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(57) ABSTRACT 

A apparatus is disclosed. The apparatus includes a remap 
ping circuit to facilitate access of one or more I/O devices to 
a memory device for direct memory access (DMA) trans 
actions. The remapping circuit includes a translation mecha 
nism to perform memory address translations for I/O DMA 
transactions via address window-based translations. 
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ADDRESS WINDOW SUPPORT FOR DIRECT 
MEMORY ACCESS TRANSLATION 

FIELD OF THE INVENTION 

0001. The present invention relates generally to micro 
processors, more specifically, the present invention relates to 
input/output (I/O) virtualization. 

BACKGROUND 

0002. As microprocessor architecture becomes more and 
more complex to Support high performance applications, I/O 
management presents a challenge. Existing techniques to 
address the problem of I/O management have a number of 
disadvantages. One technique uses Software-only I/O virtu 
alization to support virtual machine (VM) I/O. This tech 
nique has limited functionality, performance, and robust 
CSS. 

0003. The functionality seen by the guest operating sys 
tem (OS) and applications is limited by the functionality 
supported by the virtual devices emulated in the VM monitor 
(VMM) software. The guest I/O operations are trapped by 
the VMM and proxied or emulated before being submitted 
to the underlying physical-device hardware, resulting in 
poor performance. 

0004. In addition, all or parts of the device driver for the 
hardware device are run as part of the privileged VMM 
software, which may adversely affect overall robustness of 
the platform. Techniques using specialized translation struc 
tures can only support a specific device or a limited usage 
model. General I/O memory management units provide only 
support for I/O virtual address spaces of limited size or 
complexity. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 The present invention will be understood more 
fully from the detailed description given below and from the 
accompanying drawings of various embodiments of the 
invention. The drawings, however, should not be taken to 
limit the invention to the specific embodiments, but are for 
explanation and understanding only. 

0006) 
system; 

FIG. 1 illustrates one embodiment of a computer 

0007 FIG. 2 illustrates one embodiment of an input/ 
output (I/O) device assignment; 

0008 FIG.3 illustrates one embodiment of virtualization 
using direct memory access (DMA) remapping; 

0009 FIG. 4 illustrates one embodiment of an I/O 
address translation; 

0010 FIG. 5 illustrates one embodiment of a DMA 
remapping structure; 

0011 FIG. 6 illustrates one embodiment of an address 
window page table entry format; 

0012 FIG. 7 illustrates one embodiment of a process for 
address-window-based DMA address translation; 

0013 FIG. 8 illustrates one embodiment of an address 
window table format; 
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0014 FIG. 9 illustrates one embodiment of address win 
dow flush registers; 
0015 FIG. 10 illustrates one embodiment of an address 
window flush register format; 
0016 FIG. 11 illustrates a flow diagram for one embodi 
ment of DMA translation; and 
0017 FIG. 12 illustrates another embodiment of a com 
puter system. 

DETAILED DESCRIPTION 

0018) A Direct Memory Access (DMA) translation archi 
tecture implementing address window based translation is 
described. Reference in the specification to “one embodi 
ment” or “an embodiment’ means that a particular feature, 
structure, or characteristic described in connection with the 
embodiment is included in at least one embodiment of the 
invention. The appearances of the phrase “in one embodi 
ment' in various places in the specification are not neces 
sarily all referring to the same embodiment. 
0019. In the following description, numerous details are 
set forth. It will be apparent, however, to one skilled in the 
art, that the present invention may be practiced without these 
specific details. In other instances, well-known structures 
and devices are shown in block diagram form, rather than in 
detail, in order to avoid obscuring the present invention. 
0020 FIG. 1 illustrates one embodiment of a computer 
system 100. Computer system 100 includes a processor 110. 
a processor bus 120, a memory control hub (MCH) 130, a 
system memory 140, an input/output control hub (ICH)150, 
a peripheral bus 155, a mass storage device/interface 170, 
and input/output devices 180 to 180, and 185. Note that 
the system 100 may include more or fewer elements than the 
above. 

0021. The processor 110 represents a central processing 
unit of any type of architecture, such as embedded proces 
sors, mobile processors, micro-controllers, digital signal 
processors, SuperScalar processors, multi-threaded proces 
sors, multi-core processors, vector processors, single 
instruction multiple data (SIMD) computers, complex 
instruction set computers (CISC), reduced instruction set 
computers (RISC), very long instruction word (VLIW), or 
hybrid architecture. 
0022. The processorbus 120 provides interface signals to 
allow the processor 110 to communicate with other proces 
sors or devices, e.g., MCH 130. The processor bus 120 may 
Support a uni-processor or multiprocessor configuration. The 
processor bus 120 may be parallel, sequential, pipelined, 
asynchronous, synchronous, or any combination thereof. 
0023 MCH 130 provides control and configuration of 
memory and input/output devices such as the system 
memory 140 and the ICH 150. MCH 130 may be integrated 
into a chipset that integrates multiple functionalities such as 
the isolated execution mode, host-to-peripheral bus inter 
face, memory control. MCH 130 interfaces to the peripheral 
bus 155 directly or via the ICH 150. For clarity, not all the 
peripheral buses are shown. It is contemplated that the 
system 100 may also include peripheral buses such as 
Peripheral Component Interconnect (PCI), PCI Express, 
accelerated graphics port (AGP), Industry Standard Archi 
tecture (ISA) bus, and Universal Serial Bus (USB), etc. 
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0024 MCH 130 includes a direct memory access (DMA) 
remapping circuit 135. DMA remapping circuit 135 maps an 
I/O device (e.g., one of the I/O device 180 to 180 and 185) 
into a domain in the system memory 140 in an I/O trans 
action. The I/O transaction is typically a DMA request. 
DMA remapping circuit 135 provides hardware support to 
facilitate or enhance I/O device assignment and/or manage 
ment. DMA remapping circuit 135 may also be included in 
any chipset other than MCH 130, such as ICH 150. It may 
also be implemented, partly or wholly, in the processor 110. 
or as a separate processor or co-processor to other proces 
sors or devices. 

