20167103187 AT I 0000 OO0 00 00

<

W

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2016/103187 Al

30 June 2016 (30.06.2016) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO04L 9/32 (2006.01) HO04L 1/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
HO4L 9/06 (2006.01) HO4L 29/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
HO4L 12/801 (2013.01) HO4L 29/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. L DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
PCT/IB2015/059895 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
22 December 2015 (22.12.2015) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
14/579,987 22 December 2014 (22.12.2014) Us GM, KE, LR, LS, MW, MZ, NA, RW, 8D, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(71) Applicant: TELEFONAKTIEBOLAGET LM ERIC- TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
SSON (PUBL) [SE/SE]; SE-164 83 Stockholm (SE). DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) Tnventors: KOLTE, Ritesh; 350 Serra Mall, Packard 201, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, 5K,
oL) . SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
Stanford, California 94305 (US). ASNANI, Himanshu; GW, KM, ML, MR, NE, SN, TD, TG)
250 Holger Way, San Jose, California 95134 (US). AR- ? ? ? T ’
ISOYLU, Mustafa; 760 Overture Ct., San Jose, California Published:

74

95134 (US).

Agents: HENDERSON, Mymy et al.; 6300 Legacy, MS

EVR 1-C-11, Plano, Texas 75024 (US).

with international search report (Art. 21(3))

(54) Title: METHOD AND SYSTEM FOR PACKET REDUNDANCY REMOVAL

2. Divide each of the sets of one
or more consecutive bytes into
plurality of non-overtapping,
consecutive segments.

4. Generate a single duplication
feature based on a combination of
the segment features for the
plurally of segments.

5. Compare the single
duplication feature 10 a set of
stored dupiication features

and determine the diference,

Network Element 102

3

: FIG. 1

|
1

Function Cluster

Function 152

P
Packet sting [T
Marker 112 Divider 114 |*

|| Duplication
Fealure
* | Generalor

Comparalor
120

ﬂ]

Cache 118

T

Sting
Transmitter
124

3. Generate a
| segment feature for
each of the plurality
of non-overtapping,
consecutive
segments through
application of &
plurality of
cryplographic hash
functions with
different random
seeds.

1. Identfy sets of
one or more
consecutive bytes
within a packet
Operations in task
boxes 2-6 are
repeated for each
st

6. Generate a
single encoded
string based on the
differance between
the single
duplication feature
and a stored
duplication feature
it a predetermined
condilion is mel,
otherwise maitain
the one or more
consecutive bytes
intact,

7. Send the
resulting strings for
all the sets of one
or more
consecuive bytes

(57) Abstract: A method/system for removing redundancy in packets is disclosed. In one embodiment, for each of the sets of one or
more consecutive bytes within the packet, the method divides the one or more consecutive bytes into a plurality of non- overlapping,
consecutive segments; generates a segment feature for each of the plurality of non-overlapping, consecutive segments through ap -
plication of a plurality of cryptographic hash functions with ditferent random seeds; generates a single duplication feature based on a
combination of the segment features for the plurality of non-overlapping, consecutive segments; and generates a single compressed
string when a predetermined condition is met, based on a comparison of the single duplication feature and a set of stored duplication
features. The method continues with sending the resulting strings in place of the packet toward the packet's destination.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

METHOD AND SYSTEM FOR PACKET REDUNDANCY REMOVAL

FIELD OF INVENTION

The embodiments of the invention are related to the field of networking. More
specifically, the embodiments of the invention relate to removing redundancy in

packets for efficient transmission.

BACKGROUND

In networking, bandwidth and processing resources at each network are utilized
in packet transmission. The amount of transmission correlates to the amount of
bandwidth and processing resource consumed, and it is desirable to minimize
transmission of and/or remove redundancy in packets prior to transmission. When
packets are updated to remove redundancy, the updated packets are restored at the
destination by adding back the removed redundancy so the original packets can be
utilized without the end user of the packets realizing the changes of the packets during

transmission.

One way to remove redundancy in packets is through caching. Caching may be
generally categorized into two types. One type is object caching, which removes
transmission redundancy at the object level. For example, for access hypertext transfer
protocol (HTTP) content, a client sends a request for an object (¢.g., file, document,
image, etc.) to a server. Instead of directly retrieving the object from the server, the
request is intercepted by a proxy server, which checks if the proxy server has the object
in its local cache. If it has the object, the proxy server responds by sending the cached
object without the server retrieving the object. Object caching is most useful in the

following scenarios:
The transmitted content does not change much;

The transmitted content can be pre-populated prior to users trying to

access it; and/or

The transmitted content needs to be accessed by multiple users.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

Object caching is typically limited to specific protocols, and if a byte changes,
the whole object has to be retrieved again. Thus, if the transmitted content is not static,
another type of caching, byte caching, may be utilized. Byte caching is a protocol-
independent bidirectional caching technique that functions by looking for a common
sequence of data. If any duplicate is found, the duplicate data is removed from the byte
sequence, and in its place, a token is added. Byte caching is useful in accelerating
traffic, and it may be used along with object caching to further accelerate specific
protocols. Byte caching looks for repetition of exact sequences of data, and if an exact

match is not found, byte caching does not compress the data to be transmitted.

SUMMARY

A method for removing redundancy in packets is disclosed. The method
includes identifying sets of one or more consecutive bytes within a packet. For each of
the sets of one or more consecutive bytes within the packet, the method divides the one
or more consecutive bytes into a plurality of non-overlapping, consecutive segments;
generates a segment feature for each of the plurality of non-overlapping, consecutive
segments through application of a plurality of cryptographic hash functions with
different random seeds; generates a single duplication feature based on a combination
of the segment features for the plurality of non-overlapping, consecutive segments; and
generates a single compressed string when a predetermined condition is met, based on a
comparison of the single duplication feature and a set of stored duplication features.
The method continues with sending the resulting strings in place of the packet toward

the packet’s destination.

A non-transitory machine-readable medium for removing redundancy in packets
is disclosed. The non-transitory machine-readable medium has instructions stored
therein, which when executed by a processor, cause the processor to perform operations
in a network device, the operations including identifying sets of one or more
consecutive bytes within a packet. For each of the sets of one or more consecutive bytes
within the packet, the operations include dividing the one or more consecutive bytes
into a plurality of non-overlapping, consecutive segments; generating a segment feature
for each of the plurality of non-overlapping, consecutive segments through application

of a plurality of cryptographic hash functions with different random seeds; generating a

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

single duplication feature based on a combination of the segment features for the
plurality of non-overlapping, consecutive segments; and generating a single
compressed string when a predetermined condition is met, based on a comparison of
the single duplication feature and a set of stored duplication features. The operations
also include sending the resulting strings in place of the packet toward the packet’s

destination.

Embodiments of the disclosed techniques provide ways for compressing a
packet even when the packet contains segments that are not identical to segments in the

past; thus, an approximate matching is sufficient for packet compression.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which like references

indicate similar elements.

Figure 1 is a block diagram illustrating operations of packet redundancy

removal through approximate matching according to one embodiment of the invention.

Figure 2A is a block diagram illustrating the generation of a single duplication
feature based on a combination of segment features for a plurality of segments

according to one embodiment of the invention.

Figure 2B is a block diagram illustrating the generation of an exemplary single
duplication feature based on a combination of segment features for a plurality of

segments according to one embodiment of the invention.

Figure 3A is a block diagram illustrating the generation of a single encoded
string based on a single duplication feature according to one embodiment of the

invention.

Figure 3B is a block diagram illustrating the generation of an exemplary single
encoded string based on a single duplication feature according to one embodiment of

the invention.

Figure 4 is a flow diagram illustrating operations of packet redundancy removal

according to one embodiment of the invention.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

Figure 5 is a flow diagram illustrating the generation of a single compressed

string according to one embodiment of the invention.

Figure 6A illustrates connectivity between network devices (NDs) within an
exemplary network, as well as three exemplary implementations of the NDs, according

to some embodiments of the invention.

Figure 6B illustrates an exemplary way to implement a special-purpose

network device according to some embodiments of the invention.

Figure 6C illustrates various exemplary ways in which virtual network

elements (VNEs) may be coupled according to some embodiments of the invention.

Figure 6D illustrates a network with a single network element (NE) on each of
the NDs, and within this straight forward approach contrasts a traditional distributed
approach (commonly used by traditional routers) with a centralized approach for
maintaining reachability and forwarding information (also called network control),

according to some embodiments of the invention.

Figure 6E illustrates the simple case of where each of the NDs implements a
single NE, but a centralized control plane has abstracted multiple of the NEs in
different NDs into (to represent) a single NE in one of the virtual network(s), according

to some embodiments of the invention.

Figure 6F illustrates a case where multiple VNEs are implemented on different
NDs and are coupled to each other, and where a centralized control plane has abstracted
these multiple VNEs such that they appear as a single VNE within one of the virtual

networks, according to some embodiments of the invention

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth. However,
it is understood that embodiments of the invention may be practiced without these
specific details. In other instances, well-known circuits, structures and techniques have
not been shown in detail in order not to obscure the understanding of this description.
It will be appreciated, however, by one skilled in the art that the invention may be

practiced without such specific details. Those of ordinary skill in the art, with the

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

included descriptions, will be able to implement appropriate functionality without

undue experimentation.

23 <,

References in the specification to “one embodiment,” “an embodiment,” “an
example embodiment,” etc., indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodiment. Further, when a
particular feature, structure, or characteristic is described in connection with an
embodiment, it is submitted that it is within the knowledge of one skilled in the art to

effect such feature, structure, or characteristic in connection with other embodiments

whether or not explicitly described.

Bracketed text and blocks with dashed borders (e.g., large dashes, small dashes,
dot-dash, and dots) may be used herein to illustrate optional operations that add
additional features to embodiments of the invention. However, such notation should not
be taken to mean that these are the only options or optional operations, and/or that

blocks with solid borders are not optional in certain embodiments of the invention.

In the following description and claims, the terms “coupled” and “connected,”
along with their derivatives, may be used. It should be understood that these terms are
not intended as synonyms for each other. “Coupled” is used to indicate that two or
more elements, which may or may not be in direct physical or electrical contact with
cach other, co-operate or interact with each other. “Connected” is used to indicate the
establishment of communication between two or more ¢lements that are coupled with
cach other. A “set,” as used herein refers to any positive whole number of items

including one item.

