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IMAGE ANALYSIS SYSTEMS AND RELATED
METHODS

All subject matter of the Priority Application(s) is incorporated herein by reference

to the extent such subject matter is not inconsistent herewith.

BACKGROUND

Microscopy techniques are used to diagnosis several diseases, hematology
conditions, etc. Some microscopy techniques require specialized microscopes or other
equipment to achieve sufficient resolution for proper diagnoses.

Microscopes can be used to detect analytes such as malaria using a smear, such as
a thick blood smear. Typically, the microscope includes an oil immersion lens having a
relatively shallow depth of field to achieve resolutions required to detect the parasitic
protozoans that cause malaria. The lens typically exhibits a depth of field that is only a
few micrometers, about a micrometer, or less than a micrometer. Typically, an entire
thickness of a smear is imaged to conclusively diagnose a condition indicated by the
presence of the analyte. However, the thickness of the smear is greater than a few
micrometers, which can cause problems with diagnosis, depending on the focal plane of
the image. To ensure that the entire smear is analyzed, the distance between the sample
and the lens can be decreased or increased to capture multiple focal planes of each field-
of-view (FoV) in a smear.

A typical microscope includes a conventional focusing system configured to
increase or decrease a distance between the lens and the sample in micrometer
displacements. However, such a conventional focusing system can be expensive and
complex, which makes the conventional focusing systems unsuitable for areas where is
malaria is most prevalent, such as in poverty-stricken areas. Typical diagnostic measures
include employing a human technician to scan the slide in the microscope to visually
determine if the analyte is present. However, factors that limit the sensitivity and
consistency of human microscopists include inter- and intra-person variability,
inattentiveness, eyestrain, fatigue, and lack of training. Lack of training is especially
relevant in low-resource settings, where highly-qualified microscopists can be in short

supply compared to the burden of diseases such as malaria. Additionally, human
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technicians may not be able to identify or quantify particularly low concentrations of an
analyte (e.g., low parasitemia) in a sample slide.
Therefore, developers and users of microscopes continue to seek improvements to

microscopes and diagnostic techniques for use in determining a presence of analytes.

SUMMARY

Embodiments disclosed herein relate to systems and methods for diagnosing
identifying, and quantifying biological analytes in biological samples. In an embodiment,
a system for determining the presence of an analyte in blood is disclosed. The system
includes at least one memory storage medium configured to store a plurality of images of a
sample slide. The plurality of images include a plurality of fields-of-view, each including
a unique x and y coordinate of the sample slide; and a plurality of focal planes, each
having a unique z coordinate of the sample slide. The system includes at least one
processor operably coupled to the at least one memory storage medium. The at least one
processor is configured to determine and apply a white balance transform to each of the
plurality of images effective to produce a plurality of color-corrected images. The at least
one processor is configured to determine and apply an adaptive grayscale transform to
each of the plurality of images to provide an adaptive grayscale intensity image for each of
the plurality of images. The at least one processor is configured to detect and identify one
or more candidate objects in the plurality of color-corrected images and the adaptive
grayscale intensity images. The at least one processor is configured to extract and score
the one or more candidate objects based at least in part on one or more characteristics of
the one or more candidate objects, filter the one or more candidate objects based at least in
part on the score, and output one or more color-corrected image patches and one or more
adaptive grayscale intensity image patches for each filtered candidate object. The at least
one processor is configured to extract one or more feature vectors from the color-corrected
image patches and the adaptive grayscale intensity image patches and output the one or
more feature vectors. The at least one processor is configured to classify each feature
vector as corresponding to an artifact or an analyte. The at least one processor is
configured to determine if the feature vectors classified as analytes are above or below a

threshold level associated with a positive diagnosis.
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In an embodiment, a method of determining the presence of an analyte in blood is
disclosed. The method includes receiving a plurality of images of a sample slide. The
plurality of images include a plurality of fields-of-view, each including a unique x and y
coordinate of the sample slide; and a plurality of focal planes, each having a unique z
coordinate of the sample slide. The method includes applying a white balance transform
to each of the plurality of images effective to produce a plurality of color-corrected
images. The method includes applying an adaptive grayscale transform to each of the
plurality of images to provide an adaptive grayscale intensity image for each of the
plurality of images. The method includes detecting and identifying one or more candidate
objects in the plurality of color-corrected images and the adaptive grayscale intensity
images. The method includes filtering the one or more candidate objects based at least in
part on a score that is based at least in part on one or more characteristics thereof and
outputting one or more color-corrected image patches and one or more adaptive grayscale
intensity image patches for each filtered candidate object. The method includes extracting
one or more feature vectors from the color-corrected image patches and the adaptive
grayscale intensity image patches and outputting the one or more feature vectors. The
method includes classifying each feature vector as corresponding to an artifact or an
analyte. The method includes determining if the feature vectors classified as analytes are
above or below a threshold level associated with a positive diagnosis.

In an embodiment, a system for determining the presence of a malaria parasite in
blood is disclosed. The system includes a microscope configured to capture a plurality of
images of a blood slide. Each of the plurality of images includes a plurality of fields-of-
view, each including a unique x and y coordinate of the blood slide; and a plurality of
focal planes, each having a unique z coordinate of the blood slide. The system includes at
least one memory storage medium configured to store the plurality of images of the blood
slide. The system includes at least one processor operably coupled to the at least one
memory storage medium. The at least one processor is configured to determine and apply
a white balance transform to each of the plurality of images effective to produce a plurality
of color-corrected images. The at least one processor is configured to determine and apply
an adaptive grayscale transform to each of the plurality of images to provide an adaptive
grayscale intensity image for each of the plurality of images. The at least one processor is
configured to detect and identify one or more candidate objects in the plurality of color-

corrected images and the adaptive grayscale intensity images. The at least one processor
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is configured to extract and score one or more characteristics of the one or more candidate
objects, filter the one or more candidate objects based at least in part on the score. The at
least one processor is configured to extract color-corrected image patches and adaptive
grayscale intensity image patches of the one or more filtered candidate objects and output
one or more feature vectors for each filtered candidate object. The at least one processor
is configured to classify each feature vector as an artifact or an analyte. The at least one
processor is configured to determine if the feature vectors classified as analytes are above
or below a threshold level associated with a positive diagnosis.

Features from any of the disclosed embodiments can be used in combination with
one another, without limitation. In addition, other features and advantages of the present
disclosure will become apparent to those of ordinary skill in the art through consideration
of the following detailed description and the accompanying drawings.

The foregoing summary is illustrative only and is not intended to be in any way
limiting. In addition to the illustrate aspects, embodiments, and features described above,
further aspects, embodiments, and features will become apparent by reference to the

drawings and the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a diagram of the malaria life cycle.

FIGS. 2A and 2B are schematics of ring-form parasites.

FIG. 2C is a schematic view of a plurality of images, according to an embodiment.

FIG. 3A is a schematic of a plurality of modules of a system to automatically
detect and quantify one or more analytes in a sample, according to an embodiment.

FIGS. 3B and 3C are schematics of a plurality of images input into a module of
the system of FIG. 3A, according to an embodiment.

FIG. 4 is a detailed schematic of an image preprocessing module of the system of
FIG. 3A, according to an embodiment.

FIG. 5 is an illustration of the relationship between various vectors in a color value
space of red, green and blue axes, according to an embodiment.

FIGS. 6A and 6B are grayscale intensity histograms for various pixels of various

grayscale images, according to different embodiments.
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FIG. 7 is a side-by-side comparison of images of different FoVs having multiple
focal planes, where one FoV includes a parasite and the other FoV includes an artifact
therein, according to an embodiment.

FIG. 8 is a detailed schematic of a candidate object detection module of the system
of FIG. 3A, according to an embodiment.

FIG. 9 is a detailed schematic of a feature extraction module of the system of FIG.
3A, according to an embodiment.

FIGS. 10A and 10B are illustrations of light rays being refracted to different focal
planes through a simple lens and a lens with an achromatic correction, respectively.

FIG. 10C is a graph of focus versus wavelength curves for the simple lens and lens
with an achromatic correction shown in FIGS. 10A and 10B.

FIG. 11 is a graph of the absorption spectrum of a Giemsa stained DNA sample,
according to an embodiment.

FIG. 12 is a schematic of a system for determining a presence of an analyte in a
sample, according to an embodiment

FIG. 13 is a flow diagram of a method for determining the presence of an analyte

in a sample, according to an embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein relate to image analysis systems, and methods of
using the same. The images disclosed herein include images in any computer readable
format, such as png, jpeg, gif, tiff, bmp, or any other suitable file type. The image analysis
systems and related methods herein can resolve and analyze images throughout an entire
vertical thickness (e.g., substantially parallel to an optical or z-axis on a microscope) and
lateral sections (e.g., x and y axis based dimensions) of a sample smear (e.g., a thick blood
smear) on a slide. The systems and methods herein can identify objects in different focal
planes (z-levels) that are in fact the same object, but which appear different due to
differing focal depth or which have different x-y coordinates due to camera jitter. As
explained in more detail below, the blood smear can be analyzed using multiple fields-of-
view (FoVs) defining discrete lateral (sub)sections of the blood smear and multiple focal
planes defining discrete (vertically stacked) planes throughout the thickness of the blood
smear. The image analysis systems herein can accurately identify a presence and, in some

embodiments, species or stages of parasite(s) or other analytes in a sample. The systems
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and methods disclosed herein can provide one or more of automatic diagnosis and of
quantification of one or more analytes in biological specimens at a performance level
equal to or better than a highly-trained human microscopist. As used herein, the term
“analyte” is not intended to be limited to a specific chemical species, but is intended to
extend at least to one or more of parasites (e.g., malaria, etc.), blood components, or other
objects in a sample for which an analysis is carried out. The systems and methods
disclosed herein provide a comprehensive machine learning framework, which uses
computer vision and machine learning techniques including support vector machines
(SVMs) and convolutional neural networks (CNNs) to detect analytes.

The image analysis systems and related methods herein include a plurality of
modules (e.g., programs or algorithms) configured to carry out different functions to
accurately determine a presence of an infection or a condition in a sample even at low
concentrations (e.g., low parasitemia) and without the need for human observation. The
plurality of modules can include a preprocessing module, a candidate detection module, a
feature extraction module, a classification module, and a diagnosis module. While
described herein as individual “modules” for clarity, each of the “modules” can be one or
more algorithms, or machine-readable programs based on the same, stored in at least one
memory storage device and can be executable by a processor operably coupled thereto.
The plurality of modules can include discrete programing modules and submodules stored
in the memory storage medium of at least one controller (e.g., computer) or in one or more
processors therein each having programming configured to carry out the functions of the
related modules.

Generally, each module is configured to cause the controller or processor to
perform the functions described below. While a high level overview of the functions are
described generally immediately below for ease of understanding, specific aspects of each
module are disclosed in more detail below.

The image preprocessing module can generate adaptively white balanced color
images and adaptive grayscale intensity images of multiple images, including multiple
FoVs and a plurality of focal planes (e.g., each of the plurality of focal planes being
substantially perpendicular to the optical axis) of a sample slide. The candidate detection
module can identify one or more candidate objects based at least in part on one or more
attributes of candidate objects in the images (e.g., intensity, color type, level of focus, or

other attributes), identify and exclude one or more artifacts (e.g., non-analyte objects such
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as non-parasitic objects including white blood cells in the sample) based on the same, and
can extract color-corrected image patches and adaptive grayscale intensity image patches
containing each candidate object. The feature extraction module can identify and output
one or more data sets of the candidate object(s) in the specific image (e.g., one or more
vectors of a specific FoV and focal plane thereof). The feature extraction module can base
said identification on manual features including one or more of best focus score of the
candidate object, the standard deviation (or other measure of dispersion) of the focus score
across the focal planes in a FoV, or a red-shift score. The feature extraction module can
additionally or alternatively identify and output one or more images based at least in part
on one or more automatic features including computer-learned characteristics (e.g., one or
more vectors learned by a convolutional neural network) of positive samples, negative
samples, or both. The classification module can be configured to determine if the
extracted features have high probability scores (indicating that an analyte or artifact is
present) based at least in part on weights learned from known positive and negative
samples (e.g., including presence, type, stage, or species of a parasite) and determine an
estimate of the concentration of the analyte (e.g., the parasitemia) in the sample.

The following mathematical notations will be used in the equations used in the
algorithms disclosed throughout this disclosure. A lowercase or uppercase letter in italics
represents a scalar value (e.g., k). A lower case letter in bold italics represents a column
vector (e.g., £). An uppercase letter in bold italics represents a matrix (e.g., 4). The
superscript T stands for the matrix transpose, (e.g., £7). Image plane coordinates are
referred to as (x, y), and coordinates in the vertical direction, that is, parallel to the optical
axis are referred to as (z).

The image analysis system of the present disclosure receives as input a series of
images of a biological specimen acquired from a high-resolution image capture device
(e.g., high-resolution microscope), and produces as output, diagnostic information about
the status of the biological specimen with respect to the presence, species, and count of
one or more analytes (e.g., disease agents such as parasites or naturally-occurring
components such as blood components).

In an embodiment, the biological specimen includes a microscope slide of a sample
(e.g., ablood smear) and the image analysis system herein analyzes one or more acquired
sample slide images to determine the presence or absence of one or more analytes (e.g.,

malaria parasites) therein. The image analysis system herein analyzes sample slides for
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the presence, count, and species identification of an analyte. While the systems and
methods disclosed herein are not limited to use with blood smears, the blood smear will be
used throughout this disclosure as an embodiment to illustrate concepts and it should be
understood that the disclosure applies to other biological samples without limitation.

In an embodiment, blood smears are stained with Giemsa stain prior to
histopathological diagnosis of one or more analytes therein such as malaria. The Giemsa
stain is a combination of Methylene blue, Eosin Y, and Azure B; it stains erythrocytes (red
blood cells, hereinafter “RBCs”) pink and leukocyte nuclei (white blood cells, hereinafter
“WBCs”) dark magenta. Malaria parasite nuclei will also stain magenta, although not as
dark in appearance as leukocyte nuclei. Malaria parasite cytoplasm will stain light to
medium blue. While the systems and methods disclosed herein are not limited to detecting
malaria, malaria will be used throughout this disclosure as an example embodiment to
illustrate concepts and it should be understood that the disclosure applies to other analytes
without limitation. Further, other stains and methods of staining may be used which are
complementary to the analyte being tested. For example, suitable stains may include a
Field stain, Jaswant Singh Bhattacharya (JSB) stain, Leishman stain, etc.

In an embodiment, the systems and methods herein can be used to detect and
quantify an amount of an analyte in a sample based at least in part on one or more of
shape, color, or size of the analyte. In some embodiments, the analyte can have more than
one conformation or appearance. The systems and methods herein can be configured to
detect or quantify the one or more conformations, types, or species of analytes. As an
example embodiment, human malaria parasites belong to five different species of the
genus Plasmodium: falciparum, vivax, ovale, malariae, and knowlesi. Individuals of each
of these species go through a complex series of stages in their life cycle. At each stage,
the parasite takes on a different physical appearance, and the systems and methods herein
can detect and identify parasites from each of the five different species.

FIG. 1 is a diagram of the malaria life cycle courtesy of the National Institute of
Allergy and Infectious Diseases. The right side of FIG. 1 shows stages in the malaria
parasite life cycle that take place within a mosquito. The left side of the figure shows the
stages within an infected human. In the mosquito, malaria parasites start out as
gametocytes, both male and female. The gametocytes reproduce to form gametes, which
eventually develop and multiply into sporozoites. The sporozoites migrate to the mosquito

salivary gland. When the mosquito bites a human, the sporozoites enter the bloodstream

8



10

15

20

25

30

WO 2016/191462 PCT/US2016/034050

and travel to the liver and infect hepatocytes (liver cells). The sporozoites multiply into
merozoites, rupture liver cells of the infected host, and return to the bloodstream.
Individual merozoites infect red blood cells and develop into a ring form, which is an
immature trophozoite. The ring form develops into a more mature trophozoite and
eventually into a schizont. Each schizont will break apart into multiple merozoites, each
of which seeks its own red blood cell to infect. In this way, the asexual portion of the
reproductive cycle repeats itself, indicated by the human blood cell cycle shown to the top
left of FIG. 1. Some merozoites can develop into gametocytes, which if ingested by a
biting mosquito, will continue the parasite life cycle.

