
(19) United States
US 20060288130A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0288130 A1
Madukkarumukumana et al. (43) Pub. Date: Dec. 21, 2006

(54) ADDRESS WINDOW SUPPORT FOR DIRECT
MEMORY ACCESS TRANSLATON

(76) Inventors: Rajesh Madukkarumukumana,
Portland, OR (US); Udo A. Steinberg,
Sohland a.d. Spree (DE); Steven M.
Bennett, Hillsboro, OR (US); Andrew
V. Anderson, Hillsboro, OR (US);
Gilbert Neiger, Portland, OR (US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
124OO WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)

(21) Appl. No.: 11/157,675

DMA
REMAPPNG
CRC

PROCESSOR

MEMORY CONTROL
HUB (MCH)

35

(22) Filed: Jun. 21, 2005

Publication Classification

(51) Int. Cl.
G06F 3/28 (2006.01)

(52) U.S. Cl. .. 710/22

(57) ABSTRACT

A apparatus is disclosed. The apparatus includes a remap
ping circuit to facilitate access of one or more I/O devices to
a memory device for direct memory access (DMA) trans
actions. The remapping circuit includes a translation mecha
nism to perform memory address translations for I/O DMA
transactions via address window-based translations.

i to
e1 OO

PROCESSOR BUS

3O 40

SYSTEMMEMORY

OPERATING 42
SYSM

as
I/O

DRIVER

85

74 Floppy

1/O DEVICE
INPUT/OUTPUT

EAS (). "God 280 80k
3. dvd NerfAce HUB (ICH)

I/O DEVICE a a IyO DEVICE
76. HARD DISK

is 1
PerprA BUS

US 2006/0288130 A1

ÅR?O?AJEWN WELLSÅS

Patent Application Publication Dec. 21, 2006 Sheet 1 of 11

(HDI) gnH TOY??NOO

US 2006/0288130 A1 Patent Application Publication Dec. 21, 2006 Sheet 2 of 11

„LITICHIO DISDOT LES (HLSISDBY?
§ 8. I LITTOHIO 5) NI ddwywººd WWC,

US 2006/0288130 A1

SO SONI_No._SOH ^-}O (ww/\) (JO ? INOw aNIHDww Twn Lº?IA

Ozae

2,8×8,
(O) ENIH Ovia, Twyn Lº?IA

(u) a NIHoww Twn Lº? A.

Patent Application Publication Dec. 21, 2006 Sheet 3 of 11

US 2006/0288130 A1

al

zzz_^
Patent Application Publication Dec. 21, 2006 Sheet 5 of 11

Patent Application Publication Dec. 21, 2006 Sheet 6 of 11 US 2006/0288130 A1

5 5

pm m

US 2006/0288130 A1

VdICI

Patent Application Publication Dec. 21, 2006 Sheet 7 of 11

US 2006/0288130 A1

QISV8THSQT. IT WAV
E SVETETgVITAJ.LdMV

Patent Application Publication Dec. 21, 2006 Sheet 8 of 11

6 * 0.IH

†0 #AAV JOJ 101s1301 HSnTHT NAV 90 #AAV JOJ 101s139.I HSOT?T NAV
8 "OIH

US 2006/0288130 A1 Patent Application Publication Dec. 21, 2006 Sheet 9 of 11

Patent Application Publication Dec. 21, 2006 Sheet 10 of 11 US 2006/0288130 A1

DMA REQUEST

PROCESS DMA VIA CONVENTIONAL
REQUEST

1120

1110

cMESAN LOOKUP ADDRESS IN
CONTEXT CACHE

1140 1150

BLOCKED OR PROCESS VLA
SINGLE/MULTI PAGE TABLES

BLOCK OR PERFORM
SINGLE- OR MULTI- ADDRESS DOW

TRANSLATION
LEVEL PAGE
TRANSLATION170 180

STOP

F.G. 11

US 2006/0288130 A1

ADDRESS WINDOW SUPPORT FOR DIRECT
MEMORY ACCESS TRANSLATION

FIELD OF THE INVENTION

0001. The present invention relates generally to micro
processors, more specifically, the present invention relates to
input/output (I/O) virtualization.

BACKGROUND

0002. As microprocessor architecture becomes more and
more complex to Support high performance applications, I/O
management presents a challenge. Existing techniques to
address the problem of I/O management have a number of
disadvantages. One technique uses Software-only I/O virtu
alization to support virtual machine (VM) I/O. This tech
nique has limited functionality, performance, and robust
CSS.

0003. The functionality seen by the guest operating sys
tem (OS) and applications is limited by the functionality
supported by the virtual devices emulated in the VM monitor
(VMM) software. The guest I/O operations are trapped by
the VMM and proxied or emulated before being submitted
to the underlying physical-device hardware, resulting in
poor performance.

0004. In addition, all or parts of the device driver for the
hardware device are run as part of the privileged VMM
software, which may adversely affect overall robustness of
the platform. Techniques using specialized translation struc
tures can only support a specific device or a limited usage
model. General I/O memory management units provide only
support for I/O virtual address spaces of limited size or
complexity.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 The present invention will be understood more
fully from the detailed description given below and from the
accompanying drawings of various embodiments of the
invention. The drawings, however, should not be taken to
limit the invention to the specific embodiments, but are for
explanation and understanding only.

0006)
system;

FIG. 1 illustrates one embodiment of a computer

0007 FIG. 2 illustrates one embodiment of an input/
output (I/O) device assignment;

0008 FIG.3 illustrates one embodiment of virtualization
using direct memory access (DMA) remapping;

0009 FIG. 4 illustrates one embodiment of an I/O
address translation;

0010 FIG. 5 illustrates one embodiment of a DMA
remapping structure;

0011 FIG. 6 illustrates one embodiment of an address
window page table entry format;

0012 FIG. 7 illustrates one embodiment of a process for
address-window-based DMA address translation;

0013 FIG. 8 illustrates one embodiment of an address
window table format;

Dec. 21, 2006

0014 FIG. 9 illustrates one embodiment of address win
dow flush registers;
0015 FIG. 10 illustrates one embodiment of an address
window flush register format;
0016 FIG. 11 illustrates a flow diagram for one embodi
ment of DMA translation; and
0017 FIG. 12 illustrates another embodiment of a com
puter system.