An electronic device stores and transmits (internally and/or with other electronic
devices over a network) code (which is composed of software instructions and which is
sometimes referred to as computer program code or a computer program) and/or data
using machine-readable media (also called computer-readable media), such as machine-
readable storage media (¢.g., magnetic disks, optical disks, read only memory (ROM),
flash memory devices, phase change memory) and machine-readable transmission

media (also called a carrier) (¢.g., electrical, optical, radio, acoustical or other form of

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

propagated signals — such as carrier waves, infrared signals). Thus, an electronic device
(e.g., a computer) includes hardware and software, such as a set of one or more
processors coupled to one or more machine-readable storage media to store code for
execution on the set of processors and/or to store data. For instance, an electronic
device may include non-volatile memory containing the code since the non-volatile
memory can persist code/data even when the electronic device is turned off (when
power is removed), and while the electronic device is turned on that part of the code
that is to be executed by the processor(s) of that electronic device is typically copied
from the slower non-volatile memory into volatile memory (¢.g., dynamic random
access memory (DRAM), static random access memory (SRAM)) of that electronic
device. Typical electronic devices also include a set or one or more physical network
interface(s) to establish network connections (to transmit and/or receive code and/or
data using propagating signals) with other electronic devices. A network device is an
electronic device. A network element, as explained in more details herein below, is

implemented in one or more network devices.
Removing Redundancy Through Exact Matching And Its Drawbacks

For removing traffic redundancy in a network, one solution examines packet
redundancy. It relies on finding exact matches between substrings in the current packet
and substrings from recently processed packets that are stored in a cache. Instead of
sending the current substring, a token pointing to the matched substring from the
recently processed packets is sent. The cache at a transmitting network element is
synchronized with the cache at a receiving network element, and the token is used to
restore the replaced substring based on the substrings from the recently processed

packets at the receiving network element.

Since matching of substrings directly can be computationally demanding due to
their long lengths, fingerprints of the substrings may be used for matching instead of
the substrings themselves. A fingerprint of a substring is formed by mapping the
substring to a much shorter bit string through a fingerprinting algorithm. The
fingerprint aims at efficiently and uniquely identifying the original substring for all

practical purposes.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

One way to remove traffic redundancy is to remove traffic redundancy sent to
network links. The so called link redundancy elimination (sometimes referred to as the
link RE) method can be run for each packet. A cache is used to hold the most recent
packets, and an incoming packet is checked against the cache for redundancy. For
every incoming packet, the method first generates a representative set of fingerprints
and each fingerprint in the set is checked against the fingerprints stored in the cache. If
an exact match is found, then a packet in the cache has the same content as the
incoming packet in the packet region corresponding to the fingerprint. The matching
region may then be expanded to find the largest matching region between the cached
packet and the incoming packet, and the total repeated content is the union of all the
extended matching regions corresponding to all the fingerprints. Instead of sending a
matching region, a corresponding token is sent, and the token points to the region of the
incoming packet. Then the cache may be updated by inserting the newly processed
packet and the corresponding fingerprints. Through sending the tokens over the
network links instead of the packets themselves, the traffic redundancy over the

network links 1s removed.

Another way to remove traffic redundancy is to remove redundancy over the
network as a whole. The so called network redundancy elimination (sometimes referred
to as the network RE) method is designed for network wide redundancy removal. A
packet can potentially be reconstructed or decoded several hops downstream from the
location where it is compressed or encoded, which is a significant departure from the
link RE where each compressed packet is reconstructed at the immediate downstream
network element. A network RE may use a network-wide coordinated approach for
intelligently allocating encoding and decoding responsibilities across network elements.
A network RE may contain ingress network elements, which search for redundant
content in incoming packets and encode them using previously seen packets. The
network RE may also contain interior network elements, which store subsets of packets
and perform decoding but not encoding. With the reduced capability, the interior

network elements save processing resources.

These approaches look for substrings that have occurred exactly in the recent

past. In case that an exact match is not found, no compression is performed for a

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

substring. However, redundancy removal is possible even in the case of an approximate
match. In the case of an approximate match, the difference between an incoming
substring and a cached substring can be encoded and the result may be smaller than the
original substring, thus the process increases the transmission efficiency. For example,
say a packet contains a substring of A73FDFFF05275C342C and the “closest”
substring in the cache is A73FDFFF4B275C342C, thus the substring in the cache is
different from the substring in the packet only in the underlined fifth byte. Thus, the
latter substring can be used to describe the former substring in a compressed manner
using a representation including, for example, the following: (1) a pointer to the closest
substring in the cache (¢.g., pointing to the substring or fingerprint of the substring of
AT3FDFFF4B275C342C); (2) the location of the difference (e.g., the fifth byte); and
the value of the difference (¢.g., value 05).

Removing Redundancy Through Approximate Matching

Figure 1 is a block diagram illustrating operations of packet redundancy
removal through approximate matching according to one embodiment of the invention.
Network element 102 is a network element that receives a packet and compresses the
packet prior to sending the packet towards its destination. Task boxes 1-7 illustrate the
order in which operations of approximate matching are performed according to one

embodiment of the invention.

At task box 1, a packet marker 112 identifies sets of one or more consecutive
bytes within a packet. Each of the sets, say M sets of one or more consecutive bytes, is
a candidate for compression. Packet marker 112 identifies the positions of the bytes to
divide the packet. In one embodiment, packet marker 112 divides the whole packet into
the M sets, thus the whole packet is considered for compression. In another
embodiment, packet marker 112 does not mark bytes in the header of the packet, and
only the packet payload is considered for compression. The rationale is that the packet
header may be needed for packet forwarding at a downstream network element, and
compression of the packet header would disrupt the capability of the downstream
network element to decode the packet. On the other hand, in some networks (e.g.,
point-to-point connection with no routing needed), the information in the packet header

is not needed for downstream network elements to decode the packet, in which case,

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

the whole packet may be a candidate for compression. Each or some of the M sets may
have a different byte length in one embodiment. In an alternative embodiment, all the
M sets have the same byte length, in which case, the byte length is denoted here to be N
bytes. A byte (also referred to as an octet) contains eight bits, and two entities having
the same byte length means that the two entities have the same bit length too. It is to be
noted that the operations in task boxes 2-6 below are repeated for each of the sets of

ong or more consecutive bytes within the packet.

At task box 2, a string divider 114 divides each of the sets of one or more
consecutive bytes into a plurality of non-overlapping, consecutive segments. Each of
the segments may also be referred to as a substring of the packet. Each byte in the set of
ong or more consecutive bytes belongs to one and only one of the plurality of non-
overlapping, consecutive segments. The segments may have different byte lengths in
one embodiment. In an alternative embodiment, all segments of a set have the same

byte length, in which case, the byte length is denoted here to be k bytes.

At task box 3, a function cluster 150 generates a segment feature for each of the
plurality of non-overlapping, consecutive segments of a set of one or more consecutive
bytes. The generation of the segment features is through application of a plurality of
cryptographic hash functions with different random seeds. Functions 152-154 are the
plurality of cryptographic hash functions with different random seeds. The
cryptographic hash functions are designed to take a segment and produce a fixed length
hash value. The cryptographic hash functions are designed to behave as much as
possible like a random function while still being deterministic and efficiently
computable. Thus, a pseudo random number generator can be used, and different
random seeds can be applied for these cryptographic hash functions. In one
embodiment, a cryptographic hash function with a different random seed is applied to
cach segment, so that no segment in a set shares the same random seed of a

cryptographic hash function with another segment in the set.

One advantage of applying a plurality of cryptographic hash functions with
different random seeds is that if a cached string is similar to the set of one or more
consecutive bytes, but the byte order of the cached string is different from the order of

the segments of the set, the cached string and the set are not considered similar as the

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

10

orders of the segments cannot be shuffled in packet transmission. Using an identical
hash function with the same random seed may make the hash values of an “out-of-
order” cached string (with regard to segments of a set of one or more consecutive
bytes) and the set appear similar, and the “false positive™ is not desirable for packet

redundancy removal.

At task box 4, the resulting plurality of segment features from function cluster
150 are sent to a duplication feature generator 116, which generates a single duplication
feature based on the combination of the segment features for the plurality of segments.
The single duplication feature is used to determine the redundancy of the set of one or

more consecutive bytes. The determination is made at a comparator 120.

At task box 5, the comparator 120 compares the single duplication feature to a
set of stored duplication features and determines the difference. The result of the
comparison is sent to a string encoder 122. Based on the comparison of the single
duplication feature and the set of stored duplication features, string encoder 122
generates a single compressed string when a predetermined condition is met at task box
6. In one embodiment, the predetermined condition is that a number of bit value
differences of corresponding bits between the single duplication feature and a stored
duplication feature is the smallest within the stored duplication features and no more
than a predetermined number. The stored duplication feature may then be deemed to be
close enough to represent the single duplication feature of the set of one or more
consecutive bytes. In one embodiment, the set of stored duplication features are
fingerprints of a set of stored strings. The corresponding set of stored strings may be

stored 1n a cache 118.

If the predetermined condition cannot be met by the comparison of the single
duplication feature with all of the set of stored duplication features, the set of one or
more consecutive bytes (which is a byte string) is not compressed. Thus, for each of the
set of one or more consecutive bytes, either the string encoder 122 does not perform
compression (thus, the set is intact), or the string encoder 122 generates a single
compressed string. The compressed string includes a representation of the selected
stored duplication feature (i.c., the stored duplication feature with the smallest

difference with respect to the single duplication feature). If the selected stored

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

11

duplication feature is not exactly the same as the single duplication feature (i.e., not an
exact match), the compressed string further includes the difference between the single
duplication feature and the selected stored duplication feature. Thus, through task boxes
2-6, the packet is compressed to a set of strings — strings of uncompressed one or more
consecutive bytes and compressed strings. Then at task box 7, instead of the packet
itself, the resulting strings for all the sets of one or more consecutive bytes, compressed
or not, are sent toward to the destination of the packet. At the destination, since the
cache of the sending network element (network element 102 in this example) is
synchronized with the cache of the destination network element, the destination
network element may decode the compressed strings to its original form, and restore

the packet.

Figure 2A is a block diagram illustrating the generation of a single duplication
feature based on a combination of segment features for a plurality of segments
according to one embodiment of the invention. The operations in Figure 2A are an

embodiment of implementation of task boxes 1-4 of Figure 1.

