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SYSTEMS AND METHODS FOR
EXECUTABLE CODE DETECTION,
AUTOMATIC FEATURE EXTRACTION AND
POSITION INDEPENDENT CODE
DETECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
patent application Ser. No. 16/920,630, filed Jul. 3, 2020 and
titled SYSTEMS AND METHODS FOR EXECUTABLE
CODE DETECTION, AUTOMATIC FEATURE EXTRAC-
TION AND POSITION INDEPENDENT CODE DETEC-
TION, which is a continuation of Ser. No. 16/879,625, filed
May 20, 2020 and titled SYSTEMS AND METHODS FOR
EXECUTABLE CODE DETECTION, AUTOMATIC FEA-
TURE EXTRACTION AND POSITION INDEPENDENT
CODE DETECTION, now U.S. Pat. No. 10,762,200, which
claims the benefit of U.S. Provisional Application No.
62/850,170, filed May 20, 2019, and titled METHODS,
SYSTEMS, AND DEVICES FOR CODE DETECTION
FOR MALWARE ANALYSIS, U.S. Provisional Application
No. 62/850,182, filed May 20, 2019, and titled METHODS,
SYSTEMS, AND DEVICES FOR AUTOMATIC FEA-
TURE EXTRACTION FROM EXECUTABLE CODE, and
U.S. Provisional Application No. 62/854,118, filed May 29,
2019, and titled METHODS, SYSTEMS, AND DEVICES
FOR DETECTING THE EXECUTION OF A POSITION
INDEPENDENT CODE. Each of the foregoing applications
is hereby incorporated by reference in their entirety.
[0002] Any and all applications for which a foreign or
domestic priority claim is identified in the Application Data
Sheet as filed with the present application are hereby incor-
porated by reference under 37 CFR 1.57.

BACKGROUND

Field

[0003] This application relates to computer and cyberse-
curity systems, and methods, and in particular, to systems
and methods for detecting executable code, extracting useful
machine learning features, and identifying position indepen-
dent code.

Description

[0004] Existing systems and methods of programmatic
malware and executable code detection are inefficient and
inaccurate. New systems and methods are needed in order to
prevent, detect, and respond to malicious threats to computer
systems.

SUMMARY

[0005] For purposes of this summary, certain aspects,
advantages, and novel features of the invention are described
herein. It is to be understood that not all such advantages
necessarily may be achieved in accordance with any par-
ticular embodiment of the invention. Thus, for example,
those skilled in the art will recognize that the invention may
be embodied or carried out in a manner that achieves one
advantage or group of advantages as taught herein without
necessarily achieving other advantages as may be taught or
suggested herein.
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[0006] Some embodiments herein are directed to a com-
puter-implemented method for programmatically identify-
ing executable code within a file, the method comprising:
accessing, by a computer system, a sequence of bytes from
aportion of the file; extracting, by the computer system from
the sequence of bytes, a predetermined number of n-grams,
wherein each n-gram comprises a contiguous series of bytes
in the sequence of bytes, and wherein each contiguous series
of bytes in each n-gram comprises n number of bytes;
generating, by the computer system, an array of counters,
each counter of the array associated with one of the n-grams,
wherein each counter comprises an integer value, the integer
value generated based on the frequency of occurrence of the
associated n-gram within the sequence of bytes; providing,
by the computer system, the array of counters as an input
feature for a predictive machine learning model; and deter-
mining, by the predictive machine learning model, a model
probability value that the sequence of bytes comprises
executable code, wherein the computer system comprises a
computer processor and an electronic storage medium.
[0007] In some embodiments, the executable code is pro-
grammatically identified without executing the sequence of
bytes on the computer system.

[0008] In some embodiments, the method further com-
prises flagging, by the computer system, the sequence of
bytes or the file for further analysis by a malware detection
system when the model probability value that the sequence
of bytes comprises executable code is above a predeter-
mined threshold.

[0009] In some embodiments, the file comprises an
executable file format.

[0010] Insomeembodiments, the file comprises a portable
executable (PE) file.

[0011] In some embodiments, the portion of the file com-
prises one or more of a resource, a string, a variable, an
overlay, or a section.

[0012] In some embodiments, the portion of the file does
not comprise executable permissions.

[0013] In some embodiments, the n-grams comprise bi-
grams.

[0014] In some embodiments, n is between 2 and 500.
[0015] In some embodiments, the n-grams comprise: a

first set of n-grams, wherein n is a first integer for the first
set of n-grams; and a second set of n-grams, wherein n is a
second integer for the second set of n-grams, and wherein
the first integer is different from the second integer.

[0016] In some embodiments, the predetermined number
of n-grams is 500.

[0017] In some embodiments, the predetermined number
of n-grams is between 50 and 10,000.

[0018] In some embodiments, the method further com-
prises normalizing, by the computer system, each counter by
the data length of the sequence of bytes.

[0019] In some embodiments, the predictive machine
learning model comprises a plurality of separate models,
each model corresponding to a different machine architec-
ture code.

[0020] In some embodiments, the machine architecture
code comprises .NET, x86, and/or x64.

[0021] In some embodiments, the predictive machine
learning model comprises at least one learning algorithm
selected from the group of: support vector machines (SVM),
linear regression, K-nearest neighbor (KNN) algorithm,
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logistic regression, naive Bayes, linear discriminant analy-
sis, decision trees, neural networks, or similarity learning.

[0022] In some embodiments, the predictive machine
learning model comprises a random forest.

[0023] In some embodiments, the random forest com-
prises a plurality of decision trees, each decision tree trained
independently on a training set of bytes.

[0024] In some embodiments, the model probability value
is determined by averaging a plurality of decision tree
probability values, wherein each decision tree probability
value is generated by traversal of the sequence of bytes
through each individual decision tree of the plurality of
decision trees.

[0025] Some embodiments herein are directed to a com-
puter system for programmatically identifying executable
code within a file, the system comprising: one or more
computer readable storage devices configured to store a
plurality of computer executable instructions; and one or
more hardware computer processors in communication with
the one or more computer readable storage devices and
configured to execute the plurality of computer executable
instructions in order to cause the system to: access a
sequence of bytes from a part of the file; extract, from the
sequence of bytes, a predetermined number of n-grams,
wherein each n-gram comprises a contiguous series of bytes
in the sequence of bytes, and wherein each contiguous series
of bytes in each n-gram comprises n number of bytes;
generate an array of counters, each counter of the array
associated with one of the n-grams, wherein each counter
comprises an integer value, the integer value generated
based on the frequency of occurrence of the associated
n-gram within the sequence of bytes; provide the array of
counters as an input feature for a predictive machine learn-
ing model; and determine, by the predictive machine learn-
ing model, a model probability value that the sequence of
bytes comprises executable code.

[0026] Some embodiments herein are directed to a com-
puter-implemented method for automatically extracting a
machine learning feature from executable code for input to
a malware detection model, the method comprising: access-
ing, by a computer system, the executable code from a file;
inputting, by the computer system, the executable code to an
image rescaling algorithm comprising an embedding matrix,
wherein the image rescaling algorithm is configured to
convert each byte of the executable code to a numerical
vector using the embedding matrix to produce an embedded
vector space, and wherein the order of the executable code
is maintained during the conversion; channel filtering, by the
computer system, one or more vector layers of the embedded
vector space, wherein the channel filtering comprises: con-
solidating the one or more vector layers into a plurality of
blocks; and applying a filter mechanism to produce one or
more fixed size vector inputs, each fixed size vector input
representing a corresponding vector layer or a block of the
corresponding vector layer; inputting, by the computer sys-
tem, the one or more fixed size vector inputs into an input
layer of a neural network, the neural network comprising a
plurality of layers of processing units, wherein the plurality
of layers comprise at least the input layer, one or more
hidden layers, and an output layer, wherein each successive
layer of the plurality of layers uses an output value from a
previous layer as an input value, and wherein the output
layer is configured to generate a classification of malicious-
ness of the executable code; extracting, by the computer
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system, the output value of a final hidden layer immediately
preceding the output layer of the neural network; and
providing, by the computer system, the output value of the
final hidden layer as a machine learning feature to the
malware detection model, wherein the computer system
comprises a computer processor and an electronic storage
medium.

[0027] In some embodiments, the neural network com-
prises a supervised, semi-supervised, or unsupervised learn-
ing model.

[0028] In some embodiments, the executable code is part
of a portable executable (PE) file.

[0029] In some embodiments, each of the one or more
hidden layers is configured to perform a transformation on
the input value to generate the output value for an immedi-
ately consecutive layer.

[0030] In some embodiments, the image rescaling algo-
rithm comprises a pre-processing neural network, the pre-
processing neural network comprising Word2Vec.

[0031] In some embodiments, the method further com-
prises discarding the classification of maliciousness of the
executable code from the output layer of the neural network.
[0032] In some embodiments, the neural network com-
prises between 1 and 2000 hidden layers.

[0033] In some embodiments, the filter mechanism com-
prises a low-pass filter, box filter, delta filter, or Gaussian
filter.

[0034] Some embodiments herein are directed to a com-
puter system for automatically extracting a machine learning
feature from executable code for input to a malware detec-
tion model, the system comprising: one or more computer
readable storage devices configured to store a plurality of
computer executable instructions; and one or more hardware
computer processors in communication with the one or more
computer readable storage devices and configured to execute
the plurality of computer executable instructions in order to
cause the system to: access the executable code from a file;
input the executable code to an image rescaling algorithm
comprising an embedding matrix, wherein the image res-
caling algorithm converts each byte of the executable code
to a numerical vector using the embedding matrix to produce
an embedded vector space, and wherein the order of the
executable code is maintained during the conversion; chan-
nel filter one or more vector layers of the embedded vector
space by: consolidating the one or more vector layers into a
plurality of blocks; and applying a filter mechanism to
produce one or more fixed size vector inputs, each fixed size
vector input representing a corresponding vector layer or a
block of the corresponding vector layer; input the one or
more fixed size vector inputs into an input layer of a neural
network, the neural network comprising a plurality of layers
of processing units, wherein the plurality of layers comprise
at least the input layer, one or more hidden layers, and an
output layer, wherein each successive layer of the plurality
of layers uses an output value from a previous layer as an
input value, and wherein the output layer is configured to
generate a classification of maliciousness of the executable
code; extract the output value of a final hidden layer imme-
diately preceding the output layer of the neural network; and
provide the output value of the final hidden layer as a
machine learning feature to the malware detection model.
[0035] In some embodiments, the neural network com-
prises a supervised, semi-supervised, or unsupervised learn-
ing model.



US 2022/0391496 A9

[0036] In some embodiments, the executable code is part
of a portable executable (PE) file.

[0037] In some embodiments, each of the one or more
hidden layers is configured to perform a transformation on
the input value to generate the output value for an immedi-
ately consecutive layer.

[0038] In some embodiments, the image rescaling algo-
rithm comprises a pre-processing neural network, the pre-
processing neural network comprising Word2Vec.

[0039] Insome embodiments, the system is further caused
to discard the classification of maliciousness of the execut-
able code from the output layer of the neural network.

[0040] In some embodiments, the neural network com-
prises between 1 and 2000 hidden layers.

[0041] In some embodiments, the filter mechanism com-
prises a low-pass filter, box filter, delta filter, or Gaussian
filter.

[0042] Some embodiments herein are directed to a system
for library position independent code detection, the system
comprising: one or more computer readable storage devices
configured to store a plurality of computer executable
instructions; and one or more hardware computer processors
in communication with the one or more computer readable
storage devices and configured to execute the plurality of
computer executable instructions in order to cause the
system to: instrument an import address table (IAT) entry of
a monitored symbol, the instrumenting of the IAT entry
comprising: replacing a monitored symbol address within
the IAT entry of the monitored symbol with a modified
address; executing a trampoline code upon a call of the
modified address to detect and validate a static call of the
monitored symbol; and redirecting the call of the modified
address to the monitored symbol address; instrument one or
more Loader API functions, the instrumenting of the one or
more Loader API functions comprising: modifying the one
or more Loader API functions to return values that lead to
the trampoline code; detouring the execution of the moni-
tored symbol to a detour code to detect and validate a call of
the monitored symbol; redirecting the call of the monitored
symbol to the monitored symbol address; monitor the tram-
poline code and the detour code of the monitored symbol to
determine if calls from an executable comprise a static call,
a dynamic call, or a local call; if the system determines that
at least one call from the executable does not comprise a
static call, dynamic call, or a local call, flag the executable
as suspicious or malicious for a malware detection system.

[0043] Insome embodiments, the system is further caused
to, if the system determines that the at least one call does not
comprise a static call, dynamic call, or local call, classify the
at least one call as an independent call.

[0044] In some embodiments, the system is further caused
to, if the system determines that the calls comprise a static
call, dynamic call, or local call, classify the calls as benign
calls.

[0045] In some embodiments, the system is further caused
to, if the system determines that the calls comprise a static
call, dynamic call, or local call, classify the executable as
benign.

[0046] In some embodiments, the system further com-
prises: A hooking engine comprising the trampoline code
and the detour code; and one or more call databases con-
figured to store data related to the calls.
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[0047] Insome embodiments, the dynamic call comprises
an attempted retrieval of the monitored symbol address
during execution of the executable.

[0048] In some embodiments, the static call comprises an
attempted retrieval of the monitored symbol address during
initialization of the executable.

[0049] In some embodiments, determination of whether
the calls from the executable does comprise a local call
comprises monitoring the detour Code to determine if a
return address is located in the same executable as the
monitored symbol.

[0050] In some embodiments, the one or more Loader API
functions comprise one or both of GetModuleHandle or
GetProcAddress.

[0051] In some embodiments, the at least one call is
initiated by the executable using metadata retrieved from a
module comprising the monitored symbol

[0052] In some embodiments, the at least one call is
initiated by the executable using data retried from a Loader
internal record.

[0053] In some embodiments, the at least one call is
initiated by the executable by calling the monitored symbol
without triggering the trampoline code.

[0054] Some embodiments herein are directed to a com-
puter implemented method for library position independent
code detection, the method comprising: instrumenting, by a
computer system, an import address table (IAT) entry of a
monitored symbol, the instrumenting of the IAT entry com-
prising: replacing a monitored symbol address within the
IAT entry of the monitored symbol with a modified address;
executing a trampoline code upon a call of the modified
address to detect and validate a static call of the monitored
symbol; and redirecting the call of the modified address to
the monitored symbol address; instrumenting, by the com-
puter system, one or more Loader API functions, the instru-
menting of the one or more Loader API functions compris-
ing: modifying the one or more Loader API functions to
return values that lead to the trampoline code; detouring the
execution of the monitored symbol to a detour code to detect
and validate a call of the monitored symbol; and redirecting
the call of the monitored symbol to the monitored symbol
address; monitoring, by the computer system, the trampoline
code and the detour code of the monitored symbol to
determine if calls from an executable comprise a static call,
a dynamic call, or a local call; if the computer system
determines that at least one call from the executable does not
comprise a static call, dynamic call, or a local call, flagging,
by the computer system, the executable as suspicious or
malicious for a malware detection system, wherein the
computer system comprises a computer processor and an
electronic storage medium.

[0055] In some embodiments, wherein the method further
comprises, if the computer system determines that the at
least one call does not comprise a static call, dynamic call,
or local call, classifying the at least one call as an indepen-
dent call.

[0056] In some embodiments, the method further com-
prises, if the computer system determines that the calls
comprise a static call, dynamic call, or local call, classifying
the calls as benign calls.

[0057] In some embodiments, the method further com-
prises, if the computer system determines that the calls
comprise a static call, dynamic call, or local call, classifying
the executable as benign.
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[0058] Insome embodiments, the trampoline code and the
detour code comprise one or more portions of a hooking
engine, the hooking engine connected to a call database
configured to store data related to the calls.

