«»UK Patent Application «.GB .2 348983 ., A

{43) Date of A Publication 18.10.2000

{21} Application No 9908229.9

(22) Date of Filing 09.04.1999

(71) Applicant(s)
Pixelfusion Limited
{Incorporated in the United Kingdom)
2440 The Quadrant, Aztec West, Almondsbury,
BRISTOL, BS32 4AQ, United Kingdom

{72) Inventor(s)
Trey Greer
John Rhodes
Phil Atkin
Ray McConnell
Paul Winser

(74) Agent and/or Address for Service
Haseitine Lake & Co
Imperial House, 15-19 Kingsway, LONDON,
WC2B 6UD, United Kingdom

{51) INT CL’
GO6F 15/80

(52} UK CL (Edition R}
G4A AFGL AMP

(56) Documents Cited
EP 0570952 A2
JP 070013956 A

EP 0463721 A2 EP 0277262 A1

US 5165023 A

Field of Search
UK CL (Edition Q) G4A AFGK AFGL AMP ASX
INT CL® GO6F 15/173 15/80
ONLINE: EPODOC JAPIO WPI

(58)

{54) Abstract Title
Parallel data processing system

(57) A data processing apparatus comprises a SIMD (single instruction multiple data) array (10) of processing
elements in which the processing elements are operably divided into a plurality of processing blocks. The
processing blocks process respective groups of data items. Each processing element in the array is operable to
transfer data items directly with at least one neighbouring processing element. Each processing block includes
a processing element which is operable to transfer data items directly with a processing element in another
processing block. A register file may be used in the transfer. The processing elements within a block, and the
biock themselves, may be connected in series or two dimensional arrays.

P
— e — aae ——— - —— o
| | GRAPHICS |
2— HosST I SYSTEM |
SYSTEM T [
INTERFACE I |
—_———— 2 |
- ____ _,' EPU |8 |
1 |
: 1(}) 4,6 l
A 4
I [ProcESSING | "))
| core 171 Loca : o
I 5] '91 MEMORY
| ! : N
| VIDEO
I OUTPUT |—14 Lo N
12
I |
b e e e e |
o)
00
W

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

1717

>
_________ v
] | GRAPHICS
2— HoST | SYSTEM
SYSTEM _ fe—
INTERFACE |
o J | A 4
L e 3 EPU |—8
| 10 4,6
I) v
l PROCESSING R
| CORE 1 LOCAL
4,6
| 5—) »© 1 MEMORY
I y
| VIDEO]
| OUTPUT F—14
| 12

2117

4 / I
g v
I
FIG. 2(a) '
|
2~ DIRECT HOST ACCESS |
(DHA) |
Agggg' AGP TARGET | PCI TARGET |
LOGIC PORT PORT CONFIG I
AGP MASTER | PCIMASTER | SPACE .
INTERFACE PORT |
PN VA .
I I
| M |
L il [V s =
< 2 s
= = :
i i |
o
< 2 MEM TO MEM |
= = COPY UNIT I
61~_| SECONDARY S
ARBITERS —I 2 9 !
l % I
y | 3 p»: I

DISPLAY FIFO
FBIx2

VIDEO DATA
FBI

K > VIDEO VIDEO

VIDEO ouTpPUT | PATAOUTPUT | DATA INPUT

VTG UNIT UNIT

/ N\

STREAM®

CURSOR

STREAM
OVERLAY 1

DESKTOP
STREAM
STREAM

»

~N
>
3
14
~
O
&

!

I

I

I

I

I

I FixeCseceet
| FORMAT
I

|

I

I

|

I

I

I

LUT RAM

(.

& VGA

TIMING

J/
VIDEO DAC PIXEL DATA)

DISPLAY

DISPLAY UNIT «— CLOCK PLL

3717

| -]
L)]
| [Fizioncore ~ T T T T T S os=s - | L9 '
' MICROCODE |_105 I
a 106 STORE | 10!
) ' , .
1y A I
I |(-'r ARRAY /_ I
Cl CONTROLLER THREAD :
! I 8 x FUZION BLOCKS e MANAGER |
| CONTROLLER Ay
O
' Z\ xl
a BINNING 1089 o HEL)
| UNIT w 115 -
1 S| |
| 23 =
| | ¥ IS |
: 4 O [0
T e — =D 12NN\ e o e e e e] I-:ED—_J Tl
, 1 — l
o
| i = —
I BINNER 103.] THREAD l
. FBI MANAGER .
FBI |
|

SECONDARY | 61
,— ARBITERS
T 62 /
SIP C) |

FIG. 2(b) T

4717

+ TooAmEMGRY X 5>~
SYSTEM

FIG. 2(c)

EPU
I e PARALLEL 84
L‘_F) HOST INTERFACE 81 CORT -
' TIMER COUNTERS | _ g5
[ARCCORE | AuxBus x 4 —
| : ExTENSIONS | INTERFACE L 060 PORT
' 4 1
! | ICg;he DCache 83 I 86 EXTERNAL
1= Yy | BOUNDARY
o MEMORY b -8 SCAN
| CONTROLLER |~ < |
' < N\ 89 |, TEST
| L— <of ~ g ———- Mopes + TEST PORT
[] < g x
| a2 5
: wS|[sTaTic < CLOCKS, _ | SYSTEM
I S2|| MEMORY | |3 RESET SERVICES
' W I INTERFACE | |3 AUX BUS
I o2 32 BIT DATA + U
. S ____\/ REGISTER ADDRESS
(BT [e s A R)
l 17
| 12 5—=] |—— -——
' SI0 BLOCK I
|
SI0 BLOCK I
|
RI I
I
PRIMARY I
ARBITERS '
RI
I
I
| !
. R |
I I
| I
. RI |
I I
i |

5717

FROM EPU 8
102" tHreAD
MANAGER
A 4 \ 4
104 aARrAY CHANNEL |>~108
CONTROLLER CONTROLLER
1l
106 PROCESSING BLOCK
MEE FEEDBACK
MEE
\ ~ 1068
1061 1062 FBB
2. ! ____ '
1061a_H PROCESSOR | |
UNIT | |
I v | 11064
1061b _} PE
REGISTER 1[LS |
s e 0 FlLE L) l L]
BLOCK
== NS
| |
1061¢c | | 1067
l |
| |
PE ' |
MEMORY I |
UNIT | I
l l
| | | BINNING
| | UNIT
| | (
| | 1069
T —
TRANSFER
ENGINE

FIG. 3

6/17

1

SY3TIOHULNOD

|
SYITIOHLNOD %

TANNVHO aNVY 13NNVYHD mwm”_%mh%m
YITIOYINOD AVHYEY ANV H3TI0H¥INOD HITIOHNLNOD AVHNY
NOYd STVYNOIS AVHYEY WO¥4 OL SNOILLONHLSNI
IHOHJYW3S TOYLINOD MO4 ~zgol
_ _ Y F A F 3 A r F 3 A
— T SNOILONYLSNI SNOILONYLSNI
L SNLVLS AYOHJVYNIS
=1y mmov\ﬁ ! 4_, wod| 18 caledvalca)oa| /g
%0014 Y3ITIOHLINOD |, <
SNLVLS IYOHJYWIS |« O
¥OSS3IN0Yd : mwwmm__w% =
QvaNHL % N
OMO_‘ Nd3 wNO—. \ A A A A A A A A
Wo¥4d sTvnois YEOL 20l
L AN IYOHJVYW3S
9201 Nd3 OL FOV4YILNI Qv3yHL ¥3ad4 ¢<0b
SNLVLS % TOYLNOD TOHLNOD MO14 via
¥37NA3HOS G3TI0OYLNODNd3
/ wid3IOVNYIN AY3IHHL NOYH SAVIUHL
v
1
520} / 1
c0Lb
21901 4/1
4

v Ol

ezolL -] LINN HOL134

7117

INSTRUCTIONS
FROM THREAD

MANAGER

1042
\

1041
Is

INSTRUCTION
TABLE

INSTRUCTION
LAUNCHER

CYCLE-STEALING
I/FTO —»

105 -,

r——h——-——

| |

I PE I
MICROCODE

| STORE I

|
L___,__
PE

CONTROL

LEE
CONTROL

|

OUTPUTS

_ y
t READ ——T

& WRITE
OFFSETS,
BASE
REGISTER
SELECTS

Housekeeping

PE
INSTRUCTIONS

|

PE
INSTRUCTION
SEQUENCER

1044
N

UCODE
ADDRESS

RF READ & WRITE
ADDRESSES

v

OUTPUT

A

y

CHANNELS

LOAD / STORE
INSTRUCTIONS

!

LOAD/ STORE
CONTROLLER

1045
r

]
RF LOAD/ l
STORE BLOCK PE
ADDRESS |/0 BUS MEMORY
& CONTROL CONTROL
CONTROL l l

+
OUTPUTS

SCORE

UNIT

BOARD

PE
IS
LOCKS

L/s
CONT
LOCKS

1046—j L

FIG. 5

ReadBinner
'H

f1087

StorePageDone

8/17

BLOCK1/0 CHANNEL
BUS CONTROLLER
I J BUSY I
BLOCK IO OUT OF MEM INSTRUCTION |-~ 1101
BUFFER [FLAGS END OF REGION DECODE
T !/ J 1105
1104 1102 % , (
J STATE) [“Epu ‘_c’ogijrgm
REGISTERS INTERFACE
1108 v A 4
e Y STEPPER | X STEPPER l
~ 1103 !
1107 RY RX 1109
CHUNK | o
y REGION NUMBER GENERATOR
PE DATA UNIT ¢
P,BID, F L
\ 1106
1116
| BLOCK :‘1”7
COUNTER
¥
> BIN LIST ;/\1110 Yy v | 4 Jr y 4
SEL 10 4 A
ELECTION DATA LOGIC: ADDRESS |-—~1113
INCR, F-MERGE OMPUTE
| WORD TYPE CR, com
DETECT [T~ 1111 (
112 I
DATA CACHE TAG | STALL
1114

s ! 1

TO FUZION BUS INTERFACE

FIG. 7

9/17

ALL ENABLES OFF FROMA/C
104
| n
MEE
EXPRESSION EVALUATOR 1068
11/
X
' : ! 2
1061a 1 I 1 W
ow
4 4 4 -85
PROCESSOR i
UNIT
£
256 PES
r v ¥ y Jv Y AR
PE
REGISTER
q FILE
1061b VAN £ AN
1 H N] [WMEE FEEDBACKBUS
TRANSFER 1064
ENGINE 1067
— - | Y
] [— N BLOCK 170 BUS n
II £
AV AV4 BINNING
SENSE AMPS UNIT
I
PE MEMORY
1061c 2 KBYTES 1/0 170
DRAM I/F I/F
A
ivr AU 4
PE P PE