Referring to Figure 2A, packet 201 contains a header 202 and a payload 204.
The packet is marked for compression, and the marking identifies sets of one or more
consecutive bytes within the packet. Each of the sets of one or more consecutive bytes
is a set of N consecutive bytes, where N is an integer. The sets of N consecutive bytes
are in the payload 204 in this example, while an alternative embodiment may have the

sets of N consecutive bytes including both the header 202 and the payload 204.

Each of the sets of consecutive N bytes is divided into a plurality of non-
overlapping, consecutive segments. As illustrated at reference 220, the N bytes at
reference 212 are divided into a plurality of k byte segments, and the segments are non-
overlapping (¢.g., the last byte of the first segment, X, is followed by Xj.,, the first
byte of the second segment). In this example, these segments are byte strings of equal
bit length. Each segment has applied to it a function; thus, functions function,() to
functiony() are applied to respective segments. The functions are different functions
such as cryptographic hash functions with different random seeds as illustrated at

reference 222.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

12

The application of the functions results in a segment feature for each segment.
For example, the application of hash functions results in hash values of a fixed number
of bits. The fixed number of bits is F bits in this example, and the bit values are
represented by Y, which is either one or zero. With all the segment features being of
equal length in this example, the bit positions of all the segment features may be
aligned respectively, and the combination of the values of each bit position may result
in a value of the single duplication feature. In one embodiment, each of the bit positions
of the single duplication feature is set to be one if a majority of the values at
corresponding bit positions at the segment features are one; otherwise the bit positions
are set to be zero. D, to Dy form the resulting single duplication feature as illustrated at

reference 224.

Figure 2B is a block diagram illustrating the generation of an exemplary single
duplication feature based on a combination of segment features for a plurality of
segments according to one embodiment of the invention. The segments in Figure 2B
are embodiments of segments of the N consecutive byte string of equal length of

Figure 2A.

The exemplary segments 252 are non-overlapping, consecutive segments
forming a complete string of N consecutive bytes. In this example, each segment of the
N consecutive bytes contains the same number of bytes, and each byte contains eight
bits expressed in a hexadecimal format. Through hashing using a plurality of
cryptographic hash functions with different random seeds, each segment results in a
fixed-length hash value (in bits) referred to as a segment feature. The segment features
are aligned according to the relative bit positions. Thus, all the first bits of the segment
features are in the first column in reference 254, all the second bits of the segment
features are in the second column, and so on. Then all the bits in the same column are
combined to generate a value of the bit position of the single duplication feature. The
generation of the value is based on the majority of the bit values in the column in this
example. If the majority of the bits are ones, as illustrated in the first two columns at
reference 254, the bit position value is one. Otherwise, the bit position value is zero. As

illustrated at reference 254, D1 =1, D2 =1, D3 =0, and Dg= 0.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

13

Figure 3A is a block diagram illustrating the generation of a single encoded
string based on a single duplication feature according to one embodiment of the
invention. The operations in Figure 3A are an embodiment of implementation of task
boxes 5-6 of Figure 1. The single duplication feature D at reference 224 is compared to
a set of stored duplication features 302. The stored duplication features include SD(1)
and SD(2), each having a bit length equal to that of the single duplication feature D.
The comparison is to find a “closest” stored duplication feature, where the number of
bit value differences of corresponding bits between the single duplication feature and
the stored duplication feature is the smallest, and the number of bit value difference is

no more than a predetermined number at reference 312.

In one embodiment, the bit value difference is determined based on the
Hamming distance between the single duplication feature and each of the set of stored
duplication features. A Hamming distance between two strings of equal length is the
number of positions at which the corresponding bit values are different. Finding the
number of bit value differences is one way to find the closest approximation of the
single duplication feature, and other approaches are possible. Embodiments of the
invention are agnostic to the way to find a stored duplication feature that is the least

different from the single duplication feature.

In this example, the bit value difference between the single duplication feature
D and the stored duplication feature SD(2) is the smallest, and the difference is below a
predetermined number of bits; thus, SD(2) is selected. SD(2) is used to generate a
single compressed string that includes the identifier of SD(2), and the difference
between D and SD(2) at reference 314. It is to be noted that the difference may include
only the bit position without specifying the value difference, as the value difference is a
bit value, which can only be one or zero. Indicating a bit position being different is
sufficient for the receiving network element to know the difference (e.g., if SD(2) at the
bit position is one, D would be zero at a bit position that is different). It is also to be
noted that if there is an exact match between the single duplication feature D and a
stored duplication feature, then the stored duplication feature, without the difference, is

sufficient to represent the single duplication feature D and the corresponding one or

WO 2016/103187 PCT/IB2015/059895

14

more consecutive bytes; thus, in this case, the single compressed string for the set of

one or more consecutive bytes is the identifier of the stored duplication feature itself.

The single compressed string may be transmitted toward the destination
network element in the place of the corresponding N consecutive bytes. At the
5 destination network element, it identifies SD(2) based on the identifier of SD(2). As the
destination network element is synchronized with the transmitting network element
with regard to the stored set of duplication features, the destination network element
knows the value of SD(2). Based on the value of SD(2) and the transmitted difference
between D and SD(2), the destination network element can determine the value of D.
10 From the value of D, the destination network element can restore the compressed N

consecutive bytes.

In one embodiment, the set of stored duplication features and their
corresponding set of stored strings are stored in a cache at both the source and
destination network elements. In an alternative embodiment, only the set of stored

15 strings, fingerprints of which are the set of stored duplication features, are stored in the

cache at both the source and destination network elements.

As the single duplication feature D is generated, the transmitting network
element may consider that the corresponding N consecutive bytes are likely to be
transmitted again. Thus, the transmitting network element may store the single

20 duplication feature D, replacing a least used duplication feature in the set of stored
duplication features at reference 316. In one embodiment, the corresponding stored
string of the least used duplication feature is replaced by the corresponding N

consecutive bytes in the cache of the transmitting network element for transmission.

Figure 3B is a block diagram illustrating the generation of an exemplary single
25 encoded string based on a single duplication feature according to one embodiment of
the invention. The duplication feature D in Figure 3B is an embodiment of the

duplication feature of Figure 3A.

Referring to Figure 3B, the Hamming distances between the duplication feature
D and SD(1), D and SD(2), D and SD(n) are computed at references 342 and 344. As
30 illustrated, the Hamming distance between D and SD(1) is equal to two, where the bit

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

15

positions that are different are underlined in Figure 3B. The Hamming distance
between D and SD(2) is equal to one, and the bit position, bit 0, is also underlined in

Figure 3B.

If there is a stored duplication feature whose Hamming distance to D is zero, the
stored duplication feature SD matches D exactly, in which case the SD will be the
single encoded string, and the single encoded string may include only the identifier of
the exactly matching SD without the difference field (i.e., as there is no difference). In
the example of Figure 3B, it is assumed that there is no exact match of the duplication
feature D in the set of stored duplication features. Since the Hamming distance of one
for SD(2) is no more than that of the Hamming distance of other stored duplication
features (since no exact match is assumed, the Hamming distances for the stored
duplication features are larger than zero), and assuming the predetermined condition is
that the Hamming distance cannot be more than three, for example, which SD(2) meets,
SD(2) is selected to generate a single encoded string representing the duplication
feature D at reference 364. The single encoded string includes the identifier of SD(2)
and bit zero; the former of the two-tuple indicates the approximation of the duplication
feature and the latter of the two-tuple indicates the bit position of the difference

between the approximation and the duplication feature D.

At reference 366, the duplication feature D is stored as a new member of the set
of stored duplication features SD, replacing a member of the set of existing stored
duplication features SD, which is the least utilized in compression. The corresponding
set of stored strings of the set of stored duplication features SD are updated too,

similarly, to the stored duplication features SD.
Flow Diagrams

Figure 4 is a flow diagram illustrating operations of packet redundancy removal
according to one embodiment of the invention. Method 400 may be implemented in a
network device implementing a network element such as network element 102 of

Figure 1.

Method 400 starts at reference 402, where sets of one or more consecutive bytes

within a packet are identified. The sets of one or more consecutive bytes may include

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

16

all the bytes of the packet in one embodiment. In an alternative embodiment, the sets of
ong or more consecutive bytes may include only the packet payload. In one

embodiment, the sets of one or more consecutive bytes are equal in bit length.

At reference 404, a set of one or more consecutive bytes not being processed yet
(“unprocessed” one or more consecutive bytes) is selected. The set of one or more
consecutive bytes are divided into a plurality of non-overlapping, consecutive segments
at reference 406. The plurality of non-overlapping, consecutive segments are equal in

bit length in one embodiment.

Then, at reference 408, for each of the plurality of non-overlapping, consecutive
segments, a segment feature is generated through application of a plurality of
cryptographic hash functions with different random seeds. In one embodiment, a
cryptographic hash function with a different random seed is applied to each of the

plurality of non-overlapping, consecutive segments.

At reference 410, a single duplication feature is generated based on a
combination of the segment features for the plurality of non-overlapping, consecutive
features. In one embodiment, the combination of the segment features for the plurality
of non-overlapping, consecutive segments comprises setting a value of each bit position
of the single duplication feature based on values at corresponding bit positions of each
of the segment features. The value of each bit position of the single duplication feature
may be set to be one upon determining that a majority of the values at corresponding
bit positions of the segment features are one, and the value of each bit position may be

set to be zero otherwise in one embodiment.

At reference 414, a single compressed string is generated based on a
comparison of the single duplication feature and a set of stored duplication features,
when a predetermined condition is met. The operation is to find a closest
approximation of the single duplication feature within the set of stored duplication
features, and when one is found, it is used to represent the set of one or more
consecutive bytes. In one embodiment, each single compressed string is surrounded by

a character sequence (e.g., an escape character at each end of the string).

WO 2016/103187 PCT/IB2015/059895

17

At reference 416, it is determined whether or not all the sets of one or more
consecutive bytes are processed, and if they are, the resulting strings are sent toward the
destination of the packet in place of the packet at reference 418. Otherwise, if it is
determined that not all the sets of one or more consecutive bytes are processed, the

5 method 400 returns to reference 404 to select the next set of unprocessed one or more

consecutive bytes.