[0059] In some embodiments, the dynamic call comprises
an attempted retrieval of the monitored symbol address
during execution of the executable.

[0060] In some embodiments, the static call comprises an
attempted retrieval of the monitored symbol address during
initialization of the executable.

[0061] In some embodiments, determination of whether
the calls from the executable comprise a local call comprises
monitoring the detour Code to determine if a return address
is located in the same executable as the monitored symbol.
[0062] In some embodiments, the one or more Loader API
functions comprise one or both of GetModuleHandle or
GetProcAddress.

[0063] In some embodiments, the at least one call is
initiated by the executable using metadata retrieved from a
module comprising the monitored symbol.

[0064] In some embodiments, the at least one call is
initiated by the executable using data retried from a Loader
internal record.

[0065] In some embodiments, the at least one call is
initiated by the executable by calling the monitored symbol
without triggering the trampoline code.

BRIEF DESCRIPTION OF THE DRAWINGS

[0066] The features of the present disclosure will become
more fully apparent from the following description, taken in
conjunction with the accompanying drawings. Understand-
ing that these drawings depict only some embodiments in
accordance with the disclosure and are, therefore, not to be
considered limiting of its scope, the disclosure will be
described with additional specificity and detail through use
of the accompanying drawings.

[0067] The drawings are provided to illustrate example
embodiments and are not intended to limit the scope of the
disclosure. A better understanding of the systems and meth-
ods described herein will be appreciated upon reference to
the following description in conjunction with the accompa-
nying drawings, wherein:

[0068] FIG. 1A illustrates an example of a Portable
Executable (PE) file format;

[0069] FIG. 1B illustrates example sections of a PE file;
[0070] FIG. 2A illustrates an example snippet of machine
code, in accordance with some embodiments herein;
[0071] FIG. 2B illustrates a text feature generation flow-
chart in comparison with n-gram generation according to
some embodiments herein;

[0072] FIG. 3 illustrates a flowchart of a method for using
one or more random forests to detect executable code for
x86, x64, and .NET architectures according to some embodi-
ments;

[0073] FIG. 4A illustrates an example flowchart for a tree
structure according to some embodiments herein;

[0074] FIG. 4B illustrates an example flowchart for a
random forest structure according to some embodiments
herein;

[0075] FIG. 5 illustrates an example flowchart for training
and testing a code detection model according to some
embodiments herein;
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[0076] FIG. 6 illustrates an example flowchart of an auto-
matic feature extraction method using a neural network
according to some embodiments herein;

[0077] FIG. 7 illustrates an example feature extraction
method using a neural network according to some embodi-
ments herein;

[0078] FIG. 8 illustrates an example channel filtering
mechanism according to some embodiments herein;

[0079] FIG. 9 illustrates an example box function showing
the behavior of a filtering system according to some embodi-
ments herein;

[0080] FIG. 10 illustrates an example Gaussian function
showing the behavior of a filtering system according to some
embodiments herein;

[0081] FIG. 11 illustrates an example delta function show-
ing the behavior of a filtering system according to some
embodiments herein;

[0082] FIG. 12 illustrates an example diagram of a static
linking process according to some embodiments herein;
[0083] FIG. 13 illustrates an example diagram of a library
independent code detection system and method for a static
linking process according to some embodiments herein;
[0084] FIG. 14 illustrates an example diagram of a library
independent code detection system according to some
embodiments herein;

[0085] FIG. 15 illustrates an example diagram of a
dynamic flow process according to some embodiments
herein;

[0086] FIG. 16 illustrates an example diagram of a library
independent code detection system and method for a
dynamic flow process according to some embodiments
herein; and

[0087] FIG. 17 illustrates a block diagram depicting an
embodiment of a computer hardware system configured to
run software for implementing one or more embodiments of
an executable code detection, automatic feature extraction
and position independent code detection system.

DETAILED DESCRIPTION

[0088] Although certain preferred embodiments and
examples are disclosed below, inventive subject matter
extends beyond the specifically disclosed embodiments to
other alternative embodiments and/or uses and to modifica-
tions and equivalents thereof. Thus, the scope of the claims
appended hereto is not limited by any of the particular
embodiments described below. For example, in any method
or process disclosed herein, the acts or operations of the
method or process may be performed in any suitable
sequence and are not necessarily limited to any particular
disclosed sequence. Various operations may be described as
multiple discrete operations in turn, in a manner that may be
helpful in understanding certain embodiments; however, the
order of description should not be construed to imply that
these operations are order dependent. Additionally, the struc-
tures, systems, and/or devices described herein may be
embodied as integrated components or as separate compo-
nents. For purposes of comparing various embodiments,
certain aspects and advantages of these embodiments are
described. Not necessarily all such aspects or advantages are
achieved by any particular embodiment. Thus, for example,
various embodiments may be carried out in a manner that
achieves or optimizes one advantage or group of advantages
as taught herein without necessarily achieving other aspects
or advantages as may also be taught or suggested herein.



US 2022/0391496 A9

[0089] This detailed description discusses certain features
for implementing computer and cybersecurity systems,
devices, and methods in relation to certain described
embodiments, some of which are illustrated in the figures.
Although several embodiments, examples, and illustrations
are disclosed below, it will be understood by those of
ordinary skill in the art that the inventions described herein
extend beyond the specifically disclosed embodiments,
examples, and illustrations and includes other uses of the
inventions and obvious modifications and equivalents
thereof. Embodiments of the inventions are described with
reference to the accompanying figures, wherein like numer-
als refer to like elements throughout. The terminology used
in the description presented herein is not intended to be
interpreted in any limited or restrictive manner simply
because it is being used in conjunction with a detailed
description of certain specific embodiments of the inven-
tions. In addition, embodiments of the inventions can com-
prise several novel features and no single feature is solely
responsible for its desirable attributes or is essential to
practicing the inventions herein described.

Executable Code Detection

[0090] Some embodiments of the present disclosure relate
to techniques for identifying executable code that may be
hidden away in one or more unconventional areas of files. In
some embodiments, once this hidden executable code is
detected, it can be flagged for additional processing or
analysis for a variety of purposes, including malware detec-
tion.

Introduction

[0091] Generally speaking, file formats can help standard-
ize the way that information is encoded for storage in a
computer file by specifying the overall structure of a file and
how bits are used to encode information in a digital storage
medium. Many file formats have multiple discrete regions,
with each region serving a varying purpose.

[0092] A traditional malware detection solution may typi-
cally look for suspicious programming logic in only certain
sections of a file depending on the file format of the file.
However, this is a problem since malware may often evade
the detection logic used by these solutions by hiding mali-
cious code in one or more regions of files that do not
normally contain code or logic, and thus, are not typically
looked at by traditional malware detection solutions. For
example, in many files, there exists a section in the file that
contains an icon for representing the file. In many instances,
there is no practical reason that executable code would be
located in a section for holding the icon. However, many
malwares or other threat actors may hide malicious code in
these types of locations, in which traditional malware detec-
tion and antivirus software do not examine. Therefore, when
malware is executed in a computer machine, it can simply
extract the executable code from the hidden location to
execute. In that way, malicious software can successfully
hide the code from existing malware detection and antivirus
products.

[0093] Additionally, detecting whether code in a file is
executable code or not is not trivial. There is no existing
logical way to determine if code is executable simply by
looking at the code. Thus, in order to verify if the code is
executable or not, the code must be executed within a
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computer. In other words, using existing methods, in order
to determine if a sequence of bytes is valid executable code,
malware detection and antivirus software must attempt to
execute the sequence of bytes to see if it can be interpreted
as valid executable code. However, attempting to execute
the code is undesirable as doing so can substantially impede
the performance of the machine and/or introduce malicious
software inadvertently during execution. Even if the code
could potentially be executed safely in a sandbox, running,
executing, and checking the code will result in decreased
performance relative to automatic detection of executable
code without execution. Further, executing the code in a
sandbox itself requires processing power and resources that
otherwise would not have been necessary, thereby decreas-
ing the processing capacity of a computer system.

[0094] Thus, there exists a need for first accurately and
programmatically identifying and detecting executable code
hidden in files, which can then be flagged for traditional
malware analysis. Some embodiments of systems and meth-
ods described herein allow for identification and detection of
executable code hidden in files without having to execute
subject code itself to determine if the subject code is an
executable code. In other words, some embodiments
described herein provide systems and/or methods for iden-
tifying and detecting executable code hidden in files,
wherein such systems and/or methods do not comprise
executing subject code to determine if the subject code is an
executable code. In particular, in some embodiments herein,
one or more machine learning models may be utilized in
order to understand the patterns of executable code without
the necessity of attempting to execute the code. Specifically,
some embodiments herein are directed to a machine learning
model for searching specific locations inside of executable
files and determining if specific parts in the file contain
executable code. In many instances, malicious actors
attempt to hide or conceal code in unconventional places
inside a file. Thus, in some embodiments, one or more
machine learning models may be utilized to take, as input,
one or more bytes sequences from a file and to determine the
probability that the one or more sections comprise valid
executable code.

[0095] Traditional malware detection solutions look for
malignant patterns, such as imports, strings and suspicious
sequences of function calls. However, malware may often
evade the detection logic used by these solutions by hiding
malicious portions of their code (i.e. payloads) inside
resources or hidden areas in the file. Since these hidden areas
do not normally contain executable code or programming
logic, traditional detection systems may not look there and
malware may be able to evade their detection.

[0096] In some embodiments, techniques disclosed herein
address this technical shortcoming by enabling the auto-
matic detection of executable code given a stream of bytes,
which can be sourced from any part of a file, but particularly,
the hidden areas of files that traditional malware detection
solutions ignore. These techniques are described within the
context of a Portable Executable (PE) file for exemplary
purposes and to facilitate ease of understanding the tech-
niques, as the mere existence of code in several parts of a PE
file, such as resources, can be indicative of highly malicious
activity and can aid detection solutions immensely. How-
ever, the techniques described herein may be applied to files
of any suitable file format. For example, the code detection
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techniques described herein can be used in other executable
file formats (e.g., ELF files) and even non-executable file
formats (e.g., PDF files).

[0097] More specifically, in some embodiments, a
machine learning model can be trained to detect whether a
particular stream of bytes is executable code. This machine
learning model can then be run on different areas of one or
more files, including areas that are not typically analyzed by
traditional detection solutions, in order to detect executable
code within the one or more files. Any detected executable
code can be flagged for further analysis by malware detec-
tion software, thus improving the detection of hidden mal-
ware payloads significantly. In some embodiments, only a
portion of the file may be passed through the model. In some
embodiments, the entirety of the data in the file may be
passed through the model.

Portable Executable (PE)

[0098] FIG. 1A illustrates an example structure associated
with a Portable Executable (PE) file format. Some of the
structure associated with a PE file is described here for
exemplary purposes and to facilitate understanding of the
techniques described herein. In particular, as described
herein in relation to FIG. 1A, the structure associated with
a PE file may comprise many places where executable code
for malware can be hidden.

[0099] In some embodiments, a Portable Executable (PE)
file is a file format for executables, object code, DLLs, FON
Font files, and others used in certain versions of Windows
operating systems. A PE file may comprise a number of
headers and/or sections that inform a dynamic linker how to
map the file into the memory of a computer system. An
executable image may comprise several different regions,
each of which may require different memory protection. For
instance, typically the .text section (which holds program
code) is mapped as execute/read only, and the .data section
(holding global variables) is mapped as no-execute/read/
write. FIG. 1B illustrates example sections of a PE file,
including example permissions 132. The Sections 116
include, for example, a name 126, virtual size 128, and a
virtual address 134. In some embodiments, part of the
function of the dynamic linker is to map each section to
memory individually and assign the correct permissions 132
to the resulting regions, according to the instructions found
in the headers.

[0100] A PE file may comprise a Disk Operating System
(DOS) Header 102. In some embodiments, the DOS Header
102 may start with the first 64 bytes of every PE file. The
DOS Header 102 may play a role in version-checking and
backwards compatibility by identifying a MS-DOS compat-
ible file type. In older versions of Windows operating
systems and MS-DOS operating systems, the operating
system may read the DOS Header 102 in order to be able to
determine whether it is compatible with the file. For
instance, when attempting to run a Windows NT executable
on MS-DOS version 6.0, the operating system may check
the DOS Header 102 and may indicate: “This program
cannot be run in DOS mode.” If, instead, the DOS Header
102 was not included as the first part of the PE file format,
the operating system may simply fail the attempt to load the
file and offer something completely useless, such as: “The
name specified is not recognized as an internal or external
command, operable program or batch file.”
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[0101] A PE file may also comprise a DOS code (“Stub™)
104, which may comprise a piece of DOS code referred to
as a stub that is run when the executable is loaded. Typically,
the DOS Stub 104 may print a string, like the message, “This
program cannot be run in DOS mode.” This may help ensure
that the PE file will not cause a crash when run on a DOS
system; instead, the program may print the message and then
exit. However, the creator of the PE file may be able to place
custom code there since Microsoft’s linker provides the
option to link a stub other than the standard one. Any DOS
program may be put in the DOS Stub 104, generally so long
as at offset 3Ch (60) there is a DWORD specifying the start
of the PE block relative to the start of the file. In some
embodiments, the DOS Stub 104 may be a full-blown DOS
program.

[0102] In some embodiments, the PE file may comprise
one or more N'T Headers 106, which may comprise a PE File
Header 108, Image Optional Header 110, and/or an array of
Data Directories 112. The PE File Header 108 may comprise
a collection of fields that define what the rest of the PE file
looks like, including the location of code and the code size.
Additionally, there may be high-level information in the PE
File Header 108 that is used by the operating system or other
applications to determine how to treat the file. For instance,
there may be a field indicating what type of machine or
processor the executable file was built for, such as the
DEC® Alpha, MIPS R4000, Intel® x86, or some other
processor; this field can be referenced to quickly determine
how to treat the file without going any further into the rest
of the file data. The PE File Header 108 may also include a
field identifying how many sections—more specifically,
how many section headers and section bodies—are in the
file in order to extract the information more easily and
efficiently. Each section header and section body may be laid
out sequentially in the file, so the number of sections may be
necessary to determine where the section headers and bodies
end. The Image Optional Header 110 may contain mean-
ingful information about the executable image, such as
initial stack size, program entry point location, preferred
base address, operating system version, and/or section align-
ment information, among others. The array of Data Direc-
tories 112 entries may comprise relative virtual addresses to
data directories contained within section bodies. Each data
directory may indicate how a specific section body’s data is
structured. The section bodies may lack a rigid file structure
and they can be organized in almost any way, provided the
corresponding section header and data directory entry pro-
vides enough information to locate and decipher the data in
the section body.

[0103] The PE file may also comprise a Table of Section
Headers 114, which may comprise a table that may imme-
diately follow the NT Headers 106. As previously men-
tioned, the PE file may have sections mapped out in the PE
File Header 108, which may comprise the content of the file,
including code, data, resources, and/or other executable
information. Each section may comprise a header and a
body, where the raw data or executable code may be stored.
The section headers may be arranged together, as each
section header may comprise a row or entry in the section
table. Each section header may comprise at least 40 bytes of
entry, including fields for identifying the size of the corre-
sponding section’s data and a pointer to the location of the
corresponding section’s data (e.g., the section body).
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[0104] The PE file may also comprise a number of Sec-
tions 116 (i.e., the section bodies). The Sections 116 may
also comprise certain predefined sections. For example, an
application for Windows NT typically has nine predefined
sections named .text, .bss, .rdata, .data, .rsrc, .edata, .idata,
.pdata, and .debug. Some applications may not utilize all of
these sections, while others may define still more sections to
suit their specific needs. The predefined sections illustrated
in FIGS. 1A and 1B may include the .text Section 118, the
.data Section 120, the .edata Section 122, and the .rsrc
Section 124.