The different species have different life cycle durations and, even at the same life
cycle stage, distinctive physical appearances. Because the treatment regimens vary
between malaria species, it is important to distinguish between them when doing
histopathological malaria diagnosis. The systems and methods of the present disclosure
can automatically differentiate between the different malaria stages or species (or
analytes).

FIGS. 2A and 2B are schematics of ring-form parasites. The ring-form parasite is
commonly seen in the peripheral blood. The physical appearance of ring-form parasites
varies greatly. The ring-form parasite typically features one (FIG. 2A) or two (FIG. 2B)
chromatin dots 201, which contain the parasite’s nuclear material. The chromatin dots 201
stain magenta under Giemsa stain as noted above. The ring-form parasite also features a
wispy cytoplasm 202, which stains light to medium blue under Giemsa as noted above.
The chromatin dots 201 are typically about 1 um in diameter and the entire ring form
under about 3 um in diameter. The systems and methods herein can be used to identify or
quantify analytes that are about 200 nm or larger, such as about 200 nm to about 100 um,
about 500 nm to about 10 um, about 1 um to about 5 um, or less than about 50 um. In an
embodiment, to obtain high-quality images of objects this small, a microscope featuring a
high resolution lens is used. For example, a suitable high-resolution microscope can
include an oil-immersion 100x objective with a numerical aperture greater than or equal to
about 1.2. The microscope can be fitted with a digital image capture device, such as a
camera. The depth-of-field of the high-magnification optical systems herein can be about
0.35 um or less (e.g., 0.3 um, 0.2 um, 0.1 um, or ranges between any of the preceding),
whereas blood smears can be several times thicker than this. In embodiments, multiple

focal planes are captured for each FoV to capture in-focus images of parasites that can be
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vertically located anywhere between the bottom and the top of the blood smear. The
number of focal planes captured per FoV is designated n,.

FIG. 2C is a schematic view of a plurality of images 301, according to an
embodiment. The plurality of images 301 are arranged in multiple rows and columns. The
rows and columns of images collectively define a blood smear or other sample slide. For
example, a blood smear may be substantially entirely captured by a plurality of images
arranged in a collection of y rows, x columns, and z focal planes. The number of captured
FoVs is designated n,,. The lateral extent (e.g., x and y extents) of each FOV is limited
by one or more the magnification of the lens or the image sensor size of the imaging
device. A given size of a blood smear may require a plurality of FoVs to provide suitable
image resolution for the purposes herein. Each FoV may have a plurality of focal plane
images corresponding thereto. For example, an FoV corresponding to an x,y-coordinate in
the plurality of images may include z focal plane images corresponding to the number of
focal planes at which the images were captured at the respective FoV. That is, a particular
image corresponding to an FoV can be designated by a unique x and y coordinate and the
focal plane can be designated by a unique z coordinate in the FoV. Each image (e.g.,
specific FoV and focal plane) may contain a number of image patches therein. An image
patch is a lateral subsection of an FoV (at a specific focal plane) having one or more
candidate objects therein and defining an even smaller subsection of the blood slide. The
systems and methods disclosed herein utilize pluralities of images consisting of ny, FoVs
and n, focal planes to identify and quantify analytes in samples.

In some embodiments, the size of an FoV captured by the microscopes herein can
be on the order of 10,000 um* or more, such as 10,000 pm” to about 20,000 um®*. In some
embodiments, the size of an FoV captured by the microscopes herein can be less than
about 10,000 umz, such as 1,000 umz to about 10,000 pmz. An FoV of about 10,000 umz
corresponds to about 3x10™ pL of blood in a thick smear blood sample. The number of
parasites in an FoV of the blood smear of a malaria patient with a parasitemia of
100 parasites/uL will be Poisson distributed, having, on average, 3x10* parasites per FoV.

In some embodiments, 300 FoVs or more can be captured to achieve sufficient
statistics for a reliable detection and count of parasites at low parasitemia. For example,
about 300 to 2000 FoVs can be captured or about 500 to 1000 FoVs can be captured. In
some embodiments, 300 FoVs or less can be captured to achieve sufficient statistics for a

reliable detection and count of parasites at low parasitemia. For example, about 10 to 300
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FoVs can be captured or about 50 to 200 FoVs can be captured. The lowest detectable
parasitemia level for particular analyte is called the limit-of-detection (LoD). Generally
speaking, the larger the number of captured FoVs, the lower will be the LoD.

The foregoing paragraphs provide an overview of the characteristics of the images
that serve as input to the image analysis system disclosed herein.

FIG. 3A is a schematic of a plurality of modules of a system 300 to automatically
detect and quantify one or more analytes in a sample, according to an embodiment. The
modules can be algorithms or controllers including the same (e.g., stored electronically
therein) collectively configured to determine the presence of a parasite in a sample. FIGS.
3B and 3C are schematics of a plurality of images 301 input into a module of the system
300 and the output images 311 of the module, respectively.

Referring to FIG. 3A, the one or more modules include an image preprocessing
module 310, a candidate object detection module 320, a feature extraction module 330, an
object classifier module 340, and a diagnosis module 350. As noted above, the modules
and submodules herein can refer to one or more algorithms and machine-readable
programs stored in at least one memory storage device (e.g., computer hard-drive) and are
executable by at least one processor operably coupled thereto. The modules and
submodules described herein can likewise refer to acts in a method of automatically
detecting and quantifying one or more analytes in a sample.

An input 301 into the system can include one or more FoV images of a sample
slide. There are ny, FoVs each of which includes n, focal planes, with each focal plane
including a red, green, and blue channel images (as shown in FIG. 3B).

In the embodiment shown in FIG. 3A, the system 300 can receive as input the
plurality of images 301 at the image pre-processing module 310. The plurality of images
301 can include a plurality of FoVs and a plurality of focal planes for each FoV. The
image pre-processing module 310 can output a plurality of output images 311, including
color-corrected images and adaptive grayscale intensity images. The plurality of color-
corrected images and adaptive grayscale intensity images can be received as input at the
candidate object detection module 320 and the feature extraction module 330. The
candidate object detection module 320 receives the color-corrected images and adaptive
grayscale intensity images and outputs color-corrected R,G,B image patches 321
containing the candidate objects and all n, focal planes thereof. The feature extraction

module 330 receives as input the color-corrected R, G, B image patches 321 (based upon
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the plurality of color-corrected images and adaptive grayscale intensity images in the
output images 311). The feature extraction module 330 extracts and outputs feature
vectors 331 of the candidate objects in the color-corrected R, G, B image patches 321, and
adaptive grayscale intensity image patches. A feature vector is multidimensional vector of
numerical features that represent an object. In other terms, a feature vector is a vector
representation including one or more variables that describe one or more characteristics
(e.g., color, size, position, etc.) of the object. The object classifier 340 receives the feature
vectors 331 as input and outputs classified object data 341 corresponding to the
classification of each candidate object as an analyte or artifact. The classified object data
is received as input at the diagnosis module 350, which determines and provides a
diagnosis for the sample. The diagnosis module can output a diagnosis 351 and a relative
concentration of the analyte (e.g., parasitemia). Each of the image analysis system

modules 310, 320, 330, 340, and 350 are described in detail below.

A. Image Preprocessing Module

Microscope slides that are histologically stained (e.g., with Giemsa stain) typically
display color variation within a slide (intra-slide) and between slides from different
specimens (inter-slide). This color variation can result from differences in the pH of the
stain and the duration of the staining procedure. Uncorrected, these color differences can
degrade the performance of an image analysis system whose purpose is to detect and
classify objects of interest in the images.

White balancing techniques can be used to standardize colors in an image. A white
balance technique can compute a linear color transform as follows. The average color of
the brightest pixels in an image is computed and represented as a red-green-blue column

vector:

L
Edéf G_:Nz G
B B

where R, G, B are the red, green, and blue channel pixel values respectively. The sum is
taken over the brightest pixels, and N is the number of pixels included in the sum.

A diagonal transformation matrix A4 is computed as follows:
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1/R 0 0
A=|0 1/6 0
0O 0 1/B

The color-corrected value & of a pixel £ % [R G B]" is obtained through the

linear transformation defined by equation 1:

RI
Gl
BI

§'« =k- (A +b) Eq. 1

where b is chosen so that the color-corrected pixel values are within the range [0, k]; k is
usually chosen to be 1 or 255. From this point forward in the present disclosure, the
primes &' and R, G', B' will be dropped in favor of & and R, G, B for simplicity of notation,
with the understanding that the color-corrected values are intended.

As noted above, in some embodiments, on the order of at least 300 FoVs can be
captured for each blood sample. Not all of these images will contain white portions and,
thus, white balancing every individual FoV image can lead to color distortion. To remedy
this problem, it is possible to determine the white balance transform by separately
acquiring one or more image(s) on a white portion of the microscope slide. This,
however, introduces an extra scanning step into the workflow.

The systems and methods herein avoid color distortion introduced by forcing every
FoV to be white balanced according to its own brightest pixels. The systems and methods
herein also circumvent the need to additionally scan a clear region of the slide as an extra
step.

The image preprocessing module 310 in FIG. 3A can be configured to determine
the white balance transform for a sample by accumulating the brightest pixels across
multiple FoVs. FIG. 4 shows a block diagram of the image preprocessing module 310. In
an embodiment, a subset 401 of the totality of input FoV images 301 are selected at
random at submodule 400. The number of FoVs in the subset of FoV images 401 is large
enough so that the probability of including a clear region in the collection of pixels

approaches one. The subset of FoV images 401 are converted to standard grayscale
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intensity images 411 by submodule 410 using a weighted sum of the color-corrected red,

green, and blue channel pixel values defined by the formula in equation 2:

¢s =0299R +0.587G +0.114 B Eq. 2

where ¢, is the standard grayscale intensity value of a pixel.

Using the grayscale intensity values; the red, green, and blue values of a sampling
of the brightest pixels 451 in the subset 411 are selected by submodule 450 and stored in a
data store (e.g., memory storage medium). Submodule 460 computes the white balance
transform 461 from stored red, green, and blue color values from each of the sampling of
brightest pixels 451. The white balance transform parameters 461 can be saved in the data
store. Submodule 470 applies the white balance transform to the input images 301 to
produce the color-corrected FoV images 471. The white balance transform algorithm and
its associated parameters are described in detail herein.

The image preprocessing module allows for a general affine matrix for the

transformation matrix in Eq. 1.

A=]G a2 a4z

a3y a3z Q433

dj1 Qg2 a13]

In an embodiment, the affine matrix A is a rotation matrix (also noted as A).

As stated above, the vector & is the average color of the sampling of brightest
pixels 451. These pixels are shown in the red, green, blue pixel value space in FIG. 5.
The color white is represented by the white vector @ = [k k k]7. The white balance
transformation is defined by the rotation that rotates the vector & to the vector w about an
axis vector 1 that is perpendicular to both the white vector @ and average color vector & .
FIG. 5 is an illustration of the relationship between vectors &, @, and 7 in a color value
space of red, green and blue axes. The axis of rotation vector n can be computed by the

system using the cross product:

w,B — w3G
n=&xw=|wsR—wB
w,G — w,R

The rotation matrix 4 can be computed by the system using equation 3 below:
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Eq.3

fl
fl

In equation 3, @ = n/||n|| is a unit vector in the direction of the axis of rotation n,
where ||-|| denotes the standard L* norm. The cosine of the angle 8 between the vectors &
and w can be computed via the dot product cos® = &T& where & = w/||w| and
&=¢/IZl

Referring again to FIG. 3A, the image preprocessing module 310 can compensate
for color variation in input images 301 as outlined above and outputs a plurality of output
images 311 including color-corrected FoV images and adaptive grayscale intensity
images, each including one or more focal planes therein. The next stage in the processing
pipeline of the image analysis system 300 is the candidate object detection module 320.
The candidate object detection module 320 is configured to find image locations that could
potentially be analytes (e.g., malaria parasites). In order to find such potential analyte
locations, the candidate object detection module 320 can use a plurality of adaptive
grayscale transform images and a plurality of color-corrected (e.g., white balance
transformed) images in the plurality of output images 311. The plurality of output images
311 including the plurality of adaptive grayscale transform images and plurality of color-
corrected images can be determined and output by the image preprocessing module 310.

The candidate parasite nuclei can be detected by applying a dark threshold to a
standard grayscale intensity image, which is calculated via the weighted sum shown in Eq.
2. This weighted sum can be viewed as a projection in the red, green, and blue pixel space
that was introduced previously and shown in FIG. 5. The projection is in the direction of

the vector defined by equation 4:

0.299

wg = [0.587 Eq. 4
0.114

Representing the red, green, and blue values of a pixel as the column vector &, the

grayscale projection in Eq. 2 can be written ¢, = w,T & To detect candidate parasite

nuclei, a dark threshold can be applied to the standard grayscale intensity image intensity

¢, of each pixel, followed by one or more of area, color, and shape filters that may be
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applied to the blobs (e.g., candidate object clusters) detected by applying the dark
threshold. The standard dark threshold is a filter that functions based at least in part on a
determined difference between the grayscale intensity of each pixel of the candidate object
and the grayscale intensity of the background or other non-analyte pixels present in the
sample. Accordingly, the standard dark threshold can be used to filter (select or delete)
pixels that are not beyond (e.g., above) the darkness threshold.

The sensitivity and specificity performance of the above noted technique for
detecting candidate parasite nuclei is limited. Despite the general trend that parasite nuclei
are dark and the background is light, there is a great deal of overlap between the parasite
nuclei and background grayscale pixel values. FIG. 6A shows the grayscale intensity
histograms for the background pixels 601, WBC nuclei pixels 602, and parasite nuclei
pixels 603. The overlap between the parasite nuclei and background grayscale intensity
values is shown as the cross-hatched area 604 in FIG. 6A.

Minimizing the overlap between the parasite nuclei and background grayscale
intensity values enhances the sensitivity and specificity performance of the detection
algorithm herein. The systems and methods herein determine (e.g., learn) and apply an
adaptive grayscale projection vector w, that takes the place of the standard grayscale
projection vector W defined in Eq. 4. Such determination can be accomplished using
machine learning techniques. Such application can provide a greater separation of
grayscale intensity values corresponding to white blood cell nuclei pixels and analyte (e.g.,
malaria parasite) pixels from grayscale intensity values corresponding to background
pixels.

The minimization of overlap disclosed herein leverages the presence of blood
components that are simple to detect in the standard grayscale intensity image and which
stain similarly to parasite nuclear material.

Under Giemsa stain, a ring-form parasite’s nuclear material stains magenta as
noted above. In particular, the nuclear material is, in general, darker than the surrounding
background material, which consists of red blood cell (RBC) material that has been lysed
by the action of the water used in the Giemsa staining process as well as other blood
components such as platelets. This background material can stain a broad spectrum of
colors from light pink to medium blue. In addition to parasites (if the blood is so
infected), lysed RBCs, and platelets; WBCs are a ubiquitous presence in blood smears. As

noted above, WBC nuclei stain dark magenta under Giemsa, the same color as parasite
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nuclear material, albeit stained WBC nuclei are, for the most part, darker than stained
parasite nuclei as they are larger and absorb more light. WBC nuclei are relatively easy to
detect and classify as they are large, regularly shaped, and dark magenta in color.
Accordingly, in some embodiments, the WBC nuclei can serve as an easily detectable
analog for a parasite nuclei. The systems and methods herein apply a dark threshold to the
standard grayscale intensity images, followed by one or more of an area, color, or shape
filter to obtain WBC nuclei at sufficiently high sensitivity and specificity.