Figure 5 is a flow diagram illustrating the generation of a single compressed
string according to one embodiment of the invention. The single compressed string is
generated from a set of one or more consecutive bytes, and it is generated based on a

10 generated single duplication feature of the set of one or more consecutive bytes.

Method 500 may be an implementation of reference 414 in one embodiment.

At reference 502, the single duplication feature is compared to a set of stored
duplication features. Each of the set of stored duplication features corresponds to one
stored string of one or more consecutive bytes in a cache of the network element. In

15 one embodiment, the set of stored duplication features are stored in the cache too.

At reference 504, it is determined whether a predetermined condition is met. In
one embodiment, the predetermined condition is that the difference between the single
duplication feature and a stored duplication feature is no more than that of the single
duplication feature and any other stored duplication feature of the set, and the

20 difference is below a predetermined number of bits. If the predetermined condition is
not met, the flow goes to reference 510, and the corresponding set of one or more

consecutive bytes is maintained intact (i.¢., not compressed).

If the predetermined condition is met at reference 504, a single compressed
string is generated based on the difference between the single duplication feature and
25 the stored duplication feature with the smallest difference. In one embodiment, the
single compressed string includes a representation of the stored duplication feature and
the difference. The representation of the stored duplication feature is an identifier of the

stored duplication feature in one embodiment.

At reference 508, the single duplication feature is stored to replace a stored

30 duplication feature whose corresponding stored string of one or more consecutive bytes

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

18

is the least utilized in the cache. Thus, the set of stored duplication feature is updated,
reflecting that the set of one or more consecutive bytes within the packet,
corresponding to the single duplication feature, is likely to be used again in the near

future.

Through methods 400 and/or 500, not only a packet with sets of one or more
consecutive bytes that have been transmitted in the recent past may be compressed, the
packet with sets of one or more consecutive bytes that are close enough to sets of bytes
transmitted in the recent past (thus the sets of bytes are stored in the cache) can also be
compressed. Thus, the redundancy removal of approximate matching can be used more

widely than the redundancy removal based on exact matching.
SDN and NFV Environment Utilizing Embodiments of the Invention

Embodiments of the invention may be utilized in traditional communication
networks, where the data plane and control plane are integrated in a network element
implemented by a network device. Embodiments of the invention may also be utilized
in a SDN and NFV network containing network devices. A network device (ND) is an
electronic device that communicatively interconnects other electronic devices on the
network (e.g., other network devices, end-user devices). Some network devices are
“multiple services network devices™ that provide support for multiple networking
functions (e.g., routing, bridging, switching, Layer 2 aggregation, session border
control, Quality of Service, and/or subscriber management), and/or provide support for

multiple application services (e.g., data, voice, and video).

Figure 6A illustrates connectivity between network devices (NDs) within an
exemplary network, as well as three exemplary implementations of the NDs, according
to some embodiments of the invention. Figure 6A shows NDs 600A-H, and their
connectivity by way of lines between A-B, B-C, C-D, D-E, E-F, F-G, and A-G, as well
as between H and each of A, C, D, and G. These NDs are physical devices, and the
connectivity between these NDs can be wireless or wired (often referred to as a link).
An additional line extending from NDs 600A, E, and F illustrates that these NDs act as
ingress and egress points for the network (and thus, these NDs are sometimes referred

to as edge NDs; while the other NDs may be called core NDs).

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

19

Two of the exemplary ND implementations in Figure 6A are: 1) a special-
purpose network device 602 that uses custom application—specific integrated—circuits
(ASICs) and a proprietary operating system (OS); and 2) a general purpose network
device 604 that uses common off-the-shelf (COTS) processors and a standard OS.

The special-purpose network device 602 includes networking hardware 610
comprising compute resource(s) 612 (which typically include a set of one or more
processors), forwarding resource(s) 614 (which typically include one or more ASICs
and/or network processors), and physical network interfaces (NIs) 616 (sometimes
called physical ports), as well as non-transitory machine readable storage media 618
having stored therein networking software 620, which contains compression software
627 including instructions for the approximate matching based redundancy removal as
discussed herein above. A physical NI is hardware in a ND through which a network
connection (¢.g., wirelessly through a wireless network interface controller (WNIC) or
through plugging in a cable to a physical port connected to a network interface
controller (NIC)) is made, such as those shown by the connectivity between NDs
600A-H. During operation, the compression software 627 may be executed by the
networking hardware 610 to instantiate a set of one or more compression software
instance 621A-R. Each of the compression software instances 621A-R, and that part of
the networking hardware 610 that executes that compression software instance (be it
hardware dedicated to that load balancer instance and/or time slices of hardware
temporally shared by that compression software instance with others of the networking
software instance(s) 622), form a separate virtual network element 630A-R. Each of
the virtual network element(s) (VNEs) 630A-R includes a control communication and
configuration module 632A-R (sometimes referred to as a local control module or
control communication module) and forwarding table(s) 634A-R, such that a given
virtual network element (e.g., 630A) includes the control communication and
configuration module (e.g., 632A), a set of one or more forwarding table(s) (e.g.,
634A), and that portion of the networking hardware 610 that executes the virtual

network element (e.g., 630A).

The special-purpose network device 602 is often physically and/or logically

considered to include: 1) a ND control plane 624 (sometimes referred to as a control

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

20

plane) comprising the compute resource(s) 612 that execute the control communication
and configuration module(s) 632A-R; and 2) a ND forwarding plane 626 (sometimes
referred to as a forwarding plane, a data plane, or a media plane) comprising the
forwarding resource(s) 614 that utilize the forwarding table(s) 634A-R and the physical
NIs 616. By way of example, where the ND is a router (or is implementing routing
functionality), the ND control plane 624 (the compute resource(s) 612 executing the
control communication and configuration module(s) 632A-R) is typically responsible
for participating in controlling how data (e.g., packets) is to be routed (¢.g., the next
hop for the data and the outgoing physical NI for that data) and storing that routing
information in the forwarding table(s) 634A-R, and the ND forwarding plane 626 is
responsible for receiving that data on the physical Nls 616 and forwarding that data out
the appropriate ones of the physical NIs 616 based on the forwarding table(s) 634A-R.

Figure 6B illustrates an exemplary way to implement the special-purpose
network device 602 according to some embodiments of the invention. Figure 6B
shows a special-purpose network device including cards 638 (typically hot pluggable).
While in some embodiments the cards 638 are of two types (one or more that operate as
the ND forwarding plane 626 (sometimes called line cards), and one or more that
operate to implement the ND control plane 624 (sometimes called control cards)),
alternative embodiments may combine functionality onto a single card and/or include
additional card types (e.g., one additional type of card is called a service card, resource
card, or multi-application card). A service card can provide specialized processing
(e.g., Layer 4 to Layer 7 services (e.g., firewall, Internet Protocol Security (IPsec) (RFC
4301 and 4309), Secure Sockets Layer (SSL) / Transport Layer Security (TLS),
Intrusion Detection System (IDS), peer-to-peer (P2P), Voice over IP (VoIP) Session
Border Controller, Mobile Wireless Gateways (Gateway General Packet Radio Service
(GPRS) Support Node (GGSN), Evolved Packet Core (EPC) Gateway)). By way of
example, a service card may be used to terminate [Psec tunnels and execute the
attendant authentication and encryption algorithms. These cards are coupled together
through one or more interconnect mechanisms illustrated as backplane 636 (¢.g., a first

full mesh coupling the line cards and a second full mesh coupling all of the cards).

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

21

Returning to Figure 6A, the general purpose network device 604 includes
hardware 640 comprising a set of one or more processor(s) 642 (which are often COTS
processors) and network interface controller(s) 644 (NICs; also known as network
interface cards) (which include physical Nls 646), as well as non-transitory machine
readable storage media 648 having stored therein software 650, which contains
compression software 627. During operation, the processor(s) 642 execute the software
650 to instantiate one or more sets of one or more applications 664A-R, including
instances of compression software 627. While one embodiment does not implement
virtualization, alternative embodiments may use different forms of virtualization —
represented by a virtualization layer 654 and software containers 662A-R. For
example, one such alternative embodiment implements operating system-level
virtualization, in which case the virtualization layer 654 represents the kernel of an
operating system (or a shim executing on a base operating system) that allows for the
creation of multiple software containers 662A-R that may each be used to execute one
of the sets of applications 664A-R. In this embodiment, the multiple software
containers 662A-R (also called virtualization engines, virtual private servers, or jails)
are each a user space instance {tvpically a virtual memory space); these user space
mstances are separate fron cach other and separate from the kemel space m wiich the
operating system s rung the set of applications rumung in 3 given user space, unless
exphaitly allowed, cannot access the memory of the other processes. Another such
alternative embodiment implements full virtualization, in which case: 1) the
virtualization layer 654 represents a hypervisor (sometimes referred to as a virtual
machine monitor (VMM)) or a hypervisor executing on top of a host operating system;
and 2) the software containers 662A-R each represent a tightly isolated form of
software container called a virtual machine that is run by the hypervisor and may
include a guest operating system. A virtual machine is a software implementation of a
physical machine that runs programs as if they were executing on a physical, non-
virtualized machine; and applications generally do not know they are running on a
virtual machine as opposed to running on a “bare metal” host electronic device, though
some systems provide para-virtualization which allows an operating system or

application to be aware of the presence of virtualization for optimization purposes.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

22

The instantiation of the one or more sets of one or more applications 664A-R,
as well as the virtualization layer 654 and software containers 662A-R if implemented,
are collectively referred to as software instance(s) 652. Each set of applications 664A-
R, corresponding software container 662A-R if implemented, and that part of the
hardware 640 that executes them (be it hardware dedicated to that execution and/or
time slices of hardware temporally shared by software containers 662A-R), forms a

separate virtual network element(s) 660A-R.

The virtual network element(s) 660A-R perform similar functionality to the
virtual network element(s) 630A-R - ¢.g., similar to the control communication and
configuration module(s) 632A and forwarding table(s) 634A (this virtualization of the
hardware 640 is sometimes referred to as network function virtualization (NFV)).
Thus, NFV may be used to consolidate many network equipment types onto industry
standard high volume server hardware, physical switches, and physical storage, which
could be located in Data centers, NDs, and customer premise equipment (CPE).
However, different embodiments of the invention may implement one or more of the
software container(s) 662A-R differently. For example, while embodiments of the
invention are illustrated with each software container 662A-R corresponding to one
VNE 660A-R, alternative embodiments may implement this correspondence at a finer
level granularity (e.g., line card virtual machines virtualize line cards, control card
virtual machine virtualize control cards, etc.); it should be understood that the
techniques described herein with reference to a correspondence of software containers
662A-R to VNE:s also apply to embodiments where such a finer level of granularity is

used.