0.025 The system memory 140 stores system code and 
data. The system memory 140 is typically implemented with 
dynamic random access memory (DRAM) or static random 
access memory (SRAM). The system memory may include 
program code or code segments implementing one embodi 
ment of the invention. The system memory includes an 
operating system (OS) 142, or a portion of the OS, or a 
kernel, and an I/O driver 145. Any one of the elements of the 
OS 142 or the I/O driver 145 may be implemented by 
hardware, Software, firmware, microcode, or any combina 
tion thereof. The system memory 140 may also include other 
programs or data which are not shown. 
0026 ICH 150 has a number of functionalities that are 
designed to support I/O functions. ICH 150 may also be 
integrated into a chipset together or separate from the MCH 
130 to perform I/O functions. ICH 150 may include a 
number of interface and I/O functions such as PCI bus 
interface to interface to the peripheral bus 155, processor 
interface, interrupt controller, direct memory access (DMA) 
controller, power management logic, timer, system manage 
ment bus (SMBus), universal serial bus (USB) interface, 
mass storage interface, low pin count (LPC) interface, etc. 
0027. The mass storage device/interface 170 provides 
storage of archive information Such as code, programs, files, 
data, applications, and operating systems. The mass storage 
device/interface 170 may interface to a compact disk (CD) 
ROM 172, a digital video/versatile disc (DVD) 173, a floppy 
drive 174, and a hard drive 176, and any other magnetic or 
optic storage devices. The mass storage device/interface 170 
provides a mechanism to read machine-accessible media. 
The machine-accessible media may contain computer read 
able program code to perform tasks as described in the 
following. 

0028. The I/O devices 180 to 180 may include any I/O 
devices to perform I/O functions including DMA requests. 
They are interfaced to the peripheral bus 155. Examples of 
I/O devices 180 to 180 include controller for input devices 
(e.g., keyboard, mouse, trackball, pointing device), media 
card (e.g., audio, video, graphics), network card, and any 
other peripheral controllers. The I/O device 185 is interfaced 
directly to the ICH 150. The peripheral bus 155 is any bus 
that supports I/O transactions. Examples of the peripheral 
bus 155 include the PCI bus, PCI Express, etc. 
0029 Elements of one embodiment of the invention may 
be implemented by hardware, firmware, software or any 
combination thereof. The term hardware generally refers to 
an element having a physical structure Such as electronic, 
electromagnetic, optical, electro-optical, mechanical, elec 
tro-mechanical parts, etc. The term Software generally refers 
to a logical structure, a method, a procedure, a program, a 
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routine, a process, an algorithm, a formula, a function, an 
expression, etc. The term firmware generally refers to a 
logical structure, a method, a procedure, a program, a 
routine, a process, an algorithm, a formula, a function, an 
expression, etc that is implemented or embodied in a hard 
ware structure (e.g., flash memory, read only memory, 
erasable read only memory). Examples of firmware may 
include microcode, writable control store, micro-pro 
grammed structure. When implemented in software or firm 
ware, the elements of an embodiment of the present inven 
tion are essentially the code segments to perform the 
necessary tasks. The Software/firmware may include the 
actual code to carry out the operations described in one 
embodiment of the invention, or code that emulates or 
simulates the operations. The program or code segments can 
be stored in a processor or machine accessible medium or 
transmitted by a computer data signal embodied in a carrier 
wave, or a signal modulated by a carrier, over a transmission 
medium. The “processor readable or accessible medium' or 
“machine readable or accessible medium may include any 
medium that can store, transmit, or transfer information. 
Examples of the processor readable or machine accessible 
medium include an electronic circuit, a semiconductor 
memory device, a read only memory (ROM), a flash 
memory, an erasable ROM (EROM), a floppy diskette, a 
compact disk (CD) ROM, an optical disk, a hard disk, a fiber 
optic medium, a radio frequency (RF) link, etc. The com 
puter data signal may include any signal that can propagate 
over a transmission medium such as electronic network 
channels, optical fibers, air, electromagnetic, RF links, etc. 
The code segments may be downloaded via computer net 
works such as the Internet, intranet, etc. The machine 
accessible medium may be embodied in an article of manu 
facture. The machine accessible medium may include data 
that, when accessed by a machine, cause the machine to 
perform the operations described in the following. The 
machine accessible medium may also include program code 
embedded therein. The program code may include machine 
readable code to perform the operations described in the 
following. The term “data' here refers to any type of 
information that is encoded for machine-readable purposes. 
Therefore, it may include program, code, data, file, etc. 

0030 All or part of an embodiment of the invention may 
be implemented by hardware, software, or firmware, or any 
combination thereof. The hardware, software, or firmware 
element may have several modules coupled to one another. 
A hardware module is coupled to another module by 
mechanical, electrical, optical, electromagnetic or any 
physical connections. A Software module is coupled to 
another module by a function, procedure, method, Subpro 
gram, or Subroutine call, a jump, a link, a parameter, 
variable, and argument passing, a function return, etc. A 
software module is coupled to another module to receive 
variables, parameters, arguments, pointers, etc. and/or to 
generate or pass results, updated variables, pointers, etc. A 
firmware module is coupled to another module by any 
combination of hardware and software coupling methods 
above. A hardware, software, or firmware module may be 
coupled to any one of another hardware, Software, or firm 
ware module. A module may also be a software driver or 
interface to interact with the operating system running on the 
platform. A module may also be a hardware driver to 
configure, set up, initialize, send and receive data to and 



US 2006/0288130 A1 

from a hardware device. An apparatus may include any 
combination of hardware, Software, and firmware modules. 