FIG. 8

START

A 4

HOST PREPARES
VERTEX DATA

Y

VERTEX DATATO
GRAPHICS SYSTEM

10/17

A 4

GEOMETRY
PROCESSING

y

DATA TRANSFER
BETWEEN
NEIGHBOURS

'

DATA OUTPUT TO
MEMORY + SORTED
(BINITIRED)

'

DATA READ TO PES

v

PE / MEE DATA
TRANSFER

L 4

PE /LEE DATA
PROCESSING

FIG. 9

PE = VERTEX

PE = PRIMITIVE

REGION
PE = PRIMITIVE

11717

p— e amee e e — —— ———

lllllllllllllllllllllllll — R e - — - T - - SEST v e e ommm e mmn e m— e pe—
XN <] v I
9201’ 0934 0L | QwM,__Z_ I
Y |
L0ES -
p————— -1 __ d HONVYE HONVYNE _
| coes | | \ _
_ _ | Fommﬂ D HONVYE @ _
BINBIMRIE s |
— — [o4 | «—] O o
> A X ™ X I
| 2 28| 82 «+ 35 Ll > I
GG (B &S AT } _
o °l 2| "3 N 502
“ _ “ | ode | HES “
v0ES €0Eg | o=
aNe
_ b s | _ 2025 &<k _
e —— =T i i |
_ F-ozs
¥31N03Hos oL oy [LE e e ————— ~— -
OV1d Q13N +—{u <E m Y —V |
SYITI0UINOD +—— B le{ S S |
oLNolOoNMISNT = | JEEY _
°f |Bea e
F~o015
| S¥3TI0¥INOD [B, AINYYW |
NON4 5 } SY3LSIO |
—u / AQva av3YHL 1V
SOVId ASng | = oL
i NI I1EVNI 0010 “
¥3T081NOD _| > OvV.LIVH —
3¥OHdwvwas |3 _ WO¥) NN |
Wodd .04¥3z, L2 r

12/17

. ovs | <
LJ
e C)]] A E e
N | Oz = {sy3Lso3y 1ns3Yy Y
v
—_——— e e 7 e 103138
| . _ Wi S O34 1INS3Y
. =
FER .
|€0 g ov | LA NIV 31A8
= m = dO Q3¥d] A : AN : v
128 &] dO 3148
18> _ XN 3LIM g
[0} —_—
gz v U
<~ pde NV a3¥d Md 2 |Pyd e | 103713s
| 4 ‘ W 4 W - _ | 31I8M 2ovs
“ f ; <@ ——0L—+— boo3u e | pvoane | Paoan s |
] 4 4
| Jose o) e q M pJ e “ 0 e q
nje ne
“ $31v0la3yd i ! _ SHILSIOIY VHINIO
_ Smm /. Ly /% _ \ey Vv Nov
| ¥aav 003¥d - ¥aav 'va3yd 'aa3yd y ¥aav 0934 ¥AAY ¥O3Y ¥AAQY 893y
| /s _ 3 T T T T T T T T -

N
©
(]

[
w
o
}J

E
Q
@]
-
I
O
Z
<
o
o
LO 16 BITS
HI 16 BITS

|
L]
I
'
I
L]
I
L]
I
!
L]
|
v
I
|
L}
I
r
I
L
I
L)
I
L]
I
L]
!
e
I
L]
I
'
I
[
I
1
L]

r

HONvy8

READLIN

13717

LEE
RESULT
1061a—} PROCESSOR -UNIT 1_I
y
SHIFTER 200
8
Y v YvYy Jv \ A J Al Jr
b R 202] P S 204 v 206||p P 208
8 8 : 8
Yy YVYY
A MUX B MUX
210 212
l— 8 8 8
2
» STATUS/
ALU 214 ENABLE
8 REGISTER ‘-,
16 16
E N ~
3‘ 16 16 P
YYYY
WRITE READ
16
PE REGISTER FILE 1061b
16 WORDS ’”
BY 16 BITS

FIG. 11

LOAD/STORE | 216

¢

LOAD/STORE PATH TO PE
MEMORY VIA PE PAGE REGISTER

1417117

PROCESSING
ELEMENT
1061a
LV
PROCESSOR
UNIT
4
y
1061b
o g
PE REGISTER FILE
STORE LOAD
PORT PORT
BYTE BYTE
ROTATE | | ROTATE
1068
LEE FEEDBACK
Z INTERFACE ne
1064 | ¥ o
I =4
| LEE FEEDBACK DATA OU'> D35
=
— < 1067b
= Q[TBLOCKI7 O ADDRESS TID
s v 1067b | 2
> > <
> o[BLOCKT/ODATATID X
O Q 1067¢ o ¢
i w a?
= =|_ BLOCKT/ODATAN o=
1067d z
a
C L CKI/ODATAOUT>
L L’
BLOCK1/0
AV4 INTERFACE
SENSE AMPS
MEMORY UNIT DRAM
16 BYTES BY FIG. 12
128 WORDS
50 MHz —T\
1061c

1079—2"\ [|
4 P

||

[

PE MEMORY READ DATA

R

_—

15/

L 1078

17

BLOCK |/ O INTERFACE (PER PE)

1075,

1067a

\ ADDRESS TRANSACTION ID

14

\

TID REGISTER

1072

COMPARE

1067b

DATA TRANSACTION ID

BYTEMASK (WIRE OR)

BYTE MASK

REGISTER

F\,1074

73

BLOCK I/ O DATAOUT

PE MEMORY WRITE DATA

N\

4 WORDS x
4 BYTES

LOAD ou

BLOCKI/0
REGISTER
FILE

STORE I

T
ADDRESS
COMPARE
KZ1 7
N—

L1073

1067d

BLOCK /0O DATAIN

32

RS 1071

32 32

FIG. 13

TOYULNOD O/ I 2079 13NV

16717

212 230
\ r
BMUX VREG PREG TREE
[7:0] [7:0] [7:0]
224 218 220
/ \ SHIFT \ 4
SREG [1:0] }— >
[1:0] BOOTH |TRANSPORT| ghirTs
RECODE >
TABLE COMPLEMENT
BOOTH REG }—» INVERT R
\ i '
226 | BOOTH DATA
[9:0]
_____ l \ 4 A 4
INSTRUCTION }— ————— —_—— MUX
£52 r— 22/2 .
BOOTH CARRY IN BMUX([7:0]
\
225 228

FIG.

14

17717

234
(8) ,244
ALU AMUX [9:0] BMUX [9:0] /
BOOTH CARRYIN
—| CARRYREG
236 238 246
A\ 4 JV v \ 4 v v
_____ | CARRY CARRY
INSTRUCTION == propaGATE GENERATE [~"] CARRY SELECT
B ~N
242
CARRY PROP CARRY GEN
[9:0] (9:0]
CARRY CHAIN |}—240
248
ARR\YO - CARRY IN [0]
c U CARRY IN [8]
CARRY IN
250~ 9

ALU RESULT [9:0] |.—252

FIG. 15 214

10

15

20

25

30

35

2348983

~1-

PARALLEL DATA PROCESSING SYSTEMS

The present invention relates to parallel data
processing systems which make use of a large number of

processing elements to process data.
BACKGROUND OF THE INVENTION

Increasingly, data processing systems are required to
process large amounts of data. 1In addition, users of
such systems are demanding that the speed of data
processing is increased. One particular example of the
need for high speed processing of massive amounts of
data is in the computer graphics field. In computer
graphics, large amounts of data are produced that
relate to, for example, geometry, texture, and colour
of objects and shapes to be displayed on a screen.
Users of computer graphics are increasingly demanding
more lifelike and faster graphical displays which
increases the amount of data to be processed and
increases the speed at which the data must be

processed.

A previously proposed processing architecture for
processing large amounts of data in a computer system
uses a Single Instruction Multiple Data (SIMD) array of
processing elements. In such an array all of the
processing elements receive the same instruction
stream, but operate on different respective data items.
Such an architecture can thereby process data in
parallel, but without the need to produce parallel
instrucfion streams. This can be an efficient and
relatively simple way of obtaining good performance

from a parallel processing machine.

10

15

20

25

30

35

-2~

In a particular example of such a SIMD architecture,
the PixelFlow system developed by the University of
North Carolina, processing elements are able to
transfer data with adjacent left and right neighbouring
elements. The transfer is made via the arithmetic
logic units in the processing elements concerned, and
therefore such data transfers can take valuable
processing time, and thereby reduce the overall

efficiency of the processing system.

It is therefore desirable to produce a system which can

overcome or alleviate this problem.

SUMMARY OF THE INVENTION

According to one aspect of the present inventiomn, there
is provided a data processing apparatus comprising a
SIMD (single instruction multiple data) array of
processing elements in which the processing elements
are operably divided into a plurality of processing
blocks, the processing blocks being operable to process
respective groups of data items, wherein each
processing element in the array is operable to transfer
data items directly with at least one neighbouring
processing element, and wherein each processing block
includes a processing element which is operable to
transfer data items directly with a processing element

in another processing block.

Various further aspects of the present invention are

exemplified by the attached claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram illustrating a graphics

10

15

20

25

30

35

data processing system;

Figure 2 is a more detailed block diagram illustrating
the graphics data processing system of Figure 1;
Figure 3 is a block diagram of a processing core of the
system of Figure 2;

Figure 4 is a block diagram of a thread manager of the
system of Figure 3;

Figure 5 is a block diagram of a array controller of
the system of Figure 3;

Figure 6 is a block diagram of an instruction issue
state machine of the channel controller of Figure 3;
Figure 7 is a block diagram of a binning unit of the
system of Figure 3;

Figure 8 is a block diagram of a processing block of
the system of Figure 3;

Figure 9 is a flowchart illustrating data processing
using the system of Figures 1 to 8;

Figure 10 is a more detailed block diagram of a thread
processor of the thread manager of Figure 4;

Figure 11 is a block diagram of a précessor unit of the
processing block of Figure 8;

Figure 12 is a block diagram illustrating a processing
element interface;

Figure 13 is a block diagram illustrating a block I/0O
interface;

FigUre 14 is a block diagram of part of the processor
unit of Figure 11; and

Figure 15 is a block diagram of another part of the
processor unit of Figure 11.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The data processing system described below is a
graphics data processing system for producing graphics

images for display on a screen. However, this

10

15

20

25

30

35

~4-

embodiment is purely exemplary, and it will be readily
apparent that the techniques and architecture described
here for processing graphical data are equally
applicable to other data types, such as video data.

