
the data layer servers 74 may send data or information as
inputs to any one of the remote servers 262, and the
corresponding software module 310 performs its contractual
service and sends its output 316 back to the blockchain data
layer 72 (perhaps via the service request 266, the service
response 268, and the service update 270 as earlier explained
and illustrated). Some of the remote servers 262 may pro-
vide virtual services, such as a virtual machine (as above
explained) that executes any of the software modules 310.
[0218] FIG. 52 illustrates compliance scheme, according
to exemplary embodiments. As the reader may understand,
some smart, digital contracts have jurisdictional require-
ments. For example, the digital contract 20 may have
programming code that requires an execution or processing
in a particular region or country. That is, the digital contract
20 may have contractual rules and/or provisions that must be
enforced in the United States, the European Union, or the
Isle of Man. Components or portions of the digital contract

Feb. 24, 2022

20 may require execution or location in the Cayman Islands,
Idaho, or Hong Kong. The digital contract 20, in other
words, may have a geographic parameter 320. The geo-
graphic parameter 320 may be a locational requirement,
restriction, or preference for at least some portion of the
digital contract 20. The geographic parameter 320 can be
any data, information, field, metadata, or code for enforcing
the locational requirement, restriction, or preference.
Indeed, the geographic parameter 320 may even be finely
expressed or defined as global positioning system (“GPS”)
information or coordinates at which at least some portion of
the digital contract 20 must be processed or executed.

[0219] The geographic parameter 320 may be an input
value. As FIG. 52 illustrates, the geographic parameter 320
may be read or received via the private blockchain 24
(perhaps along with the contract identifier 28 and/or the
contractual parameter 30). The data layer server 74, in other
words, may identify the geographic parameter 320 as data,
information, or a hash value contained within the block 26
of data. However, the geographic parameter 320 may addi-
tionally or alternatively be received and/or identified within
a header of body/payload of a packet 322 of data (packetized
according to the Internet Protocol, just as the contract
identifier 28 and/or the contractual parameter 30 may be
identified).

[0220] Regardless, once the geographic parameter 320 is
determined, exemplary embodiments may again consult the
database 44 of contracts. The database 44 of contracts may
have entries that electronically associate the contract iden-
tifier(s) 28 and/or the contractual parameter(s) 30 to the
geographic parameter 320. The data layer application 154
may instruct the data layer server 74 to query the database
44 of contracts for either, any, or all of the contract identi-
fiers 28, the contractual parameters 30, and/or the geo-
graphic parameters 320 to identify and/or retrieve the cor-
responding database entries. As a simple example, suppose
a file component of the digital contract 20 must be processed
in a particular geographic region (such as the British Virgin
Islands or Canada). The corresponding contract identifier 28,
in other words, may be electronically associated with a
particular geographic region, as defined by a tabular entry in
the database 44 of contracts. Once the region is determined,
the data layer server 74 may then route the contract identifier
28, the contractual parameter 30, and/or the geographic
parameter 320 to the remote server 262 that is associated
with, or even located within, the region. Exemplary embodi-
ments, for example, may implement the service request 266,
the service response 268, and the service update 270 (as
earlier explained). The remote server 262 may then process
or execute the digital contract 20 using the contract identifier
28 and/or the contractual parameter 30 (as this disclosure
earlier explained).

[0221] Other examples explain the geographic parameter
320. Suppose that the contract identifier 28 and/or the
contractual parameter 30 map(s) to a particular server,
cluster of servers, and/or a particular virtual machine
(“VM?”). The data layer server 74 may then route the contract
identifier 28, the contractual parameter 30, and/or the geo-
graphic parameter 320 to the remote server 262 that is
associated with the cluster of servers and/or the virtual
machine. The remote server 262 may then process or
execute the digital contract 20 using the contract identifier
28 and/or the contractual parameter 30 (as this disclosure
earlier explained). More likely, though, the contract identi-

US 2022/0058622 Al

fier 28 and/or the contractual parameter 30 will relate to a
particular IP address or uniform resource locator (“URL”).
The data layer server 74 may then route the contract iden-
tifier 28, the contractual parameter 30, and/or the geographic
parameter 320 to the remote server 262 that is associated
with the IP address or URL for processing (again, as this
disclosure earlier explained).

[0222] Exemplary embodiments may thus implement con-
tractual provisions. Some digital contracts 20 may require a
particular server, perhaps implementing or hosting a par-
ticular website, network, authentication scheme, program-
ming, or other geographic parameter 320. Some parties to
the digital contract 20 may also require a particular server,
perhaps as specified by the geographic parameter 320. Some
digital contracts 20 may have compliance obligations, per-
haps defined by a particular jurisdiction and expressed as the
geographic parameter 320. Servers, webpages, networks and
other resources may be dedicated to specific jurisdictions, as
expressed by the geographic parameter 320.

[0223] FIGS. 53-59 illustrate a decisional architecture and
scheme, according to exemplary embodiments. Even though
the blockchain environment 22 enables an execution of the
smart, digital contract 20, some digital contracts may be too
complex and/or too cumbersome to implement on the block-
chain 24. As this disclosure above explains, exemplary
embodiments may thus put smaller contractual components
of the digital contract 20 on any blockchain (such as the
private blockchain 24 or the public blockchain 76), validate
the contractual components (perhaps via the cryptographic
proof 80), incorporate the cryptographic proof 80 into a
larger component of the digital contract 20, and then validate
the larger component.

[0224] Exemplary embodiments may further implement
one or more decision tables 326. As the reader may under-
stand, the decision table 326 may be used to implement at
least a component of the digital contract 20. That is, the
decision table 326 may represent one or more rules or logic
conditions 328, one or more inputs 330, and one or more
decisional outputs 332. The decision table 326 may thus be
visually represented as a table having rows and columns. In
simple words, once the input 330 is known, a processing or
execution engine (such as the entity server 140 or other
device) electronically maps or associates the input 330 to the
appropriate rule or logic condition 328 and generates the
decisional output 332. Exemplary embodiments may then
log or record the decisional output 332, along with its
corresponding the input 330, rule or logic condition 328, and
a date/time stamp.

[0225] Exemplary embodiments may thus document any
decision. In general, the smart, digital contract 20 is an
agreement between parties/participants about services, prod-
ucts, and/or money. In order to make the decisional output
332, information is provided (such as the input 330) and the
rule or logic condition 328 is executed. In an interactive
process, each party/participant might contribute data to a
single decision. In other words, the parties may exchange
data to perform the decisional output 332. Exemplary
embodiments may thus map each decisional output 332
(perhaps representing a decision model) to a decision taken
by a single party. Each party, in other words, may commu-
nicatively exchange the result of its decision such that others
can base their decisions on their decisional output 332, thus
collaboratively executing the different components of the
digital contract 20.