0031 One embodiment of the invention may be 
described as a process which is usually depicted as a 
flowchart, a flow diagram, a structure diagram, or a block 
diagram. Although a flowchart may describe the operations 
as a sequential process, many of the operations can be 
performed in parallel or concurrently. In addition, the order 
of the operations may be re-arranged. A process is termi 
nated when its operations are completed. A process may 
correspond to a method, a program, a procedure, a method 
of manufacturing or fabrication, etc. 
0032. In a standard computing platform, the I/O sub 
system components function as part of a single domain and 
are managed by the operating-system software. One 
embodiment of the invention provides the hardware support 
required to assign I/O devices in a computing platform to 
multiple domains. 
0033. A domain is abstractly defined as an isolated envi 
ronment in the platform, to which a sub-set of the host 
physical memory is allocated. The host-physical memory is 
included in the system memory 140. I/O devices that are 
allowed to directly access the physical memory that is 
allocated to a domain are referred to as the domains 
assigned devices. The isolation property of a domain is 
achieved by blocking access to its physical memory from 
resources not assigned to it. Multiple isolated domains are 
supported by ensuring all I/O devices are assigned to some 
domain (possibly a default domain), and by restricting 
access from each assigned device only to the physical 
memory allocated to its domain. Domains may share 
resources (e.g., memory, I/O devices) or be completely 
isolated from each other at the discretion of the software or 
other entity performing the partitioning. 
0034). Each domain has a view of physical memory, or a 
physical address space, that may be different than the system 
view of physical memory. An address used by a domains 
resources to access its physical address space is referred to 
as a guest-physical address (GPA). The host-physical 
address (HPA) refers to the system physical address used to 
access memory. A domain is considered relocated if one or 
more of its GPAs must be translated to a new HPA which 
differs from the GPA to access its allocated system physical 
memory. A domain is referred to as non-relocated if all of its 
guest-physical addresses are the same as the host-physical 
addresses used to access its allocated system physical 
memory. Both relocated and non-relocated domains may be 
allocated a Subset of the available system physical memory 
and may be prevented from accessing certain portions of the 
memory. Physical memory protection and partitioning 
requires a physical-address translation mechanism and a 
protection mechanism that can validate guest-physical 
addresses generated by a domains assigned devices, includ 
ing processors and I/O devices, and translate it to valid 
host-physical addresses. The DMA remapping circuit 135 
provides this Support. 

0035. For assigning I/O devices to domains, physical 
address translation and protection are applied for DMA 
requests from all I/O devices in the platform. For simplicity, 
the physical address translation functionality for I/O device 
DMA requests is referred to as DMA remapping. In discus 
sions that follow, it should be understood that the term 
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“remapping also includes protection mechanisms in addi 
tion to the mapping of addresses from one address space to 
another (e.g., guest-physical addresses to host-physical 
addresses). 
0036 FIG. 2 is a diagram illustrating one embodiment of 
I/O device assignment. The I/O device assignment is a 
mapping of an I/O device to a domain in the system memory 
140. The mapping is Supported by DMA remapping circuit 
135. As an example, device A 210 is mapped into domain 
1240 in the system memory 140. The domain 1 may have 
two drivers 242 and 244 for the device A 210. 

0037 DMA remapping circuit 135 includes a register set 
220, a DMA remapping structure 222, and a logic circuit 
224. The register set 220 includes a number of registers that 
provides control or status information used by the DMA 
remapping structure 222, the logic circuit 224, and the 
programs or drivers for the I/O devices. The DMA remap 
ping structure 222 provides the basic structure, storage, or 
tables used in the remapping or address translation of the 
guest-physical address to the host-physical address in an 
appropriate domain. The logic circuit 224 includes circuitry 
that performs the remapping or address translation opera 
tions and other interfacing functions. The DMA remapping 
circuit 135 may have different implementations to support 
different configurations and to provide different capabilities 
for the remapping or address translation operations. 
0038 I/O device assignment and/or management using 
the DMA remapping circuit 135 provides a number of 
usages or applications. Two useful applications are OS 
robustness applications and virtualization applications. 
0039 OS Robustness applications: Domain isolation has 
multiple uses for operating-system Software. For example, 
an OS may define a domain containing its critical code and 
data structures in memory, and restrict access to this domain 
from all I/O devices in the system. This allows the OS to 
limit erroneous or unintended corruption of data and code 
through incorrect programming of devices by device drivers, 
or certain classes of device failures thereby improving its 
robustness. Alternatively, an OS may allow a subset of 
trusted devices to access critical code and data structures in 
memory but disallow access from other devices. 
0040. In another usage, the OS may use domains to better 
manage DMA from legacy 32-bit PCI devices to high 
memory (above 4 GB). This is achieved by allocating 32-bit 
devices to one or more domains and programming the 
I/O-physical-address-translation mechanism to remap the 
DMA from these devices to high memory. Without such 
Support, the Software has to resort to data copying through 
OS bounce buffers. 

0041. In a more involved usage, an OS may manage I/O 
by creating multiple domains and assigning one or more I/O 
devices to the individual domains. In this usage, the device 
drivers explicitly register their I/O buffers with the OS, and 
the OS assigns these I/O buffers to specific domains, using 
hardware to enforce the DMA domain protections. In this 
model, the OS uses the I/O address translation and protec 
tion mechanism as an I/O memory management unit (I/O 
MMU). 
0042 Virtualization applications: The virtualization tech 
nology allows for the creation of one or more virtual 
machines (VMs) on a single system. Each VM may run 
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simultaneously utilizing the underlying physical hardware 
resources. Virtual machines allow multiple operating system 
instances to run on the same processor offering benefits such 
as system consolidation, legacy migration, activity partition 
ing and security. 
0.043 Virtualization architectures typically involve two 
principal classes of Software components: (a) Virtual 
machine monitors (VMMs) and (b) Virtual Machines 
(VMs). The VMM software layer runs at the highest privi 
lege level and has complete ownership of the underlying 
system hardware. The VMM allows the VMs to share the 
underlying hardware and yet provides isolation between 
VMS. 