The system is of course applicable to other signal

and/or data processing techniques and systems.

An overview of the system will be given, followed by
brief descriptions of the various functional units of
the system. A graphics processing method will then be
described by way of example, followed by detailed

description of the functional units.

QVERVIEW

Figure 1 is a system level block diagram illustrating a
graphics data processing system 3. The system 3
interfaces with a host system (not shown), such as a
personal computer or workstation, via an interface 2.
Such a system can be provided with an embedded
processor unit (EPU) for control purposes. For
example, the specific graphics system 3 includes an
embedded processing unit (EPU) 8 for controlling the
overall function of the graphics processor and for
interfacing with the host system. The system includes
a processing core 10 which processes the graphical data
for output to the display screen via a video output
interface 14. Local memory 12 is provided for the

graphics system 3.

Such a data processing can be connected for operation
to a host system O could provide a stand alone
proéessing system, without the need for a specific host
system. Examples of such application include a "set
top box" for receiving and decoding digital television

SWAZZLE

HL71034/000

and internet signals.

Figure 2 illustrates the graphics processing system in
more detail. In one particular example, the graphics

5 system connects to the host system via an advanced
graphics port (AGP) or PCI interface 2. The PCI
interface and AGP 2 are well known.

The host system can be any type of computer system,
10 for example, a PC 99 specification personal computer or

a workstation.

The AGP 2 provides a high bandwidth path from the
graphics system to host system memory. This allows

15 large texture databases to be held in the host system
memory, which is generally larger than local memory
associated with the graphics system. The AGP also
provides a mechanism for mapping memory between a
linear address space on the graphics system and a

20 number of potentially scattered memory blocks in the
host system memory. This mechanism is performed by a
graphics address re-mapping table (GART) as is well

known.

25 The graphics system described below is preferably
implemented as a single integrated circuit which -
provides all of the functions shown in Figure 1.
However, it will be readily apparent that the system
may be provided as separate circuit card carrying

30 several different components, or as a separate chipset
provided on the motherboard of the host, or integrated
with the host central processing unit (CPU), or in any
suitable combination of these and other
implementations.

35

HL71034/000 SWAZZLE

10

15

20

25

30

35

-6-

The graphics system includes several functional units
which are connected to one another for the transfer of
data by way of a dedicated bus system. The bus system
preferably includes a primary bus 4 and a secondary bus
6. The primary bus is used for connection of latency
intolerant devices, and the secondary bus is used for
connection of latency tolerant devices. The bus
architecture is preferably as described in detail in
the Applicant's co-pending UK patent applications,
particularly GB 9820430.8. It will be readily
appreciated that any number of primary and secondary
buses can be provided in the bus architecture in the

system. The specific system shown in Figure 2 includes

two secondary buses.

Referring mainly to Figure 2, access to the primary bus
4 is controlled by a primary arbiter 41, and access to
the secondary buses 6 by a pair of secondary arbiters
61. pPreferably, all data transfers are in packets of
32 bytes each. The secondary buses 6 are connected
with the primary bus 4 by way of respective interface

units (SIP) 62.

An auxiliary control bus 7 is provided in order to
enable control signals to be communicated to the

~warioug units in the system.

The AGP/PCI interface is connected to the graphics
system by way of the secondary buses 6. This interface
can be connected to any selection of the secondary
buses, in the example shown, to both secondary buses 6.
The graphlcs systems also includes an embedded
proce551ng unit (EPU) 8 which is used to control
operation of the graphics system and to communicate

with the host system. The host system has direct

SWAZZLE

HL71034/000

10

15

20

25

30

35

-7

access to the EPU 8 by way of a direct host access
interface 9 in the AGP/PCI 2. The EPU is connected to
the primary bus 4 by way of a bus interface unit (EPU
FBI) 90.

Also connected to the primary bus is a local memory
system 12. The local memory system 12 includes a
number, in this example four, of memory interface units
121 which are used to communicate with the local memory
itself. The local memory is used to store various
information for use by the graphics system.

The system also includes a video interface unit 14
which comprises the hardware needed to interface the
graphics system to the display screen (not shown), and
other devices for exchange of data which may include
video data. The video interface unit is connected to

the secondary buses 6, via bus interface units (FBI).

The graphics processing capability of the system is
provided by a processing core 10. The core 10 is
connected to the secondary buses 6 for the transfer of
data, and to the primary bus 4 for the transfer of
instructions. As will be explained in more detail
below, the secondary bus connections are made by a core
bus interface (Core FBI) 107, and a binner bus
interface (Binner FBI) 111, and the primary bus
connection is made by a thread manager bus interface
(Thread Manager FBI) 103.

As will be explained in greater detail below, the
processing core 10 includes a number of control units:
thread manager 102, array controller 104, channel
controller 108, a binning unit 1069 per block and a
microcode store 105. These control units control the

HL71034/000 SWAZZLE

10

15

20

25

30

35

HL71034/000

-8-

operation of a number of processing blocks 106 which

perform the graphics processing itself.

In the example shown in Figure 2, the processing core
10 is provided with eight processing blocks 106. It
will be readily appreciated that any number of
processing blocks can be provided in a graphics system

using this architecture.

PROCESSING CORE

Figure 3 shows the processing core in more detail. The
thread manager 102 is connected to receive control
signals from the EPU 8. The control signals inform the
thread manager as to when instructions are to be
fetched and where the instructions are to be found.

The thread manager 102 is connected to provide these
instructions to the array controller 104 and to the
channel controller 108. The array and channel
controllers 104 and 108 are connected to transfer
control signals to the processing blocks 106 dependent

upon the received instructions.

Each processing block 106 comprises an array 1061 of
processor elements (PEs) and a mathematical expression
evaluator (MEE) 1062. As will be described in-more
detail below, a path 1064 for MEE coefficient feedback
is provided from the PE memory, as is an input/output
channel 1067. Each processing block includes a binning
unit 1069 unit 1068 and a transfer engine 1069 for
controlling data transfers to and from the input/output

channel under instruction from the channel controller

108.

The array 1061 of processor elements provides a single

SWAZZLE

-9-

instruction multiple data (SIMD) processing structure.
Each PE in the array 1061 is supplied with the same
instruction, which is used to process data specific to

the PE concerned.

5
Each processing element (PE) 1061 includes a processor
unit 1061a for carrying out the instructions received
from the array controller, a PE memory unit 106lc for
storing data for use by the processor unit 106la, and a
10 PE register file 1061b through which data is

transferred between the processor unit 106la and the PE

memory unit 1061lc. The PE register file 1061b is also

used by the processor unit 106la for temporarily

storing data that is being processed by the processor
15 unit 1061a.

The provision of a large number of processor elements
can result in a large die size for the manufacture of
the device in a silicon device. Accordingly, it is

20 desirable to reduce the effect of a defective area on
the device. Therefore, the system is preferably
provided with redundant PEs, so that if one die area is

faulty, another can be used in its place.

25 In particular, for a group of processing elements used
for processing data, additional redundant processing
elements can be manufactured. 1In one particular
example, the processing elements are provided in
"panels" of 32 PEs. For each panel a redundant PE is

30 provided, so that a defect in one of the PEs of the
panel can be overcome by using the redundant PE for
processing of data. This will be described in more

detail below.

35 THREAD MANAGER

HL71034/000 SWAZZLE

-10-

The array of processing elements is controlled to carry
out a series of instructions in an instruction stream.
Such instruction streams for the processing blocks 106
are known as "threads". Each thread works co-

5 operatively with other threads to perform a task or
tasks. The term "multithreading" refers to the use of
several threads to perform a single task, whereas the
term "multitasking" refers to the use of several
threads to perform multiple tasks simultaneously. It

10 is the thread manager 102 which manages these

instruction streams or threads.

There are several reasons for providing multiple
threads in such a data processing architecture. The
15 processing element array can be kept active, by
processing another thread when the current active
thread is halted. The threads can be assigned to any
task as required. For example, by assigning a
plurality of threads for handling data I/O operations
20 for transferring data to and from memory, these
operations can be performed more efficiently, by
overlapping I/O operations with processing operations.
The latency of the memory I/0 operations can
effectively be masked from the system by the use of

25 different threads.

In addition, the system can have a faster response time
to external events. Assigning particular threads to
wait on different external events, sO that when an

30 event happens, it can be handled immediately.

The thread manager 102 is shown in more detail in
Figﬁre 4, and comprises a cache memory unit 1024 for
storing instructions fetched for each thread. The

35 cache unit 1024 could be replaced by a series of first-

HL71034/000 SWAZZLE

10

15

20

25

30

35

-11-

in-first-out (FIFO) buffers, one per thread. The
thread manager also includes an instruction fetch unit
1023, a thread scheduler 1025, thread processors 1026,
a semaphore controller 1028 and a status block 1030.

Instructions for a thread are fetched from local memory
or the EPU 8 by the fetch unit 1023, and supplied to

the cache memory 1024 via connecting logic.

The threads are assigned priorities relative to one
another. Of course, although the example described
here has eight threads, any number of threads can be
controlled in this manner. At any particular moment in
time, each thread may be assigned to any one of a
number of tasks. For example, thread zero may be
assigned for general system control, thread 1 assigned
to execute 2D (two dimensional) activities, and threads
2 to 7 assigned to executing 3D activities (such as

calculating vertices, primitives or rastering).

In the example shown in Figure 4, the thread manager
includes one thread processor 1026 for each thread.

The thread processors 1026 control the issuance of core
instructions from the thread manager so as to maintain
processing of simultaneously active program threads, so
that each the processing blocks 106 can be active for
as much time as possible. In this particular example
the same instruction stream is supplied to all of the

processing blocks in the system.

It will be appreciated that the number of threads could
exceed the number of thread processors, so that each
thread processor handles control of more than one
thread. However, providing a thread processor for each
thread reduces the need for context switching when

HL71034/000 SWAZZLE

10

15

20

25

30

35

-12-

changing the active thread, thereby reducing memory

accesses and hence increasing the speed of operation.

The semaphore controller 1028 operates to synchronise

the threads with one other.

within the thread manager 102, the status block 1030
receives status information 1036 from each of the
threads. The status information is transferred to the
thread scheduler 1025 by the status block 1030. The
status information is used by the thread scheduler 1025
to determine which thread should be active at any one

time.

Core instructions 1032 issued by the thread manager 102

are sent to the array controller 104 and the channel

controller 108 (figure 3).

ARRAY CONTROLLER

Pt e o N A

The array controller 104 directs the operation of the

processing block 106, and is shown in greater detail in

Figure 5.