Feb. 24, 2022

[0226] FIG. 54 illustrates an impartial, trusted intermedi-
ary. When any party or participant to the digital contract 20
acts or executes, exemplary embodiments may log or
archive their respective action(s). For example, the data
layer server 74 may be informed of any decision-making
process. Suppose, for example, that the entity 32 (acting as
a party to the digital contract 20) wishes to document or
prove its contractual performance. That is, the entity server
140 sends its decisional output 332 (perhaps via the com-
munications network 142 illustrated in FIGS. 22-23) to the
data layer server 74 for documentation. The decisional
output 332 may thus be read or received via the private
blockchain 24 (perhaps along with the contract identifier 28
and/or the contractual parameter 30). The data layer server
74, in other words, may identify the decisional output 332,
along with its corresponding input 330, its rule or logic
condition 328, and the date/time stamp, as data, information,
or hash values contained within the block 26 of data (as FIG.
53 illustrated). However, the decisional output 332 (and/or
the contract identifier 28, the contractual parameter 30, the
input 330, the rule or logic condition 328, and the date/time
stamp) may additionally or alternatively be received and/or
identified within a header of body/payload of the packet 322
of data (packetized according to the Internet Protocol).

[0227] Regardless, the data layer server 74 may then
generate the data records 70 in the blockchain data layer 72,
as this disclosure above explained. The data records 70 log
or record the decisional output 332 (sent from the party
participant), along with its corresponding input 330, the
decision table 326, the rule or logic condition 328, and the
date/time stamp of performance. The blockchain data layer
72, in other words, provides neutral, documentary evidence
that the party executed its transactional portion of the smart,
digital contract 20. Moreover, the blockchain data layer 72
may also add another layer of cryptographic hashing to
generate the public blockchain 76 and the cryptographic
proof 80. The blockchain data layer 72 thus may again act
as the validation service 78 that validates the party per-
formed its portion of the digital contract 20. Exemplary
embodiments may thus be used as an audit trail to recon-
struct the party’s decision-making process and who provided
the input 330.

[0228] Exemplary embodiments may even document fine
granularity. When the data layer server 74 receives the
decisional output 332, the data or information may even
identify or pinpoint the network resource 250. That is, when
entity 32 (acting as a party to the digital contract 20) wishes
to document or prove its contractual performance, the deci-
sional output 332 may even include data or information
identifying the particular server 254 or cluster or virtual
machine 256 that generated the decisional output 332.
Indeed, the data or information may even identity or pin-
point the particular IP address or uniform resource locator
(“URL”). The data records 70 may thus document the
machine, manufacturer, model, and/or chassis hardware
inventory that performed the portion of the digital contract
20.

[0229] FIG. 55 illustrates contractual management. Here
again the data layer server 74 may manage the execution of
the digital contract 20. When any party, participant, or
subcontractor performs a portion or component of the digital
contract 20, the data layer server 74 may coordinate and
validate the contractual components. Suppose again that the
data layer server 74 receives the contract identifier 28 and/or

US 2022/0058622 Al

the contractual parameters 30 (as earlier explained). The
contract identifier 28 may represent a single, large digital
contract 20. The contract identifier 28, however, may rep-
resent only a single or a few contractual components of the
digital contract 20. The contract identifier 28, in other words,
may map or relate to a sequence or series of one or more
table identifiers 334. Each table identifier 334 may be an
alphanumeric combination or a unique hash value. Regard-
less, each table identifier 334 uniquely identifies the corre-
sponding decision table 326 that decides a componentry
portion of the digital contract 20. When the data layer server
74 receives the one or more contract identifiers 28, the data
layer server 74 may then consult the database 44 of con-
tracts.

[0230] FIG. 56 further illustrates the database 44 of con-
tracts. Here the database 44 of contracts may have additional
entries that map or relate the contract identifier 28 to the
table identifier 334 and/or to the network resource 250 that
executes the corresponding componentry portion of the
digital contract 20 (perhaps again as a cloud-based service).
The contract identifier 28, in other words, may map or relate
to a sequence or series of one or more table identifiers 334.
Each table identifier 334 may be an alphanumeric combi-
nation or a unique hash value. Regardless, each table iden-
tifier 334 uniquely identifies the corresponding decision
table 326 that decides a componentry portion of the digital
contract 20. When the data layer server 74 receives the one
or more contract identifiers 28, the data layer server 74 may
then consult the database 44 of contracts to determine any
corresponding entry (as this disclosure above explains).

[0231] FIG. 57 illustrates outsourcing. Once the network
resource 50 is determined (recall that the network resource
50 may execute the corresponding componentry portion of
the digital contract 20), the data layer server 74 may utilize
the request mechanism. Suppose, for example, that the
database 44 of contracts identifies the remote server 262 as
the network resource 50. The data layer server 74 may thus
instruct the remote server 262 to execute the corresponding
decision table 326. The data layer server 74, for example,
sends the service request 266 (as earlier explained), and the
service request 266 may specify the table identifier 334
and/or the input 330 as the contractual parameters 30. When
the remote server 262 receives the service request 266, the
remote server 262 applies the input 330 to the decision table
326 representing the digital contract 20. Once the decisional
output 332 is determined, the remote server 262 may then
send the service response 268 back to the data layer server
74, and the service response 268 comprises data or infor-
mation describing the decisional output 332. The data layer
server 74 may generate the data records 70 in the blockchain
data layer 72 that document the service request 266 and the
service response 268, perhaps including any service updates
270 as the decision table 326 is executed.

[0232] FIG. 58 illustrates contractual participation. Here
the data layer server 74 may execute at least a componentry
portion of the digital contract 20. That is, the data layer
server 74 may locally store and/or access one or more of the
decision tables 326 representing the digital contract 20.
When the data layer server 74 receives the contract identifier
28 and/or the contractual parameters 30 (as earlier
explained), the data layer server 74 may consult the database
44 of contracts. Here, though, the database 44 of contracts
has one or more entries that map or relate the contract
identifier 28 to the virtual machine 280 that executes the

Feb. 24, 2022

decision table 326. The database 44 of contracts may thus
electronically associate the contract identifier 28 to the table
identifier(s) 334 and the virtual machine(s) 280 that locally
execute the decision table(s) 326. The decisions table 326
may thus have virtual assignments. Once the virtual machine
280 and/or the decision table 326 is determined, the virtual
machine 280 is requested or instructed to apply the input 330
to the corresponding decision table 326 to generate the
decisional output 332. The data layer server 74 may then
generate the data records 70 in the blockchain data layer 72
that document the local contractual performance (as earlier
explained).

[0233] As FIG. 58 illustrates, feedback may be used.
Exemplary embodiments may assign the virtual machine
280 based on the data records 70 in the blockchain data layer
72. That is, as the decision table 326 consumes more and
more of the data records 70 (e.g., the number of the entries
180, the entry blocks 182, and/or the directory blocks 184
generated within the blockchain data layer 72, as earlier
explained), the rate 290 of generation may be used as a
feedback mechanism (as this disclosure earlier explained).
Highly used or called decision tables 326, in other words,
may be assigned to virtual machines 280 having greater
capacity or bandwidth. The database 44 of contracts may
thus define entries that map or associate different rates 290
of generation and/or ranges to their corresponding table
identifier 334 and/or virtual machines 280. If the database 44
of contracts has an entry that matches or satisfies the rate 290
of generation, exemplary embodiments identify the corre-
sponding virtual machine 280. Some virtual machines 280,
for example, may be reserved for decision tables 326 having
a heavy, disproportionate, or abnormally large rate 290 of
generation. Other virtual machines 280 may be reserved for
decision tables 326 having intermediate and low rates 290 of
generation. The rate 290 of generation may thus be a gauge
or measure of which virtual machine 280 is assigned the
decision table 326.

