PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOGF 9/302, 9/38 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/12628

26 March 1998 (26.03.98)

(21) International Application Number: PCT/GB97/02261

(22) International Filing Date: 22 August 1997 (22.08.97)

(30) Priority Data:

9619834.6 GB

23 September 1996 (23.09.96)

(71) Applicant: ADVANCED RISC MACHINES LIMITED
[GB/GB]; 90 Fulbourn Road, Cherry Hinton, Cambridge
CB1 4JN (GB).

(72) Inventors: JAGGAR, David, Vivian, 48 Mandrill Close,
Cherry Hinton, Cambridge CB1 4TN (GB). GLASS, Simon,
James; 27 Coitsfoot Close, Cherry Hinton, Cambridge CB!
SYH (GB).

(74) Agent: ROBINSON, Nigel, Alexander, Julian; D. Young &
Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(81) Designated States: CN, IL, JP, KR, RU, European patent (AT,
BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: DATA PROCESSING SYSTEM REGISTER CONTROL

Rn CP Register
16 Select
H Ny
Refill ____T_E_Y % 16
Rn | Control
\
——— 10
12/ Magazine
Coprocessor Registers

(57) Abstract

A data processing system having a plurality of registers (10) and an arithmetic logic unit (20, 22, 24) is responsive to program
instruction words. At least one program instruction word includes a destination register bit field < dest > specifying a destination register
of a result data word and a destination register write disable flag for disabling writing of that result data word to the destination register.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco ™D Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali T Trinidad and Tobago
Benin 1E Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania uG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Tealy MX Mexico Uz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe
Cbte d’Ivoire KP Democratic People's NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany L1 Liechtenstein sD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

25

WO 98/12628 PCT/GB97/02261

1
DATA PROCESSING SYSTEM REGISTER CONTROL

This invention relates to the field of data processing. More particularly, this
invention relates to data processing systems including registers for storing data words
to be manipulated by an arithmetic logic unit and for storing result data words
produced by the arithmetic logic unit.

It is known to provide data processing systems having a plurality of registers
and an arithmetic logic unit for reading and writing to those registers. It is a constant
aim within data processing systems to increase the speed with which they operate.
One technique for increasing speed is to adopt an instruction set with relatively few
instructions, but with the hardware configured to run each of those instructions at high
speed. This design philosophy is often referred to as reduced instruction set
computing (RISC). Within a RISC system it is desirable that those few instructions
that are provided have a great degree of flexibility and utility.

One instruction that is sometimes useful is to proform a calculation be not to
store the result to a working register. One way to achieve this is the provision of a
dedicated sink register to which the unwanted result may be written and whose
contents are fixed and/or always zero. However, this sync register uses up a location
in the register address space that is unavailable for normal processing. Furthermore,
writing to the sink register may consume unnecessary power.

Viewed from one aspect the present invention provides apparatus for data
processing, said apparatus comprising:

a plurality of registers for storing data words to be manipulated; and

an arithmetic logic unit responsive program instruction words to perform
arithmetic logic functions specified by said program instruction words to generate
result data words; wherein

said arithmetic logic unit is responsive to at least one program instruction word
that includes:

(1) a destination register bit field specifying a destination register of said

plurality of registers into which a result data word from said program
instruction word is to be written; and

(i1) destination register write disable flag for selectively disabling said

[89)
Lh

WO 98/12628 PCT/GB97/02261

2
writing of said result data word to said destination register.
The provision of a write disable flag within a program tnstruction word allows

an increase in the data processing functions that may be achieved without any

significant increase in the hardware overhead. The present invention does not waste

W

address space within the register specifying field and allows power consumption upon
an unwanted register write to be reduced.

The present invention has a particular synergy in systems that also provide an
output buffer and wherein said at least one program instruction word includes an
output buffer write flag for selectively enabling writing of said result data word to said
10 output buffer.

In this way, when 1t is known that a result data word does not require further
manipulation by the arithmetic logic unit and yet is required by the external system,
then no power is wasted in saving the result data word to a register and yet the result
may be written to an output buffer and for use elsewhere. In a complementary
fashion. when the result data word is not required externally of the arithmetic logic
unit then the write to the output buffer is disabled and so power and capacity of the
output buffer saved. Furthermore. a separate instruction for transferring data from a
register to the output buffer is not required.

The destination register write disable flag need not be used exclusively for the
20 function specified above. In particular. in circumstances in which the arithmetic logic
unit is able to operate to generate result data words of differing sizes. then when
generating smaller result data words. the destination register write disable flag may be
used to specify whether the small result word is written into the high order bits or the
low order bits of the destination register rather than specifying whether the write
should or should not be disabled in its entirety.

In embodiments of the invention that include condition code flags, it is
preferred that said at least one condition code flag includes a zero result flag indicative
of whether said result data word is zero, and said at least one program instruction
word includes a subtract instruction word such that said arithmetic logic unit can
0 preform:
when said destination register write disable flag does not disable said writing

of said result data word to said destination register. a subtract operation in which a

10

15

20

25

WO 98/12628 PCT/GB97/02261

3

first operand is subtracted from a second operand to yield a subtraction result data
word, said subtraction result data word is written to said destination register and said
at least one condition code flag, including said zero result flag, is updated; and

when said destination register write disable flag does disable said writing of
said result data word to said destination register, a compare operation in which a first
operand is subtracted from a second operand to yield a subtraction result data word,
said subtraction result data word is not written to said destination register and said at
least one condition code flag, including said zero result flag, is updated.

In this way, a compare operation that does not alter any state in the data
processing apparatus other than the condition code flags may be achieved. In an
analogous manner, and add instruction with the write disabled can be used to compare
for a negative and an XOR instruction with the write disabled can be used to test a
field within a word for equivalence, both without changing any other state than the
condition code flags.

A further refinement is one in which said arithmetic logic unit can perform:

when said destination register write disable flag does not disable said writing
of said result data word to said destination register and said output buffer write flag
enables writing of said result data word to said output buffer, a subtract-write
operation in which a first operand is subtracted from a second operand to yield a
subtraction result data word, said subtraction result data word is written to said
destination register and said output buffer and said at least one condition code flag,
including said zero result flag, is updated; and

when said destination register write disable flag does disable said writing of
said result data word to said destination register and said output buffer write flag
enables writing of said result data word to said output buffer, a compare-write
operation in which a first operand is subtracted from a second operand to yield a
subtraction result data word, said subtraction result data word is not written to said
destination register, said subtraction result data word is written to said output buffer
and said at least one condition code flag, including said zero result flag, is updated.

Viewed from another aspect the present invention provides a method of
processing data, said method comprising the steps of:

storing data words to be manipulated in a plurality of registers; and

(W]

WO 98/12628 PCT/GB97/02261

4

in response to program instruction words, performing arithmetic logic functions
specified by said program instruction words to generate result data words; wherein
at least one program instruction word includes:

(1) a destination register bit field specifying a destination register of said
plurality of registers into which a result data word from said program
instruction word is to be written; and

(i) destination register write disable flag for selectively disabling said

writing of said result data word to said destination register.