In certain embodiments, the virtualization layer 654 includes a virtual switch
that provides similar forwarding services as a physical Ethernet switch. Specifically,
this virtual switch forwards traffic between software containers 662A-R and the NIC(s)
644, as well as optionally between the software containers 662A-R; in addition, this
virtual switch may enforce network isolation between the VNEs 660A-R that by policy
are not permitted to communicate with each other (¢.g., by honoring virtual local area

networks (VLANS)).

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

23

The third exemplary ND implementation in Figure 6A is a hybrid network
device 606, which includes both custom ASICs/proprictary OS and COTS
processors/standard OS in a single ND or a single card within an ND. In certain
embodiments of such a hybrid network device, a platform VM (i.e., a VM that that
implements the functionality of the special-purpose network device 602) could provide
for para-virtualization to the networking hardware present in the hybrid network device

606.

Regardless of the above exemplary implementations of an ND, when a single
one of multiple VNEs implemented by an ND is being considered (e.g., only one of the
VNE:s is part of a given virtual network) or where only a single VNE is currently being
implemented by an ND, the shortened term network element (NE) is sometimes used to
refer to that VNE. Also in all of the above exemplary implementations, each of the
VNEs (e.g., VNE(s) 630A-R, VNEs 660A-R, and those in the hybrid network device
606) receives data on the physical NIs (e.g., 616, 646) and forwards that data out the
appropriate ones of the physical Nls (e.g., 616, 646). For example, a VNE
implementing IP router functionality forwards IP packets on the basis of some of the I[P
header information in the IP packet; where IP header information includes source IP
address, destination IP address, source port, destination port (where “source port” and
“destination port” refer herein to protocol ports, as opposed to physical ports of a ND),
transport protocol (¢.g., user datagram protocol (UDP) (RFC 768, 2460, 2675, 4113,
and 5405), Transmission Control Protocol (TCP) (RFC 793 and 1180), and
differentiated services (DSCP) values (RFC 2474, 2475, 2597, 2983, 3086, 3140, 3246,
3247, 3260, 4594, 5865, 3289, 3290, and 3317).

Figure 6C illustrates various exemplary ways in which VNEs may be coupled
according to some embodiments of the invention. Figure 6C shows VNEs 670A.1-
670A.P (and optionally VNEs 670A.Q-670A R) implemented in ND 600A and VNE
670H.1 in ND 600H. In Figure 6C, VNEs 670A.1-P are separate from each other in the
sense that they can receive packets from outside ND 600A and forward packets outside
of ND 600A; VNE 670A.1 is coupled with VNE 670H.1, and thus they communicate
packets between their respective NDs; VNE 670A.2-670A.3 may optionally forward
packets between themselves without forwarding them outside of the ND 600A; and

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

24

VNE 670A P may optionally be the first in a chain of VNEs that includes VNE 670A.Q
followed by VNE 670A R (this is sometimes referred to as dynamic service chaining,
where cach of the VNEs in the series of VNEs provides a different service — ¢.g., one or
more layer 4-7 network services). While Figure 6C illustrates various exemplary
relationships between the VNEs, alternative embodiments may support other
relationships (e.g., more/fewer VNEs, more/fewer dynamic service chains, multiple

different dynamic service chains with some common VNEs and some different VNEs).

The NDs of Figure 6A, for example, may form part of the Internet or a private
network; and other electronic devices (not shown; such as end user devices including
workstations, laptops, netbooks, tablets, palm tops, mobile phones, smartphones,
phablets, multimedia phones, Voice Over Internet Protocol (VOIP) phones, terminals,
portable media players, GPS units, wearable devices, gaming systems, set-top boxes,
Internet enabled household appliances) may be coupled to the network (directly or
through other networks such as access networks) to communicate over the network
(e.g., the Internet or virtual private networks (VPNs) overlaid on (e.g., tunneled
through) the Internet) with each other (directly or through servers) and/or access
content and/or services. Such content and/or services are typically provided by one or
more servers (not shown) belonging to a service/content provider or one or more end
user devices (not shown) participating in a peer-to-peer (P2P) service, and may include,
for example, public webpages (e.g., free content, store fronts, search services), private
webpages (e.g., username/password accessed webpages providing email services),
and/or corporate networks over VPNs. For instance, end user devices may be coupled
(e.g., through customer premise equipment coupled to an access network (wired or
wirelessly)) to edge NDs, which are coupled (e.g., through one or more core NDs) to
other edge NDs, which are coupled to electronic devices acting as servers. However,
through compute and storage virtualization, one or more of the electronic devices
operating as the NDs in Figure 6A may also host one or more such servers (e.g., in the
case of the general purpose network device 604, one or more of the software containers
662A-R may operate as servers; the same would be true for the hybrid network device
606; in the case of the special-purpose network device 602, one or more such servers
could also be run on a virtualization layer executed by the compute resource(s) 612); in

which case the servers are said to be co-located with the VNEs of that ND.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

25

A virtual network is a logical abstraction of a physical network (such as that in
Figure 6A) that provides network services (e.g., L2 and/or L3 services). A virtual
network can be implemented as an overlay network (sometimes referred to as a
network virtualization overlay) that provides network services (e.g., layer 2 (L2, data
link layer) and/or layer 3 (L3, network layer) services) over an underlay network (e.g.,
an L3 network, such as an Internet Protocol (IP) network that uses tunnels (e.g., generic
routing encapsulation (GRE), layer 2 tunneling protocol (L2TP), IPSec) to create the

overlay network).

A network virtualization edge (NVE) sits at the edge of the underlay network
and participates in implementing the network virtualization; the network-facing side of
the NVE uses the underlay network to tunnel frames to and from other NVEs; the
outward-facing side of the NVE sends and receives data to and from systems outside
the network. A virtual network instance (VNI) is a specific instance of a virtual
network on a NVE (e.g., a NE/VNE on an ND, a part of a NE/VNE on a ND where that
NE/VNE is divided into multiple VNEs through emulation); one or more VNIs can be
instantiated on an NVE (e.g., as different VNEs on an ND). A virtual access point
(VAP) is a logical connection point on the NVE for connecting external systems to a
virtual network; a VAP can be physical or virtual ports identified through logical
interface identifiers (e.g., a VLAN ID).

Examples of network services include: 1) an Ethemnet LAN emulation service
(an Ethernet-based multipoint service similar to an Internet Engineering Task Force
(IETF) Multiprotocol Label Switching (MPLS) or Ethernet VPN (EVPN) service) in
which external systems are interconnected across the network by a LAN environment
over the underlay network (e.g., an NVE provides separate L2 VNIs (virtual switching
instances) for different such virtual networks, and L3 (e.g., IP/MPLS) tunneling
encapsulation across the underlay network); and 2) a virtualized IP forwarding service
(similar to IETF IP VPN (¢.g., Border Gateway Protocol (BGP)/MPLS IPVPN RFC
4364) from a service definition perspective) in which external systems are
interconnected across the network by an L3 environment over the underlay network
(e.g., an NVE provides separate L3 VNIs (forwarding and routing instances) for
different such virtual networks, and L3 (¢.g., [P/MPLS) tunneling encapsulation across

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

26

the underlay network)). Network services may also include quality of service
capabilities (e.g., traffic classification marking, traffic conditioning and scheduling),
security capabilities (¢.g., filters to protect customer premises from network —
originated attacks, to avoid malformed route announcements), and management

capabilities (e.g., full detection and processing).

Fig. 6D illustrates a network with a single network element on each of the NDs
of Figure 6A, and within this straight forward approach contrasts a traditional
distributed approach (commonly used by traditional routers) with a centralized
approach for maintaining reachability and forwarding information (also called network
control), according to some embodiments of the invention. Specifically, Figure 6D
illustrates network elements (NEs) 670A-H with the same connectivity as the NDs
600A-H of Figure 6A.

Fig. 6D illustrates a network with a single network element on each of the NDs
of Figure 6A, and within this straight forward approach contrasts a traditional
distributed approach (commonly used by traditional routers) with a centralized
approach for maintaining reachability and forwarding information (also called network
control), according to some embodiments of the invention. Specifically, Figure 6D
illustrates network elements (NEs) 670A-H with the same connectivity as the NDs
600A-H of Figure 6A.

Figure 6D illustrates a network with a single network element on each of the
NDs of Figure 6A, and within this straight forward approach contrasts a traditional
distributed approach (commonly used by traditional routers) with a centralized
approach for maintaining reachability and forwarding information (also called network
control), according to some embodiments of the invention. Specifically, Figure 6D
illustrates network elements (NEs) 670A-H with the same connectivity as the NDs
600A-H of Figure 6A.

For example, where the special-purpose network device 602 is used, the control
communication and configuration module(s) 632A-R of the ND control plane 624
typically include a reachability and forwarding information module to implement one
or more routing protocols (€.g., an exterior gateway protocol such as Border Gateway

Protocol (BGP) (RFC 4271), Interior Gateway Protocol(s) (IGP) (e.g., Open Shortest

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

27

Path First (OSPF) (RFC 2328 and 5340), Intermediate System to Intermediate System
(IS-IS) (RFC 1142), Routing Information Protocol (RIP) (version 1 RFC 1058, version
2 RFC 2453, and next generation RFC 2080)), Label Distribution Protocol (LDP) (RFC
5036), Resource Reservation Protocol (RSVP) (RFC 2205, 2210, 2211, 2212, as well
as RSVP-Traffic Engineering (TE): Extensions to RSVP for LSP Tunnels RFC 3209,
Generalized Multi-Protocol Label Switching (GMPLS) Signaling RSVP-TE RFC 3473,
RFC 3936, 4495, and 4558)) that communicate with other NEs to exchange routes, and
then selects those routes based on one or more routing metrics. Thus, the NEs 670A-H
(e.g., the compute resource(s) 612 executing the control communication and
configuration module(s) 632A-R) perform their responsibility for participating in
controlling how data (¢.g., packets) is to be routed (¢.g., the next hop for the data and
the outgoing physical NI for that data) by distributively determining the reachability
within the network and calculating their respective forwarding information. Routes and
adjacencies are stored in one or more routing structures (¢.g., Routing Information Base
(RIB), Label Information Base (LIB), one or more adjacency structures) on the ND
control plane 624. The ND control plane 624 programs the ND forwarding plane 626
with information (¢.g., adjacency and route information) based on the routing
structure(s). For example, the ND control plane 624 programs the adjacency and route
information into one¢ or more forwarding table(s) 634A-R (¢.g., Forwarding
Information Base (FIB), Label Forwarding Information Base (LFIB), and one or more
adjacency structures) on the ND forwarding plane 626. For layer 2 forwarding, the ND
can store one or more bridging tables that are used to forward data based on the layer 2
information in that data. While the above example uses the special-purpose network
device 602, the same distributed approach 672 can be implemented on the general
purpose network device 604 and the hybrid network device 606. In the distributed
approach, the caches of the network elements are synchronized through
communications between themselves or communicating with a network management

system (NMS).