[0105] From FIG. 1A, it can be seen that PE files may
comprise many places where executable code for malware
can be hidden. Some additional areas to hide executable
code can include resources, strings and variables, overlay,
and/or sections without execute permissions. Resources may
comprise external files and/or data that the PE file can use as
necessary. Resources may comprise an area of PE files that
malware detection solutions normally do not examine and
therefore, may be used to hide malicious code. Any sort of
executable code found inside resources may be highly
suspicious, and, in some embodiments, the systems and
methods described herein can be configured to identify and
flag executable code found inside resources for further
analysis.

[0106] In some embodiments, another file location in
which executable code may be hidden is within binary
strings and variables, which may comprise a sequence of
bytes. Unlike character strings and variables which usually
contain text data, binary strings and variables may be used
to hold non-traditional data (e.g., media). In some embodi-
ments, it may be common for malware to hide payloads
inside binary variables and strings. Existence of code in
these areas may be a strong indicator of malicious intent,
and, in some embodiments, the systems and methods
described herein can be configured to identify and flag
executable code found within binary strings and variables
for further analysis.

[0107] In some embodiments, another location in which
executable code may be hidden is the overlay. The overlay
of a PE file may be defined as any data that was appended
to the PE file and may not be intended to be mapped into
memory. In some embodiments, it is a common practice
among malware designers to hide payloads in overlays as
traditional malware detection solutions typically do not
examine the overlay. As such, in some embodiments, the
systems and methods described herein can be configured to
identify and flag executable code found in the overlay for
further analysis.

[0108] In some embodiments, another location to hide
executable code is within any sections without execute
permissions. As previously mentioned, each PE file may
comprise several sections. Every section may comprise its
own read, write and execute permissions. When loading the
PE to memory, the permissions may be inherited from the
section in the PE file. In some embodiments, malware
frequently hides malicious portions of their code inside
sections without execute permissions, as traditional detec-
tion systems do not normally check for malicious code
within those sections. Existence of any kind of code in these
sections may comprise an indicator for malicious intent. As
such, in some embodiments, the systems and methods
described herein can be configured to identify and flag
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executable code found within any sections without execute
permissions for further analysis.

Executable Code Detection Mechanism

[0109] Systems and methods are described herein for
identifying executable code (which may or may not be
associated with malware) within files. In some embodi-
ments, the malicious code may be located in areas of files
that are not typically associated with executable code but
can be places for hiding malware payloads. Although some
embodiments are directed to PE files and certain locations
within the files, some embodiments described herein can be
utilized to automatically detect code within any file format
or any location within a file. Creating an executable code
detection mechanism that can be successfully used in mal-
ware detection solutions and run on different parts of the file
is highly non-trivial. First, the mechanism may need to be
independent of the input size (e.g., it must function well
across different file sizes). Second, since the mechanism
may be potentially applied to many parts of a file, it may
need to maintain a very high level of accuracy so as to avoid
false positives (or false negatives). Finally, the task of
programmatically predicting if a stream of bytes is execut-
able code or has not been well explored.

[0110] In some embodiments, a stream of bytes from, for
example, a file are treated as language having words or
patterns that appear in a specific order that program a
specific function. Thus, the systems and methods described
herein may address a stream of code in a similar manner as
a series of words. The systems and methods described herein
may take advantage of the fact that executable code has
many common patterns. In some embodiments, these pat-
terns found in executable code can be exploited for detection
purposes by, for example, counting specific byte patterns in
order to detect if the data is executable code. More specifi-
cally, in some embodiments, n-gram features can be
extracted from the data. An n-gram may comprise a con-
tiguous sequence of words (or bytes in the case of code)
having a byte length of n. Each n-gram feature may com-
prise a counter that contains the amount of times that a
specific n-gram exists in the data. However, it will be
understood that n-gram extraction comprises only one
example method for extracting features from a stream of
bytes. In some embodiments, other feature generation algo-
rithms may be utilized to generate features from a stream of
bytes

[0111] More specifically, in some embodiments, a prede-
termined number of the most-frequent n-grams from code
sections can be determined. In some embodiments, the
predetermined number of n-grams may be about 500. In
some embodiments, predetermined number of n-grams may
be about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, 650, 700, 750, 800, 850, 900, 1000, 1500, 2000,
2500, 5000, 10000, and/or any value between two of the
aforementioned values. In some embodiments, the number
of n-grams may not be predetermined, and instead, every
n-gram present in the code sections may be used. In some
embodiments, the n-grams may comprise bi-grams (i.e.
n=2). In some embodiments, the n-grams may comprise
unigrams  (1-grams), bi-grams (2-gram), tri-grams
(3-grams), 4-grams, S5-grams, 6-grams, 7-grams, 8-grams,
9-grams, 10-grams, 11-grams, 12-grams, 20-grams, 50
grams, 100-grams, 200-grams, 500-grams, and/or any value
between two of the aforementioned values. In some embodi-
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ments, there may exist a trade-off between the number of
features generated and the number of samples when decid-
ing length n. In some embodiments, multiple length n-grams
may be used. For example, both bi-grams and tri-grams may
be used separately or in combination as features for the
predictive model. In some embodiments, n-grams of all
possible lengths may be used separately or in combination as
features for the predictive model. In some embodiments,
extracting n-grams of different length may require a separate
feature extraction for each length. The extraction process is
discussed below in reference to FIG. 2B.

[0112] In some embodiments, when using n-gram fea-
tures, each counter is normalized by the data length. In some
embodiments, those counters can be used as features for a
predictive machine learning model, which may be used to
determine whether a stream of bytes in one of these areas of
PE files is likely to be executable code.

[0113] In some embodiments, using bi-grams as features
in such machine learning models may achieve very high
accuracy rates while being invariant to the size of the data.
In some embodiments, the code detection process may be
used as part of feature extraction used in traditional malware
detection and analysis. In some of such embodiments, the
systems and methods described herein may estimate prob-
abilities associated with the likelihood that various locations
inside a file contain executable code, and those probabilities
may be used as a feature in constructing a model for
malware detection. For example, a main malware detection
model may be utilized that uses the code sections as input
and may check various features of the code sections, such as
the imports, strings in the file, and entropy. In some embodi-
ments, the probabilities from the random forests may serve
as three or more features for the main malware detection
model. Additionally, in some embodiments, any predicted
executable code can then be flagged for additional review by
a traditional malware detection and analysis program.

Preprocessing the Stream of Bytes

[0114] FIG. 2A illustrates an example snippet 202 of
machine code. More specifically, FIG. 2A illustrates a snip-
pet of x86 machine code with an example bigram (“B8 22”)
of bytes 204 highlighted. In some embodiments, the next
bigram in the stream could be “22 117, and the next one after
that could be “11 007, and so forth. It should be noted that
the executable code may be associated with any kind of
computing architecture (e.g., x86, AMD64, NET, ARM, and
so forth). In some embodiments, executable code generally
comprises one of three architectures: x86, AMD64, and
NET. In some embodiments, a machine learning model as
described herein may be trained in order to detect executable
code for each of these architectures and may select different
n-grams for each type, which can also be implemented as
three separate models that can be used depending on which
architecture the files follow.

[0115] Extracting N-grams from the stream of bytes com-
prises a process for providing the features for input to the
predictive machine learning model. Essentially, the n-grams
may serve as a repeated series of words of text. For
comparison purposes, FIG. 2B illustrates a process for
feature generation using a string of words. In the illustrated
example, three strings of words 206 are provided, which can
be compared to strings of bytes in a file. In some embodi-
ments, pre-processing may comprise analyzing the string of
bytes to generate a corpus of n-grams 208, which may
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comprise a predetermined number of the most common
sequence of bytes of n length within the string of bytes. In
the illustrated comparative example, a corpus 208 of bi-
grams has been generated comprising thirteen bi-grams
present within the associated strings of words 206. In some
embodiments, n-gram features 210 can be created from the
n-gram corpus 208 by moving sequentially through the byte
strings and counting how many instances of each n-gram of
the n-gram corpus 208 are present in each string of bytes. In
the illustrative comparative example, features 210 have been
generated, wherein each feature comprises thirteen counters,
wherein each counter corresponds to the number of each
n-gram numbered 0-13 of corpus 208 within each respective
stream of words 206. It should be noted that the counters
may exceed one, as there may be multiple identical n-grams
within the same stream of bytes. As such, one or more
n-gram features may be generated for input into a predictive
model for determining if the one or more stream of bytes
comprises executable code.

[0116] In some embodiments, utilizing n-grams may be
critical, as this can help capture the statistical structure of the
data and gives the predictive model the needed information
to determine whether the stream of bytes is executable code.

Predictive Model

[0117] In some embodiments, any suitable machine learn-
ing algorithm or combinations thereof may be used to build
the predictive machine learning model. Some examples of
such machine learning algorithms include support vector
machines (SVM), linear regression, K-nearest neighbor
(KNN) algorithm, logistic regression, naive Bayes, linear
discriminant analysis, decision trees, neural networks, simi-
larity learning, and so forth. In some embodiments, the
machine learning algorithm used to build the predictive
machine learning model may be capable of classification
(e.g., classifying code as either executable code or non-
executable code), and any classifier can be chosen. In some
embodiments, and as disclosed herein in the figures for
exemplary purposes, a Random Forest algorithm may be
used as the machine learning algorithm.

[0118] A Random Forest may comprise an ensemble
method using machine learning that utilizes multiple deci-
sion trees. In some embodiments, a decision tree may
comprise a machine learning algorithm capable of fitting
complex datasets and performing both classification and
regression tasks. For each machine architecture (e.g., x86,
AMD64, and .NET), a large number of code sections in that
architecture may be collected to serve as input data. Some of
the code sections may have executable code, and it may be
known which sections have executable code. In this way, the
model may understand how to determine a probability that
a stream of bytes comprises code.

[0119] A Random Forest may comprise an ensemble of
these decision trees, each trained independently on a noisy
version of the same data. The noise may be in the form of,
for example, column subsampling or data resampling. Dur-
ing inference, the trees decisions may be combined via
max-voting or averaging.

[0120] FIG. 3 illustrates an example result when using a
Random Forest model with n-gram features as input data, in
accordance with some embodiments of the present disclo-
sure. As discussed above, the code from various sections
(e.g. Data Directories 112 and Sections 116) of a file (e.g. a
PE 100) may be broken up into, for example, bi-grams and
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the 500 most frequent bi-grams may be determined along
with a count for how many times each of those bigrams
appeared across the code sections. These counts for the 500
most frequent bi-grams may be normalized by data length
and used as features for input into the predictive machine
learning model, as shown by lines 302 and 304. In some
embodiments, the system or machine learning algorithm
thereof may comprise three Random Forests 306, 308, and
310, one for each architecture, and each Random Forest may
comprise, for example, 500 features. The feature generation
may require a single traversal through the data (e.g. O(n)) or
may be completed using multiple traversals by the model.

[0121] In some embodiments, once the Random Forest
model is generated for each architecture, the three models
306, 308, and 310 can be run simultaneously for any input
without having to determine the architecture associated with
the input. In some embodiments, there is no significant delay
or effect on the efficiency of a malware detection model
utilizing the machine learning model described herein. In
some embodiments, this is because running each Random
Forest model takes, for example, about O(log(n)) operations,
which is negligible. This can be observed in FIG. 3, which
shows the set of three separate Random Forest models 306,
308, and 310 being run twice: once at arrow 302 on bytes of
from the Data Directories 112 of the PE file 100 and again
at arrow 304 on bytes from the Section Bodies 116 of the PE
file 100. For arrow 302, the code probabilities for the
architectures predicted by the Random Forest models are
x86: P1, x64: P2, and NET: P3. The probabilities P1, P2,
and P3 suggest how likely that the bytes from the Data
Directories 112 are executable x86, x64, or .NET code,
respectively. For the arrow 304, the code probabilities for the
architectures predicted by the Random Forest models are
x86: P4, x64: P5, and NET: P6. The probabilities P4, P5,
and 63 suggest how likely that the bytes from the Sections
116 are executable x86, x64, or NET code, respectively.

[0122] Although in some embodiments the Random For-
est models are useful for determining if bytes in various
areas of files are executable code, in the case that the bytes
are executable code, the question still remains regarding
whether the executable code is associated with a malware
payload. In other words, once code is detected, in some
embodiments, it may be flagged for further malware detec-
tion and analysis. However, empirical results show that, in
terms of detection, some code detector machine learning
models described herein are capable of providing an overall
malware detection boost of at least roughly 0.3%-from
97.7% to 98.0% on PE files in a test dataset. In addition, the
increase in malware detection by using code detector
machine learning models as described herein can be sub-
stantially higher for malware hiding executable code in
non-traditional places as described herein.

[0123] FIG. 4A illustrates an example flowchart for an
individual decision tree structure according to some embodi-
ments herein. Individually, each decision tree of a random
forest may comprise a branching structure, wherein each
branch is navigated by determining if a specific n-gram is
present in the stream of bytes or each if the specific n-gram
counter is greater than, less than, or equal to a specific value.
For example, node 402 may comprise a check of whether
“X” n-gram is present in the code section. If not, the decision
three 400 may proceed to node 404 to check if “Y” n-gram
is present within the code section. In some embodiments, the
decision tree may comprise any number of similar nodes
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before reaching a probability determination of whether
executable code is present in the code section. However, in
some embodiments, shallower (i.e. less nodes) trees may be
preferable because of bootstrap aggregation, or bagging.
Bagging can refer to a machine learning method which
improves the stability and accuracy of a model by reducing
variance and avoiding overfitting of the training data. Essen-
tially, the results of a large number of weak learners (e.g.
shallow trees) learning a different aspect of training data can
be averaged to produce a more accurate and stable model
than using a smaller number of strong learners (e.g. deeper
trees with more nodes). In fact, the use of deeper trees with
more nodes can result in overfitting of the training data.
Overfitting can occur when a model learns the detail and
noise in the training data to an extent that it negatively
impacts the performance of the model on new data. When
applied here, overfitting can result in the predictive model
treating noise or random fluctuations in the code section as
necessary features in executable code when, in fact, this
randomness may not apply to new code sections outside the
training set. Overfitting can negatively impact the predictive
model’s ability to generalize. Thus, in some embodiments,
the number of nodes per tree may be 30 or less to avoid
overfitting issues.

[0124] Referring back to FIG. 4A, the illustrated embodi-
ment comprises two nodes. In the illustrated embodiment, if
“Y” n-gram is not present in the code section, the decision
tree 400 may output a probability P1 at 408, while if “Y”
n-gram is present in the code section, a different probability
P2 may be output at 410. Alternatively, if “X” n-gram is
determined to be present at node 402, the decision tree may
proceed to check if “Z” n-gram is present at node 406.
Depending on the determination of whether “Z” n-gram is
present in the code section at node 406, a probability P3 may
be outputted at 412 (if “Z” n-gram is not present) or a
probability P4 may be outputted at 414 (if “Z” n-gram is
present).

[0125] FIG. 4B illustrates an example flowchart for a
random forest structure according to some embodiments
herein. For simplicity, in the illustrated embodiment, the
random forest structure is shown as comprising three deci-
sion trees. It will be understand by one skilled in the art that
the random forest may comprise plurality of decision trees
of any number, including, for example, 2 trees, 3 trees, 4
trees, 5 trees, 10 trees, 25 trees, 50 trees, 100 trees, 200 trees,
500 trees, 1,000 trees, 2,500 trees, 5,000 trees, 10,000 trees,
100,000 trees, 1,000,000 trees, or any number of trees in
between the aforementioned values. In the illustrated
embodiment, the random forest comprises decision tree 1
400A, decision tree 2 400B and decision tree 3 400C. As
discussed with respect to FIG. 4A, Tree 1 400A may output
a Tree 1 probability value 416A, Tree 2 400B may output a
Tree 2 probability value 416B, and Tree 3 400C may output
a Tree 3 probability value 416C. Each tree probability value
represents a probability that the inputted code section com-
prises executable code. In some embodiments, the probabil-
ity values are converted, averaged and/or otherwise manipu-
lated during a value conversion 418. In some embodiments,
the value conversion 418 may comprise a simple averaging
of the probability values 416A, 416B, and 416C. In some
embodiments, the probability of one or more trees may be
weighted more heavily than the probability value of one or
more other decision trees during the value conversion 418.
In some embodiments, a gradient boosting tree model may
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be utilized. In some embodiments, the result of the value
conversion 418 will be a random forest model value 420,
which represents a determined probability that the inputted
code is executable code in the architecture for which the
decision trees and random forest was designed.