DETAILED DESCRIPTION

0018) A Direct Memory Access (DMA) translation archi
tecture implementing address window based translation is
described. Reference in the specification to “one embodi
ment” or “an embodiment’ means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
invention. The appearances of the phrase “in one embodi
ment' in various places in the specification are not neces
sarily all referring to the same embodiment.
0019. In the following description, numerous details are
set forth. It will be apparent, however, to one skilled in the
art, that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.
0020 FIG. 1 illustrates one embodiment of a computer
system 100. Computer system 100 includes a processor 110.
a processor bus 120, a memory control hub (MCH) 130, a
system memory 140, an input/output control hub (ICH)150,
a peripheral bus 155, a mass storage device/interface 170,
and input/output devices 180 to 180, and 185. Note that
the system 100 may include more or fewer elements than the
above.

0021. The processor 110 represents a central processing
unit of any type of architecture, such as embedded proces
sors, mobile processors, micro-controllers, digital signal
processors, SuperScalar processors, multi-threaded proces
sors, multi-core processors, vector processors, single
instruction multiple data (SIMD) computers, complex
instruction set computers (CISC), reduced instruction set
computers (RISC), very long instruction word (VLIW), or
hybrid architecture.
0022. The processorbus 120 provides interface signals to
allow the processor 110 to communicate with other proces
sors or devices, e.g., MCH 130. The processor bus 120 may
Support a uni-processor or multiprocessor configuration. The
processor bus 120 may be parallel, sequential, pipelined,
asynchronous, synchronous, or any combination thereof.
0023 MCH 130 provides control and configuration of
memory and input/output devices such as the system
memory 140 and the ICH 150. MCH 130 may be integrated
into a chipset that integrates multiple functionalities such as
the isolated execution mode, host-to-peripheral bus inter
face, memory control. MCH 130 interfaces to the peripheral
bus 155 directly or via the ICH 150. For clarity, not all the
peripheral buses are shown. It is contemplated that the
system 100 may also include peripheral buses such as
Peripheral Component Interconnect (PCI), PCI Express,
accelerated graphics port (AGP), Industry Standard Archi
tecture (ISA) bus, and Universal Serial Bus (USB), etc.

US 2006/0288130 A1

0024 MCH 130 includes a direct memory access (DMA)
remapping circuit 135. DMA remapping circuit 135 maps an
I/O device (e.g., one of the I/O device 180 to 180 and 185)
into a domain in the system memory 140 in an I/O trans
action. The I/O transaction is typically a DMA request.
DMA remapping circuit 135 provides hardware support to
facilitate or enhance I/O device assignment and/or manage
ment. DMA remapping circuit 135 may also be included in
any chipset other than MCH 130, such as ICH 150. It may
also be implemented, partly or wholly, in the processor 110.
or as a separate processor or co-processor to other proces
sors or devices.

0.025 The system memory 140 stores system code and
data. The system memory 140 is typically implemented with
dynamic random access memory (DRAM) or static random
access memory (SRAM). The system memory may include
program code or code segments implementing one embodi
ment of the invention. The system memory includes an
operating system (OS) 142, or a portion of the OS, or a
kernel, and an I/O driver 145. Any one of the elements of the
OS 142 or the I/O driver 145 may be implemented by
hardware, Software, firmware, microcode, or any combina
tion thereof. The system memory 140 may also include other
programs or data which are not shown.
0026 ICH 150 has a number of functionalities that are
designed to support I/O functions. ICH 150 may also be
integrated into a chipset together or separate from the MCH
130 to perform I/O functions. ICH 150 may include a
number of interface and I/O functions such as PCI bus
interface to interface to the peripheral bus 155, processor
interface, interrupt controller, direct memory access (DMA)
controller, power management logic, timer, system manage
ment bus (SMBus), universal serial bus (USB) interface,
mass storage interface, low pin count (LPC) interface, etc.
0027. The mass storage device/interface 170 provides
storage of archive information Such as code, programs, files,
data, applications, and operating systems. The mass storage
device/interface 170 may interface to a compact disk (CD)
ROM 172, a digital video/versatile disc (DVD) 173, a floppy
drive 174, and a hard drive 176, and any other magnetic or
optic storage devices. The mass storage device/interface 170
provides a mechanism to read machine-accessible media.
The machine-accessible media may contain computer read
able program code to perform tasks as described in the
following.

0028. The I/O devices 180 to 180 may include any I/O
devices to perform I/O functions including DMA requests.
They are interfaced to the peripheral bus 155. Examples of
I/O devices 180 to 180 include controller for input devices
(e.g., keyboard, mouse, trackball, pointing device), media
card (e.g., audio, video, graphics), network card, and any
other peripheral controllers. The I/O device 185 is interfaced
directly to the ICH 150. The peripheral bus 155 is any bus
that supports I/O transactions. Examples of the peripheral
bus 155 include the PCI bus, PCI Express, etc.
0029 Elements of one embodiment of the invention may
be implemented by hardware, firmware, software or any
combination thereof. The term hardware generally refers to
an element having a physical structure Such as electronic,
electromagnetic, optical, electro-optical, mechanical, elec
tro-mechanical parts, etc. The term Software generally refers
to a logical structure, a method, a procedure, a program, a