0044) The limitations of software-only methods for I/O 
virtualization can be removed by direct assignment of I/O 
devices to VMs using DMA remapping circuit 135. With 
direct assignment of devices, the driver for an assigned I/O 
device runs only in the VM to which it is assigned and is 
allowed to interact directly with the device hardware without 
trapping to the VMM. The hardware support enables DMA 
remapping without device specific knowledge in the VMM. 
0045. In this model, the VMM restricts itself to a con 

trolling function where it explicitly does the set-up and 
tear-down of device assignment to VMs. Rather than trap 
ping to the VMM for guest I/O accesses as in the case of 
software-only methods for I/O virtualization, the VMM 
requires the guest I/O access trapping only to protect specific 
resources Such as device configuration space accesses, inter 
rupt management etc., that impact system functionality. 
0046) To support direct assignment of I/O devices to 
VMs, a VMM manages DMA from I/O devices. The VMM 
may map itself to a domain, and map each VM to an 
independent domain. The I/O devices can be assigned to 
domains, and the physical address translation hardware 
provided by the DMA remapping circuit 135 may be used to 
allow the DMA from I/O devices only to the physical 
memory assigned to the assigned VM's domain. For VMs 
that may be relocated in physical memory (i.e., the GPA not 
identical to the HPA), the DMA remapping circuit 135 can 
be programmed to do the necessary GPA-to-HPA transla 
tion. 

0047. With hardware support for I/O device assignment, 
VMM implementations can choose a combination of soft 
ware-only I/O virtualization methods and direct device 
assignment for presenting I/O device resources to a VM. 
0.048 FIG. 3 is a diagram illustrating one embodiment of 
virtualization using DMA remapping. The virtualization 
includes two devices A and B 310 and 312, the DMA 
remapping circuit 135, a VMM or hosting OS320, VM 340 
and VM, 360. The two devices A and B310 and 312 are two 
I/O devices that are supported by the two VM 340 and 360, 
respectively. DMA remapping circuit 135 directly maps 
these two devices to the respective VM's 340 and 360 
without specific knowledge of the VMM or hosting OS 320. 
More or fewer I/O devices and VMs may be supported. 
0049. The VMM or the hosting OS 320 provides support 
for the underlying hardware of the platform or the system on 
which it is executing. VMs 340 and 360 have similar 
architectural components but are completely isolated from 
each other. They are interfaced to the VMM or hosting OS 
320 to access to the system hardware. VM 340 includes 
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applications 342 and 344. More or fewer applications may 
be supported. It has a guest OS 346 and a device A driver 
350. The device Adriver 350 is a driver that drives, controls, 
interfaces, or supports the device A310. Similarly, VM 360 
includes applications 362 and 364. More or fewer applica 
tions may be supported. It has a guest OS 366 and a device 
B driver 370. The guest OS 366 may be the same or different 
than the guest OS 346 in the VM 340. The device B driver 
370 is a driver that drives, controls, interfaces, or supports 
the device B 312. 

0050. The DMA remapping architecture provided by the 
DMA remapping circuit 135 facilitates the assigning of I/O 
devices to an arbitrary number of domains. Each domain has 
a physical address space that may be different than the 
system physical address space. The DMA remapping pro 
vides the transformation of guest-physical address (GPA) in 
DMA requests from an I/O device to the corresponding 
host-physical address (HPA) allocated to its domain. 
0051) To support this, the platform may support one or 
more I/O physical address translation hardware units. Each 
translation hardware unit Supports remapping of the I/O 
transactions originating from within its hardware scope. For 
example, a desktop chipset implementation may expose a 
single DMA remapping hardware unit that translates all I/O 
transactions at the memory controller hub (MCH) compo 
nent. A server platform with one or more core chipset 
components may support independent translation hardware 
units in each component, each translating DMA requests 
originating within its I/O hierarchy. The architecture Sup 
ports configurations where these hardware units may share 
the same translation data structures in system memory or use 
independent structures depending on Software program 
n1ng. 

0.052 The chipset DMA remapping circuit 135 treats the 
addresses in DMA requests as guest-physical addresses 
(GPA). DMA remapping circuit 135 may apply the address 
translation function to the incoming address to convert it to 
a host-physical address (HPA) before further hardware pro 
cessing, such as Snooping of processor caches or forwarding 
to the memory controller. 

0053. In a virtualization context, the address translation 
function implemented by DMA remapping circuit 135 
depends on the physical-memory management Supported by 
the VMM. For example, in usages where the software does 
host-physical memory allocations as contiguous regions, the 
DMA translation for converting GPA to HPA may be a 
simple offset addition. In usages where the VMM manages 
physical memory at page granularity, DMA remapping cir 
cuit 135 may use a memory-resident address translation data 
Structure. 