The array controller 104 comprises an instruction
launcher 1041, connected to receive instructions from
the thread manager. The instruction launcher 1041
indexes an instruction table 1042, which provides
further specific instruction information to the

instruction launcher.

On the basis of the further instruction information,
the instruction launcher directs instruction
information to either a PE instruction sequencer 1044
or a load/store controller 1045. The PE instruction

SWAZZLE

HL71034/000

10

15

20

25

30

35

-13-

sequencer receives instruction information relating to
data processing, and the load/store controller receives

information relating to data transfer operations.

The PE instruction sequencer 1044 uses received
instruction information to index a PE microcode store
105, for transferring PE microcode instructions to the

PEs in the processing array.

The array controller also includes a scoreboard unit
1046 which is used to store information regarding the
use of PE registers by particular active instructions. --
The score board unit 1046 is functionally divided so as
to provide information regarding the use of registers
by instructions transmitted by the PE instruction
sequencer 1044 and the load/store controller 1045

respectively.

In general terms, the PE instruction sequencer 1044
handles instructions that involve data processing in
the processor unit 106l1a. The load/store controller
1045, on the other hand, handles instructions that
involve data transfer between the registers of the
processor unit 106la and the PE memory unit 1061c. The
load/store controller 1045 will be described in greater

detailil later. -

The instruction launcher 1041 and the score board unit
1046 maintain the appearance of serial instruction
execution whilst achieving parallel operation between
the PE instruction sequencer 1044 and the load/store

controller 1045.

The remaining core instructions 1032 issued from the

thread manager 102 are fed to the channel controller

HL71034/000 SWAZZLE

10

15

20

25

30

35

-14-

108. This controls transfer of data between the PE
memory units and external memory (either local memory

or system memory in AGP or PCI space) .

CHANNEL CONTROLLER

The channel controller 108 operates asynchronously with
respect to the execution of instructions by the array
controller 104. This allows computation and external
I/0 to be performed simultaneously and overlapped as
much as possible. Computation (PE) operations are
synchronised with I1/0 operations by means of semaphores
in the thread manager, as will be explained in more

detail below.

The channel controller 108 also controls the binning
units 1068 which are associated with respective
processing blocks 106. This is accomplished by way of

channel controller instructions.

Figure 6 shows the channel controller's instruction
issue state machine, which lies at the heart of the
channel controller's operation, and which will be

described in greater detail later.

Each binning unit 1069 (Figure 3) is connected to the
I/0 channels of its associated processing block 106.
The purpose of the binning unit 1069 is to sort
primitive data by region, since the data is generally
not provided by the host system in the correct order

for region based processing.

The binning units 1068 provide a hardware implemented
region sorting system, (shown in Figure 7), which

removes the sorting process from the processing

SWAZZLE

HL71034/000

10

15

20

25

30

35

-15-

elements, thereby releasing the PEs for data

processing.

MEMORY ACCESS CONSOLIDATION

In a computer system having a large number of elements
which require access to a single memory, or other
addressed device, there can be a significant reduction
in processing speed if accesses to the storage device
are performed serially for each element.

The graphics system described above i1s one example of
such a system. There are a large number of processor
elements, each of which requires access to data in the
local memory of the system. Since the number of
elements requiring memory access exceeds the number of
memory accesses that can be made at any one time,
accesses to the local and system memory involves serial
operation. Thus, performing memory access for each
element individually would cause a degradation in the

speed of operation of the processing block.

In order to reduce the effect of this problem on the
speed of processing of the system, the system of
Figures 1 and 2 includes a memory access consolidating

function.

The memory access consolidation is also described below
with reference to figures 12 and 13. 1In general,
however, the processing elements that require access to
memory indicate that this is the case by setting an
indication flag or mark bit. The first such marked PE
is then selected, and the memory address to which it

requires access is transmitted to all of the processing

HL71034/000 SWAZZLE

10

15

20

25

30

35

-16-

elements of the processing block. The address is
transmitted with a corresponding transaction ID. Those
processing elements which require access (ie. have the
indication flag set) compare the transmitted address
with the address to which they require access, and if
the comparison indicates that the same address is to be
accessed, those processing elements register the
transaction ID for that memory access and clear the

indication flag.

When the transaction ID is returned to the processing
block, the processing elements compare the stored
transaction ID with the incoming transaction ID, in

order to recover the data.

Using transaction IDs in place of simply storing the
accessed address information enables multiple memory
accesses to be carried, and then returned in any order.
Such a "fire and forget" method of recovering data can
free up processor time, since the processors do not
have to await return of data before continuing
processing steps. In addition, the use of transaction
ID reduces the amount of information that must be
stored by the processing elements to identify the data
recovery transaction. Address informa;ion is generally

of larger size than transaction ID information. -

Preferably, each memory address can store more data
than the PEs require access to. Thus, a plurality of
PEs can require access toO the same memory address, even
though they do not require access to the same data.
This arrangement can further reduce the number of
memdry accesses required by the system, by providing a
hierarchical consolidation technique. For example,
each memory address may store four quad bytes of data,

SWAZZLE

HL71034/000

10

15

20

25

30

35

-17-

with each PE requiring one quad byte at any one access.

This technique can also allow memory write access
consolidation for those PEs that require write access

to different portions of the same memory address.

In this way the system can reduce the number of memory
accesses required for a processing block, and hence
increase the speed of operation of the processing
block.

The indication flag can also be used in another
technique for writing data to memory. In such a
technique, the PEs having data to be written to memory
signal this fact by setting the indication flag. Data
is written to memory addresses for each of those PEs in
order, starting at a base address, and stepped at a
predetermined spacing in memory. For example, if the
step size is set to one, then consecutive addresses are
written with data from the flagged PEs.

PROCESSING BLOCKS

One of the processing blocks 106 is shown in more
detail in Figure 8. The processing block 106 includes
an array of processor elements 1061 which are arranged
to operate in parallel on respective data, items but
carrying out the same instruction (SIMD). Each
processor element 1061 includes a processor unit 1061a,
a PE register file 1061b and a PE memory unit 1061c.
The PE memory unit 1063c is used to store data items
for processing by the processor unit 1061la. Each
processor unit 1061la can transfer data to and from its

PE memory unit 1061c via the PE register file 1061b.

HL71034/000 SWAZZLE

10

15

20

25

30

-18-

The processor unit 106la also uses the PE register file
1061b to store data which is being processed. Transfer
of data items between the processor unit 1061a and the

memory unit 1061c is controlled by the array controller

104.

Each of the processing elements is provided with a data
input from the mathematical expression evaluator (MEE)
1062. The MEE operates to evaluate a mathematical
expression for each of the PEs. The mathematical
expression can be a linear, bi-linear, cubic, quadratic
or more complex expression depending upon the

particular data processing application concerned.

One particular example of a mathematical expression
evaluator is the linear expression evaluator (LEE) .
The LEE is a known device for evaluating the bi-linear

expression:

ax; + byj +c

for a range of values of Xx; and vj-

The LEE is described in detail in US Patent No.
4,590,465. The LEE is supplied with the coefficient
values a, b and c for evaluating the bi-linear
expression, and produces a range of outputs
corresponding to different values of x; and yj. Each
processing element 1061 represents a particular (x;, Y;)
pair and the LEE produces a specific value of the bi-

linear expression for each processor element.

The bi-linear expression could, for example, define a

line bounding one side of a triangle that is to be

SWAZZLE

HL71034/000

10

15

20

25

30

35

HL71034/000

-19-

displayed. The linear expression evaluator then
produces a value to indicate to the processor element
whether the pixel for which the processor element is
processing data lies on the line, to one side or the
other of the line concerned. Further processing of the

graphical data can then be pursued.

The mathematical expression evaluator 1062 is provided
with coefficients from a feedback buffer (FBB) 1068 or
from a source external to the processing block (known
as immediates). The feedback buffer 1068 can be
supplied with coefficients from a PE register file

1061b, or from a PE memory unit 1061c.

The bus structure 1064 is used to transfer data from
the processor elements (register file or memory unit)
to the FBB 1068. Each PE is controlled in order to
determine if it should supply coefficient data to the
MEE.

In one example, only one PE (at a time is enabled) to
transfer data to the feedback buffer FBB 1068. The FBB
queues the data to be fed to the MEE 1062. In another
example, multiple PEs can transfer data to the FBB at
the same time, and so the handling of the transfer of
data would then depend upon the nature of the MEE
feedback bus structure 1064. For example, the bus
could be a wired-OR so that if multiple data is
written, the logical OR of the data is supplied to the
MEE 1062.

The MEE operand feedback path can also effectively be
used to communicate data from one processor element to
all the others in the block concerned, by setting the a
and b coefficients to zero, and supplying the data to

SWAZZLE

io0

15

20

25

30

35

-20-

be communicated as the c coefficient. All of the MEE
results would then be equal to the coefficient ¢, thus
transferring the data to the other processor elements.

In the present system the processing blocks 106 are
provided with opcodes (instructions) and operands (data
items) for the expression evaluator separately from one
another. Previously, instructions and data are
provided in a single instruction stream. This stream
must be produced during processing which can result in
a slowing of processing speed, particularly when the

operands are produced in the array itself.

In the present system, however, since the opcode is
separated from the operand, opcodes and operands can be
produced by different sources and are only combined

when an operation is to be performed by the MEE 1062.

GRAPHICS DATA PROCESSING

Figure 9 illustrates simplified steps in a graphics
data processing method using the system of Figures 1 to
8. The host system prepares data concerning the
vertices of the primitive graphical images to be
processed and displayed by the graphics system. The
data is then transferred, either as a block of vertex
data, or vertex by vertex as it is prepared by the host

system to the graphics system.

The data is loaded into the PEs of the graphics system
so that each PE contains data for one vertex. Each PE
then represents a vertex of a primitive that can be at
an end of a line or part of a two dimensional shape

such as a triangle.

SWAZZLE

HL71034/000

10

15

20

25

30

35

-21-

The received data is then processed to transform it
from the host system reference space to the required
screen space. For example, three dimensional geometry,
view, lighting and shading etc. is performed to produce
data depending upon the chosen viewpoint.

Each PE then copies its vertex data to its neighbouring
PEs so that each PE then has at least one set of vertex
data that corresponds to a graphical primitive, be that
a line, a triangle or a more complex polygon. The data

is then organised on a primitive per PE basis.

The primitive data is then output from the PEs to the
local memory in order that it can be sorted by region.
This is performed by the binning unit 1069 of Figure 3,
as will be described in more detail below. The binning
unit 1069 sorts primitive data by region, since the
data is generally not provided by the host system in
the correct order for region based processing.