Model Training and Testing

[0126] In some embodiments, decision trees may be
trained in a greedy fashion—that is, the pair of variable-
value within the training set that splits the data the “best” can
be selected at each iteration. The separation criteria may
vary between implementations, including, for example,
Information Gain and GINI, among others. During training
of the predictive model, various streams of bytes may be
tagged, wherein the stream may comprise different sections
from files. The sections can be tagged such that the model is
taught that some sections comprise executable code and that
other sections do not comprise executable code, but rather
raw data that is not a valid code. In some embodiments, a
plurality of these code sections can be inputted into the
model, for example using the n-gram feature extraction
method described above. Through this training process,
wherein known code and non-code sections are used, the
machine learning model may learn specific patterns inside
streams of bytes that indicate whether a stream of bytes
comprises executable code.

[0127] FIG. 5 illustrates an example flowchart for training
and testing a code detection model according to some
embodiments herein. In some embodiments, a samples data-
base 502 is provided comprising a plurality of code samples
for training the predictive model. A different samples data-
base 502 may be used for each predictive model for separate
architectures (e.g. x86, x64, NET). Preferably, the plurality
of code samples of samples database 502 may comprise a
plurality of non-executable code samples and a plurality of
executable code samples. In some embodiments, the plural-
ity code samples from samples database 502 are split into
executable code sections 502 and non-executable code sec-
tions 506. In some embodiments, the code sections 504 and
non-code sections 506 are further divided into code training
samples 508 and code test samples 510, while non-code
sections 506 are divided into non-code training samples 512
and non-code test samples 514. In some embodiments, the
code training samples 508 and the non-code training
samples 512 are then combined into a training set 516,
which can be used to train the predictive model as discussed
above. In some embodiments, the model is instructed as to
which samples in the training set 516 are executable code
and which samples are not executable code, such that the
predictive model can generate a series of decision trees,
which can be utilized individually or in combination (e.g.
Random Forest) as a code detection mechanism. In some
embodiments, the test set 518 can be used to test the
accuracy of the predictive model. Depending on the results
of the testing, different and/or additional samples from
samples database 502 may be used to further train the
predictive model.

[0128] In some embodiments, the samples database may
be constructed using code from Sections 116, as the sections
comprise most of the file information. As discussed above,
a file can be constructed from different Sections 116.
Because each section has permissions, the training set 516
can be constructed using a plurality of benign files for which
the permission information is known. As previously dis-
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cussed, it can be difficult to determine if a section is
executable code or not. Thus, it can be very problematic to
construct a training set 516 and test set 518 using different
Sections 116 from various sources and to execute each one
of them to determine which sections are executable code. In
fact, an inordinate amount of time and effort would need to
be spent to construct the training set 516 and test set 518
using this method. Instead, in some embodiments described
herein, benign files, like Microsoft files, and like files from
known, trusted vendors may be used. Furthermore, in some
embodiments, each file may be split into sections having
execution permissions that likely would comprise code, and
sections without execution permissions that likely would not
comprise code. In some embodiments, these prepared sec-
tions may be used to construct samples database 502.

Automatic Feature Extraction (AFE)

[0129] Some embodiments disclosed herein generally
relate to systems and methods for automatically extracting
features from code for use in malware detection. Efficient
and scalable malware recognition modules can be key
components of cybersecurity products.

[0130] Insome embodiments, an automatic feature extrac-
tion system or method may comprise a code-to-numeric
feature transformation followed a neural network for
extracting automatic features. In some embodiments, the
code-to-numeric transformation comprises a lookup table
which may replace small code units (e.g. bytes, words,
double words) into vectors of numeric values. In some
embodiments, for generating an input for the neural net-
work, Word2vec is used over byte codes. However, it will be
understood that the lookup table may be created via various
different mechanisms. In some embodiments, the neural
network may comprise a recurrent neural network (RNN). In
other embodiments, the systems and methods may comprise
a filtering mechanism for filtering the numeric channels
produced by the code-to-numerical transformation, followed
by a convolutional neural network.

Introduction

[0131] Malware detection modules may decide if an object
is a threat, based on the data they have collected on it. The
vast majority of static malware detection methods extract
highly-engineered features from files and use them to train
their Machine Learning (ML) models. However, systems
and methods for extracting useful features from executable
code are deficient. For this reason, most of the features used
in these solutions are related to the file’s metadata rather
than the actual code. In some instances, this approach works
because some malwares contain malicious indicators and
patterns in their metadata, such as invalid checksums, sus-
picious imported APIs and high entropy. However, whereas
one may edit a file’s metadata to disguise these patterns, the
executable code will always have malicious patterns as the
code contains the actual logic of the executable. For this
reason, human malware researchers are commonly used to
examine code and these human researches generally pay
much more attention to the executable code rather than the
metadata. The downside, however, is that human examina-
tion is generally slow, costly, and incredibly inefficient.
Thus, efficient and programmatic systems and methods for
propagating executable code features to Machine Learning
models can improve detection solutions significantly.
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[0132] In some embodiments, since manually extracting
features from code is difficult and inefficient, the systems
and methods described herein extract features automatically
using a neural network and Deep Learning (DL) (also
known as deep structured learning or hierarchical learning).
In some embodiments, DL methods are capable of achieving
superior results with raw data without having to extract
manual features from the raw data. This is part of the reason
that deep models have revolutionized the fields of NLP and
Vision—it is not trivial to extract features from data in these
fields. In some embodiments, DL comprises a specific type
of ML methods based on learning data representations. The
embodiments described herein are related to automatic fea-
ture extraction from executable code using a ML, model. In
some embodiments, the MLL model comprises a DL, model.
In some embodiments, the DL model comprises a neural
network. In some embodiments, the DI model may com-
prise a deep neural network, deep belief network, recurrent
neural network, and/or any other ML and/or DL model
structure known to those skilled in the art.

[0133] In some embodiments, the DL model comprises
multiple layers of linear or nonlinear processing units for
feature extraction and data transformation. In some embodi-
ments, each successive layer of the DL model uses the
output from the previous layer as an input. In some embodi-
ments, the DL, model may be a supervised, semi-supervised,
and/or unsupervised learning model. In some embodiments,
the DL, model comprises a credit assignment path (CAP)
comprising the chain of transformations from input to out-
put. In some embodiments, the DL. model comprises a
feedforward neural network with a CAP depth of 2, 3, 4, 5,
6,7, 8,9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600,
700, 800, 900, 1000, 2000, and/or between any of the
aforementioned values. In some embodiments, the DL com-
prises a recurrent neural network.

[0134] In some embodiments, the systems and methods
described herein train a neural network for malware predic-
tion directly from executable code. In some embodiments, a
file (e.g. Portable Executable) can be processed by the
trained neural network and the neural network can be used
as a “feature generator” for a broader malware detection
model. In some embodiments, the neural network (or any
other ML and/or DL model) can be used as an automatic
feature extractor from executable code. In some embodi-
ments, using features extracted from the ML and/or DL
model (e.g. neural network) significantly improves the
results of the malware detection model.

[0135] In some embodiments, generally, a neural network
is a ML model that is composed of several layers. In some
embodiments, each layer performs a transformation on the
data and sends the result to the next layer. In general, the last
layer of a neural network uses a final data transformation
from a penultimate layer of the neural network to predict a
label or classification of the data (e.g. this code is malware
or benign code). However, in some embodiments, the sys-
tems and methods described herein use the penultimate form
of the data (i.e. the data transformation immediately before
the last layer from which the final label or classification is
generated) as features for a malware detection model. In
some embodiments, since the neural network achieves its
final prediction from a single transformation to the penulti-
mate form of data, this form contains very strong informa-
tion regarding the maliciousness of the code. In some
embodiments, the systems and methods described herein
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may use any transformation of the data (i.e. input or output
from any layer of the neural network) to be used as a feature
in the main malware detection model.

[0136] In some embodiments, training and using the neu-
ral network on raw code is non-trivial. In some embodi-
ments, the size of code can vary considerably (e.g. from 1
KB to 100 MB and any value between the aforementioned
values), whereas deep models generally expect a fixed-size
input. Furthermore, in some embodiments, augmenting the
input data to a fixed maximum size is infeasible. Therefore,
in some embodiments an image scaling algorithm is used,
where the byte code is interpreted as a one-dimensional
“image” and is scaled to a fixed target size. In some
embodiments, the systems, methods, and devices herein
treat the code as a one-dimensional image. In some embodi-
ments, the code can be rescaled to a constant size using, for
example, an image rescaling approach (e.g. interpolation). In
some embodiments, the image scaling algorithm may com-
prise a type of data compression. However, by using an
image scaling algorithm, the distortion of spatial patterns
present in the data can be limited. Compared to approaches
of converting a malware binary file to a two-dimensional
image before doing classification, this approach may be
simpler since the height and width of the image do not need
to be determined. In some embodiments, converting to a
byte stream preserves the order of the binary code in the
original file, and this sequential representation of the data
makes it natural to apply a neural network architecture to the
data. In some embodiments, each byte stream is scaled to a
predetermined size. In some embodiments, the scaled code
corresponds to a sequence of 1-byte values.

[0137] Generally, certain methods attempt to classify a
malware directly from a binary file without needing to
extract features from the file. However, in some embodi-
ments, a ML and/or DL model can be trained and used for
malware classification from raw data, but alternatively used
as a method of automatically extracting features for a
separate malware detection model comprising various addi-
tional inputs. Therefore, in some embodiments, the input of
the neural network is different from traditional models in
that only the code serves as an input, not an entire file.
Furthermore, in some embodiments, the utilization of the
neural network is different from traditional models, which
are used to examine a file and classify the file as malware.
In some embodiments, the neural network described herein
is used instead for feature extraction. In some embodiments,
unlike traditional models, as described below, embedding is
completed before the data compression. Furthermore, due to
the differences in input, the neural network described herein
uses a different neural network architecture from a tradi-
tional model.

[0138] Insome embodiments, linear interpolation uses the
fact that similar byte values have a similar semantic mean-
ing. For example, this makes sense for images: a pixel with
value 230 and a pixel with value 228 look very similar in
color. However, in some embodiments, this is not the case in
executable code: two byte values that are close can represent
completely different opcodes. Thus, in some embodiments,
an embedding table is utilized before rescaling the data by
training another separate model (e.g. Word2Vec) on sections
of executable code. In some embodiments, the separate
model transforms the data into a numerical form that the
neural network can understand. In some embodiments, each
byte in the data can be translated to a fixed-size vector using
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the learned embedding table, and vectors in this new dimen-
sion maintain the required property for linear interpolation:
Euclidean similarity indicates semantic similarity.

[0139] FIG. 6 is a flowchart illustrating an example
embodiment of a feature extraction method using a neural
network according to various embodiments herein. To sum-
marize, the following comprises an example method for
training and using an automatic feature extraction system
and method according to some embodiments. In some
embodiments, the method may comprise providing a raw
input code at 602. In some embodiments, an embedding
table of size N is generated using a pre-processing neural
network (e.g. Word2Vec) on the input code at 604. In some
embodiments, N may be any integer. In some embodiments,
N is 4. In some embodiments, N may be 2, 3, 4, 5, 6, 7, 8,
9, 10, 15, 20, 25, 50, 100, 1000, 5000, 10000, 50000, and/or
any value in between the aforementioned values. In some
embodiments, the method may comprise preprocessing a
given stream of input code of size X by embedding each byte
using the learned embedding table. In some embodiments,
the results of the preprocessing is data in a two-dimensional
matrix of size (X, N). In some embodiments, the method
comprises using interpolation or down sampling such as, for
example, nearest neighbor, linear, spline or other to resize a
matrix to a fixed size at 606. In some embodiments, the
method comprises using linear interpolation to resize the
matrix to a fixed size. In some embodiments, the fixed size
may be (5000, 4). However, the fixed size may not be limited
and can comprise any combination of integers X and N. In
some embodiments, the down sampling is completed using
channel filtering. In some embodiments, the method further
comprises training a neural network (or other ML and/or DL
model) for malware prediction with the preprocessed data
serving as input for the neural network at 608. In some
embodiments, the method further comprises an inference,
wherein the neural network processes new data that is
presented to the model. In some embodiments, the method
further comprises, during inference, preprocessing the new
data and running the preprocessed new data through the
neural network at 608. In some embodiments, the method
further comprises extracting the output data from the pen-
ultimate layer (i.e. the input to the last layer of the neural
network) at 610 for use as a feature for a malware detection
model. In some embodiments, the actual result or prediction
of the neural network (i.e. output of the last layer of the
neural network) is discarded. In some embodiments, the
output data from the penultimate layer may be used as an
additional feature vector which represents the code and may
be concatenated and/or combined to other manual or auto-
matically extracted features. In some embodiments, the
output data may be used as an input to malware detection
machine learning model and can be used for training the
neural network.

Neural Network Architecture

[0140] In some embodiments, a neural network is con-
structed using a network comprising a fixed number of
layers of one-dimensional convolution, where each convo-
Iution may be followed by batch normalization and rectified
linear unit (ReL.U). ReLLU can refer to an activation function
in neural networks, such as in convolutional neural networks
(CNNs). In some embodiments, the fixed number of layers
of one-dimensional convolution may be 3. In some embodi-
ments, the fixed amount of layers of one-dimensional con-
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volution may be 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000,
and/or an amount between any of the aforementioned val-
ues.

[0141] In some embodiments, each convolution has a
kernel size, stride, and/or filters. In some embodiments,
stride controls how the filter convolves around the input
data. In some embodiments, the kernel size may be 7. In
some embodiments, the kernel size may be 1, 2, 3, 4, 5, 6,
7,8,9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, or 2000, and/or any amount between any of
the aforementioned values. In some embodiments, the stride
may be 1. In some embodiments, the stride may be 1, 2, 3,
4,5,6,7,8,9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000, or 2000, and/or any amount
between any of the aforementioned values. In some embodi-
ments, each convolution comprises 3 filters. In some
embodiments, each convolution comprises 1, 2, 3,4, 5, 6,7,
8, 9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, or 2000 filters, and/or any amount between
any of the aforementioned values. In some embodiments, the
filters may comprise a size of, for example, 30, 50, and/or
90.

[0142] In some embodiments, after the convolutional lay-
ers, the data is passed through one or more fully-connected
layers. In some embodiments, the model may comprise 2
fully-connected layers. In some embodiments, the model
may comprise 1, 2, 3,4,5,6,7,8,9, 10, 20, 30, 40, 50, 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000, or 2000
fully-connected layers, and/or any amount between any of
the aforementioned values. In some embodiments, the model
may comprise 2 fully-connected layers with 810 and 256
units, respectively. In some embodiments, each fully-con-
nected layer may comprise 1, 2, 3,4, 5, 6,7, 8,9, 10, 20, 30,
40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
2000, 3000, 4000, 5000, 10000, or 25000 units, and/or any
amount between any of the aforementioned values.

[0143] Insome embodiments, the extra embedding dimen-
sion can be treated as multiple input channels. In some
embodiments, the extra embedding dimension can be treated
as 4 input channels. In some embodiments, the extra embed-
ding dimension may comprise 1, 2, 3,4, 5,6, 7, 8,9, 10, 20,
30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, or 2000 input channels, and/or any amount between
any of the aforementioned values.