Referring again to the schematic of the image preprocessing module in FIG. 4,
WBC detector submodule 420 is applied to the subset of grayscale FoV images 411 using
the straightforward WBC detection algorithm outlined above, thereby producing a series
of binary images 421 that indicate which image pixels are part of WBC nuclei.
Submodule 430 accumulates a random sample of the R, G, B values of the detected WBC
nuclei pixels 431 and stores them in a data store. Pixels that are not part of WBCs are
categorized as potential background pixels. Dark pixels are excluded from background
pixels to avoid pollution of the background pixels with either parasite nuclei pixels (which
are not detected by the WBC detector because they are too small) or pixels from dark
regions that correspond to staining artifacts (e.g., RBCs, platelets, etc.). The systems and
methods herein can include submodule 440 which can accumulate a random sample of the
qualified background pixels 441 store the same in a data store.

The WBC nuclei pixel values 431 and the background pixel values 441 can be
used by a machine learning algorithm (or module) to determine an adaptive grayscale
projection vector w, (in the red, green, blue pixel value space) that optimizes the
separation between WBC nuclei and background. In an embodiment, a ridge regression
technique can be used (e.g., by at least one processor as stored in at least one memory
storage medium) to learn the optimal vector w,. In some embodiments, a design matrix X
can be constructed by stacking the red, green, and blue values for the WBC nuclei and

background pixels such as according to the following matrix:

N WBC nuclei pixel values

Ry+1 Gy+1 o Bwaa }Mbackground pixel values

Ry+m Gnim Byimd
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where N is the number of WBC nuclei pixels and M is the number of background pixels
accumulated. A corresponding target variable 3 vector can be constructed as N ones

stacked on top of M zeros such as according to the following matrix:

1
}WBC nuclei
1

=10
}background

In some embodiments, a ridge regression aims to find the vector w, that minimizes
the following L*-regularized optimization problem having the formula defined by equation

5 below:
w, = Arg Min,, || Xw — n||? + C||w]||? Eq. 5

where C is a suitably chosen regularization constant. The methods and systems herein can
use the adaptive grayscale direction vector w, is to compute an adaptive grayscale
intensity ¢, via the projection having the formula ¢, = w,"¢.

As shown in FIG. 6B, the use of the adaptive grayscale intensity image in place of
the standard grayscale intensity image results in a greater separation between WBC nuclei
and background grayscale intensity values than the separation found in standard grayscale
intensity images, and hence also between parasite nuclei and background grayscale
intensity values. The histograms for the adaptive grayscale intensity image are shown in
FIG. 6B, where it can be seen that the overlap area 614 is substantially reduced compared
to the overlap area 604 in FIG. 6A which was determined using the standard grayscale
intensity images.

In some embodiments, a polynomial regression can be used instead of a linear
regression as describe above. The polynomial regression is an extension of linear
regression and permits a non-linear relationship between the target variable 1 vector and
the predictor variable(s) (e.g., ). For example, polynomial regression can be used by the
methods and systems herein to find a linear relationship between the target variable n and
the second order polynomial predictor variable {. In one embodiment, a second order

polynomial predictor variable { can be defined by equation 6 below.

{=[R G B R?® G?® B? RG RB GB]" Eq.6
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In some embodiments, higher order polynomials can be incorporated into
regressions used to determine the adaptive grayscale intensity, to provide adaptive
grayscale intensity images. This concept can be further generalized to include predictor
variable components that are rational functions of the R, G, and B values. In one
embodiment, a 24-component predictor variable { can be used to determine an adaptive
gray scale intensity to provide adaptive grayscale intensity images having greater
separation of intensity values between background pixels and WBC and analyte pixels. In
an embodiment, the 24-component predictor variable { can have the formula defined by

equation 7 below:

[RGBRZGZBZRGRBGBLRGGBB

G+€ B+€ R+€ B+€ R+€ G+€
R G B R G B R+G G+B R+B ]T

G+B+E R+B+€ R+G+E R+G+B+€ R+G+B+E R+G+B+€ R+G+B+€ R+G+B+€E R+G+B+E
Eq. 7

where € is a suitably chosen constant to prevent the denominator of the ratios from
vanishing. In other embodiments, other non-linear functions of the R, G, and B
components are used. Introduction of a non-linear relationship between the target and
predictor variables serves to further enhance the separation between parasite nuclei pixels
and background pixels in the adaptive grayscale intensity images. Some form of
regularization is used for the regression computations disclosed above. Regularization
serves to offset the negative consequences of multicollinearity between components of the
predictor variable {. In various embodiments, the regularized regression technique is
chosen from among the following: ridge regression, lasso regression, principal
components regression, and partial least-squares regression.

Referring again to FIG. 4, submodule 480 computes a regression model between
the predictor variables & or {, and the target variable . The parameters of the regression
model 481 can be stored in the data store and used by submodule 490, along with the input
images 301, to compute the adaptive grayscale intensity images 491. The color-corrected
images 471 along with the adaptive grayscale intensity images 491 are the output images
311 (FIGS. 3A and 3C) of the image preprocessing module 310. The output images 311
include ny, FoVs, each consisting of n, focal planes, each focal plane consisting of the
color-corrected red, green, and blue component image(s) as well as adaptive grayscale

intensity image(s), as shown in FIG. 3C.
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As noted previously, a parasite located in an FoV can be in best focus in any one of
the n, focal planes that are captured. FIG. 7 is a side-by-side comparison of FoVs having
multiple focal planes, one FoV includes an analyte (e.g., parasite) and the other FoV
includes an artifact (e.g., platelet) therein. The image analysis systems herein are
configured to examine all the focal planes for every input FoV to find potential parasite
locations. The appearance of a parasite will be different in each focal plane image. Each
FoV can include 1 or more focal planes such as 1,2, 3,4, 5,6, 7, 8,9, or more than 9 focal
planes. The left column of FIG. 7 shows a small section of an FoV containing a parasite
in an embodiment with n, = 7 focal planes (e.g., seven different focal planes). In some
embodiments, one or more clusters of pixels indicating a candidate object (e.g., blob(s))
can be detected in one or more focal planes in the vicinity of a parasite, such as by
applying a threshold on the adaptive grayscale intensity images for each of the focal
planes. In this same manner, candidate objects can be detected in the vicinity of artifacts
that are darker than the background, for example in the vicinity of platelets. The right
column of FIG. 7 shows a small section of an FoV containing a candidate object that is

not a parasite, but rather an artifact (e.g., it can be a platelet or stain aggregate).

B. Candidate Object Detection Module

FIG. 8 is a schematic of the candidate object detection module 320 also shown in
FIG. 3A. The output images 311 (e.g., set of color-corrected RGB and adaptive gray
images) are input to the candidate object detection module 310. The candidate object
detection module 310 can include a plurality of submodules each configured as described
below. The submodule 810 can perform a thresholding operation on the adaptive gray
images and output one or more detection masks 811. The submodule 820 can be
configured to associate detected clusters of pixels indicating a candidate object (referred to
hereinafter as “blobs”) that are close to each other (in the {x, y) image coordinates) as part
of one candidate object and output the locations of the object clusters 821. The submodule
830 can be configured to find the plane of best focus 831 for each candidate object or a
portion thereof by determining the focal plane with the highest focus score for an image
patch (e.g., subsection of an FoV having a candidate object therein) containing the
detected candidate object. The submodule 830 can determine, select, and output the focal

plane(s) with the highest focus score 831 for each candidate object. In an embodiment, a
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Brenner score can be used to find the plane of best focus 831, which is denoted by z,.
Other focus scores can be used in other embodiments. In the embodiment shown in FIG.

7, z, = 5 is the best focal plane for the candidate object (parasite) in the left column

therein. The best focal plane for the candidate object (artifact) in the right column of FIG.
7 is z, = 4. Submodule 830 also identifies the darkest blob in the best focal plane and
considers (e.g., determines, assumes, or at least temporarily assigns) that this blob
represents the candidate object of interest. In another embodiment, the roundest blob is
assigned to represent the candidate object of interest. A rounder blob may more closely
correspond to a malaria parasite or portion thereof such as a cytoplasm or nuclei. In
various embodiments, other attributes or combinations of attributes are used to select the
representative blob. The blob centers are marked by a cross-hair in both columns of FIG.
7, z, = 5 and z, = 4, respectively.

Referring to Fig. 8, submodule 840 is configured to determine (e.g., compute)
attributes 841 of the main blob for each candidate object. Attributes such as area,
roundness, grayscale intensity, etc. are computed by submodule 840. Submodule 850 can
be configured to filter the candidate objects based at least in part on at least in part on the
determined attributes. Filtering the candidate objects based at least in part on the
determined attributes reduces the number of artifacts in the collection of candidate objects
as indicated at 851. Submodule 850 can be configured as or include an artifact classifier
configured to score the candidate objects based at least in part on one or more attributes.
The submodule 850 can be configured to determine a score for a candidate object based on
one or more of any of the determined attributes disclosed herein, such as scores relating to
probability that the candidate object is an analyte based at least in part on one or more
characteristics (intensity, color, shape, size, etc.) of the one or more candidate objects.
The submodule 850 can be configured to discard candidate objects with a score below a
threshold score.

The artifact classifier of submodule 850 can be pre-trained with images of objects
whose ground truth identity (as an analyte or non-analyte) are known through an
annotation process, whereby parasites are marked in advance by a human expert. The
annotation process stores the (x, y) location and best focal plane (z) of a large number of
parasites. Candidate objects that are close to the known parasite locations are considered
to represent parasites. Candidate objects that are not close to a known parasite location are

considered to represent artifacts. The attributes and ground truth class of known parasites
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and artifacts are used to pre-train the artifact classifier 850. In one embodiment, the
artifact classifier is configured as a non-linear kernel SVM. In other embodiments, other
classifiers are used. Submodule 860 can be configured to extract and output image
patches861 of the filtered candidate objects. The image patches 861 are small sections of
the color-corrected RGB images and the adaptive grayscale intensity images that contain a
candidate object. These image patches 861 (321 in FIG. 3A) are output to the feature
extraction module, which is shown as block 330 in FIG. 3A.

C. Feature Extraction Module

FIG. 9 is a schematic of a feature extraction module 330 also shown in FIG. 3A.
The feature extraction module 330 is configured to represent each candidate object as a
feature vector and output the same. The feature vector(s) can be classified as parasite
(even which species or stage of parasite) or artifact by the object classifier module 340 of
FIG. 3A. The feature extraction module 330 is configured to compute at least one of two
types of features as shown in FIG. 9. The features can be manual features or automatic
features. The feature extraction module 330 has two sets of inputs, one for the manual
feature extraction and the other set for the automated feature extraction. The feature
extraction module 330 can operate in one of two modes, manual feature extraction ON, or
manual feature extraction OFF. In various embodiments, manual feature extraction can be
ON or OFF, while the automatic feature extraction is always ON.

A first approach to feature extraction is manual feature extraction or feature
engineering in the computer vision field. These are features that are intentionally designed
to measure particular attributes of a candidate object, and rely heavily on learned (e.g.,
previously known or preprogrammed) domain knowledge.

Inputs 901 for the manual features are color-corrected R,G,B image patches
containing the candidate object and all n, focal planes thereof. Submodule 910 of the
feature extraction module 330 contributes three manual features 911 to the feature vector.

The first manual feature is the best focus score of the candidate object (e.g., a
Brenner score). Referring back to FIG. 7, a focus score is computed over the image patch
region for each of n, focal planes and the best focal plane is the one with the highest focus
score. The second manual feature is the standard deviation (and/or other measure of
dispersion) of the focus score across the focal planes of an FoV having the candidate
object feature therein. The motivation behind this is that some artifacts, like air bubbles

and dust particles on the specimen, will have the same focus score across all focal planes
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because they are far from being in focus, whereas ring-form malaria parasites (or other
analytes) will have a narrow focus score distribution bracketing the best focal plane and
thus a small standard deviation of focus score.

Submodule 910 can be configured to extract the third manual feature, which is
called the red-shift score (the red-shift is being used herein as a descriptive term and is not
related to the red-shift phenomenon caused by the Doppler effect). The red-shift score
helps to distinguish between parasites and artifacts. The red-shift score relies on the
confluence of two concepts. The first concept is optical dispersion, which refers to the
variation in refractive index according to wavelength. This means that an uncorrected,
simple lens will focus different wavelengths of light at different focal planes (e.g.,
different lengths away from the lens).

FIGS. 10A and 10B are illustrations of light rays being refracted to different focal
planes through a simple lens and a lens with an achromatic correction, respectively. In
FIG. 10A, rays of light for three representative wavelengths in the red, green, and blue
portions of the spectrum are shown coming to focus at planes 1001, 1002, and 1003,
respectively. As the light passes through the simple lens 1010, the red, green, and blue
wavelengths refract to different focal planes. The focus vs. wavelength curve 1030 for a
simple lens is shown in FIG. 10C and the representative focal planes for the rays that
came to focus at 1001, 1002, and 1003 are indicated by the points on the curve 1030 at
1031, 1032, and 1033, respectively.

Lenses with achromatic correction help to limit the amount of chromatic aberration
caused by dispersion. An achromatically corrected lens is shown in FIG. 10B, along with
three representative wavelengths in the red, green, and blue portions of the spectrum. The
achromatically corrected lens can include, for example, a simple lens component 1010
(e.g., crown glass component) that is convex, mounted or bonded to an achromatic
component 1020 (e.g., flint glass component) that is concave. An achromatically
corrected lens is designed to bring two wavelengths to focus at the same plane, such as
plane 1005 shown in FIG. 10B. As shown, in some embodiments, the two wavelengths
are in the red and blue portions of the spectrum.

A focus vs. wavelength curve for an achromatic lens is shown as curve 1040 in
FIG. 10C and the representative focal planes for the rays that came to focus at 1004 and
1005 are indicated by points 1044 and 1045 on the curve 1040, respectively. It can be
seen in FIG. 10C that the portion of the curve 1040 in the red region of the spectrum (640-
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700 nm) is more gently sloping upward than the portion of the curve 1040 in the blue
region (450-500 nm). Thus, as the focus setting on the microscope is moved towards the
upper portion of the graph, blue light will defocus more quickly than red light. Green light
does not go out of focus as quickly as either the red or the blue components of light as the
microscope focus is shifted upward. This can be seen from the relative flatness of the
bottom of the curve 1040 in FIG. 10C, which is in the green region of the spectrum. The
first concept relies on this shift in light focal planes as the microscope focus is adjusted.

The second concept which the red-shift score depends on, are the light absorption
properties of analytes (e.g., DNA) when stained, such as with Giemsa. FIG. 11 is a graph
of the absorption spectrum 1101, which shows peak absorption in the green region of the
spectrum. The absorption of green light by a conjugate of Methylene blue and Eosin Y is
amplified in the presence of DNA. This means that material on a microscope slide
containing DNA—cell nuclei for example—will largely absorb green light and transmit
red and blue light, which accounts for their magenta color in transmitted light microscopy.
Artifact objects do not contain DNA, and, therefore, tend to absorb less in the green
portion of the spectrum. Accordingly, the artifacts do not appear magenta in the image.

Based on the observation above that changing the focal plane of the microscope
upward will defocus blue wavelengths faster than red wavelengths, it follows that magenta
objects will appear more red because the blue component of the light will have diffused to
a larger spatial region, more so than the red light. This is the basis of the red-shift score,
which measures the increase in redness of the darkest portion of the detected candidate
object, which for a true Malaria parasite is the nucleus of the parasite cell. An artifact that
transmits red, green, and blue light more equally will not turn more red as the focus of the
microscope 1s shifted upward, which counterbalances the red-shift effect of the red and
blue components as described above. Thus, the red-shift score provides a basis for
distinguishing between parasites and artifacts.