The binning units 1068 provide a hardware implemented
region sorting system which removes the sorting process
from the processing elements, thereby releasing the PEs

for data processing.

All of the primitive data is written into local memory,
each primitive having one entry. When data for a
particular primitive is written, its extent is compared
with the region definitions. Information regarding the
primitives that occur in each region is stored in local
memory. For each region in which at least part of a
primitive occurs, a reference is stored to the part of
local memory in which the primitive data is stored. 1In
this way, each set of primitive data need only be

stored once.

HL71034/000 SWAZZLE

10

15

20

25

30

35

-22-

Once the primitive information has been stored in local
memory, it is read back into the individual PEs.
However, at this stage, all of the PEs in one
processing block contain data concerning respective
primitives occurring in a single region. From this
point, a given processing block operates on data
associated with a single region of the display.

Each PE then transfers, in turn, its data concerning
its primitive to the MEE for processing into pixel
data. For example, a PE will supply coefficient data
to the MEE which define a line that makes up one side
of a triangular primitive. The MEE will then evaluate
all of the pixel values on the basis of the
coefficients, and produce results for each pixel which
indicate whether a pixel appears above, below or on the
line. For a triangle, this is carried out three times,
so that it can be determined whether or not a pixel
occurs within the triangle, or outside of it. Each PE
then also includes data about a respective pixel (i.e.,

data is stored on a pixel per PE basis) .

Once each pixel is determined to be outside or inside
the triangle (primitive) concerned, the processing for
the primitive can be carried out only on those pixels
occurring inside the primitive. The remainder of the
PEs in the processing block do not take any further

part in the processing until that primitive is

processed.

DETAILED DESCRIPTION OF THE FUNCTIONAL UNITS DESCRIBED

ABOVE

THREAD MANAGER

SWAZZLE

HL71034/000

10

15

20

25

30

35

-23-

A detailed description will now be given of the thread
manager 102, which as mentioned above with reference to
Figure 4, comprises a cache memory unit 1024 for
storing instructions fetched for each thread. The
cache unit 1024 could be replaced by a series of first-
in-first-out (FIFO) buffers, one per thread. The
thread manager also includes an instruction fetch unit
1023, a thread scheduler 1025, thread processors 1026,
a semaphore controller 1028 and a status block 1030.

Instructions for a thread are fetched from local
external memory 103 or from the EPU 8 by the fetch unit
1023, and supplied to the cache memory 1024 via

connecting logic.

At a given time, only one thread is executing, and the
scheduling of the time multiplexing between threads is
determined by the dynamic conditions of the program
execution. This scheduling is performed by a thread
scheduler in the thread manager 102, which ensures that
each processor block 106 is kept busy as much as
possible. The switching from one thread to another
involves a state saving and restoring overhead.
Therefore, the priority of threads is used to reduce
the number of thread switches, thereby reducing the

associlated overheads.

Core instructions issued by the thread manager 102 are
sent to one of two controller units, the array
controller 104 or channel controller 108.

Determining which thread should be active

The thread scheduler, when running, recalculates which
thread should be active whenever one of the following

scheduling triggers occur:

HL71034/000 SWAZZLE

10

15

20

25

30

35

HL71034/000

-24-

A thread with higher priority than the current
active thread is READY, or
The thread is (not Ready) and YIELDING.

The thread scheduler is able to determine this because
each thread reports the status of whether it is READY
or YIELDING back to the thread scheduler, and are

examined in a register known as the Scheduler-Status

register.

In determining the above, a thread is always deemed to

be READY, unless it is:

- waiting on an instruction cache miss,
- waiting on a zero semaphore;

- waiting on a busy execution unit, or
- waiting on a HALT instruction.

When a thread stops operation, for example because it

requires memory access, it can be "yielding" or "not
yielding". If the thread is yielding, then if another
thread is ready, then that other thread can become
active. If the thread is not yielding, then other
threads are prevented from becoming active, even though
ready. A thread may not yield, for example, if that
thread merely requires a short pause in operation.

This technique avoids the need to swap between active
threads unnecessarily, particularly when a high

priority thread simply pauses momentarily.

In the event that a scheduling trigger occurs as
described above, the scheduler comes into effect, and
carries out the following. First, it stops the active
thread from running, and waits a cycle for any

semaphore decrements to propagate.

SWAZZLE

10

15

20

25

30

35

HL71034/000

-25-

If the previously active thread is yielding, the
scheduler activates the highest priority READY thread,
or the lowest priority thread if no thread is ready
(since this will cause another immediate scheduling

trigger) .

If the previously active thread is not yielding, the
scheduler activates the highest priority thread which
is READY which has higher priority than the previously
active thread. If there is no such thread, the
scheduler reactivates the previously active thread
(which will cause another scheduling trigger if that
thread has not become READY).

The thread scheduler can be disabled through the EPU
interface. When the scheduler is disabled the EPU is
able to control activation of the threads. For
example, the EPU could start and stop the active
thread, set the active thread pointer to a particular
thread, and single step through the active thread.

The thread manager 102 only decodes thread manager

instructions or semaphore instructions. In addition,
each thread has its own thread processor 1026, as shown
in Figure 10. The thread processor 1026 can be divided

into several parts in order to aid understanding of its

operation.

Each thread processor comprises a byte alu 540, a
predicate alu 550, a branch unit 520, an instruction
cache 530, an instruction assembler 510 and an enable

unit 500.

The purpose of the thread processor 1026 is to allow
high level flow control to be performed for a thread,

SWAZZLE

10

15

20

25

30

35

-26-

(such as looping and conditional branches), and to
assemble instructions to be issued to the array
controller 104 and channel controller 108.

An enable unit 500 is used to determine whether a
thread is READY, as outlined in the text above.

The instruction cache 530 receives addresses for
instructions from the branch unit 520 and fetches them
from the cache 5301. During start up, the EPU can
program the program counters in the branch unit. If
the cache 5301 does not contain the instruction, a
cache miss is signalled, and an instruction fetch from
local memory is initiated. If there is no miss, the
instruction is latched into the instruction register

5302.

The branch adder 520 controls the address of the next
instruction. In the normal course of events, it simply
increments the last address, thus stepping sequentially
through the instructions in memory. However, if a
branch is requested, it calculates the new address by
adding an offset (positive or negative) to the current
address, or by replacing the current address with an
absolute address in memory. If the thread processor is
halted, a PCO register 5201 provides the last address
requested, as a PCl register 5202 will already have

been changed.

The byte alu section 540 provides a mechanism for
performing mathematical operations on the 16-bit
registers contained in the thread processor 102. The
proérammer can use thread manager instructions to add,
subtract and perform logical operations on the thread

processor general registers 5402, thereby enabling

SWAZZLE

HL71034/000

10

15

20

25

30

35

-27-

loops to be written. Information can also be passed to
the array controller 104 from the general registers by
using the byte alu 540 and the instruction assembler

510.

The predicate alu 550 contains sixteen 1 bit predicate
registers 5501. These represent true or false
conditions. Some of these predicates indicate carry,
overflow, negative, most significant bit status for the
last byte alu operation. The remaining predicates can
be used by the programmer to contain conditions. These
are used to condition branches (for loop termination),
and can receive status information from the array
controller 104 indicating "all enable registers off™"

(AEO) in the array.

The instruction assembler 510 assembles instructions
for the various controllers such as channel controller
108 and array controller 104. Most instructions are
not modified and are simply passed on to the respective
controllers. However, sometimes fields in the various
instructions can be replaced with the contents of the
general registers. The instruction assembler 510 does
this before passing the instruction to the relevant
controller. The instruction assembler 510 also
calculates the yield status, the wait status and the
controller signal status sent to the enable unit 500

and the scheduler in the thread manager 102.

SEMAPHORE CONTROLLER

Synchronisation of threads and control of access to
other resources is provided by the semaphore controller

1028.

HL71034/000 SWAZZLE

10

15

20

25

30

35

HL71034/000

-28-

Semaphores are used to achieve synchronisation between
threads, by controlling access to common resources. If
a resource is in use by a thread, then the
corresponding semaphore indicates this to the other
threads, so that the resource is unavailable to the
other threads. The semaphore can be used for gqueueing

access to the resource concerned.

In a particular example, the semaphore controller 1028
uses a total of eighty semaphores, split into four
groups in dependence upon which resources the

semaphores relate to.

Semaphore Count and Overflow

The semaphores have an eight bit unsigned count.
However, the msb (bit7) is used as an overflow bit, and
thus should never be set. Whenever any semaphore's bit

7 is set, the semaphore overflow flag in the thread

manager status register is set. 1If the corresponding
interrupt enable is set the EPU is interrupted. The

semaphore overflow flag remains set until cleared by

the EPU.

Semaphore Operations
The following operations are provided for each

semaphore:

Preset: A thread can preset the semaphore value.
The thread should issue a preset instruction only when
it is known that there are no pending signals for the

semaphore.

Wait: A thread can perform a wait operation on
the semaphore by issuing a wait instruction. If the

semaphore is nonzero the semaphore is decremented. If

SWAZZLE

10

15

20

25

30

-29-

it is zero the thread is paused waiting to issue the

walt instruction.

Signal: The semaphore is incremented. This
operation can be performed by the threads, the PE
Sequencer, the Load/Store Unit, or the Channel
Controller. But in general a semaphore can only be

signalled by one of these, as discussed below.

The EPU 8 can read and write the thread semaphore
counts anytime. In general, the core should not be
executing instructions when the EPU accesses ‘the other

semaphore values.

SEMAPHORE GROUPS

The semaphores are broken into four groups according to

which execution units they can be signalled by.

group id | number of semaphore semaphores in group
sems in group name can be signalled by
group
0 32 Thread threads and EPU
1 16 Channel channel controller
2 16 Load/Store load/store unit
3 16 _ PE PE sequencer

The EPU can read and write all semaphore values when
the core is frozen. 1In addition, the EPU can preset,

increment, and decrement a thread semaphore at any time

as follows:
Increment: the EPU can atomically increment

the semaphore by writing its

increment register (an atomic

HL71034/000 SWAZZLE

10

15

20

25

30

HL71034/000

-30-

operation is an operation that
cannot be interrupted by other
operations, as is well known) .

Decrement : the EPU can atomically decrement

the semaphore by reading its
decrement register. If the
semaphore is nonzero before
decrementing the read returns TRUE.
otherwise the read returns FALSE

and the semaphore is left at zero.

Each thread semaphore has a separately enabled nonzero
interrupt. When this interrupt is enabled the
semaphore interrupts the EPU when nonzero. The EPU
would typically enable this interrupt after receiving a
FALSE from a semaphore decrement. Upon receiving the

interrupt, it is preferable to attempt the decrement

again.