0054 FIG. 4 is a diagram illustrating one embodiment of 
an I/O address translation. The I/O address translation 
includes two I/O devices 1 and 2410 and 412, the DMA 
remapping circuit 135, a physical memory 420, and a guest 
view 430. The I/O devices 1 and 2410 and 412 are assigned 
to two separate domains. They perform I/O requests or DMA 
requests to addresses DMA ADR. 
0.055 DMA remapping circuit 135 maps these two 
devices to corresponding domains allocated in the physical 
memory 420. The physical memory 420 is partitioned into 
memory segments 422 and 424 and memory segments 426 
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and 428. More or fewer allocated memory segments may be 
assigned to one or more of the domains. In FIG. 4, memory 
segments 422 and 424 are assigned to domain 1442 and 
correspond to device 1410 and memory segments 424 and 
428 are assigned to domain 2444 and correspond to device 
1412. In the example illustrated in FIG. 4, device 1410 is 
mapped to the domain 1422 and the device 2412 is mapped 
or assigned to the domain 2428. 
0056. The guest view 430 is a logical view from the guest 
I/O devices. It includes domain 1442 and domain 2444. The 
domain 1442 corresponds to the two memory segments 422 
and 424 in the physical memory 420. The domain 2444 
corresponds to the two memory segments 426 and 428. For 
a particular guest, domains may be allocated portions of the 
guest view 430 of physical memory. Each of the domains 
may be assigned to one or more I/O devices. The 
DMA ADR address from the device 1410 is mapped to the 
DMA ADR1 located within the address space from 0 to L 
of the domain 1442. Similarly, the DMA ADR address from 
the device 2412 is mapped to the DMA ADR2 located 
within the address space from 0 to K of the domain 2444. 
0057 The software responsible for the creation and man 
agement of the domains allocates the physical memory 420 
for both domains and sets up the GPA-to-HPA address 
translation function in the DMA remapping circuit 135. The 
DMA remapping circuit 135 translates the GPAS generated 
by the devices 410 and 412 to the appropriate HPAs. 
0.058 FIG. 5 is a diagram illustrating one embodiment of 
a DMA remapping structure 222. DMA remapping structure 
222 receives a source identifier 510 and includes a root table 
520, a number of context tables, of which two are shown 
530, and 530, and a number of address translation struc 
tures, of which two are shown 540 and 540. The remap 
ping structure 222 receives the source identifier 510 and a 
guest-physical address from the I/O device, and translates 
the guest-physical address in an assigned domain to a 
host-physical address. The translation may be performed 
using translation tables arranged in a hierarchical manner. 
The translation mechanism starts from the root table 520 and 
traverses, or walks, through the context tables (e.g., 530 and 
530m) and the address translation structures (e.g., 540 and 
540). 
0059) The requester identity of the I/O transactions 
appearing at DMA remapping circuit 135 determines the 
originating device and the domain that the originating I/O 
device is assigned to. The source identifier 510 is the 
attribute identifying the originator of an I/O transaction. 
DMA remapping circuit 135 may determine the source 
identifier 510 of a transaction in implementation specific 
ways. For example, some I/O bus protocols may provide the 
originating device identity as part of each I/O transaction. In 
other cases, such as for chipset integrated devices, the Source 
identifier 510 may be implied based on the chipsets archi 
tecture or implementation. 

0060 For PCI Express devices, source identifier 510 is 
mapped to the requestor identifier provided as part of the I/O 
transaction header. The requestor identifier of a device 
includes its PCI Bus/Device/Function numbers assigned by 
the configuration Software and uniquely identifies the hard 
ware function that initiates the I/O request. In one embodi 
ment, the source identifier 510 includes a function number 
512, a device number 514, and a bus number 516. In the 
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example illustrated in FIG. 5, the function number 512 is 
K-bit wide, the device number 514 is L-bit wide, and the bus 
number 516 is M-bit wide. The bus number 516 identifies 
the bus on which the I/O transaction is generated. The device 
number 514 identifies the specific device on the identified 
bus. The function number 512 identifies the specific function 
of the I/O device. The source identifier 510 is used to index 
or look up the root table 520 and the context tables (e.g., 
530, and 530,). In the example illustrated in FIG. 5, their 
paths through the DMA remapping structure 222 are illus 
trated for two I/O transactions using bus 0 and bus m, 
respectively. 

0061 For PCI Express devices, the root table 520 stores 
root entries 525 to 525 indexed by the source identifier 
510, or the bus number 516 of the source identifier 510. The 
root entries function as the top level structure to map devices 
on a specific bus to its respective parent domain. The root 
entry 0525 corresponds to the I/O transaction using bus 0. 
The root entry m 525, corresponds to the I/O transaction 
using bus m. The root entries 0525 and 525 point to the 
context tables 530 and 530, respectively. In one embodi 
ment, these entries provide the base address for the corre 
sponding context table. 

0062) The context tables 530 (e.g., 530 and 530) store 
context entries 535 (e.g., 535, and 535) referenced by the 
root entries. The context entries 535 map the I/O devices to 
their corresponding domain(s). The device number 514 and 
the function number 512 are used to obtain the context entry 
corresponding to the I/O transaction. In one embodiment, 
they form an index to point to, or reference, the context table 
referenced by the corresponding root entry. There are 
22*2 or 2^*** context entries in all context tables. In 
one embodiment, K=3, L=5, and M=8, resulting in a total of 
64K entries, organized as 2(2=256) context tables. In the 
example shown in FIG. 4, the two context entries for the two 
I/O transactions are the context entry 535 in the context 
table 530 and the context entry 535, in the context table 
530. The context entries 535, and 535 point to the address 
translation structures 540 and 540, respectively. 
0063. The address translation structures 540 (e.g., 540 
and 540) provide the address translation to the host 
physical address using the guest-physical address corre 
sponding to the I/O transaction. Each of the address trans 
lation structures may be a multi-table 550, a single table 560, 
or a base/bound 570 corresponding to the three translation 
mechanisms using multi tables, single table, and base? bound 
translations, respectively. In the following description, a 
regular page size of 4 KB is used. As is known by one skilled 
in the art, any other sizes may also be used. 

0064.) To provide software flexible control of DMA 
remapping circuit 135, DMA remapping circuit 135 has a 
number of registers included in register set 220 shown in 
FIG. 2. Register set 220 is located in the host-physical 
address space through a Base Address Register (BAR). The 
translation hardware BAR is exposed to software in an 
implementation dependent manner. This may be exposed as 
a PCI configuration space register in one of the chipset 
integrated devices, such as the memory controller device. In 
one embodiment, the BAR provides a minimum of 4K 
address window. A register in the register set 220 may have 
a number of fields. A field may be asserted or negated. When 
a field consists of only a single bit, assertion implies that the 
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bit is set to a defined logical state (e.g., TRUE, logical one) 
and negation implies that the bit is reset to a defined logic 
state that is complementary to the state of the assertion (e.g., 
FALSE, logical zero). In the following, the use of an asserted 
or negated State is arbitrary. A field may be asserted to 
indicate a first state and negated to indicate a second state, 
or vice versa. 