10

15

20

WO 98/12628 PCT/GB97/02261

5

An embodiment of the invention will now be described, by way of example
only, with reference to the accompanying drawings in which:

Figure 1 illustrates the high level configuration of a digital signal processing
apparatus;

Figure 2 illustrates the input buffer of register configuration of a coprocessor;

Figure 3 illustrates the datapath through the coprocessor;

Figure 4 illustrates a mutliplexing circuit for read high or low order bits from
a register;

Figure 5 is a block diagram illustrating register remapping logic used by the
coprocessor in preferred embodiments;

Figure 6 illustrates in more detail the register remapping logic shown in Figure
5; and

Figure 7 is a table illustrating a Block Filter Algorithm.

The system described below is concerned with digital signal processing (DSP).
DSP can take many forms, but may typically be considered to be processing that
requires the high speed (real time) processing of large volumes of data. This data
typically represents some analogue physical signal. A good example of DSP is that
used in digital mobile telephones in which radio signals are received and transmitted
that require decoding and encoding (typically using convolution, transform and
correlation operations) to and from an analogue sound signal. Another example is disk
driver controllers in which the signals recovered from the disk heads are processed to
yield head tracking control.

In the context of the above, there follows a description of a digital signal
processing system based upon a microprocessor core (in this case an ARM core from
the range of microprocessors designed by Advanced RISC Machines Limited of
Cambridge, United Kingdom) cooperating with a coprocessor. The interface of the
microprocessor and the coprocessor and the coprocessor architecture itself are
specifically configured to provide DSP functionality. The microprocessor core will
be referred to as the ARM and the coprocessor as the Piccolo. The ARM and the
Piccolo will typically be fabricated as a single integrated circuit that will often include
other elements (e.g. on-chip DRAM, ROM, D to A and A to D convertors etc.) as part
of an ASIC.

n

10

15

25

WO 98/12628 ‘ PCT/GB97/02261

6

Piccolo is an ARM coprocessor, it therefore executes part of the ARM
instruction set. The ARM coprocessor instructions allow ARM to transfer data
between Piccolo and memory (using Load Coprocessor, LDC and Store Coprocessor,
STC. instructions), and to transfer ARM registers to and from Piccolo (using move to
coprocessor, MCR, and move from coprocessor, MRC, instructions). One way of
viewing the synergistic interaction of the ARM and Piccolo is that ARM acts as a
powerful address generator for Piccolo data, with Piccolo being left free to perform
DSP operations requiring the real time handling of large volumes of data to produce
corresponding real time results.

Figure 1 illustrates the ARM 2 and Piccolo 4 with the ARM 2 1ssuing control
signals to the Piccolo 4 to control the transfer of data words to and from Piccolo 4.
An instruction cache 6 stores the Piccolo program instruction words that are required
by Piccolo 4. A single DRAM memory 8 stores all the data and instruction words
required by both the ARM 2 and Piccolo 4. The ARM 2 is responsible for addressing
the memory 8 and controliling all data transfers. The arrangement with only a single
memory 8 and one set of data and address buses is less complex and expensive than
the typical DSP approach that requires multiple memories and buses with high bus
bandwidths.

Piccolo executes a second instruction stream (the digital signal processing
program instruction words) from the instruction cache 6. which controls the Piccolo
datapath. These instructions include digital signal processing type operations, for
example Multiply-Accumulate, and control flow instructions, for example zero
overhead loop instructions. These instructions operate on data which is held in Piccolo
registers 10 (see Figure 2). This data was earlier transferred from memory § by the
ARM 2. The instructions are streamed from the instruction cache 6, the instruction
cache 6 drives the data bus as a full bus master. A small Piccolo instruction cache 6
will be a 4 line, 16 words per line direct mapped cache (64 instructions). In some
implementations, it may be worthwhile to make the instruction cache bigger.

Thus two tasks are run independently - ARM loading data, and Piccolo
processing it. This allows sustained single cycle data processing on 16 bit data.
Piccolo has a data input mechanism (illustrated in Figure 2) that allows the ARM to

prefetch sequential data. loading the data before it is required by Piccolo. Piccolo can

10

15

08}
wn

30

WO 98/12628 PCT/GB97/02261

7

access the loaded data in any order, automatically refilling its register as the old data
is used for the last time (all instructions have one bit per source operand to indicate
that the source register should be refilled). This input mechanism is termed the
reorder buffer and comprises an input buffer 12. Every value loaded into Piccolo (via
an LDC or MCR see below) carries with it a tag Rn specifying which register the
value is destined for. The tag Rn is stored alongside the data word in the input buffer.
When a register is accessed via a register selecting circuit 14 and the instruction
specifies the data register is to be refilled, the register is marked as empty by asserting
a signal E. The register is then automatically refilled by a refill control circuit 16
using the oldest loaded value destined for that register within the input buffer 12. The
reorder buffer holds 8 tagged values. The input buffer 12 has a form similar to a
FIFO except that data words can be extracted from the centre of the queue after which
later stored words will be passed along to fill the space. Accordingly, the data words
furthest from the input are the oldest and this can be used to decide which data word
should be used to refill a register when the input buffer 12 holds two data words with
the correct tag Rn.

Piccolo outputs data by storing it in an output buffer 18 (FIFO) as shown in
Figure 3. Data is written to the FIFO sequentially, and read out to memory 8 in the
same order by ARM. The output buffer 18 holds 8 32 bit values.

Piccolo connects to ARM via the coprocessor interface (CP Control signals of
Figure 1). On execution of an ARM coprocessor instruction Piccolo can either execute
the instruction, cause the ARM to wait until Piccolo is ready before executing the
instruction or refuse to execute the instruction. In the last case ARM will take an
undefined instruction exception.

The most common coprocessor instructions that Piccolo will execute are LDC
and STC, which respectively load and store data words to and from the memory 8 via
the data bus, with ARM generating all addresses. It is these instructions which load
data into the reorder buffer, and store data from the output buffer 18. Piccolo will
stall the ARM on an LDC if there is not enough room in the input reorder buffer to
load in the data and on an STC if there is insufficient data in the output buffer to
store, i.e. the data the ARM is expecting is not in the output buffer 18. Piccolo also

executes ARM/Coprocessor register transfers to allow ARM to access Piccolo's special

wn

10

15

WO 98/12628 PCT/GB97/02261

registers.

Piccolo fetches its own instructions from memory to control the Piccolo
datapath illustrated in Figure 3 and to transfer data from the reorder buffer to registers
and from registers to the output buffer 18. The arithmetic logic unit of the Piccolo
that executes these instructions has a multiplier/adder circuit 20 that performs
multiplies, adds, subtracts, multiple-accumulates, logical operations, shifts and rotates.
There is also provided in the datapath an accumulate/decumulate circuit 22 and a
scale/saturate circuit 24.

The Piccolo instructions are initially loaded from memory into the instruction
cache 6, where Piccolo can access them without needing access back to the main
memory.

Piccolo cannot recover from memory aborts. Therefore if Piccolo is used in
a virtual memory system, all Piccolo data must be in physical memory throughout the
Piccolo task. This is not a significant limitation given the real time nature of Piccolo
tasks, e.g. real time DSP. If a memory abort occurs Piccolo will stop and set a flag
in a status register S2.