Figure 6D illustrates that a centralized approach 674 (also known as software
defined networking (SDN)) that decouples the system that makes decisions about
where traffic is sent from the underlying systems that forwards traffic to the selected

destination. The illustrated centralized approach 674 has the responsibility for the

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

28

generation of reachability and forwarding information in a centralized control plane
676 (sometimes referred to as a SDN control module, controller, network controller,
OpenFlow controller, SDN controller, control plane node, network virtualization
authority, or management control entity), and thus the process of neighbor discovery
and topology discovery is centralized. The centralized control plane 676 has a south
bound interface 682 with a data plane 680 (sometime referred to the infrastructure
layer, network forwarding plane, or forwarding plane (which should not be confused
with a ND forwarding plane)) that includes the NEs 670A-H (sometimes referred to as
switches, forwarding elements, data plane elements, or nodes). The centralized control
plane 676 includes a network controller 678, which includes a centralized reachability
and forwarding information module 679 that determines the reachability within the
network and distributes the forwarding information to the NEs 670A-H of the data
plane 680 over the south bound interface 682 (which may use the OpenFlow protocol).
Thus, the network intelligence is centralized in the centralized control plane 676
executing on electronic devices that are typically separate from the NDs. The
centralized reachability and forwarding information module 679 contains a cache
coordination module 675. Cache coordination module 675 coordinates cache
synchronization of network elements within the network. The cache content and the
identification/content of the duplication features need to be synchronized, and cache
coordination module 675 communicates network elements within the network and

make it happen.

Where the special-purpose network device 602 is used in the data plane 680,
cach of the control communication and configuration module(s) 632A-R of the ND
control plane 624 typically include a control agent that provides the VNE side of the
south bound interface 682. In this case, the ND control plane 624 (the compute
resource(s) 612 executing the control communication and configuration module(s)
632A-R) performs its responsibility for participating in controlling how data (¢.g.,
packets) is to be routed (e.g., the next hop for the data and the outgoing physical NI for
that data) through the control agent communicating with the centralized control plane
676 to receive the forwarding information (and in some cases, the reachability
information) from the centralized reachability and forwarding information module 679

(it should be understood that in some embodiments of the invention, the control

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

29

communication and configuration module(s) 632A-R, in addition to communicating
with the centralized control plane 676, may also play some role in determining
reachability and/or calculating forwarding information — albeit less so than in the case
of a distributed approach; such embodiments are generally considered to fall under the

centralized approach 674, but may also be considered a hybrid approach).

While the above example uses the special-purpose network device 602, the
same centralized approach 674 can be implemented with the general purpose network
device 604 (e.g., each of the VNE 660A-R performs its responsibility for controlling
how data (e.g., packets) is to be routed (¢.g., the next hop for the data and the outgoing
physical NI for that data) by communicating with the centralized control plane 676 to
receive the forwarding information (and in some cases, the reachability information)
from the centralized reachability and forwarding information module 679; it should be
understood that in some embodiments of the invention, the VNEs 660A-R, in addition
to communicating with the centralized control plane 676, may also play some role in
determining reachability and/or calculating forwarding information — albeit less so than
in the case of a distributed approach) and the hybrid network device 606. In fact, the
use of SDN techniques can enhance the NFV techniques typically used in the general
purpose network device 604 or hybrid network device 606 implementations as NFV is
able to support SDN by providing an infrastructure upon which the SDN software can
be run, and NFV and SDN both aim to make use of commodity server hardware and

physical switches.

Figure 6D also shows that the centralized control plane 676 has a north bound
interface 684 to an application layer 686, in which resides application(s) 688. The
centralized control plane 676 has the ability to form virtual networks 692 (sometimes
referred to as a logical forwarding plane, network services, or overlay networks (with
the NEs 670A-H of the data plane 680 being the underlay network)) for the
application(s) 688. Thus, the centralized control plane 676 maintains a global view of
all NDs and configured NEs/VNEs, and it maps the virtual networks to the underlying
NDs efficiently (including maintaining these mappings as the physical network changes

either through hardware (ND, link, or ND component) failure, addition, or removal).

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

30

While Figure 6D illustrates the simple case where each of the NDs 600A-H
implements a single NE 670A-H, it should be understood that the network control
approaches described with reference to Figure 6D also work for networks where one or
more of the NDs 600A-H implement multiple VNEs (e.g., VNEs 630A-R, VNEs
660A-R, those in the hybrid network device 606). Alternatively or in addition, the
network controller 678 may also emulate the implementation of multiple VNEs in a
single ND. Specifically, instead of (or in addition to) implementing multiple VNEs in a
single ND, the network controller 678 may present the implementation of a VNE/NE in
a single ND as multiple VNEs in the virtual networks 692 (all in the same one of the
virtual network(s) 692, each in different ones of the virtual network(s) 692, or some
combination). For example, the network controller 678 may cause an ND to implement
a single VNE (a NE) in the underlay network, and then logically divide up the
resources of that NE within the centralized control plane 676 to present different VNEs
in the virtual network(s) 692 (where these different VNEs in the overlay networks are
sharing the resources of the single VNE/NE implementation on the ND in the underlay

network).

On the other hand, Figures 6E and 6F respectively illustrate exemplary
abstractions of NEs and VNEs that the network controller 678 may present as part of
different ones of the virtual networks 692. Figure 6E illustrates the simple case of
where each of the NDs 600A-H implements a single NE 670A-H (seec Figure 6D), but
the centralized control plane 676 has abstracted multiple of the NEs in different NDs
(the NEs 670A-C and G-H) into (to represent) a single NE 6701 in one of the virtual
network(s) 692 of Figure 6D, according to some embodiments of the invention. Figure
6E shows that in this virtual network, the NE 6701 is coupled to NE 670D and 670F,
which are both still coupled to NE 670E.

Figure 6F illustrates a case where multiple VNEs (VNE 670A.1 and VNE
670H.1) are implemented on different NDs (ND 600A and ND 600H) and are coupled
to each other, and where the centralized control plane 676 has abstracted these multiple
VNEs such that they appear as a single VNE 670T within one of the virtual networks
692 of Figure 6D, according to some embodiments of the invention. Thus, the

abstraction of a NE or VNE can span multiple NDs.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

31

While some embodiments of the invention implement the centralized control
plane 676 as a single entity (e.g., a single instance of software running on a single
electronic device), alternative embodiments may spread the functionality across
multiple entities for redundancy and/or scalability purposes (e.g., multiple instances of

software running on different electronic devices).

Standards such as OpenFlow define the protocols used for the messages, as well
as a model for processing the packets. The model for processing packets includes
header parsing, packet classification, and making forwarding decisions. Header parsing
describes how to interpret a packet based upon a well-known set of protocols. Some
protocol fields are used to build a match structure (or key) that will be used in packet
classification (e.g., a first key field could be a source media access control (MAC)

address, and a second key field could be a destination MAC address).

Packet classification involves executing a lookup in memory to classify the
packet by determining which entry (also referred to as a forwarding table entry or flow
entry) in the forwarding tables best matches the packet based upon the match structure,
or key, of the forwarding table entries. It is possible that many flows represented in the
forwarding table entries can correspond/match to a packet; in this case the system is
typically configured to determine one forwarding table entry from the many according
to a defined scheme (e.g., selecting a first forwarding table entry that is matched).
Forwarding table entries include both a specific set of match criteria (a set of values or
wildcards, or an indication of what portions of a packet should be compared to a
particular value/values/wildcards, as defined by the matching capabilities — for specific
fields in the packet header, or for some other packet content), and a set of one or more
actions for the data plane to take on receiving a matching packet. For example, an
action may be to push a header onto the packet, for the packet using a particular port,
flood the packet, or simply drop the packet. Thus, a forwarding table entry for
IPv4/IPv6 packets with a particular transmission control protocol (TCP) destination

port could contain an action specifying that these packets should be dropped.

Making forwarding decisions and performing actions occurs, based upon the
forwarding table entry identified during packet classification, by executing the set of

actions identified in the matched forwarding table entry on the packet.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

32

However, when an unknown packet (for example, a “missed packet” or a
“match-miss™ as used in OpenFlow parlance) arrives at the data plane 680, the packet
(or a subset of the packet header and content) is typically forwarded to the centralized
control plane 676. The centralized control plane 976 will then program forwarding
table entries into the data plane 680 to accommodate packets belonging to the flow of
the unknown packet. Once a specific forwarding table entry has been programmed into
the data plane 680 by the centralized control plane 676, the next packet with matching
credentials will match that forwarding table entry and take the set of actions associated

with that matched entry.

A network interface (NI) may be physical or virtual; and in the context of IP, an
interface address is an IP address assigned to a NI, be it a physical NI or virtual NI. A
virtual NI may be associated with a physical NI, with another virtual interface, or stand
on its own (¢.g., a loopback interface, a point-to-point protocol interface). A NI
(physical or virtual) may be numbered (a NI with an IP address) or unnumbered (a NI
without an IP address). A loopback interface (and its loopback address) is a specific
type of virtual NI (and IP address) of a NE/VNE (physical or virtual) often used for
management purposes; where such an IP address is referred to as the nodal loopback
address. The IP address(es) assigned to the NI(s) of a ND are referred to as IP
addresses of that ND; at a more granular level, the IP address(es) assigned to NI(s)
assigned to a NE/VNE implemented on a ND can be referred to as IP addresses of that
NE/VNE.