The systems and methods disclosed herein are configured to analyze the candidate
object images for red-shift and provide a score based thereon. The manual feature
extraction submodule 910 (and associated microscope) can be configured to determine the
red-shift score as described above. While DNA, Malaria parasites, and the color red are
provided as an example, the concept of red-shift scoring can be applied to different colors

and analytes, without limitation.
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The second type of features extracted by the feature extraction module are
automatic features, which can be automatically learned by a system including at least one
memory storage device and at least one processor, such as a convolutional neural network
(CNN). CNNs are deep learning models (applied by computer systems) that learn
multiple levels of representation. Starting with the raw input layer, each successive layer
(e.g., convolutional, pooling, sub-sampling, or fully connected layer) represents the
information in the image at a slightly more abstract level. The weights (filters) in each
layer are learned using a standard learning procedure such as back-propagation of error
(backprop). In a CNN, each layer (of calculations) is performed by a distinct plurality of
neurons (processing modules), and the neurons in each convolutional layer are not fully
interconnected with all of the neurons in adjacent layers of the system. Rather, the
neurons in the convolutional layers have only selected connectivity with adjacent
convolutional layers to reduce the amount of inputs carried through to successive
convolutional layers. At each convolutional layer, a convolutional kernel defines the
region of connectivity with neurons in the previous layer. The convolutional kernel is
sometimes referred to as the receptive field of the neuron in the convolutional layer. One
or more of the final layers in the CNN is a fully connected layer having full connectivity to
the immediately previous layer, effective to perform high-level reasoning based on the
data (that has been repeatedly abstracted throughout the layers) provided therefrom. In
some embodiments, ground truth(s) (e.g., image patches that contain ground truth objects,
which have been identified by a human expert) can be used to train the weights of the
CNN via a learning procedure. CNN’s can be stored on and performed by a computer
having one or more processors (e.g., central processing units (CPUs) or graphics
processing units (GPUs)). The ground truths images or image patches can include known
positive samples (e.g., identified to the CNN as having the analyte of interest) and known
negative samples, (e.g., identified to the CNN as having no analyte therein, or having only
known artifacts or other non-analyte objects therein). Accordingly, the CNN can learn
weights from both known analyte and non-analyte species, which can be used to identify
the same in samples.

In an embodiment, a computer vision system such as a microscope operably
coupled to a digital recorder can be operably coupled to a CNN. Such systems can exceed

human level performance in terms of accuracy. The automatic feature extraction
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submodule 920 can be configured to carry out feature extraction based at least in part on a
feed-forward application of weights, pooling, and non-linear operations.

A large amount of data is required to train a CNN because of the richness of the
model. If insufficient data are available for training, overfitting can occur, which results in
poor generalization performance. In some embodiments, the systems and methods herein
can increase the amount of training data by generating artificial data based at least in part
on the training data itself. This process is called augmentation. Augmentation can take
the form of one or more random transforms applied to the training images. Examples of
augmentation transforms are translation, rotation, scaling, reflection, and color distortion.

One technique for color distortion consists of the following steps. First, the
principal components transform of the training images in the R,G,B color space is
computed. The eigenvectors are denoted pq,p,, Pz with corresponding eigenvalues
A4, A2, A3, respectively. Three random numbers 1y, 15,13, are sampled from a bounded
distribution, for example, a Gaussian with zero mean and standard deviation 0.1. To
generate the augmented image, the following quantity is added to each pixel in the image:

[P1 P2 P3][ndy iy 1357

The random numbers, 1y, 1, 13 are sampled once per image presentation during the
training of the CNN.

The above technique for color distortion can lead to images with unrealistic color.
It is desirable to introduce a color distortion method (and system for carrying out the
same) that generates images with realistic color, while at the same time providing enough
color distortion to avoid overfitting of the CNN. Such color distortion can aid in
normalizing color variations in images due to color variations of stains from one sample to
another. For example, in Giemsa stain, the relative amounts of basophilic blue and
acidophilic eosin (red) present in the stained sample depends on pH of the stain, which
varies in the field. Color normalization through the distortion methods herein may aid in
achieving more accurate diagnoses. In a second color augmentation method of the present
disclosure, each of the red, green, and blue channels (e.g., components) of the image can
be distorted with a gamma non-linearity, which is also called a gamma correction,
although in this case it is being used to transform the colors of the image rather than
correct them. Gamma correction is defined by the following non-linear transform in

equation 8:

Y =ayp? Eq. 8
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where 1 is the input value, ¥ is the output value and 0 < y < oo is the exponent of the
non-linearity, and « is a scaling constant. When the input values i are in the range [0,1],
the scaling constant ¢ = 1. The color augmentation method of the present disclosure
samples four random numbers 71,75, 73,74 from a Gaussian with zero mean and standard
deviation o. Then, four values of y are computed via the relation y; = e”i, where is e the
base of the natural logarithm. The augmented red, green, blue, and adaptive gray

channel/component images are generated by equation 9 respectively, as follows:

R=pRn
G=G"
E _ BV3 Eq 9
bq = 21/4

The random numbers 1,715,735, 74 are sampled once per image, per augmentation.
Accordingly, each of the R, G, B and intensity ¢ channels can be individually and
collectively augmented to provide a larger sampling of data to train a CNN suitable for use
with the systems and methods herein.

Referring again to FIG. 9, image patches 921 are inputs to the CNN feature
extractor 930. In some embodiments, an augmented set of ground truth image patches that
have been augmented using a data augmentation scheme can be used to train the CNN to
recognize analytes or non-analyte objects. That is, the raw images or portions thereof such
as image patches are augmented using translation, rotation, scaling, reflection, and
gamma-based color distortion as described above. In some embodiments, the at least one
processor (associated with the CNN) is configured to learn a set of weights based at least
in part on one or more of an augmented set of ground truth image patches, color-corrected
image patches, or grayscale intensity image patches that have been augmented according
any of the methods disclosed herein. For example, the ground truth image patches can be
augmented by a data augmentation scheme that includes a random gamma correction of
one or more of a red, green, blue, or grayscale intensity component of the ground truth
image patches. In some embodiments, image patches at the best focal plane for each
candidate object are presented for CNN training. In other embodiments, image patches of
all focal planes are presented for CNN training. In some embodiments, the at least one
processor is configured to augment color-corrected image patches and adaptive grayscale
intensity image patches using an augmentation scheme. In some embodiments, outputting
of the color-corrected image patches and the adaptive grayscale intensity image patches

can include using an augmentation scheme to augment the color-corrected image patches
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and the adaptive grayscale intensity image patches. In some embodiments, during the
testing phase of the CNN feature extractor, no augmentation is performed. In other
embodiments, augmentation is performed during the testing phase and the outputs of the
classifier module, shown as block 340 in FIG. 3A, are averaged over the augmented
versions of each testing sample. In some embodiments, the at least one processor is
configured to average an output of a machine learning classifier over the feature vectors
corresponding to augmented versions of each of the color-corrected image patches and the
adaptive grayscale intensity image patches.

The output of the CNN feature extraction submodule 930 is the CNN components
931 of the feature vector. In an embodiment that uses both manual and CNN features, the
manual features 911 and the CNN features 931 can be concatenated to form the full output
feature vector 941. In embodiments without manual features, the manual feature
extraction submodule 910 is not executed and manual features 911 are not prepended to
the output feature vector 941.

Returning to the system diagram in FIG. 3A, the output of the feature extraction
module 330 are the feature vectors 331 of the candidate objects.

D. Object Classifier Module

The object classifier module 340 is configured to classify the feature vectors 331,
as corresponding to an analyte (e.g., parasite) or artifact. The object classifier module 340
is configured to classify the feature vectors 331 or output from the feature vector
extraction module 330, as parasite or artifact using a machine learning classifier. The
machine learning classifier can be a program stored in one or more memory storage
mediums, which is executable by one or more processors=, such as in a computer system
or network. The object classifier module 340 can be trained as disclosed above using the
parasite ground truth data disclosed above. Different embodiments of the object classifier
module 340 can include different types of classifiers. In an embodiment, the object
classifier module 340 is configured as a linear support vector machine. For example, a
linear support vector machine can include a computing device configured to perform a
linear support vector classification. In various embodiments, the object classifier module
340 can be configured as one or more of the following types of classifiers: a non-linear
kernel support vector machine, neural network, logistic regression, random forest decision

trees, gradient boosted decision trees, AdaBoost, or Naive Bayes classifier.
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The output of the object classifier module 340 can include a calibrated probability
that the candidate object is a parasite (e.g., analyte) or artifact. The object classifier
module 340 is configured to output classified object data 341 (FIG. 3A). The classified
object data 341 can include a score(s) corresponding to (e.g., indicating the extent of) the
similarity between the ground truth object(s) and the candidate object(s). The similarity
can be expressed as a probability that the candidate object (or one or more aspects thereof)
is an analyte such as a parasite (or one or more aspects thereof). In some embodiments,
the object classifier module 340 (machine learning classifier) can be configured to classify
the one or more feature vectors by averaging the output of the machine learning classifier
(e.g., probabilities) over the feature vectors corresponding to augmented versions of each
of the input image patches.

E. Diagnosis Module

The diagnosis module 350 (FIG. 3A) can be configured to determine and to output
a diagnosis 351 for the sample (e.g., blood slide) based at least in part on the classified
object data 341, i.e. either POSITIVE—the sample does contain malaria parasites, or
NEGATIVE—it does not. The diagnosis 351 can include an estimate of the parasitemia
(p as used in equation 10 below). In some embodiments, the diagnosis module 350 can be
configured to determine the parasitemia. In some embodiments, the diagnosis module is
configured to run a diagnosis algorithm that counts the number of candidate objects N,
whose object classifier scores are above some threshold .. In some embodiments, more
than one type of candidate object (e.g., ring form malaria parasite and late-stage parasite
objects) can be counted at one time. Subsequently, the number of candidate objects with
object classifier scores above O, is thresholded at some level . In other words, a
sample is flagged as POSITIVE if N, > 0y, and NEGATIVE otherwise. The thresholds
0, and Oy can be optimized on a validation set whose diagnoses are known, either
through microscopic examination by a human expert or a molecular test such as
polymerase chain reaction (PCR). The optimization is based at least in part on a given
objective for the validation set, such as maximizing balanced accuracy, or maximizing
sensitivity at a fixed level of specificity.

The image analysis systems disclosed herein, being a real-world system, can have
some residual noise floor that depends on the threshold applied to the object classifier
scores. In other words, at some object classifier thresholds, some non-parasite objects will

have scores above that threshold. In some embodiments, the median object-level false
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positive rate FPR is computed on the negative samples in the validation set as a function
of an object classifier score threshold ©,. At the same time, the median object-level
sensitivity rate SNS is computed on the positive samples in the validation set as a function
of the same classifier threshold ©,. The estimated parasitemia is then computed using

equation 10 as:

~ _ Ng—FPR

— Egq. 10

where N, is the number of candidate objects with classifier score above the threshold 0.
It is understood that P is a function of the object classifier score threshold ©,. The
classifier score threshold 8 is determined by optimizing a given objective, such as mean

square parasitemia error, across the validation set.

F. System Hardware

FIG. 12 is a schematic of a system 1200 for determining the presence of an analyte
in a sample, according to an embodiment. In some embodiments, the system 1200 can be
configured to perform one or more of any of the algorithms or other operations disclosed
herein. The system can include a computing device 1202. In some embodiments, the
computing device 1202 can include at least one memory storage medium 1210 and at least
one processor 1220. In some embodiments, the computing device 1202 can include a user
interface 1230. The system 1200 can include an imaging device 1240 operably coupled
thereto. Aspects of system components are described in more detail below.

In some embodiments, the computing device 1202 can include one or more of a
personal computer, a network of computers, one or more servers, a laptop computer, a
tablet computer, or a cellular phone. In some embodiments, one or more components of
the computing device 1202 can be integrated into a microscope (imaging device). In some
embodiments, one or more components of the computing device can be located remotely
from the imaging device. In such embodiments, the one or more components of the
computing device 1202 can be operably coupled to the imaging device 1240 through a
wired or wireless connection 1206. In some embodiments, the one or more components of
the computing device can be configured to receive images captured by the imaging device
indirectly, such as through a disc, flash drive, e-mail, or other means.

The at least one memory storage medium 1210 can include one or more of a hard
drive, a solid state drive, a disc, or any other tangible, non-transitory memory storage

device. The at least one memory storage medium 1210 can include any of the modules or
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submodules disclosed herein as machine-readable and executable program stored thereon.
In some embodiments, the system 1200 can include a plurality of memory storage
mediums 1210 each having one or more modules or submodules stored thereon.

The at least one processor 1220 can be configured to read and execute one or more
programs stored in the at least one memory storage medium 1210. For example, the at
least one processor 1220 can be configured to read and execute one or more of any of the
modules or submodules disclosed herein. In some embodiments, the at least one processor
1220 can include a plurality of processors. In such embodiments, each of the plurality of
processors can be configured to read and execute one or more modules or submodules
stored on the at least one storage medium 1220. In some embodiments, each of a plurality
of processors 1220 can be operably coupled to a corresponding one of a plurality of
memory storage mediums 1220, and be dedicated to and configured to run only one of the
modules or submodules herein.

In some embodiments, the user interface 1230 can include one or more of a display
screen, a keyboard, a touch screen, one or more indicators (e.g., lights, buzzers, speakers,
etc.), or one or more buttons (e.g., power or start buttons). In some embodiments, the user
interface can be physically connected to the computing device. In some embodiments, the
user interface 1230 can be configured to display output or input from any of the modules
or submodules disclosed herein. For example, the user interface 1230 can be configured
to display one or more of a diagnosis, parasitemia, or any data or images disclosed herein.
In some embodiments, the user interface can be configured to accept input from a user,
such as via a keyboard, USB port, etc. The user interface 1230 can be operably coupled to
the computing device via a wired or wireless connection. In some embodiments, the user
interface 1230 can be located remotely from the computing device 1202, such as on a
computer, tablet computer, or cellular phone remote from the computing device 1202. In
such embodiments, one or more of the modules can be performed remotely from the user
interface 1202,

In some embodiments, the computing device 1202 can include a power source
1208. The power source 1208 can include one or more of a battery (e.g., lithium ion
battery, a lead acid battery, a Nickel Cadmium battery, or any other suitable battery), a
solar cell, or an electrical plug (e.g., wall plug). The power source 1208 can be operably

coupled to and configured to provide power to any of the components of the system 1200.
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The imaging device 1240 can include a microscope, such as a high power
microscope including a digital image recorder thereon. The digital imaging device 1240
can be configured to hold a sample slide 1250 thereon. The digital imaging device 1240
can include a high power lens and a digital image recorder to capture one or more high
resolution images of a sample slide. The one or more high resolution images can include
images of one or more FoVs and images of one or more focal planes of each FoV of the
sample slide 1250. The imaging device can be directly coupled (e.g., wired or wirelessly
connected) or indirectly coupled (e.g., via a computer network) to the computing device
(e.g., to one or more of the memory storage medium(s), processor(s), or user interface of
the computing device). In such embodiments, the imaging device 1240 can be configured
to output one or more sample images to the at least one memory storage medium 1210 or
at least one processor 1220. In some embodiments, the imaging device 1240 can be
configured to respond to one or more instructions from the computing device (or a
component thereof such as the processor). In such embodiments, the imaging device 1240
can operate based at least in part on operating instructions stored in the at least one
memory storage medium 1210 and executed by the at least one processor 1220. For
example, the imaging device 1220 can change the distance between or number of focal
planes or FoVs based at least in part on instructions from the computing device 1202.

Any of the individual modules or submodules disclosed herein can include or be
applied using a machine learning device or computer as disclosed herein.