Figure 3 shows the overall datapath functionality of Piccolo. The register bank
10 uses 3 read ports and 2 write ports. One write port (the L port) is used to refill
registers from the reorder buffer. The output buffer 18 is updated directly from the
ALU result bus 26, output from the output buffer 18 is under ARM program control.
The ARM coprocessor interface performs LDC (Load Coprocessor) instructions into
the reorder buffer, and STC (Store Coprocessor) instructions from the output buffer
18, as well as MCR and MRC (Move ARM register to/from CP register) on the
register bank 10.

The remaining register ports are used for the ALU. Two read ports (A and B)
drive the inputs to the multiplier/adder circuit 20, the C read port is used to drive the
accumulator/decumulator circuit 22 input. The remaining write port W is used to
return results to the register bank 10.

The multiplier 20 performs a 16 x 16 signed or unsigned multiply, with an
optional 48 bit accumulate. The scaler unit 24 can provide a 0 to 31 immediate
arithmetic or logical shift right, followed by an optional saturate. The shifter and

logical unit 20 can perform either a shift or a logical operation every cycle.

10

25

WO 98/12628 PCT/GB97/02261

9

Piccolo has 16 general purpose registers named DO-D15 or A0-A3, X0-X3,
Y0-Y3, Z0-Z3. The first four registers (A0-A3) are intended as accumulators and are
48 bits wide, the extra 16 bits providing a guard against overflow during many
successive calculations. The remaining registers are 32 bits wide.

Each of Piccolo’s registers can be treated as containing two independent 16 bit
values. Bits 0 to 15 contain the low half, bits 16 to 31 contain the high half.
Instructions can specify a particular 16 bit half of each register as a source operand,
or they may specify the entire 32 bit register.

Piccolo also provides for saturated arithmetic. Variants of the multiply, add
and subtract instructions provide a saturated result if the result is greater than the size
of the destination register. Where the destination register is a 48 bit accumulator, the
value is saturated to 32 bits (i.e. there is no way to saturate a 48 bit value). There is
no overflow detection on 48 bit registers. This is a reasonable restriction since it
would take at least 65536 multiply accumulate instructions to cause an overflow.

Each Piccolo register is either marked as "empty" (E flag, see Figure 2) or
contains a value (it is not possible to have half of a register empty). Initially, all
registers are marked as empty. On each cycle Piccolo attempts with the refill control
circuit 16 to fill one of the empty registers by a value from the input reorder buffer.
Alternatively if the register is written with a value from the ALU it is no longer
marked as "empty". If a register is written from the ALU and at the same time there
is a value waiting to be placed in the register from the reorder buffer then the result
is undefined. Piccolo’s execution unit will stall if a read is made to an empty register.

The Input Reorder Buffer (ROB) sits between the coprocessor interface and
Piccolo’s register bank. Data is loaded into the ROB with ARM coprocessor transfers.
The ROB contains a number of 32-bit values, each with a tag indicating the Piccolo
register that the value is destined for. The tag also indicates whether the data should
be transferred to a whole 32-bit register or just to the bottom 16-bits of a 32-bit
register. If the data is destined for a whole register, the bottom 16 bits of the entry
will be transferred to the bottom half of the target register and the top 16 bits will be
transferred to the top half of the register (sign extended if the target register is a 48-bit
accumulator). If the data is destined for just the bottom half of a register (so called

"Half Register’), the bottom 16 bits will be transferred first.

10

15

WO 98/12628 PCT/GB97/02261

10

The register tag always refers to a physical destination register, no register

remapping is performed (see below regarding register remapping).

On every cycle Piccolo attempts to transfer a data entry from the ROB to the

register bank as follows:

-Each entry in the ROB is examined and the tags compared with the registers that are

empty, it is determined whether a transfer can be made from part or all of an entry to

a register,

-From the set of entries that can make a transfer, the oldest entry is selected and its

data transferred to the register bank.

-The tag of this entry is updated to mark the entry as empty. If only part of the entry

was transferred, only the part transferred is marked empty.

For example, if the target register is completely empty and the selected ROB
entry contains data destined for a full register, the whole 32 bits are transferred and
the entry is marked empty. If the bottom half of the target register is empty and the
ROB entry contains data destined for the bottom half of a register, the bottom 16 bits
of the ROB entry are transferred to the bottom half of the target register and the
bottom half of the ROB is marked as empty.

The high and low 16-bits of data in any entry can be transferred independently.
If no entry contains data that can be transferred to the register bank, no transfer is
made that cycle. The table below describes all possible combinations of target ROB

entry and target register status.

WO 98/12628

11

PCT/GB97/02261

Target, Rn, Status
Target ROB empty low half empty high half empty
entry status
Full Register, Rn.h <- entry.h Rn.l <- entry.l Rn.h <- entry.h
5 both halves Rn.l <- entry.l entry.l marked entry.h marked
valid
entry marked empty empty
empty
Full Register, Rn.h <- entry.h Rn.h <- enury.h
high half valid entry marked entry marked empty
empty
Full Register, Rn.l <- entry.l Rn.l <- entry.l
10 low half valid entry marked entry marked
empty empty
Half Register, Rn.l <- entry.l Rn.l <- entry.l
both halves entry.l marked entry.l marked
valid empty empty
Half Register, Rn.] <- entry.h Rn.l <- entry.h
15 high half valid entry marked entry marked
empty empty

To summarise, the two halves of a register may be refilled independently from
the ROB. The data in the ROB is either marked as destined for a whole register or as

two 16-bit values destined for the bottom half of a register.

20 Data is loaded into the ROB using ARM coprocessor instructions. How the data

WO 98/12628 PCT/GB97/02261

12

is marked in the ROB depends on which ARM coprocessor instruction was used to

perform the transfer. The following ARM instructions are available for filling the
ROB with data:

5 LDP{<cond>}<16/32> <dest>, [Rn}{!}, #<size>
LDP{<cond>}<16/32>W <dest>, <wrap>, [Rn]{!}, #<size>
LDP{<cond>}16U <bank>, [Rn]{!

MPR{<cond>} <dest>, Rn
MRP {<cond>} <dest>, Rn
10
The following ARM instruction is provided for configuring the ROB:
LDPA <bank list>
15 The first three are assembled as LDCs, MPR and MRP as MCRs, LDPA is

assembled as a CDP instruction.

In the above <dest> stands for a Piccolo register (A0-Z3), Rn for an ARM
register, <size> for a constant number of bytes which must be a non zero multiple of
4 and <wrap> for a constant (1,2,4,8). Fields surrounded by {} are optional. For a

20 transfer to be able to fit into the Reorder Buffer, <size> must be at most 32. In many

10

15

20

WO 98/12628 PCT/GB97/02261

13

circumstances <size> will be smaller than this limit to avoid deadlock. The <16/32>
field indicates whether the data being loaded should be treated as 16-bit data, and

endianess specific action taken (see below), or as 32-bit data.

Notel: In the following text, when referring to LDP or LDPW this refers to both the

16-bit and 32-bit variants of the instructions.

