0 0 OO0 A

01/67280 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 September 2001 (13.09.2001)

PCT

AT O AR AR

(10) International Publication Number

WO 01/67280 A2

GO6F 17/00

(51) International Patent Classification’:

(21) International Application Number: PCT/US01/06457

(22) International Filing Date: 2 March 2001 (02.03.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
09/520,543
09/520,942

8 March 2000 (08.03.2000)
8 March 2000 (08.03.2000)

us
Us

(71) Applicant: ACCENTURE LLP [US/US]; 1661 Page Mill
Road, Palo Alto, CA 94304 (US).

(72) Inventor: LIONGOSARI, Edy, S.; 95 Lemans Drive,
Wheeling, IL 60090 (US).

(74) Agents: MCCONNELL, Dean, E. et al.; Brinks Hofer
Gilson & Lione, Suite 2425, One Indiana Square, Indi-
anapolis, IN 46204-2033 (US).

(81) Designated States (national): AL, AM, AT, AU, AZ, BA,
BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES,
FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP,
KR,KZ,LC,LK,LR,LS,LT,LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR A KNOWLEDGE MODEL

O (57) Abstract: A method is provided for a knowledge model. A network is utilized to access one or more sources. Information
from the source is then extracted utilizing the network. The format of the extracted information is converted into a common format.
An index is generated for the information utilizing a knowledge model. The generated index is then stored in a database.



10

15

20

25

30

35

WO 01/67280 PCT/US01/06457

1
METHOD FOR A KNOWLEDGE MODEL

FIELD OF THE INVENTION

The present invention relates to information management and retrieval and more particularly to

models for obtaining, managing, and providing information from a plurality of sources.

BACKGROUND OF THE INVENTION

People who use computer systems and networks often need to look up information about the
system they are using. Traditionally, information was stored in books and manuals, which were
often kept physically near to the computer. If a user needed to look up information, he turned to

a single source--the paper manuals stored conveniently nearby.

Currently, however, the amount of technical information available about a given computer
system can be very large and can be stored at a wide variety of sources. Information is often
provided to customers in "online" form, dispensing entirely with paper copies. This online
information includes online databases, CD ROM databases, proprietary help systems, and online
manuals. Large amounts of technical information are also available from third party online

sources and from sources such as the World Wide Web.

Amid an apparent wealth of online information, people still have problems finding the
information they need. Online information retrieval may have problems including those related
to inappropriate user interface designs and to poor or inappropriate organization and structure of
the information. Storage of information online in a variety of forms leads to certain information

retrieval problems, several of which are described below.

The existence of a variety of information sources leads to the lack of a unified information space.
An "information space" is the set of all sources of information that is available to a user at a
given time or setting. When information is stored in many formats and at many sources, a user is
forced to spend too much "overhead" on discovering and remembering where different
information is located (e.g., online technical books, manual pages ("manpages"), release notes,

help information, etc.). The user also spends a large amount of time remembering how to find



10

15

20

25

30

35

WO 01/67280 PCT/US01/06457

2.
information in each delivery mechanism. Thus, it is difficult for the user to remember where

potentially relevant information might be, and the user is forced to jump between multiple

different online tools to find it.

The existence of a variety of information sources leads to information strategies that lack
cohesion. Users currently must learn to use and remember a variety of metaphors, user
interfaces, and searching techniques for each delivery mechanism and class of information. No
one type of interface suits all users. Furthermore, a user may need different types of searching
techniques and interfaces, depending on the circumstances and the nature of the specific

information needed.

The existence of a variety of information sources leads to lack of links between sources of
information. Conventional delivery mechanisms often support only loosely structured
navigation, such as keyword search or hyperlinks. Such mechanisms provide the user with only a

local organization of information instead of providing a global picture of the information space.

The existence of a variety of information sources leads to frustration if the information uses a
wide variety of terms or uses terms not familiar to the user. In addition, users employ concepts
and terms differently than technical writers and authors. Conventional delivery mechanisms
often rely on a keyword search as a primary means of finding information. If the user's
vocabulary does not sufficiently overlap with indices employed by a delivery mechanism, a
keyword search will result in a high percentage of disappointing and frustrating "term misses."

The only recovery method for a failed keyword search is simply to guess at better query.

The existence of a variety of information sources leads to titles and descriptions of the
information that are not intuitive to a user. Users often conceptually group and describe problems
differently than do information organizers and writers. If, for example, a user does not know the
title of a book or the name of a database, he may not be able to find the information stored

therein.

As computer systems become more complex and as sources of online information proliferate, it
becomes more and more difficult for users to locate the information they need. Even worse, users
may not always be aware of all the existing sources of information. Moreover, certain users may
not use certain sources of information, even though they are aware of them, if they are not

familiar with the interface or find it too difficult to use.



10

15

20

25

WO 01/67280 PCT/US01/06457

3.
SUMMARY OF THE INVENTION

A method is provided for a knowledge model. A network is utilized to access or one or more
sources. Information from the source is then extracted utilizing the network. The format of the
extracted information is converted into a common format. An index is generated for the

information utilizing a knowledge model. The generated index is then stored in a database.

In one aspect of the present invention, the knowledge model may include a plurality of inter-
associated items. In such an aspect, generation of the index may include associating the
extracted information with one or more of the items of the model, and then mapping the
extracted information to the associated item. As an option, the items of the knowledge model
may include a therapeutic area item, a target item, disease item, a scientist item, an organization

item, a patent item, a compound item, a literature item, a FDA approval item, and/or a drug item.

In even another aspect of the present invention, the knowledge model may also provide an
organizational structure to the generated index. In a further aspect of the present invention, the
extracted information may include pharmaceutical information. In another aspect of the present
invention, the sources may include one or more an internal sources, and/or an external sources.
In yet still another aspect of the present invention, the network may be capable of

communicating using TCP/IP protocol.

In an embodiment of the present invention, a user may be permitted to access the database
utilizing the network to retrieve the stored index. In another embodiment of the present
invention, a query may be received utilizing the network whereupon, the index may be searched
for information matching the query to thereby permit retrieval of the matching information

utilizing the network.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

4
BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood when consideration is given to the following detailed

description thereof. Such description makes reference to the annexed drawings wherein:

Figure 1 is a schematic diagram of a hardware implementation of one embodiment of the present

invention;

Figure 2 is a schematic diagram of a knowledgebase framework in accordance with an

embodiment of the present invention;

Figure 3 is a schematic diagram of the knowledgebase framework illustrating how the index may
be used as a user’s primary gateway to a wide variety of information sources in accordance with

an embodiment of the present invention;

Figure 4 is a schematic diagram of an illustrative knowledge model in accordance with an

embodiment of the present invention;

Figure 5 illustrates a flowchart for a process for a knowledgebase framework in accordance with

an embodiment of the present invention;

Figure 6 illustrates a flowchart for a process for a knowledge model in accordance with an

embodiment of the present invention;

Figure 7 is a schematic illustration of a log in frame for permitting a user to log into the
knowledgebase framework utilizing a network in accordance with an embodiment of the present

invention,;

Figure 8 is a schematic illustration of a search and browse frame of the decision support
application for permitting a user browse the knowledge model-based index in accordance with an

embodiment of the present invention;



10

15

20

25

30

WO 01/67280 PCT/US01/06457

5
Figure 9 is a schematic illustration of the items of the knowledge model-base index displayed in

the search and browse frame upon selection of the cardiology/vascular diseases item in Figure 8

in accordance with an embodiment of the present invention;

Figure 10 is a schematic illustration of the items of the knowledge model-base index displayed in
the search and browse frame upon selection of the ACE biological target item in Figure 9 in

accordance with an embodiment of the present invention;

Figure 11 is a schematic illustration of illustrative items of the knowledge model-base index
displayed in the search and browse frame upon selection of the captopril compound item in

accordance with an embodiment of the present invention;

Figure 12 is a schematic illustration of a browser frame which displays information from
knowledge source relating to an item upon selection of the visit source selection in accordance

with an embodiment of the present invention;

Figure 13 is a schematic illustration of an exemplary display of the display bar upon selection of

a scientist/person item in accordance with an embodiment of the present invention;

Figure 14 is a schematic illustration of illustrative items of the knowledge model-base index
displayed in the search and browse frame upon selection of a patent item in accordance with an

embodiment of the present invention;

Figure 15 is a schematic illustration of a browser frame which displays information from
knowledge source relating to the selected patent item of Figure 14 upon selection of the visit

source selection in accordance with an embodiment of the present invention;

Figure 16 illustrates a recent news frame that the user may access after logging on to the network

in accordance with an embodiment of the present invention;

Figure 17 illustrates a flowchart for a process for monitoring information in a knowledgebase

framework in accordance with an embodiment of the present invention;



10

15

20

25

30

WO 01/67280 PCT/US01/06457

6
Figure 18A is a schematic illustration of a process map displayed in a research frame for use in a

knowledgebase framework in accordance with an embodiment of the present invention;

Figure 18B is a schematic illustration of an illustrative template for a process map displayed in

the research frame in accordance with an embodiment of the present invention;

Figure 18C illustrates an inbox for managing email messages displayed in an organizer frame for

use in a knowledgebase framework in accordance with an embodiment of the present invention;

Figure 18D illustrates a calendar for managing events and appointments of a user displayed in an
organizer frame for use in a knowledgebase framework in accordance with an embodiment of the

present invention;

Figure 19 is a schematic diagram of an exemplary system architecture in accordance with an

embodiment of the present invention;

Figure 20 is a flowchart of the system in accordance with an embodiment of the present

invention;

Figure 21 is a flowchart of a parsing unit of the system in accordance with an embodiment of the

present invention;

Figure 22 is a flowchart for pattern matching in accordance with an embodiment of the present

invention;

Figure 23 is a flowchart for a search unit in accordance with an embodiment of the present

invention;

Figure 24 is a flowchart for overall system processing in accordance with an embodiment of the

present invention;

Figure 25 is a flowchart of topic processing in accordance with an embodiment of the present

invention;



WO 01/67280 PCT/US01/06457

7
Figure 26 is a flowchart of meeting record processing in accordance with an embodiment of the

present invention;



10

20

25

30

WO 01/67280 PCT/US01/06457

8
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention show how the concept of knowledge integration can be
applied in the business world, especially in the pharmaceutical industry. Aspects of the present
invention may be targeted for users active in the drug discovery process such as scientist and
other researchers. Embodiments of the present invention may use knowledge integration
technology to semantically integrate the knowledge capital located in various isolated
repositories in the Internet. The information from this repositories are extracted and are
classified based on various facets such as, for example drug, chemical compound, biological
target, scientist, etc. As the results, embodiments of the present invention can graphically show

users how the various facets of the information are related to each other.

An embodiment of a system in accordance with the present invention is preferably practiced in
the context of a personal computer such as an IBM compatible personal computer, Apple
Macintosh computer or UNIX based workstation. A representative hardware environment is
depicted in Figure 1, which illustrates a typical hardware configuration of a workstation in
accordance with a preferred embodiment having a central processing unit 110, such as a
microprocessor, and a number of other units interconnected via a system bus 112. The
workstation shown in Figure 1 includes a Random Access Memory (RAM) 114, Read Only
Memory (ROM) 116, an /O adapter 118 for connecting peripheral devices such as disk storage
units 120 to the bus 112, a user interface adapter 122 for connecting a keyboard 124, a mouse
126, a speaker 128, a microphone 132, and/or other user interface devices such as a touch screen
(not shown) to the bus 112, communication adapter 134 for connecting the workstation to a
communication network (e.g., a data processing network) and a display adapter 136 for
connecting the bus 112 to a display device 138. The workstation typically has resident thereon
an operating system such as the Microsoft Windows NT or Windows/95 Operating System (OS),
the IBM OS/2 operating system, the MAC OS, or UNIX operating system. Those skilled in the
art will appreciate that the present invention may also be implemented on platforms and

operating systems other than those mentioned.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

9
A preferred embodiment is written using JAVA, C, and the C++ language and utilizes object

oriented programming methodology. Object oriented programming (OOP) has become
increasingly used to develop complex applications. As OOP moves toward the mainstream of
software design and development, various software solutions require adaptation to make use of
the benefits of OOP. A need exists for these principles of OOP to be applied to a messaging
interface of an electronic messaging system such that a set of OOP classes and objects for the

messaging interface can be provided.

OOP is a process of developing computer software using objects, including the steps of
analyzing the problem, designing the system, and constructing the program. An object is a
software package that contains both data and a collection of related structures and procedures.
Since it contains both data and a collection of structures and procedures, it can be visualized as a
self-sufficient component that does not require other additional structures, procedures or data to
perform its specific task. OOP, therefore, views a computer program as a collection of largely
autonomous components, called objects, each of which is responsible for a specific task. This
concept of packaging data, structures, and procedures together in one component or module is

called encapsulation.

In general, OOP components are reusable software modules which present an interface that
conforms to an object model and which are accessed at run-time through a component
integration architecture. A component integration architecture is a set of architecture
mechanisms which allow software modules in different process spaces to utilize each others
capabilities or functions. This is generally done by assuming a common component object
model on which to build the architecture. It is worthwhile to differentiate between an object and
a class of objects at this point. An object is a single instance of the class of objects, which is
often just called a class. A class of objects can be viewed as a blueprint, from which many

objects can be formed.

OOP allows the programmer to create an object that is a part of another object. For example, the
object representing a piston engine is said to have a composition-relationship with the object
representing a piston. In reality, a piston engine comprises a piston, valves and many other
components; the fact that a piston is an element of a piston engine can be logically and

semantically represented in OOP by two objects.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

10
OOP also allows creation of an object that “depends from” another object. If there are two

objects, one representing a piston engine and the other representing a piston engine wherein the
piston is made of ceramic, then the relationship between the two objects is not that of
composition. A ceramic piston engine does not make up a piston engine. Rather it is merely one
kind of piston engine that has one more limitation than the piston engine; its piston is made of
ceramic. In this case, the object representing the ceramic piston engine is called a derived object,
and 1t inherits all of the aspects of the object representing the piston engine and adds further
limitation or detail to it. The object representing the ceramic piston engine “depends from” the
object representing the piston engine. The relationship between these objects is called

inheritance.

When the object or class representing the ceramic piston engine inherits all of the aspects of the
objects representing the piston engine, it inherits the thermal characteristics of a standard piston
defined in the piston engine class. However, the ceramic piston engine object overrides these
ceramic specific thermal characteristics, which are typically different from those associated with
a metal piston. It skips over the original and uses new functions related to ceramic pistons.
Different kinds of piston engines have different characteristics, but may have the same
underlying functions associated with it (e.g., how many pistons in the engine, ignition sequences,
lubrication, etc.). To access each of these functions in any piston engine object, a programmer
would call the same functions with the same names, but each type of piston engine may have
different/overriding implementations of functions behind the same name. This ability to hide
different implementations of a function behind the same name is called polymorphism and it

greatly simplifies communication among objects.

With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an
object can represent just about anything in the real world. In fact, one’s logical perception of the
reality is the only limit on determining the kinds of things that can become objects in object-
oriented software. Some typical categories are as follows:

o Objects can represent physical objects, such as automobiles in a traffic-flow simulation,
electrical components in a circuit-design program, countries in an economics model, or
aircraft in an air-traffic-control system.

J Objects can represent elements of the computer-user environment such as windows,

menus or graphics objects.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

11
. An object can represent an inventory, such as a personnel file or a table of the latitudes

and longitudes of cities.
. An object can represent user-defined data types such as time, angles, and complex

numbers, or points on the plane.

With this enormous capability of an object to represent just about any logically separable
matters, OOP allows the software developer to design and implement a computer program that is
a model of some aspects of reality, whether that reality is a physical entity, a process, a system,
or a composition of matter. Since the object can represent anything, the software developer can

create an object which can be used as a component in a larger software project in the future.