[0144] To avoid overfitting, the network may be trained
with dropout. Dropout can refer to ignoring units (i.e.
neurons) during the training phase of a certain set of neurons
which can be chosen at random. In some embodiments,
these ignored units are not considered during a particular
forward or backward pass. In some embodiments, at each
training stage, individual nodes are either dropped out of the
network with probability 1-P or kept with probability P, so
that a reduced network is left; incoming and outgoing edges
to a dropped-out node may also be removed. In some
embodiments, P is about 0.5. In some embodiments, P is
about 0.05, about 0.10, about 0.15, about 0.20, about 0.25,
about 0.30, about 0.35, about 0.40, about 0.45, about 0.50,
about 0.55, about 0.60, about 0.65, about 0.70, about 0.75,
about 0.80, about 0.85, about 0.90, about 0.95, or about 1.00,
and/or between any of the aforementioned values.

[0145] FIG. 7 illustrates an example feature extraction
method using a neural network according to some embodi-
ments herein. In some embodiments, after embedding and
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downsampling an input code, the preprocessed code is
provided to an input layer 702 of neural network 608. As
discussed above, in some embodiments, the neural network
comprises multiple layers of linear or nonlinear processing
units for feature extraction and data transformation. In some
embodiments, each successive layer of the neural network
uses the output from the previous layer as an input. Thus, in
some embodiments, input layer 702 performs a data trans-
formation on the preprocessed input code and sends the
output to a first hidden layer 704. Hidden layers can refer to
layers of a neural network that reside between the input layer
702 and an output layer 708. The word “hidden” can imply
that the hidden layers are not visible to the external systems
and are private to the neural network. Typically, the output
of any given hidden layer is not utilized, as the output
comprises transformed data that will eventually be used to
produce a result to be outputted by the output layer 708 after
traversal through all of the hidden layers. In some embodi-
ments, the neural network may comprise zero or more
hidden layers. In the illustrated embodiment, the neural
network comprises N hidden layers numbered from the first
hidden layer 704 to the Nth hidden layer 706. In some
embodiments, the Nth hidden layer 706 comprises the
penultimate layer of the neural network, directly before the
output layer 708. In a typical neural network, the output
layer 708 may provide an output classification based on the
purpose of the neural network. In this case, the output layer
708 may provide a classification of whether the input code
comprises malware. However, some embodiments of the
systems and methods described herein disregard the result of
the output layer 708. Instead, the final data transformation
generated from the Nth hidden layer 706 may be extracted
from the neural network 608 and used as a feature for a
separate, broader malware detection model 710. The mal-
ware detection model 710 may take as input, the feature
extracted from the Nth hidden layer 706, and/or features
from various other sources, to make a final determination of
whether the code is malware. In some embodiments, the
final data transformation of the neural network provides a
strong indication of whether the code is malware, especially
when combined with other indicator features in the broader
malware detection model 710.

Channel Filtering

[0146] FIG. 8 illustrates an example channel filtering
mechanism according to some embodiments herein. As
discussed above, in some embodiments, the input code 602
is unbounded. In some embodiments, the input code 602
may be a very short string of code or could be a very long
string code. However, the input layer 702 of the neural
network 608 must receive a fixed size input. In some
embodiments, the input layer 702 may take as input a sample
of, for example, 5,000 embedded vectors. In that case, for
large code sections, the code must be reduced or down
sampled to 5,000 samples of the code in some embodiments.
This can be done in various different ways. In some embodi-
ments, samples may be manually or automatically selected
from the code. In other embodiments, the code may be
divided into blocks and then aggregated, for example, by
taking the average response of each block as a sample.

[0147] However, in some embodiments, prior to down-
sampling, the code may undergo embedding, which can
refer to a modeling technique used for mapping the code to
vectors of real numbers. It can represent the code in vector
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space with one or more dimensions. Embeddings can be
generated using various methods like neural networks, co-
occurrence matrix, or probabilistic models. For example,
Word2Vec consists of models for generating word embed-
ding. These models can be shallow two layer neural net-
works having one input layer, one hidden layer and one
output layer. In some embodiments, embedding reformats
the code such that code that is present in a similar context
tends to be closer to each other in a produced vector space.
In some embodiments, the embedding results in a four
dimension vector space. The embedding step may be nec-
essary because the neural network functions using numerical
values as inputs. In some embodiments, the neural network
takes as input numerical values which may be received from
convolutions, additions, applications, and/or numerical
transformations. In some embodiments, the neural network
is not configured to use the raw code as an input. In some
embodiments, in order to transform the code into meaning-
ful numerical values which can then be down sampled and
inputted into the neural network, embedding must be uti-
lized.

[0148] Referring to FIG. 8, each of a plurality of channels
802A, 802B can represent one of the vector layers of the
embedded vector space. In some embodiments, each vector
layer is very large and must be further consolidated into a
plurality of blocks 804 A, 804B. In some embodiments, each
channel 802A, 802B may be consolidated into N blocks.
Once the channels are separated into blocks, a filter 806 may
be used to produce a response value or sample which may
represent that channel and specific blocks of the channel.
The purpose of the filtering mechanism can be to provide a
fixed size vector input to the neural network. In some
embodiments the code is inputted into an embedding layer
(e.g. Word2Vec), as described above, which may store an
embedding table to map code fragments represented by
indexes to vector representations. In some embodiments, the
embedding may comprise a representation of the code where
similar code fragments are assigned similar representations.
In other words, the embedding may represent code in one or
more coordinate systems wherein related code fragments,
based on a corpus of relationships, are placed closer
together.

[0149] Insome embodiments, the embedded code is input-
ted into a channel filtering system. In some embodiments,
the channel filtering system may perform filtering (e.g.
smoothing) of each channel to avoid aliasing and under-
sampling of the data. In some embodiments, the filter shape
may comprise, for example, a smoothing kernel (e.g. low-
pass filter), average filter (e.g. box filter), or Gaussian filter.
In some embodiments the sum of the filter values is 1.0. In
some embodiments, the filter comprises a one-dimensional
filter for each channel, wherein some or all channels have
the same filter length. In some embodiments, the filter length
may comprise an odd number and may be calculated as
Filter Length=1+2*floor(L/S* Alpha), wherein
O<=Alpha<=Alpha_max, L is the code length, and S is the
final sample size. Alpha_max may equal 1 in some embodi-
ments. In some embodiments, Alpha may be selected to be
equal to zero, causing the filter to be equivalent to a delta
function.

[0150] There are several forms of filters that may be used
to produce a response value or sample of fixed size for input
to the neural network. For example, functions for filtering
blocks 804A, 804B are illustrated in FIGS. 9, 10, and 11.
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FIG. 9 illustrates an example box function showing the
behavior of a filtering system according to some embodi-
ments herein. In the illustrated example, a range of values
from the range —R to R are selected from the block and given
equal weight, while values outside of the range are disre-
garded. The range -R to R is considered to be representative
of the entire block in the illustrated example. As such, the
size of the sample can be reduced by estimating represen-
tative value from that range. In the illustrated embodiment,
using a box function may result in the average embedded
value of the block codes being processed.

[0151] FIG. 10 illustrates an example Gaussian function
showing the behavior of a filtering system according to some
embodiments herein. In some embodiments, a Gaussian
filter can be used to filter the blocks 804A, 804B, such that
values in the middle of a range -R to R are included in the
filtered sample so that the estimated embedded value is
strongly effected according to values which are closer to the
center of the block as in expectation function in statistics

[0152] FIG. 11 illustrates an example delta function show-
ing the behavior of a filtering system according to some
embodiments herein. In the embodiment herein, a delta
function filtering mechanism may simply involve selecting
the middle value of blocks 804A, 804B as the filtered
sample.

[0153] Many other filtering mechanisms exist and are well
known to those skilled in the art. Any filtering mechanism
can be used in the systems and methods described herein. In
some embodiments, the result of the embedding and filtering
steps is a down sampled, embedded code sample, which can
be input into the neural network for feature generation.

Improvement in Malware Detection

[0154] In some embodiments, the systems and methods
herein detect and propagate features to a malware detection
model. In some embodiments, using extracted features may
significantly increase the detection capabilities of a malware
detection model. As an example, a malware detection model
was evaluated by checking the accuracy for a False Positive
rate of 0.04% (“validate” threshold) on 500,000 .NET files.
In this example evaluation, the neural network used alone
(i.e. the result or classification of the network) was found to
have a detection rate of 76.1% at the validate threshold. The
malware detection model alone was found to have a detec-
tion rate of 98.0%. The malware detection model utilizing
extracted features from an automatic feature extraction
system as described herein was found to have a detection
rate of 98.5%. A 0.5% increase in detection represents an
improvement of 25% as the model alone does not detect
around 2% of malware, but the model with feature extraction
does not detect around 1.5% of malware. Such increases are
significant in the malware detection field, as even a small
increase in detection capabilities can represent an enormous
enhancement in malware discovery over a large sample size
of files. Furthermore, it is very difficult to further improve a
model having a near-100% detection rate, and any such
improvement may save computer users from catastrophic
harmful software that would otherwise go undetected. It can
be noted that the neural network’s detection alone is rela-
tively low due to the very strict false positive rate of the
validate threshold. Most scientific articles use a much less
strict False Positive rate, and likely evaluate detection using
simpler datasets.
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Runtime Testing

[0155] As another example, a runtime test was performed
by running the malware detection model on 300 .NET files.
Without feature extraction, the text took about 4 seconds,
whereas with feature extraction, the test took about 6 sec-
onds. Overall, around 40% of the runtime constitutes feature
extraction. This increase may be deemed acceptable as the
feature extraction represents a significant improvement on
detection of previously undetected malware.

Position Independent Code Detection

[0156] Additional techniques, features, and aspects of the
present disclosure relate to techniques for identifying, flag-
ging, and/or detecting malicious executable code. Specifi-
cally, there exists a need for identifying, flagging, and,
detecting malicious software that attempts to utilize Oper-
ating System APIs in an abnormal way.

Introduction

[0157] In some embodiments, the systems and methods
described herein may detect pieces of code which indepen-
dently find and call a monitored function. In some embodi-
ments, the systems and methods described herein may be
used to detect pieces of code which attempt to obtain the
address of monitored functions without using traditional
approaches, such as Static or Dynamic imports. Many times,
threat actors use the Operating System API functions (“OS
API functions™”) e.g. via the correlated exported function
address, which might have been determined and called
independently (finding these functions in one or more non-
legitimate ways). For example, threat actors may attempt to
use these functions in an inherited abnormal state, after the
threat actor has successfully exploited some vulnerability.
Alternatively, threat actors may attempt to mask their opera-
tion such that computer security products will have difficulty
detecting the threat actors. Hence, the systems, methods, and
devices herein may be designed to identify threat actors
which attempt to obtain access to library functions and/or
function addresses independently.

[0158] In some embodiments, the systems and methods
herein may be directed to and/or comprise a positive trap for
detecting malware or other threat actors through a process of
identifying legitimate retrieval of library functions. In some
embodiments, the trap is embedded in an operating system.
In some embodiments, the trap may be triggered or engaged
by malware, allowing the methods and systems for library
position independent executable code detection described
herein to flag or identify the malware. In some embodi-
ments, the traps described herein may take advantage of a
threat actors attempt to gain access to system functions or
resources. In particular, the traps described herein may
detect threat actors that attempt to gain access to library
functions using non-traditional, irregular, atypical, anoma-
lous, or suspicious methods. In some embodiments, the traps
described herein may detect threats actors that access library
functions using non-traditional methods by monitoring sys-
tem functions to determine that they were not accessed using
traditional methods. In some embodiments, the traps
described herein take advantage of the fact that there are a
limited traditional number of ways of to locate and call
system functions and resources in order to detect a non-
traditional call using a process of elimination.
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[0159] In some embodiments, the technical advantage of
“traps” can arise from the fact that, usually, a benign piece
of code uses, directly or indirectly, the Loader of the
operating system. As such, if and when the use of the Loader
is monitored, some Loader API function executions can be
marked, monitored, and/or classified as benign or non-
benign. Thus, threat actors that determine the address of
functions without the Loader (for example, in the case of the
initial code executed after a successful exploit, which is
usually forced to be “position independent”) can be identi-
fied. An example of position independent code implemen-
tation may comprise scanning all process’ memory looking
for known function patterns, parsing the PEB structure, and
manually finding the relevant function addresses.

[0160] In some embodiments, traditional detection meth-
ods may assume that an attacker would find an address using
a known approach. However, some embodiments of the
systems and methods herein do not rely on detection of any
specific technique of obtaining function locations. Instead,
some embodiments of the systems and methods described
herein may monitor traditional function locating techniques
and flag and/or eliminate some or all code that executes a
system function without using traditional importing proce-
dures.

[0161] Operating systems including, for example, Win-
dows, MacOS, Linux, among others, may have defined
executable file formats (e.g. Portable Executable), that may
encapsulate the information necessary for the operating
system loader (e.g. Windows Loader) (“Loader”) to manage
wrapped executable code.

[0162] An executable may import/export functions and/or
data (“Symbols™) from/to other executables in the machine.
The Symbol import process may be implemented by the
Loader so that an executable file can easily import/export
Symbols. The Loader may also handle some or all pre-
requisitions in the Symbol import process.

[0163] In some embodiments, a piece of code in the
executable (“Code”) could execute locally, that is, execute
code that is located within the same region and/or execut-
able. In some embodiments, the Code can execute non-
locally by, for example, calling a function which is imple-
mented and therefore located in another executable. In some
embodiments, in order to call these non-local functions, the
Code needs to determine the location of a target function
(i.e. the virtual address of the function). The Code can locate
the virtual address of the target function using one or more
methods described below.

[0164] In some embodiments, the Code in the executable
can use the Loader API directly to locate the address
(“Dynamic Call”). In some embodiments, the Loader
exports a set of functions, in its own executable library,
allowing any code to dynamically load and retrieve infor-
mation from a valid executable file. Hence, the code in the
executable could use this API to load or locate the necessary
executable (e.g. using “LoadLibraryA” or “GetModuleHan-
dleA” API calls that interact with the Loader) and then locate
the target exported symbol (e.g. using “GetProcAddress”).
In some embodiments, the Code contains the address of the
above functions used to locate the virtual address via the
Loader API.

[0165] In some embodiments, the Code can locate the
virtual address of a function using the Loader implicitly
(“Static Call”). In some embodiments, an executable file
defines (e.g. as part of the PE format specification) which
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Symbols and libraries are needed for the executable to be
loaded and executed. In some embodiments, these Symbols
and libraries may be loaded as part of the executable
initialization process, such that the executable can use them
during its execution without explicitly loading and retrieving
the specified symbols by, for example, the Dynamic Call
approach described above. In some embodiments, using a
Static Call, the addresses of the imported functions will be
stored in the specified executable within, for example,
Import Address Table (thereafter “TAT”) entries. In some
embodiments, after the executable loading phase has ended,
the executable may call the imported functions indirectly
using the TAT table, without explicitly knowing where these
functions are located.

[0166] In some embodiments, the Code may determine a
function address independently (“Independent Call”). In
some embodiments, the Code may determine the address of
a target function without using a Static Call or a Dynamic
Call. In some embodiments, in order to find a target function
address, the code may perform one of the following: (a) find
the address of the target Symbol or module needed and infer
the target function address using the information that the PE
module contains; or (b) use other functions that encapsulate
the target function. In some embodiments, if the Code may
determine the address of one or more specific Loader
functions, the Code may also be able to determine the
address of any function within any module using the
Dynamic Call approach, and using these functions, could
also retrieve the address of any executable module and
function contained therein.