Note2: A ’word’ is a 32-bit chunk from memory, which may consist of two 16-bit

data items or one 32-bit data item.

The LDP instruction transfers a number of data items, marking them as
destined for a full register. The instruction will load <size>/4 words from address Rn
in memory, inserting them into the ROB. The number of words that can be transferred

is limited by the following:
-The quantity <size> must be a non-zero multiple of 4;

-<size> must be less than or equal to the size of the ROB for a particular
implementation (8 words in the first version, and guaranteed to be no less than this in

future versions).

The first data item transferred will be tagged as destined for <dest>, the second
as destined for <dest>+1 and so on (with wrapping from Z3 to A0). If the ! is

specified then the register Rn is incremented by <size> afterwards.

If the LDP16 variant is used, endian specific action is performed on the two
16-bit halfwords forming the 32-bit data items as they are returned from the memory

system. See below for more details on Big Endian and Little Endian Support.

The LDPW instruction transfers a number of data items to a set of registers.
The first data item transferred is tagged as destined for <dest>, the next for <dest>+1,
etc. When <wrap> transfers have occurred, the next item transferred is tagged as
destined for <dest>, and so on. The <wrap> quantity is specified in halfword

quantities.
For LDPW, the following restrictions apply:

-The quantity <size> must be a non-zero multiple of 4,

ny

10

15

20

WO 98/12628 PCT/GB97/02261

14

-<size> must be less than or equal to the size of the ROB for a particular

implementation (8 words in the first version, and guaranteed to be no less than this in

future versions);
-<dest> may be one of {A0, X0, YO0, Z20};

-<wrap> may be one of {2.4,8} halfwords for LDP32W and one of 11,2,4,8}
halfwords for LDP16W:

-The quantity <size> must be greater than 2*<wrap>, otherwise no wrapping occurs

and the LDP instruction shall be used instead.

For example, the instruction,

LDP32W X0, 2, [RO]!, #8

will load two words into the ROB. marking them as destined for the full register XO0.

RO will be incremented by 8.The instruction,

LDP32W X0, 4, [RO), #16

will load four words into the ROB, marking them as destined for X0, X1, X0, X1 (in
that order). RO will not be affected.

For LDP16W, <wrap> may be specified as 1,2,4 or 8. The wrap of 1 will
cause all data to be tagged as destined for the bottom half of the destination register

<dest>.I. This is the *Half Register’ case.

For example the instruction,

LDP16W X0, 1, [RO]!, #8

will load two words into the ROB, marking them as 16-bit data destined for X0.1. R0

10

15

20

25

WO 98/12628 PCT/GB97/02261

15

will be incremented by 8. The instruction,

LDP16W X0, 4, [RO], #16

will behave in a similar fashion to the LDP32W examples, except for the fact that

endian specific action may be performed on the data as it is returned from memory.

All unused encodings of the LDP instruction may be reserved for future

expansion.

The LDP16U instruction is provided to support the efficient transfer of non-
word aligned 16-bit data. LDP16U support is provided for registers D4 to D15 (the
X, Y and Z banks). The LDP16U instruction will transfer one 32-bit word of data
(containing two 16-bit data items) from memory into Piccolo. Piccolo will discard the
bottom 16 bits of this data and store the top 16 bits in a holding register. There is a
holding register for the X, Y and Z banks. Once the holding register of a bank is
primed, the behaviour of LDP{W} instructions is modified if the data is destined for
a register in that bank. The data loaded into the ROB is formed by the concatenation
of the holding register and the bottom 16 bits of data being transferred by the LDP

instruction. The upper 16 bits of data being transferred is put into the holding register:

entry <- data.l | holding_register

holding_register <- data.h

This mode of operation is persistent until it is turned off by a LDPA
instruction. The holding register does not record the destination register tag or size.
These characteristics are obtained from the instruction that provides the next value of

data.l.

Endian specific behaviour may always occur on the data returned by the
memory system. There is no non 16-bit equivalent to LDP16U since it is assumed that

all 32-bit data items will be word aligned in memory.

WO 98/12628 PCT/GB97/02261

16

The LDPA instruction is used to switch off the unaligned mode of operation
initiated by a LDP16U instruction. The unaligned mode may be turned off

independently on banks X, Y, Z. For example the instruction,

wn

LDPA X, Y}

will turn off the unaligned mode on banks X and Y. Data in the holding registers of
these anks will be discarded.

Executing an LDPA on a bank which s not in unaligned mode is allowed, and

10 will leave that bank in aligned mode.

The MPR instruction places the contents of ARM register Rn into the ROB,
destined for Piccolo register <dest>. The destination register <dest> may be any full

register in the range A0-Z3. For example the instruction,

15 MPR X0, R3

will transfer the contents of R3 into the ROB, marking the data as destined for the full

register X0.

No endianess specific behaviour occurs to the data as it is transferred from

20 ARM to Piccolo since the ARM is internally little endian.

The MPRW instruction places the contents of ARM register Rn into the ROB,
marking it as two 16-bit data items destined for the 16-bit Piccolo register <dest>.].
The restrictions on <dest> are the same as those for the LDPW instructions (lLe.

A0.X0,Y0,20). For example the Instruction,

MPRW X0, R3

WO 98/12628 PCT/GB97/02261

17

will transfer the contents of R3 into the ROB, marking the data as 2 16-bit quantities
destined for X0.1. It should be noted that as for the LDP16W case with a wrap of 1,

only the bottom half of a 32-bit register can be targeted.

As with MPR no endianess specific operations are applied to the data.
5 LDP is encoded as:

313029282726252423222120191817161514 13121110 9% 8 7 6 5 4 3 2 1 0

COND 110 PIUINIW] 1 Rn DEST PICCOLO1 SIZE/4

10 where PICCOLOI1 is Piccolo’s first coprocessor number (currently 8). The N bit
selects between LDP32 (1) and LDP16 (0).

LDPW is encoded as:

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0

15 COND 110 PIUINIW]1 Rn DES | WRA| PICCOLO2 SIZE/4

where DEST is 0-3 for destination register A0,X0,Y0,Z0 and WRAP is 0-3 for wrap
values 1,2,4,8. PICCOLO?2 is Piccolo’s second coprocessor number (currently 9). The

20 N bit selects between LDP32 (1) and LDP16 (0).

LDP16U is encoded as:

313029282726252423222120191817161514 131211109 8 7 6 5 4 3 2 10

COND 110 PIUIO W] Rn DES | 01 |} PICCOLO2 00000001

25 where DEST is 1-3 for the destination bank X, Y, Z.

10

20

S0
()]

WO 98/12628

LDPA is encoded as:

3130292827262524 23222120 19181716 151413 121110 9 8 7 6 5 4 3 2 | 0

18

PCT/GB97/02261

COND

1110

0000

0000

0000

PICCOLO!

000

BANK

where BANK][3:0] is used to turn off the unaligned mode on a per bank basis. If

BANK]1] is set, unaligned mode on bank X is turned off. BANK[2] and BANK]3]
turn off unaligned mode on banks Y and Z if set, respectively. N.B. This is a CDP

operation.