[0234] Exemplary embodiments thus include a service
environment. Exemplary embodiments may manage and/or
execute many different decision tables 326 offered by many
different vendors or suppliers. Indeed, the data layer server
74 may manage or even execute the digital contracts 20
while also generating the blockchain data layer 72 as still
another service. The data layer server 74 may thus acts as a
subcontractor or service provider, perhaps in a subscription
or other compensation scheme. Any customer or client may
thus send or forward its input 330 and/or its decisional
output 332 to the data layer server 74 for management or
execution of any digital contract 20. The data layer server 74
may generate the data records 70 of the blockchain data
layer 72 that document the management or execution of any
portion of component of the digital contract 20. Moreover,
the data layer server 74 may publicly publish the crypto-
graphic proof 80 within the public blockchain 76, thus
further documenting immutable evidence of the manage-
ment or execution of any digital contract 20. Any party,
participant, or vendor/subcontractor may then pay or reward
the data layer server 74 (such as granting its crytpocoinage
60 and 120, as explained with reference to FIG. 19).

[0235] The data layer server 74 may thus provide contrac-
tual services. The financial institution 34, for example, may
send or forward its input 330 and/or its decisional output 332
to the data layer server 74 for contractual documentation.
Similarly, the retailer 122, the online website 124, and the

US 2022/0058622 Al

manufacturer 128 may also send its input 330 and/or its
decisional output 332 to the data layer server 74 for con-
tractual documentation. The data layer server 74 may gen-
erate the data records 70 of the blockchain data layer 72 that
document the management and/or execution of any decision
table 326 representing any portion of the digital contract 20.
The data layer server 74 may also publicly publish each
cryptographic proof 80 within the public blockchain 76, thus
further documenting immutable evidence of the manage-
ment and/or execution of any digital contract 20. The data
layer server 74 may be paid or rewarded via their respective
crytpocoinage 60 and 120.

[0236] Exemplary embodiments may thus create factored
decision tables driven by a table engine. Smart, digital
contracts are notoriously dangerous. Decision tables are
significantly easier to verify and validate. However, decision
tables may be large and perhaps cannot be placed on a
blockchain. Exemplary embodiments may thus put smaller
contractual components of the digital contract 20 on any
blockchain (such as the private blockchain 24 or the public
blockchain 76), validate the contractual components (per-
haps via the cryptographic proof 80), incorporate the cryp-
tographic proof 80 into a larger component of the digital
contract 20, and then validate the larger component.
[0237] Exemplary embodiments thus may separate the
blockchain data layer data 72 from contractual execution.
The data layer server 74 (generating the blockchain data
layer data 72) may thus accept inputs from the servers (such
as the remote server 262) executing any component of the
digital contract 20. The servers (such as the remote server
262) executing any component of the digital contract 20 may
also send data to the data layer server 74. The data layer
server 74 may thus execute the decision table. The remote
server 262 may additionally or alternatively execute the
decision table when processing the digital contract 20. The
decision table may thus be sent and/or received as an
input/output. Even a virtual machine may access and use the
decision table.

[0238] Exemplary embodiments thus establish the digital
contract 20 as an identity. Because only the contract iden-
tifier 28 is needed, the digital contract 20 may be separated
into various smaller components (such as the software
modules 310 and/or layers 312, as above explained). Each
software module 310 and/or layer 312 may have its own
contract identifier 28. The digital contract 20 is thus trans-
formed to an identity, which may be easily updated after
software bugs are found and consensus is documented by
stake holders. Exemplary embodiments thus provide an
ability to repair bugs and to claw back or backup spurious
results. The separation of the blockchain data layer data 72
thus isolates and protects the data records 70.

[0239] Exemplary embodiments thus describe a novel
smart contract architecture to be run on blockchains. The
digital contract 20, and/or its contractual components, may
each have its own digital identity defined within the block-
chain data layer data 72. The contract identifier 28, in other
words, may uniquely identity a version, thus allowing stake-
holders (using their digital identities) to approve updates to
respond to changes in business, to approve bug resolution,
and to accommodate new participants in the digital contract
20, without having to dissolve the original version and
without redeploying or requiring the blockchain to be
reversed and modified to avoid an incorrect, improper, or
unacceptable result by perhaps a majority of users. As the

Feb. 24, 2022

reader may understand, modifying a blockchain to resolve
an issue involves many more stakeholders with an interest in
the blockchain but having no interest in the smart contract.
This has been a problem with conventional blockchain
architectures.

[0240] Exemplary embodiments may separate the block-
chain data layer data 72 from the rules engine architecture
that executes the digital contract 20. Exemplary embodi-
ments allow for light weight, secure, and extendible digital
identity. Digital identity can be applied to implementation of
the virtual machine that runs the digital contract 20. Digital
identity can be applied to any smart contract and/or to any
stakeholder(s). Stakeholders may thus be paid (perhaps via
the cryptocurrencies as explained with reference to FIGS. 13
& 15-21) for who they are, such as to a particular blockchain
address, meaning if a stakeholder’s address is compromised,
then the stakeholder can update the address without having
to modify the digital contract 20. This virtual address
modification is similar to the real world for when a business
moves from one geographic location to another, the business
does not invalidate all its contracts. In the real world, the
business merely informs parties of its new physical address
and contact information. Exemplary embodiments allow
management of the digital contract 20 in a flexible fashion,
similar to management of contracts in the real world, but
with blockchain security and data integrity of the actual
digital contract 20, automation of provisions in the digital
contract 20, and cryptopayment support.

[0241] Exemplary embodiments are also scalable. Layers
or modules 310 and 312 can be created in the digital contract
20 and/or in the private blockchain 24 or the public block-
chain 76 for improved flexibility and management via
hardware computers. The data records 70 in the blockchain
data layer data 72 are safely separated from the servers that
execute the digital contract 20. Contract servers (e.g., the
contractual application layer) may perform a decentralized
evaluation of digital contract 20, using the proper virtual
machine and proper rules, and manage interests of majority
or all stakeholders. Values of cryptotokens may be defined
and/or distributed, but allowing greater scalability.