[0167] Determining the function address independently
may be achieved using many methods. However, several
known ways to do so are described below. In some embodi-
ments, the Code may locate the address independently using
internal Operating System structures data. For example, the
Loader maintains and uses internal data structures during
process execution. These data structures may include data
and information needed for the Loader to work properly and
efficiently. Among these data structures there may be several
data structures that could be used to determine where
symbols are located. For example, an application could use
the Process Environment Block (“PEB”). The Loader may
use the PEB for many purposes, including for maintaining
information regarding loaded modules. Thus, the Code
could retrieve the address of the executable it needs, and
then retrieve the function address or alternatively, retrieve
Loader related functions, as described above.

[0168] In some embodiments, the malicious code may
retrieve the target function address using a heuristic
approach. There may be many heuristic ways to determine
the address of a loaded module or location of a function. For
example, the virtual address space may comprise a pointer
that points into an Operating System related module, such as
NTDLL.DLL (the executable which holds many of the
Loader implementation code). The malicious code could
search for the module base address by reading backwards
page aligned pages until the executable headers are found.
Finally, the malicious code may be able find exported
Loader functions and use them to find/load the relevant
Symbols.

[0169] A Monitored Function, as described herein, may
comprise a function that will be monitored for attempts to
retrieve the function address independently. In some
embodiments, an Import Address Table (IAT) code, as
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described herein, may comprise, for a symbol S in execut-
able E, a piece of code which is executed because of an
indirect call using a corresponding IAT entry (of executable
E) for Symbol S. The IAT code may be used to mark a call
as a Static Call. A Detour code, as described herein, may
comprise, for symbol S, a piece of code which detours the
execution of function S. Using the Detour Code, this code,
the method of calling the function may be examined.

Implementation

[0170] In order to detect when the Code uses an Indepen-
dent Call to retrieve a Monitored Function address, some
embodiments of the systems and methods, and devices
described herein may identify legitimate Static Calls and
Dynamic Calls of the Monitored Function. In some embodi-
ments, by identifying Static Calls and Dynamic Calls, the
systems, methods, and devices described herein may, by
process of elimination, detect Independent Calls of the
Monitored Function.

[0171] In some embodiments, in order to detect Static
Calls, Dynamic Calls, and local calls, the Monitored Func-
tions may be instrumented to pivot the flow. In some
embodiments, the systems and methods described herein
may perform one or more of the following: (1) modify the
1AT stubs; (2) Detour the Monitored Function with a Detour
code; (3) Ensure that all modules are instrumented—for
every loaded module and for every new module load,
relevant data structures may be instrumented such that future
calls will be redirected to detection system flow; and (4)
monitor every call to the monitored functions and check
whether the caller accesses the function directly (i.e. not
through the Static/Dynamic/Local flow, which may be con-
sidered benign flows). In some embodiments, any attacker
that retrieves the address of the Monitored Functions using
an abnormal procedure (i.e. without using a Static Call/
Dynamic Call/Local Call) may not comprise the frame,
allowing the system and methods herein to identify the
attacker.

Static Flow

[0172] In some embodiments, the static flow represents
the case in which the Code initiates a function call to an
external executable (e.g. Monitored Function) using a Static
Call. As described above, the Code may initiate an indirect
call using the corresponding IAT table entry. In order to
detect the Static Call, some or all relevant IAT table entries
for the set of monitored functions may be instrumented such
that the flow will be pivoted to an IAT Code. In some
embodiments, the IAT Code may detect the Static Call,
update the relevant data structures, and restore the flow to
the original function target.

[0173] FIG. 12 illustrates an example diagram of a static
linking process according to some embodiments herein. In
some embodiments, an importing module 1202 may retrieve
an imported Symbol from an imported module 1204 using a
static linking flow. In some embodiments, both the import-
ing module 1202 and the imported module 1204 may
comprise a module header 1206, an NT header 1208, and
various optional headers 1210. In some embodiments, the
optional headers 1210 may comprise an export data direc-
tory 1212, an import data directory 1214 and/or an import
table directory 1216, among others. In some embodiments,
the import data directory 1214 points to import module data
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and code 1218 that can be used to import one or more
exported modules’ data and code 1230 from the imported
module 1204. In some embodiments, the import module data
and code 1218 may comprise import descriptors 1220,
including import names 1222, function names 1224, and
function addresses 1226. Import function code 1228 can be
used in combination with the function addresses 1226 in
order to call an imported function from the imported func-
tion 1204. This information can retrieved from the export
data directory 1212 of the imported module 1204. Similar to
the import data directory 1216, the export data directory
points to an export directory 1232, which includes export
names 1234, function names 1236, and/or function
addresses 1238. The export data directory 1214 points to
data that is used to resolve imports to the entry points within
the imported module 1204. Export function code 1240 can
be utilized in combination with the function addresses 1238
to provide the addresses to importing module 1202. As
previously noted, the static flow can occur as part of the
executable initialization process, such that the executable
can use the imported symbols during its execution without
explicitly loading and retrieving the specified symbols by,
for example, the Dynamic Call approach described above. In
some embodiments, using a Static Call, the addresses of the
imported functions will be stored in the specified executable
within, for example, Import Address Table (e.g. function
addresses 1226, thereafter “TAT”) entries. In some embodi-
ments, after the executable loading phase has ended, the
executable may call the imported functions indirectly using
the TAT table, without explicitly knowing where these
functions are located. In some embodiments, the export
function code 1240 comprises the code of the specified
exported functions. In some embodiments, when module
1202 is compiled, the compiler generates a piece of code that
uses the TAT, without knowing the specific values with the
TAT. In some embodiments, the Loader, which is an execut-
able implemented by the operating system, fills the TAT with
the specific values for module 1202.

[0174] FIG. 13 illustrates an example diagram of a library
independent code detection system and method for a static
linking process according to some embodiments herein. In
some embodiments, a hooking engine 1242 is utilized to
monitor static calls. In some embodiments, when the import-
ing module 1202 is attempting to retrieve an imported
function address 1238 of imported module 1204 that is a
monitored function, the systems and methods may involve
replacing the original function address 1238 with a modified
address. As such, in some embodiments, after loading the
imported function address 1238 into TAT table 1226, the
modified address will be provided and will be presented in
the loaded importing module 1202. In some embodiments,
upon execution, if the importing module 1202 attempts to
call the monitored function, instead of calling the original
function through its original function address, the modified
function address will redirect the call to the hooking engine
1242. In some embodiments, when the modified function
address is used to call the monitored function during execu-
tion, the call is instead directed to a trampoline code 1246 of
the hooking engine 1242. In some embodiments, the tram-
poline code verifies that the modified function address has
been called, which verifies that the importing module 1202
retrieved the function address via static call. As such, in
some embodiments, the call is marked as a valid call at 1244.
After marking the call as valid, the trampoline code may
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redirect the call back to the monitored function address for
execution. In addition to the trampoline, export function
code 1240 may be modified to detour the execution of the
modified function to the hooking engine 1242. In this way,
in some embodiments, before actual execution of the moni-
tored function, the call is detoured to a detour code 1248 in
the hooking engine 1242 to validate the call. In some
embodiments, after the call has been verified, the flow is
returned to the original monitored function for execution. In
some embodiments, the detour functionality may comprise
an aspect of the dynamic flow discussed below.

Dynamic Flow

[0175] Insome embodiments, the dynamic flow represents
the case where the Code initiates a function call to an
external executable using a Dynamic Call. In the dynamic
case, an executable may retrieve an external target address
on runtime. In this case, the executable may ask the Loader
where the external target could be found (both the target
module and function). In some embodiments, as described
above, the Code may initiate the call to the target function
after determining the function address using the Loader API
functions. In some embodiments, in order to detect the
Dynamic Call, the systems and methods herein control the
relevant Loader API functions that supply the information
(“Resolving Functions™) to the Code. In some embodiments,
the control may be implemented by detouring the resolving
functions and modifying their return values to the trampo-
line code 1246 for the corresponding Symbol. Using the
method described above, in some embodiments, when the
Code calls the returned address of the monitored function, it
will be redirected to the Detour Code 1248.

[0176] In some embodiments, in dynamic flow, the names
of the external libraries (shared libraries) are placed in the
final executable file while the actual linking takes place at
run time when both executable file and libraries are placed
in the memory. Dynamic flow can allow several programs to
use a single copy of an executable module.

[0177] FIG. 15 illustrates an example diagram of a
dynamic flow process according to some embodiments
herein. In the illustrated example, if a caller 1502 (i.e.
importing module 1202) needs to retrieve a module 1510
during runtime, it may be retrieved via various APIs, for
example, GetModuleHandle 1506. Using the API 1506, the
module handle can be retrieved from the Loader internal
records 1508, which may comprise N Modules 1510, 1512,
and 1514, among others. Additionally, the desired function
address may be acquired dynamically using the API Get-
ProcAddress 1504. However, in some embodiments, in
order to retrieve the functions dynamically using the APIs,
the caller 1502 must know where the relevant modules are
located. In order to monitor the dynamic flow, the return
address of the Loader relevant functions may be controlled,
including GetProcAddress 1504. As such, the systems and
methods herein may be configured to control the return
address, which may be, for example, the original function
address or a trampoline code.

[0178] FIG. 16 illustrates an example diagram of a library
independent code detection system and method for a
dynamic flow process according to some embodiments
herein. In some embodiments, the Loader' APIs (e.g. Get-
ProcAddress) can be modified by the systems and methods
herein to direct the flow of operations to the hooking engine
1242. In particular, in some embodiments, when GetPro-
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cAddress is used by importing module 1202 during runtime,
instead of returning the original imported function address,
the importing function will be directed to a GetProcAddress
trampoline code 1602. The GetProcAddress trampoline code
1602 may further direct the flow to a GetProc Address detour
code 1604. If the statically linked function APIs are being
used by the importing module 1202 to retrieve a monitored
function, the GetProcAddress detour code 1604 may redirect
the flow to the function name trampoline 1246, which was
discussed in relation to the static flow above. The function
name trampoline 1246 may verify the function call is
benign, since it traversed through the GetProcAddress tram-
poline code 1602 and the GetProcAddress detour code 1604,
indicating that the call was made dynamically. Similar to the
static flow, once verified, the trampoline code 1246 may call
the original function after verification. As shown in FIG. 14,
the verification data may be stored in a call database 1254.
Again, similar to the static flow, before execution of the
function, the export function code 1240 may be modified to
detour the execution into a detour code 1248, which further
verifies the benign nature of the call. After the detour code
1248 is completed, the flow may be returned to the original
function for execution.

Suspicious Flow

[0179] FIG. 14 illustrates an example diagram of a library
independent code detection system according to some
embodiments herein. In particular, FIG. 14 illustrates how,
in some embodiments, the hooking module would detect
suspicious code attempting to access functions indepen-
dently. In some embodiments, for example, a suspicious
code 1250 may attempt to forego retrieving a target function
via the static or dynamic flow) finding the target function
using metadata (i.e. export headers) within the imported
module 1204, 2) finding the target directly from the Loader’s
internal records 1252, or 3) calling the target function
directly without going through the corresponding trampo-
line. In any case, in some embodiments, the suspicious code
will not retrieve the modified address of the export function
code 1240 upon loading the monitored function though the
IAT table or the Loader. Thus, in some embodiments, upon
execution, the suspicious code’s call will not be directed to
the trampoline code 1246 and the call will not be verified as
a call made using the Loader. However, in some embodi-
ments, upon execution of the function using export function
code 1240, the call will still be detoured to detour code 1248
ot hooking engine 1242. As such, in some embodiments, the
hooking engine will verify, in the detour code 1248, that the
call was not completed via standard (e.g. static/dynamic/
local) flows because the corresponding trampoline code
1246 was not triggered. As such, the suspicious code 1250
can be flagged by the system as potentially malicious. In
some embodiments, the detour code 1248 represents a piece
of code that will be executed only when the monitored
functions is called (either by dynamic, static or indirect call).
This occurs because the systems and herein modify the
target function. Hence, if any executable, including tram-
poline code 1246 attempts to call the exported function, the
detour code will be executed.

Local Flow

[0180] As noted above, the Code may also initiate a Local
call. Thus, in some embodiments, neither a Static Call nor a
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Dynamic Call may be initiated by the Code, but an Inde-
pendent Call may not be necessary since the caller knows the
target function address in the same executable or region. In
order to differentiate between a locally-called function and
an independently Call, some embodiments of the systems,
methods, and devices herein may monitor the Detour Code
to determine if a return address is located in the same
executable/module as the Monitored Function. In some
embodiments, if the return address is located in the same
executable/module as the Monitored Function, the call may
be determined to be a local call, rather than a suspicious
Independent Call.

[0181] As such, through use of the trampoline codes,
detour codes, and/or modification of the IAT tables and
statically linked APIs, access to monitored functions may be
verified. If an executable is determined to access a moni-
tored function without using static, dynamic, or local calls,
it can be flagged by a hooking engine as suspicious or
malicious and may be reviewed further by malware detec-
tion software.

Computer System

[0182] In some embodiments, the systems, processes, and
methods described herein are implemented using a comput-
ing system, such as the one illustrated in FIG. 17. The
example computer system 1702 is in communication with
one or more computing systems 1720 and/or one or more
data sources 1722 via one or more networks 1718. While
FIG. 17 illustrates an embodiment of a computing system
1702, it is recognized that the functionality provided for in
the components and systems of computer system 1702 can
be combined into fewer components and systems, or further
separated into additional components and systems.

Computing System Components

[0183] The computer system 1702 can comprise a mal-
ware and code detection system 1714 that carries out the
functions, methods, acts, and/or processes described herein.
The computer system 1802 can comprise a malware and
code detection system 1714 executed on the computer
system 1702 by a central processing unit 1706 discussed
further below.

[0184] In general, the word “system,” as used herein,
refers to logic embodied in hardware or firmware or to a
collection of software instructions, having entry and exit
points. Systems are written in a program language, such as
JAVA, C, or C++, or the like. Software systems can be
compiled or linked into an executable program, installed in
a dynamic link library, or can be written in an interpreted
language such as BASIC, PERL, LUA, PHP or Python and
any such languages. Software systems can be called from
other systems or from themselves, and/or can be invoked in
response to detected events or interrupts. Systems imple-
mented in hardware include connected logic units such as
gates and flip-flops, and/or can comprise programmable
units, such as programmable gate arrays or processors.
[0185] Generally, the systems described herein refer to
logical systems that can be combined with other systems or
divided into sub-systems despite their physical organization
or storage. The systems are executed by one or more
computing systems and can be stored on or within any
suitable computer readable medium or implemented in-
whole or in-part within special designed hardware or firm-
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ware. Not all calculations, analysis, and/or optimization
require the use of computer systems, though any of the
above-described methods, calculations, processes, or analy-
ses can be facilitated through the use of computers. Further,
in some embodiments, process blocks described herein can
be altered, rearranged, combined, and/or omitted.

[0186] The computer system 1702 includes one or more
processing units (CPU) 1706, which can comprise a micro-
processor. The computer system 1702 further includes a
physical memory 1710, such as random access memory
(RAM) for temporary storage of information, a read only
memory (ROM) for permanent storage of information, and
a mass storage device 1704, such as a backing store, hard
drive, rotating magnetic disks, solid state disks (SSD), flash
memory, phase-change memory (PCM), 3D XPoint
memory, diskette, or optical media storage device. Alterna-
tively, the mass storage device can be implemented in an
array of servers. Typically, the components of the computer
system 1702 are connected to the computer using a stan-
dards based bus system. The bus system can be implemented
using various protocols, such as Peripheral Component
Interconnect (PCI), Micro Channel, SCSI, Industrial Stan-
dard Architecture (ISA) and Extended ISA (EISA) architec-
tures.