0065. A field in a register may be programmed, initial 
ized, or configured by DMA remapping circuit 135 and/or by 
the Software. It may also correspond to a specialized hard 
ware circuit or a functionality implemented by a data 
structure, a function, a routine, or a method. In the follow 
ing, fields are grouped into registers. The grouping, format 
ting, or organization of these fields or bits in the following 
registers is for illustrative purposes. Other ways of grouping, 
formatting, or organizing these fields may be used. A field 
may also be duplicated in more than one registers. A register 
may have more or fewer than the fields as described. In 
addition, registers may be implemented in a number of 
ways, including as storage elements or memory elements. 

0.066 The DMA remapping architecture described above 
includes DMA that is translated using single or multiple 
level page tables (TLBs), as shown in FIG. 5. Such an 
architecture is suitable for legacy software usages (e.g., 
where the OS or VMM doesn’t know about driver DMA 
usages). Further, single or multiple level page table trans 
lations may offer good-to-average DMA performance for 
most I/O devices (as measured by DMA throughput). How 
ever, Such a system has limitations. 
0067. One limitation is that the worst case latency intro 
duced by multiple sequential memory accesses for the 
page-walk on TLB misses is prohibitive for I/O devices 
whose performance depends on guaranteed worst case (iso 
chronous) DMA performance. Examples of these types of 
devices include PCI Express devices Supporting isochronous 
DMA (Such as a high performance audio controller), display 
engines of graphics devices, and USB controller devices. 
0068 Another limitation is that for non-legacy software 
usages (e.g., newer OSs and VMMs) that may know more 
about driver DMA usages, the current architecture does not 
provide any means for software to provide DMA usage hints 
to improve DMA-remapping performance. 

0069 Finally, the memory access latencies for page 
walks increase as, for example, platform configurations 
move to memory controllers implemented within the pro 
cessor complex. 
Address Window Based DMA Address Translation 

0070 Based on the above-described limitations of DMA 
remapping architecture, DMA remapping circuit 135 is 
configured to support address window-based address trans 
lation in addition to the single and multi-level page-table 
based address translation. Thus, each DMA remapping cir 
cuit 135 may support a number of address windows, with the 
exact number of address windows Supported being a func 
tion of hardware implementation. In one embodiment, the 
system firmware assigns an address window (AW) range 
(start and end AW numbers) for each DMA remapping 
circuit 135. 

0071. In a further embodiment, the chipset supports an 
additional caching structure in addition to existing remap 
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ping circuit 135 caching structures. These additional struc 
tures are referred to as AWPTR tables implemented for 
address window translations. AWPTR tables will be dis 
cussed below in greater detail. 
0072 According to one embodiment, a device-physical 
address (DPA) refers to a target address specified by I/O 
devices in its DMA requests. In one embodiment, the DPA 
address space spans across all I/O devices in the computer 
system and is sub-divided into multiple AWs. In such an 
embodiment, each AW covers a contiguous 2 MB region of 
DPA space. For example, an AWO may cover DPA 0 to 2 
MB, an AW1 may cover DPA 2 MB to 4 MB, etc. Given any 
DPA, the associated AW number is determined by examin 
ing bits in the DPA (e.g., AW#:=DPA63:21). 
0073. In a further embodiment, each AW is described by 
a DPA-to-HPA translation structure in memory called an 
Address Window page-table (AWPT). The entries in an 
AWPT are called AW page-table-entries (AWPTE). Each 
AWPTE provides the translation for a 4 KB region (referred 
as a slot) within the AW. Thus, there are 512 slots in an AW. 
and the AWPT associated with each AW is 4KB in size (with 
512 AWPTEs). According to one embodiment, AWPTEs are 
64-bits in size and have the format illustrated in FIG. 6. In 
one embodiment, an AWPTE includes access control bits 
such as bits (“read' and “write’) specifying if read accesses 
and/or write accesses are allowed to the DPA used to access 
the AWPTE. In one embodiment, the address field 
(“ADDR") specifies the mapping of a subset of the bits in 
the DPA to HPA. In one embodiment, the remaining bits 
(e.g., bits 11:0) may be passed unmodified from the DPA 
to the HPA. Many other configurations are possible and do 
not limit the scope of the invention. 
0074 The system software can bind one or more AWs to 
specific I/O devices. For this, the driver registers its DMA 
buffers (e.g., in the host-physical address space) with the AW 
bound to the device to generate a DPA mapping. The driver 
for a device identifies its target buffers to the device hard 
ware using its DPA. Addresses in DMA requests from the 
device are DPAs that are translated by remapping circuit 135 
based on the AW bound to the device and the DPA-to-HPA 
translations for the address window. 

0075 FIG. 7 illustrates one embodiment of a process for 
translating DMA addresses in the presence of address win 
dows. FIG. 7 illustrates the use of AWPTs and AWPTR 
tables to provide the translation. In one embodiment, the 
AWPTR table in remapping circuit 135 has as many entries 
as the number of address windows Supported by its remap 
ping circuit 135. Entries in an AWPTR table are associated 
with a specific AW configured on its remapping circuit 135. 