Each VNE (e¢.g., a virtual router, a virtual bridge (which may act as a virtual
switch instance in a Virtual Private LAN Service (VPLS) (RFC 4761 and 4762) is
typically independently administrable. For example, in the case of multiple virtual
routers, each of the virtual routers may share system resources but is separate from the
other virtual routers regarding its management domain, AAA (authentication,
authorization, and accounting) name space, IP address, and routing database(s).
Multiple VNEs may be employed in an edge ND to provide direct network access

and/or different classes of services for subscribers of service and/or content providers.

Within certain NDs, “interfaces” that are independent of physical NIs may be
configured as part of the VNESs to provide higher-layer protocol and service

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

33

information (e.g., Layer 3 addressing). The subscriber records in the AAA server
identify, in addition to the other subscriber configuration requirements, to which
context (e.g., which of the VNEs/NEs) the corresponding subscribers should be bound
within the ND. As used herein, a binding forms an association between a physical
entity (¢.g., physical NI, channel) or a logical entity (e.g., circuit such as a subscriber
circuit or logical circuit (a set of one or more subscriber circuits)) and a context’s
interface over which network protocols (e.g., routing protocols, bridging protocols) are
configured for that context. Subscriber data flows on the physical entity when some

higher-layer protocol interface is configured and associated with that physical entity.

The operations of the flow diagrams Figures 4 and 5 are described with
reference to the exemplary embodiment of Figures 1-3 and 6. However, it should be
understood that the operations of flow diagrams can be performed by embodiments of
the invention other than those discussed with reference to the exemplary embodiment
of Figures 1-3 and 6, and the exemplary embodiment of Figures 1-3 and 6 can
perform operations different than those discussed with reference to the flow diagrams

of Figures 4 and 5.

While the flow diagrams in the figures herein above show a particular order of
operations performed by certain embodiments of the invention, it should be understood
that such order is exemplary (e.g., alternative embodiments may perform the operations

in a different order, combine certain operations, overlap certain operations, etc.).

Different embodiments of the invention may be implemented using different
combinations of software, firmware, and/or hardware. Thus, the techniques shown in
the figures can be implemented using code and data stored and executed on one or
more ¢lectronic devices (€.g., an end system, a network device). Such electronic
devices store and communicate (internally and/or with other electronic devices over a
network) code and data using computer-readable media, such as non-transitory
computer-readable storage media (e.g., magnetic disks; optical disks; random access
memory; read only memory; flash memory devices; phase-change memory) and
transitory computer-readable transmission media (e.g., electrical, optical, acoustical or
other form of propagated signals — such as carrier waves, infrared signals, digital

signals). In addition, such electronic devices typically include a set of one or more

WO 2016/103187 PCT/IB2015/059895

10

34

processors coupled to one or more other components, such as one or more storage
devices (non-transitory machine-readable storage media), user input/output devices
(e.g., a keyboard, a touchscreen, and/or a display), and network connections. The
coupling of the set of processors and other components is typically through one or more
busses and bridges (also termed as bus controllers). Thus, the storage device of a given
electronic device typically stores code and/or data for execution on the set of one or

more processors of that electronic device.

While the invention has been described in terms of several embodiments, those
skilled in the art will recognize that the invention is not limited to the embodiments
described, can be practiced with modification and alteration within the spirit and scope
of the appended claims. The description is thus to be regarded as illustrative instead of

limiting.

WO 2016/103187 PCT/IB2015/059895

35

CLAIMS

What is claimed is:

1.
5
10
15
20
2.
25 3.
4.
30

A method implemented in a network device for removing redundancy in
packets, the method comprising:
identifying (402) sets of one or more consecutive bytes within a packet;
for each of the sets of one or more consecutive bytes within the packet,
dividing (406) the one or more consecutive bytes into a plurality of non-
overlapping, consecutive segments;
generating (408) a segment feature for each of the plurality of non-
overlapping, consecutive segments through application of a
plurality of cryptographic hash functions with different random
seeds;
generating (410) a single duplication feature based on a combination of
the segment features for the plurality of non-overlapping,
consecutive segments; and
generating (414) a single compressed string when a predetermined
condition is met, based on a comparison of the single duplication
feature and a set of stored duplication features; and
sending (418) the resulting strings in place of the packet toward the packet’s

destination.

The method of claim 1, wherein the sets of one or more consecutive bytes are

equal in bit length.

The method of claim 1, wherein the plurality of non-overlapping, consecutive

segments are equal in bit length.

The method of claim 1, wherein the generating the segment feature for each of
the plurality of non-overlapping, consecutive segments comprises applying a
cryptographic hash function with a different random seed to each of the

plurality of non-overlapping, consecutive segments.

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

36

The method of claim 1, wherein the generating the single duplication feature
comprises setting a value of each bit position of the single duplication feature

based on values at corresponding bit positions of each of the segment features.

The method of claim 5, wherein the value of each bit position of the single
duplication feature is set to be one upon determining that a majority of the
values at corresponding bit positions of the segment features are one, and the

value of each bit position is set to be zero otherwise.

The method of claim 1, wherein the generating the single compressed string

based on the comparison of the single duplication feature and the set of stored

duplication features comprises:

comparing (502) the single duplication feature to the set of stored duplication
features, each corresponding to one stored string of one or more
consecutive bytes in a cache of the network device;

upon determining that the predetermined condition is met, wherein the
predetermined condition is that difference between the single duplication
feature and a stored duplication feature is no more than that of the single
duplication feature and any other stored duplication feature of the set,
and the difference is below a predetermined number of bits, generating
(506) the single compressed string based on the difference and the stored
duplication feature; and

upon determining that the difference between the single duplication feature and
cach of the set of stored duplication features fails to meet the
predetermined condition, maintaining (510) the set of one or more

consecutive bytes within the packet intact.

The method of claim 7, wherein each single compressed string includes a

representation of the stored duplication feature and the difference.

The method of claim 7, further comprising:

WO 2016/103187 PCT/IB2015/059895

10

15

20

25

30

10.

1.

12.

13.

37

storing (508) the single duplication feature to replace a stored duplication
feature whose corresponding stored string of one or more consecutive

bytes is least utilized in the cache.

The method of claim 7, wherein the set of stored duplication features is stored

in the cache.

The method of claim 1, wherein each single compressed string is surrounded by

a character sequence.

The method of claim 1, wherein all the sets of one or more consecutive bytes

are within a payload of the packet.

A non-transitory machine-readable medium having instructions stored therein,
which when executed by a processor, cause the processor to perform operations
in a network device, the operations comprising:
identifying (402) sets of one or more consecutive bytes within a packet;
for each of the sets of one or more consecutive bytes within the packet,
dividing (406) the one or more consecutive bytes into a plurality of non-
overlapping, consecutive segments;
generating (408) a segment feature for each of the plurality of non-
overlapping, consecutive segments through application of a
plurality of cryptographic hash functions with different random
seeds;
generating (410) a single duplication feature based on a combination of
the segment features for the plurality of non-overlapping,
consecutive segments; and
generating (414) a single compressed string when a predetermined
condition is met, based on a comparison of the single duplication
feature and a set of stored duplication features; and
sending (418) the resulting strings in place of the packet toward the packet’s

destination.

WO 2016/103187 PCT/IB2015/059895

38

14. The non-transitory machine-readable medium of claim 13, wherein the
generating the segment feature for each of the plurality of non-overlapping,
consecutive segments comprises applying a cryptographic hash function with a
5 different random seed to each of the plurality of non-overlapping, consecutive

segments.

15. The non-transitory machine-readable medium of claim 13, wherein the
generating the single duplication feature comprises setting a value of each bit
10 position of the single duplication feature based on values at corresponding bit

positions at each of the segment features.

16. The non-transitory machine-readable medium of claim 13, wherein the
generating the single compressed string based on the comparison of the single
15 duplication feature and the set of stored duplication features comprises:
comparing (502) the single duplication feature to the set of stored duplication
features, each corresponding to one stored string of one or more
consecutive bytes in a cache of the network device;
upon determining that the predetermined condition is met, wherein the
20 predetermined condition is that difference between the single duplication
feature and a stored duplication feature is no more than that of the single
duplication feature and any other stored duplication feature of the set,
and the difference is below a predetermined number of bits, generating
(506) the single compressed string based on the difference and the stored
25 duplication feature; and
upon determining that the difference between the single duplication feature and
cach of the set of stored duplication features fails to meet the
predetermined condition, maintaining (510) the set of one or more
consecutive bytes within the packet intact.
30

WO 2016/103187 PCT/IB2015/059895

17.
5 18
10

19.

20.
15

39

The non-transitory machine-readable medium of claim 16, wherein each single
compressed string includes a representation of the stored duplication feature and
the difference.

The non-transitory machine-readable medium of claim 16, the operations

further comprising:

storing (508) the single duplication feature to replace a stored duplication
feature whose corresponding stored string of one or more consecutive

bytes is least utilized in the cache.

The non-transitory machine-readable medium of claim 13, wherein each single

compressed string is surrounded by a character sequence.

The non-transitory machine-readable medium of claim 13, wherein all the sets

of one or more consecutive bytes are within a payload of the packet.

WO 2016/103187

117

PCT/IB2015/059895

2. Divide each of the sets of one
or more consecutive bytes into a
plurality of non-overlapping,
consecutive segments.

4. Generate a single duplication
feature based on a combination of
the segment features for the
plurality of segments.

5. Compare the single
duplication feature to a set of
stored duplication features
and determine the difference.

J

Network Element @

FIG. 1

Function Cluster | | Duplication
150 . Feature Comparator
\ Function 152 = | Generator] 120
— — _u6
-~ Packet] Stnng - -
Marker 112 Divider 114 | =4, . l
Function 154 String
Cache 118 |a— Encoder
122
String
Transmitter |—
124
?
3. Generate a 6. Generate a
segment feature for || single encoded
each of the plurality | | string based on the
1. Identify sets of of non-overlapping, || difference between 7. Send the
one or more consecutive the single resulting strings for
consecutive bytes segr_nen_ts through || duplication feature all the sets of one
within a packet. application of a and a stored or more
Operations in task plura“ty of) dUpIication feature consecutive byteS.
boxes 2-6 are cryptographic hash || if a predetermined
repeated for each functions with condition is met,
set. different random otherwise maintain
seeds. the one or more
consecutive bytes
intact.