[0187] The computer system 1702 includes one or more
input/output (I/0) devices and interfaces 1712, such as a
keyboard, mouse, touch pad, and printer. The I/O devices
and interfaces 1712 can comprise one or more display
devices, such as a monitor, that allows the visual presenta-
tion of data to a user. More particularly, a display device
provides for the presentation of GUIs as application soft-
ware data, and multi-media presentations, for example. The
1/0O devices and interfaces 1712 can also provide a commu-
nications interface to various external devices. The com-
puter system 1702 can comprise one or more multi-media
devices 1708, such as speakers, video cards, graphics accel-
erators, and microphones, for example.

Computing System Device/Operating System

[0188] FIG. 17 is a block diagram depicting an embodi-
ment of a computer hardware system configured to run
software for implementing one or more embodiments of a
malware and code detection system.

[0189] The computer system 1702 can run on a variety of
computing devices, such as a server, a Windows server, a
Structure Query Language server, a Unix Server, a personal
computer, a laptop computer, and so forth. In other embodi-
ments, the computer system 1702 can run on a cluster
computer system, a mainframe computer system and/or
other computing system suitable for controlling and/or com-
municating with large databases, performing high volume
transaction processing, and generating reports from large
databases. The computing system 1702 is generally con-
trolled and coordinated by operating system software, such
as z/OS, Windows, Linux, UNIX, BSD, SunOS, Solaris,
MacOS, or other compatible operating systems, including
proprietary operating systems. Operating systems control
and schedule computer processes for execution, perform
memory management, provide file system, networking, and
1/O services, and provide a user interface, such as a graphical
user interface (GUI), among other things.

Network

[0190] The computer system 1702 illustrated in FIG. 17 is
coupled to a network 1718, such as a LAN, WAN, or the
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Internet via a communication link 1716 (wired, wireless, or
a combination thereof). Network 1718 communicates with
various computing devices and/or other electronic devices.
Network 1718 is communicating with one or more comput-
ing systems 1720 and one or more data sources 1722. The
computer system 1702 can comprise a malware and code
detection system 1714 that can access or can be accessed by
computing systems 1720 and/or data sources 1722 through
aweb-enabled user access point. Connections can be a direct
physical connection, a virtual connection, and other connec-
tion type. The web-enabled user access point can comprise
a browser system that uses text, graphics, audio, video, and
other media to present data and to allow interaction with data
via the network 1718.

[0191] The output system can be implemented as a com-
bination of an all-points addressable display such as a
cathode ray tube (CRT), a liquid crystal display (LCD), a
plasma display, or other types and/or combinations of dis-
plays. The output system can be implemented to communi-
cate with input devices and/or interfaces 1712 and they also
include software with the appropriate interfaces which allow
a user to access data through the use of stylized screen
elements, such as menus, windows, dialogue boxes, tool
bars, and controls (for example, radio buttons, check boxes,
sliding scales, and so forth). Furthermore, the output system
can communicate with a set of input and output devices to
receive signals from the user.

Other Systems

[0192] The computing system 1702 can comprise one or
more internal and/or external data sources (for example, data
sources 1722). In some embodiments, one or more of the
data repositories and the data sources described above can
be implemented using a relational database, such as DB2,
Sybase, Oracle, CodeBase, and Microsofit® SQL Server as
well as other types of databases such as a flat-file database,
an entity relationship database, and object-oriented data-
base, and/or a record-based database.

[0193] The computer system 1702 can also access one or
more data sources 1722. The data sources 1722 can be stored
in a database or data repository. The computer system 1702
can access the one or more data sources 1722 through a
network 1718 or can directly access the database or data
repository through I/O devices and interfaces 1712. The data
repository storing the one or more data sources 1722 can
reside within the computer system 1702.

URLSs and Cookies

[0194] In some embodiments, one or more features of the
systems, methods, and devices described herein can utilize
a URL and/or cookies, for example for storing and/or
transmitting data or user information. A Uniform Resource
Locator (URL) can comprise a web address and/or a refer-
ence to a web resource that is stored on a database and/or a
server. The URL can specify the location of the resource on
a computer and/or a computer network. The URL can
comprise a mechanism to retrieve the network resource. The
source of the network resource can receive a URL, identify
the location of the web resource, and transmit the web
resource back to the requestor. A URL can be converted to
an [P address, and a Doman Name System (DNS) can look
up the URL and its corresponding IP address. URLs can be
references to web pages, file transfers, emails, database
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accesses, and other applications. The URLs can comprise a
sequence of characters that identify a path, domain name, a
file extension, a host name, a query, a fragment, scheme, a
protocol identifier, a port number, a username, a password,
a flag, an object, a resource name and/or the like. The
systems disclosed herein can generate, receive, transmit,
apply, parse, serialize, render, and/or perform an action on a
URL.

[0195] A cookie, also referred to as an HTTP cookie, a
web cookie, an internet cookie, and a browser cookie, can
comprise data sent from a website and/or stored on a user’s
computer. This data can be stored by a user’s web browser
while the user is browsing. The cookies can comprise useful
information for websites to remember prior browsing infor-
mation, such as a shopping cart on an online store, clicking
of buttons, login information, and/or records of web pages or
network resources visited in the past. Cookies can also
comprise information that the user enters, such as names,
addresses, passwords, credit card information, etc. Cookies
can also perform computer functions. For example, authen-
tication cookies can be used by applications (for example, a
web browser) to identify whether the user is already logged
in (for example, to a web site). The cookie data can be
encrypted to provide security for the consumer. Tracking
cookies can be used to compile historical browsing histories
of individuals. Systems disclosed herein can generate and
use cookies to access data of an individual. Systems can also
generate and use JSON web tokens to store authenticity
information, HTTP authentication as authentication proto-
cols, IP addresses to track session or identity information,
URLSs, and the like.

Additional Embodiments

[0196] In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than restrictive sense.

[0197] Indeed, although this invention has been disclosed
in the context of certain embodiments and examples, it will
be understood by those skilled in the art that the invention
extends beyond the specifically disclosed embodiments to
other alternative embodiments and/or uses of the invention
and obvious modifications and equivalents thereof. In addi-
tion, while several variations of the embodiments of the
invention have been shown and described in detail, other
modifications, which are within the scope of this invention,
will be readily apparent to those of skill in the art based upon
this disclosure. It is also contemplated that various combi-
nations or sub-combinations of the specific features and
aspects of the embodiments may be made and still fall within
the scope of the invention. It should be understood that
various features and aspects of the disclosed embodiments
can be combined with, or substituted for, one another in
order to form varying modes of the embodiments of the
disclosed invention. Any methods disclosed herein need not
be performed in the order recited. Thus, it is intended that the
scope of the invention herein disclosed should not be limited
by the particular embodiments described above.

[0198] It will be appreciated that the systems and methods
of the disclosure each have several innovative aspects, no
single one of which is solely responsible or required for the
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desirable attributes disclosed herein. The various features
and processes described above may be used independently
of one another or may be combined in various ways. All
possible combinations and subcombinations are intended to
fall within the scope of this disclosure.

[0199] Certain features that are described in this specifi-
cation in the context of separate embodiments also may be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment also may be implemented in multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even initially claimed as
such, one or more features from a claimed combination may
in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination. No single feature or group
of features is necessary or indispensable to each and every
embodiment.

[0200] It will also be appreciated that conditional language
used herein, such as, among others, “can,” “could,” “might,”
“may,” “e.g.,” and the like, unless specifically stated other-
wise, or otherwise understood within the context as used, is
generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements and/or steps. Thus, such conditional lan-
guage is not generally intended to imply that features,
elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments nec-
essarily include logic for deciding, with or without author
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment. The terms “comprising,” “including,” “hav-
ing,” and the like are synonymous and are used inclusively,
in an open-ended fashion, and do not exclude additional
elements, features, acts, operations, and so forth. In addition,
the term “or” is used in its inclusive sense (and not in its
exclusive sense) so that when used, for example, to connect
a list of elements, the term “or” means one, some, or all of
the elements in the list. In addition, the articles “a,” “an,”
and “the” as used in this application and the appended claims
are to be construed to mean “one or more” or “at least one”
unless specified otherwise. Similarly, while operations may
be depicted in the drawings in a particular order, it is to be
recognized that such operations need not be performed in the
particular order shown or in sequential order, or that all
illustrated operations be performed, to achieve desirable
results. Further, the drawings may schematically depict one
more example processes in the form of a flowchart. How-
ever, other operations that are not depicted may be incor-
porated in the example methods and processes that are
schematically illustrated. For example, one or more addi-
tional operations may be performed before, after, simulta-
neously, or between any of the illustrated operations. Addi-
tionally, the operations may be rearranged or reordered in
other embodiments. In certain circumstances, multitasking
and parallel processing may be advantageous. Moreover, the
separation of various system components in the embodi-
ments described above should not be understood as requir-
ing such separation in all embodiments, and it should be
understood that the described program components and
systems may generally be integrated together in a single
software product or packaged into multiple software prod-
ucts. Additionally, other embodiments are within the scope

Dec. 8, 2022

of' the following claims. In some cases, the actions recited in
the claims may be performed in a different order and still
achieve desirable results.

[0201] Further, while the methods and devices described
herein may be susceptible to various modifications and
alternative forms, specific examples thereof have been
shown in the drawings and are herein described in detail. It
should be understood, however, that the invention is not to
be limited to the particular forms or methods disclosed, but,
to the contrary, the invention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the various implementations described and the
appended claims. Further, the disclosure herein of any
particular feature, aspect, method, property, characteristic,
quality, attribute, element, or the like in connection with an
implementation or embodiment can be used in all other
implementations or embodiments set forth herein. Any
methods disclosed herein need not be performed in the order
recited. The methods disclosed herein may include certain
actions taken by a practitioner; however, the methods can
also include any third-party instruction of those actions,
either expressly or by implication. The ranges disclosed
herein also encompass any and all overlap, sub-ranges, and
combinations thereof. Language such as “up to,” “at least,”
“greater than,” “less than,” “between,” and the like includes
the number recited. Numbers preceded by a term such as
“about” or “approximately” include the recited numbers and
should be interpreted based on the circumstances (e.g., as
accurate as reasonably possible under the circumstances, for
example +5%, +10%, £15%, etc.). For example, “about 3.5
mm” includes “3.5 mm.” Phrases preceded by a term such
as “substantially” include the recited phrase and should be
interpreted based on the circumstances (e.g., as much as
reasonably possible under the circumstances). For example,
“substantially constant” includes “constant.” Unless stated
otherwise, all measurements are at standard conditions
including temperature and pressure.

[0202] As used herein, a phrase referring to “at least one
of” a list of items refers to any combination of those items,
including single members. As an example, “at least one of:
A, B, or C” is intended to cover: A, B, C, Aand B, A and C,
B and C, and A, B, and C. Conjunctive language such as the
phrase “at least one of X, Y and Z,” unless specifically stated
otherwise, is otherwise understood with the context as used
in general to convey that an item, term, etc. may be at least
one of X, Y or Z. Thus, such conjunctive language is not
generally intended to imply that certain embodiments
require at least one of X, at least one of Y, and at least one
of'Z to each be present. The headings provided herein, if any,
are for convenience only and do not necessarily affect the
scope or meaning of the devices and methods disclosed
herein.

[0203] Accordingly, the claims are not intended to be
limited to the embodiments shown herein but are to be
accorded the widest scope consistent with this disclosure,
the principles and the novel features disclosed herein.
[0204] Embodiment #1: A computer-implemented method
for programmatically identifying executable code within a
file, the method comprising: accessing, by a computer
system, a sequence of bytes from a portion of the file;
extracting, by the computer system from the sequence of
bytes, a predetermined number of n-grams, wherein each
n-gram comprises a contiguous series of bytes in the
sequence of bytes, and wherein each contiguous series of
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bytes in each n-gram comprises n number of bytes; gener-
ating, by the computer system, an array of counters, each
counter of the array associated with one of the n-grams,
wherein each counter comprises an integer value, the integer
value generated based on the frequency of occurrence of the
associated n-gram within the sequence of bytes; providing,
by the computer system, the array of counters as an input
feature for a predictive machine learning model; and deter-
mining, by the predictive machine learning model, a model
probability value that the sequence of bytes comprises
executable code, wherein the computer system comprises a
computer processor and an electronic storage medium.
[0205] Embodiment #2: The method of Embodiment 1,
wherein the executable code is programmatically identified
without executing the sequence of bytes on the computer
system.

[0206] Embodiment #3: The method of Embodiment 1 or
2, further comprising flagging, by the computer system, the
sequence of bytes or the file for further analysis by a
malware detection system when the model probability value
that the sequence of bytes comprises executable code is
above a predetermined threshold.

[0207] Embodiment #4: The method of any one of
Embodiments 1-3, wherein the file comprises an executable
file format.

[0208] Embodiment #5: The method of any one of
Embodiments 1-4, wherein the file comprises a portable
executable (PE) file.

[0209] Embodiment #6: The method of any one of
Embodiments 1-5, wherein the portion of the file comprises
one or more of a resource, a string, a variable, an overlay, or
a section.

[0210] Embodiment #7: The method of any one of
Embodiments 1-6, wherein the portion of the file does not
comprise executable permissions.

[0211] Embodiment #8: The method of any one of
Embodiments 1-7, wherein the n-grams comprise bi-grams.
[0212] Embodiment #9: The method of any one of
Embodiments 1-7, wherein n is between 2 and 500.

[0213] Embodiment #10: The method of any one of
Embodiments 1-7, wherein the n-grams comprise: a first set
of n-grams, wherein n is a first integer for the first set of
n-grams; and a second set of n-grams, wherein n is a second
integer for the second set of n-grams, and wherein the first
integer is different from the second integer.

[0214] Embodiment #11: The method of any one of
Embodiments 1-10, wherein the predetermined number of
n-grams is 500.

[0215] Embodiment #12: The method of any one of
Embodiments 1-10, wherein the predetermined number of
n-grams is between 50 and 10,000.

[0216] Embodiment #13: The method of any one of
Embodiments 1-12, further comprising normalizing, by the
computer system, each counter by the data length of the
sequence of bytes.

[0217] Embodiment #14: The method of any one of
Embodiments 1-13, wherein the predictive machine learning
model comprises a plurality of separate models, each model
corresponding to a different machine architecture code.
[0218] Embodiment #15: The method of Embodiment 14,
wherein the machine architecture code comprises .NET,
x86, and/or x64.

[0219] Embodiment #16: The method of any one of
Embodiments 1-15, wherein the predictive machine learning
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model comprises at least one learning algorithm selected
from the group of: support vector machines (SVM), linear
regression, K-nearest neighbor (KNN) algorithm, logistic
regression, naive Bayes, linear discriminant analysis, deci-
sion trees, neural networks, or similarity learning.

[0220] Embodiment #17: The method of any one of
Embodiments 1-15, wherein the predictive machine learning
model comprises a random forest.

[0221] Embodiment #18: The method of Embodiment 17,
wherein the random forest comprises a plurality of decision
trees, each decision tree trained independently on a training
set of bytes.

[0222] Embodiment #19: The method of Embodiment 18,
wherein the model probability value is determined by aver-
aging a plurality of decision tree probability values, wherein
each decision tree probability value is generated by traversal
of the sequence of bytes through each individual decision
tree of the plurality of decision trees.

[0223] Embodiment #20: A computer system for program-
matically identifying executable code within a file, the
system comprising: one or more computer readable storage
devices configured to store a plurality of computer execut-
able instructions; and one or more hardware computer
processors in communication with the one or more computer
readable storage devices and configured to execute the
plurality of computer executable instructions in order to
cause the system to: access a sequence of bytes from a part
of the file; extract, from the sequence of bytes, a predeter-
mined number of n-grams, wherein each n-gram comprises
a contiguous series of bytes in the sequence of bytes, and
wherein each contiguous series of bytes in each n-gram
comprises n number of bytes; generate an array of counters,
each counter of the array associated with one of the n-grams,
wherein each counter comprises an integer value, the integer
value generated based on the frequency of occurrence of the
associated n-gram within the sequence of bytes; provide the
array of counters as an input feature for a predictive machine
learning model; and determine, by the predictive machine
learning model, a model probability value that the sequence
of bytes comprises executable code.