Dec. 21, 2006

routine, a process, an algorithm, a formula, a function, an
expression, etc. The term firmware generally refers to a
logical structure, a method, a procedure, a program, a
routine, a process, an algorithm, a formula, a function, an
expression, etc that is implemented or embodied in a hard
ware structure (e.g., flash memory, read only memory,
erasable read only memory). Examples of firmware may
include microcode, writable control store, micro-pro
grammed structure. When implemented in software or firm
ware, the elements of an embodiment of the present inven
tion are essentially the code segments to perform the
necessary tasks. The Software/firmware may include the
actual code to carry out the operations described in one
embodiment of the invention, or code that emulates or
simulates the operations. The program or code segments can
be stored in a processor or machine accessible medium or
transmitted by a computer data signal embodied in a carrier
wave, or a signal modulated by a carrier, over a transmission
medium. The “processor readable or accessible medium' or
“machine readable or accessible medium may include any
medium that can store, transmit, or transfer information.
Examples of the processor readable or machine accessible
medium include an electronic circuit, a semiconductor
memory device, a read only memory (ROM), a flash
memory, an erasable ROM (EROM), a floppy diskette, a
compact disk (CD) ROM, an optical disk, a hard disk, a fiber
optic medium, a radio frequency (RF) link, etc. The com
puter data signal may include any signal that can propagate
over a transmission medium such as electronic network
channels, optical fibers, air, electromagnetic, RF links, etc.
The code segments may be downloaded via computer net
works such as the Internet, intranet, etc. The machine
accessible medium may be embodied in an article of manu
facture. The machine accessible medium may include data
that, when accessed by a machine, cause the machine to
perform the operations described in the following. The
machine accessible medium may also include program code
embedded therein. The program code may include machine
readable code to perform the operations described in the
following. The term “data' here refers to any type of
information that is encoded for machine-readable purposes.
Therefore, it may include program, code, data, file, etc.

0030 All or part of an embodiment of the invention may
be implemented by hardware, software, or firmware, or any
combination thereof. The hardware, software, or firmware
element may have several modules coupled to one another.
A hardware module is coupled to another module by
mechanical, electrical, optical, electromagnetic or any
physical connections. A Software module is coupled to
another module by a function, procedure, method, Subpro
gram, or Subroutine call, a jump, a link, a parameter,
variable, and argument passing, a function return, etc. A
software module is coupled to another module to receive
variables, parameters, arguments, pointers, etc. and/or to
generate or pass results, updated variables, pointers, etc. A
firmware module is coupled to another module by any
combination of hardware and software coupling methods
above. A hardware, software, or firmware module may be
coupled to any one of another hardware, Software, or firm
ware module. A module may also be a software driver or
interface to interact with the operating system running on the
platform. A module may also be a hardware driver to
configure, set up, initialize, send and receive data to and

US 2006/0288130 A1

from a hardware device. An apparatus may include any
combination of hardware, Software, and firmware modules.

0031 One embodiment of the invention may be
described as a process which is usually depicted as a
flowchart, a flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations
as a sequential process, many of the operations can be
performed in parallel or concurrently. In addition, the order
of the operations may be re-arranged. A process is termi
nated when its operations are completed. A process may
correspond to a method, a program, a procedure, a method
of manufacturing or fabrication, etc.
0032. In a standard computing platform, the I/O sub
system components function as part of a single domain and
are managed by the operating-system software. One
embodiment of the invention provides the hardware support
required to assign I/O devices in a computing platform to
multiple domains.
0033. A domain is abstractly defined as an isolated envi
ronment in the platform, to which a sub-set of the host
physical memory is allocated. The host-physical memory is
included in the system memory 140. I/O devices that are
allowed to directly access the physical memory that is
allocated to a domain are referred to as the domains
assigned devices. The isolation property of a domain is
achieved by blocking access to its physical memory from
resources not assigned to it. Multiple isolated domains are
supported by ensuring all I/O devices are assigned to some
domain (possibly a default domain), and by restricting
access from each assigned device only to the physical
memory allocated to its domain. Domains may share
resources (e.g., memory, I/O devices) or be completely
isolated from each other at the discretion of the software or
other entity performing the partitioning.
0034). Each domain has a view of physical memory, or a
physical address space, that may be different than the system
view of physical memory. An address used by a domains
resources to access its physical address space is referred to
as a guest-physical address (GPA). The host-physical
address (HPA) refers to the system physical address used to
access memory. A domain is considered relocated if one or
more of its GPAs must be translated to a new HPA which
differs from the GPA to access its allocated system physical
memory. A domain is referred to as non-relocated if all of its
guest-physical addresses are the same as the host-physical
addresses used to access its allocated system physical
memory. Both relocated and non-relocated domains may be
allocated a Subset of the available system physical memory
and may be prevented from accessing certain portions of the
memory. Physical memory protection and partitioning
requires a physical-address translation mechanism and a
protection mechanism that can validate guest-physical
addresses generated by a domains assigned devices, includ
ing processors and I/O devices, and translate it to valid
host-physical addresses. The DMA remapping circuit 135
provides this Support.

0035. For assigning I/O devices to domains, physical
address translation and protection are applied for DMA
requests from all I/O devices in the platform. For simplicity,
the physical address translation functionality for I/O device
DMA requests is referred to as DMA remapping. In discus
sions that follow, it should be understood that the term

Dec. 21, 2006

“remapping also includes protection mechanisms in addi
tion to the mapping of addresses from one address space to
another (e.g., guest-physical addresses to host-physical
addresses).
0036 FIG. 2 is a diagram illustrating one embodiment of
I/O device assignment. The I/O device assignment is a
mapping of an I/O device to a domain in the system memory
140. The mapping is Supported by DMA remapping circuit
135. As an example, device A 210 is mapped into domain
1240 in the system memory 140. The domain 1 may have
two drivers 242 and 244 for the device A 210.