1£90% of a new OOP software program consists of proven, existing components made from
preexisting reusable objects, then only the remaining 10% of the new software project has to be
written and tested from scratch. Since 90% already came from an inventory of extensively tested
reusable objects, the potential domain from which an error could originate is 10% of the
program. As aresult, OOP enables software developers to build objects out of other, previously

built objects.

This process closely resembles complex machinery being built out of assemblies and sub-
assemblies. OOP technology, therefore, makes software engineering more like hardware
engineering in that software is built from existing components, which are available to the
developer as objects. All this adds up to an improved quality of the software as well as an

increased speed of its development.

Programming languages are beginning to fully support the OOP principles, such as
encapsulation, inheritance, polymorphism, and composition-relationship. With the advent of the
C++ language, many commercial software developers have embraced OOP. C++ is an OOP
language that offers a fast, machine-executable code. Furthermore, C++ is suitable for both
commercial-application and systems-programming projects. For now, C++ appears to be the
most popular choice among many OOP programmers, but there is a host of other OOP
languages, such as Smalltalk, Common Lisp Object System (CLOS), and Eiffel. Additionally,
OOP capabilities are being added to more traditional popular computer programming languages

such as Pascal.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

12

The benefits of object classes can be summarized, as follows:

Objects and their corresponding classes break down complex programming problems into
many smaller, simpler problems.

Encapsulation enforces data abstraction through the organization of data into small,
independent objects that can communicate with each other. Encapsulation protects the
data in an object from accidental damage, but allows other objects to interact with that
data by calling the object’s member functions and structures.

Subclassing and inheritance make it possible to extend and modify objects through
deriving new kinds of objects from the standard classes available in the system. Thus,
new capabilities are created without having to start from scratch.

Polymorphism and multiple inheritance make it possible for different programmers to
mix and match characteristics of many different classes and create specialized objects
that can still work with related objects in predictable ways.

Class hierarchies and containment hierarchies provide a flexible mechanism for modeling
real-world objects and the relationships among them.

Libraries of reusable classes are useful in many situations, but they also have some
limitations. For example:

Complexity. In a complex system, the class hierarchies for related classes can become
extremely confusing, with many dozens or even hundreds of classes.

Flow of control. A program written with the aid of class libraries is still responsible for
the flow of control (i.e., it must control the interactions among all the objects created
from a particular library). The programmer has to decide which functions to call at what
times for which kinds of objects.

Duplication of effort. Although class libraries allow programmers to use and reuse many
small pieces of code, each programmer puts those pieces together in a different way.
Two different programmers can use the same set of class libraries to write two programs
that do exactly the same thing but whose internal structure (i.e., design) may be quite
different, depending on hundreds of small decisions each programmer makes along the
way. Inevitably, similar pieces of code end up doing similar things in slightly different

ways and do not work as well together as they should.

Class libraries are very flexible. As programs grow more complex, more programmers are

forced to reinvent basic solutions to basic problems over and over again. A relatively new

extension of the class library concept is to have a framework of class libraries. This framework



10

15

20

25

30

WO 01/67280 PCT/US01/06457

13
1s more complex and consists of significant collections of collaborating classes that capture both

the small scale patterns and major mechanisms that implement the common requirements and
design in a specific application domain. They were first developed to free application
programmers from the chores involved in displaying menus, windows, dialog boxes, and other

standard user interface elements for personal computers.

Frameworks also represent a change in the way programmers think about the interaction between
the code they write and code written by others. In the early days of procedural programming, the
programmer called libraries provided by the operating system to perform certain tasks, but
basically the program executed down the page from start to finish, and the programmer was
solely responsible for the flow of control. This was appropriate for printing out paychecks,
calculating a mathematical table, or solving other problems with a program that executed in just

one way.

The development of graphical user interfaces began to turn this procedural programming
arrangement inside out. These interfaces allow the user, rather than program logic, to drive the
program and decide when certain actions should be performed. Today, most personal computer
software accomplishes this by means of an event loop which monitors the mouse, keyboard, and
other sources of external events and calls the appropriate parts of the programmer’s code
according to actions that the user performs. The programmer no longer determines the order in
which events occur. Instead, a program is divided into separate pieces that are called at
unpredictable times and in an unpredictable order. By relinquishing control in this way to users,
the developer creates a program that is much easier to use. Nevertheless, individual pieces of the
program written by the developer still call libraries provided by the operating system to
accomplish certain tasks, and the programmer must still determine the flow of control within

each piece after it’s called by the event loop. Application code still “sits on top of” the system.

Even event loop programs require programmers to write a lot of code that should not need to be
written separately for every application. The concept of an application framework carries the
event loop concept further. Instead of dealing with all the nuts and bolts of constructing basic
menus, windows, and dialog boxes and then making these things all work together, programmers
using application frameworks start with working application code and basic user interface
elements in place. Subsequently, they build from there by replacing some of the generic

capabilities of the framework with the specific capabilities of the intended application.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

14

Application frameworks reduce the total amount of code that a programmer has to write from
scratch. However, because the framework is really a generic application that displays windows,
supports copy and paste, and so on, the programmer can also relinquish control to a greater
degree than event loop programs permit. The framework code takes care of almost all event
handling and flow of control, and the programmer’s code is called only when the framework

needs it (e.g., to create or manipulate a proprietary data structure).

A programmer writing a framework program not only relinquishes control to the user (as is also
true for event loop programs), but also relinquishes the detailed flow of control within the
program to the framework. This approach allows the creation of more complex systems that
work together in interesting ways, as opposed to isolated programs, having custom code, being

created over and over again for similar problems.

Thus, as is explained above, a framework basically is a collection of cooperating classes that
make up a reusable design solution for a given problem domain. It typically includes objects that
provide default behavior (e.g., for menus and windows), and programmers use it by inheriting
some of that default behavior and overriding other behavior so that the framework calls

application code at the appropriate times.

There are three main differences between frameworks and class libraries:

. Behavior versus protocol. Class libraries are essentially collections of behaviors that you
can call when you want those individual behaviors in your program. A framework, on
the other hand, provides not only behavior but also the protocol or set of rules that govern
the ways in which behaviors can be combined, including rules for what a programmer is
supposed to provide versus what the framework provides.

. Call versus override. With a class library, the code the programmer instantiates objects
and calls their member functions. It’s possible to instantiate and call objects in the same
way with a framework (i.e., to treat the framework as a class library), but to take full
advantage of a framework’s reusable design, a programmer typically writes code that
overrides and is called by the framework. The framework manages the flow of control
among its objects. Writing a program involves dividing responsibilities among the
various pieces of software that are called by the framework rather than specifying how

the different pieces should work together.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

15
. Implementation versus design. With class libraries, programmers reuse only

implementations, whereas with frameworks, they reuse design. A framework embodies
the way a family of related programs or pieces of software work. It represents a generic
design solution that can be adapted to a variety of specific problems in a given domain.
For example, a single framework can embody the way a user interface works, even
though two different user interfaces created with the same framework mi ght solve quite

different interface problems.

Thus, through the development of frameworks for solutions to various problems and
programming tasks, significant reductions in the design and development effort for software can
be achieved. A preferred embodiment of the invention utilizes HyperText Markup Language
(HTML) to implement documents on the Internet together with a general-purpose secure
communication protocol for a transport medium between the client and the Newco. HTTP or
other protocols could be readily substituted for HTML without undue experimentation.
Information on these products is available in T. Berners-Lee, D. Connoly, "RFC 1866: Hypertext
Markup Language - 2.0" (Nov. 1995); and R. Fielding, H, Frystyk, T. Berners-Lee, J. Gettys and
J.C. Mogul, "Hypertext Transfer Protocol -- HTTP/1.1: HTTP Working Group Internet Draft"
(May 2, 1996). HTML is a simple data format used to create hypertext documents that are
portable from one platform to another. HTML documents are SGML documents with generic
semantics that are appropriate for representing information from a wide range of domains.
HTML has been in use by the World-Wide Web global information initiative since 1990.
HTML is an application of ISO Standard 8879; 1986 Information Processing Text and Office
Systems; Standard Generalized Markup Language (SGML).

To date, Web development tools have been limited in their ability to create dynamic Web
applications which span from client to server and interoperate with existing computing resources.
Until recently, HTML has been the dominant technology used in development of Web-based

solutions. However, HTML has proven to be inadequate in the following areas:

. Poor performance;

o Restricted user interface capabilities;

o Can only produce static Web pages;

o Lack of interoperability with existing applications and data; and

. Inability to scale.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

16
Sun Microsystem's Java language solves many of the client-side problems by:
L Improving performance on the client side;
. Enabling the creation of dynamic, real-time Web applications; and
. Providing the ability to create a wide variety of user interface components.

With Java, developers can create robust User Interface (UI) components. Custom "widgets" (e.g.,
real-time stock tickers, animated icons, etc.) can be created, and client-side performance is
improved. Unlike HTML, Java supports the notion of client-side validation, offloading
appropriate processing onto the client for improved performance. Dynamic, real-time Web
pages can be created. Using the above-mentioned custom Ul components, dynamic Web pages

can also be created.

Sun's Java language has emerged as an industry-recognized language for "programming the
Internet." Sun defines Java as: ““a simple, object-oriented, distributed, interpreted, robust,
secure, architecture-neutral, portable, high-performance, multithreaded, dynamic, buzzword-
compliant, general-purpose programming language. Java supports programming for the Internet
in the form of platform-independent Java applets.” Java applets are small, specialized
applications that comply with Sun's Java Application Programming Interface (API) allowing
developers to add "interactive content" to Web documents (e.g., simple animations, page
adornments, basic games, etc.). Applets execute within a Java-compatible browser (e.g.,
Netscape Navigator) by copying code from the server to client. From a language standpoint,
Java's core feature set is based on C++. Sun's Java literature states that Java is basically, "C++

with extensions from Objective C for more dynamic method resolution.”

Another technology that provides similar function to JAVA is provided by Microsoft and
ActiveX Technologies, to give developers and Web designers wherewithal to build dynamic
content for the Internet and personal computers. ActiveX includes tools for developing
animation, 3-D virtual reality, video and other multimedia content. The tools use Internet
standards, work on multiple platforms, and are being supported by over 100 companies. The
group's building blocks are called ActiveX Controls, small, fast components that enable
developers to embed parts of software in hypertext markup language (HTML) pages. ActiveX
Controls work with a variety of programming languages including Microsoft Visual C++,
Borland Delphi, Microsoft Visual Basic programming system and, in the future, Microsoft's

development tool for Java, code named "Jakarta." ActiveX Technologies also includes ActiveX



10

15

20

25

30

WO 01/67280 PCT/US01/06457

17
Server Framework, allowing developers to create server applications. One of ordinary skill in

the art readily recognizes that ActiveX could be substituted for JAVA without undue

experimentation to practice the invention.

To improve the decision making process, it may be helpful to deliver the right information to the
right person at the right time. For example, the right information may include information from
all parts of the organization and from external sources, information in the context of the business
process (regardless of the source or format), and relevant information about business entities and
relationships (rather than keywords and documents). Delivering the right information to the
right person may involve filtering of the information based on needs of the individual, and
delivery of the filtered information to the individual or team. The right time may mean
providing up-to-date information and information on demand.

Several challenges exist today that can make it difficult to meet these requirements. For
example, both internal and external information may exist in different environments, platforms,
formats such as proprietary databases, project reports and e-mail messages. Additionally, the
underlying information repositories due to the heterogeneous nature, will need to remain
unaltered because scientists and other business process participants store their information in
diverse formats and the development of new applications using the repositories will continue,
often in isolation. Further, traditional techniques of integration can be very time consuming to
develop and often inflexible to rapid change. For instance, an average data-warehousing project
typically takes between nine and twelve months to complete and most of these projects will
typically only integrate structured information. Also, external information can be even a greater
challenge: there are over one billion web pages (with this number doubling every four months)
and not all sites are useful or trustworthy.

With embodiments of the present invention, the right information can be delivered to the right
person at the right time. With embodiments of the present invention, the information can come
from internal and external sources. The information can also be cleansed, integrated and placed
in the right business context and also be customized to meet an individual’s particular needs.
Embodiments of the present invention also allow information to be delivered proactively (i.e.,

“pushed”).

One aspect of the present invention to help facilitate efficient collaboration by helping to allow
the sharing of information with other team members and by providing a medium to communicate

a set of well understood processes.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

18
Figure 2 is a schematic diagram of a knowledgebase framework 200 in accordance with an

embodiment of the present invention. With such a knowledgebase framework, a wide variety of
information sources may be extracted, cleansed and structured based on a knowledge model to

create a highly customized index that can be accessed and browsed by a user.

In closer detail, information may be contained in a plurality of internal sources 202 and external
sources 204. An internal source 202 of information is typically an information source that is an
under the control of entity that employs the user and whose information may be proprietary to
the entity. Internal sources of information may include, for example: discovery information, PD
information, clinical information, regulatory information, and M&S information. An external
source 204 of information is typically an information source that is not under the control of
entity that employs the user. An external source may typically be accessible utilizing a wide are
network such as the Internet and World Wide Web. External sources may include for example:
bio-analysis information, study management information, safety data information, market report
information, and Internet websites including government, public, and subscription based

websites.

The knowledgebase framework may also include an index creator 206 which is connected to the
internal and external sources 202, 204 by a network. The index creator 206 may also include or
have access to a knowledgebase model 208. Utilizing the knowledgebase model 208, the index
creator 206 may extract a wide variety information from the internal and external sources 202,
204, cleanse the extracted information, restructure the extracted information and then reconcile

the extracted information into a knowledge model -based index.

The knowledgebase framework 200 may also include an index database 210 coupled to the index
creator 206 for storing the knowledge model-based index created by the index creator 206.

Users may then access the knowledge model-based index stored in the database 210 from a
browser/portal 212 utilizing the network. As an option, the knowledgebase framework may also
include a web server 214 or other similar type of computer for interfacing the browser/portal 212

with the database 210.

Additionaly, the knowledgebase framework may include a decision support application 216 for
helping a user determine what is the right information for the user and help the user receive the

right information at the right time for the user. The decision support application 216 (in



10

15

20

25

30

WO 01/67280 PCT/US01/06457

19
combination with the browser/portal 212) provides the user with the capability to browse and

navigate through an integrated web of knowledge regardless the location of the knowledge
sources.

The decision support application 216 also allows the user to access internal and external
information. The decision support application 216 may also be used to provide a user with
information tailored for a specific process such as, for example, a drug discovery. The decision
support application 216 may further be used to help deliver the right information to the user by

allowing them to monitor internal and external events at a wide range of granularity.

Figure 3 is a schematic diagram of the knowledgebase framework illustrating how the index may
be used as a user’s primary gateway to a wide variety of information sources 202, 204 in
accordance with an embodiment of the present invention. From this index and with the
assistance of the decision support application 216, a user has the ability to retrieve the original
information source. Some illustrative information sources may include a genomics database
300, a pre-clinical database 302, a clinical database 304, a departmental reports database 306, a
subscription based information database 308, and/or market report database 310. Some of these
information sources may comprises exclusively internal or external sources while other
information sources may comprise a combination of internal and external sources. In an
illustrative example, as shown in Figure 3, the departmental reports database 306 may
exclusively comprise internal information sources, while the subscription based information
database 308, and market report database 310 may comprise exclusively external information
sources. Continuing with this illustrative example, the genomics database 300, the pre-clinical
database 302, and the clinical database 304 may all comprise a combination of internal and
external information sources.

Figure 4 is a schematic diagram of an illustrative knowledge model 208 in accordance with an
embodiment of the present invention. The knowledge model comprises a plurality of inter-
related items. In an illustrative embodiment of the present invention, as illustrated in Figure 4,
the items of the knowledge model may include: a therapeutic area item 400, a target item 402,
disease item 404, a scientist item 406, an organization item 408, a patent item 410, a compound

item 412, a literature item 414, a FDA approval item 416, and a drug item 418.