[0242] Exemplary embodiments provide numerous advan-
tages. Because the contractual execution is separate from the
blockchain data layer data 72, the results of the digital
contract 20 are securely documented and may be exported to
other contractual components or to other digital contracts.
Exemplary embodiments may thus implement and offer
multiple modules 310, layers 312, or instances of different
contractual components that can exchange inputs and out-
puts to build a networking effect between different layers,
modules, and smart contracts. A first server running a first
application layer (and perhaps executing a first smart con-
tract) can be entirely separate a second server running a
second smart contract and a third server running a third
smart contract. The blockchain data layer 72, though,
exchanges and thus documents their respective inputs and
outputs. The various servers may thus manage and/or share
the same cryptotokens, or different entity tokens may be
exchanged within each layer. Regardless, exemplary
embodiments may coordinate exchanges of value for ser-
vices performed. Great flexibility in defining the value of
cryptotokens and the value into and out of smart contract.
[0243] Exemplary embodiments may also have jurisdic-
tional advantages. Particular servers may be specific to
particular jurisdictions and/or particular smart contracts. For

US 2022/0058622 Al

example, some application layers may cross jurisdictional
servers with different compliances. As another example,
suppose that one application layer may require qualified
investors with full know your client (or “KYC”) compli-
ance. Another application layer may be anonymous and/or
allow all corners. Even if the blockchain data layer 72 has
a small set of users/clients, large smart contracts may be
managed, implemented, and/or documented.

[0244] The digital contract 20 may utilize conventional
programming languages and/or decision tables. In particular,
some programming languages and decision tables, like
purely functional languages, may mathematically prove
contractual algorithms. These mathematical proofs may
yield much more secure smart contracts than conventional
languages that run on today’s blockchains. Previously, smart
contracts were often too big in size to execute on a block-
chain. The separate blockchain data layer 72, though, allows
scaling and implementing smart contracts “off chain.” The
proof 80 of the digital contract 20, for example, is a hash
value, perhaps in association with the contract identifier 28
and/or the chain identifier 174, as documented by the data
records 70 in the blockchain data layer 72. The hash value
of the proof 80, in other words, is a very small value (in
relation to the size of the smart contract). The digital contract
20 may thus be provided to any or all parties and/or any or
all stakeholders for validation of its terms, obligations, and
performance. The cryptographic proof 80 thus verifies
execution without stuffing large amounts of data onto the
private blockchain 24 or the public blockchain 76.

[0245] Exemplary embodiments may use decision tables
for smart contracts. Decision tables are well understood,
perform well, and are verifiable relative to brute-force code
writing. Simply put, custom programming code introduces
many variables and software bugs are inevitable. Decision
tables are also very amenable to domain-specific languages.
As the reader may understand, domain-specific languages
accept near-English statements as inputs and generate com-
puter code as outputs. Subject matter experts may thus
define the functionality of the digital contract 20, perhaps
without relying on the skills of computer programmers (who
may not fully understand the subject matter). Decision tables
are thus approachable to subject matter experts and easily
implemented. Decision tables may also be combined with
other decision tables, which allows performance proven and
validated functions may be incorporated into smart contracts
for many objectives and outcomes. Decision tables may thus
be mixed and matched as components to a composite digital
contract 20, and a collection of decision tables representing
the digital contract 20 may still be validated to ensure correct
operation. Decision tables define much smaller numbers of
programming paths through the software code representing
the digital contract 20, which ensures that all contractual
combinations may be enumerated and proper results can be
expected for a range of values. On blockchains, though,
decision tables may be big in size, so some decision tables
may not be feasible as a smart contract on a conventional
blockchain. But, because the blockchain data layer 74 is
separate from the remote servers 262 executing the digital
contract 20, the digital identity (e.g., the contract identifier
28) for the digital contract 20 (that allows the smart contract
to exist off chain) provides the servers (each perhaps having
its own identity) to certify execution of the digital contract
20. Exemplary embodiments may also define the mechanism
for cryptotoken-based payments that incentivize the remote

Feb. 24, 2022

server 262 to perform the digital contract 20 and to verify
and validate the digital contract 20. Component and com-
posite performance may be tracked, recorded, and proved.
For example, if a virtual machine runs the digital contract 20
(as above explained), execution in the virtual environment
can be tracked. Virtual machines may often have software
bugs that affect an interpretation of the decision tables. The
virtual machine may thus have its own digital identity, as
defined by the database 44 of contracts (as above explained).
Different versions of the virtual machine and/or the decision
table may thus be mapped within the database 44 of con-
tracts, thus allowing redirection after software bugs have
been resolved. The database 44 of contracts, in other words,
may be updated with entries that point to different versions
for different parties and/or to corrected or improved ver-
sions.

[0246] Digital identities extend to engines and decision
tables. The database 44 of contracts may map or point to
servers, domains, decision tables, and their respective ver-
sions. The digital contract 20 (and/or its components, as
represented by their respective contract identifiers 28)
ensures execution, regardless of the environment. Because
the blockchain data layer 72 documents all this component
processing, the data records 70 may prove (via the crypto-
graphic proof 80) that the correct contractual component
was used, the correct decision table(s) was/were used, the
correct virtual machine was used, and the correct input or
output data was used. Verification may driven from the
contractual components, the data components, and the hard-
ware components at the correct time for the correct time
period.

[0247] Another audit application example is provided. A
software application may be a generic term for user-side
software that reads from and/or writes to the Factom system.
It could be software with a human interface, or could be
completely automated. The Application is interested in the
data organized by the Chains it needs.

[0248] Applications are possibly Distributed Applications
(DApps) interacting with Factom to provide additional ser-
vices. For example, one might imagine a trading engine that
processes transactions very fast, with very accurate time-
stamping. Such an Application may nonetheless stream
transactions out into Factom chains to document and secure
the ledger for the engine. Such a mechanism could provide
real-time cryptographic proof of process, of reserves, and of
communications.
[0249] Let us explore two separate applications that could
have immediate demand in the current Bitcoin ecosystem.
[0250] Let us see how to implement a secure and distrib-
uted log platform. Log analysis is a complex task. Addition-
ally, logs tend to be easily forgeable and also heterogeneous
as they are produced by each system independently and
stored in a variety of media (files, databases, cloud services
etc.). With Factom and a few uniquely designed crypto-audit
tools an entities log analysis can become safer, simpler, and
much more powerful. Let’s see this with an example.
Suppose a Bank (B), a Payment Provider (PP), and a Bitcoin
company (BC) are interacting together as follows:

[0251] 1—The User goes to the BC website and wants

to buy some bitcoins

[0252] 2—He asks for a quote, which is valid for 5
minutes
[0253] 3—Then he is redirected to the PP website

US 2022/0058622 Al

[0254] 4—Then the PP connects with the B platform so
that the money of the user account is debited

[0255] 5—B notifies PP that the user account has been
debited
[0256] 6—PP notifies BC
[0257] 7—BC sends the bitcoins to the user
[0258] This is the normal scenario for many fixed-rate

Bitcoin exchanges globally. But assume now that for some
reason the BC receives the payment notification 4 hours
after the user transfers via the PP. Who is faulty? The User?
The Bank? The Payment Provider? What if a similar pay-
ment problem happened for hundreds or thousands of pay-
ments over a period of days or weeks before the issue was
identified and resolved? Who is “provably” liable for those
loses/damages?

[0259] With current techniques a manual auditing of logs
would be necessary and would probably require legal autho-
rizations. With Factom and the right audit applications, it
would be trivial to detect where the problem came from, and
also make the changing of records impossible post-issue.
Basically, every system (BB, PP, BC) will publish their
relevant traces in the secure broadcast channel (Factom) in
real time.