0037 DMA remapping circuit 135 includes a register set
220, a DMA remapping structure 222, and a logic circuit
224. The register set 220 includes a number of registers that
provides control or status information used by the DMA
remapping structure 222, the logic circuit 224, and the
programs or drivers for the I/O devices. The DMA remap
ping structure 222 provides the basic structure, storage, or
tables used in the remapping or address translation of the
guest-physical address to the host-physical address in an
appropriate domain. The logic circuit 224 includes circuitry
that performs the remapping or address translation opera
tions and other interfacing functions. The DMA remapping
circuit 135 may have different implementations to support
different configurations and to provide different capabilities
for the remapping or address translation operations.
0038 I/O device assignment and/or management using
the DMA remapping circuit 135 provides a number of
usages or applications. Two useful applications are OS
robustness applications and virtualization applications.
0039 OS Robustness applications: Domain isolation has
multiple uses for operating-system Software. For example,
an OS may define a domain containing its critical code and
data structures in memory, and restrict access to this domain
from all I/O devices in the system. This allows the OS to
limit erroneous or unintended corruption of data and code
through incorrect programming of devices by device drivers,
or certain classes of device failures thereby improving its
robustness. Alternatively, an OS may allow a subset of
trusted devices to access critical code and data structures in
memory but disallow access from other devices.
0040. In another usage, the OS may use domains to better
manage DMA from legacy 32-bit PCI devices to high
memory (above 4 GB). This is achieved by allocating 32-bit
devices to one or more domains and programming the
I/O-physical-address-translation mechanism to remap the
DMA from these devices to high memory. Without such
Support, the Software has to resort to data copying through
OS bounce buffers.

0041. In a more involved usage, an OS may manage I/O
by creating multiple domains and assigning one or more I/O
devices to the individual domains. In this usage, the device
drivers explicitly register their I/O buffers with the OS, and
the OS assigns these I/O buffers to specific domains, using
hardware to enforce the DMA domain protections. In this
model, the OS uses the I/O address translation and protec
tion mechanism as an I/O memory management unit (I/O
MMU).
0042 Virtualization applications: The virtualization tech
nology allows for the creation of one or more virtual
machines (VMs) on a single system. Each VM may run

US 2006/0288130 A1

simultaneously utilizing the underlying physical hardware
resources. Virtual machines allow multiple operating system
instances to run on the same processor offering benefits such
as system consolidation, legacy migration, activity partition
ing and security.
0.043 Virtualization architectures typically involve two
principal classes of Software components: (a) Virtual
machine monitors (VMMs) and (b) Virtual Machines
(VMs). The VMM software layer runs at the highest privi
lege level and has complete ownership of the underlying
system hardware. The VMM allows the VMs to share the
underlying hardware and yet provides isolation between
VMS.

0044) The limitations of software-only methods for I/O
virtualization can be removed by direct assignment of I/O
devices to VMs using DMA remapping circuit 135. With
direct assignment of devices, the driver for an assigned I/O
device runs only in the VM to which it is assigned and is
allowed to interact directly with the device hardware without
trapping to the VMM. The hardware support enables DMA
remapping without device specific knowledge in the VMM.
0045. In this model, the VMM restricts itself to a con

trolling function where it explicitly does the set-up and
tear-down of device assignment to VMs. Rather than trap
ping to the VMM for guest I/O accesses as in the case of
software-only methods for I/O virtualization, the VMM
requires the guest I/O access trapping only to protect specific
resources Such as device configuration space accesses, inter
rupt management etc., that impact system functionality.
0046) To support direct assignment of I/O devices to
VMs, a VMM manages DMA from I/O devices. The VMM
may map itself to a domain, and map each VM to an
independent domain. The I/O devices can be assigned to
domains, and the physical address translation hardware
provided by the DMA remapping circuit 135 may be used to
allow the DMA from I/O devices only to the physical
memory assigned to the assigned VM's domain. For VMs
that may be relocated in physical memory (i.e., the GPA not
identical to the HPA), the DMA remapping circuit 135 can
be programmed to do the necessary GPA-to-HPA transla
tion.

0047. With hardware support for I/O device assignment,
VMM implementations can choose a combination of soft
ware-only I/O virtualization methods and direct device
assignment for presenting I/O device resources to a VM.
0.048 FIG. 3 is a diagram illustrating one embodiment of
virtualization using DMA remapping. The virtualization
includes two devices A and B 310 and 312, the DMA
remapping circuit 135, a VMM or hosting OS320, VM 340
and VM, 360. The two devices A and B310 and 312 are two
I/O devices that are supported by the two VM 340 and 360,
respectively. DMA remapping circuit 135 directly maps
these two devices to the respective VM's 340 and 360
without specific knowledge of the VMM or hosting OS 320.
More or fewer I/O devices and VMs may be supported.
0049. The VMM or the hosting OS 320 provides support
for the underlying hardware of the platform or the system on
which it is executing. VMs 340 and 360 have similar
architectural components but are completely isolated from
each other. They are interfaced to the VMM or hosting OS
320 to access to the system hardware. VM 340 includes

Dec. 21, 2006

applications 342 and 344. More or fewer applications may
be supported. It has a guest OS 346 and a device A driver
350. The device Adriver 350 is a driver that drives, controls,
interfaces, or supports the device A310. Similarly, VM 360
includes applications 362 and 364. More or fewer applica
tions may be supported. It has a guest OS 366 and a device
B driver 370. The guest OS 366 may be the same or different
than the guest OS 346 in the VM 340. The device B driver
370 is a driver that drives, controls, interfaces, or supports
the device B 312.

0050. The DMA remapping architecture provided by the
DMA remapping circuit 135 facilitates the assigning of I/O
devices to an arbitrary number of domains. Each domain has
a physical address space that may be different than the
system physical address space. The DMA remapping pro
vides the transformation of guest-physical address (GPA) in
DMA requests from an I/O device to the corresponding
host-physical address (HPA) allocated to its domain.
0051) To support this, the platform may support one or
more I/O physical address translation hardware units. Each
translation hardware unit Supports remapping of the I/O
transactions originating from within its hardware scope. For
example, a desktop chipset implementation may expose a
single DMA remapping hardware unit that translates all I/O
transactions at the memory controller hub (MCH) compo
nent. A server platform with one or more core chipset
components may support independent translation hardware
units in each component, each translating DMA requests
originating within its I/O hierarchy. The architecture Sup
ports configurations where these hardware units may share
the same translation data structures in system memory or use
independent structures depending on Software program
n1ng.