[0224] Embodiment #21: A computer-implemented
method for automatically extracting a machine learning
feature from executable code for input to a malware detec-
tion model, the method comprising: accessing, by a com-
puter system, the executable code from a file; inputting, by
the computer system, the executable code to an image
rescaling algorithm comprising an embedding matrix,
wherein the image rescaling algorithm is configured to
convert each byte of the executable code to a numerical
vector using the embedding matrix to produce an embedded
vector space, and wherein the order of the executable code
is maintained during the conversion; channel filtering, by the
computer system, one or more vector layers of the embedded
vector space, wherein the channel filtering comprises: con-
solidating the one or more vector layers into a plurality of
blocks; and applying a filter mechanism to produce one or
more fixed size vector inputs, each fixed size vector input
representing a corresponding vector layer or a block of the
corresponding vector layer; inputting, by the computer sys-
tem, the one or more fixed size vector inputs into an input
layer of a neural network, the neural network comprising a
plurality of layers of processing units, wherein the plurality
of layers comprise at least the input layer, one or more
hidden layers, and an output layer, wherein each successive
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layer of the plurality of layers uses an output value from a
previous layer as an input value, and wherein the output
layer is configured to generate a classification of malicious-
ness of the executable code; extracting, by the computer
system, the output value of a final hidden layer immediately
preceding the output layer of the neural network; and
providing, by the computer system, the output value of the
final hidden layer as a machine learning feature to the
malware detection model, wherein the computer system
comprises a computer processor and an electronic storage
medium.

[0225] Embodiment #22: The method of Embodiment 21,
wherein the neural network comprises a supervised, semi-
supervised, or unsupervised learning model.

[0226] Embodiment #23: The method of Embodiment 21
or 22, wherein the executable code is part of a portable
executable (PE) file.

[0227] Embodiment #24: The method of any one of
Embodiments 21-23, wherein each of the one or more
hidden layers is configured to perform a transformation on
the input value to generate the output value for an immedi-
ately consecutive layer.

[0228] Embodiment #25: The method any one of Embodi-
ments 21-24, wherein the image rescaling algorithm com-
prises a pre-processing neural network, the pre-processing
neural network comprising Word2 Vec.

[0229] Embodiment #26: The method of any one of
Embodiments 21-25, further comprising discarding the clas-
sification of maliciousness of the executable code from the
output layer of the neural network.

[0230] Embodiment #27: The method of any one of
Embodiments 21-26, wherein the neural network comprises
between 1 and 2000 hidden layers.

[0231] Embodiment #28: The method of any one of
Embodiments 21-27, wherein the filter mechanism com-
prises a low-pass filter, box filter, delta filter, or Gaussian
filter.

[0232] Embodiment #29: A computer system for automati-
cally extracting a machine learning feature from executable
code for input to a malware detection model, the system
comprising: one or more computer readable storage devices
configured to store a plurality of computer executable
instructions; and one or more hardware computer processors
in communication with the one or more computer readable
storage devices and configured to execute the plurality of
computer executable instructions in order to cause the
system to: access the executable code from a file; input the
executable code to an image rescaling algorithm comprising
an embedding matrix, wherein the image rescaling algo-
rithm converts each byte of the executable code to a numeri-
cal vector using the embedding matrix to produce an embed-
ded vector space, and wherein the order of the executable
code is maintained during the conversion; channel filter one
or more vector layers of the embedded vector space by:
consolidating the one or more vector layers into a plurality
of'blocks; and applying a filter mechanism to produce one or
more fixed size vector inputs, each fixed size vector input
representing a corresponding vector layer or a block of the
corresponding vector layer; input the one or more fixed size
vector inputs into an input layer of a neural network, the
neural network comprising a plurality of layers of process-
ing units, wherein the plurality of layers comprise at least the
input layer, one or more hidden layers, and an output layer,
wherein each successive layer of the plurality of layers uses
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an output value from a previous layer as an input value, and
wherein the output layer is configured to generate a classi-
fication of maliciousness of the executable code; extract the
output value of a final hidden layer immediately preceding
the output layer of the neural network; and provide the
output value of the final hidden layer as a machine learning
feature to the malware detection model.

[0233] Embodiment #30: The system of Embodiment 29,
wherein the neural network comprises a supervised, semi-
supervised, or unsupervised learning model.

[0234] Embodiment #31: The system of Embodiment 29
or 30, wherein the executable code is part of a portable
executable (PE) file.

[0235] Embodiment #32: The system of any one of
Embodiments 29-31, wherein each of the one or more
hidden layers is configured to perform a transformation on
the input value to generate the output value for an immedi-
ately consecutive layer.

[0236] Embodiment #33: The system any one of Embodi-
ments 29-32, wherein the image rescaling algorithm com-
prises a pre-processing neural network, the pre-processing
neural network comprising Word2 Vec.

[0237] Embodiment #34: The system of any one of
Embodiments 29-33, wherein the system is further caused to
discard the classification of maliciousness of the executable
code from the output layer of the neural network.

[0238] Embodiment #35: The system of any one of
Embodiments 29-34, wherein the neural network comprises
between 1 and 2000 hidden layers.

[0239] Embodiment #36: The system of any one of
Embodiments 29-35, wherein the filter mechanism com-
prises a low-pass filter, box filter, delta filter, or Gaussian
filter.

[0240] Embodiment #37: A system for library position
independent code detection, the system comprising: one or
more computer readable storage devices configured to store
a plurality of computer executable instructions; and one or
more hardware computer processors in communication with
the one or more computer readable storage devices and
configured to execute the plurality of computer executable
instructions in order to cause the system to: instrument an
import address table (IAT) entry of a monitored symbol, the
instrumenting of the IAT entry comprising: replacing a
monitored symbol address within the IAT entry of the
monitored symbol with a modified address; executing a
trampoline code upon a call of the modified address to detect
and validate a static call of the monitored symbol; and
redirecting the call of the modified address to the monitored
symbol address; instrument one or more Loader API func-
tions, the instrumenting of the one or more Loader API
functions comprising: modifying the one or more Loader
API functions to return values that lead to the trampoline
code; detouring the execution of the monitored symbol to a
detour code to detect and validate a call of the monitored
symbol; redirecting the call of the monitored symbol to the
monitored symbol address; monitor the trampoline code and
the detour code of the monitored symbol to determine if calls
from an executable comprise a static call, a dynamic call, or
a local call; if the system determines that at least one call
from the executable does not comprise a static call, dynamic
call, or a local call, flag the executable as suspicious or
malicious for a malware detection system.

[0241] Embodiment #38: The system of Embodiment 37,
wherein the system is further caused to, if the system
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determines that the at least one call does not comprise a
static call, dynamic call, or local call, classify the at least one
call as an independent call.

[0242] Embodiment #39: The system of Embodiment 37,
wherein the system is further caused to, if the system
determines that the calls comprise a static call, dynamic call,
or local call, classify the calls as benign calls.

[0243] Embodiment #40: The system of Embodiment 37
or 39, wherein the system is further caused to, if the system
determines that the calls comprise a static call, dynamic call,
or local call, classify the executable as benign.

[0244] Embodiment #41: The system of any one of
Embodiments 37-40, further comprising: A hooking engine
comprising the trampoline code and the detour code; and
one or more call databases configured to store data related to
the calls.

[0245] Embodiment #42: The system of any one of
Embodiments 37-41, wherein the dynamic call comprises an
attempted retrieval of the monitored symbol address during
execution of the executable.

[0246] Embodiment #43: The system of any one of
Embodiments 37-42, wherein the static call comprises an
attempted retrieval of the monitored symbol address during
initialization of the executable.

[0247] Embodiment #44: The system of any one of
Embodiments 37-43, wherein determination of whether the
calls from the executable comprise a local call comprises
monitoring the detour Code to determine if a return address
is located in the same executable as the monitored symbol.
[0248] Embodiment #45: The system of any one of
Embodiments 37-44, wherein the one or more Loader API
functions comprise one or both of GetModuleHandle or
GetProcAddress.

[0249] Embodiment #46: The system of Embodiment 1,
wherein the at least one call is initiated by the executable
using metadata retrieved from a module comprising the
monitored symbol

[0250] Embodiment #47: The system of Embodiment 1,
wherein the at least one call is initiated by the executable
using data retried from a Loader internal record.

[0251] Embodiment #48: The system of Embodiment 1,
wherein the at least one call is initiated by the executable by
calling the monitored symbol without triggering the tram-
poline code.

[0252] Embodiment #49: A computer implemented
method for library position independent code detection, the
method comprising: instrumenting, by a computer system,
an import address table (IAT) entry of a monitored symbol,
the instrumenting of the IAT entry comprising: replacing a
monitored symbol address within the IAT entry of the
monitored symbol with a modified address; executing a
trampoline code upon a call of the modified address to detect
and validate a static call of the monitored symbol; and
redirecting the call of the modified address to the monitored
symbol address; instrumenting, by the computer system, one
or more Loader API functions, the instrumenting of the one
or more Loader API functions comprising: modifying the
one or more Loader API functions to return values that lead
to the trampoline code; detouring the execution of the
monitored symbol to a detour code to detect and validate a
call of the monitored symbol; redirecting the call of the
monitored symbol to the monitored symbol address; moni-
toring, by the computer system the trampoline code and the
detour code of the monitored symbol to determine if calls
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from an executable comprise a static call, a dynamic call, or
a local call; if the computer system determines that at least
one call from the executable does not comprise a static call,
dynamic call, or a local call, flagging, by the computer
system, the executable as suspicious or malicious for a
malware detection system, wherein the computer system
comprises a computer processor and an electronic storage
medium.

[0253] Embodiment #50: The method of Embodiment 49,
further comprising, if the computer system determines that
the at least one call does not comprise a static call, dynamic
call, or local call, classifying the at least one call as an
independent call.

[0254] Embodiment #51: The method of Embodiment 50,
further comprising, if the computer system determines that
the calls comprise a static call, dynamic call, or local call,
classifying the calls as benign calls.

[0255] Embodiment #52: The method of Embodiment 50
or 51, further comprising, if the computer system determines
that the calls comprise a static call, dynamic call, or local
call, classitying the executable as benign.

[0256] Embodiment #53: The method of any one of
Embodiments 49-52, wherein the trampoline code and the
detour code comprise one or more portions of a hooking
engine, the hooking engine connected to a call database
configured to store data related to the calls.

[0257] Embodiment #54: The method of any one of
Embodiments 49-53, wherein the dynamic call comprises an
attempted retrieval of the monitored symbol address during
execution of the executable.

[0258] Embodiment #55: The method of any one of
Embodiments 49-54, wherein the static call comprises an
attempted retrieval of the monitored symbol address during
initialization of the executable.

[0259] Embodiment #56: The method of any one of
Embodiments 49-55, wherein determination of whether the
calls from the executable comprise a local call comprises
monitoring the detour Code to determine if a return address
is located in the same executable as the monitored symbol.
[0260] Embodiment #57: The method of any one of
Embodiments 49-56, wherein the one or more Loader API
functions comprise one or both of GetModuleHandle or
GetProcAddress.

[0261] Embodiment #58: The method of any one of
Embodiments 49-57, wherein the at least one call is initiated
by the executable using metadata retrieved from a module
comprising the monitored symbol.

[0262] Embodiment #59: The method of Embodiment 58,
wherein the at least one call is initiated by the executable
using data retried from a Loader internal record.

[0263] Embodiment #60: The method of Embodiment 58,
wherein the at least one call is initiated by the executable by
calling the monitored symbol without triggering the tram-
poline code.

1. (canceled)

2. A computer-implemented method for programmatically
identifying executable code within a file, the method com-
prising:

accessing, by a computer system, a sequence of bytes

from a portion of the file;

extracting, by the computer system from the sequence of

bytes, a predetermined number of n-grams, wherein
each n-gram comprises a contiguous series of bytes in
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the sequence of bytes, and wherein each contiguous
series of bytes in each n-gram comprises n number of
bytes;

generating, by the computer system, an array of counters,

each counter of the array associated with one of the
n-grams, wherein each counter comprises an integer
value, the integer value generated based on the fre-
quency of occurrence of the associated n-gram within
the sequence of bytes;

providing, by the computer system, the array of counters

as an input feature for a predictive machine learning
model; and

determining, by the predictive machine learning model, a

model probability value that the sequence of bytes
comprises executable code,

wherein the computer system comprises a computer pro-

cessor and an electronic storage medium.

3. The method of claim 2, wherein the executable code is
programmatically identified without executing the sequence
of bytes on the computer system.

4. The method of claim 2, further comprising flagging, by
the computer system, the sequence of bytes or the file for
further analysis by a malware detection system when the
model probability value that the sequence of bytes com-
prises executable code is above a predetermined threshold.

5. The method of claim 2, wherein the file comprises an
executable file format.

6. The method of claim 5, wherein the file comprises a
portable executable (PE) file.

7. The method of claim 6, wherein the portion of the file
comprises one or more of a resource, a string, a variable, an
overlay, or a section.

8. The method of claim 2, wherein the portion of the file
does not comprise executable permissions.

9. The method of claim 2, wherein the n-grams comprise
bi-grams.

10. The method of claim 2, wherein n is between 2 and
500.

11. The method of claim 2, wherein the n-grams comprise:

a first set of n-grams, wherein n is a first integer for the

first set of n-grams; and

a second set of n-grams, wherein n is a second integer for

the second set of n-grams, and wherein the first integer
is different from the second integer.

12. The method of claim 2, wherein the predetermined
number of n-grams is 500.

13. The method of claim 2, wherein the predetermined
number of n-grams is between 50 and 10,000.

14. The method of claim 2, further comprising normaliz-
ing, by the computer system, each counter by the data length
of the sequence of bytes.
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15. The method of claim 2, wherein the predictive
machine learning model comprises a plurality of separate
models, each model corresponding to a different machine
architecture code.

16. The method of claim 15, wherein the machine archi-
tecture code comprises .NET, x86, and/or x64.

17. The method of claim 2, wherein the predictive
machine learning model comprises at least one learning
algorithm selected from the group of: support vector
machines (SVM), linear regression, K-nearest neighbor
(KNN) algorithm, logistic regression, naive Bayes, linear
discriminant analysis, decision trees, neural networks, or
similarity learning.

18. The method of claim 2, wherein the predictive
machine learning model comprises a random forest.

19. The method of claim 18, wherein the random forest
comprises a plurality of decision trees, each decision tree
trained independently on a training set of bytes.

20. The method of claim 19, wherein the model probabil-
ity value is determined by averaging a plurality of decision
tree probability values, wherein each decision tree probabil-
ity value is generated by traversal of the sequence of bytes
through each individual decision tree of the plurality of
decision trees.

21. A computer system for programmatically identifying
executable code within a file, the system comprising:

one or more computer readable storage devices config-

ured to store a plurality of computer executable instruc-
tions; and

one or more hardware computer processors in communi-

cation with the one or more computer readable storage

devices and configured to execute the plurality of

computer executable instructions in order to cause the

system to:

access a sequence of bytes from a part of the file;

extract, from the sequence of bytes, a predetermined
number of n-grams, wherein each n-gram comprises
a contiguous series of bytes in the sequence of bytes,
and wherein each contiguous series of bytes in each
n-gram comprises n number of bytes;

generate an array of counters, each counter of the array
associated with one of the n-grams, wherein each
counter comprises an integer value, the integer value
generated based on the frequency of occurrence of
the associated n-gram within the sequence of bytes;

provide the array of counters as an input feature for a
predictive machine learning model; and

determine, by the predictive machine learning model, a
model probability value that the sequence of bytes
comprises executable code.

#* #* #* #* #*
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