[0260] Here’s another example of how Factom will be
useful for Bitcoin exchanges audits. The so-called “Proof of
Solvency” method for conducting Bitcoin exchange audits is
a growing and important trend. However, there are signifi-
cant weaknesses to this approach only solved by having the
Factom secure broadcast channel functioning properly.
[0261] In the Merkle tree approach for Solvency Proofs
suggested by the Maxwell-Todd proposal, users must manu-
ally report that their balances (user’s leaf) have been cor-
rectly incorporated in the liability declaration of the Finan-
cial Institution (FI) (the Merkle hash of the FI” s database of
user balances). The proposed solution works if enough users
verify that their account was included in the tree, and in a
case where their account is not included, it’s assumed that
this instance would be reported. One potential risk with this
process is that an exchange database owner could produce a
hash that is not the true representation of the database at all;
the exchange hashes an incomplete database which would
reduce its apparent liabilities to customers, thereby making
them appear solvent to a verifying party. Here are some
scenarios where a fraudulent exchange could easily exclude
accounts:

[0262] “Colluding Whales” Attack: There is evidence
that large Bitcoin traders are operating on various
exchanges and moving markets significantly. Such
traders need to have capital reserves at the largest
exchanges to quickly execute orders. Often, traders
choose exchanges that they “trust”. In this way they can
be assured that should a hack or liquidity issue arise,
they have priority to get their money out first. In this
case, the exchange and trader could collude to remove
the whales account balance from the database before
it’s hashed. An exchange’s top 10 whales could easily
represent 5 to 20% of an exchanges liabilities, so
colluding with just a few of them could have a signifi-
cant impact.

[0263] “Site Manipulation” Attack: To date, each Proof
of Solvency audit has reported (the hash tree) on the
institution’s website. This gives no guarantee at all to
users, since a malicious exchange could publish differ-
ent states/balances to different groups of users, or

Feb. 24, 2022

retroactively change the state. Thus it is fundamental to

publish this data through Factom’s secure broadcast

channel, and publish it frequently.
[0264] The second attack is obviously solved by using
Factom, while the first is not so obvious. As this paper
doesn’t focus on the mechanics of exchanges audits, we
won’t delve in the nitty-gritty details. However, the basic
concept is that by having frequent time-stamped copies of
the exchanges database Merkle hash, one could detect the
inclusion or exclusive of large balances before or after
audits. Then, the auditor could simply look into those large
inclusions or exclusions, manually. Remember, the trader
will ultimately need to get his money on or off the exchange
at some point, and that’ll show up in either the bank history
or the Bitcoin transfer history.
[0265] There are established process for detecting such
fraudulent tactics in the traditional audit industry; however,
it all starts with having accurate, verifiable, immutable
time-series of the information in question.
[0266] Other examples are provided of attacks on Factom.
The reader, for example, may be familiar with a denial of
service from spam. Since Factom is an open system, any
user can put Entries into almost any Chain. Bitcoin has a
similar phenomenon. In order for an Application to reject
those transactions, the Application would first need to down-
load and process them. A large number of bogus Entries
could slow down the initial processing of the Application’s
transactions. This threat is mitigated by an attacker needing
to spend money (resources) to carry it out. This is similar to
Adam Back’s Hashcash solution to email spam.
[0267] Audits are another useful tool against spam, if the
application is willing to trade off security versus conve-
nience. Auditors could post “ignore” lists on the same chain,
or create their own audit chains with those lists. An auditor
could use a profile chain to develop their reputation, which
would also allow review by other auditors. If any auditor
made a bad call, it would be easily verifiable and the record
of it would be permanent. Some validity processing is gray,
in the sense that opinions may vary. Solving that problem
would be implementation specific.
[0268] Another example is a sybil attack of the DHT.
Distributed Hash Tables in general are particularly suscep-
tible to sybil attacks. An attacker could create many peers
which make it difficult for honest nodes to communicate. In
a simplistic DHT architecture, attackers can isolate a
required piece of data from honest nodes. Sybil attacks have
been observed on the BitTorrent network routing table. The
paper “Real-World Sybil Attacks in BitTorrent Mainline
DHT?” detail these attacks. Fighting this type of attack is an
active topic in academic research. One mitigation technique
uses complex lookup techniques to find honest nodes among
the sybils, studied in “Sybil-resistant DHT routing”. Some
sybil mitigation techniques rely on a web-of-trust by adding
a social network to the routing table, as explored in “A
Sybil-proot one-hop DHT”. Factom will rely on the latest
academic and open-source research in this topic to secure its
DHT.
[0269] A dictionary attack is now discussed. In this case,
the attacker runs through all the Chain Names deemed to be
possible or desirable and creates their ChainlDs, and the
hashes of those ChainlDs. Then they watch for someone
trying to create those Chains. Now the attacker can front run
on a match. Because on a match, they know the ChainlD, so
they can construct a proper, but malicious Entry of their

US 2022/0058622 Al

own, create the proper Chain payment and submit it rather
than the users payment. If the attacker gets ahead of the user,
then they will win. The defense against a dictionary attack
is to avoid common name spaces and to submit your
payment to multiple, long standing nodes in the network. In
Factom, the flexibility of defining the Chain namespace
makes efforts to hog the namespace ineffective.

[0270] Fraudulent servers are now discussed. All Entries
in Factom require signatures from the users, or must match
a hash that has been signed by the users. This means that
fraudulent Federated servers in the Federation pool have
very limited attacks they can make on the protocol. Invalid
Entries do not validate, and upon broadcasting an invalid
Entry, the honest Federated Servers will immediately broad-
cast a Server Fault Message (SFM) on the fraudulent server.
If a majority detect a fault, the faulty server is removed. As
long as the majority do not collude, then the protocol will
remain honest. Any Federated server that failed detect the
fault likewise risks losing its support from Factom users, and
dropping from the Federated server pool.

[0271] Federated servers can delay recording of Entry
payments. But because Entry payments are submitted via a
distributed set of Factom Nodes, delaying of Entry payments
will be noted. Users may withdraw support from servers
without reasonable performance compared to the rest of the
network.

[0272] Federated servers can delay the recording of
Entries. Here the payment is accepted (generally by another
server) fairly quickly. But for one reason or another, a
Federated server refuses to record the Entry. In the next
minute, responsibility for that Chain will shift to another
server. As long as most servers are honest, the Entry will be
recorded. Then the data over time will show that a server is
delaying Entries. This will cause them potentially to lose
support.

[0273] Federated servers can at any point send false mes-
sages. The other Federated servers then would issue a SFR
on the on the rogue server when those messages didn’t make
sense. A majority of the servers issuing an SFR would boot
the rogue server, then the network would ignore their
messages and not forward them on.

[0274] Federated servers can refuse to accept valid Entry
payment messages based on the public address, under the
assumption that the public address is associated with some
party. Again, assuming a majority of servers are honest, the
payment will be accepted when the control shifts to an
honest server. Furthermore, nodes watching will see the
delay, and perhaps a pattern of delays, and support will be
lost for the misbehaving servers.