The inter-relations between the various items of the knowledge model are illustrated in Figure 4
by the plurality of connecting lines (e.g., connecting line 420)connecting each of the items to

various other items. For example, the literature item 414 is directly related with the target item



10

15

20

25

30

WO 01/67280 PCT/US01/06457

20
402, the scientist item 406, the organization item 408, the compound item 412, and drug item

418. Also shown in Figure 4 are the manner or type of relationship 422 provided by the
associated connecting line. For example, the relationship between the literature item and the

scientist item is the term “Authored.”

The knowledge model also helps to provide an organizational structure to the index generated in
the knowledgebase framework so that the items of the generated index are arranged according to
the organization structure. In one embodiment of the present invention, the organizational
structure of the generated index may be based on the inter-relations between the items of the

knowledge model.

Figure 5 illustrates a flowchart for a process 500 for a knowledgebase framework in accordance
with an embodiment of the present invention. Information is obtained from at least one
knowledge source utilizing a network in operation 502. Utilizing a knowledge model, an index
is generated for the obtained information in operation 504. This generated index includes a
plurality of items (or entries) each associated with at least some of the obtained information. The
generated index may then be stored in an index database. Utilizing the network, the generated
index is displayed to a user in operation 506. The user is permitted to select an least one of the
items of the index in operation 508. After receipt of the selection by the user, the information
associated with the selected item is then displayed to the user utilizing the network in operation

510.

In an aspect of the present invention, one of the knowledge sources from which information is
obtained may be an internal source under the control of entity that employs the user and whose
information therein may be proprietary to the entity. Some illustrative examples of internal
sources include: a genomics database, a pre-clinical database, a clinical database, and/or a

departmental reports database.

In another aspect of the present invention, one of the knowledge sources from which information
is obtained may be an external source (e.g., a website) accessible utilizing a wide are network
such as the Internet and World Wide Web. In general, the external sources may not typically be
under the control of entity that employs the user. Some illustrative examples of external sources

include subscription based information, and/or market reports.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

21
In a further aspect of the present invention, the information obtained from the sources may

include pharmaceutical information such as, for example, information relating to: a
pharmaceutical therapeutic area, a pharmaceutical target, a pharmaceutical compound, a disease,
a patent, the Federal Drug Administration (FDA) (such as information regarding FDA approval
of a pharmaceutical), a person researching or working on a pharmaceutical, and/or

pharmaceutical literature such as a periodical.

In an embodiment of the present invention, the network may be utilized to monitor one or more
of the knowledge sources for updated information relating to one or more items in the index. In
such an embodiment, when updated information is detected at one of the knowledge sources, a
notice may be generated regarding the updated information. This notice may then be transmitted
to the user utilizing the network to notify the user of the updated information. As an option, the
user may be allowed to select the knowledge source(s) to be monitored for updates or other

changes.

In another embodiment of the present invention, the user may be permitted to input a search term
for searching the index utilizing the network. Upon receipt of the search term, the index may be
searched for items associated with the search term. Items of the index associated with the input
search term (i.e., that match the search term) may then be displayed to the user utilizing the

network.

In one aspect of the present invention, the items of the index may be organized and displayed in
some sort of a hierarchical format such as, for example, a hierarchical tree format. In yet a
further aspect of the present invention, displaying of the information associated with the selected
item (or entry) to the user may also include utilizing the network to retrieve the associated
information from the knowledgebase source (such as a website) from which the associated
information was obtained. In even another aspect of the present invention, the network may be

capable of communicating using TCP/IP protocol.

Figure 6 illustrates a flowchart for a process 600 for a knowledge model in accordance with an

embodiment of the present invention. A network is utilized to access or one or more knowledge
sources in operation 602. Information from the knowledge source is then extracted utilizing the
network in operation 604. The extracted information may have its own formatting. The format

of the extracted information is converted in operation 606 into a common or standardized format



10

20

25

30

WO 01/67280 PCT/US01/06457

22
(1.e., cleansing and restructuring). An index is generated for the standardized extracted

information utilizing a knowledge model in operation 608. The generated index is then stored in

an index database in operation 610.

In one aspect of the present invention, the knowledge model may include a plurality of inter-
associated or inter-related items. In such an aspect, generation of the index may include
associating the extracted information with one or more of the items of the model, and then
mapping the extracted information to the associated item. In this manner, when the index is
displayed to a user, selection of the item by a user links the user to the associated information
and the source of the information. As an option, the items of the knowledge model may inciude
a therapeutic area item, a target item, disease item, a scientist item, an organization item, a patent

item, a compound item, a literature item, a FDA approval item, and/or a drug item.

In even another aspect of the present invention, the knowledge model may also provide an
organizational structure to the generated index so that the items of the generated index are
arranged according to the organization structure. As an illustrative example, the organizational
structure may be a hierarchical tree of the items. In a further aspect of the present invention, the
extracted information may include pharmaceutical information. In another aspect of the present
invention, the knowledge sources may include one or more an internal knowledge sources,
and/or an external knowledge sources. In yet still another aspect of the present invention, the

network may be capable of communicating using TCP/IP protocol.

In an embodiment of the present invention, a user may be permitted to access the database
utilizing the network to retrieve the stored index. In another embodiment of the present
invention, a query may be received utilizing the network whereupon, the index may be searched
for information matching the query to thereby permit retrieval of the matching information

utilizing the network.

In one embodiment of the present invention, the knowledgebase framework 200 may be used to
help a user learn about a field and/or catch up on new developments in this field. In an
embodiment of the present invention, a user may be able to use the knowledgebase framework
200 to find people who are involved in the area being studied and their background, previous
research work done in the area (which in an illustrative embodiment may include a list of targets,

compounds and drugs), and obtain research reports relating to the area being studied. Also, the



10

15

20

25

30

WO 01/67280 PCT/US01/06457

23
user may utilize the knowledgebase framework 200 to find information from external sources

such as, for example: recent patents, targets, compounds, and drugs relating to the area being
studied, as well the people (such as scientists) who are actively working in this field or area of

study.

Figure 7 is a schematic illustration of a log in frame 700 for permitting a user to log into the
knowledgebase framework utilizing a network in accordance with an embodiment of the present
invention. In one aspect of the present invention, the log in frame 700 may include a user name
field 702 for permitting a user to enter a user name associated therewith, a password field 704 for
permitting the user to enter a password associated with the user and the user name, and a
selectable log in button 706 for permitting the user to log into the knowledgebase framework

upon selection thereof.

Upon logging in, the user has access to the knowledgebase framework utilizing the decision
support application 216 to obtain information in the area of their study. Figure 8 is a schematic
illustration of a search and browse frame 800 of the decision support application for permitting a
user browse the knowledge model-based index in accordance with an embodiment of the present
invention. Displayed in the search and browse frame 800 is a portion of the items of an
illustrative knowledge model-based index. In this illustrative example, the items of the index
being displayed comprises the therapeutic area items 802 of the illustrative index including, for
example, a cardiology/vascular diseases 804 therapeutic area item. The items of the index
displayed in the search and browse frame 800 also comprise selectable links which upon
selection thereof by the user leads to the retrieval from the index database 210 and the displaying
in the search and browse frame 800 of items of the knowledge model-based index related to the

selection item.

Figure 9 is a schematic illustration of the items of the knowledge model-base index displayed in
the search and browse frame 800 upon selection of the cardiology/vascular diseases item 804 in
Figure 8 in accordance with an embodiment of the present invention. These items also comprise
selectable links so that selection of one of them leads to the retrieving and display of other items
of the index related to the selected item. Included in Figure 9, are disease items 900 and
biological target items 902 of the illustrative index related to the selected therapeutic target item
804. In an illustrative example, one of the biological target items of the index being displayed in

Figure 9 may include an ACE biological target item 904.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

24

Figure 10 is a schematic illustration of the items of the knowledge model-base index displayed in
the search and browse frame 800 upon selection of the ACE biological target item 904 in Figure
9 in accordance with an embodiment of the present invention. These items also comprise
selectable links so that selection of one of them leads to the retrieving and display of other items

of the index related to the selected item. Included in Figure 10, are component items 1002 of the

- illustrative index related to the selected item. In an illustrative example, one of the compound

items of the index being displayed in Figure 10 may include a captopril compound item 1004.

As illustrated in Figure 10, in one aspect of the present invention, the search and browse frame
800 may include a display bar 1006 in which the hierarchy 1008 in the index of the selected item
may be displayed. For example, in Figure 10, the displayed hierarchy 1008 may comprises the

target name ACE, and the therapeutic area cardiology/vascular.

Figure 11 is a schematic illustration of illustrative items of the knowledge model-base index
displayed in the search and browse frame 800 upon selection of the captopril compound item
1004 in accordance with an embodiment of the present invention. These items also comprise
selectable links so that selection of one of them leads to the retrieving of information from the
knowledgebase framework 200 and/or other items of the index related to the selected item.
Included in Figure 11, are illustrative items of the illustrative index related to the selected item
(in this case captopril). In this illustrative example, the displayed related items include: related
drug items 1100, related patent items 1102, related scientists and/or people items 1104, related

literature items 1106, and related disease items 1108.

In one embodiment of the present invention, one of the items may be selected (such as by
clicking the right button of a mouse when the mouse pointer is over the item, i.e., “right
clicking”) to display a pop-up menu 1110 which includes a monitor selection 1112 and a visit

source selection 1114.

Figure 12 is a schematic illustration of a browser frame 1200 which displays information 1202
from knowledge source relating to an item (in this example the captopril drug item 1004) upon
selection of the visit source selection 1114 of Figure 11 in accordance with an embodiment of

the present invention. In the illustrative example illustrated in Figure 12, the information 1202



10

15

20

25

30

WO 01/67280 PCT/US01/06457

25
displayed in the browser frame 1200 relates to the drug captopril and is obtained from an

external source, in this case an illustrative website 1204 on the Internet

Figure 13 is a schematic illustration of an exemplary display of the display bar 1006 upon
selection of a scientist/person item 1104 in accordance with an embodiment of the present
invention. When a user selects a scientist/person item 1104, the knowledgebase framework may
retrieve contact information for the scientist/person from a knowledge source and then display

the retrieved contact information 1300 in the display bar 1006.

Figure 14 is a schematic illustration of illustrative items of the knowledge model-base index
displayed in the search and browse frame 800 upon selection of the patent item 1116 of Figure
11 in accordance with an embodiment of the present invention. In an iilustrative embodiment,
the displayed items related to the selected patent item 1116 may include items for patent cited
1400 in the selected patent 1116, items for organizations 1402 related to the selected patent,
items for FDA approval matters 1404 related to the selected patent, items for scientists and/or
people 1406 associated with the selected patent, and items for compounds 1004 related to the

selected patent.

Figure 15 is a schematic illustration of a browser frame 1500 which displays information 1502
from knowledge source relating to the selected patent item of Figure 14 upon selection of the
visit source selection 1114 of Figure 14 in accordance with an embodiment of the present
invention. In the illustrative example illustrated in Figure 15, the information 1502 displayed in
the browser frame 1500 relates to US Patent 5,238,924 and is obtained from an external source,

in this case, the USPTO website’s Patent Full Text and Image Database.

Utilizing the knowledgebase framework, a user may be able to monitor work done by others,
such as scientists researching a particular area or field. This may be accomplished by selecting
the monitor selection 1110 of a selected item, such as for example a scientist item 1118
displayed the search and browse frame of Figure 11. In an embodiment of the present invention,
any of the items of the index can be monitored for changes and updates to related information.
For example, a user can select for monitoring an organization for any new publications, patents,
drug applications, and recent news associated with the organization. In another illustrative

example, a target item may be monitored for any new information related to monitored target.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

26
In one embodiment of the present invention, when the user logs into the decision support

application 216, the user may see the most recent news about the scientists. Figure 16 illustrates
a recent news frame 1600 that the user may access after logging on to the network in accordance
with an embodiment of the present invention. In one aspect of the present invention, a portion of
the recent news frame 1600 may comprise a recent news portion 1602 and a monitored items
portion 1604. In such an aspect, links 1606, 1608 to recently updated information may be
displayed. In an illustrative example, selection of link 1606 (which is a link to a patent) may
result in the retrieval and displaying of a browser frame similar to the browser frame of Figure

15 to display information relating to the selected patent obtained from the USPTO website’s
Patent Full Text and Image Database.

With continuing reference to Figure 16, the links may also comprise hypertext links and include
textual summaries relating to information that was recently updated (see e.g., link 1608). As an
option, these links may be organized by subjects or items such as for example, the items of the
knowledge model 208 and displayed in corresponding subheadings. As illustrated in Figure 16,
some illustrative subheadings may include an organizations subheading 1610, a targets

subheading 1612, and a scientist subheading 1614.

The monitored items portion 1604 may display a list of items 1616 selected by the user to be
monitored by the knowledgebase framework. Like the recent news links 1606, the items 1616 in
the monitored items portion 1604 may comprise links to access items in the knowledge model-

based index.

With continuing reference to Figure 16, a search bar 1618 may also be displayed to the user. The
search bar 1618 may include at least one field 1620 for the user to input a search term. Upon
input, a search may be conducted by a search engine for items in the index related to the inputted
term(s). Figure A

Figure 17 illustrates a flowchart for a process 1700 for monitoring information in a
knowledgebase framework in accordance with an embodiment of the present invention.

Utilizing a network, information is received from a user that relates to a target to be tracked in
operation 1702. The network is monitored for changes or updates to the target 1704. When a
change is monitored, data relating to the monitored changes is retrieved in operation 1706 and

then transmitted to the user utilizing the network in operation 1708.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

27
In one aspect of the present invention, the target may be an item of index displayed to the user

utilizing the network. In another aspect of the present invention, the target may be: a publication
(e.g., Iterature), a person (e.g., scientist) a therapeutic area, a disease, a biological target, an

organization, a compound, a patent, FDA approval, and/or a drug.

In a further aspect of the present invention, a pharmaceutical database may be monitored for
changes or updates relating to the target. In yet another aspect of the present invention, the

network may comprise an intranet of an organization and the Internet.

In an embodiment of the present invention, the received information may be stored in memory.
In another embodiment of the present invention, the retrieved data may be transmitted to the user
after receipt of an indication that the user has logged on to the network. As an option to such an
embodiment, the retrieved data may be automatically transmitted to the user after receipt of the

indication that the user has logged on to the network.

In a further embodiment of the present invention, the user may be alerted that a change or update
to the target has been monitored utilizing the network. In even another embodiment of the
present invention, the user may be permitted to input a search term utilizing the network. In such
an embodiment, items associated with the search term may be searched for upon receipt of the
search term. Then those items which have been found to be associated with the inputted search

term may be displayed to the user utilizing the network.

Figure 18A is a schematic illustration of a process map 1800 displayed in a research frame 1802
for use in a knowledgebase framework in accordance with an embodiment of the present
invention. With the research frame 1802, a user may be able to share a set of common processes
and report templates with one or more other users to document their findings for further
collaboration. The process map graphically depicts a timeline for one or more processes. In the
illustrative example illustrated in Figure 18A, the depicted process map 1800 may be for process

for the development of a product 1804 in a pharmaceutical setting.

The research frame 1802 may also include selectable links for accessing various tools for the
research frame such as for example, templates 1806 and target tracking tools 1808. Figure 18B
is a schematic illustration of an illustrative template 1810 for a process map displayed in the

research frame 1802 in accordance with an embodiment of the present invention.



10

15

20

25

30

WO 01/67280 PCT/US01/06457

28

Figure 18C illustrates an inbox 1812 for managing email messages displayed in an organizer
frame 1814 for use in a knowledgebase framework in accordance with an embodiment of the
present invention. The organizer frame may also include a plurality of tool links for accessing
features of the organizer frame. Illustrative examples of tool links include a mail link 1816 for
displaying the inbox upon selection thereof and a calendar link 1818. Also illustrated in Figure
18C is a pull-down menu 1820 that may be included in the search bar 1618 to further narrow a

search of terms input into the search bar.