WO 2016/103187 PCT/IB2015/059895
2[7
Packet 201
A
N
Header 202 Payload 204
T A A
N Bytes 212 N Bytes 214 N Bytes 216
///\
—— x/)
-~ Vi —
d N \\ N
// \ / \
\ .
/ \ //Functlom() \ |___ i i | I———]
l X1; X2’X3""’ Xk \ I F t () »\ I Y1, Y2; Y3; ey I I F I
Xict1, Xir2,Xkt3,..., X , runctionz
’l o Mz, e # \\ Y > \| YF+1, YF+2, YF+3, . : | Yar :
. | 0
| I' | | - | |
\ N ! ‘\ Functionn() /ll : . :
\ nk+1, Rnke2,Knke3, ... r\} . >I I Y Nik-1)F+1 | Y F(NIk-1)F+2 YF(N/k-1)F+3|...,: Y NiF I
\ I\ I I |
\ /
N\ / \ // | J I I I
\ -+ ! _ _ a0 ___1
DA i e A
e By wotons eg, D D D Or
string of equal hash functions Single duplication feature D (e.g.,
length 220 with different setting value of a bit position of the
- random seeds) single duplication feature based on
299 the majority of the values at
T corresponding bit positions at the
FIG. 2A segment features 224
A7, 3F, DF,., FF 0,1, 11,1, 101
05, 27, 5C,.., 34 > |1,=1,:o,.:..,:o :
: B T T I I
| . : T I
(I I
2C, 4B, A8,., 28 - '1,|1,:o,4.,|o |
—l - —
Exemplary L* ; *
segments 252 FIG. 2B 11 0,., 0

Exemplary single duplication feature 254

WO 2016/103187

Single
duplication D+ D: Ds Dr N
feature D 224
Versus
>
Asetorsioreq | SP() SD(1): SD(1)s SD(1)e d
duplication
features 302 SD(2)1 SD(2): SD(2)s SD(2)F
. y
Store the single
duplication feature D \
replacing a least J
used duplication A
feature
316
FIG. 3A
) The Hamming
Single Exemplary Distance Being 2
Duplication FeatureD 1 1 0,.., 0 I 349 "3
254 S —
AE I) E[
xemplary . yd .
SetofStored D (1) 1t & Oy X Y
Duplication N
Features 352 sp(2): 0 1 0,.., 07 The Hamming
. Distance Being 1
: 344

Store D replacing a
least used
duplication feature
366

317

PCT/IB2015/059895

Select SD(2) upon
determining the
difference between D
and SD(2) is the
smallest among the
differences for all the
SD(n) & the
difference is less
than a predetermined
number of bits
312

Generate an
encoded string
including the
identifier of SD(2)
and the difference
between D and
SD(2) to represent
the string of N bytes
314

Select SD(2) as its
hamming distance to
D is the smallest &
The difference is less
than a predetermined
number of bits (e.g.,
3 bits)

362

N, e
N\

Generate an encoded
string: SD(2) ID + Bit 0
(optionally surrounded
by escape characters)
for sending
364

WO 2016/103187 PCT/IB2015/059895

4/7

400

Identify sets of one or more consecutive bytes within a packet (e.g., bytes within the| _— 402
packet payload)

Select a set of unprocessed one or more |_— 404
consecutive bytes.

Divide the one or more consecutive bytes into a plurality of non-overlapping, | — 406
consecutive segments.

!

Generate a segment feature for each of the plurality of non-overlapping, 408
consecutive segments through application of a plurality of cryptographic hash /
functions with different random seeds (e.g., each segment applied a hash function
with a different random seed).

!

Generate a single duplication feature based on a combination of the segment | _— 410
features for the plurality of non-overlapping, consecutive segments.

Generate a single compressed string based on a comparison of the single - 414
duplication feature and a set of stored duplication features when a predetermined
condition is met.

!

416
Al of the sets of one or more ‘<
consecutive bytes are processed? NO

YES

Send the resulting strings in place of the packet toward its destination. — 418

FIG. 4

WO 2016/103187

1

N

517

PCT/IB2015/059895

14

Compare the single duplication feature to the set of stored duplication features,
each corresponding to one stored string of one or more consecutive bytes in a
cache of the network element (optionally the duplication features are stored in the
cache t00).

502
/

!

Difference between the single duplication feature and a stored duplication

feature is (1) no more than that of the single duplication feature and any

other stored duplication feature of the set & (2) is below a predetermined
number of bits?

¢ YES

504

NO

Generate the single compressed string based on the difference and the stored
duplication feature.

506
/

!

Store the single duplication feature to replace a stored duplication feature whose
corresponding string of one or more consecutive bytes is least utilized in the cache.

508
L

510

Maintain the set of one or more consecutive bytes intact.

FIG. 5

WO 2016/103187 6/7 PCT/IB2015/059895
ND
ND // £00C | ND I:):ysilcalI Iéevicestf’-\lr:d
. 600B 600D [~-.. Fhysical Lonnectivity
Flg. 6A ND P ND
"1 600H —
ND = 600E
| s00A | s ND
= 1 | ND [—| 600F
600G
Special Purpose . e Network Function
Hardware \\\\\\:\\ —=--—__ Virtulization (NFV)
’/’ \\\\\\'\L \\\\\;7\\\\L
Special Purpose Network Device 602 General Purpose (COTS) Network Hybrid
ND Device 604 Network
Virtual Network Element(s) Control Virtual Network Element(s) Device
630A ** 630R Plane 660A i BBOR 606
P _oevn _OOUR
Networking | Control Communication { 632R | 624 [o e
Software || and Config. Mod. 632A : : 662A | ﬁ;ZR_ |
Instance(s) PR ey Software | App(s) || Ir App(s) |
622 CS Instance I |r csl :: Instance(s) | 664A | || 664R I
(CSI) 621A | 621R | 652 | | | ||
l—‘—‘—‘—“l _ —_
Forwarding Table(s) 634A | | 634R || = ==
: |J [Virtualization Layer654 |
Compute Resource(s) 612 e Processor(s) 642
Forwarding Resource(s) 614 NIC(s) 644
Networking | Physical NIs 646 |
Hardware | | Physical NIs 616 . :
610 Non-Transitory Machine
- - ND Readable Storage Media
Non-Transitory Machine Readable (Forwarding| | yyorqware- | 648
Storage Media 618 Plane 626 640 —
: Software 650
Networking Software 620
Compression CS 627
Software (CS) 627
Fig. 6B Ju Cal;d.S.638 L

Backplane 636

PCT/IB2015/059895

WO 2016/103187 7/7
Network Device 600 ND 600H
VNE VNE
670A.1 670H.1
Fig. 6C VNE :
670A2 |
VNE | /
670A.3
Y I~ UNE I~ UNE "
VNE |, VNE ! WVNE | |
60AP |1 670AQ I | GT0AR |
Distributed Approach Centralized Approach
672 (SDN) 674
. j |—_—_—_—_—_—_—_—_—_—_—_—_—@@0;
Flg- 6D /i | | App”cation(s) & | Layer
Meee - - | 686
S —
i _North Bound Interface 684 _ _ __
o P = — — — — — Centralized Control |
1 [viaiNewors 622 | _ Plenesrs|
g’ i ||- Network Controller 678 ||
b | o _________
/ i :| : Centralized Reachability and Forwarding Info. Mod. 679 : | |
ey ! T S Y= 1
! i || : :_ Cache Coordination Module 675 : : | :
] | | | |
P | [____ - oo --o--o-ooo-o-o-o-o-o-o- I |
JJ } |_ // 4\ | |
/ i l__:_TA________________________J
A == /| South Bound Interface 682
S - -
r E Ja Data :
| / | Plane 680
| ; / \1 ooy
| II ® NE / m N NE [\\ |
i 670B 670D [~ |
| If | NE | — NE e !
| LA 670E |
|) 7 J NE / |
670
T - - === J
ig. Fig. 6F Single
Fig. 6E 9 VNE 670T
NE
| 670D |_
/ = ND 600A ND 600H
] NE L NE
6701 670E VNE VNE
- NE B670A.1 670H.1
70F = =

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2015/059895

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L9/32 HO4L9/06
HO4L29/06
ADD.

HO4L12/801

HO4L1/00 HO4L29/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y EMIR HALEPOVIC ET AL:
WLANS",

5434-5439, XP032274418,

DOI: 10.1109/1CC.2012.6364592
ISBN: 978-1-4577-2052-9

page 5434 - page 5436

"On the performance
of Redundant Traffic Elimination in

COMMUNICATIONS (ICC), 2012 IEEE
INTERNATIONAL CONFERENCE ON, IEEE,
10 June 2012 (2012-06-10), pages

1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

23 March 2016

Date of mailing of the international search report

01/04/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Apostolescu, Radu

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2015/059895

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

BHAVISH AGGARWAL ET AL: "EndRE: An
End-System Redundancy Elimination Service
for Enterprises",

INTERNET CITATION,

3 March 2010 (2010-03-03), page 1l4pp,
XP007918513,

Retrieved from the Internet:
URL:http://pages.cs.wisc.edu/ akella/paper
s/endre-nsdil0.pdf

[retrieved on 2011-05-04]

page 4 - page 7

WO 02/091668 A2 (ERICSSON TELEFON AB L M
[SE]; GEHRMANN CHRISTIAN [SE]; BLOM ROLF
[SE]) 14 November 2002 (2002-11-14)

page 13, line 15 - page 27, line 13

WO 2007/026287 Al (KONINKL PHILIPS
ELECTRONICS NV [NL]; NIKOV VENTZISLAV
[BE]; GRUMIAUX F)

8 March 2007 (2007-03-08)

page 3, line 1 - page 4, line 20

US 20117176556 Al (GUO KATHERINE H [US] ET
AL) 21 July 2011 (2011-07-21)

paragraph [0102] - paragraph [0118]

1-20

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2015/059895
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 02091668 A2 14-11-2002 NONE
WO 2007026287 Al 08-03-2007 NONE
US 2011176556 Al 21-07-2011 US 2011176556 Al 21-07-2011
US 2013279524 Al 24-10-2013
US 2014247836 Al 04-09-2014
WO 2011087956 Al 21-07-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report
	Page 49 - wo-search-report
	Page 50 - wo-search-report