G. Methods of Diagnosing an Analvte

FIG. 13 is a flow diagram of a method 1300 for determining the presence of an
analyte in a sample, according to an embodiment. Methods and individual acts for
diagnosing an analyte in a sample are also described above with respect to each of the
modules and submodules disclosed herein and, in the interest of brevity, are not repeated
verbatim with respect to the method 1300. The method 1300 includes using a plurality of
images of a sample slide to determine the presence of an analyte in a sample. The method
1300 can include an act 1305 of receiving a plurality of images of a sample slide, such as
with a memory storage medium or processor. The plurality of images can include a
plurality of FoVs, each including a unique x and y coordinate of the sample slide; and
plurality of focal planes, each having a unique z coordinate of the sample slide. The
method 1300 can include using one or more components of the system 1200 to perform

any of the acts disclosed herein.
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The method 1300 can include an act 1310 of applying a white balance transform to
each image of the plurality of images effective to produce a plurality of color-corrected
images. The method 1300 can include an act 1320 of applying an adaptive grayscale
transform to each image of the plurality of images to provide an adaptive grayscale
intensity image for each of the plurality of images. The method 1300 can include an act
1330 of detecting and identifying one or more candidate objects in the plurality of color-
corrected (e.g., white-balanced) images and the adaptive grayscale intensity images. The
method 1300 can include an act 1340 of filtering the one or more candidate objects based
at least in part on a score of one or more characteristics thereof, and outputting one or
more color-corrected image patches and one or more adaptive grayscale intensity image
patches. The method 1300 can include an act 1350 of extracting one or more feature
vectors from the color-corrected image patches and the adaptive grayscale intensity image
patches and outputting the one or more feature vectors. The method 1300 can include an
act 1360 of classifying each feature vector as corresponding to an artifact or an analyte.
The method 1300 can include an act 1370 of determining if the classified feature vectors
are above or below a threshold level associated with a positive diagnosis. Each of the acts
1310-1370 is discussed in more detail below.

The act 1310 of applying a white balance transform to each image of the plurality
of images effective to produce a plurality of color-corrected images can be carried out
using any of the techniques disclosed with respect to the image preprocessing module 310
disclosed above. For example, the act 1310 can include selecting a plurality of brightest
pixels from a subset of the plurality of images selected such that the probability of the
presence of a clear pixel being located in the subset approaches (is substantially) 1 as
disclosed herein. The act 1310 can include calculating and applying a standard grayscale
intensity of each pixel of the subset of images to determine the plurality of brightest pixels
in each image of the subset of the plurality of images as disclosed herein. The act 1310
can include determining a red value R, a green value G, and a blue value B of each of the
plurality of brightest pixels as disclosed herein. The act 1310 can include calculating an
average color vector defined by an average color of the plurality of brightest pixels as
disclosed herein. The act 1310 can include determining a white color vector and
determining an axis vector that is perpendicular to, and calculated from the cross-product
of both the average color vector and the white color vector. The act 1310 can in include

computing an affine transform matrix from the axis vector and the angle between the
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white vector and the average color vector, and applying the affine transform matrix to
each pixel in each image of the plurality of images to provide a plurality of color-corrected
images.

The act 1320 of applying an adaptive grayscale transform to each image of the
plurality of images to provide an adaptive grayscale intensity image for each of the
plurality of image can be carried out using any of the techniques disclosed with respect to
the image preprocessing module 310 disclosed above. For example, the act 1320 can
include receiving as input a plurality of color-corrected images and standard grayscale
intensity images and thresholding the standard grayscale intensity images at a dark
threshold to detect blobs that may potentially be white blood cell nuclei. The act 1320 can
include filtering the potential white blood cell nuclei blobs by attributes (e.g., color, area,
or shape filters) to identify white blood cell nuclei as disclosed herein. The act 1320 can
include outputting as white blood cell vector data a red value R, a green value G, and a
blue value B of one or more pixels from the input color-corrected images that contain a
while blood cell nuclei therein. The act 1320 can include outputting as background vector
data, a red value R, a green value G, and a blue value B of a plurality of qualified
background pixels as determined from a random sampling of pixels that are brighter in
grayscale intensity than the dark threshold, in the color-corrected images. The act 1320
can include determining an adaptive grayscale projection vector from the white blood cell
vector data and background vector data. The act 1320 can include outputting a plurality of
adaptive grayscale intensity images.

The act 1330 of detecting and identifying one or more candidate objects in the
plurality of color-corrected images and the adaptive grayscale intensity images can be
carried out using any of the techniques disclosed with respect to the candidate object
detection module 320 disclosed above. For example, detecting and identifying one or
more candidate objects can include determining one or more potential analyte locations
based upon one or more of a plurality of color-corrected images or a plurality of adaptive
grayscale intensity images. The act 1330 can include determining which FoVs of the
plurality of FoVs include one or more candidate objects therein. The act 1330 can include
clustering of the one or more candidate objects therein to provide a candidate object
cluster defined by the adjacent (e.g., nearby or overlapping) candidate objects therein.

Clustering is based at least in part on the proximity or distance between candidate objects,
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. The act 1330 can include determining the focal plane having a best focus score for each
candidate object of the one or more candidate objects, as disclosed herein.

The act 1340 of filtering the one or more candidate objects based at least in part on
a score of one or more characteristics thereof, and outputting one or more color-corrected
image patches and one or more adaptive grayscale intensity image patches can be carried
out using any of the techniques disclosed with respect to the candidate object detection
module 320 disclosed above. The act 1340 can include outputting a score of one or more
characteristics of each of the one or more candidate objects, the one or more
characteristics including at least one of area, grayscale intensity, shape, or color. The act
1340 can include filtering the candidate objects based at least in part on the score which is
based at least in part on the one or more characteristics. Filtering the one or more
candidate objects can include comparing the score based at least in part on one or more
characteristics of the one or more candidate objects to a threshold score based at least in
part on the one or more characteristics. Filtering the candidate objects can include
outputting the one or more candidate objects with a score above the threshold score as
potential analyte locations and rejecting the one or more candidate objects with a score
below the threshold score. The act 1340 can include outputting adaptive grayscale and
color-corrected image patches and associated focal planes having potential analyte
locations therein.

The act 1350 of extracting one or more feature vectors from the color-corrected
image patches and the adaptive grayscale intensity image patches and outputting the one
or more feature vectors can be carried out using any of the techniques disclosed with
respect to the feature extraction module 330 disclosed above. For example, the act 1350
can include receiving as input a plurality of color-corrected image patches and a plurality
of adaptive grayscale intensity image patches corresponding to the one or more potential
analyte locations in the plurality of images and outputting one or more feature vectors
each representing a potential analyte. The act 1350 can include receiving the one or more
color-corrected image patches and one or more adaptive grayscale intensity image patches
and teaching the CNN a set of weights based at least in part on the one or more ground
truth image patches. In some embodiments, teaching the set of weights includes
augmenting one or more ground truth images (e.g., image patches) using a data
augmentation scheme. The data augmentation scheme can include a random gamma

correction of one or more of a red, green, blue, or grayscale intensity component of the
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ground truth image patches. In some embodiments, teaching a set of weights to a CNN
may include accepting as ground truth one or more annotated images of the analyte in
ground truth samples and one or more annotated images of artifacts in ground truth
samples. The annotated images may include known analytes and artifacts configured to
train the CNN to recognize characteristics of the same. In some embodiments, accepting
as ground truth one or more annotated images of the analyte in ground truth samples and
one or more annotated images of artifacts in ground truth sample can include teaching a
machine learning classifier a set of weights based at least in part on the one or more
ground truth image patches. The act 1350 can include determining and extracting one or
more features (e.g., one or more of manual features or automatic features) of one or more
candidate objects in the plurality of color-corrected images and the plurality of adaptive
grayscale intensity images corresponding to the one or more potential analyte locations.
The act 1350 can include representing the one or more extracted features as the one or
more feature vectors.

The act 1360 of classifying each feature vector as corresponding to an artifact or an
analyte can be carried out using any of the techniques disclosed with respect to the object
classifier module 340 disclosed above. For example, the act 1360 can include receiving as
input one or more feature vectors of candidate objects and classifying the one or more
feature vectors as corresponding to one of the artifact or the analyte. The classifying can
be carried out by scoring the feature vectors with a machine learning classifier that has
been trained with a set of ground truth images or associated vectors as disclosed above,
with high scores (e.g., high probabilities) being classified as the analyte and low scores
(e.g., low probabilities) being classified as something other than the analyte, such as
background or an artifact. In some embodiments, classifying the one or more feature
vectors can include averaging the scores of the machine learning classifier over the feature
vectors corresponding to augmented versions of each of the color-corrected image patches
and the adaptive grayscale intensity image patches. In some embodiments, the method
may include outputting one or more image patches containing candidate objects (e.g.,
classified as analyte or artifact) therein for examination by human users. Such image
patches can be output to a user interface, such as a computer screen.

The act 1370 of determining if the classified feature vectors are above or below a
threshold level associated with a positive diagnosis can be carried out using any of the

techniques disclosed with respect to the diagnosis module 350 disclosed above. For
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example, determining if the classified analytes are above or below a threshold level
associated with a positive diagnosis can include determining if the analyte is present and
giving an indication of the presence or absence of the analyte based upon an amount of
one or more feature vectors that are classified as the analyte, or a relation thereof to a
threshold value or a background noise value. In an embodiment, the method 1300 can
include outputting a diagnosis or analyte concentration, such as to the user interface (e.g.,
displaying the diagnosis of analyte concentration).

In some embodiments, the method 1300 can include an act of obtaining a sample
from a subject, such as obtaining a blood sample. In some embodiments, the method 1300
can include smearing the sample on a sample slide. In some embodiments, the method
1300 can include taking a plurality of images of a sample slide. The plurality of (sample)
images can include multiple FoVs and focal planes. In an embodiment, the method 1300
can include outputting the plurality of (sample) images from the image device. The
method 1300 can include receiving the plurality of (sample) images at the computing
device.

In some embodiments, the method 1300 can include determining the concentration
or amount of analyte in a sample (e.g., parasitemia). In some embodiments, the analyte
can include a parasite such as malaria, loa loa, borrelia, helminth, tuberculosis,
trypanosomiasis, or any other parasite. In some embodiments, the systems and methods
herein can be used to detect specific parasite (e.g., malaria) conformations or species
based upon one or more characteristics thereof.

In simplified terms, a method of detecting an analyte in a sample can include
accepting as ground truth a set of annotated images of an analyte (e.g., malaria parasites)
in biological samples from a geographic location. The method can include accepting a set
of uncharacterized images from an automated microscope device, the uncharacterized
images obtained from biological samples taken in the geographic location. The method
can include preprocessing the set of uncharacterized images to create a set of images with
consistent color appearance. The method can include subjecting the set of images with
consistent color appearance to a candidate location classification to generate a set of
candidate object images. The method can further include subjecting the set of candidate
object images to a parasite detection classification based in part on the ground truth to
generate a set of labelled objects. The method can include subjecting the set of labelled

objects to a segmentation analysis depicting structures (e.g., nucleus and cytoplasm) in

37



10

15

20

25

30

WO 2016/191462 PCT/US2016/034050

each of the set of labelled objects. The method can include performing feature extraction
analysis on each of the set of labelled objects. The method can further include classifying
each of the labelled objects with a classifier score related to the probability of the analyte
(e.g., malaria parasite) being present in each of the labelled objects. In some
embodiments, the method 1300 can include importing ground truth data associated with
one or more candidate parasite species from memory storage based at least in part on
meta-data corresponding to one or more of a geographic location, season, or other criteria
associated with a sample, and use the same to determine or identify a species, stage, or
type of parasite in a sample as disclosed above.

The reader will recognize that the state of the art has progressed to the point where
there is little distinction left between hardware and software implementations of aspects of
systems; the use of hardware or software is generally (but not always, in that in certain
contexts the choice between hardware and software can become significant) a design
choice representing cost vs. efficiency tradeoffs. The reader will appreciate that there are
various vehicles by which processes and/or systems and/or other technologies described
herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred
vehicle will vary with the context in which the processes and/or systems and/or other
technologies are deployed. For example, if an implementer determines that speed and
accuracy are paramount, the implementer can opt for a mainly hardware and/or firmware
vehicle; alternatively, if flexibility is paramount, the implementer can opt for a mainly
software implementation; or, yet again alternatively, the implementer can opt for some
combination of hardware, software, and/or firmware. Hence, there are several possible
vehicles by which the processes and/or devices and/or other technologies described herein
can be effected, none of which is inherently superior to the other in that any vehicle to be
utilized is a choice dependent upon the context in which the vehicle will be deployed and
the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of
which can vary. The reader will recognize that optical aspects of implementations will
typically employ optically-oriented hardware, software, and or firmware.

The foregoing detailed description has set forth various embodiments of the
devices and/or processes via the use of block diagrams, flowcharts, and/or examples.
Insofar as such block diagrams, flowcharts, and/or examples contain one or more
functions and/or operations, it will be understood by those within the art that each function

and/or operation within such block diagrams, flowcharts, or examples can be
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implemented, individually and/or collectively, by a wide range of hardware, software,
firmware, or virtually any combination thereof. In an embodiment, several portions of the
subject matter described herein can be implemented via Application Specific Integrated
Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors
(DSPs), or other integrated formats. However, those skilled in the art will recognize that
some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently
implemented in integrated circuits, as one or more computer programs running on one or
more computers (e.g., as one Or more programs running on one or more computer
systems), as one Or more programs running on one or more processors (e.g., as one or
more programs runnhing on one or more microprocessors), as firmware, or as virtually any
combination thereof, and that designing the circuitry and/or writing the code for the
software and or firmware would be well within the skill of one skilled in the art in light of
this disclosure. In addition, the reader will appreciate that the mechanisms of the subject
matter described herein are capable of being distributed as a program product in a variety
of forms, and that an illustrative embodiment of the subject matter described herein
applies regardless of the particular type of signal bearing medium used to actually carry
out the distribution. Examples of a signal bearing medium include, but are not limited to,
the following: a recordable type medium such as a floppy disk, a hard disk drive, a
Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.;
and a transmission type medium such as a digital and/or an analog communication
medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless
communication link, etc.).

In a general sense, the various embodiments described herein can be implemented,
individually and/or collectively, by various types of electro-mechanical systems having a
wide range of electrical components such as hardware, software, firmware, or virtually any
combination thereof, and a wide range of components that can impart mechanical force or
motion such as rigid bodies, spring or torsional bodies, hydraulics, and electro-
magnetically actuated devices, or virtually any combination thereof. Consequently, as
used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry
operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, etc.),
electrical circuitry having at least one discrete electrical circuit, electrical circuitry having
at least one integrated circuit, electrical circuitry having at least one application specific

integrated circuit, electrical circuitry forming a general purpose computing device
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configured by a computer program (e.g., a general purpose computer configured by a
computer program which at least partially carries out processes and/or devices described
herein, or a microprocessor configured by a computer program which at least partially
carries out processes and/or devices described herein), electrical circuitry forming a
memory device (e.g., forms of random access memory), electrical circuitry forming a
communications device (e.g., a modem, communications switch, or optical-electrical
equipment), and any non-electrical analog thereto, such as optical or other analogs. Those
skilled in the art will also appreciate that examples of electro-mechanical systems include
but are not limited to a variety of consumer electrical systems, as well as other systems
such as motorized transport systems, factory automation systems, security systems, and
communication/computing systems. Those skilled in the art will recognize that electro-
mechanical as used herein is not necessarily limited to a system that has both electrical and
mechanical actuation except as context can dictate otherwise.