0.052 The chipset DMA remapping circuit 135 treats the
addresses in DMA requests as guest-physical addresses
(GPA). DMA remapping circuit 135 may apply the address
translation function to the incoming address to convert it to
a host-physical address (HPA) before further hardware pro
cessing, such as Snooping of processor caches or forwarding
to the memory controller.

0053. In a virtualization context, the address translation
function implemented by DMA remapping circuit 135
depends on the physical-memory management Supported by
the VMM. For example, in usages where the software does
host-physical memory allocations as contiguous regions, the
DMA translation for converting GPA to HPA may be a
simple offset addition. In usages where the VMM manages
physical memory at page granularity, DMA remapping cir
cuit 135 may use a memory-resident address translation data
Structure.

0054 FIG. 4 is a diagram illustrating one embodiment of
an I/O address translation. The I/O address translation
includes two I/O devices 1 and 2410 and 412, the DMA
remapping circuit 135, a physical memory 420, and a guest
view 430. The I/O devices 1 and 2410 and 412 are assigned
to two separate domains. They perform I/O requests or DMA
requests to addresses DMA ADR.
0.055 DMA remapping circuit 135 maps these two
devices to corresponding domains allocated in the physical
memory 420. The physical memory 420 is partitioned into
memory segments 422 and 424 and memory segments 426

US 2006/0288130 A1

and 428. More or fewer allocated memory segments may be
assigned to one or more of the domains. In FIG. 4, memory
segments 422 and 424 are assigned to domain 1442 and
correspond to device 1410 and memory segments 424 and
428 are assigned to domain 2444 and correspond to device
1412. In the example illustrated in FIG. 4, device 1410 is
mapped to the domain 1422 and the device 2412 is mapped
or assigned to the domain 2428.
0056. The guest view 430 is a logical view from the guest
I/O devices. It includes domain 1442 and domain 2444. The
domain 1442 corresponds to the two memory segments 422
and 424 in the physical memory 420. The domain 2444
corresponds to the two memory segments 426 and 428. For
a particular guest, domains may be allocated portions of the
guest view 430 of physical memory. Each of the domains
may be assigned to one or more I/O devices. The
DMA ADR address from the device 1410 is mapped to the
DMA ADR1 located within the address space from 0 to L
of the domain 1442. Similarly, the DMA ADR address from
the device 2412 is mapped to the DMA ADR2 located
within the address space from 0 to K of the domain 2444.
0057 The software responsible for the creation and man
agement of the domains allocates the physical memory 420
for both domains and sets up the GPA-to-HPA address
translation function in the DMA remapping circuit 135. The
DMA remapping circuit 135 translates the GPAS generated
by the devices 410 and 412 to the appropriate HPAs.
0.058 FIG. 5 is a diagram illustrating one embodiment of
a DMA remapping structure 222. DMA remapping structure
222 receives a source identifier 510 and includes a root table
520, a number of context tables, of which two are shown
530, and 530, and a number of address translation struc
tures, of which two are shown 540 and 540. The remap
ping structure 222 receives the source identifier 510 and a
guest-physical address from the I/O device, and translates
the guest-physical address in an assigned domain to a
host-physical address. The translation may be performed
using translation tables arranged in a hierarchical manner.
The translation mechanism starts from the root table 520 and
traverses, or walks, through the context tables (e.g., 530 and
530m) and the address translation structures (e.g., 540 and
540).
0059) The requester identity of the I/O transactions
appearing at DMA remapping circuit 135 determines the
originating device and the domain that the originating I/O
device is assigned to. The source identifier 510 is the
attribute identifying the originator of an I/O transaction.
DMA remapping circuit 135 may determine the source
identifier 510 of a transaction in implementation specific
ways. For example, some I/O bus protocols may provide the
originating device identity as part of each I/O transaction. In
other cases, such as for chipset integrated devices, the Source
identifier 510 may be implied based on the chipsets archi
tecture or implementation.

0060 For PCI Express devices, source identifier 510 is
mapped to the requestor identifier provided as part of the I/O
transaction header. The requestor identifier of a device
includes its PCI Bus/Device/Function numbers assigned by
the configuration Software and uniquely identifies the hard
ware function that initiates the I/O request. In one embodi
ment, the source identifier 510 includes a function number
512, a device number 514, and a bus number 516. In the

Dec. 21, 2006

example illustrated in FIG. 5, the function number 512 is
K-bit wide, the device number 514 is L-bit wide, and the bus
number 516 is M-bit wide. The bus number 516 identifies
the bus on which the I/O transaction is generated. The device
number 514 identifies the specific device on the identified
bus. The function number 512 identifies the specific function
of the I/O device. The source identifier 510 is used to index
or look up the root table 520 and the context tables (e.g.,
530, and 530,). In the example illustrated in FIG. 5, their
paths through the DMA remapping structure 222 are illus
trated for two I/O transactions using bus 0 and bus m,
respectively.

0061 For PCI Express devices, the root table 520 stores
root entries 525 to 525 indexed by the source identifier
510, or the bus number 516 of the source identifier 510. The
root entries function as the top level structure to map devices
on a specific bus to its respective parent domain. The root
entry 0525 corresponds to the I/O transaction using bus 0.
The root entry m 525, corresponds to the I/O transaction
using bus m. The root entries 0525 and 525 point to the
context tables 530 and 530, respectively. In one embodi
ment, these entries provide the base address for the corre
sponding context table.