Figure 18D illustrates a calendar 1822 for managing events and appointments of a user displayed
in an organizer frame 1814 for use in a knowledgebase framework in accordance with an
embodiment of the present invention. The calendar 1822 may be displayed upon selection of the

calendar link 1818 by a user.

The following example describes an illustrative scenario for utilizing the knowledgebase

framework in accordance with an embodiment of the present invention.

EXAMPLE

Anne Kline, a senior biologist at Acme Pharmaceutical, has just transferred from the
Oncology department to the Cardiovascular department. She has a reasonably strong
background in Cardiovascular. Prior to joining Acme Pharmaceutical, she worked at the
Imperial College School of Medicine’s Cardiovascular department for a couple years.
However, she has not been active in this area since she joined Acme Pharmaceutical 3
years ago. She needs to catch up with the new developments in this area -- inside and
outside Acme Pharmaceutical. Acme Pharmaceutical has just installed a knowledgebase
framework. The knowledgebase framework allows Acme Pharmaceutical’s scientists to
search, browse and monitor internal and external information available to them. Anne
accesses the knowledgebase framework from her computer desktop.
Anne accesses the knowledgebase framework from her computer desktop. She spends
almost the entire day using the knowledgebase framework and at the end of the day she is
able to find:

—The people in Acme Pharmaceutical who are involved in the cardiovascular area

and their background



10

15

20

25

30

WO 01/67280 PCT/US01/06457

29
—Previous research work done within Acme Pharmaceutical (which includes a list

of targets, compounds and drugs)
—Internal research reports
In addition, Anne also finds useful information from external sources such as recent:
—Patents
—Targets
—Compounds
—Drugs

—as well the scientists who are actively working in this area

In addition, Anne finds two scientists whose work seem to be relevant to her first
assignment. She sets up her profile in the knowledgebase framework in such a way that
it will monitor any future work done by these scientists ...

The next time Anne accesses the knowledgebase framework, she will see the most recent
news about those two scientists. She also knows that Merck has been very active in the
Cardiovascular area. She sets up the knowledgebase framework to monitor any new
publications, patents, drug applications by Merck The next time Anne accesses the

knowledgebase framework, she will see the most recent news about Merck.

Anne’s first assignment is to investigate TR27 K-Channel as a potential target for
hypertension treatment. She uses the knowledgebase framework to find out any previous
work related TR27. She finds only one article that are somewhat relevant. Since she will
be working on this target for awhile, she sets up the knowledgebase framework to
monitor any new information related to TR27. One morning a couple days later, Anne
turns on her computer and the knowledgebase framework informs her that Pfizer has filed
a patent and this patent has cited TR27. Anne quickly browses through the patent.
Luckily, the patent cited TR27 for a different reason.

Later on that day, the knowledgebase framework informs her that there is a newly
released internal report that mentioned this particular target. This report was filed by the
Neurology department, right after the High Throughput Screening was conducted on the
target. She downloads the report and studies it carefully.

She launches Target DB, a tool that stores information of all targets Investigated by

Acme Pharmaceutical, from the knowledgebase framework to find out the details



10

20

25

30

WO 01/67280 PCT/US01/06457

30
information about assay used for TR27. With help from the knowledgebase framework,

Anne figures out the person involved with this target. She is able to contact one of that

researcher for further information.

While her testing procedures will be different, Anne is able to use many parts of the
results as a starting point. This encounter has saved her a few months of hard work. The
two researchers are able to share a set of common processes and report templates to

document their findings for further collaboration.

Figure 19 is a schematic diagram of an exemplary system architecture in accordance with an

embodiment of the present invention.

In accordance with an embodiment of the present invention, a BackgroundFinder (BF) is
implemented as an agent responsible for preparing an individual for an upcoming meeting by
helping him/her retrieve relevant information about the meeting from various sources. BF
receives input text in character form indicative of the target meeting. The input text is generated
in accordance with an embodiment of the present invention by a calendar program that includes
the time of the meeting. As the time of the meeting approaches, the calendar program is queried
to obtain the text of the target event and that information is utilized as input to the agent. Then,
the agent parses the input meeting text to extract its various components such as title, body,
participants, location, time etc. The system also performs pattern matching to identify particular
meeting fields in a meeting text. This information is utilized to query various sources of
information on the web and obtain relevant stories about the current meeting to send back to the
calendaring system. For example, if an individual has a meeting with Netscape and Microsoft to
talk about their disputes, and would obtain this initial information from the calendaring system.
It will then parse out the text to realize that the companies in the meeting are “Netscape” and
“Microsoft” and the topic is “disputes.” Then, the system queries the web for relevant
information concerning the topic. Thus, in accordance with an objective of the invention, the
system updates the calendaring system and eventually the user with the best information it can
gather to prepare the user for the target meeting. In accordance with an embodiment of the
present invention, the information is stored in a file that is obtained via selection from a link

imbedded in the calendar system.

Program Organization:



10

15

20

25

30

WO 01/67280 PCT/US01/06457

31
A computer program in accordance with an embodiment of the present invention is organized in

five distinct modules: BF.Main, BF Parse, Background Finder.Error, BF PatternMatching and
BF.Search. There is also a frmMain which provides a user interface used only for debugging
purposes. The executable programs in accordance with an embodiment of the present invention
never execute with the user interface and should only return to the calendaring system through
Microsoft’s Winsock control. An embodiment of the system executes in two different modes
which can be specified under the command line sent to it by the calendaring systerﬁ. When the
system runs in simple mode, it executes a keyword query to submit to external search engines.
When executed in complex mode, the system performs pattern matching before it forms a query

to be sent to a search engine.

Data Structures:

The system in accordance with an embodiment of the present invention utilizes three user
defined structures:

TMeetingRecord;

TPatternElement; and

TPatternRecord.

The user-defined structure, tMeetingRecord, is used to store all the pertinent information
concerning a single meeting. This info includes userID, an original description of the meeting,
the extracted list of keywords from the title and body of meeting etc. It is important to note that
only one meeting record is created per instance of the system in accordance with an embodiment
of the present invention. This is because each time the system is spawned to service an
upcoming meeting, it is assigned a task to retrieve information for only one meeting. Therefore,
the meeting record created corresponds to the current meeting examined. ParseMeetingText
populates this meeting record and it is then passed around to provide information about the
meeting to other functions.

If GoPatternMatch can bind any values to a particular meeting field, the corresponding entries in
the meeting record is also updated. The structure of tMeetingRecord with each field described

in parentheses is provided below in accordance with an embodiment of the present invention.

Public Type tMeetingRecord
sUserID As String (user id given by Munin)



10

15

20

25

30

WO 01/67280 PCT/US01/06457

32
sTitleOrig As String (original non stop listed title we need to keep around to send back to

Munin)
sTitleKW As String  (stoplisted title with only keywords)
sBodyKW As String  (stoplisted body with only keywords)
sCompany() As String (companies identified in title or body through pattern matching)
sTopic() As String (topics identified in title or body through pattern matching)
sPeople() As String (people identified in title or body through pattern matching)
sWhen() As String (time identified in title or body through pattern matching)
sWhere() As String (location identified in title or body through pattern matching)
sLocation As String (location as passed in by Munin)
sTime As String (time as passed in by Munin)
sParticipants() As String (all participants engaged as passed in by Munin)
sMeetingText As String  (the original meeting text w/o userid)

End Type

There are two other structures which are created to hold each individual pattern utilized in
pattern matching. The record tAPatternRecord is an array containing all the components /
elements of a pattern. The type tAPatternElement is an array of strings which represent an
element in a pattern. Because there may be many "substitutes" for each element, we need an
array of strings to keep track of what all the substitutes are. The structures of tAPatternElement
and tAPatternRecord are presented below in accordance with an embodiment of the present

invention.

Public Type tAPatternElement
elementArray() As String

End Type

Public Type tAPatternRecord
patternArray() As tAPatternElement

End Type

User Defined Constants:
Many constants are defined in each declaration section of the program which may need to be

updated periodically as part of the process of maintaining the system in accordance with an



WO 01/67280

33

PCT/US01/06457

embodiment of the present invention. The constants are accessible to allow dynamic

configuration of the system to occur as updates for maintaining the code.

Included in the following tables are lists of constants from each module which I thought are most

5 likely to be modified from time to time. However, there are also other constants used in the code

not included in the following list. It does not mean that these non-included constants will never

be changed. It means that they will change much less frequently.

For the Main Module (BF.Main) :

CONSTANT PRESET VALUE USE
MSGTOMUNIN_TYPE 6 Define the message number used to identify
messages between BF and Munin
IP_ADDRESS MUNIN| "10.2.100.48" Define the IP address of the machine in which
Munin and BF are running on so they can transf
data through UDP.
PORT_MUNIN 7777 Define the remote port in which
we are operating on.
TIMEOUT AV 60 Define constants for setting time out in inet contr
TIMEOUT_NP 60 Define constants for setting time out in inet contr
CMD_SEPARATOR "\" Define delimiter to tell which part of Munin's

command represents the beginning of our inpuf

meeting text

OUTPARAM_
SEPARATOR

n..n

Define delimiter for separating out different
portions of the output. The separator is for
delimiting the msg type, the user id, the meeting

title and the beginning of the actual stories

retrieved.
10
For the Search Module (BF.Search):
CONSTANT CURRENT VALUE USE
PAST NDAYS 5 Define number of days you want to look ba

for AltaVista articles. Doesn't really mattq

now because we aren't really doing a new




PCT/US01/06457

WO 01/67280
34
CONSTANT CURRENT VALUE USE
search in alta vista. We want all info.

CONNECTOR_AV_URI "+AND+" Define how to connect keywords. We want
our keywords in the string so for now usé

AND. If you
want to do an OR or something, just chang

connector.

CONNECTOR_NP_URI "+AND+" Define how to connect keywords. We want
our keywords in the string so for now use

AND. If you
want to do an OR or something, just chang

connector.
NUM_NP_STORIES 3 Define the number of stories to return back
Munin from NewsPage.
NUM_AV_STORIES 3 Define the number of stories to return back
Munin from AltaVista.
For the Parse Module (BF.Parse):
CONSTANT CURRENT VALU USE

PORTION_SEPARATOR "

Define the separator between differd
portions of the meeting text sent in

Munin. For example in "09::Meet w
Chad::about life::Chad | Denise:::::
"::" is the separator between differe

parts of the meeting text.

PARTICIPANT_SEPARATOR o

Define the separator between each
participant in the participant list
portion of the original meeting tex

Refer to example above.

For Pattern Matching Module (BFPatternMatch): There are no constants in this module which

require frequent updates.



15

20

25

30

WO 01/67280 PCT/US01/06457

35
General Process Flow:

The best way to depict the process flow and the coordination of functions between each other is
with the five flowcharts illustrated in Figures 20 to 24. Figure 20 depicts the overall process flow
in accordance with an embodiment of the present invention. Processing commences at the top of
the chart at function block 2000 which launches when the program starts. Once the application is
started, the command line is parsed to remove the appropriate meeting text to initiate the target of
the background find operation in accordance with an embodiment of the present invention as
shown in function block 2010. A giobal stop list is generated after the target is determined as
shown in function block 2020. Then, all the patterns that are utilized for matching operations are
generated as illustrated in function block 2030. Then, by tracing through the chart, function block
2000 invokes GoBF 2040 which is responsible for logical processing associated with wrapping
the correct search query information for the particular target search engine. For example, function
block 2040 flows to function block 2050 and it then calls GoPatternMatch as shown in function
block 2060. To see the process flow of GoPatternMatch, we swap to the diagram titled “Process
Flow for BF’s Pattern Matching Unit.”

One key thing to notice is that functions depicted at the same level of the chart are called by in
sequential order from left to right (or top to bottom) by their common parent function. For
example, Main 2000 calls ProcessCommandLine 2010, then CreateStopListist 2020, then
CreatePatterns 2030, then GoBackgroundFinder 2040. Figures 21 to 24 detail the logic for the
entire program, the parsing unit, the pattern matching unit and the search unit respectively.
Figure 24 details the logic determinative of data flow of key information through Background

Finder, and shows the functions that are responsible for creating or processing such information.

DETAILED SEARCH ARCHITECTURE UNDER THE BASIC SEARCH / SIMPLE
QUERY MODE

Search ALTA VISTA (Function block 2070 of Figure 20):

The Alta Vista search engine utilizes the identifies and returns general information about topics
related to the current meeting as shown in function block 270 of Figure 2. The system in
accordance with an embodiment of the present invention takes all the keywords from the title

portion of the original meeting text and constructs an advanced query to send to Alta Vista. The



10

15

20

25

30

WO 01/67280 PCT/US01/06457

36
keywords are logically combined together in the query. The results are also ranked based on the

same set of keywords. One of ordinary skill in the art will readily comprehend that a date
restriction or publisher criteria could be facilitated on the articles we want to retrieve. A set of
top ranking stories are returned to the calendaring system in accordance with an embodiment of

the present invention.

NewsPage (Function Block 2075 of Figure 20):

The NewsPage search system is responsible for giving us the latest news topics related to a target
meeting. The system takes all of the keywords from the title portion of the ori ginal meeting text
and constructs a query to send to the NewsPage search engine. The keywords are logically
combined together in the query. Only articles published recently are retrieved. The NewsPage
search system provides a date restriction criteria that is settable by a user according to the user’s

preference. The top ranking stories are returned to the calendaring system.

Figure 21 is a user profile data model in accordance with an embodiment of the present
invention. Processing commences at function block 2100 which is responsible for invoking the
program from the main module. Then, at function block 2110, a wrapper function is invoked to
prepare for the keyword extraction processing in function block 2120. After the keywords are
extracted, then processing flows to function block 2130 to determine if the delimiters are
properly positioned. Then, at function block 2140, the number of words in a particular string is
calculated and the delimiters for the particular field are and a particular field from the meeting
text is retrieved at function block 2150. Then, at function block 2180, the delimiters of the string
are again checked to assure they are placed appropriately. F inally, at function block 2160, the
extraction of each word from the title and body of the message is performed a word at a time
utilizing the logic in function block 2162 which finds the next closest word delimiter in the mput
phrase, function block 2164 which strips unnecessary materials from a word and function block
2166 which determines if a word is on the stop list and returns an error if the word is on the stop

list.

Pattern Matching:

Limitations associated with a simple searching method include:



10

15

20

25

30

WO 01/67280 PCT/US01/06457

37
1. Because it relies on a stop list of unwanted words in order to extract from the meeting text a

set of keywords, it is limited by how comprehensive the stop list is. Instead of trying to
figure out what parts of the meeting text we should throw away, we should focus on what
parts of the meeting text we want.

2. A simple search method in accordance with an embodiment of the present invention only
uses the keywords from a meeting title to form queries to send to Alta Vista and
NewsPage. This ignores an alternative source of information for the query, the body of
the meeting notice. We cannot include the keywords from the meeting body to form our
queries because this often results in queries which are too long and so complex that we
often obtain no meaningful results.

3. There is no way for us to tell what each keyword represents. For example, we may extract
“Andy” and “Grove” as two keywords. However, a simplistic search has no way
knowing that “Andy Grove” is in fact a person’s name. Imagine the possibilities if we
could somehow intelligently guess that “Andy Grove” is a person’s name. We can find
out if he is an Andersen person and if so what kind of projects he’s been on before etc.
etc.

4. Insummary, by relying solely on a stop list to parse out unnecessary words, we suffer from

“information overload”.

Pattern Matching Overcomes These Limitations:

Here’s how the pattern matching system can address each of the corresponding issues above in

accordance with an embodiment of the present invention.

1. By doing pattern matching, we match up only parts of the meeting text that we want and
extract those parts.

2. By performing pattern matching on the meeting body and extracting only the parts from the
meeting body that we want. Our meeting body will not go to complete waste then.

3. Pattern matching is based on a set of templates that we specify, allowing us to identify people
names, company names etc from a meeting text.

4. In summary, with pattern matching, we no longer suffer from information overload. Of
course, the big problem is how well our pattern matching works. If we rely exclusively
on artificial intelligence processing, we do not have a 100% hit rate. We are able to

identify about 20% of all company names presented to us.