MPR is encoded as:

31 30 29 28 27 26 25 24 23 22 21 20

19 18 17 16 15 14 13 12

11109 8 7 6 5 4 210
COND 110 1{o|o DEST Rn PICCOLOI 000 |1 0000
MPRW is encoded as:
31302928 2726252423 22212019 18 17 16 15 14 131211109 8 7 6 5 43 210

COND

1110

DEST| 00

Rn

PICCOLO2

000

0000

where DEST is 1-3 for the destination register X0,Y0,Z0.

The output FIFO can hold up to eight 32-bit values. These are transferred from

Piccolo by using one of the following (ARM) opcodes:

STP{<cond>}<16/32>

MRP

Rn

[Rn]{!}, #<size>

The first saves <size>/4 words from the output FIFO to the address given by the ARM

register Rn. indexing Rn if the ! is present. To prevent deadlock, <size> must not be

wn

10

15

20

WO 98/12628 PCT/GB97/02261

19

greater than the size of the output FIFO (8 entries in the this implementation). If the
STP16 variant is used, endian specific behaviour may occur to the data returned from

the memory system.

The MRP instruction removes one word from the output FIFO and places it in ARM

register Rn. As with MPR no endian specific operations are applied to the data.

The ARM encoding for STP is:

31302028272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
COND 110 |P|uUfN{wjo Rn 0000 PICCOLOI1 SIZE/4
where N selects between STP32 (1) and STP16 (0). For the definitions of the P, U and
W bits, refer to an ARM data sheet.
The ARM encoding for MRP is:
313029282726252423222120191817161514 131211109 8 7 6 5 4 3 2 1 0

COND 1110 01011 0000 Rn PICCOLOI 000 1 0000

The Piccolo instruction set assumes little endian operation internally.- For
example when accessing a 32-bit register as 16 bits halves, the lower half is assumed
to occupy bits 15 to 0. Piccolo may be operating in a system with big endian memory
or peripherals and must therefore take care to load 16-bit packed data in the correct

manner.

Piccolo (i.e. the DSP adapted coprocessor), like the ARM (e.g. the ARM7
microprocessors produced by Advanced RISC Machines Limited of Cambridge, United
Kingdom), has a 'BIGEND’ configuration pin which the programmer can control,
perhaps with a programmable peripheral. Piccolo uses this pin to configure the input

reorder buffer and output FIFO.

WO 98/12628 PCT/GB97/02261
20
When the ARM loads packed 16-bit data into the reorder buffer it must

indicate this by using the 16-bit form of the LDP instruction. This information is
combined with the state of the 'BIGEND’ configuration input to place data into the

holding latches and reorder buffer in the appropriate order. In particular when in big

W

endian mode the holding register stores the bottom 16 bits of the loaded word, and is
paired up with the top 16 bits of the next load. The holding register contents always

end up in the bottom 16 bits of the word transferred into the reorder buffer.

The output FIFO may contain either packed 16-bit or 32-bit data. The

programmer must use the correct form of the STP instruction so that Piccolo can

10 ensure that the 16-bit data is provided on the correct halves of the data bus. When
configured as big endian the top and bottom 16-bit halves are swapped when the 16-

bit forms of STP are used.

Piccolo has 4 private registers which can only be accessed from the ARM.

They are called S0-S2. They can only be accessed with MRC and MCR instructions.
15 The opcodes are:

MPSR Sn, Rm

MRPS Rm, Sn

20 These opcodes transfer a 32-bit value between ARM register Rm and private

register Sn. They are encoded in ARM as a coprocessor register transfer:

31'30292827262524 232221201918 1716151413 121110 9 8 7 6 5 4 3 2 1 0

COND 1110 001 L Sn Rm PICCOLO 000 l 0000

where L is 0 for the MPSR and 1 for the MRPS.

WO 98/12628 PCT/GB97/02261

21

Register SO contains the Piccolo unique ID and revision code

313029282726252423 2221201918 1716151413 1211109 8 7 6 5 4 3 2 1 0

Impiementor Architecture Part Number Revision

5
Bits[3:0] contain the revision number for the processor.
Bits[15:4] contain a 3 digit part number in binary coded decimal format: 0x500 for
Piccolo
Bits[23:16] contain the architecture version: 0x00 = Version 1
10 Bits[31:24] contain the ASCII code of an implementers trademark: 0x41 = A = ARM
Ltd
Register S1 is the Piccolo status register.
313029282726252423 2221201918 1716151413 121110 9 8 7 6 5 4 3 2 1 0
15 Nlz|c|v|s|s]|s]s Reserved D/A|H|B|U|E
NJZIC|V
Primary condition code flags (N,Z,C,V)
Secondary condition code flags (SN,SZ,SC,SV)
20 E bit: Piccolo has been disabled by the ARM and has halted.

U bit: Piccolo encountered an UNDEFINED instruction and has halted.

B bit: Piccolo encountered a BREAKPOINT and has halted.

(L0
wn

WO 98/12628 PCT/GB97/02261

22

H bit: Piccolo encountered a HALT instruction and has halted.

A bit: Piccolo suffered a memory abort (load, store or Piccolo instruction) and has
halted.

D bit: Piccolo has detected a deadlock condition and has halted (see below).

Register S2 is the Piccolo program counter:

31302928272625242322212019 181716151413 1211109 8 7 6 5 4 3 2 |

Program Counter 0

10

Writing to the program counter will start Piccolo executing a program at that
address (leaving halted state if it is halted). On reset the program counter is undefined,

since Piccolo is always started by writing to the program counter.

During execution Piccolo monitors the execution of instructions and the status

15 of the coprocessor interface. If it detects that:

-Piccolo has stalled waiting for either a register to be refilled or the output FIFO to

have an available entry.

-The coprocessor interface is busy-waiting, because of insufficient space in the ROB

or insufficient items in the output FIFO.

20

If both of these conditions are detected Piccolo sets the D-bit in its status

register, halts and rejects the ARM coprocessor instruction, causing ARM to take the

undefined instruction trap.

This detection of deadlock conditions allows a system to be constructed which

can at least warn the programmer that the condition has occurred and report the exact

10

20

WO 98/12628

23

point of failure, by reading the ARM and Piccolo program counters and registers. It
should be stressed that deadlock can only happen due to an incorrect program or

perhaps another part of the system corrupting Piccolo’s state. Deadlock can not occur

due to data starvation or 'overload’.

There are several operations available that may be used to control Piccolo from
the ARM, these are provided by CDP instructions. These CDP instructions will only
be accepted when the ARM is in a privileged state. If this is not the case Piccolo will

reject the CDP instruction resulting in the ARM taking the undefined instruction trap.

The following operations are available:

_ Reset

_ Enter State Access Mode
_ Enable

_ Disable

PCT/GB97/02261

Piccolo may be reset in software by using the PRESET instruction.

PRESET ; Clear Piccolo’s state

This instruction is encoded as:

31302928272625242322212019 181716151413 1211109 8 7 6 5 4 3

21

0

COND 1110 0000 0000 0000 PICCOLO!