0062) The context tables 530 (e.g., 530 and 530) store
context entries 535 (e.g., 535, and 535) referenced by the
root entries. The context entries 535 map the I/O devices to
their corresponding domain(s). The device number 514 and
the function number 512 are used to obtain the context entry
corresponding to the I/O transaction. In one embodiment,
they form an index to point to, or reference, the context table
referenced by the corresponding root entry. There are
22*2 or 2^*** context entries in all context tables. In
one embodiment, K=3, L=5, and M=8, resulting in a total of
64K entries, organized as 2(2=256) context tables. In the
example shown in FIG. 4, the two context entries for the two
I/O transactions are the context entry 535 in the context
table 530 and the context entry 535, in the context table
530. The context entries 535, and 535 point to the address
translation structures 540 and 540, respectively.
0063. The address translation structures 540 (e.g., 540
and 540) provide the address translation to the host
physical address using the guest-physical address corre
sponding to the I/O transaction. Each of the address trans
lation structures may be a multi-table 550, a single table 560,
or a base/bound 570 corresponding to the three translation
mechanisms using multi tables, single table, and base? bound
translations, respectively. In the following description, a
regular page size of 4 KB is used. As is known by one skilled
in the art, any other sizes may also be used.

0064.) To provide software flexible control of DMA
remapping circuit 135, DMA remapping circuit 135 has a
number of registers included in register set 220 shown in
FIG. 2. Register set 220 is located in the host-physical
address space through a Base Address Register (BAR). The
translation hardware BAR is exposed to software in an
implementation dependent manner. This may be exposed as
a PCI configuration space register in one of the chipset
integrated devices, such as the memory controller device. In
one embodiment, the BAR provides a minimum of 4K
address window. A register in the register set 220 may have
a number of fields. A field may be asserted or negated. When
a field consists of only a single bit, assertion implies that the

US 2006/0288130 A1

bit is set to a defined logical state (e.g., TRUE, logical one)
and negation implies that the bit is reset to a defined logic
state that is complementary to the state of the assertion (e.g.,
FALSE, logical zero). In the following, the use of an asserted
or negated State is arbitrary. A field may be asserted to
indicate a first state and negated to indicate a second state,
or vice versa.

0065. A field in a register may be programmed, initial
ized, or configured by DMA remapping circuit 135 and/or by
the Software. It may also correspond to a specialized hard
ware circuit or a functionality implemented by a data
structure, a function, a routine, or a method. In the follow
ing, fields are grouped into registers. The grouping, format
ting, or organization of these fields or bits in the following
registers is for illustrative purposes. Other ways of grouping,
formatting, or organizing these fields may be used. A field
may also be duplicated in more than one registers. A register
may have more or fewer than the fields as described. In
addition, registers may be implemented in a number of
ways, including as storage elements or memory elements.

0.066 The DMA remapping architecture described above
includes DMA that is translated using single or multiple
level page tables (TLBs), as shown in FIG. 5. Such an
architecture is suitable for legacy software usages (e.g.,
where the OS or VMM doesn’t know about driver DMA
usages). Further, single or multiple level page table trans
lations may offer good-to-average DMA performance for
most I/O devices (as measured by DMA throughput). How
ever, Such a system has limitations.
0067. One limitation is that the worst case latency intro
duced by multiple sequential memory accesses for the
page-walk on TLB misses is prohibitive for I/O devices
whose performance depends on guaranteed worst case (iso
chronous) DMA performance. Examples of these types of
devices include PCI Express devices Supporting isochronous
DMA (Such as a high performance audio controller), display
engines of graphics devices, and USB controller devices.
0068 Another limitation is that for non-legacy software
usages (e.g., newer OSs and VMMs) that may know more
about driver DMA usages, the current architecture does not
provide any means for software to provide DMA usage hints
to improve DMA-remapping performance.

0069 Finally, the memory access latencies for page
walks increase as, for example, platform configurations
move to memory controllers implemented within the pro
cessor complex.
Address Window Based DMA Address Translation

0070 Based on the above-described limitations of DMA
remapping architecture, DMA remapping circuit 135 is
configured to support address window-based address trans
lation in addition to the single and multi-level page-table
based address translation. Thus, each DMA remapping cir
cuit 135 may support a number of address windows, with the
exact number of address windows Supported being a func
tion of hardware implementation. In one embodiment, the
system firmware assigns an address window (AW) range
(start and end AW numbers) for each DMA remapping
circuit 135.

0071. In a further embodiment, the chipset supports an
additional caching structure in addition to existing remap

Dec. 21, 2006

ping circuit 135 caching structures. These additional struc
tures are referred to as AWPTR tables implemented for
address window translations. AWPTR tables will be dis
cussed below in greater detail.
0072 According to one embodiment, a device-physical
address (DPA) refers to a target address specified by I/O
devices in its DMA requests. In one embodiment, the DPA
address space spans across all I/O devices in the computer
system and is sub-divided into multiple AWs. In such an
embodiment, each AW covers a contiguous 2 MB region of
DPA space. For example, an AWO may cover DPA 0 to 2
MB, an AW1 may cover DPA 2 MB to 4 MB, etc. Given any
DPA, the associated AW number is determined by examin
ing bits in the DPA (e.g., AW#:=DPA63:21).
0073. In a further embodiment, each AW is described by
a DPA-to-HPA translation structure in memory called an
Address Window page-table (AWPT). The entries in an
AWPT are called AW page-table-entries (AWPTE). Each
AWPTE provides the translation for a 4 KB region (referred
as a slot) within the AW. Thus, there are 512 slots in an AW.
and the AWPT associated with each AW is 4KB in size (with
512 AWPTEs). According to one embodiment, AWPTEs are
64-bits in size and have the format illustrated in FIG. 6. In
one embodiment, an AWPTE includes access control bits
such as bits (“read' and “write’) specifying if read accesses
and/or write accesses are allowed to the DPA used to access
the AWPTE. In one embodiment, the address field
(“ADDR") specifies the mapping of a subset of the bits in
the DPA to HPA. In one embodiment, the remaining bits
(e.g., bits 11:0) may be passed unmodified from the DPA
to the HPA. Many other configurations are possible and do
not limit the scope of the invention.
0074 The system software can bind one or more AWs to
specific I/O devices. For this, the driver registers its DMA
buffers (e.g., in the host-physical address space) with the AW
bound to the device to generate a DPA mapping. The driver
for a device identifies its target buffers to the device hard
ware using its DPA. Addresses in DMA requests from the
device are DPAs that are translated by remapping circuit 135
based on the AW bound to the device and the DPA-to-HPA
translations for the address window.