Patterns:



10

15

20

25

30

WO 01/67280 PCT/US01/06457

38
A pattern in the context of an embodiment of the present invention is a template specifying the

structure of a phrase we are looking for in a meeting text. The patterns supported by an
embodiment of the present invention are selected because they are templates of phrases which
have a high probability of appearing in someone’s meeting text. For example, when entering a
meeting in a calendar, many would write something such as “Meet with Bob Dutton from
Stanford University next Tuesday.” A common pattern would then be something like the word
“with” followed by a person’s name (in this example it is Bob Dutton) followed by the word

“from” and ending with an organization’s name (in this case, it is Stanford University).

Pattern Matching Terminology:

Terminology associated with pattern matching includes:

. Pattern: a pattern is a template specifying the structure of a phrase we want to bind the
meeting text to. It contains sub units.

. Element: a pattern can contain many sub-units. These subunits are called elements. For
example, in the pattern “with SPEOPLES from $SCOMPANYS”, “with” “SPEOPLES”
“from” “SCOMPANYS$” are all elements.

. Placeholder: a placeholder is a special kind of element in which we want to bind a value
to. Using the above example, “SPEOPLES” is a placeholder.

. Indicator: an indicator is another kind of element which we want to find in a meeting text
but no value needs to bind to it. There may be often more than one indicator we are
looking for in a certain pattern. That is why an indicator is not an “atomic” type.

o Substitute: substitutes are a set of indicators which are all synonyms of each other.

Finding any one of them in the input is good.

There may be five fields which are identified for each meeting:

. Company ($COMPANYY)

. People ($PEOPLES)

. Location (SLOCATIONS)

. Time ($TIMES)

. Topic ($TOPIC_UPPERS) or (STOPIC_ALLS)

In parentheses are the illustrative placeholders used in the code as representation of the

corresponding meeting fields.

Each placeholder may have the following meaning:



10

15

WO 01/67280 PCT/US01/06457

39
$COMPANYS: binds a string of capitalized words (e.g., Meet with Joe Carter of

<Andersen Consulting >)

SPEOPLES: binds series of string of two capitalized words potentially connected by *,”
“and” or “&” (e.g., Meet with <Joe Carter> of Andersen Consulting, Meet with <Joe
Carter and Luke Hughes> of Andersen Consulting)

$LOCATIONS: binds a string of capitalized words (e.g., Meet Susan at <Palo Alto
Square>)

STIMES: binds a string containing the format #:## (e.g., Dinner at <6:30 pm>)
$TOPIC_UPPERS: binds a string of capitalized words for our topic (e.g., <Stanford
Engineering Recruiting> Meeting to talk about new hires).

$TOPIC_ALLS: binds a string of words without really caring if it’s capitalized or not.

(e.g., Meet to talk about <ubiquitous computing>)

The following table represents patterns supported by BF. Each pattern belongs to a pattern

group. All patterns within a pattern group share a similar format and they only differ from each

other in terms of what indicators are used as substitutes. Note that the patterns which are grayed

out are

also commented in the code. BF has the capability to support these patterns but we

decided that matching these patterns is not essential at this point.

PAT PATTERN EXAMPLE
1.1 P #
1 1.1.1.1.1.]1 SPEOPLES of Paul Maritz of Microsoft
$COMPANYS
b $PEOPLES from Bill Gates, Paul Allen and
$COMPANYS Paul Maritz from Microsoft
2 a $TOPIC_UPPERS meeting | Push Technology Meeting
b $TOPIC_UPPERS mtg Push Technology Mtg
c $TOPIC _UPPERS$ demo Push Technology demo
d $TOPIC_UPPERS Push Technology interview
interview
e $TOPIC_UPPERS Push Technology




PCT/US01/06457

WO 01/67280
40
presentation presentation
f $TOPIC_UPPERS visit Push Technology visit
g $TOPIC_UPPERS briefing | Push Technology briefing
$TOPIC UPPERS$ Push Technology
discussion discussion
i $TOPIC_UPPERS$ Push Technology
workshop workshop
J $TOPIC_UPPERS prep Push Technology prep
k $TOPIC_UPPERS review | Push Technology review
1 $TOPIC_UPPERS lunch Push Technology lunch
m $TOPIC_UPPERS project | Push Technology project
n $TOPIC_UPPERS projects | Push Technology projects
3 a $COMPANYS corporation | Intel Corporation
b $COMPANYS corp. IBM Corp.
c $COMPANYS systems Cisco Systems
d $COMPANYS limited IBM limited
e $COMPANYS Itd IBM Itd
4 a about STOPIC_ALLS$ About intelligent agents
technology
b discuss STOPIC_ALLS Discuss intelligent agents
technology
c show $TOPIC_ALLS$ Show the client our
intelligent agents
technology
d re: STOPIC_ALLS re: intelligent agents
technology
e review $TOPIC_ALLS$ Review intelligent agents
technology
f agenda The agenda is as follows:
--clean up
--clean up
--clean up
g agenda: STOPIC_ALLS Agenda:
--demo client intelligent




10

15

WO 01/67280 PCT/US01/06457

41
agents technology.
--demo ecommerce.
5 a w/$SPEOPLES of Meet w/Joe Carter of
$COMPANYS Andersen Consulting
b w/$SPEOPLES from Meet w/Joe Carter from
$COMPANYS Andersen Consulting
6 a w/$SCOMPANYS per Talk w/Intel per Jason
$PEOPLE$ Foster
7 fa. AtSTIMES =4 70| at 3:00pm e
|6 |AowdSTIMES . [Arouwnd300pm
8 v é At SLOCATIONS At LuLu’s resturant
b In SLOCATIONS in Santa Clara
9 a Per SPEOPLES$ per Susan Butler
10 |a call w/SPEOPLES Conf call w/John Smith
B call with SPEOPLE$ Conf call with John Smith
11 A prep for STOPIC_ALLS$ Prep for London meeting
B preparation for Preparation for London
$TOPIC ALLS meeting

Figure 22 is a detailed flowchart of pattern matching in accordance with an embodiment of the
present invention. Processing commences at function block 2200 where the main program
invokes the pattern matching application and passes control to function block 2210 to commence
the pattern match processing. Then, at function block 2220, the wrapper function loops through
to process each pattern which includes determining if a part of the text string can be bound to a
pattern as shown in function block 2230. Then, at function block 2240, various placeholders are
bound to values if they exist, and in function block 2241, a list of names separated by
punctuation are bound, and at function block 2242 a full name is processed by finding two
capitalized words as a full name and grabbing the next letter after a space after a word to
determine if it is capitalized. Then, at function block 2243, time is parsed out of the string in an
appropriate manner and the next word after a blank space in function block 2244. Then, at
function block 2248, the continuous phrases of capitalized words such as company, topic or
location are bound and in function block 2246, the next word after the blank is obtained for

further processing in accordance with an embodiment of the present invention. F ollowing the



10

15

20

25

30

WO 01/67280 PCT/US01/06457

42
match meeting field processing, function block 2250 is utilized to locate an indicator which is

the head of a pattern, the next word after the blank is obtained as shown in function block 2252
and the word is checked to determine if the word is an indicator as shown in function block
2254. Then, at function block 2260, the string is parsed to locate an indicator which is not at the
end of the pattern and the next word after unnecessary white space such as that following a line
feed or a carriage return is processed as shown in function block 2262 and the word is analyzed
to determine if it is an indicator as shown in function block 2264. Then, in function block 2270,
the temporary record is reset to the null set to prepare it for processing the next string and at
function block 2280, the meeting record is updated and at function block 2282 a check is
performed to determine if an entry is already made to the meeting record before parsing the

meeting record again.

Using the Identified Meeting Fields:

Now that we have identified fields within the meeting text which we consider important, there
are quite a few things we can do with it. One of the most important applications of pattern
matching is of course to improve the query we construct which eventually gets submitted to Alta
Vista and News Page. There are also a lot of other options and enhancements which exploit the
results of pattern matching that we can add to BF. These other options will be described in the
next section. The goal of this section is to give the reader a good sense of how the results

obtained from pattern matching can be used to help us obtain better search results.

Figure 23 shows a flowchart of the detailed processing for preparing a query and obtaining
information from the Internet in accordance with an embodiment of the present invention.
Processing commences at function block 2300 and immediately flows to function block 2310 to
process the wrapper functionality to prepare for an Internet search utilizing a web search engine.
If the search is to utilize the Alta Vista search engine, then at function block 2330, the system
takes information from the meeting record and forms a query in function blocks 2340 to 2360 for
submittal to the search engine. If the search is to utilize the NewsPage search engine, then at
function block 2320, the system takes information from the meeting record and forms a query in

function blocks 2321 to 2328.



10

15

20

25

WO 01/67280 PCT/US01/06457

43
Alta Vista Search Engine:

A strength of the Alta Vista search engine is that it provides enhanced flexibility. Using its
advance query method, one can construct all sorts of Boolean queries and rank the search
however you want. However, one of the biggest drawbacks with Alta Vista is that it is not very
good at handling a large query and is likely to give back irrelevant results. If we can identify the
topic and the company within a meeting text, we can form a pretty short but comprehensive
query which will hopefully yield better results. We also want to focus on the topics found. It
may not be of much merit to the user to find out info about a company especially if the user
already knows the company well and has had numerous meetings with them. It’s the topics they

want to research on.

News Page Search Engine:

A strength of the News Page search engine is that it does a great job searching for the most
recent news if you are able to give it a valid company name. Therefore when we submit a query
to the news page web site, we send whatever company name we can identify and only if we
cannot find one do we use the topics found to form a query. If neither one is found, then no
search is performed. The algorithm utilized to form the query to submit to Alta Vista is
illustrated in Figure 25. The algorithm that we will use to form the query to submit to News

Page is illustrated in Figure 26.

The following table describes in detail each function in accordance with an embodiment of the
present invention. The order in which functions appear mimics the process flow as closely as

possible. When there are situations in which a function is called several times, this function will be

listed after the first function which calls it and its description is not duplicated after every subsequent

function which calls it.

Procedure Type Called By Description

Name

Main Public None This is the main function
(BF.Main) Sub where the program first

launches. It initializes BF

with the appropriate




WO 01/67280

44

PCT/US01/06457

Procedure
Name

Called By

Description

parameters(e.g. Internet
time-out, stoplist...) and
calls GoBF to launch the

main part of the program.

ProcessCom
mandLine

(BF.Main)

Private

Sub

Main

This function parses the
command line. It assumes
that the delimiter indicating
the beginning of input from
Munin is stored in the
constant

CMD_SEPARATOR.

CreateStopLi
st

(BF.Main)

Private

Function

Main

This function sets up a stop
list for future use to parse out
unwanted words from the
meeting text.

There are commas on each
side of each word to enable

straight checking.

CreatePattern
]

(BF.Pattern
Match)

Public
Sub

Main

This procedure is called once
when BF is first initialized to
create all the potential
patterns that portions of the
meeting text can bind to. A
pattern can contain however
many elements as needed.
There are

two types of elements. The
first type of elements are
indicators. These are real
words which delimit the
potential of a meeting field
(e.g. company) to follow.

Most of these indicators are




WO 01/67280 PCT/US01/06457

45

Procedure Type Called By Description
Name

stop words as expected
because

stop words are words
usually common to all
meeting text so it makes
sense they form patterns. The
second type of elements are
special strings which
represent placeholders.

A placeholder is always in
the form of $*$ where * can
be either PEOPLE,
COMPANY,
TOPIC_UPPER,
TIME,LOCATION or
TOPIC_ALL. A pattern can
begin with either one of the
two types of elements and
can be however long,
involving however any
number/type of elements.
This procedure dynamically
creates a new pattern record
for

each pattern in the table and
it also dynamically creates
new tAPatternElements for
each element within a
pattern. In addition, there is
the concept of being able to
substitute indicators within a
pattern. For example, the

pattern SPEOPLES of




WO 01/67280 PCT/US01/06457

46

Procedure Type Called By Description
Name

SCOMPANYS is similar to
the pattern $SPEOPLES from
$COMPANYS. "from" is a
substitute for "of" . Our
structure should be able to
express such a need for

substitution.

GoBF Public Main This is a wrapper proceduror
(BF.Main) Sub that calls both the parsing
and the searching
subroutines of the

BF. It is also responsible for

sending data back to Munin.

ParseMeetin | Public GoBackGroundF | This function takes the initial
gText Function | inder meeting text and identifies
(BF.Parse) the userID of the record as
well as other parts of the
meeting text including the
title, body, participant list,
location and time. In
addition, we call a helper
function ProcessStopList to
eliminate all the unwanted
words from the original
meeting title and meeting
body so that only keywords
are left. The information
parsed out is stored in the
MeetingRecord structure.
Note that this function does
no error checking and for the
most time assumes that the

meeting text string is




WO 01/67280

47

PCT/US01/06457

Procedure
Name

Type

Called By

Description

correctly formatted by
Munin.

The important variable is
thisMeeting Record is the
temp holder for all info
regarding current meeting.
It's eventually returned to

caller.

FormatDelim
itation

(BF.Parse)

Private

ParseMeetingTe
xt,
DetermineNum
Words,
GetAWordFrom
String

There are 4 ways in which
the delimiters can be placed.
We take care of all these
cases by reducing them
down to Case 4 in which
there are no delimiters
around but only between
fields in a string(e.g.
A:B:C)

DetermineNu
mWords
(BF .Parse)

Public

Function

ParseMeeting
Text,
ProcessStop
List

This functions determines
how many words there are in
a string (stInEvalString) The
function assumes that each
word is separated by a
designated separator as
specified in stSeparator. The
return type is an integer that
indicates how many words
have been found assuming
each word

in the string is separated by
stSeparator. This function is
always used along with
GetAWordFromString and
should be called before




WO 01/67280

48

PCT/US01/06457

Procedure
Name

Type

Called By

Description

calling GetAWordFrom
String.

GetAWordFr
| omString

(BF.Parse)

Public

Function

ParseMeeting
Text,
ProcessStop

List

This function extracts the ith
word of the
string(stInEvalString)
assuming that each word in
the string is separated by a
designated

separator contained in the
variable stSeparator.

In most cases, use this
function with
DetermineNumWords. The
function returns the wanted
word. This function checks
to make sure that
1IInWordNum is within
bounds so that 1

is not greater than the total
number of words in string or
less than/equal to zero. If it
is out of bounds, we return
empty string to indicate we
can't get anything. We try to
make sure this doesn't
happen by calling

DetermineNumWords first.

ParseAndCle
anPhrase
(BF.Parse)

Private

Function

ParseMeetingTe

xt

This function first grabs the
word and send it to
CleanWord in order strip
the stuff that nobody wants.
There are things in

parseWord that will kill




WO 01/67280 PCT/US01/06457

49

Procedure Type Called By Description
Name

the word, so we will need a
method of looping through
the body and rejecting
words without killing the
whole function

1 guess keep CleanWord and
check a return value

ok, now I have a word so I
need to send it down the
parse chain. This chain goes
ParseCleanPhrase ->
CleanWord ->
EvaluateWord. If the word
gets through the

entire chain without being
killed, it will be added at the
end to our keyword string.
first would be the function
that checks for "/" as a
delimiter and extracts the
parts of that. This I will call
"StitchFace" (Denise is more
normal and calls it
GetAWordFromString)

if this finds words, then each
of these will be sent, in turn,
down the chain. If

these get through the entire
chain without being added or
killed then they will be

added rather than tossed.




WO 01/67280

50

PCT/US01/06457

Procedure
Name

Type

Called By

Description

FindMin
(BF.Parse)

Private

Function

ParseAndCleanP

hrase

This function takes in 6 input
values and evaluates to see
what the minimum non
zero value is. It first creates
an array as a holder so that
we can sort the five

input values in ascending
order. Thus the minimum
value will be the first non
zero value element of the
array. If we go through
entire array without finding
a non zero value, we know
that there is an error and we

exit the function.