000

0000

When this instruction is executed the following occurs:

(@)}

10

WO 98/12628 PCT/GB97/02261
24

-All registers are marked as empty (ready for refill).
-Input ROB 1s cleared.

-Output FIFO is cleared.

-Loop counters are reset.

-Piccolo is put into halted state (and H bit of S2 will be set).

Executing the PRESET instruction may take several cycles to complete (2-3
for this embodiment). Whilst it is executing, following ARM coprocessor instructions

to be executed on Piccolo will be busy waited.

In state access mode, Piccolo’s state may be saved and restored using STC and
LDC instructions (see the below regarding accessing Piccolo state from ARM). To

enter state access mode, the PSTATE instruction must first be executed:

PSTATE; Enter State Access Mode

This instruction is encoded as:

31302928272625242322212019181716 1514131211109 8 7 6 5 4 3 2 |

0

COND 1110 000l 0000 0000 PICCOLO! 000 0 0000

When executed, the PSTATE instruction will:

WO 98/12628 PCT/GB97/02261
25
-Halt Piccolo (if it 1s not already halted), setting the E bit in Piccolo’s Status Register.

-Configure Piccolo into its State Access Mode.

Executing the PSTATE instruction may take several cycles to complete, as
5 Piccolo’s instruction pipeline must drain before it can halt. Whilst it is executing,
following ARM coprocessor instructions to be executed on Piccolo will be busy

waited.

The PENABLE and PDISABLE instructions are used for fast context

switching. When Piccolo is disabled, only private registers 0 and 1 (the ID and Status

10 registers) are accessible, and only then from a privileged mode. Access to any other
state, or any access from user mode will cause an ARM undefined instruction
exception. Disabling Piccolo causes it to halt execution. When Piccolo has halted

execution, it will acknowledge the fact by setting the E bit in the status register.

Piccolo is enabled by executing the PENABLE instruction:

15
PENABLE; Enable Piccolo
This instruction is encoded as:
313029282726252423222120191817 16151413 121110 9 8 7 6 5 4 3 2 1 0
20 COND 1110 0010 0000 0000 PICCOLOlI | 000 |O| 0000
Piccolo is disabled by executing the PDISABLE instruction:
25 PDISABLE ; Disable Piccolo

This instruction is encoded as:

WO 98/12628 PCT/GB97/02261

26

3130292827 26252423 2221201918 1716 1514 13 121110 9 8 7 6 5 4 3 2 | 0

COND 1110 0011 0000 0000 PICCOLO! 000 0 0000

3 When this instruction is executed, the following occurs:
-Piccolo’s instruction pipeline will drain.
-Piccolo will halt and the H bit in the Status register set.
10 The Piccolo instruction cache holds the Piccolo instructions which control the
Piccolo datapath. If present it is guaranteed to hold at least 64 instructions, starting on
a 16 word boundary. The following ARM opcode assembles into an MCR. Its action
is to force the cache to fetch a line of (16) instructions starting at the specified address
(which must be on a 16-word boundary). This fetch occurs even if the cache already
15 holds data related to this address.
PMIR Rm
Piccolo must be halted before a PMIR can be performed.
20

The MCR encoding of this opcode is:

WO 98/12628 PCT/GB97/02261

27

313029 2827262524 23222120191817161514 13121110 9 8 7 6 5 4 3 2 1 0

COND 110 011 L 0000 Rm PICCOLO!1 0060

—

0000

5 _ This section discusses the Piccolo instruction set which controls the Piccolo

data path. Each instruction is 32 bits long. The instructions are read from the Piccolo

instruction cache.

Decoding the instruction set is quite straight forward. The top 6 bits (26 to 31)
give a major opcode, with bits 22 to 25 providing a minor opcode for a few specific
10 instructions. Bits shaded in grey are currently unused and reserved for expansion (they

must contain the indicated value at present).

There are eleven major instruction classes. This does not fully correspond to

the major opcode filed in the instruction, for ease of decoding some sub-classes.

PCT/GB97/02261

WO 98/12628
28
3322222222221 11 1111 11198763543210
109876543210987654321¢0
0 OPC F|S| DEST |[S{R| SRCI SRC2
D 11
1| 000 |OPC|F|S| DEST |[S|R| SRCI SRC2
D 11
5 1y oo1 folo|F[s| DEST |S|R| SRCI SRC2
P| |D 11
1{ 0011
1| 010 |OPC|F[S} DEST |[S|R| SRCI SRC2_SHIFT
D 1
1y o1 | 00 DEST [S|R{ SRCI SRC2_SEL COND
D 11
1| o1l | o1
10 Il olt [L|O|F|S| DEST |s|R| SRcCl SRC2_SEL COND
p| |D 11
L| 10 |0|O|S{F|S| DEST |A[R| SRCI SRC2_MULA
Pla D 111
ty1o 1| |o
1| 10 |1|O}1|F|S{ DEST |A[R| SRCI |0|A|R| SRC2 REG | SCALE
2 D i1 0
1| 110
15 ! 11100 S| DEST IMMEDIATE_15 +
D /-
l 11101
| 11110 RFIELD_ 0|R| SRCI #INSTRUCTIONS _8
4 I
! 11110 RFIELD_ 4LOOPS_13 #INSTRUCTION_8
4
1 1ttt OPC REGISTER_LIST 16 SCALE
20 1 1 100 IMMEDIATE_16 COND
1 1t 101 PARAMETERS 21
| 1111 11 |O
P

WO 98/12628 PCT/GB97/02261

29

The instructions in the above table have the following names:

(W41

10

15

Standard Data Operation
Logical Operation
Conditional Add/Subtract
Undefined

Shifts

Select

Undefined

Parallel Select

Multiply Accumulate
Undefined

Multiply Double
Undefined

Move Signed Immediate
Undefined

Repeat

Repeat

Register List Operations

Branch

Renaming Parameter Move

WO 98/12628 PCT/GB97/02261

30
Halt/Break

The format for each class of instructions is described in detail in the following
sections. The source and destination operand fields are common to most instructions

5 and described in detail in separate sections, as is the register re-mapping.

Most instructions require two source operands; Source 1 and Source 2. Some

exceptions are saturating absolute.
The Source 1 (SRC1) operand has the following 7 bit format:

18 17 16 15 14 13 12

10 Size | Refill Register Number Hi/Lo

The elements of the field have the following meaning:

-Size - indicates the size of operand to read (1=32-bit, 0=16-bit).

-Refill - specifies that the register should be marked as empty after being read and can
15 be refilled from the ROB.

-Register Number - encodes which of the 16 32-bit registers to read.

-Hi/Lo - For 16-bit reads indicates which half of the 32-bit register to read. For 32-bit

operands, when set indicates that the two 16-bit halves of the register should be

interchanged.