In a general sense, the various aspects described herein which can be implemented,
individually and/or collectively, by a wide range of hardware, software, firmware, or any
combination thereof can be viewed as being composed of various types of “electrical
circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited
to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry
having at least one integrated circuit, electrical circuitry having at least one application
specific integrated circuit, electrical circuitry forming a computing device configured by a
computer program (e.g., a general purpose computer configured by a computer program
which at least partially carries out processes and/or devices described herein, or a
microprocessor configured by a computer program which at least partially carries out
processes and/or devices described herein), electrical circuitry forming a memory device
(e.g., forms of random access memory), and/or electrical circuitry forming a
communications device (e.g., a modem, communications switch, or optical-electrical
equipment). The subject matter described herein can be implemented in an analog or
digital fashion or some combination thereof.

This disclosure has been made with reference to various example
embodiments. However, those skilled in the art will recognize that changes and
modifications can be made to the embodiments without departing from the scope of the
present disclosure. For example, various operational steps, as well as components for

carrying out operational steps, can be implemented in alternate ways depending upon the
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particular application or in consideration of any number of cost functions associated with
the operation of the system; e.g., one or more of the steps can be deleted, modified, or
combined with other steps.

Additionally, as will be appreciated by one of ordinary skill in the art, principles of
the present disclosure, including components, can be reflected in a computer program
product on a computer-readable storage medium having computer-readable program code
means embodied in the storage medium. Any tangible, non-transitory computer-readable
storage medium can be utilized, including magnetic storage devices (hard disks, floppy
disks, and the like), optical storage devices (CD-ROMs, DVDs, Blu-ray discs, and the
like), flash memory, and/or the like. These computer program instructions can be loaded
onto a general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions that execute on the
computer or other programmable data processing apparatus create a means for
implementing the functions specified. These computer program instructions can also be
stored in a computer-readable memory that can direct a computer or other programmable
data processing apparatus to function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of manufacture, including
implementing means that implement the function specified. The computer program
instructions can also be loaded onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be performed on the computer or other
programmable apparatus to produce a computer-implemented process, such that the
instructions that execute on the computer or other programmable apparatus provide steps
for implementing the functions specified.

In an embodiment, the printing systems disclosed herein can be integrated in such
a manner that the printing systems operate as a unique system configured specifically for
function of printing (e.g., three-dimensional printing), and any associated computing
devices of the printing systems operate as specific use computers for purposes of the
claimed system, and not general use computers. In an embodiment, at least one associated
computing device of the printing systems operates as specific use computers for purposes
of the claimed system, and not general use computers. In an embodiment, at least one of
the associated computing devices of the printing systems are hardwired with a specific

ROM to instruct the at least one computing device. In an embodiment, one of skill in the
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art recognizes that the printing devices and printing systems effects an improvement at
least in the technological field of three-dimensional printing.

The herein described components (e.g., steps), devices, and objects and the
discussion accompanying them are used as examples for the sake of conceptual clarity.
Consequently, as used herein, the specific exemplars set forth and the accompanying
discussion are intended to be representative of their more general classes. In general, use
of any specific exemplar herein is also intended to be representative of its class, and the
non-inclusion of such specific components (e.g., steps), devices, and objects herein should
not be taken as indicating that limitation is desired.

With respect to the use of substantially any plural and/or singular terms herein, the
reader can translate from the plural to the singular and/or from the singular to the plural as
is appropriate to the context and/or application. The various singular/plural permutations
are not expressly set forth herein for sake of clarity.

The herein described subject matter sometimes illustrates different components
contained within, or connected with, different other components. It is to be understood
that such depicted architectures are merely exemplary, and that in fact many other
architectures can be implemented which achieve the same functionality. In a conceptual
sense, any arrangement of components to achieve the same functionality is effectively
“associated” such that the desired functionality is achieved. Hence, any two components
herein combined to achieve a particular functionality can be seen as “associated with”
each other such that the desired functionality is achieved, irrespective of architectures or
intermedial components. Likewise, any two components so associated can also be viewed
as being “operably connected,” or “operably coupled,” to each other to achieve the desired
functionality, and any two components capable of being so associated can also be viewed
as being “operably couplable,” to each other to achieve the desired functionality. Specific
examples of operably couplable include but are not limited to physically mateable and/or
physically interacting components and/or wirelessly interactable and/or wirelessly
interacting components and/or logically interacting and/or logically interactable
components.

In some instances, one or more components can be referred to herein as
“configured to.” The reader will recognize that “configured to” can generally encompass
active-state components and/or inactive-state components and/or standby-state

components, unless context requires otherwise.
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While particular aspects of the present subject matter described herein have been
shown and described, it will be apparent to those skilled in the art that, based upon the
teachings herein, changes and modifications can be made without departing from the
subject matter described herein and its broader aspects and, therefore, the appended claims
are to encompass within their scope all such changes and modifications as are within the
true spirit and scope of the subject matter described herein. Furthermore, it is to be
understood that the invention is defined by the appended claims. In general, terms used
herein, and especially in the appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “including” should be interpreted as
“including but not limited to,” the term “having” should be interpreted as “having at
least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a specific number of an
introduced claim recitation is intended, such an intent will be explicitly recited in the
claim, and in the absence of such recitation no such intent is present. For example, as an
aid to understanding, the following appended claims can contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim recitations. However, the use

of such phrases should not be construed to imply that the introduction of a claim recitation

by the indefinite articles “a” or “an” limits any particular claim containing such introduced
claim recitation to inventions containing only one such recitation, even when the same
claim includes the introductory phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean
“at least one” or “one or more”); the same holds true for the use of definite articles used to
introduce claim recitations. In addition, even if a specific number of an introduced claim
recitation is explicitly recited, such recitation should typically be interpreted to mean at
least the recited number (e.g., the bare recitation of “two recitations,” without other
modifiers, typically means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analogous to “at least one of A, B, and
C, etc.” is used, in general such a construction is intended in the sense the convention
(e.g., “a system having at least one of A, B, and C” would include but not be limited to
systems that have A alone, B alone, C alone, A and B together, A and C together, B and C
together, and/or A, B, and C together, etc.). In those instances where a convention

analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is

intended in the sense the convention (e.g., “a system having at least one of A, B, or C”
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would include but not be limited to systems that have A alone, B alone, C alone, A and B
together, A and C together, B and C together, and/or A, B, and C together, etc.). Virtually
any disjunctive word and/or phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to contemplate the possibilities
of including one of the terms, either of the terms, or both terms. For example, the phrase
“A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”

With respect to the appended claims, the recited operations therein can generally
be performed in any order. Examples of such alternate orderings can include overlapping,
interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous,
reverse, or other variant orderings, unless context dictates otherwise. With respect to

29 LC

context, even terms like “responsive to,” “related to,” or other past-tense adjectives are
generally not intended to exclude such variants, unless context dictates otherwise.
Aspects of the subject matter described herein are set out in the following

numbered clauses:

1. A system for determining a presence of an analyte in blood, the system
comprising:
at least one memory storage medium configured to store a plurality of images of a
sample slide, the plurality of images including,
a plurality of fields-of-view, each including a unique x and y coordinate of
the sample slide; and
a plurality of focal planes, each having a unique z coordinate of the sample
slide;
at least one processor operably coupled to the at least one memory storage
medium, the at least one processor being configured to,
determine and apply a white balance transform to each of the plurality of
images effective to produce a plurality of color-corrected images;
determine and apply an adaptive grayscale transform to each of the
plurality of images to provide an adaptive grayscale intensity image for each of the
plurality of images;
detect and identify one or more candidate objects in the plurality of color-

corrected images and the adaptive grayscale intensity images;
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extract and score the one or more candidate objects based at least in part on
one or more characteristics of the one or more candidate objects, filter the one or more
candidate objects based at least in part on the score, and output one or more color-
corrected image patches and one or more adaptive grayscale intensity image patches for
each filtered candidate object;

extract one or more feature vectors from the color-corrected image patches
and the adaptive grayscale intensity image patches and output the one or more feature
vectors;

classify each of the one or more feature vectors as corresponding to an
artifact or an analyte; and

determine if the feature vectors classified as analytes are above or below a
threshold level associated with a positive diagnosis.
2. The system of clause 1, wherein the at least one memory storage medium includes
an image preprocessing module, a candidate object detection module, a feature extraction
module, a classification module, and a diagnosis module stored therein as computer
readable programs that are executable by the at least one processor.
3. The system of clause 1, wherein the at least one processor is configured to
determine and apply a white balance transform to the plurality of images based at least
partially upon a plurality of brightest pixels in the plurality of images.
4. The system of clause 3, wherein at least one processor is configured to determine
the white balance transform from:

a plurality of brightest pixels from a subset of the plurality of images randomly
selected such that a probability of a presence of a clear pixel therein is substantially 1;

a calculated standard grayscale intensity of each pixel of the subset of the plurality
of images to determine the plurality of brightest pixels in each of the subset of the plurality
of images;

a red value R, a green value G, and a blue value B of each of the plurality of
brightest pixels;

an average color vector defined by an average color of the plurality of brightest
pixels;

a white color vector;

an axis vector that is perpendicular to, and calculated from a cross-product of, both

the average color vector and the white color vector; and
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an affine transform matrix calculated from the axis vector and an angle between
the average color vector and the white color vector.
5. The system of clause 4, wherein the at least one processor is configured to apply
the white balance transform to a color vector of each of the pixels of the plurality of
images defined by the R, G, and B value therein, and output the color-corrected images
based thereon.
6. The system of clause 1, wherein the at least one processor is configured to
determine and apply an adaptive grayscale transform to the plurality of images and output
a plurality of adaptive grayscale intensity images.
7. The system of clause 1, wherein at least one processor is configured to:

receive as input a plurality of color-corrected images and standard grayscale
intensity images;

threshold the standard grayscale intensity images at a dark threshold to detect
blobs;

filter at least one of color, area, or shape of one or more detected blobs to locate
and identify white blood cell nuclei at high sensitivity and specificity;

output as white blood cell vector data to the memory storage medium, a red value
R, a green value G, and a blue value B of one or more pixels from the color-corrected
images that contain a white blood cell nuclei therein; and

output as background vector data, to the memory storage medium, a red value R, a
green value G, and a blue value B of a plurality of qualified background pixels as
determined from a random sampling of pixels that are brighter in grayscale intensity than
the dark threshold in the color-corrected images; and

supply the white blood cell vector data and background vector data to a machine
learning module stored in the at least one memory storage medium and executed by the at
least one processor, the machine learning module configured to determine an adaptive
grayscale projection vector.
8. The system of clause 7, wherein the at least one processor is configured to
determine:

the adaptive grayscale transform based upon an adaptive grayscale projection
vector, which is based at least in part on a plurality of white blood cell pixels and a
plurality of qualified background pixels; and

the adaptive grayscale projection vector using a regression.
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9. The system of clause 8, wherein the at least one processor is configured to carry
out a regularized regression including one or more of a ridge regression, a lasso
regression, a principal components regression, or a partial least squares regression to
determine the adaptive grayscale projection vector.
10. The system of clause 8, wherein the at least one processor is configured to
calculate and apply an adaptive grayscale intensity to each of the plurality of images
effective to provide a plurality of adaptive grayscale intensity images.
11. The system of clause 8, wherein the at least one processor is configured to
calculate and apply a polynomial regression using a second order or higher order
polynomial predictor variable matrix in order to determine and apply the adaptive
grayscale transform.
12. The system of clause 8, wherein the at least one processor is configured to
calculate and apply regression using a predictor variable matrix having rational functions
of the red value R, green value G, and blue value B of the one or more pixels therein in
order to determine and apply the adaptive grayscale transform.
13. The system of clause 1, wherein the at least one processor is configured to
determine one or more potential analyte locations based upon one or more of a plurality of
color-corrected images or a plurality of adaptive grayscale intensity images.
14. The system of clause 13, wherein the at least one processor is configured to:

determine which fields-of-view of the plurality of fields-of-view include one or
more candidate objects therein;

cluster candidate objects based at least in part on a distance between one or more
adjacent candidate objects of the one or more candidate objects in a field-of-view to
provide a candidate object cluster defined by one or more adjacent candidate objects
therein;

determine a focal plane having a best focus score for each of the one or more
candidate objects;

output a score for each of the one or more candidate object based at least in part on
one or more characteristics of each of the one or more candidate objects, the one or more
characteristics including at least one of area, grayscale intensity, shape, or color; and

filter the one or more candidate objects based at least in part on the score of the one

or more characteristics.
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15. The system of clause 14, wherein the at least one processor is configured to filter
the one or more candidate objects by comparing the score of one or more characteristics of
the one or more candidate objects to a threshold score for each of the one or more
characteristics, output the one or more candidate objects with a score above the threshold
score as potential analyte locations, and reject the one or more candidate objects with a
score below the threshold score.

16. The system of clause 15 wherein the at least one processor is configured to
determine a threshold score based upon attributes of ground truth objects trained into the
at least one memory storage medium and accessed by the at least one processor.

17. The system of clause 15 wherein the at least one processor is configured to output
color-corrected 1image patches and adaptive grayscale intensity image patches
corresponding to one or more potential analyte locations.

18. The system of clause 1, wherein the at least one processor is configured to receive
as input a plurality of color-corrected image patches and a plurality of adaptive grayscale
intensity image patches corresponding to the one or more potential analyte locations in the
plurality of images and output one or more feature vectors each representing a potential
analyte.

19. The system of clause 18, wherein the at least one processor is configured to
determine and extract one or more manual features of the one or more candidate objects by
determining one or more of,

a best focal plane for each image patch of a plurality of color-corrected image
patches and adaptive grayscale intensity image patches containing the one or more
candidate objects, the best focus score including a highest score from a plurality of focus
scores for the plurality of focal planes in an image patch having the one or more candidate
objects therein;

a standard deviation or other measure of dispersion of focus scores across all of the
plurality of focal planes of an image patch having the one or more candidate objects
therein; and

a red-shift score of each image patch based at least partially upon a shift in redness
of a darkest portion of the one or more candidate objects between the plurality of focal

planes in each image patch.
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20. The system of clause 1, wherein the at least one processor is configured to
determine and extract one or more features of one or more candidate objects in the
plurality of images and represent the one or more features as one or more feature vectors.
21. The system of clause 20, wherein the at least one processor is configured to
determine and extract one or more features of the one or more candidate objects wherein
the one or more features are automatically learned features.

22. The system of clause 20, wherein the system includes a machine learning module
configured to automatically learn a set of weights based at least in part on a plurality of
ground truth images having one or more ground truth objects therein, wherein the one or
more ground truth objects include samples of the analyte and samples of artefacts.

23.  The system of clause 22, wherein the machine learning module includes a
convolutional neural network.

24, The system of clause 23, wherein the at least one processor is configured to learn
the set of weights in the convolutional neural network based at least in part on an
augmented set of ground truth image patches that have been augmented using a data
augmentation scheme.

25.  The system of clause 24, wherein the data augmentation scheme includes a random
gamma correction of one or more of a red, green, blue, or grayscale intensity component
of the ground truth image patches.

26. The system of clause 1, wherein the at least one processor is configured to receive
as input one or more feature vectors of the one or more candidate objects and classify the
one or more feature vectors as corresponding to one of the artifact or the analyte.

27. The system of clause 26, wherein the at least one processor is configured as a
machine learning classifier that outputs a score indicating that each of the one or more
feature vectors of the one or more candidate objects corresponds to an analyte.

28. The system of clause 27, wherein the at least one processor is configured to
augment the color-corrected image patches and the adaptive grayscale intensity image
patches using an augmentation scheme and to average output of the machine learning
classifier over the feature vectors corresponding to augmented versions of each of the
color-corrected image patches and the adaptive grayscale intensity image patches.

29.  The system of clause 28, wherein the data augmentation scheme includes a random
gamma correction of one or more of a color-corrected red, green, blue, or adaptive

grayscale intensity component of the input image patches.
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30. The system of clause 26, wherein the at least one memory storage medium and at
least one processor includes a machine learning classifier configured to learn based at least
in part on the one or more ground truth image patches.

31 The system of clause 1, wherein the at least one processor is configured to

determine if an analyte is present and give an indication of the presence or absence of the

analyte.