CleanWord
(BF.Parse)

Private

Function

ParseAndCleanP
hrase

This function tries to clean
up a word in a meeting text.
It first of all determines if the
string is of a valid length. It
then passes it through a
series of tests to see it is
clean and when needed, it
will edit the word and strip
unnecessary characters off of
it. Such tests includes
getting rid of file extensions,

non chars, numbers etc.

EvaluateWor
d
(BF.Parse)

Private

Function

ParseAndCleanP
hrase

This function tests to see if
this word is in the stop list so
it can determine whether to
eliminate the word from the
original meeting text. If a

word is not in the stoplist, it




WO 01/67280 PCT/US01/06457

51

Procedure Type Called By Description
Name

should stay around as a
keyword and this function
exits beautifully with no
errors. However, if the
words is a stopword, an error
must be returned. We must
properly delimit the input
test string so we don't
accidentally retrieve sub
strings.

GoPattemMa | Public GoBF This procedure is called
tch Sub when our QueryMethod is

(BF.Pattern set to complex query

Match) meaning we do want to do all
the pattern matching stuff.It
's a simple wrapper function
which initializes some arrays
and then invokes pattern
matching on the title and the
body.

MatchPattern | Public GoPattern Match | This procedure loops through

s Sub every pattern in the pattern
(BF.Pattern table and tries to identify
Match) different fields within a
meeting text specified by
sInEvalString. For
debugging purposes it also
tries to tabulate how many
times a certain pattern was
triggered and stores it in
gTabulateMatches to see
whichp pattern fired the

most. gTabulateMatches is




WO 01/67280

52

PCT/US01/06457

Procedure
Name

Called By

Description

stored as a global because we
want to be able to run a batch
file of 40 or 50 test strings

and still be able to know how

often a pattern was triggered.

MatchAPatte
m
(BF.Pattern
Match)

Private

Function

MatchPatterns

This function goes through
each element in the current
pattern. It first evaluates to
determine whether element is
a placeholder or an indicator.
If it 1s a placeholder, then it
will try to bind the
placeholder with some value.
If it is an indicator, then we
try to locate it. Thereis a
trick however. Depending on
whether we are at current
element is the head of the
pattern or

not we want to take different
actions. If we are at the head,
we want to look for the
indicator or the placeholder.
If we can't find it, then we
know that the current pattern
doesn't exist and we quit.
However, if it is not the
head, then we continue
looking, because there may
still be a head somewhere.

We retry 1n this case.

MatchMeetin
gField

Private

Function

MatchAPattern

This function uses a big

switch statement to first




WO 01/67280 PCT/US01/06457

53

Procedure Type Called By Description
Name
(BF .Pattern determine what kind of

Match) placeholder we are talking
about and depending on what
type of placeholder, we have
specific requirements

and different binding criteria
as specified in the
subsequent functions called
such as BindNames,
BindTime etc. If binding is
successful we add it to our

guessing record.

BindNames | Private MatchMeetingFi | In this function, we try to
(BF.Pattern | Function | eld match names to the

Match) corresponding placeholder
$PEOPLES. Names are
defined as any consecutive
two words which are
capitalized. We also what to
retrieve a series of names
which are connected by and ,
or & so we look until we
don't see any of these 3
separators anymore. Note
that we don 't want to bind
single word names because it
is probably

too general anyway so we
don't want to produce broad
but irrelevant results. This
function calls
BindAFullName which binds

one name so in a since




WO 01/67280

54

PCT/US01/06457

Procedure
Name

Type

Called By

Description

BindNames collects all the
results from Bind AFullName

BindAFullNa
me

(BF .Pattern
Match)

Private

Function

BindNames

This function tries to bind a
full name. If the SPEOPLES
placeholder is not the head of
the pattern, we know that it
has to come right at the
beginning of the test string
because we've been deleting
stuff off the head of the
string all along.

If it 1s the head, we search
until we find something that
looks like a full name. If we
can't find it, then there's no
such pattern in the text
entirely and we quit entirely
from this pattern. This
should eventually return us
to the next pattern in

MatchPatterns.

GetNextWor
dAfterWhite
Space
(BF.Pattern
Match)

Private

Function

BindAFull
Name,

BindTime,

BindCompanyTo

picLoc

This function grabs the next
word in a test string. It looks
for the next word after white
spaces, @ or /. The word is
defined to end when we
encounter another one of
these white spaces or

separators.

BindTime
(BF.Pattern
Match)

Private

Function

MatchMeetingFi

eld

Get the immediate next word
and see if it looks like a time
pattern. If so we've found a

time and so we want to add it




WO 01/67280 PCT/US01/06457

55

Procedure Type Called By Description
Name

to the record. We probably
should add more time
patterns. But people don't
seem to like to enter the time
in their titles these days
especially since we now have

tools like OutLook.

BindCompan | Private MatchMeetingFi | This function finds a

yTopicLoc Function | eld continuous capitalized string
(BF.Pattern and binds it to stMatch
Match) which 1s passed by reference

from MatchMeetingField. A
continuous capitalized string
1s a sequence of capitalized
words which are not
interrupted

by things like , . etc. There's
probably more stuff we can

add to the list of

Interruptions.
LocatePatter | Private MatchAPattern | This function tries to locate
nHead Function an element which is an
(BF.Pattern indicator. Note that this
Match) indicator SHOULD BE AT
THE HEAD of the pattern

otherwise it would have gone
to the function
Locatelndicator instead.
Therefore, we keep on
grabbing the next word until
either there's no word for us
to grab (quit) or if we find

one of the indicators we are




PCT/US01/06457

WO 01/67280
56
Procedure Type Called By Description
Name
looking for.
ContainlnArr | Private LocatePattern ' This function is really
ay Function | Head, simple. It loops through all
(BF.Pattern Locatelndicator | the elements in the array
Match) " to find a matching string.
LocateIndica | Private MatchAPattern This function tries to locate
tor Function an element which is an
(BF.Pattem indicator. Note that this
Match) indicator is NOT at the head
of the pattern otherwise it
would have gone to
LocatePatternHead instead.
Because of this, if our
pattern is to be satisfied, the
next word we grab HAS to
be the indicator or else we
would have failed. Thus we
only grab one word, test to
see if it is a valid indicator
and then return result.
InitializeGue | Private MatchAPattern | This function reinitializes
ssesRecord Sub our temporary test structure
(BF .Pattern because we have already
Match) transferred the info to the
permanent structure, we can
reinitialize it so they each
have one element
AddToMeeti | Private MatchAPattern This function is only called
ngRecord Sub when we know that the
(BF.Pattern information stored in
Match) tInCurrGuesses is valid
meaning that it represents
legitimate guesses of




WO 01/67280

57

PCT/US01/06457

Procedure
Name

Type

Called By

Description

meeting fields ready to be
stored in the permanent
record,tInMeetingRecord.
We check to make sure that
we do not store duplicates
and we also what to clean up
what we want to store so that
there's no cluttered crap such
as punctuations, etc. The
reason why we don't clean up
until now is to save time. We
don't waste resources calling
ParseAndCleanPhrase until
we know for sure that we are

going to add it permanently.

NoDuplicate
Entry
(BF.Pattern
Match)

Private

Function

AddToMeetingR

ecord

This function loops through
each element in the array to
make sure that the test string
aString is not the same as
any of the strings already
stored

in the array. Slightly
different from

ContainlnArray.

SearchAltaVi
sta

(BF.Search)

Public

Function

GoBackGroundF

inder

This function prepares a
query to be submitted to
AltaVista Search engine. It
submits it and then parses the
returning result in the
appropriate format
containing the title, URL and
body/summary of each story

retrieved. The number of




WO 01/67280 PCT/US01/06457

58

Procedure Type Called By Description
Name

stories retrieved is specified
by the constant

NUM_AV STORIES.
Important variables include
stURLAItaVista used to store
query to submit
stResultHTML used to store
html from page specified by
stURLAItaVista.

ConstructAlt | Private SearchAltaVista | This function constructs the

aVistaURL Function URL string for the alta vista
(BF.Search) search engine using the
advanced query search mode.
It includes the keywords to
be used, the language and
how we want to rank the
search. Depending on
whether we want to use the
results of our pattern
matching unit, we construct

our query differently.

ConstructSi | Private ConstructAltaVi | This function marches down
mpleKeyWor | Function | staURI, the list of keywords stored in
d ConstructNewsP | the stTitleKW or stBodyKW
(BF.Search) ageURL fields of the input meeting
record and links them up into
one string with each keyword
separated by a connector as
determined by the input
variable stinConnector.
Returns this newly

constructed string.

ConstructCo | Private ConstructAltaVi | This function constructs the




PCT/US01/06457

WO 01/67280
59
Procedure Type Called By Description
Name
mplexAVKe | Function | staURL keywords to be send to the
yWord AltaVista site. Unlike
(BF.Search) ConstructSimpleKeyWord
which simply takes all the
keywords from the title to
form the‘query, this function
will look at the results of BF
's pattern matching process
and see if we are able to
identify any specific
company names or topics for
constructing
the queries. Query will
include company and topic
identified and default to
simple query if we cannot
identify either company or
topic.
JoinWithCon | Private ConstructCompl | This function simply
nectors Function | exAVKey replaces the spaces between
(BF.Search) Word, the words within the string
ConstructCompl | with a connector which is
exNPKey specified by the input.
Word,
RefineWith
Rank
RefineWithD | Private ConstructAltaVi | This function constructs the
ate (NOT Function | staURL date portion of the alta vista
CALLED query and returns this portion
AT THE of the URL as a string. It
MOMENT) makes sure that alta vista
(BF.Search) searches for articles within

the past PAST NDAYS.




WO 01/67280

60

PCT/US01/06457

Procedure
Name

Type

Called By

Description

RefineWithR
ank
(BF.Search)

Private

Function

ConstructAltaVi
staURL

This function constructs the
string needed to passed to
AltaVista in order to rank an
advanced query search. If
we are constructing the
simple query we will take in
all the keywords from the
title. For the complex query,
we will take in words from
company and topic, much the
same way we formed the
query in
ConstructComplexAVKeyW
ord.

IdentifyBioc
k
(BF.Parse)

Public

Function

SearchAltaVista,
SearchNewsPage

This function extracts the
block within a string marked
by the beginning and the
ending tag given as inputs
starting at a certain
location(iStart). The block
retrieved does not include the
tags themselves. If the block
cannot be identified with the
specified delimiters, we
return unsuccessful through
the parameter
iReturnSuccess passed to use
by reference. The return type

1s the block retrieved.

IsOpenURL
Error
(BF.Error)

Public

Function

SearchAltaVista,
SearchNewsPage

This function determines
whether the error
encountered is that of a

timeout error. It restores the




WO 01/67280

61

PCT/US01/06457

Procedure
Name

Called By

Description

mouse to default arrow and
then returns true if it is a

time out or false otherwise.

SearchNews
Page
(BF.Search)

Public

Function

GoBackGroundF

inder

This function prepares a
query to be submitted to
NewsPage Search

engine. It submits it and then
parses the returning result in
the appropriate format
containing the title, URL and
body/summary of each story
retrieved. The number of
stories retrieved is specified
by the constant
UM_NP_STORIES

ConstructNe
wsPageURL
(BF.Search)

Private

Function

SearchNewsPage

This function constructs the
URL to send to the
NewsPage site. It uses the
information contained in the
input meeting record to
determine what keywords to
use. Also depending whether
we want simple or complex
query, we call different

functions to form strings.

ConstructCo
mplexNPKey
Word
(BF.Search)

Private

Function

ConstructNewsP

ageURL

This function constructs the
keywords to be send to the
NewsPage site.
UnlikeConstructKeyWordStr
ing which simply takes all
the keywords from the title
to form the query, this

function will look at the




WO 01/67280 PCT/US01/06457

62

Procedure Type Called By Description
Name

results of BF 's pattern
matching process and see if
we are able to identify any
specific company names or
topics for constructing

the queries.

ConstructOv | Private GoBackGroundF | This function takes in as
eraliResult Function | inder input an array of strings
(BF.Main) (stInStories) and a
MeetingRecord which stores
the information for the
current meeting. Each
element in the array stores
the stories retrieved from
each information source.
The function simply
constructs the appropriate
output to send to Munin
including a return message
type to let Munin know that
1t is the BF responding and
also the original user_id and
meeting title so Munin
knows which meeting BF is
talking about.

ConnectAnd | Public GoBackGroundF | This function allows

TransferTo Sub inder Background Finder to
Munin connect to Munin and
(BF.Main) eventually transport
information to Munin. We
will be using the UDP
protocol instead of the TCP

protocol so we have to set up




10

15

WO 01/67280 PCT/US01/06457

63

Procedure Type Called By Description
Name

the remote host and port
correctly. We use a global
string to store gResult
Overall because although it
1s unnecessary with UDP, it
is needed with TCP and if we

ever switch back don't want

to change code.

DisconnectFr | Public
omMuninAn | Sub
d

Quit
(BF.Main)

Figure 24 shows a flowchart of the actual code utilized to prepare and submit searches to the
Alta Vista and NewsPage search engines in accordance with an embodiment of the present
invention. Processing commences at function block 2401 where a command line is utilized to
update a calendar entry with specific calendar information. The message is next posted in
accordance with function block 2402 and a meeting record is created to store the current meeting
information in accordance with function block 2403. Then, in function biock 2404 the query is
submitted to the Alta Vista search engine and in function block 2405, the query is submitted to
the NewsPage search engine. When a message is returned from the search engine, it is stored in
aresults data structure as shown in function block 2406 and the information is processed and
stored in summary form in a file for use in preparation for the meeting as detailed in function

block 2407.

Figure 25 provides more detail on creating the query in accordance with an embodiment of the
present invention. Processing commences at function block 2505 where the meeting record is
parsed to obtain potential companies, people, topics, location and a time. Then, in function
block 2506, at least one topic is identified and in function block 2507, at least one company
name is identified and finally in function block 2508, a decision is made on what material to

transmit to the file for ultimate consumption by the user.



10

WO 01/67280 PCT/US01/06457

64

Figure 26 is a variation on the query theme presented in Figure 25. A meeting record is parsed
in function block 2600, a company is identified in function block 2620, a topic is identified in
function block 2630 and finally in function block 2640 the topic and or the company is utilized

in formulating the query.

While various embodiments have been described above, it should be understood that they have
been presented by way of example only, and not limitation. Thus, the breadth and scope of a
preferred embodiment should not be limited by any of the above described exemplary
embodiments, but should be defined only in accordance with the following claims and their

equivalents.



10

15

20

WO 01/67280 PCT/US01/06457

65

CLAIMS

What 1s claimed is:

(a)
(b)
(©)
(d)
(e)

A method for a knowledge model comprising the steps of:

accessing at least one source utilizing a network;

extracting information from the source utilizing the network;

converting the format of the extracted information to a common format;
generating an index for the information utilizing a knowledge model; and

storing the generated index in a database.

A method as recited in claim 1, wherein the knowledge model comprises a plurality of
inter-associated items, wherein the step of generating an index further comprises the steps
of: associating the extracted information with one or more of the items of the model, and

mapping the extracted information to the associated item.

A method as recited in claim 2, wherein the items of the knowledge model include at
least one of: a therapeutic area item, a target item, disease item, a scientist item, an
organization item, a patent item, a compound item, a literature item, a FDA approval

item, and a drug item.

A method as recited in claim 1, wherein the knowledge model provides an organizational

structure to the generated index.

A method as recited in claim 1, wherein the extracted information includes

pharmaceutical information.

A method as recited in claim 1, wherein the source comprises at least one of an internal

source, and an external source.

A method as recited in claim 1, further comprising the step of permitting a user to access

the database utilizing the network to retrieve the stored index.



10

15

20

25

WO 01/67280 PCT/US01/06457

10.

(2)
(b)
()
(d)

(e)

11.

12.

13.

14.