0075 FIG. 7 illustrates one embodiment of a process for
translating DMA addresses in the presence of address win
dows. FIG. 7 illustrates the use of AWPTs and AWPTR
tables to provide the translation. In one embodiment, the
AWPTR table in remapping circuit 135 has as many entries
as the number of address windows Supported by its remap
ping circuit 135. Entries in an AWPTR table are associated
with a specific AW configured on its remapping circuit 135.

0.076 Further, each AWPTR table entry includes the HPA
to the base of the AWPT for the particular AW. Each AWPTR
table entry is tagged with the device-id of the I/O device to
which the associated AW is allocated. In one embodiment,
the AWPTR table structure is memory-mapped to allow
software to modify entries in it. The base address of the
AWPTR table is referred as AWPTR TABLE BASE.
AWPTR table entries are called AWPTRs, and a specific
entry at a particular index in the cache is notated as AWPTR
index.
0.077 FIG. 8 illustrates one embodiment of an AWPTR
table structure for a chipset implementing two remapping

US 2006/0288130 A1

circuits 135, with each configured to support two AWs (4 to
5, and 6 to 7, respectively). According to one embodiment,
although the AWPTR table is stored in registers, the table
appears to Software to reside at an address specified by
AWPTR TABLE BASE.

0078. Further, in an embodiment, each entry in the
AWPTR table includes Valid, Tag and Data fields. The Valid
field indicates whether an entry is valid. In another embodi
ment, there is no valid bit and the remapping circuit 135
treats all AWPTR table entries as being valid. The Tag field
indicates the particular device ID to which the entry is
associated. For example, in FIG. 8 software has bound AW
4 to an I/O device with device ID 11 and AW 6 to an I/O
device with device ID 18. In one embodiment, identification
of a device originating an access (e.g., determination of
device ID) may include information on the bus, device and
function within the device. The originator of a DMA request
is referred to herein as a “device' or “requesting I/O device'
and is identified by a “device ID. However, it should be
understood that in other embodiments a single physical
device may be identified by one or more device-IDs.
0079 According to a further embodiment, the remapping
circuit 135 supports a set of 16-bit memory mapped regis
ters, called AW FLUSH registers. FIG. 9 illustrates one
embodiment of AW FLUSH flush registers. The
AW FLUSH flush registers are implemented as a mecha
nism for software to invalidate translations which may be
cached by one or more elements of the remapping circuit
135. In one embodiment, one AW FLUSH flush register is
implemented for each AW Supported by a remapping circuit
135.

0080. In one embodiment, the base address of this
memory-mapped register range (AW FLUSH BASE) is
initialized by platform firmware. For example, as illustrated
in FIG. 9, if a chipset component Supports two remapping
circuits 135 and the remapping circuits 135 support AWs 4
to 5 and 6 to 7, respectively, the chipset supports a total of
4 AW FLUSH registers. FIG. 10 illustrates one embodi
ment of a format for each AW FLUSH registers.
0081 Referring back to FIG. 7, address window based
translation occurs if specified in the context entry for an I/O
device. In one embodiment, the context entries may be
cached by the remapping circuit 135, eliminating the need to
access memory to make this determination. In a further
embodiment, the context entry caching structure is directly
accessible by Software, allowing software to pre-populate
the cache to reduce latencies for the first access to a context
entry. In this way, Software can guarantee that the worst-case
memory access behavior for particular devices is limited to
a single memory access, as described below.
0082 If address window based translation is specified,
remapping circuit 135 checks to determine if the AW to
which the DPA in the DMA request belongs is one of the
AWs bound to the specified device. According to one
embodiment, remapping circuit 135 performs this check by
first finding the address window number (AWH) correspond
ing to the DPA in the DMA request (e.g., computed by
AW#=DPA(HAW-1):21), where HAW is the supported
physical address width of the system).
0083) Subsequently, it is determined if the AWii is allo
cated to the remapping circuit 135 translating the DMA

Dec. 21, 2006

request. If AWii is not allocated to the remapping circuit 135,
a translation fault occurs. In one embodiment, a translation
fault may generate an interrupt to the processor. In another
embodiment, Software managing the remapping circuit 135
is responsible for periodically polling the remapping circuit
135 to determine if any translation faults have occurred. If
AWii is valid, the associated AW table entry index is found
(computed by INDEX=AWH-START AW). Next, the AW
table entry at AWPTRINDEX) is accessed, and it is deter
mined whether it is tagged with the device-id in the DMA
request. If the check succeeds, the AWPTR value indicates
the base of the AW page-table. The value in DPA 21:12
field is used to fetch the appropriate AWPTE in the AW
page-table.
0084. Based on the programming of the AWPTE, the
DMA request is either completed to the HPA specified in the
AWPTE, or it is blocked. The AWPTE processing is similar
to how the leaf PTEs are processed in the remapping circuit
135 for the multi-level I/O page-tables described. If the
translation Succeeds, in one embodiment, it is cached by the
remapping circuit 135 in an I/O translation-lookaside buffer
(I/O TLB).
0085. As discussed above, remapping circuits 135 per
forms address window based translation in addition to single
and multi-level page-table based address translation. FIG.
11 is a flow diagram illustrating one embodiment of the
operation of a remapping circuit 135 performing address
window based translation, and single and multi-level page
table based address translation.