ARRAY CONTROLLER

A detailed description will now be given of the array
controller 104, as shown in Figure 5. The array
controller 104 directs the operation of the processing
block 106. The array controller 104 comprises an
instruction launcher 1041, connected to receive
instructions from the thread manager. The instruction
launcher 1041 indexes an instruction table 1042, which
provides further specific instruction information to

the instruction launcher.

On the basis of the further instruction information,
the instruction launcher directs instruction

information to either a PE instruction sequencer 1044

SWAZZLE

10

15

20

25

30

-31-

or a load/store controller 1045. The PE instruction
sequencer receives instruction information relating to
data processing, and the load/store controller receives

information relating to data transfer operations.

The PE instruction sequencer 1044 uses received
instruction information to index a PE microcode store
105, for transferring PE microcode instructions to the

PEs in the processing array.

The array controller also includes a scoreboard unit
1046 which is used to store information regarding the
use of PE registers by particular active instructions.
The scoreboard unit 1046 is functionally divided so as
to provide information regarding the use of registers
by instructions transmitted by the PE instruction
sequencer 1044 and the load/store controller 1045

respectively.

The instruction launcher 1041 and the scoreboard unit
1046 maintain the appearance of serial instruction
execution whilst achieving parallel operation between
the PE instruction sequencer 1044 and the load/store
controller 1045.

The remaining core instructions 1032 issued from the
thread manager 102 are fed to the channel controller
108. This controls transfer of data between the PE
memory units and external memory (either local memory

or system memory in AGP or PCI space).

In order to maintain the appearance of serial
instruction execution, the PE instruction sequencer or

Load/store controller stalls the execution of an

HL71034/000 SWAZZLE

10

15

20

25

30

HL71034/000

-32-

instruction when that instruction accesses a PE
register which is locked by a previously launched,
still executing instruction from the load/store
controller and PE instruction sequencer resepctively.
This mechanism does not delay the launching of
instructions. Instruction execution is stalled only

when a lock is encountered in the instruction

execution.

The PE register accesses which cause a stall are:
Any access to a locked register

Write to the enable stack (used as enable for

load/store)

Write to a P register (Figure 4) (used as indexed

address for load/store)

Write to a V register (Figure 4) (used as enable

for MEE feedback)

The Instruction Launcher 1041 determines which
registers an instruction accesses and locks these
registers as the instruction is launched. The
registers are unlocked when the instruction completes.
For load/store instructioms, determining the accessed
registers is straight forward. This is because the
accessed registers are encoded directly in the
instruction. For PE instructions the task is more
complex because the set of accessed registers depends
on the microcode. This problem is solved by using nine
pits of the PE instruction to address the instruction
table 1042 (which is preferably a small memory), which
gives the byte lengths of the four operands accessed by

the ‘instruction.

The instruction table 1042 also determines whether the

instruction modifies the enable stack, P register, oOr v

SWAZZLE

10

15

20

25

30

-33-

register. Furthermore, it also contains the microcode

start address for the instruction.

When a PE instruction is launched, the instruction
table 1042 is accessed to determine the set of
registers accessed. These registers are marked in the
scoreboard 1046 as locked by that instruction. The
registers are unlocked when the instruction completes.
Load/Store instructions are stalled when they access or
use a register locked by the PE instruction sequencer

1044.

When a load/store instruction is launched, all register
file registers (R31-R0O) which are loaded or stored by
that instruction are locked. The registers are
unlocked when the instruction completes. PE
instructions are stalled when they access a register

locked by the load/store controller.

Writes to the P registers stall execution of the
Load/Store unit as follows (V register and enable stack
are similar). When a PE instruction is launched, it
locks the P register if the instruction table lookup
indicates that the instruction modifies the P register.
The P register remains locked until the instruction
completes. A load/store instruction stalls while the P
register is locked if the load/store instruction's
Indirect bit is set. A load/store instruction stalls
while the V register is locked if the load/store
instruction writes the feedback buffer. A load/store
instruction stalls while the enable stack is locked if
the load/store instruction's Condition bit is set.

As mentioned earlier, the instruction table 1042 may be
a small memory (RAM), 512 words deep by 64 bits wide.
The table is addressed by the instruction index field

HL71034/000 SWAZZLE

10

15

20

25

30

-34 -

of PE instructions to determine the instruction start
address and type. The table is written with the Load
Address and Load Data housekeeping instructions and is
read via I address and I data registers on the EPU bus.

LOAD/STORE CONTROLLER

A detailed description will now be given of the

load/store controller 1045.

In a particular example, PE memory cycles are nominally
at one quarter of the PE clock rate, but can be geared
to any desired rate, such as one sixth of the PE clock
rate. The memory is 128 bits wide (a page), and has a
quadbyte (32-bit) wide interface to the PE register
file. This register file interface runs at four times

the memory cycle rate, SO the register file interface

runs at full memory speed.

Load/store controller instructions execute in one
memory cycle (nominally four PE cycles) unless they are
stalled by the instruction launcher 1041 or by cycles

stolen for refresh or I/0.

Each load/store instruction transfers part or all of a
single memory page. NO single load/store instruction

accesses more than one page.

Memory operations performed by the 1.0ad/Store

Controller

The .load/store controller 1045 performs the following

operations on PE memory 1063:

loads and stores from PE memory 1063 to PE

SWAZZLE

HL71034/000

10

15

20

25

-35-
register files

reads from PE memory 1063 to the MEE feedback
buffers

copies from PE memory to PE memory
PE memory refresh

I/0 channel transfers

The Load and Store instructions transfer the number of
bytes indicated between a single memory page and four

guadbytes of the register file as follows:

The memory access begins at the indicated memory
byte address (after applying address manipulations, see
below) and proceeds for the indicated number of bytes,
wrapping from the end of the page (byte 15) to the
start of the page (byte 0).

The register file access 1s constrained to four
quadbytes of the register file. The access begins at
the indicated register and proceeds through four
quadbytes, then wraps to byte 0 of the first quadbyte

accessed.

Once the transfer is initiated it executes in one

memory cycle.

Reading from PE memory to the LEE feedback buffers

All or part of a memory page may be copied to the MEE
feedback buffer. The page address can be modified with
the Memory Base Register mechanism (see below). Each
quadbyte of the page can be copied into any subset of

HL71034/000 SWAZZLE

10

15

20

25

-36-

the A, B, or C parts of the MEE feedback buffer, with a

feedback buffer push available after each quadbyte.

Cycle Priorities

Memory refresh has priority over all other memory

operations.

The Load/Store versus I/O Channels

priority is selected by a status register bit.

Refresh

The PE Memory is dynamic and must be refreshed. This

may be achieved in software by ensuring all pages are

read every refresh period.

However, the preferred

method is to include a hardware refresh in the

architecture.

Address Manipulations

The memory addresses used by the load/store controller
1045 can be manipulated with either or both of the

following two mechanisms:

HL71034/000

Memory Base Register (MBR)

-The Memory Base Register is optionally added to
the page address specified by appropriate
instructions, conditioned by a bit in the

instruction.

Each thread has its own MBR in the array

housekeeping instruction.

over the EPU bus.

" controller. Threads load their MBR with a

The MBR can be read

SWAZZLE

10

15

20

25

30

-37-
Address Indexing

When an instruction's Index bit is set, the low
five bits of the instruction's memory quadbyte
address are ORed per PE with the low five bits of
the PE's P register.

HANNEL CONTROLLER

A detailed description now follows of the channel
controller 108. As mentioned above, the channel
controller controls the transfer of data between
external memory and PE memory. At each processing
block 106, a transfer engine carries out Direct Memory
Access DMA transfers between the block I/0 registers
and the bus architecture. Depending upon the channel
instruction, the data transfers go through a binning

unit 1069, or directly to/from external memory.

The channel controller 108 operates on an instruction

set which is spilt into three fundamental parts:

Read instructions which transfer data from

external memory to PE memory,

Write instructions which transfer data from PE

memory to external memory,

Housekeeping instructions which manipulate

register values within the channels and binning units.

Instructions from the thread manager 102 are pushed
into three separate instruction FIFOs for low priority,
high priority, and binner instructions. Each FIFO has
its own "full" indication which is sent to the thread

manager 102, so that a thread blocked on a full

HL71034/000 SWAZZLE

10

15

20

25

30

-38-

instruction FIFO will not prevent another thread from
pushing an instruction into a non-full instruction

FIFO.

Figure 6 shows an instruction state machine which

controls the operation of the channel controller 108.

All instructions are launched from the idle state 1081.
The highest priority ready instruction is launched,
where the instruction readiness is determined according

to preset rules.

There are three priorities for channel instructions:
Addressed and Strided instructions can be specified as
low or high priority. Binning instructions are always
treated as very high priority. Lower priority
instructions may be interrupted or pre-empted by higher
priority ones. When a transfer instruction is pre-
empted, the contents of the PE page registers are
returned to the PE memory pades from which they came.
They can then be restarted at a later time when the

higher priority instruction has completed.

Addressed instruction are data transfers between PE
memory and external memory where every PE specifies the
external memory address of the data it wishes to read

or write.

The data transfer is subject to the consolidation

process, SO that, for example, four PEs that each write

SWAZZLE

HL71034/000

10

15

20

25

30

-39-

to different bytes of a 32 byte packet address result
in a single memory access of 32 bytes, any subset of
which may contain valid data to be written to external
memory. Also, any number of PEs which wish to read
data from the same packet address have their accesses

consolidated into a single access to external memory.

In a Write Addressed instruction, each PE supplies 8
bytes of data together with the external memory address
it is to be written to, and 8 bits which serve as byte
enables. Any number of PEs which wish to write data to
the same packet address have their accesses

consolidated into a single access to external memory.

In a Read Addressed instruction, each PE supplies an
address for the data it wishes to read, and sixteen
bytes of data (one half of a memory packet) are
delivered back to the PE.

"Strided" memory accesses are data transfers between PE
memory and external memory where the external memory
address of each PEs data is generated by the transfer
engine. Addresses are stepped from a base register by
a predetermined step size, such that the selected PEs
send to or receive from spaced external memory
addresses. For example, if the step size is set to
one, then the selected PEs access consecutive memory
addresses. This has the advantage over "Addressed"
transfers in that PEs can use all their I/0 page
register data, instead of using some of it for address
information. The base address for the transfer can be

specified with a channel controller instruction or

HL71034/000 SWAZZLE

10

15

20

25

30

-40-

written by the EPU.