[0275] FIG. 60 illustrates timestamping into Bitcoin,
according to exemplary embodiments. The Factom time-
stamping mechanism secures transaction in the blockchain.
Factom data is timestamped and made irreversible by the
Bitcoin network. A user’s data is as secure as any other
Bitcoin transaction, once published to the Bitcoin block-
chain. A compact proof of publication is possible for any
data entered into the Factom system.

[0276] As this disclosure above explained, data is orga-
nized into block structures, the highest level being Directory
Blocks, which are created using Merkle trees. Every 10
minutes, the data set is frozen and submitted to the Bitcoin
network. Since Bitcoin has an unpredictable block time,
there may be more or fewer than one Factom timestamp per
Bitcoin block. Bitcoin internal header block times them-

Feb. 24, 2022

selves have a fluid idea of time. They have a 2 hour possible
drift from reality. Factom will provide its own internal
timestamps, adhering with standard time systems.

[0277] The user data ordering will be assigned when
received at the Federated servers. Factom organizes the
submitted Entry references into sets of blocks. The block
time for Factom is ten minutes. On closing, the Federated
Server network generates consensus and the Entries that are
part of that block structure are timestamped to a minute
within the block. As a general note, the data could have
existed long before it was timestamped. An Application
running on top of Factom could provide finer and more
accurate timestamping services prior to Entries being
recorded in Factom. The Factom timestamp only proves the
data did not originate after the Factom timestamp.

[0278] The Merkle root of the Directory Block is entered
into the Bitcoin blockchain with a spending transaction. The
spend includes an output with an OP_RETURN. We refer to
this as “anchoring” the Directory Block to the Bitcoin
blockchain. This method is the least damaging to the Bitcoin
network of the various ways to timestamp data.

[0279] Two possible alternatives to the OP_RETURN data
in the blockchain is anchored to the P2Pool headers (as in
chronobit) or in the Bitcoin block header coinbase. The
P2Pool headers would require several hours of mining to
find a block which satisfies the P2Pool rules, and the added
complexity to the Factom protocol would not be worth the
benefits. Including the Merkle root into the coinbase of a
block would require cooperation with miners, above and
beyond the transaction processing they are already doing.
The coinbase entry would still need to have a crypto
signature from the Factom system, so would not save on
much space relative to a signed transaction.

[0280] The first two bytes of the available 40 in the anchor
will be a designator tag (2 bytes with the value “Fa”). The
Factom anchor (32 bytes) is concatenated onto the tag, then
the block height is added (up to 6 bytes, allowing for
>500,000 years). The designator tag indicates the transaction
could be a Factom anchor. Other qualifiers are required, but
the tag and Factom block height eliminates most of the
OP_RETURN transactions that would otherwise need to be
inspected. The block height in the OP_RETURN helps to fix
the order in those cases where the Bitcoin blockchain
records the anchors out of order.

[0281] The anchored data is the Merkle root of list con-
taining the Directory Block’s Merkle root. Querying a
database or DHT for the anchored data will return the
Directory Block which can be used to find the rest of the data
in the block. The Merkle root timestamp will be entered into
the Bitcoin blockchain by one of the Federated servers. The
server delegated to timestamp the federation’s collected data
creates a Bitcoin transaction. The transaction will be broad-
cast to the Bitcoin network, and be included in a Bitcoin
block. Bitcoin transactions that look like a Factom anchor,
but are not spent from an address known as a Factom server
would either be junk, or an attempt to fork Factom. Most
users/applications would ignore such anchors.

[0282] Bitcoin blocks are generated with a statistical pro-
cess, and as such their timing cannot be predicted. This
means that the anchors are only roughly time-bound by the
OP_RETURNS inserted into the Bitcoin blockchain, and its
timestamping mechanism. The real value of anchoring Fac-
tom to Bitcoin is to prevent anyone from generating false
Factom histories. Due to bad luck of Bitcoin miners, or

US 2022/0058622 Al

delayed inclusion of Factom transactions, the time between
when the Factom state is frozen for a particular 10 minute
period and when the anchor appears in Bitcoin can vary,
perhaps significantly.

[0283] Now the ramifications of federated servers and
anchoring verses proof of work is discussed. Proof of Work
(PoW) is optimized for permissionless participation and
validation of the historical record of a blockchain. The
typical implementation of Proof of Work is to repeatedly
hash blocks until one of the parties mining finds a hash with
the difficulty required by the current requirements of a
blockchain. This allows anyone to serve as a miner, to
collect and validate transactions, pack them into blocks, and
repeatedly hash that block looking for a solution that meets
the difficulty requirement.

[0284] The shortcomings of PoW have been widely dis-
cussed in the media as requiring unnecessary amounts of
power, when other sorts of problem solving and work could
result in benefits to blockchain users, the ecosystem, and
society. Such is the goal of various Proof of Stake (PoS)
systems used by various blockchains. But Proof of Stake
alone makes the historical record hard to validate, and does
not work well for a data recording system like Factom. This
is because validating the historical Stake of parties involved
the entire blockchain, and an understanding of the Stake that
existed at each point in time historically. Factom needs small
cryptographic proofs that validate sets of data, which PoW
provides. Because PoW is validated solely by evaluating the
difficulty of a hash.

[0285] Anchoring is the solution Factom uses to secure the
historical record, and at the same time avoid duplicating the
massive expenditure of resources required of mining. A
system like PoS can be used in the present, while anchoring
secures the historical record. The idea of supporting parties
allows permissionless participation in the Factom protocol
beyond that of the Authority Set.

[0286] The Authority Set and Anchoring means that run-
ning the Authority Servers is less expensive in resources by
orders of magnitude compared to mining. Greater efficiency
means that the rewards paid out by the Factom protocol can
do more for the ecosystem than pay very large utility bills.
Factom may use various voluntary but auditable methods to
incentivize using the efficiency of the authority set to set
aside resources within the protocol for productive real world
work. A sort of Proof of Development could be used to
receive these rewards using distributed support to identify
work to be done, and evaluate the quality of the work that
results. Such a system could provide rewards for develop-
ment alongside the rewards generated for the authority set.
[0287] A “Proof of Development” comes with its own
issues. The main issue is the “Oracle Problem,” where it is
very hard to know from within the programming of a
blockchain protocol what might be useful development in
the real-world and evaluate the quality of such development
once it is done. Factom may develop mechanisms to incen-
tivize supporting parties in the protocol to create evaluation
processes, audit trails, and certifications at every stage of
development to address the Oracle Problem, and allow a
self-correcting process to manage a viable “Proof of Devel-
opment” that is more productive and ecologically friendly
than simply rewarding the burning of energy resources for
security.

[0288] The Factom protocol and system are now com-
pared with other blockchain technologies. For example,

Feb. 24, 2022

Factom differs from Bitcoin and Sidechains. Factom is very
different from Bitcoin, and in fact very different from any
current cryptocurrency project. Cryptocurrencies like Bit-
coin implement a strict, distributed method for the validation
of transactions, where anyone can validate each transaction,
and the validity of every input into a transaction can be
verified. Because each transaction is authorized via crypto-
graphic proof, no transaction can be forged. Each transaction
can be checked for validity by verifying signatures of each
transaction, and the miners hold each other accountable for
only including valid transactions.