0086. At processing block 1110, an I/O device generates
a DMA request. At processing block1120, the DMA-request
is processed conventionally via a remapping circuit 135. At
decision block 1130, it is determined whether a translation
for the address specified in the DMA request (e.g., tagged
with the device-id in the transaction) is found in the I/O
TLB. If the translation for the address specified in the DMA
request is found in the I/O TLB, the translation is completed
without any memory access, processing block 1140. This
includes DMA that may be translated using single- or
multi-level page-tables or through address windows.
0087. If the translation for the address specified in the
DMA request is not found in the I/O TLB (e.g., miss
detected), the context-cache is looked up to determine the
translation behavior for the device, processing block 1150.
At decision block 1160, it is determined whether the trans
lation is to be blocked or processed through single-level or
multi-level page-tables. If the translation is to be blocked or
processed through single-level or multi-level page-tables,
the request is processed as described in the conventional
remapping circuit 135 architecture described above with
respect to FIGS. 1-5, processing block 1170. However, if the
translation is not to be blocked or processed through single
level or multi-level page-tables, the context-entry for the
device specifies address window based translation. Conse
quently, address window based translation is performed as
discussed above with respect to FIG. 7, processing block
1180.

0088 FIG. 12 illustrates another embodiment of com
puter system 100. In this embodiment, the chipset includes
a single control hub 1230 as opposed to a separate MCH and
ICH. In addition, memory control is located in processor
110. Consequently, system memory 140 is coupled to pro

US 2006/0288130 A1

cessor 110. In one embodiment, the remapping circuit 135 is
included in the controller hub 1230. In another embodiment,
remapping circuit 135 is included in processor 110 or in the
system memory 140.

0089. The above described remapping architecture
enables 4K granular DMA address translations similar to
multi-level page-tables, and yet offers a worst case perfor
mance guarantee which is limited to the overheads associ
ated with a single memory lookup.
0090 Whereas many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular embodi
ment shown and described by way of illustration is in no
way intended to be considered limiting. Therefore, refer
ences to details of various embodiments are not intended to
limit the scope of the claims, which in themselves recite only
those features regarded as the invention.

What is claimed is:
1. An apparatus comprising a remapping circuit to facili

tate access of one or more input/output (I/O) devices to a
memory device using direct memory access (DMA) trans
actions, the remapping circuit including a first translation
mechanism to perform memory address translations for I/O
DMA transactions via address window-based translations.

2. The apparatus of claim 1 further comprising a second
translation mechanism to perform memory address transla
tions for I/O DMA transactions via at least one of single
level page tables and multi-level page tables.

3. The apparatus of claim 1 wherein the first translation
mechanism includes an address window pointer table
(AWPTR) to perform the address window-based transla
tions.

4. The apparatus of claim 3 wherein the AWPTR com
prises at least one entry including a base address of an
address window page table (AWPT) for at least one address
window (AW).

5. The apparatus of claim 4 wherein each AWPTR entry
is tagged with a device ID indicating an I/O device to which
an associated AW is allocated.

6. The apparatus of claim 5 wherein the device ID further
includes information indicating at least one of a bus, a
device, and a function within the device.

7. The apparatus of claim 4 wherein each AWPT entry
provides a translation for a 4 KB slot within the AW.

8. The apparatus of claim 4 wherein each AWPT entry
includes access control bits specifying if read accesses or
write accesses are allowed to a device-physical address used
to access the AWPT entry.

9. A method comprising:
receiving a direct memory access (DMA) request at a

remapping circuit from a requesting input/output (I/O)
device;

determining if the DMA request is permitted to complete;
and

translating a device-physical address (DPA) to a host
physical address (HPA) in memory if the access is
permitted.

10. The method of claim 9 wherein determining if the
DMA request is permitted to complete comprises:

Dec. 21, 2006

calculating a requested address window (AW) associated
with the DPA;

determining if the requested AW is bound to the remap
ping circuit; and

determining if the requested AW is bound to the request
ing I/O device.

11. The method of claim 10 wherein a translation fault
occurs if it is determined that the requested AW is not bound
to the requesting I/O device.

12. The method of claim 10 wherein the translation fault
occurs if it is determined that the requested AW is not bound
to the remapping circuit.

13. The method of claim 9 further comprising:

finding an associated AW pointer table entry index for the
DPA; and

looking up the AW pointer table entry at the index.
14. The method of claim 13 further comprising determin

ing whether the AW pointer table entry is tagged with a
device ID corresponding to the requesting I/O device.

15. The method of claim 13 further comprising accessing
an AW page table entry (AWPTE) in memory associated
with the AW pointer table entry and the DPA.

16. The method of claim 15 further comprising calculat
ing the HPA associated with the DPA using the AWPTE.

17. The method of claim 16 further comprising:
determining if the DMA request is allowed to complete

based on at least one permission bit in the AWPTE and
a type of the DMA request; and

preventing the completion of the DMA request if at the
least one permission bit does not allow the type of the
DMA request.

18. The method of claim 9 further comprising caching the
completed translation.

19. A computer system comprising:

a main memory device;

one or more input/output (I/O) devices to access the
memory device via direct memory access (DMA); and

a memory controller, coupled to the memory device,
having a DMA remapping circuit to facilitate the access
of the one or more I/O devices to the memory device,
the DMA remapping circuit comprising:

a first translation mechanism to perform memory
address translations for I/O DMA transactions via
address window-based translations.

20. The computer system of claim 19 further comprising
a second translation mechanism to perform memory address
translations for I/O DMA transactions via at least one of
single-level page tables and multi-level page tables.

21. The computer system of claim 19 wherein the memory
device is subdivided into at least one address windows
(AWs).

22. The computer system of claim 21 wherein the memory
device further comprises an AW page table (AWPT) that
defines a device-physical address (DPA) to host-physical
address (HPA) translation.

US 2006/0288130 A1

23. The computer system of claim 22 wherein the AWPT
comprises at least one AW page table entry (AWPTE), said
AWPTE providing a translation for at least one address
within the AW.

24. The computer system of claim 21 wherein each of the
at least one AWs are bound to an I/O device.

25. The computer system of claim 22 wherein the first
translation mechanism includes a table (AWPTR) to perform
the address window-based translations.

Dec. 21, 2006

26. The computer system of claim 22 wherein the AWPTR
comprises at least one entry, said entry including a base of
the AWPT for a particular AW.

27. The computer system of claim 26 wherein each
AWPTR entry is tagged with a device ID indicating an I/O
device to which an associated AW is allocated.