0.076 Further, each AWPTR table entry includes the HPA 
to the base of the AWPT for the particular AW. Each AWPTR 
table entry is tagged with the device-id of the I/O device to 
which the associated AW is allocated. In one embodiment, 
the AWPTR table structure is memory-mapped to allow 
software to modify entries in it. The base address of the 
AWPTR table is referred as AWPTR TABLE BASE. 
AWPTR table entries are called AWPTRs, and a specific 
entry at a particular index in the cache is notated as AWPTR 
index. 
0.077 FIG. 8 illustrates one embodiment of an AWPTR 
table structure for a chipset implementing two remapping 
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circuits 135, with each configured to support two AWs (4 to 
5, and 6 to 7, respectively). According to one embodiment, 
although the AWPTR table is stored in registers, the table 
appears to Software to reside at an address specified by 
AWPTR TABLE BASE. 

0078. Further, in an embodiment, each entry in the 
AWPTR table includes Valid, Tag and Data fields. The Valid 
field indicates whether an entry is valid. In another embodi 
ment, there is no valid bit and the remapping circuit 135 
treats all AWPTR table entries as being valid. The Tag field 
indicates the particular device ID to which the entry is 
associated. For example, in FIG. 8 software has bound AW 
4 to an I/O device with device ID 11 and AW 6 to an I/O 
device with device ID 18. In one embodiment, identification 
of a device originating an access (e.g., determination of 
device ID) may include information on the bus, device and 
function within the device. The originator of a DMA request 
is referred to herein as a “device' or “requesting I/O device' 
and is identified by a “device ID. However, it should be 
understood that in other embodiments a single physical 
device may be identified by one or more device-IDs. 
0079 According to a further embodiment, the remapping 
circuit 135 supports a set of 16-bit memory mapped regis 
ters, called AW FLUSH registers. FIG. 9 illustrates one 
embodiment of AW FLUSH flush registers. The 
AW FLUSH flush registers are implemented as a mecha 
nism for software to invalidate translations which may be 
cached by one or more elements of the remapping circuit 
135. In one embodiment, one AW FLUSH flush register is 
implemented for each AW Supported by a remapping circuit 
135. 

0080. In one embodiment, the base address of this 
memory-mapped register range (AW FLUSH BASE) is 
initialized by platform firmware. For example, as illustrated 
in FIG. 9, if a chipset component Supports two remapping 
circuits 135 and the remapping circuits 135 support AWs 4 
to 5 and 6 to 7, respectively, the chipset supports a total of 
4 AW FLUSH registers. FIG. 10 illustrates one embodi 
ment of a format for each AW FLUSH registers. 
0081 Referring back to FIG. 7, address window based 
translation occurs if specified in the context entry for an I/O 
device. In one embodiment, the context entries may be 
cached by the remapping circuit 135, eliminating the need to 
access memory to make this determination. In a further 
embodiment, the context entry caching structure is directly 
accessible by Software, allowing software to pre-populate 
the cache to reduce latencies for the first access to a context 
entry. In this way, Software can guarantee that the worst-case 
memory access behavior for particular devices is limited to 
a single memory access, as described below. 
0082 If address window based translation is specified, 
remapping circuit 135 checks to determine if the AW to 
which the DPA in the DMA request belongs is one of the 
AWs bound to the specified device. According to one 
embodiment, remapping circuit 135 performs this check by 
first finding the address window number (AWH) correspond 
ing to the DPA in the DMA request (e.g., computed by 
AW#=DPA(HAW-1):21), where HAW is the supported 
physical address width of the system). 
0083) Subsequently, it is determined if the AWii is allo 
cated to the remapping circuit 135 translating the DMA 
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request. If AWii is not allocated to the remapping circuit 135, 
a translation fault occurs. In one embodiment, a translation 
fault may generate an interrupt to the processor. In another 
embodiment, Software managing the remapping circuit 135 
is responsible for periodically polling the remapping circuit 
135 to determine if any translation faults have occurred. If 
AWii is valid, the associated AW table entry index is found 
(computed by INDEX=AWH-START AW). Next, the AW 
table entry at AWPTRINDEX) is accessed, and it is deter 
mined whether it is tagged with the device-id in the DMA 
request. If the check succeeds, the AWPTR value indicates 
the base of the AW page-table. The value in DPA 21:12 
field is used to fetch the appropriate AWPTE in the AW 
page-table. 
0084. Based on the programming of the AWPTE, the 
DMA request is either completed to the HPA specified in the 
AWPTE, or it is blocked. The AWPTE processing is similar 
to how the leaf PTEs are processed in the remapping circuit 
135 for the multi-level I/O page-tables described. If the 
translation Succeeds, in one embodiment, it is cached by the 
remapping circuit 135 in an I/O translation-lookaside buffer 
(I/O TLB). 
0085. As discussed above, remapping circuits 135 per 
forms address window based translation in addition to single 
and multi-level page-table based address translation. FIG. 
11 is a flow diagram illustrating one embodiment of the 
operation of a remapping circuit 135 performing address 
window based translation, and single and multi-level page 
table based address translation. 

0086. At processing block 1110, an I/O device generates 
a DMA request. At processing block1120, the DMA-request 
is processed conventionally via a remapping circuit 135. At 
decision block 1130, it is determined whether a translation 
for the address specified in the DMA request (e.g., tagged 
with the device-id in the transaction) is found in the I/O 
TLB. If the translation for the address specified in the DMA 
request is found in the I/O TLB, the translation is completed 
without any memory access, processing block 1140. This 
includes DMA that may be translated using single- or 
multi-level page-tables or through address windows. 
0087. If the translation for the address specified in the 
DMA request is not found in the I/O TLB (e.g., miss 
detected), the context-cache is looked up to determine the 
translation behavior for the device, processing block 1150. 
At decision block 1160, it is determined whether the trans 
lation is to be blocked or processed through single-level or 
multi-level page-tables. If the translation is to be blocked or 
processed through single-level or multi-level page-tables, 
the request is processed as described in the conventional 
remapping circuit 135 architecture described above with 
respect to FIGS. 1-5, processing block 1170. However, if the 
translation is not to be blocked or processed through single 
level or multi-level page-tables, the context-entry for the 
device specifies address window based translation. Conse 
quently, address window based translation is performed as 
discussed above with respect to FIG. 7, processing block 
1180. 