-66-
A method as recited in claim 1, further comprising the steps of receiving a query utilizing

the network, searching the index for information matching the query, and retrieving the

matching information utilizing the network.

A method as recited in claim 1, wherein the network is capable of communicating using

TCP/IP protocol.

A computer program embodied on a computer readable medium for a knowledge model,
comprising:

a code segment that accesses at least one source utilizing a network;

a code segment that extracts information from the source utilizing the network;

a code segment that converts the format of the extracted information to a common
format;

a code segment that generates an index for the information utilizing a knowledge model;
and

a code segment that stores the generated index in a database.

A computer program as recited in claim 10, wherein the knowledge model comprises a
plurality of inter-associated items, wherein generating an index further comprises a code
segment that associates the extracted information with one or more of the items of the

model, and a code segment that maps the extracted information to the associated item.

A computer program as recited in claim 11, wherein the items of the knowledge model
include at least one of: a therapeutic area item, a target item, disease item, a scientist
item, an organization item, a patent item, a compound item, a literature item, a FDA

approval item, and a drug item.

A computer program as recited in claim 10, wherein the knowledge model provides an

organizational structure to the generated index.

A computer program as recited in claim 10, wherein the extracted information includes

pharmaceutical information.



10

15

20

25

WO 01/67280 PCT/US01/06457

15.

16.

17.

18.

19.

(a)
(b)
(©)
(d)
(e)

20.

21.

(@)
(b)
(©)
(d)

067-
A computer program as recited in claim 10, wherein the source comprises at least one of

an internal source, and an external source.

A computer program as recited in claim 10, further comprising a code segment that

permits a user to access the database utilizing the network to retrieve the stored index.

A computer program as recited in claim 10, further comprising a code segment that
receives a query utilizing the network, a code segment that searches the index for
information matching the query, and a code segment that retrieves the matching

information utilizing the network.

A computer program as recited in claim 10, wherein the network is capable of

communicating using TCP/IP protocol.

A system for a knowledge model, comprising:

logic that accesses at least one source utilizing a network;

logic that extracts information from the source utilizing the network;

logic that converts the format of the extracted information to a common format;
logic that generates an index for the information utilizing a knowledge model; and

logic that stores the generated index in a database.

A system as recited in claim 19, wherein the knowledge model comprises a plurality of
inter-associated items, wherein generating an index further comprises logic that
associates the extracted information with one or more of the items of the model, and logic

that maps the extracted information to the associated item.

A method for monitoring information in a knowledgebase framework, comprising the
steps of:

receiving information relating to a target to be tracked from a user utilizing a network;
monitoring the network for changes to the target;

retrieving data relating to the monitored changes; and

transmitting the retrieved data to the user utilizing the network.



10

20

WO 01/67280 PCT/US01/06457

22.

23.

24.

25.

26.

27.

28.

29.

68-
A method as recited in claim 21, wherein the target comprises an item of index displayed

to the user utilizing the network.

A method as recited in claim 21, wherein the target comprises at least one of: a
publication, a person, a therapeutic area, a disease, a biological target, an organization, a

compound, a patent, and a drug.

A method as recited in claim 21, further comprising the step of storing the received

information in memory.

A method as recited in claim 21, further comprising the step of: receiving an indication
that the user has logged on to the network, and wherein the retrieved data is transmitted

to the user after receipt of the indication.

A method as recited in claim 21, wherein a pharmaceutical database is monitored for

changes relating to the target.

A method as recited in claim 21, further comprising the step of alerting the user that a

change to the target has been monitored utilizing a network.

A method as recited in claim 21, further comprising the steps of permitting the user to
input a search term utilizing the network, searching for items associated with the search
term, and displaying items associated with the search term to the user utilizing the

network.

A method as recited in claim 21, wherein the network comprises an intranet of an

organization and the Internet.



PCT/US01/06457

WO 01/67280

JE

- Y¥31dvay
431dvay
AV1dsia FOVALIINI
A \
8¢l 91 271
AN
d31dvay y3ldvay
NOILYOINNINGD oll Wvd || oY Ndd
[ 871 \ \ \

el
(SEL) MHOMLIN

14

142

911 0L}

9



PCT/US01/06457

WO 01/67280

¢ 'Old

§93InoSg [BUIdIXH =

$90INOS [BUIAU] = '

so)Is
Q3 1aulsyu) pajosjeg n
spodal joyuep n
ejep Ajsjeg n
juswabeuew Apnig "
uonesddy
Hoddng Xapu| psseq al1ouooey "
uois|oaq -_mno_\,_ mmom_\so:v_ aunjponssay =
—— (leuondo)., osueslg =
gi¢ |\A ﬁ i & 1oBNX]
{ IoAIBS A > £

Sl <—| j0)ea1)) Xopu|

LW S
s|enod \\ \» ﬁ §801N0S |eulis)xy
.- Vit da iy [T o vic @ON _m

) A pow H

S ™

Aiojejnboy W

feouy M

ad ®

Kenoosig ®

80¢

A%4

$82JN0G |eulB)U|

V4
00¢

275

¥0c



PCT/US01/06457

WO 01/67280

€ 'Old

oLe 80€ 90¢ v0€ c0€ 0Qe
co_umc:e{ \ v

spoday paseq spodal aseqgele( aseqeje aseqeje(

1ayen -uonduosgng  |eyuswpedsq [eaun jeoiuyo-aid

e

3

// xapu| paseq

-[8poj abpajmouy)

§32IN0S [eUIdIX =

$90INOS [BUINU] =

QPN.1|\\h‘me

Ll

uojpjeoljddy
poddng
uolsioa(g

00¢

Qlg ——+

R e e e e .

SRR B 3 N A S e
s € L

ety ¢t -




PCT/US01/06457

WO 01/67280

¥ "Old

pauonuapy
0¢

YIm pajerdossy Ylim pajeloossy

40 abieyo-uy

pauonuapy

ccy .\

40 1oumQ Jo ebueyo-uy

Sjusjed pea7
pajejay

[ENIE

80¢




WO 01/67280

500

\

PCT/US01/06457

502
OBTAINING INFORMATION FROM AT LEAST ONE SOURCE j
UTILIZING A NETWORK

y

ITEMS EACH ASSOCIATED WITH AT LEAST SOME OF THE
OBTAINED INFORMATION

(@]
(@)

GENERATING AN INDEX FOR THE OBTAINED INFORMATION, 504
WHEREIN THE GENERATED INDEX COMPRISES A PLURALITY OF

DISPLAYING THE INDEX TO A USER UTILIZING THE NETWORK

508
PERMITTING THE USER TO SELECT AN LEAST ONE OF THE ITEMS j
OF THE INDEX

4

510
DISPLAYING THE INFORMATION ASSOCIATED WITH THE
SELECTED ITEM TO THE USER UTILIZING THE NETWORK

FIG. 5

5/29



PCT/US01/06457

WO 01/67280

600

\

ACCESSING AT LEAST ONE SOURCE UTILIZING A NETWORK

K

y

EXTRACTING INFORMATION FROM THE SOURCE UTILIZING THE
NETWORK

K

A

CONVERTING THE FORMAT OF THE EXTRACTED INFORMATION
TO A COMMON FORMAT

K

A

GENERATING AN INDEX FOR THE INFORMATION UTILIZING A
KNOWLEDGE MODEL

K

STORING THE GENERATED INDEX IN A DATABASE

610

/

FIG. 6

([ 29



PCT/US01/06457

WO 01/67280

L Old

‘PaM@sas YBY |1y "9 Bunsuo) ussiapuy - BEGL () 1yBuAdog

‘JUMSSVJ-008-| lled sseajd 'piomssed inok jabio) nok

904

b0 ﬁaﬂga_ . plomsseqy

aulIp Buuy| : awepj 13s
Noml\\ _ A

HIAHIAO0DSICI

002 _

mwu.u.h.uamUUEhUCQ

auy

He-3or|UEe- - o]

7124



PCT/US01/06457

WO 01/67280

‘d17 Bug|nsuo] ussiapuy - 8661 (0) WbBuAdo]

DSMOIJ! up yaup
. 8.y Oljnads.ay .L gpur y x M-m: o
(e o)
B S
>> L
A saseasI(q HMH:UW«.SNN.&OHO%HMU : eaxy ornadeaay]

7|UC =5M UOREN|EAs J04
aNIVLIE S L

aUIIP3|Y %ucam\_mrcwkm?_zm_h “mmo_oumcom [/SaLeIpaL: %co_ohzm: ABojoajuaonses

)n*
%mo_EmE:mc&g . }mo_o,ucbm_ouo) Afiojo _DSmo_o E;m_ N h,mo_o:_..rn.oucm

_Déoum._amm,n:wgmco . ) bmméf m: m_&%mo_BmE_mD,
\.,mo_o:u%on_t&mdumo&,

-

|[[|J..|

ealy Jijnadetayy

asmoig ¥ yaieas | uonezjensowo) u:vEno_oavn EE SMa}] JU3IaYy
- - p : AL - S]1pI1INSIDUID
(nobo7) (dewisus) (31yoid W1 PWOA - HIHIAOCDSIOH 19243 4d Susy

A -GeoEPRe- «- ]

008



PCT/US01/06457

WO 01/67280

"d77 Buginsuog uassiapuy - ge6L (0) 1yBuAdog
ISMOIg PUD YDIDSS

Y = C ¥oInD

595easTq TemnosepssiboToTpae)

eaxy U,.S:m.um.uu:m.

A CEEN =R |
aNLZIE S 3.

wm:EE e poydoyyg .QEO-Q aAIBaG: Lm\_ua_m u_co__mcmo, uaby l_Em_m_no:ucEm_
m'o_n___wx_d~ wc:.am\_m\f Juaby m:wwao_um, > ssuueyn E _vom _w__mE_n_mJ
Juaby mc_mEm_umocmv, _ . mu_EEw,ctm_E,q,
umuogna_:ummm(wu_cﬁoc:_m}o S s . ) «\_oﬁmomm c_wcmao_mcqv
Buw_ﬁomm};,afe b ) k] =y umamm..c_mgoga,k au Ncm_ c_tm\,cou-c_mcm“o_ uy) 30%h
uﬁ_EHSEH@W S Liniales LIS diy-go

————t

_P_mawlﬁ_s o LIDRDURIU] (eIDIRQ0& 31N

._mc_c_j_w TR Toriititig

R Bmhw 1) :
awz—sn w:uhuow :o:uN__EEuEEou .EuEno_o:on EE SMa3} U222y
SID2I1INSDDLUID
(anobo1) (deuisus) (3iiyord wp3) PIOMEM - ¥3H3InoosIgY (RS

x g - it T EREeoEBIVEHE@ -

006

v06

9/ 24



PCT/US01/06457

WO 01/67280

"dT11 Buminsuog ussiapuy - 6881 (o) JyBuAden
SSMOIG PUD Y2IDSS

yaieag. Al BalY onnadesay] |

Y | b il 900}
<«
. 8001
/V S3SeaST(q TemnosesfiboTopae) : (s)eaxy aTnadexayy
Au.EnNEm a:.nuum:Ecu :aw:aao.nmﬁt €Y - aurep uo&ﬁ.un_
CO_._U_.__m: 3 A0y
VIE=SH L
_:nm_g_u_._m._._., v001L
10OH __EE.Q -
_:Am.@m} N ” ST | . .. . 200}

{RIs]] — . ¥ e
IoH _:Lr ) A

e ——

:oEmucm mc_tnScoo-c_mc&o_@:i o
T T T T ST SO

024 ‘\

Rasi(] ._n_sunm JSABojopae.

uc:ou_too_
uwiehuw:u._uom uonezieidiainwo) | juswdojanag E J1aziueB1p | smapjuasay

(anobo7) _QNEwg.W {311y0ag 1Pl ) (SUI0I[3 7y -

dIHINODSIO M $ip213n3>0ULIDYS

HE-GenPEe- «-

1



PCT/US01/06457

WO 01/67280

A E

"d1 Buninsuog uasiapuy - gagl (0) ybuidog
JSMOIg PUD Y2IDST

Hoa Sl L SPPREILE i b WAL SR LSRR B AT i " RS _,v
4 A4 ‘czsoc sprzode) ‘GT/0G AprTZode) ‘gZ/cz aprTzode) ‘CT/GZz 9przode) ‘uajode) ‘Tradejde) : (s)bnaq

¥Z63€es (s)juajeq
g Tradojde) : auel punoduro)

TINIVIE D - L
.02 ayj uo [Ldodes Jo 10aygs ida a0} padnpu-udoldens oneueauUnd || WsualoBuys
** 0303100 UENDE JO 19a4T - oudwl JuaLean judojde o "ueLiesSO] g \n_\:\m ewapaoiBuge
o uaLabeuEL 40 12845 a0l 4z Ty u\_,o.gﬁu_m\mﬂ_o“_gfc_ 0w
: LLED T L3N W -2 %%mmw__tnﬁ:mg e
SUso e . :
“hay uoneiugsS

14291
//m&n /mgm;u{v
g ..,_tm\/coux.__/.vcmno_mci Jove
C . __mv%_ciu . o JuEle
1Ll , . unoduiog] .
22m0:0 3 y218a5 [ Uonziierd 910D [ howsdoianan | 4312953 [ 192108010 | smoll 150w
00 (QnoBoy) {@ewsiis) (31yo4d wpa) (WOIBAN - HIMIAODSIOM

9011

\(]29

8011

0011



PCT/US01/06457

WO 01/67280

v0cl

c0cl

Fusisanb panse Aguantsy
FEOW INGA 0} SI3MEUR 1IN
D4 LI HA

SUCIOEIIIUL
m“” 2 qisz0d 104 3ME] Nt

1:0::_-_: e .y:m:imo_u__w Jo unnasass ayy Buiquyu
Aq pue "Jojoujsucaoses Juajod e "I| uisuaioifive
40 uoiielwo) ayy Bunuassaid Aq syinam [udoyde sy
‘Sjuatied HoepE Lealy 8UI0S U [BAMNS Ja $30UBYD
ay} asosduil os|e ued 3| “Ayjedoiydau J1sqeIp

Fue ainjie) peay amzaliued 'ainssaud poojg ybiy
Buipnisw "siapiosip (elasas 1eal) a) sEnIp J5Y10 Yl
HOIEUIQUIOD Ul 10 8udle pasn sI ) SioNgiqul atdzua
?:cm..:o 1 uisuaoibue pajjea sjuabe Bupsmn
anssaud poo)q jo sseja e o) shuojag Judoyde (el

Opl ZRIUEIEQNS pajoiiio

Sa A éBIqEIBAE JUBURY

[SI0NIUT (35T auIsiiug
RUTHEALD O -UIEUST O]
EREIEVET YRS TIR
[ud-yoi-giy

'sse(a hnuQ
uoleIsUNUolH

[1ei0] udoydey tewey J112118¢)
jedoyden xuOI._. w:_cz _::.:m 18 Y1)

: (8)juajeq
auey punodiuo)

i

Wi
. s

t
i3

=}

Tk

3

i

AJUD asn EDDUD_U./Q A0

TINIVZIE .1
uc,n_n_ J c_mcmun__mc{a
E\mzu eLlapaolfugs

_QE_ mLE_QE:_ IO
ey ‘paziuiopuel s

Y

_EcmE:mn 3 AMaU o
o_n_(_n_tma}_.*)

R

e §./0G m_u_Na%o

<« moosm.}, _“rNL\s

stMopL 3 jooye A A EwSE_{_”.@ : m_mmco_u:_nll wm:Bom__o_lx SHUM
put [ - jooye s Ay [ &

/05 au.woawu

jW3y uononponuUI~

—— 3 ud . en

2 & _....