WO 98/12628 PCT/GB97/02261

31
Size | Hi/Lo | Portion of Register Accessed
0 0 Low 16 bits
0 1 High 16 bits
1 0 Full 32 bits
5 1 1 Full 32 bits, halves swapped

The register size is specified in the assembler by adding a suffix to the register

number: .| for the low 16 bits, .h for the high 16 bits or .x for 32 bits with the upper

and lower sixteen bits interchanged.
10 The general Source 2 (SRC2) has one of the following three 12 bit formats:

11 10 9 8 7 6 5 4 3 2 1 0

0 | S2 | R2 ‘Register Number | HiLo SCALE

1 0 ROT IMMED _8

T 1 IMMED 6 SCALE

Figure 4 illustrates a multiplexer arrangement responsive to the Hi/Lo bit and
Size bit to switch appropriate halves of the selected register to the Piccolo datapath.
If the Size bit indicates 16 bits, then a sign extending circuit pads the high order bits

of the datapath with Os or 1s as appropriate.

20 The first encoding specifies the source as being a register, the fields having the

same encoding as the SRC1 specifier. The SCALE field specifies a scale to be applied
to the result of the ALU.

WO 98/12628

PCT/GB97/02261
32
SCALE
32 1 0 Action
0 0 0 O |ASR#0
0 0 0 1 |ASR#I
5 0 0 1 0 ASR#2
0 0 1 1 |ASR#3
0 1 0 O]ASR#4
0 1 0 1 |RESERVED
0 1 1 O [ASR#6
10 0 1 1 1 |ASL#1
1 0 0 0]ASR#S
1 0 0 1 |ASR#I6
1 0 1 0]ASR#I0
1 0 1 1 [RESERVED
15 1 1 0 0 |ASR#I12
1 1 0 1 |ASR#I3
1 1 1 0 |ASR#l4
1 1 1 1 }|ASR#IS
20 The 8-bit immediate with rotate encoding allows the generation of a 32-bit

immediate which is expressible by an 8-bit value and 2-bit rotate. The following table

WO 98/12628 PCT/GB97/02261

33

shows the immediate values that can be generated from the 8-bit value XY:

ROT | IMMEDIATE

00 0x000000XY

01 0x0000XY00

5 10 0x00XY0000

11 0xXY000000

The 6-bit Immediate encoding allows the use of a 6-bit unsigned immediate

(range 0 to 63), together with a scale applied to the output of the ALU.

10 The general Source 2 encoding is common to most instruction variants. There
are some exceptions to this rule which support a limited subset of the Source 2

encoding or modify it slightly:
-Select Instructions.
-Shift Instructions.
15 -Parallel Operations.
-Multiply Accumulate Instructions.

-Multiply Double Instructions.

Select instructions only support an operand which is a register or a 6-bit
20 unsigned immediate. The scale is not available as these bits are used by the condition

field of the instruction.

1 10 9 8 7 6 5 4 3002 1 0

SRC2_SEL 0 | S2 | R2 Register number Hi/Lo COND

1 1 IMMED_6 COND

25

WO 98/12628 PCT/GB97/02261
34

Shift instructions only support an operand which is a 16-bit register or a 5-bit

unsigned immediate between 1 and 31. No scale of the result is available.

11 10 9 8 7 6 5 4 3

3]
(]

SRC2_SHIFT} 0 | 0 | R2 Register number | Hilo| 0 | 0 | 0 | ©

5] 0 0 0 0 0 0 IMMED 5

In the case of parallel operations, if a register is specified as the source of the
operand, a 32-bit read must be performed. The immediate encoding has slightly
different meaning for the parallel operations. This allows an immediate to be

10 duplicated onto both 16-bit halves of a 32-bit operand. A slightly restricted range of

scales are available for parallel operations.

1110 9 8 7 6 5 4 3 2 | 0
0 I | R2 Register number Hi/L SCALE _PAR
SRC2_PARALLEL 0
15 1 0 ROT IMMED 8
1 1 IMMED 6 SCALE_PAR

If the 6-bit immediate is used then it is always duplicated onto both halves of
the 32-bit quantity. If the 8-bit immediate is used it is duplicated only if the rotate
20 indicates that the 8-bit immediate should be rotated onto the top half of the 32-bit

quantity:

WO 98/12628 PCT/GB97/02261

35

ROT | IMMEDIATE

00 0x000000XY

01 0x0000XY00

10 | 0x00XYO00XY

5 11 | 0xXY00XY00

No scale is available for parallel select operations; the scale field shall be set

to 0 for these instructions.

The multiply accumulate instructions do not allow an 8-bit rotated immediate
10 to be specified. Bit 10 of the field is used to partly specify which accumulator to use.

Source 2 is implied as a 16-bit operand.

I
ro
—
<

11 10 9 8 7 6 5 4

SRC2 MULA 0 | A0 | R2 Register number Hyi/ SCALE
Lo
1 | AO IMMED_6 SCALE
15
Multiply double instructions do not allow the use of a constant. Only a 16-bit
register can be specified. Bit 10 of the field is used to partly specify which
accumulator to use.
20 11 10 9 8 7 6 5 4 3002 1 0

SRC2 MULD | 0 | A0 | R2 Register number Hy/ SCALE
Lo

10

15

20

[\
n

WO 98/12628

PCT/GB97/02261
36

Some instructions always imply a 32-bit operation (e.g. ADDADD), and in
these cases the size bit shall be set to 1, with the Hi/Lo bit used to optionally swap
the two 16-bit halves of the 32-bit operand. Some instructions always imply a 16-
bit operation (e.g. MUL) and the size bit should be set to 0. The Hi/Lo bit then
selects which half of the register is used (it is assumed that the missing size bit is
clear). Multiply-accumlulate instructions allow independent specification of the
source accumulator and destination registers. For these instructions the Size bits are

used to indicate the source accumulator, and the size bits are implied by the

instruction type as 0.

When a 16-bit value is read (via the A or B busses) it is automatically sign
extended to a 32-bit quantity. If a 48 bit register is read (via the A or B busses),
only the bottom 32 bits appear on the bus. Hence in all cases source 1 and source 2
are converted to 32-bit values. Only accumulate instructions using bus C can access

the full 48 bits of an accumulator register.

If the refill bit is set. the register is marked as empty after use and will be
refilled from the ROB by the usual refill mechanism (see the section on the ROB).
Piccolo will not stall unless the register is used again as a source operand before
the refill has taken place. The minimum number of cycles before the refilled data is
valid (best case - the data is waiting at the head of the ROB) will be either | or 2.
Hence it is advisable not to use the refilled data on the instruction following the
refill request. If use of the operand on the next two instructions can be avoided it

should be, since this will prevent performance loss on deeper pipeline

implementations.

The refill bit is specified in the assembler by suffixing the register number
with a **’. The section of the register marked as empty depends on the register
operand. The two halves of each register may be marked for refill independently
(for example X0.1" will mark only the bottom half of X0 for refill, X0" will mark
the whole of X0 for refill). When the top half’ (bits 47:16) of a 48-bit register are

wn

10

15

20

WO 98/12628 PCT/GB97/02261

37
refilled, the 16-bits of data is written to bits 31:16 and is sign extended up to bit
47.

If an attempt is made to refill the same register twice (eg ADD
X1,X07,X0%), then only one refill takes place. The assembler should only allow the
syntax ADD X1,X0,X0".

If a register read is attempted before that register has been refilled, Piccolo stalls
waiting for the register to be refilled. If a register is marked for refill, and the
register is then updated before the refilled value is read, the result is
UNPREDICTABLE (for example ADD X0, X0, X1 is unpredictable since it
marks X0 for refill and then refills it by placing the sum of X0 and le into it).