For a Write Strided instruction, each PE outputs 16

bytes of data. Data from two PEs is combined into a 32

byte data packet and written to an external memory

address generated by the transfer engine.

Consequently

packets are written to incrementing addresses.

Optionally in the instruction, the external address

that each PE's data was written to can be returned to

the PE I/O page registers.

For potential Read Strided instructions, each PE in

turn receives 16 bytes of data from stepped addresses

under control of the transfer engine.

Binning instructions relate to data transfers between

PE memory and external memory where the data flows

through the binning unit of each core block between the

block I/O bus and a system bus to external memory.

The

binning unit contains a number of control registers
It generates

that are set with special instructions.

external memory addresses for all the data being
It contains

written to or read from external memory.

logic for the support of binning primitives into the
regions that they fall in, and for merging multiple bin

lists that are held in external memory.

It also

performs management of bin lists in external memory.

Data flow between PEs and the binning unit are buffered

in a FIFO.

BINNING FUNCTION

HL71034/000

SWAZZLE

10

15

20

25

30

-41-

As mentioned above, each processing block 106 has an
associated binning unit 1069, which is attached between
the block I/0O bus and the system bus 6. The binning
unit provides specific support for the writing and
reading of primitive pointers in bin lists in external

memory.

The binning process must maintain primitive order
between the geometry and rasterisation phases due to
requirements of most host systems. Since both phases
are block parallel, there needs to be a mechanism for
transferring data between any block to any of the bins
and between any bin and any block. This is implemented
by creating multiple bin lists per region, one for
every processing block 106 that is processing geometry
data. This allows the geometry output phase to
proceed in block parallel mode. Then, during the
rastering phase, each region is processed by just one
processing block 106, and a merge sort of the multiple’

bin lists in memory for that region is performed.

The binning unit 1069 only handles pointers. Primitive
data itself can be written to memory using normal
channel write operations. It can also be read using
normal channel read operations once the binner hardware
has provided each PE with a primitive pointer.

A record is kept of how many primitives are written to
each bin, so that regions can be sorted into similar
size groups for block parallel rasterisation. 1In
addition, primitive "attribute" flags are recorded per

region. This allows optimisation of rasterisation and

HL71034/000 SWAZZLE

10

15

20

25

30

HL71034/000

-42-

shade code per region by examining the bitwise "OR" of
a number of defined flags of every primitive in a
region. In this way regions requiring similar
processing can be grouped for parallel processing,

which results in reduced processing time.

After the PE array 1061 has computed bounding boxes for
primitives, the binner hardware offloads the
binitization process from the PE array 1061, and turns
it into a pure I/O operation. This enables it to be
overlapped with some further data processing , for
example the next batch of processing geometry data.

Writing - On writing the primitive pointers at the end
of a geometry pass, the PEs output the pointers, flags
and bounding box information for primitives on the
channel. The binning unit 1069 appends the pointer to
the bin list of every region included in the bounding
box for that primitive. It also updates the primitive
count and attribute flags for that region. The binner
is responsible for maintaining the bin lists only for
its processing block 106, and the bin list state is

preserved across multiple geometry passes.

Reading - The binning unit 1069 supplies ordered
primitive pointers to the processing block 106, one per
PE that requests, for a specific region. It traverses
the multiple bin lists for that region, with a merge
sort to restore original primitive order. Bin list

state is preserved across multiple rasterisation

passes.

SWAZZLE

10

15

20

25

30

-43-

Binning Memory organisation

The bin lists are created in external memory, by
outputting list data to memory. The bin lists indicate
the locations of the contents of the bin within memory.
Maintenance of such linked list structures requires
additional storage in the form of pointer arrays. The
binner hardware accesses these structures in memory

directly.

BINNING HARDWARE

The binning hardware is shown in detail in Figure 7,
and is responsible for handling the computation
involved in the binnitization process needed to enable
the PE array 1061 to read and write primitive pointers

to external memory.

Instruction decoder 1101 receives instructions from the
channel controller 108, and triggers the state machine
1102 into operation. The state machine 1102 is the
logic that sequences the other parts of the binning
unit to perform a particular function such as reading
or writing primitive pointers to or from external
memory. The state machine 1102 may be implemented as
several communicating state machines. Control signals
to all other parts of the binning unit are not shown.

The binnitization function is executed by the binning
unit according to a set of internal registers 1103 that
define the current binning context, that is the
location of bin lists in external memory, the region to

be rasterised next, the operation mode and so on. This

HL71034/000 SWAZZLE

10

15

20

25

30

-44 -

set of "state" registers 1103 is multiple ported to the
channel controller 108, the block I/0 bus and the EPU 8
(ie. the registers have a number of ports that can be

used simultaneously).

Between the block I/0 bus and the binning unit 1069
itself there is a data buffer FIFO 1104, which is
regarded as being part of the binning unit 1069. The
purpose of the data buffer 1104 is to buffer data
flowing between the PE I/O page registers and the
binning unit 1069, to smooth out the indeterminate
timing of the binning unit 1069. Data is transferred
to/from the binning unit 1069 in bursts of size that
depends on the buffer depth. The binning unit 1069
presents the status of this buffer to the rest of the
block control logic, and by looking at the status of
all the binning unit buffers 1104, the channel
controller 108 can schedule data transfer bursts to the

binning units 1068 in an efficient way.

The binning unit 1069 of each block has its own
register set interface 1105 to the EPU 8. The EPU 8
performs the following set of binning unit 1069 tasks

via the interface 1105:
Initialisation
Allocation of bin list memory

Save and restore of binning state on context

switch

When the binning unit 1069 is executing a Write Binner
instruction, it needs an unknown amount of memory to be

allocated for the creation of bin lists. It requests

SWAZZLE

HL71034/000

10

15

20

25

30

HL71034/000

-45-

this memory a portion at a time from the EPU 8, and
assigns it to whichever bin lists require it. The
binner unit 1068 assigns small chunks (portions) of 32
bytes to bin lists, but this would load the EPU
intolerably if it were to be allocated at this level.
Instead, the EPU provides large portions of data of
whatever size it decides is appropriate (for example,
64kBytes, but any convenient multiple of 32 bytes) and
the binner unit 1068 divides this up into individual
chunks, using the chunk generator 1106. The transfer
of large amounts of data from the EPU is more efficient
for the EPU, and the processing of small amounts of
data for the binning unit 1069 is more efficient for

the binning unit 1069.

During pointer writing, primitive data from PEs is
lodged in a register set 1107, and passed to the data
logic 1112 as required. '

A Y stepper 1108 is used to step the y axis region co-
ordinate across the primitive bounding box during
pointer writing as part of the binitization process.
It comprises a counter and register pair with an
equality comparator.

A X stepper 1109 is used to step the X axis region
coordinate across the primitive bounding box during
pointer writing as part of the binitization process.
It also comprises a counter and register pair with an
equality comparator. However, since the X stepper must
also run the same sequence of values for every value of
the Y stepper 1108, the counter is loaded and reloaded

SWAZZLE

10

15

20

25

30

-46-

from an extra register that contains the initial value.

To merge block bin lists for a region during the
pointer read process, there is provided a dedicated
hardware section 1110. So that primitives can be
ordered through the binning process, & batch id code is
added to the bin lists. The batch id code relates to
the geometry ordering, since host requires geometry to
pe returned in the correct order. Under control of the
state machine 1102, and aided by a block counter 1117,
the binning unit 1069 evaluates which bin list has the
lowest batch ID and directs pointer reading from that

list.

When a further batch ID is encountered in that list, or
a NULL terminator encountered, the block selection is
re-evaluated. The block counter 1117 provides a loop
counter for the state machine 1102 when it is
evaluating the next bin list to process (in conjunction

with the bin list selection unit 1110).

The Data logic unit 1112 is the data processing block
of the binning unit 1069. It is able to increment
pointers, merge attribute flags and format different

data types for writing to external memory via the data

cache 1115.

A region number unit 1116 computes a linear region
number from the X and Y region co-ordinates outputted
from the X/Y steppers 1108/1109. This number, together
with the output of the data logic unit 1112 and state

SWAZZLE

HL71034/000

10

15

20

25

30

-47 -

registers 1103, are used by an address compute unit
1113, to compute a memory address for bin list array

entries.

The data cache 1115 is provided for decoupling all
memory references from the external memory bus. It
exploits the address coherence of the binning unit
memory accesses to reduce the external memory
bandwidth, and to reduce the stall time that would be

cased by waiting for data to arrive.

The data cache 1115 has an address tag section 1114.
This indicates to the binning unit 1069 whether any
particular external memory access is a hit or a miss in
the data cache. On miss, the binning unit 1069 is
stalled until the required data packet is fetched from

memory .

PROCESSING ELEMENTS

Figure 11 shows a processor unit 1061a and PE register
file 1061b which form part of the processing element
shown in Figures 3 and 8. The PE 1061 includes an
arithmetic logic unit (alu) 214 which is connected to
receive data values from a block of 8 bit registers
202, 204, 206, 208 (designated R, S, V and P) via
multiplexers 210 and 212 (A and B).

The PE register file 1061b which operates to buffer
data between the PE and its associated PE memory, and
to store temporarily data on which the processor unit

106la is processing.

HL71034/000 SWAZZLE

10

15

20

25

30

-48-

The RSVP registers 202, 204, 206, 208 operate to supply
operands to the alu 214. The A multiplexer 210
receives data values from the R and S registers and so
controls which of those register values is supplied to
the alu 214. The B multiplexer 212 is connected to
receive data values from the V and P registers and also
from the MEE 1062, and so controls which of those

values is to be supplied to the alu.

The processor unit 106la further includes a shifter 200
which can perform a left or right shift on the data

output from the S, V and P registers.

The R register can hold its previous value, or can be
loaded with a byte from the register file, or the
result from the alu. The alu result is 10 bits wide,
and so the R register can receive the first 8 bits
(bits 7 to 0) or bits 9 to 2, for a Booth multiply
step. Booth multiplication is a well known way of

providing multiplication results in one clock cycle.

The S register can hold its previous value, or can be
loaded with a shifted version of its previous value.
The S register can also be loaded with the alu result,
a bit from the register file or the low 2 bits from the
alu concatenated with the high 6 bits of the S
registers previous value (for the Booth multiply step).

The .V and P registers can both be loaded with the alu
result, or a byte from the register file. The 1sb of

the V register is used to determine the set of

SWAZZLE

HL71034/000

10

15

20

25

30

HL71034/000

-49-

processor elements which are participating in MEE
feedback transfer. The five low bits of the P register
are used to modify the memory address in memory

accesses.