Ly 2 /08T UUmxh_mcm\xSosvoﬁ.\Eoo x;mcm_n MMM/ n_:c_ _ wmmﬁtd. — CiGe m_B_hDQmU

soeq || FET4 %_No%o
,_1/ . &cmuoamo

12rAI0

i

n__mI m_oo _,

hm:o_n_xm 12uI31u] Jjosodp -

73 {9uro o~w>w -

wﬂu_:o}.m“_

uajode]) | xi1auely 1o _:no.amu m\

I8Malg R Yaieas | uonezyesiswwon uauwidojanag EE SMON JU3aay
dIHIAOCOSIOH

Zm_>

H__.u.w a3 _ |

$)D223N33DULIDY Y

QUDY

{nobBoq Hm_’m—:u:mv apijoag )

HE-QeoEB UL @- « - |

12/29



PCT/US01/06457

WO 01/67280

oLl

€1 "Old

'd¥1 Buynsue) uasiapuy - 6861 () JyBuAdog

42100

L¥ESX @ ouoyg am : uotyes0
g £IeuTIno}TU3H pue IJUITISOINIH quauryredaq
sSTesTInaowuLIeyq Juoy : SUOTIeTTTIIY

H UeH

700 @M JORETEA3 104
T INIVZIESE L.

" Jojdanay u_mk_..,,,m_,lw_m%.ﬂ 7 eydpgs

e = 3LUIY

<Suodad mu_ﬂ%mmm_ Jedle

22Mo.8 2 Y2 eas [LoREzilela 1auiwo] | uouidolanag | ud1easay | 122ieb0 | smot 1229
@ewons) Guyord wp3) (PUIORA - HIHIAODSICQM [tk LT

A& -QoE|PEE@: « -

900t

13/ 29



PCT/US01/06457

WO 01/67280

7LLL

071

93INOG WSIA

¥l 'Old

dT1 Bunnsuo ] uasiapuy - gEBI (2) WBNAdog
SSMOIg PUB YIIDBS

a] BAUY ohadeaay) |

NN
9Ll yOoXa agub1Issy
0T0Z’'¥Z any ajeq -dxg

-~

261 5ZHEG, Maied

'Q pleuby Lpdiss

-«

£bES1L VA

S8MOoIg B Y2ieas | uonezierdiaurno) | jusmidolanag E 13ziueBiQg | smoay Juasay

(anobo) @Eu@ ﬁu—:eua zmu

used)

PWORA - YFYIAOCDSIOM $1D223n>5ULIDYd e

14014

\mm.ﬂ_@I@_@ﬂ@%,i
ot

(29

oovi



PCT/US01/06457

WO 01/67280

205t ~|_

0061

Gl 'Old

wv ;, ; Tl r e SR L BE IR SN AT L D e 3. e d ;

‘aunm uﬁ ur unungre jo buc,s:w mﬁ vqm Kaupry ayy mo u:mmu md.c&ﬁ hwcaonucﬁ oﬁ SSS,.
amssaxd poojq Bunoage 91 ‘eunurajosd pue somreukpoway TepuawolSenw Sunoage £q saseasip feuas
Jo uorssaiBoid sy 123k 01 SIONQIUI (TOV) SWAZU3 SUIIBAUG wsuajordue JO Isn JY] PISOISIP ST a1aY],

im

ensqy

W—Ot&:—:— Ade L ELENN mOmGOmﬂv Jeusx Jo juaumeaay,

€661 ‘-7 Isndny
PC68ET’S

g
Judye g s paynin)

(i»1)

Ado) 1apig ue) buiddoysg

—I HSVYEVIV(J 39VYW] ANV ILXH ] TINJ .LNILY ,\

No-hh—o V~N—<ENQ§.—. VW sz.hdwn— m: A.,,.

i
v""m n

S R _v Lov:«.ma@v@zu_;aou
ig PUD Y2IP3%

¥31nD

[? O 2aubIssy
[ S ajeq ‘dxg
G : Joqumyiy juajzeqg

(120 250 UOHErE~a o |
nwoJesH.

uaey

T U

zm._> %m g

S8 B H22eas L uonezijelarawwo) | yusuidojanad | ysieasay | 1oziuebio | SMap usdad |
(anoboy) (dewmng) (31yoag up3 _.ch:.ywr N_N EN\/OUW_D ps |

S]DD13INI3DWLIDYG

=

aupy

IR e

[sf25



PCT/US01/06457

WO 01/67280

0291 9L '9Old

8191

"d11 Bugnsuoy ussiapuy - gegl (0) JyBuidos

_I}l W e~ a ure--p
8091 —
TFpowr je1 Jnagep
2 U 948TEYI JUOTUE sUBIquIatd juswiaseq repuswols uo dojded pue UBIESC] 3O 1032 YT, e
— vi9l
o MY

909} T, _
: 2191 05£881F ey

Tw::pw;u ..;/H h NMH.H
s}abie)

SHISCAUICIRIISP T PAJEIIOSSE 10U 51 S0Ztg[y e

T
6CR0.Er UAEg e

0191 0960C W dq »

b EACY By

suoijezjueBig

asmoig g yaeas | uoneziedisuiuoy wawidolanag EE SMa}| Juadoy

DSMOIg PUD YDID3S
32InD

N
Y
> |
1
Y091

Sws}) paioyuoy

°1) (dewsug) (31yoid 1p3) PMOPA - Y3YIA0DSIONM

S)D213N35DULIDYY

TEHS QO DO, - |

0091



WO 01/67280

1700

PCT/US01/06457

RECEIVING INFORMATION RELATING TO A TARGET TO BE
TRACKED FROM A USER UTILIZING A NETWORK

MONITORING THE NETWORK FOR CHANGES TO THE TARGET

RETRIEVING DATA RELATING TO THE MONITORED CHANGES

y

TRANSMITTING THE RETRIEVED DATA TO THE USER UTILIZING
THE NETWORK

FIG. 17

17]24

1702

1704

1706



PCT/US01/06457

WO 01/67280

Buuuelg ujeyn £ddng

souBusjUIRp JonpoIy
swwesBaid wan jsod
- ABajens uawidojanag wnpaig

swabeuepy Aradasy [emasjjaty)

cM_m.%%Mm ﬂuah_:m uojieuuluc) ueyy wewdojereq yoewdo)
IF] une) ung b’ ejyaig
wnpaiy puney $08 } 81823 (InJ p;g s pnpoig

1onpoi4

"d77 Buninsuo) uasiapuy - gE6L (9) JybuAdon

PNpoId «ITBWUGBAG 7 (pivassy

208 T\; ?3..5 ;

yaieasay

IEMOIg R Yaeas [ uonezieiaraunuoy awdojanag

(dewang) (3pyoag up3)

3SMOIg PUD YDID3S
¥2InD

8081

9081

t%/ 25

FIG. 18A

1921112610 | smaii wosoy

_ fouroayy - mmmm>oom_0v_




PCT/US01/06457

WO 01/67280

a8l 'oid

Jandwoy aél@ L L

wy .Nwooooma\nam\_o_?oom._ox\mczsmcou UssIopuy/saji4 weibold, /47 spy _ww_

d77 Buninsuo ) ussiapuy - gagy (o) buAdoy
| I — | = eary omne deioy | 95MOIg PUD yopag
_,Hl .xu.SG

usiand
epdwon

(924

juswdojanaqg

|.\A A8MO01g R Yd1eas | uonezijed jawswion awrdojanag easay { 1aziuebip | sma 3
c081 ]
E aaEu@ @ou& 1P1) [PWOd[aA) - a3 Nu_u\/ouw_o b |

R L P TR ir-1ol Nivanr e

SID21INSdDWIDYY




PCT/US01/06457

WO 01/67280

J81 'Old
" Wd mmm eﬁU@E_wjﬁ\vﬁL_ .. - ‘. o u._m.wl.lo.m,_..m@:;w;mo_::oo._.oa..)m _ v.o\}zouo_u.Z- _ _306_2 xon:_m :ﬁ S mw ! @ M __._..“..m
T . , B "d1 Buinsuo g ussiapuy - gaaL () 1yBusdoy
9SMOIg PUD YJIDSS

~_ R3ly onnadesay ) |
- e J

JEI-N)
1shuslog
uoneziuebin
uaey
amelay
jeaoiddy w4

0281 oseong

punodwo)

| sweupewse sy i | eoessepmaN asodwao) | © " Swai pevpayd aejag -
,,,,, 61802565 Aesse jo sinsay _ svauil | ASTONS U] _| _
o :o> xcmf _ mm\om\DPL RESIA EWIoN L _
iS33am oMy Ul anp ajaiue AT 66/61/01 _” UGSERy mm._‘om..o N _
s [ oea [ cowm |
21 —

Xog uj - |lepy

jOWIOI[aAA -

HIHINOODSI(] > (hedirdiacill]

SUDY

RS




PCT/US01/06457

WO 01/67280

asi "'oid
;n.zn_tou;zm_‘_il_,. S ST .

L Sy T S e luswdopas g 3 Yowesay ebed weung [

¢es8l

_ 00

moirs e e oot
sanuy Waag ._u.amm

hmumﬁ Sysvy 0.>~

epusje) Ay

saping awyy >E l
o ' § IRY T = S oy e v ot

v 18 qUIBSAON >avmh=:._.

s heriion ST WAL o A e S b

- .. Toree 3T T
uop) FEEIT mm&?u,ﬁ unn

'd77 Buninsuo] usnspuy - gEBL () WyBuAdon
ISMOIg PUR YIRS
2O

ASMoig R Yaieas Juoneziedowwon Juatudolaaag [ yaseasay saziueisg Eﬂ
A..._aEaa.wv

jowoaja -

lijoid wp3

s

?yomw..w; :

" 9RH- $00T  sopioaBy

2([249



PCT/US01/06457

WO 01/67280

WSIURYOW , Ysng,, pa1dy[i

4

aAmory |

qa
90In0g

paILy

nouoryduksy

EWWGN&U@E nn-:muu

Agpuaje)
0'c M
adeosioN 'sa I
I9SMO.I gq ooy
d g 28eg uonduosqng
< 0 o3eq |luonduosqng
o7 hdal
s 28eq
d aJeAL] wontuaq <
ardo],
JIAIIS goM
0061

310]§

11

Xapuj

32an0g

ALI(Q
SEVBEIN y

o_‘ A wgmum

19
pu
ne

D

asred
_ 10BI)X <

JUS8Y JuUaIu0))
A

BuLIay Ly

61 'Old

e
M3

g

sIop[o]

S$°S d3ueydxXy SN

olqng




WO 01/67280

PCT/US01/06457

Public Sub
Main
(Starts program)

2000

I

I

I 1

Private Sub

ProcessCommandLine
(parse the command line for meeting text)

2010

Private Function
CreateStopList
(Prepares global stop list)

2020

Public Sub Public Sub

CreatePatterns GoBackgroundFinder
(Prepares all the patterns for pattern match) {Wrapper Function)

2030 2040

Public Function

ParseMeetingText
7] (Extracts keywords from meeting record)

2050

Public Function
GoPatternMatch

(Initiates pattern matching)

2060

Public Function
SearchAltaVista
(Parse Results)

2070

Public Function

SearchNewsPage
(Query and Parse Results)

2075

Private Function
ConstructOveraliResult
(Prepares data)

2080

Public Sub

ConnectAnd TransferToMunin
] (Sends data to Munin)

2090

Built-In Function
Winsock.SendData
(Sends data through UDP)

2095

Public Sub

DisconnectFromMuninAndQuit
7| (Once data is sent, clean program and exil)

2097

FIG. 20

23( 29




PCT/US01/06457

WO 01/67280
Public Sub
Main
START
2100
Public Sub
GoBackgroundFinder
(Wrapper Fuzetion)
2110
Public Function
ParseMestingTet
(Estracts keywords)
120
I
Private Function Public Function Public Function Private Function
FormatDelimitation DetermineNumWords GetAWordFromString ParseAndCleanPhrase
(Makes sure that deimiters are placed corvectly) | | (Return number of words in string given separator) {(Getith field from input meeting text {Extracts 2 wand at a ime from (ile and body)
130 140 2150 2160
Private Function Private Function Private Function
FormatDelimitation FormatDelimitation FindMin
(Check delimters) (Check delimiters) | (Finds the nent chosest ward delimiter)
Y 2180 2162
Private Function
CleanWord
| (Strips out wanted tharfpuncuation)
2164
Private Function
EvaluateWord

FIG. 21
24/29

| (Checkstose i word is i the st i)

2166




457
WO 01/67280 PCT/US01/06
Public Sub
Main
2200
Public Sub
GoPatternMatch
ni
Public Sub
MatchPatterns
nw
Private Function
MatchAPattern
230
I
[ | ] | ]
Private Function Private Function Private Function Private Sub Private Sub
MatchMeetingField LocatePatternHead Locateindicator InitializeGuessesRecord AddToMeetingRecord
240 2250 2260 nn 1280
Private Function Private Function Private Function Private Function
1 BindNames ] GetNextWordAfterWhiteSpace [ | GetNextWordAfterWhiteSpace NoDuplicateEntry
241 252 2262 ns
Private Function Private Function
Private Function L] ContainlnArray U ContainlnArray
BindAFullName 254 226
GetNextWordAfterWhiteSpace 4
142
Private Function
M BindTime 2243
Private Function
GetNextWordAfterWhiteSpace
N4
Private Function
L BindCompanyTopicLoc
245
Private Function
GetNextWordAfter'WhiteSpace
146

FIG. 22
25/ 29



FIG. 23
2G[ 24

WO 01/67280 PCT/US01/06457
Public Sub
Main
2300
Public Sub
GoBackgroundFinder
{Wrapper Function)
2310
[
[ 1
Public Function Public Function
SearchAltaVista SearchNewsPage
2330 2320
{ 1
Private Function Public Function Public Function Private Function
ConstructAltaVistaURL IdentifyBlock IsOpenURLError L ConstructNewsPageURL
2340 2350 2360 2321
Private Function " Private Function
L1 ConstructSimpleKeyWord | ConstructSimpleKeyWord
2342 2322
Private Function Private Function
L ConstructComplexAVKeyWord L{ ConstructComplexNPKeyWord
2344 2324
Private Function Private Function
JoinWithConnectors JoinWithConnectors
2345 2326
Private Function Public Function
|| RefineWithRank L IdentifyBlock
2346 2327
Public Function
Private Function | | IsOpenURLError
JoinWithConnectors 2328
2348
Private Function
L] RefineWithDate
2349



PCT/US01/06457

WO 01/67280
2401 — _ COMMAND LINE o
"I user_id, meeting title, meeting body, list, location, time"
2402—] . ... MESSAGE S
"user_id, meeting title, meeting body, participant list, time"
MEETING RECORD TO STORE CURRENT MEETING INFORMATION
StUSERID, sTitleOrig, sTitleKW, sBodyKW, sLocation, sTime,
2403— sParticipants( ), sMegtingText: original message minus user id
sCompany, sPeople, sTopic, sWhen, sWhere from GoPatternMatch
2404 SUBMIT QUERY TO ALTA VISTA
2405——— SUBMIT QUERY TO NEWSPAGE I
2406 STORE MESSAGE IN gResultOverall
"msg_id, user_id, meeting title concatenated with stories”
2407 ——

PROCESS STORIES FROM ALTA VISTA AND NEWSPAGE l

FIG. 24

272/24




WO 01/67280 PCT/US01/06457

2505 A MEETING RECORD - POTENTIAL COMPANIES, PEOPLE, TOPICS,
LOCATION AND A TIME ARE IDENTIFIED

A

2506 — AT LEAST ONE TOPIC IS IDENTIFIED

2507 — AT LEAST ONE COMPANY NAME IS IDENTIFIED

y

2508 A DECISION IS MADE ON WHAT MATERIAL TO TRANSMIT

FIG. 25

2% 24



WO 01/67280

PCT/US01/06457

2600—

A MEETING RECORD - POTENTIAL COMPANIES, PEOPLE, TOPICS,
LOCATION AND A TIME ARE IDENTIFIED

y

2620—

AT LEAST ONE COMPANY NAME IS IDENTIFIED

2630—

AT LEAST ONE TOPIC IS IDENTIFIED

y

2640—

USE THE TOPIC AND OR THE COMPANY

FIGURE 26

2q/4




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