[0289] The Bitcoin protocol is transactionally complete. In
other words, the creation and distribution of Bitcoins
through transactions is completely defined within the Bit-
coin protocol. Transactions (which specify movement of
bitcoin) and block discovery (which move bitcoin via min-
ing fees and provide block rewards) are the only inputs into
the Bitcoin Protocol, and nothing leaves the Bitcoin Proto-
col. In other words, the 21 million bitcoins that will ulti-
mately exist will always and forever exist within the proto-
col. Pegged sidechains, when implemented, will provide
additional movement of bitcoin value outside the block-
chain, while the pegged value is in stasis in the blockchain.
[0290] The sidechains proposal describes a solution to
increase the scalability of Bitcoin by allowing value control
to move off the blockchain and onto a sidechain. In the
sidechain, many trades can occur. Later, a cryptographic
proof (not all the transactions in between) can be recorded
in the blockchain which moves the BTC out of stasis in
Bitcoin. This proof would have to be available to the Bitcoin
miners, but the bulk of the transaction data would be left
behind in the sidechain.

[0291] Factom is in some sense attempting to increase
scalability, but not by enabling more value transactions, but
by moving non-BTC transactions off blockchain. This
would be transactions that are not primarily intended to
transfer Bitcoin value. For example transactions could man-
age domain name registrations, log security camera footage,
track the provenance for art work, and even establish the
value of show horses by documenting their history. Some of
these do not move a value at all, like transactions establish-
ing a proof of publication.

[0292] Sidechains and Factom are both trying to move
transactions off the blockchain, but to achieve similar ends
via completely different mechanisms. At some point, Factom
may integrate with a Bitcoin sidechain in order to take
advantage of the atomic swaps from BTC to Factoids.
[0293] Factom is also different from other blockchain
technologies. Many different groups are looking to find ways
to leverage the Bitcoin approach for managing other sorts of
transactions besides tracking bitcoin balances. For example,
the trading of assets such as houses or cars can be done
digitally using Bitcoin extensions. Even the trading of
commodities such as precious metals, futures, or securities
might be done via clever encoding and inserting of infor-
mation into the Bitcoin blockchain. Efforts to expand Bit-
coin to cover these kinds of trades include Colored Coins,
Mastercoin, and Counterparty. Some developers choose to
build their own cryptocurrency with a more flexible protocol
that can handle trades beyond currency. These include
Namecoin, Ripple, Ethereum, BitShares, NXT, and others.
Open Transactions (OT) uses Cryptographic signatures,
signed receipts and proof of balance for users (i.e., a user
does not need the transaction history to prove their balance,

US 2022/0058622 Al

just the last receipt). In this way, OT can provide the spend
of centralized servers without the risk of a centralized server
that can alter client balances. Factom is decentralized, and
only records Entries. So Factom can record data that would
not meet OT’s rules. But Factom will not execute at the rate
OT can initially. Factom is distributed, and we expect that
some, but not all users will employ cryptographic techniques
similar to OT with their records.

[0294] The great advantage to an independent platform
over trying to build upon Bitcoin is found in flexibility. The
Bitcoin protocol isn’t optimized to allow for recording of
arbitrary pieces of data, so the “bookkeeping” necessary for
non-Bitcoin type transactions isn’t necessarily supported by
Bitcoin. Furthermore, Bitcoin’ s Proof of Work (PoW) based
consensus method is not a “one size fits all” solution, given
that some transactions must resolve much faster than 10
minutes. Ripple and Open Transactions vastly speed up
confirmation times by changing the consensus method.
[0295] An Application built upon Factom seeks to gain the
ability to track assets and implement contracts, by leverag-
ing the blockchain directly. Instead of inserting transactions
into the blockchain (viewed as “blockchain bloat” by many),
Factom records its Entries within its own structures. At the
base level, Factom records what Chains have had Entries
added to Factom within the Directory Block time. Scanning
these records, Applications can pick out the Chains in which
they are interested. Factom records each Chain indepen-
dently, so Applications can then pull the Chain data they
need.

[0296] Factom is organized in a way that minimizes con-
nections between user Chains. A Chain in Factom can be
validated without any of the information held in other,
unrelated Chains. This minimizes the information a Factom
user has to maintain to validate the Chains they are inter-
ested in.

[0297] Now Factom Consensus Similarities and Differ-
ences from Proof of Stake are discussed. The policy and
reward mechanism in Factom is similar to Proof of Stake
(PoS). Factom differs from most PoS systems in that many
subsets of user stake and/or contribution may be recognized.
Individual categories of stake can be weighted against each
other to further decentralized Factom. This is an attempt to
make the servers answerable to the users actively using and
contributing to the protocol. The individual users would
delegate their support to a server. The Federated servers with
the top numbers of support would be responsible for coming
to consensus.

[0298] Some with a deep understand of Bitcoin have
recognized that pure PoS consensus mechanisms are funda-
mentally flawed. There are two attacks that make pure PoS
unworkable. The problems are referred to as “Stake Grind-
ing” and “Nothing at Stake”. Although Factom has PoS
elements, it does not suffer from these problems.

[0299] Stake grinding is a problem where an attacker with
a sizable (say 10%), but not majority share can formulate
false histories. From some point in history, they can cost-
lessly fork the blockchain, choosing to reorder past trans-
actions such that their stake is always selected to create the
subsequent blocks. They would be able to present this
alternate version of history as part of an attack to steal value
by double spending. Bitcoin solves this problem by strongly
linking the information domain, where computers make
decisions, with the thermodynamic domain, where humans
burn energy. Considerable resources are expended in the

Feb. 24, 2022

thermodynamic domain, and is provable in the information
domain. Bitcoin makes forming false histories hugely
expensive.

[0300] Factom is unable to create alternate histories after
the fact, since it is unable to insert transactions into historical
Bitcoin blocks. It is also unable to create parallel histories
without being detected, since Factom is linked to Bitcoin
with known Bitcoin private keys.

[0301] The Nothing at Stake problem is more subtle. With
a policy disagreement in Bitcoin, miners must choose either
one policy or the other. If they choose against the majority,
they will be burning lots of electricity without a chance of
recouping costs. PoS miners do not face this dilemma. They
can hedge their bets and costlessly create forks complying
with each side of the policy. They would simultaneously
agree with both sides of the disagreement. This would open
up the economy to double spend attacks. One of two
merchants following different forks will ultimately have that
money becomes worthless.

[0302] Bitcoin solves this problem by having unintelligent
unambiguous automatable rules for selecting the correct
fork. In Bitcoin, the correct fork is the one with the most
Proof of Work (PoW). Factom will also have unintelligent
unambiguous automatable rules to select a correct fork,
should one arise.