Using four registers R, S, V and P provides the system
with improved performance over previously known systems
because any of the registers are able to provide data
to the alu 214. 1In addition, any of the registers can
be loaded with data from the PE register file 1061b,
which improves the generality of the system, and
provides better support for floating point operations.
Since the R register input is never shifted, the R
register can be used to store and modify the exponent

of floating point numbers.

The alu 214 receives instructions from the array

controller (not shown) and supplies its output to the

PE register file 1061b. The PE register file 1061b is
used to store data for immediate use by the PE, for
example, the register file 1061b can store 16 words of
16 bits in length.

Data to be written to the register file is transferred
via a write port, and data to be read from the register
file is transferred via a read port. Data is
transferred to and from the register file from the PE
memory via a load/store port under the control of the

load/store controller.

The PE register file 1061b can receive data to be

SWAZZLE

10

15

20

25

30

HL71034/000

-50-

stored through its write port in a number of ways: a 16
bit value can be received from the processor element
which form the element's left or right neighbour, a 16
bit value can be received from a status/enable
register, or an 8 bit value can be received from the
alu result. In the case that the alu result is
supplied to the register file, the 8 bit value is
copied into both the high and low bytes of the register

file entry concerned.

The write port is controlled on the basis of the source
of data, and is usually controlled by way of the
contents of the enable stack. It is possible to force

a register file write regardless of the enable stack

contents.

The processor unit 106la also includes an enable stack
which is used to determine when the alu 214 can process
data. The enable stack provides 8 enable bits which
indicate if the alu can operate on the data supplied to
it. 1In a preferred example, the alu 214 will only
operate if all 8 bits are set to logical 1. A stack of
enable bits is particularly useful when the alu is to
perform nested conditional instructions. Such nested
instructions tend to occur most often in IF, ELSE,

ENDIF instruction sequences.

By providing an enable stack of multiple bits in
hardware, it is possible to remove the need for
software to save and load the contents of a single
enable bit when the alu is processing a nested

instruction sequences.

SWAZZLE

10

15

20

25

30

-51-

The read and write ports of the PE register file 1061b
enable a 16 bit data word to be copied to the PE
register file of at least one of the neighbouring PEs.

The load and store operations can be issued in parallel
with microcoded alu instructions from the array
controller. The PE register file 1061b provides
several performance advantages over previous systems in
which the alu has directly accessed a memory device.
The PE register file 1061b provides faster access to
frequently used data values than a processor element to
memory oOr memory to memory architecture can provide.

In addition, there are no restrictions on the order in
which data values are ordered in the register file,
which further aids speed of processing and programming
flexibility.

Figure 12 is a block diagram illustrating a processing
element, and data input and output lines to that
element. As previously described, the processing
element includes a processor unit 106la, a PE register
file 1061b, and a PE memory unit 1061lc. The memory
unit 1061c is preferably DRAM which is able to store
128 pages of 16 bytes. Alternatively, other memory
configurations could be used for the PE memory unit.
Data items can be transferred between the PE register
file 1061b and the PE memory unit 1061c by way of
memory read data and n;emory write data lines 1078 and
1079.

In addition, data can be transferred out of the
processor element, and indeed out of the processor
block in which the element is situated, by way of a
block I/0 data out bus 1067d, and can be transferred

HL71034/000 SWAZZLE

10

15

20

25

30

-52-

into the processor block by way of a block I/O data in
bus 1067c. Address transaction ID and data transaction
ID information can be transferred to the processor
block by way of busses 1067a and 1067b. The MEE
feedback data is transferred from the PE memory unit
1061c or the PE register file 1061b to the MEE feedback
puffer (not shown) by way of a MEE feedback data out
bus 1064.

Figure 13 shows the block I/O interface in more detail.
PE memory read and write data buses 1078 and 1073
interface with a block 1/0 register file 1071 for
transferring data between the register and the
processing unit and the memory unit. Data to be read
out from the processing element is output from the
block I/0O register file 1071 onto the block I/0 data
out bus 1067c, and data to be read into the processing
element concerned is input to the block I/O register
file 1071 from the block 1/0 in bus 1067d.

The processing elements that require access to memory
indicate that this is the case by setting an indication
flag or mark bit. The first such marked PE is then
selected, and the memory address to which it requires
access is transmitted to all of the processing elements
of the processing block. The address 1is transmitted
with a corresponding transaction ID. Those processing
elements which require access (ie. have the indication
flag set) compare the transmitted address with the
address to which they require access, and if the
comparison indicates that the same address is to be
accessed, those processing elements register the

transaction ID for that memory access and clear the

SWAZZLE

HL71034/000

10

15

20

25

30

-53-

indication flag.

All those PEs requiring access to memory (including the
selected PE) then compare the required address with the
address transmitted on the block I/0 inbus 1067d, by
way of an address compare unit 1073. If the result of
the address compare demonstrates that the selected
address is required for use, then the byte mask is
unset and the transaction ID for the memory access
concerned is stored in a transaction ID register 1075.
The address transaction ID is supplied on the address
transaction ID bus 1067a. Later, the required data
carrying the same transaction ID returned along the
block I/O data inbus 1067d. Simultaneously, or just
before the data is returned, the transaction ID is
returned along the data transaction ID bus 1067b all of
the processor elements compare the returned data
transaction ID with transaction ID stored in the
transaction ID register 1075 by means of comparator
1076. If the comparison indicates that the returned
transaction ID is equivalent to the stored transaction
ID, the data arriving on the block I/O data inbus 1067d
is input into the PE register file 1061b. When the
transaction ID is returned to the processing block, the
processing elements compare the stored transaction ID
with the incoming transaction ID, in order to recover

the data.

Using transaction IDs in place of simply storing the
accessed address information enables multiple memory

accesses to be carried, and then returned in any order.

HL71034/000 SWAZZLE

10

15

20

25

30

-54 -

Booth multiplication is achieved using the B
multiplexer 212, which is shown in more detail in
Figure 14. The B multiplexer 212 receives inputs 230
from the V and P registers and from the MEE 1602. The
B multiplexer 212 includes a Booth recode table 218 and
a shift and complement unit 220. The Booth recode
table 218 receives inputs 224, 226 from the two least
significant bits of the S register and from a Booth
register (S reg and Boothreg). Booth recoding is based
on these inputs and the Booth recode table transforms
these bits into shift, transport and invert control
bits which are fed to the shift and complement unit
220. The shift and complement unit 220 applies shift,
transport and invert operations to the contents of the
V register. The shift operation shifts the V register
one bit to the left, shifting in a 0, and the transport
and invert bits cause the possibly shifted result to be

transported, inverted or zeroed or a combination of

those.

Figure 15 shows a block diagram of the alu 214 of the
processor element shown in figure 13. The alu 214
receives 10 bit inputs 234 from the A and B
multiplexers 210 and 212, and also receives inputs 244
and 246 from the BoothCarryIn and CarryReg registers.
The alu 214 also receives instructions from the
controller. The alu 214 includes a carry propagate
unit 236, a carry generate unit 238 and a carry select
unit 242. The alu also includes an exclusive OR (XOR)
gate 250 for determining the alu result output. A
Carrychaln unit 240 receives inputs from Carry
propagate unit 236 and the carry generate unit 238, and

outputs a result to the XOR gate 250.

SWAZZLE

HL71034/000

-55-

The various units in the alu 214 operate to carry out

instructions issued by the controller.

HL71034/000 SWAZZLE

10

.15

20

25

30

-56-

CLAIMS:

1.

A data processing apparatus comprising a SIMD
(single instruction multiple data) array of
processing elements in which the processing
elements are operably divided into a plurality of
processing blocks, the processing blocks being
operable to process respective groups of data
items, wherein each processing element in the
array is operable to transfer data items directly
with at least one neighbouring processing element,
and wherein each processing block includes a
processing element which is operable to transfer
data items directly with a processing element in

another processing block.

A data processing apparatus as claimed in claim 1,
wherein each processing element comprises a
processor unit for receiving data items and
instruction items and operable to process received
data items in accordance with received instruction
items, a memory unit for storing data items, and a
register file for storing data items and connected
for transferring data items with the processor
unit and with the memory unit, the register file
being connected for transferring data items with
memory external to the processing element, and
being connected for transferring data items with

neighbouring processing elements.

A data processing apparatus as claimed in claim 1

or 2, wherein the processing elements are provided

HL71034/000 SWAZZLE

10

15

20

25

30

HL71034/000

-57-

on a single integrated circuit.

A data processing apparatus as claimed in claim 3,
wherein the processing elements in each processing
block are connected in respective series in the
integrated circuit, each processing element,
except the first in the series, being operable to
transfer data items directly with the previous
element in the series and each processing element,
except the last in the series, being operable to
transfer data items directly with the next

processing element in the series.

A data processing apparatus as claimed in claim 4,
wherein the processing elements in the processing
blocks are connected in respective two dimensional
arrays in the integrated circuit, each processing
element being operable to transfer data items with

at least three neighbouring elements in the array.

A data processing apparatus as claimed in claim 4
or 5, wherein the processing blocks are connected
in a series, the last processing element of a
processing block, being operable to transfer data
with the first processing element in another

processing block in the series.

A data processing apparatus as claimed in claim 4

- or 5, wherein the processing blocks are connected

in a series, the last processing element of a

processing block, except the last processing block

SWAZZLE

-58-

in the series, being operable to transfer data
with the first processing element in the next

processing block in the series.

5 8. An apparatus as claimed in any one of the

preceding claims, provided on a single integrated

circuit.
9. A graphical data processing system comprising a
10 host general data processing apparatus and a data

processing apparatus as claimed in any one of the

preceding claims for processing graphical data.

10. A system as claimed in claim 9, provided on a

15 single integrated circuit.

HL71034/000 SWAZZLE

1he v
¥
Patenit .
™
Oﬁc INVESTOR IN PEOPLE
-
Application No: GB 9908229.9 Examiner: Julyan Elbro
Claims searched: 1to 10 Date of search: 12 November 1999

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.Q): G4A (AFGK, AFGL, AMP, ASX)
Int Cl (Ed.6): GO6F 15/173, 15/80
Other: ONLINE: EPODOC JAPIO WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
X | EP 0570952 A2 IBM see abstract and fig. 1. 11010
X | EP 0463721 A2 GENNUM see abstract. 11010
X | EP 0277262 Al AGENCY OF INDUSTRIAL SCIENCE AND 1010
TECHNOLOGY see abstract.
X US 5165023 MIT see column 4 lines 19-37. 1t0 10
X [JP 070013956 A TOSHIBA see also Patent Abstracts of Japan
English language abstract number 07013956, 1010
volume 199504.
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on orafter the declared priority date butbefore the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