32. The system of clause 31, wherein the analyte includes a parasite.

33. The system of clause 32, wherein the parasite includes a malaria parasite.

34. The system of clause 1, wherein the system includes an image capture device.

35. The system of clause 34, wherein the image capture device includes a microscope.
36. The system of clause 1, wherein the system is configured to identify a species of

one or more candidate objects based at least in part on one or more image characteristics
including one or more of shape, size, or color.
37. A method for determining a presence of an analyte in blood, the method
comprising:
receiving a plurality of images of a sample slide, the plurality of images including,
a plurality of fields-of-view, each including a unique x and y coordinate of
the sample slide; and
a plurality of focal planes, each having a unique z coordinate of the sample
slide;
applying a white balance transform to each of the plurality of images effective to
produce a plurality of color-corrected images; and
applying an adaptive grayscale transform to each of the plurality of images to
provide an adaptive grayscale intensity image for each of the plurality of images;
detecting and identifying one or more candidate objects in the plurality of color-
corrected images and the adaptive grayscale intensity images;
filtering the one or more candidate objects based at least in part on a score that is
based at least in part on one or more characteristics thereof and outputting one or more
color-corrected image patches and one or more adaptive grayscale intensity image patches

for each filtered candidate object;
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extracting one or more feature vectors from the color-corrected image patches and
the adaptive grayscale intensity image patches and outputting the one or more feature
vectors;

classifying each feature vector as corresponding to an artifact or an analyte; and

determining if the feature vectors classified as analytes are above or below a
threshold level associated with a positive diagnosis.
38. The method of clause 37, wherein the method is carried out using at least one
memory storage medium that includes each of an image preprocessing module, a
candidate object detection module, a feature extraction module, a classification module,
and a diagnosis module stored therein as computer readable programs that are executable
by at least one processor operably coupled to the at least one memory storage medium.
39. The method of clause 37, wherein applying a white balance transform to the
plurality of images includes using a plurality of brightest pixels in the plurality of images.
40. The method of clause 39, wherein applying a white balance transform includes
determining the white balance transform including,

selecting a plurality of brightest pixels from a subset of the plurality of images
randomly selected such that a probability of a presence of a clear pixel therein is
substantially 1;

calculating and applying a standard grayscale intensity of each pixel of the subset
of the plurality of images to determine the plurality of brightest pixels in each of the subset
of the plurality of images;

determining a red value R, a green value G, and a blue value B of each of the
plurality of brightest pixels;

calculating an average color vector defined by an average color of the plurality of
brightest pixels;

determining a white color vector;

determining an axis vector that is perpendicular to, and calculated from a cross-
product of, both the average color vector and the white color vector; and

determining an affine transform matrix calculated from the axis vector and an
angle between the average color vector and the white color vector.
41. The method of clause 40, wherein applying the white balance transform includes

applying the white balance transform to a color vector of each pixel of the plurality of
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images defined by the red value R, green value G, and blue value B therein, and outputting
the color-corrected images based thereon.
42. The method of clause 37, wherein applying an adaptive grayscale transform to the
plurality of images includes outputting a plurality of adaptive grayscale intensity images.
43, The method of clause 42, wherein applying an adaptive grayscale transform
includes:

receiving as input a plurality of color-corrected images and standard grayscale
intensity images;

thresholding the standard grayscale intensity images at a dark threshold to detect
one or more blobs;

filtering at least one of color, area, or shape of the detected one or more blobs to
locate and identify white blood cell nuclei at high sensitivity and specificity;

outputting as white blood cell vector data a red value R, a green value G, and a
blue value B of one or more pixels from the color-corrected images that contain a while
blood cell nuclei therein;

outputting as background vector data, a red value R, a green value G, and a blue
value B of a plurality of qualified background pixels as determined from a random
sampling of pixels that are brighter in grayscale intensity than the dark threshold in the
color-corrected images; and

determining an adaptive grayscale projection vector from the white blood cell
vector data and background vector data.
44, The method of clause 42, wherein applying an adaptive grayscale transform
includes determining and applying the adaptive grayscale projection as a vector using a
plurality of white blood cell pixels, a plurality of qualified background pixels, and a
regression.
45. The method of clause 44, wherein using a regression includes using one or more of
a ridge regression, lasso regression, principal components regression, or partial least
squares regression
46. The method of clause 42, wherein applying an adaptive grayscale transform
includes calculating and applying an adaptive grayscale intensity to each of the plurality of

images effective to provide a plurality of adaptive grayscale intensity images.
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47. The method of clause 42, wherein applying an adaptive grayscale transform
includes calculating and applying a polynomial regression using a second order or higher
order polynomial predictor variable matrix.
48. The method of clause 42, wherein applying an adaptive grayscale transform
includes calculating and applying polynomial regression using a predictor variable matrix
having rational functions of red values R, green values G, and blue values B.
49. The method of clause 37, wherein detecting and identifying one or more candidate
objects includes determining one or more potential analyte locations based upon one or
more of a plurality of color-corrected images or a plurality of adaptive grayscale intensity
images.
50. The method of clause 37, wherein detecting and identifying one or more candidate
objects includes:

determining which fields-of-view of the plurality of fields-of-view include one or
more candidate objects therein;

clustering one or more candidate objects based at least in part on a distance
between adjacent candidate objects of the one or more candidate objects in a field-of view
to provide a candidate object cluster defined by the adjacent candidate objects therein;

determining the focal plane having a best focus score for each of the one or

more candidate objects;

outputting a score based at least in part on one or more characteristics of each of
the one or more candidate objects, the one or more characteristics including at least one of
area, grayscale intensity, shape, or color; and

filtering the candidate objects based at least in part on the score of the one or more
characteristics.
51. The method of clause 50, wherein filtering the candidate objects based at least in
part on the score of the one or more characteristics includes determining a threshold score
based upon attributes of ground truth objects trained into a memory storage medium and
accessed by at least one processor.
52. The method of clause 50, wherein filtering the candidate objects includes:

filtering the one or more candidate objects by comparing the score of one or more
characteristics of the one or more candidate objects to a threshold score for each of the one

or more characteristics;
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outputting the one or more candidate objects with a score above the threshold score
as potential analyte locations, and

rejecting the one or more candidate objects with a score below the threshold score.
53. The method of clause 52, further comprising outputting color-corrected image
patches and adaptive grayscale intensity image patches corresponding to one or more
potential analyte locations.
54. The method of clause 37, wherein extracting the one or more feature vectors from
the color-corrected image patches and the adaptive grayscale intensity image patches
includes:

receiving as input a plurality of color-corrected image patches and a plurality of
adaptive grayscale intensity image patches corresponding to one or more potential analyte
locations in the plurality of images; and

outputting one or more feature vectors each representing a potential analyte.
55. The method of clause 54, wherein extracting the one or more feature vectors from
the color-corrected image patches and the adaptive grayscale intensity image patches
includes:

determining and extracting one or more features of one or more candidate objects
in the plurality of color-corrected image patches and the plurality of adaptive grayscale
intensity image patches corresponding to the one or more potential analyte locations; and

representing one or more features associated with the one or more candidate
objects as one or more feature vectors.
56. The method of clause 55, wherein determining and extracting one or more features
of the candidate objects includes extracting one or more automatically learned features.
57. The method of clause 56, wherein extracting the automatically learned features
includes teaching a machine learning module a set of weights based at least in part on
ground truth image patches having one or more ground truth objects therein, wherein the
one or more ground truth objects include samples of the analyte and samples of artifacts.
58. The method of clause 57, wherein the machine learning module includes a
convolutional neural network.
59. The method of clause 58, wherein teaching the machine learning module a set of
weights based at least in part on ground truth image patches includes augmenting the

ground truth image patches using a data augmentation scheme.
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60. The method of clause 59, wherein the data augmentation scheme includes a
random gamma correction of one or more of a red, green, blue, or grayscale intensity
component of the ground truth image patches.
61. The method of clause 54, wherein extracting the one or more feature vectors from
the color-corrected image patches and the adaptive grayscale intensity image patches
includes:

determining a best focus plane for each image patch of a plurality of color-
corrected image patches and adaptive grayscale intensity image patches containing the
candidate objects based at least in part on a best focus score, the best focus score including
a highest score from a plurality of focus scores for the plurality of focal planes in an image
patch having a candidate object therein;

determining a standard deviation of focus scores across all of the plurality of focal
planes of each image patch having the candidate object therein; and

determining a red-shift score for each image patch based at least in part upon a
shift in redness of a darkest portion of a candidate object between the plurality of focal
planes in each image patch.
62.  The method of clause 37, wherein classifying each feature vector as corresponding
to an artifact or an analyte includes receiving as input one or more feature vectors of
candidate objects and classifying the one or more feature vectors as corresponding to one
of the artifact or the analyte.
63.  The method of clause 62, wherein classifying each feature vector as corresponding
to an artifact or an analyte includes using a machine learning classifier that outputs a score
indicating that each of the one or more feature vectors of the one or more candidate
objects corresponds to an analyte.
64. The method of clause 63, wherein the outputting of the color-corrected image
patches and the adaptive grayscale intensity image patches includes using an augmentation
scheme to augment the color-corrected image patches and the adaptive grayscale intensity
image patches and classifying the one or more feature vectors includes averaging output of
the machine learning classifier over the feature vectors corresponding to augmented
versions of each of the color-corrected image patches and the adaptive grayscale intensity
image patches.
65. The method of clause 64, wherein the data augmentation scheme includes a

random gamma correction of one or more of a color-corrected red, green, blue, or adaptive
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grayscale intensity component of the color-corrected image patches or the adaptive
grayscale intensity image patches.

60. The method of clause 37, further comprising accepting as ground truth one or more
annotated images of the analyte in ground truth samples and one or more annotated images
of artifacts in ground truth samples.

67. The method of clause 66, wherein accepting as ground truth one or more annotated
images of the analyte in ground truth samples and one or more annotated images of
artifacts in ground truth samples includes teaching a machine learning classifier a set of
weights based at least in part on the one or more learned ground truth image patches.

68. The method of clause 67, wherein the machine learning classifier includes a
convolutional neural network and teaching the machine learning classifier a set of weights
based at least in part on the one or more ground truth image patches includes loading the
one or more annotated images of the analyte in ground truth samples and the one or more
annotated images of artifacts in ground truth samples into the convolutional neural
network.

69. The method of clause 68, wherein teaching the machine learning classifier a set of
weights based at least in part on the one or more ground truth image patches includes
augmenting the ground truth image patches using a data augmentation scheme.

70. The method of clause 69, wherein the data augmentation scheme includes a
random gamma correction of one or more of a red, green, blue, or grayscale intensity
component of the ground truth image patches.

71. The method of clause 37, wherein determining if the feature vectors classified
corresponding to analytes are above or below a threshold level associated with a positive
diagnosis includes determining if the analyte is present and giving an indication of a
presence or absence of the analyte based upon an amount of one or more feature vectors as
classified as the analyte.

72. The method of clause 37, further comprising identifying a species of one or more
candidate objects based at least in part on one or more image characteristics including one

or more of shape, size, or color.

73. The method of clause 37, wherein the analyte includes a parasite.
74. The method of clause 73, wherein the parasite includes a malaria parasite.
75. The method of clause 37, further comprising recording, with a microscope, one or

more images of one or more sample slides.
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76. An automated system for determining a presence of a malaria parasite in blood, the
system comprising:
a microscope configured to capture a plurality of images of a blood slide, each of
the plurality of images including,
a plurality of fields-of-view, each including a unique x and y coordinate of
the blood slide; and
a plurality of focal planes, each having a unique z coordinate of the blood
slide;
at least one memory storage medium configured to store the plurality of images of
the blood slide;
at least one processor operably coupled to the at least one memory storage
medium, the at least one processor being configured to,
determine and apply a white balance transform to each of the plurality of
images effective to produce a plurality of color-corrected images; and
determine and apply an adaptive grayscale transform to each of the
plurality of images to provide an adaptive grayscale intensity image for each of the
plurality of images;
detect and identify one or more candidate objects in the plurality of color-
corrected images and the adaptive grayscale intensity images;
extract and score one or more characteristics of the one or more candidate
objects, filter the one or more candidate objects based at least in part on the score;
extract color-corrected image patches and adaptive grayscale intensity
image patches of the one or more filtered candidate objects;
output one or more feature vectors for each filtered candidate object;
classify each feature vector as an artifact or an analyte; and
determine if the feature vectors classified as analytes are above or below a

threshold level associated with a positive diagnosis.

While various aspects and embodiments have been disclosed herein, the various
aspects and embodiments disclosed herein are for purposes of illustration and are not
intended to be limiting, with the true scope and spirit being indicated by the following

claims.
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CLAIMS

What is claimed is:
1. A system for determining a presence of an analyte in blood, the system
comprising:

at least one memory storage medium configured to store a plurality of images of a

sample slide, the plurality of images including,

a plurality of fields-of-view, each including a unique x and y coordinate of
the sample slide; and

a plurality of focal planes, each having a unique z coordinate of the sample
slide;

at least one processor operably coupled to the at least one memory storage

medium, the at least one processor being configured to,

determine and apply a white balance transform to each of the plurality of
images effective to produce a plurality of color-corrected images;

determine and apply an adaptive grayscale transform to each of the
plurality of images to provide an adaptive grayscale intensity image for each of the
plurality of images;

detect and identify one or more candidate objects in the plurality of color-
corrected images and the adaptive grayscale intensity images;

extract and score the one or more candidate objects based at least in part on
one or more characteristics of the one or more candidate objects, filter the one or more
candidate objects based at least in part on the score, and output one or more color-
corrected image patches and one or more adaptive grayscale intensity image patches for
each filtered candidate object;

extract one or more feature vectors from the color-corrected image patches
and the adaptive grayscale intensity image patches and output the one or more feature
vectors;

classify each of the one or more feature vectors as corresponding to an
artifact or an analyte; and

determine if the feature vectors classified as analytes are above or below a

threshold level associated with a positive diagnosis.
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2. The system of claim 1, wherein the at least one memory storage medium includes
an image preprocessing module, a candidate object detection module, a feature extraction
module, a classification module, and a diagnosis module stored therein as computer

readable programs that are executable by the at least one processor.

3. The system of claim 1, wherein the at least one processor is configured to
determine and apply a white balance transform to the plurality of images based at least

partially upon a plurality of brightest pixels in the plurality of images.

4. The system of claim 3, wherein at least one processor is configured to determine
the white balance transform from:

a plurality of brightest pixels from a subset of the plurality of images randomly
selected such that a probability of a presence of a clear pixel therein is substantially 1;

a calculated standard grayscale intensity of each pixel of the subset of the plurality
of images to determine the plurality of brightest pixels in each of the subset of the plurality
of images;

a red value R, a green value G, and a blue value B of each of the plurality of
brightest pixels;

an average color vector defined by an average color of the plurality of brightest
pixels;

a white color vector;

an axis vector that is perpendicular to, and calculated from a cross-product of, both
the average color vector and the white color vector; and

an affine transform matrix calculated from the axis vector and an angle between

the average color vector and the white color vector.

5. The system of claim 4, wherein the at least one processor is configured to apply
the white balance transform to a color vector of each of the pixels of the plurality of
images defined by the R, G, and B value therein, and output the color-corrected images

based thereon.
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6. The system of claim 1, wherein the at least one processor is configured to
determine and apply an adaptive grayscale transform to the plurality of images and output

a plurality of adaptive grayscale intensity images.