[0303] FIG. 61 is a flowchart illustrating a method or
algorithm for processing of the digital contract 20, according
to exemplary embodiments. The contract identifier 28, the
contractual parameter 30, and/or the table identifier 334
is/are received (Block 340). The network resource 50 is
identified (Block 342), and the contract processor may be an
IP address, URL, virtual machine, or other network desti-
nation representing a vendor, contractor, server, or service
that executes the decision table 326 and/or the digital
contract 20. The service request 266 is sent (Block 344), the
service update 270 is received (Block 346), and the service
response 268 is received (Block 348). The data records 70 in
the blockchain data layer 72 are generated (Block 350), and
the data records 70 describe the execution of the digital
contract 20. The data records 70 may be hashed (Block 352)
and incorporated into the public blockchain 24 (Block 354).
[0304] FIG. 62 is a schematic illustrating still more exem-
plary embodiments. FIG. 62 is a more detailed diagram
illustrating a processor-controlled device 360. As earlier
paragraphs explained, the entity’s private software applica-
tion 40, the data layer application 154, and/or the contract
application 302 may partially or entirely operate in any
mobile or stationary processor-controlled device. FIG. 62,
then, illustrates the entity’s private software application 40,
the data layer application 154, and/or the contract applica-
tion 302 stored in a memory subsystem of the processor-
controlled device 360. One or more processors communicate
with the memory subsystem and execute either, some, or all
applications. Because the processor-controlled device 360 is
well known to those of ordinary skill in the art, no further
explanation is needed.

[0305] FIG. 63 depicts other possible operating environ-
ments for additional aspects of the exemplary embodiments.
FIG. 63 illustrates the entity’s private software application
40, the data layer application 154, and/or the contract
application 302 operating within various other processor-
controlled devices 360. FIG. 63, for example, illustrates that
the entity’s private software application 40, the data layer
application 154, and/or the contract application 302 may

US 2022/0058622 Al

entirely or partially operate within a smartphone 362, a
personal/digital video recorder (PVR/DVR) 364, a Global
Positioning System (GPS) device 366, an interactive tele-
vision 368, a tablet computer 370, or any computer system,
communications device, or processor-controlled device uti-
lizing any of the processors above described and/or a digital
signal processor (DP/DSP) 372. Moreover, the processor-
controlled device 360 may also include wearable devices
(such as watches), radios, vehicle electronics, clocks, print-
ers, gateways, mobile/implantable medical devices, and
other apparatuses and systems. Because the architecture and
operating principles of the various devices 360 are well
known, the hardware and software componentry of the
various devices 360 are not further shown and described.
[0306] Exemplary embodiments may be applied to any
signaling standard. Most readers are thought familiar with
the Global System for Mobile (GSM) communications sig-
naling standard. Those of ordinary skill in the art, however,
also recognize that exemplary embodiments are equally
applicable to any communications device utilizing the Time
Division Multiple Access signaling standard, the Code Divi-
sion Multiple Access signaling standard, the “dual-mode”
GSM-ANSI Interoperability Team (GAIT) signaling stan-
dard, or any variant of the GSM/CDMA/TDMA signaling
standard. Exemplary embodiments may also be applied to
other standards, such as the I.E.E.E. 802 family of standards,
the Industrial, Scientific, and Medical band of the electro-
magnetic spectrum, BLUETOOTH®, and any other.
[0307] Exemplary embodiments may be physically
embodied on or in a computer-readable storage medium.
This computer-readable medium, for example, may include
CD-ROM, DVD, tape, cassette, floppy disk, optical disk,
memory card, memory drive, and large-capacity disks. This
computer-readable medium, or media, could be distributed
to end-subscribers, licensees, and assignees. A computer
program product comprises processor-executable instruc-
tions for execution of digital contracts, as the above para-
graphs explain.

[0308] While the exemplary embodiments have been
described with respect to various features, aspects, and
embodiments, those skilled and unskilled in the art will
recognize the exemplary embodiments are not so limited.
Other variations, modifications, and alternative embodi-
ments may be made without departing from the spirit and
scope of the exemplary embodiments.

1. A method performed by a server that records crypto-
graphic transactions conducted by computers, the method
comprising:

receiving, by the server, a cryptographic transaction of the

cryptographic transactions;

determining, by the server, a chain identifier that is

associated with the cryptographic transaction;
determining, by the server, an entry block in a blockchain
data layer that is associated with the chain identifier;
adding, by the server, the cryptographic transaction to the
entry block in the blockchain data layer that is associ-
ated with the chain identifier;
generating, by the server, a directory block in the block-
chain data layer based on the entry block and the chain
identifier; and

recording, by the server, the directory block to a block-

chain;

wherein the directory block records the cryptographic

transaction.

Feb. 24, 2022

2. The method of claim 1, further comprising generating
a hash value representing the directory block.

3. The method of claim 2, further comprising recording
the hash value representing the directory block to the
blockchain.

4. The method of claim 1, further comprising recording
the chain identifier to the blockchain.

5. The method of claim 1, further comprising timestamp-
ing the cryptographic transaction.

6. The method of claim 1, further comprising timestamp-
ing the entry block. The method of claim 1, further com-
prising timestamping the directory block.

8. A system, comprising:

a hardware processor; and

a memory device storing instructions that when executed

by the hardware processor perform operations, the
operations comprising:

receiving a cryptographic transaction conducted by com-

puters via a network;

determining a chain identifier that is associated with the

cryptographic transaction;

determining an entry block in a blockchain data layer that

is associated with the chain identifier;

adding the cryptographic transaction to the entry block in

the blockchain data layer that is associated with the
chain identifier;

generating a directory block in the blockchain data layer

based on the entry block and the chain identifier; and
recording the directory block to a blockchain;

wherein the directory block records the cryptographic

transaction.

9. The system of claim 8, wherein the operations further
comprise generating a hash value representing the directory
block.

10. The system of claim 9, wherein the operations further
comprise recording the hash value representing the directory
block to the blockchain.

11. The system of claim 8, wherein the operations further
comprise recording the chain identifier to the blockchain.

12. The system of claim 8, wherein the operations further
comprise timestamping the cryptographic transaction.

13. The system of claim 8, wherein the operations further
comprise timestamping the entry block.

14. The system of claim 8, wherein the operations further
comprise timestamping the directory block.

15. A memory device storing instructions that when
executed by a hardware processor perform operations, the
operations comprising:

receiving cryptographic transactions conducted by com-

puters via a network;

determining a chain identifier that is associated with the

cryptographic transactions;

determining a directory block that is associated with the

chain identifier;

recording the cryptographic transactions to the directory

block;

determining a rate of generation associated with the

directory block;

identifying a virtual machine that is associated with the

rate of generation; and

assigning the virtual machine to the cryptographic trans-

actions.

16. The memory device of claim 15, wherein the opera-
tions further comprise hashing the directory block.

US 2022/0058622 Al Feb. 24, 2022
30

17. The memory device of claim 15, wherein the opera-
tions further comprise executing the virtual machine.

18. The memory device of claim 15, wherein the opera-
tions further comprise recording the virtual machine to a
blockchain.

19. The memory device of claim 15, wherein the opera-
tions further comprise recording the cryptographic transac-
tions to the blockchain.

20. The memory device of claim 15, wherein the opera-
tions further comprise recording the rate of generation to the
blockchain.