0088 FIG. 12 illustrates another embodiment of com 
puter system 100. In this embodiment, the chipset includes 
a single control hub 1230 as opposed to a separate MCH and 
ICH. In addition, memory control is located in processor 
110. Consequently, system memory 140 is coupled to pro 
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cessor 110. In one embodiment, the remapping circuit 135 is 
included in the controller hub 1230. In another embodiment, 
remapping circuit 135 is included in processor 110 or in the 
system memory 140. 

0089. The above described remapping architecture 
enables 4K granular DMA address translations similar to 
multi-level page-tables, and yet offers a worst case perfor 
mance guarantee which is limited to the overheads associ 
ated with a single memory lookup. 
0090 Whereas many alterations and modifications of the 
present invention will no doubt become apparent to a person 
of ordinary skill in the art after having read the foregoing 
description, it is to be understood that any particular embodi 
ment shown and described by way of illustration is in no 
way intended to be considered limiting. Therefore, refer 
ences to details of various embodiments are not intended to 
limit the scope of the claims, which in themselves recite only 
those features regarded as the invention. 

What is claimed is: 
1. An apparatus comprising a remapping circuit to facili 

tate access of one or more input/output (I/O) devices to a 
memory device using direct memory access (DMA) trans 
actions, the remapping circuit including a first translation 
mechanism to perform memory address translations for I/O 
DMA transactions via address window-based translations. 

2. The apparatus of claim 1 further comprising a second 
translation mechanism to perform memory address transla 
tions for I/O DMA transactions via at least one of single 
level page tables and multi-level page tables. 

3. The apparatus of claim 1 wherein the first translation 
mechanism includes an address window pointer table 
(AWPTR) to perform the address window-based transla 
tions. 

4. The apparatus of claim 3 wherein the AWPTR com 
prises at least one entry including a base address of an 
address window page table (AWPT) for at least one address 
window (AW). 

5. The apparatus of claim 4 wherein each AWPTR entry 
is tagged with a device ID indicating an I/O device to which 
an associated AW is allocated. 

6. The apparatus of claim 5 wherein the device ID further 
includes information indicating at least one of a bus, a 
device, and a function within the device. 

7. The apparatus of claim 4 wherein each AWPT entry 
provides a translation for a 4 KB slot within the AW. 

8. The apparatus of claim 4 wherein each AWPT entry 
includes access control bits specifying if read accesses or 
write accesses are allowed to a device-physical address used 
to access the AWPT entry. 

9. A method comprising: 
receiving a direct memory access (DMA) request at a 

remapping circuit from a requesting input/output (I/O) 
device; 

determining if the DMA request is permitted to complete; 
and 

translating a device-physical address (DPA) to a host 
physical address (HPA) in memory if the access is 
permitted. 

10. The method of claim 9 wherein determining if the 
DMA request is permitted to complete comprises: 
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calculating a requested address window (AW) associated 
with the DPA; 

determining if the requested AW is bound to the remap 
ping circuit; and 

determining if the requested AW is bound to the request 
ing I/O device. 

11. The method of claim 10 wherein a translation fault 
occurs if it is determined that the requested AW is not bound 
to the requesting I/O device. 

12. The method of claim 10 wherein the translation fault 
occurs if it is determined that the requested AW is not bound 
to the remapping circuit. 

13. The method of claim 9 further comprising: 

finding an associated AW pointer table entry index for the 
DPA; and 

looking up the AW pointer table entry at the index. 
14. The method of claim 13 further comprising determin 

ing whether the AW pointer table entry is tagged with a 
device ID corresponding to the requesting I/O device. 

15. The method of claim 13 further comprising accessing 
an AW page table entry (AWPTE) in memory associated 
with the AW pointer table entry and the DPA. 

16. The method of claim 15 further comprising calculat 
ing the HPA associated with the DPA using the AWPTE. 

17. The method of claim 16 further comprising: 
determining if the DMA request is allowed to complete 

based on at least one permission bit in the AWPTE and 
a type of the DMA request; and 

preventing the completion of the DMA request if at the 
least one permission bit does not allow the type of the 
DMA request. 

18. The method of claim 9 further comprising caching the 
completed translation. 

19. A computer system comprising: 

a main memory device; 

one or more input/output (I/O) devices to access the 
memory device via direct memory access (DMA); and 

a memory controller, coupled to the memory device, 
having a DMA remapping circuit to facilitate the access 
of the one or more I/O devices to the memory device, 
the DMA remapping circuit comprising: 

a first translation mechanism to perform memory 
address translations for I/O DMA transactions via 
address window-based translations. 

20. The computer system of claim 19 further comprising 
a second translation mechanism to perform memory address 
translations for I/O DMA transactions via at least one of 
single-level page tables and multi-level page tables. 

21. The computer system of claim 19 wherein the memory 
device is subdivided into at least one address windows 
(AWs). 

22. The computer system of claim 21 wherein the memory 
device further comprises an AW page table (AWPT) that 
defines a device-physical address (DPA) to host-physical 
address (HPA) translation. 
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23. The computer system of claim 22 wherein the AWPT 
comprises at least one AW page table entry (AWPTE), said 
AWPTE providing a translation for at least one address 
within the AW. 

24. The computer system of claim 21 wherein each of the 
at least one AWs are bound to an I/O device. 

25. The computer system of claim 22 wherein the first 
translation mechanism includes a table (AWPTR) to perform 
the address window-based translations. 
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26. The computer system of claim 22 wherein the AWPTR 
comprises at least one entry, said entry including a base of 
the AWPT for a particular AW. 

27. The computer system of claim 26 wherein each 
AWPTR entry is tagged with a device ID indicating an I/O 
device to which an associated AW is allocated. 