7. The system of claim 1, wherein at least one processor is configured to:

receive as input a plurality of color-corrected images and standard grayscale
intensity images;

threshold the standard grayscale intensity images at a dark threshold to detect
blobs;

filter at least one of color, area, or shape of one or more detected blobs to locate
and identify white blood cell nuclei at high sensitivity and specificity;

output as white blood cell vector data to the memory storage medium, a red value
R, a green value G, and a blue value B of one or more pixels from the color-corrected
images that contain a white blood cell nuclei therein; and

output as background vector data, to the memory storage medium, a red value R, a
green value G, and a blue value B of a plurality of qualified background pixels as
determined from a random sampling of pixels that are brighter in grayscale intensity than
the dark threshold in the color-corrected images; and

supply the white blood cell vector data and background vector data to a machine
learning module stored in the at least one memory storage medium and executed by the at
least one processor, the machine learning module configured to determine an adaptive

grayscale projection vector.

8. The system of claim 7, wherein the at least one processor is configured to
determine:

the adaptive grayscale transform based upon an adaptive grayscale projection
vector, which is based at least in part on a plurality of white blood cell pixels and a
plurality of qualified background pixels; and

the adaptive grayscale projection vector using a regression.

9. The system of claim 8, wherein the at least one processor is configured to
calculate and apply an adaptive grayscale intensity to each of the plurality of images

effective to provide a plurality of adaptive grayscale intensity images.
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10. The system of claim 1, wherein the at least one processor is configured to
determine one or more potential analyte locations based upon one or more of a plurality of

color-corrected images or a plurality of adaptive grayscale intensity images.

11. The system of claim 10, wherein the at least one processor is configured to:

determine which fields-of-view of the plurality of fields-of-view include one or
more candidate objects therein;

cluster candidate objects based at least in part on a distance between one or more
adjacent candidate objects of the one or more candidate objects in a field-of-view to
provide a candidate object cluster defined by one or more adjacent candidate objects
therein;

determine a focal plane having a best focus score for each of the one or more
candidate objects;

output a score for each of the one or more candidate object based at least in part on
one or more characteristics of each of the one or more candidate objects, the one or more
characteristics including at least one of area, grayscale intensity, shape, or color; and

filter the one or more candidate objects based at least in part on the score of the one

or more characteristics.

12. The system of claim 11, wherein the at least one processor is configured to filter
the one or more candidate objects by comparing the score of one or more characteristics of
the one or more candidate objects to a threshold score for each of the one or more
characteristics, output the one or more candidate objects with a score above the threshold
score as potential analyte locations, and reject the one or more candidate objects with a

score below the threshold score.

13. The system of claim 12 wherein the at least one processor is configured to
determine a threshold score based upon attributes of ground truth objects trained into the

at least one memory storage medium and accessed by the at least one processor.

14. The system of claim 1, wherein the at least one processor is configured to receive

as input a plurality of color-corrected image patches and a plurality of adaptive grayscale
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intensity image patches corresponding to the one or more potential analyte locations in the
plurality of images and output one or more feature vectors each representing a potential

analyte.

15. The system of claim 14, wherein the at least one processor is configured to
determine and extract one or more manual features of the one or more candidate objects by
determining one or more of,

a best focal plane for each image patch of a plurality of color-corrected image
patches and adaptive grayscale intensity image patches containing the one or more
candidate objects, the best focus score including a highest score from a plurality of focus
scores for the plurality of focal planes in an image patch having the one or more candidate
objects therein;

a standard deviation or other measure of dispersion of focus scores across all of the
plurality of focal planes of an image patch having the one or more candidate objects
therein; and

a red-shift score of each image patch based at least partially upon a shift in redness
of a darkest portion of the one or more candidate objects between the plurality of focal

planes in each image patch.

16. The system of claim 1, wherein the at least one processor is configured to
determine and extract one or more features of one or more candidate objects in the

plurality of images and represent the one or more features as one or more feature vectors.

17. The system of claim 1, wherein the at least one processor is configured to receive
as input one or more feature vectors of the one or more candidate objects and classify the

one or more feature vectors as corresponding to one of the artifact or the analyte.
18. The system of claim 17, wherein the at least one processor is configured as a

machine learning classifier that outputs a score indicating that each of the one or more

feature vectors of the one or more candidate objects corresponds to an analyte.
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19. The system of claim 17, wherein the at least one memory storage medium and at
least one processor includes a machine learning classifier configured to learn based at least

in part on the one or more ground truth image patches.

20. The system of claim 1, wherein the at least one processor is configured to

determine if an analyte is present and give an indication of the presence or absence of the

analyte.

21. The system of claim 20, wherein the analyte includes a parasite.

22. The system of claim 21, wherein the parasite includes a malaria parasite.

23. The system of claim 1, wherein the system includes an image capture device.

24, The system of claim 23, wherein the image capture device includes a microscope.
25. A method for determining a presence of an analyte in blood, the method
comprising:

receiving a plurality of images of a sample slide, the plurality of images including,
a plurality of fields-of-view, each including a unique x and y coordinate of
the sample slide; and
a plurality of focal planes, each having a unique z coordinate of the sample
slide;
applying a white balance transform to each of the plurality of images effective to
produce a plurality of color-corrected images; and
applying an adaptive grayscale transform to each of the plurality of images to
provide an adaptive grayscale intensity image for each of the plurality of images;
detecting and identifying one or more candidate objects in the plurality of color-
corrected images and the adaptive grayscale intensity images;
filtering the one or more candidate objects based at least in part on a score that is

based at least in part on one or more characteristics thereof and outputting one or more
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color-corrected image patches and one or more adaptive grayscale intensity image patches
for each filtered candidate object;

extracting one or more feature vectors from the color-corrected image patches and
the adaptive grayscale intensity image patches and outputting the one or more feature
vectors;

classifying each feature vector as corresponding to an artifact or an analyte; and

determining if the feature vectors classified as analytes are above or below a

threshold level associated with a positive diagnosis.

26. The method of claim 25, wherein applying a white balance transform to the

plurality of images includes using a plurality of brightest pixels in the plurality of images.

27. The method of claim 26, wherein applying a white balance transform includes
determining the white balance transform including,

selecting a plurality of brightest pixels from a subset of the plurality of images
randomly selected such that a probability of a presence of a clear pixel therein is
substantially 1;

calculating and applying a standard grayscale intensity of each pixel of the subset
of the plurality of images to determine the plurality of brightest pixels in each of the subset
of the plurality of images;

determining a red value R, a green value G, and a blue value B of each of the
plurality of brightest pixels;

calculating an average color vector defined by an average color of the plurality of
brightest pixels;

determining a white color vector;

determining an axis vector that is perpendicular to, and calculated from a cross-
product of, both the average color vector and the white color vector; and

determining an affine transform matrix calculated from the axis vector and an

angle between the average color vector and the white color vector.

28. The method of claim 27, wherein applying the white balance transform includes

applying the white balance transform to a color vector of each pixel of the plurality of
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images defined by the red value R, green value G, and blue value B therein, and outputting

the color-corrected images based thereon.

29. The method of claim 25, wherein applying an adaptive grayscale transform to the

plurality of images includes outputting a plurality of adaptive grayscale intensity images.

30. The method of claim 29, wherein applying an adaptive grayscale transform
includes:

receiving as input a plurality of color-corrected images and standard grayscale
intensity images;

thresholding the standard grayscale intensity images at a dark threshold to detect
one or more blobs;

filtering at least one of color, area, or shape of the detected one or more blobs to
locate and identify white blood cell nuclei at high sensitivity and specificity;

outputting as white blood cell vector data a red value R, a green value G, and a
blue value B of one or more pixels from the color-corrected images that contain a while
blood cell nuclei therein;

outputting as background vector data, a red value R, a green value G, and a blue
value B of a plurality of qualified background pixels as determined from a random
sampling of pixels that are brighter in grayscale intensity than the dark threshold in the
color-corrected images; and

determining an adaptive grayscale projection vector from the white blood cell

vector data and background vector data.

31 The method of claim 29, wherein applying an adaptive grayscale transform
includes determining and applying the adaptive grayscale projection as a vector using a
plurality of white blood cell pixels, a plurality of qualified background pixels, and a

regression.
32. The method of claim 31, wherein using a regression includes using one or more of

a ridge regression, lasso regression, principal components regression, or partial least

squares regression

65



10

15

20

25

30

WO 2016/191462 PCT/US2016/034050

33. The method of claim 29, wherein applying an adaptive grayscale transform
includes calculating and applying an adaptive grayscale intensity to each of the plurality of

images effective to provide a plurality of adaptive grayscale intensity images.

34. The method of claim 29, wherein applying an adaptive grayscale transform
includes calculating and applying a polynomial regression using a second order or higher

order polynomial predictor variable matrix.

35. The method of claim 29, wherein applying an adaptive grayscale transform
includes calculating and applying polynomial regression using a predictor variable matrix

having rational functions of red values R, green values G, and blue values B.

36. The method of claim 25, wherein detecting and identifying one or more candidate
objects includes determining one or more potential analyte locations based upon one or
more of a plurality of color-corrected images or a plurality of adaptive grayscale intensity

images.

37. The method of claim 25, wherein detecting and identifying one or more candidate
objects includes:

determining which fields-of-view of the plurality of fields-of-view include one or
more candidate objects therein;

clustering one or more candidate objects based at least in part on a distance
between adjacent candidate objects of the one or more candidate objects in a field-of view
to provide a candidate object cluster defined by the adjacent candidate objects therein;

determining the focal plane having a best focus score for each of the one or more
candidate objects;

outputting a score based at least in part on one or more characteristics of each of
the one or more candidate objects, the one or more characteristics including at least one of
area, grayscale intensity, shape, or color; and

filtering the candidate objects based at least in part on the score of the one or more

characteristics.
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38. The method of claim 37, wherein filtering the candidate objects based at least in
part on the score of the one or more characteristics includes determining a threshold score
based upon attributes of ground truth objects trained into a memory storage medium and

accessed by at least one processor.

39. The method of claim 37, wherein filtering the candidate objects includes:

filtering the one or more candidate objects by comparing the score of one or more
characteristics of the one or more candidate objects to a threshold score for each of the one
or more characteristics;

outputting the one or more candidate objects with a score above the threshold score
as potential analyte locations, and

rejecting the one or more candidate objects with a score below the threshold score.

40. The method of claim 39, further comprising outputting color-corrected image
patches and adaptive grayscale intensity image patches corresponding to one or more

potential analyte locations.

41. The method of claim 25, wherein extracting the one or more feature vectors from
the color-corrected image patches and the adaptive grayscale intensity image patches
includes:

receiving as input a plurality of color-corrected image patches and a plurality of
adaptive grayscale intensity image patches corresponding to one or more potential analyte
locations in the plurality of images; and

outputting one or more feature vectors each representing a potential analyte.

42. The method of claim 41, wherein extracting the one or more feature vectors from
the color-corrected image patches and the adaptive grayscale intensity image patches
includes:
determining and extracting one or more features of one or more candidate objects
in the plurality of color-corrected image patches and the plurality of adaptive grayscale
intensity image patches corresponding to the one or more potential analyte locations; and
representing one or more features associated with the one or more candidate

objects as one or more feature vectors.
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43, The method of claim 41, wherein extracting the one or more feature vectors from
the color-corrected image patches and the adaptive grayscale intensity image patches
includes:

determining a best focus plane for each image patch of a plurality of color-
corrected image patches and adaptive grayscale intensity image patches containing the
candidate objects based at least in part on a best focus score, the best focus score including
a highest score from a plurality of focus scores for the plurality of focal planes in an image
patch having a candidate object therein;

determining a standard deviation of focus scores across all of the plurality of focal
planes of each image patch having the candidate object therein; and

determining a red-shift score for each image patch based at least in part upon a
shift in redness of a darkest portion of a candidate object between the plurality of focal

planes in each image patch.

44. The method of claim 25, wherein classifying each feature vector as corresponding
to an artifact or an analyte includes receiving as input one or more feature vectors of
candidate objects and classifying the one or more feature vectors as corresponding to one

of the artifact or the analyte.

45. The method of claim 44, wherein classifying each feature vector as corresponding
to an artifact or an analyte includes using a machine learning classifier that outputs a score
indicating that each of the one or more feature vectors of the one or more candidate

objects corresponds to an analyte.

46. The method of claim 25, further comprising accepting as ground truth one or more
annotated images of the analyte in ground truth samples and one or more annotated images

of artifacts in ground truth samples.

47. The method of claim 46, wherein accepting as ground truth one or more annotated
images of the analyte in ground truth samples and one or more annotated images of
artifacts in ground truth samples includes teaching a machine learning classifier a set of

weights based at least in part on the one or more learned ground truth image patches.
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48. The method of claim 47, wherein the machine learning classifier includes a
convolutional neural network and teaching the machine learning classifier a set of weights
based at least in part on the one or more ground truth image patches includes loading the
one or more annotated images of the analyte in ground truth samples and the one or more
annotated images of artifacts in ground truth samples into the convolutional neural

network.

49. The method of claim 48, wherein teaching the machine learning classifier a set of
weights based at least in part on the one or more ground truth image patches includes

augmenting the ground truth image patches using a data augmentation scheme.

50. The method of claim 25, wherein determining if the feature vectors classified
corresponding to analytes are above or below a threshold level associated with a positive
diagnosis includes determining if the analyte is present and giving an indication of a
presence or absence of the analyte based upon an amount of one or more feature vectors as

classified as the analyte.

51. The method of claim 25, further comprising identifying a species of one or more
candidate objects based at least in part on one or more image characteristics including one

or more of shape, size, or color.

52. The method of claim 25, further comprising recording, with a microscope, one or

more images of one or more sample slides.

53. An automated system for determining a presence of a malaria parasite in blood,
the system comprising;

a microscope configured to capture a plurality of images of a blood slide, each of
the plurality of images including,
a plurality of fields-of-view, each including a unique x and y coordinate of

the blood slide; and
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a plurality of focal planes, each having a unique z coordinate of the blood

slide;
at least one memory storage medium configured to store the plurality of images of
the blood slide;
5 at least one processor operably coupled to the at least one memory storage

medium, the at least one processor being configured to,
determine and apply a white balance transform to each of the plurality of
images effective to produce a plurality of color-corrected images; and
determine and apply an adaptive grayscale transform to each of the
10 plurality of images to provide an adaptive grayscale intensity image for each of the
plurality of images;
detect and identify one or more candidate objects in the plurality of color-
corrected images and the adaptive grayscale intensity images;
extract and score one or more characteristics of the one or more candidate
15  objects, filter the one or more candidate objects based at least in part on the score;
extract color-corrected image patches and adaptive grayscale intensity
image patches of the one or more filtered candidate objects;
output one or more feature vectors for each filtered candidate object;
classify each feature vector as an artifact or an analyte; and
20 determine if the feature vectors classified as analytes are above or below a

threshold level associated with a positive diagnosis.
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Receiving A Plurality Of Images Of A Sample Slide, The Plurality Of
Images Including, A Plurality Of Fields-Of-View, Each Including A
Unique X And Y Coordinate Of The Sample Slide; And A Plurality 17305

Of Focal Planes, Each Having A Unigue Z Coordinate Of The
Sample Slide

‘?
Applying A White Balance Transform To Each Image Of The 1310
Plurality Of Images Effective To Produce A Plurality Of !

Color-Corrected Images

‘{!
Applying An Adaptive Grayscale Transform To Each Image Of The

Plurality of Images To Provide An Adaptive Grayscale Intensity 1320
tmage For Each Of The One Or More Images
V
Detecting And ldentifying One Or More Candidate Objects In The
1330

Plurality Of White Balanced Images And The Adaptive Grayscale
intensity Images

¥
Filtering The One Or More Candidate Objects Based On A Score Of

One Or More Characteristics Thereof And Cutputting One Or More 1340
Color-Corrected Image Patches And One Or More Adaptive
Grayscale infensity Image Patches For Each Filtered Candidate
Cbject
¥
1350

Extracting One Or More Feature Vectors For Each lmage Paich

V

Classifying Each Feature Vector As Corresponding To An Artifact 1 1360
Cr An Analyte

g

Determining f The Classified Analytes Are Above OrBelow A | 1370
Threshold Level Associated With A Positive Diagnosis

FiG. 13
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