The 4-bit scale field encodes fourteen scale types:

-ASR #0, 1, 2, 3, 4, 6, 8, 10
-ASR #12 to 16
-LSL #1

Parallel Max/Min instructions do not provide a scale, and therefore the six

bit constant variant of source 2 is unused (Set to 0 by assembler).

Within a REPEAT instruction register re-mapping is supported, allowing a
REPEAT to access a moving *window’ of registers without unrolling the ioop. This

is described in more detail in below.

Destination operands have the following 7 bit format:

WO 98/12628 PCT/GB97/02261

38
25 24 23 22 21 20 19
F SD HL DEST
5 There are ten variants of this basic encoding:
Assembler Mnemonic 25 24 23 22 21 20 19
Dx Lfoj140 Dx
Dx~ 2111140 Dx
Dx.] 3101010 Dx
10 Dx.I* 41 110¢0 Dx
Dx.h 50010711 Dx
Dx.h" 6110141 Dx
Undefined 01111 0000

1 (No register writeback 16-bits) 7 | 1 | 1|1 |0 o 00

15 "" (No register writeback 32-bits) 8 | 1 | 1 |1 |0 |1 00

1~ (16-bit) output 11111110 00

A (32-bit) output w111t]1] oo

WO 98/12628 PCT/GB97/02261

39
The register number (Dx) indicates which of the 16 registers is being
addressed. The Hi/Lo bit and the Size bit work together to address each 32-bit register
as a pair of 16-bit registers. The Size bit defines how the appropriate flags, as defined
in the instruction type, will be set, irrespective of whether a result is written to the
5 register bank and/or output FIFO. This allows the construction of compares and similar

instructions. The add with accumulate class of instruction must write back the result

to a register.

The following table shows the behaviour of each encoding:

Encoding | Register Write FIFO Write V FLAG
10 1 Write whole register No write 32-bit overflow
2 Write whole register Write 32 bits 32-bit overflow
3 Write low 16-bits to No write 16-bit overflow
Dx.1
4 Write low 16-bits to Write low 16-bits | 16-bit overflow
Dx.!
5 Write low 16-bits to No write 16-bit overflow
Dx.h
15 6 Write low 16-bits to Write low 16-bits | 16-bit overflow
Dx.h
7 No write No write 16-bit overflow
8 No write No write 32-bit overflow
9 No write Write low 16-bits | 16-bit overflow
10 No write Write 32-bits 32-bit overflow

10

20

WO 98/12628 PCT/GB97/02261

40

In all cases the result of any operation prior to writing back to a register or

inserting into the output FIFO is a 48 bit quantity. There are two cases:

If the write is of 16-bits the 48 bit quantity is reduced to a 16-bit quantity by selecting
the bottom 16 bits [15:0]. If the instruction saturates then the value will be saturated
into the range -2°15 to 2*15-1. The 16-bit value is then written back to the indicated
register and, if the Write FIFO bit is set, to the output FIFO. If it is written to the
output FIFO then it is held until the next 16-bit value is written when the values are

paired up and placed into the output FIFO as a single 32-bit value.

For 32-bit writes the 48 bit quantity is reduced to a 32-bit quantity by selecting
the bottom 32 bits [31:0].

For both 32-bit and 48-bit writes, if the instruction saturates the 48-bit value
will be converted to a 32-bit value in the range -2731-1 to 2~31. Following the

saturation;

-If writeback to an accumulator is performed, the full 48 bits will be written.
-If writeback to a 32-bit register is performed, bits [31:0] are written.

-If writeback to the output FIFO is indicated, again bits [31:0] will be written.

The destination size is specified in the assembler by a .1 or .h after the register
number. If no register writeback is performed then the register number is unimpoﬁant,
so omit the destination register to indicate no write to a register or use ~ to indicate
a write only to the output FIFO. For example, SUB , X0, YO0 is equivalent to CMP
X0, YO and ADD *, X0, YO places the value of X0+YO into the output FIFO.

If there is no room in the output FIFO for a value, Piccolo stalls waiting for

space to become available.

If a 16-bit value is written out, for example ADD X0.h*, X1, X2, then the
value is latched until a second 16-bit value is written. The two values are then
combined and placed into the output FIFO as a 32-bit number. The first 16-bit value
written always appears in the lower half of the 32-bit word. Data entered into the

output FIFO is marked as either 16 or 32-bit data, to allow endianess to be corrected

10

15

WO 98/12628 PCT/GB97/02261

41

on big endian systems.

If a 32-bit value is written between two 16-bit writes then the action is

undefined.

Within a REPEAT instruction register re-mapping is supported, allowing a
REPEAT to access a moving 'window’ of registers without unrolling the loop. This

is described in more detail below.

In preferred embodiments of the present invention, the REPEAT instruction
provides a mechanism to modify the way in which register operands are specified
within a loop. Under this mechanism, the registers to be accessed are determined by
a function of the register operand in the instruction and an offset into the register
bank. The offset is changed in a programmable manner, preferably at the end of each
instruction loop. The mechanism may operate independently on registers residing in
the X, Y and Z banks. In preferred embodiments, this facility is not available for
registers in the A bank.

The notion of a logical and physical register can be used. The instruction
operands are logical register references, and these are then mapped to physical register
references identifying specific Piccolo registers 10. All operations, including refilling,
operate on the physical register. The register remapping only occurs on the Piccolo
instruction stream side - data loaded into Piccolo is always destined for a phyéical

register, and no remapping is performed.

The remapping mechanism will be discussed further with reference to Figure
5, which is a block diagram illustrating a number of the internal components of the
Piccolo coprocessor 4. Data items retrieved by the ARM core 2 from memory are
placed in the reorder buffer 12, and the Piccolo registers 10 are refilled from the
reorder buffer 12 in the manner described earlier with reference to Figure 2. Piccolo
instructions stored in the cache 6 are passed to an instruction decoder 50 within
Piccolo 4, where they are decoded prior to being passed to the Piccolo processor core

54. The Piccolo processor core 54 includes the multiplier/adder circuit 20, the

W

10

15

20

WO 98/12628 PCT/GB97/02261

42

accumulate/decumulate circuit 22, and the scale/saturate circuit 24 discussed earlier

with reference to Figure 3.

If the instruction decoder 50 is handling instructions forming part of an
instruction loop identified by a REPEAT instruction, and the REPEAT instruction has
indicated that remapping of a number of registers should take place, then the register
remapping logic 52 is employed to perform the necessary remapping. The register
remapping logic 52 can be considered as being part of the instruction decoder 50,
although it will be apparent to those skilled in the art that the register remapping logic

52 may be provided as a completely separate entity to the instruction decoder 50.

An Instruction will typically include one or more operands identifying registers
containing the data items required by the instruction. For example, a typical instruction
may include two source operan.ds and one destination operand, identifving two
registers containing data items required by the instruction, and a register in to which
the result of the instruction should be placed. The register remapping logic 32 receives
the operands of an instruction from the instruction decoder 50, these operands
identifying logical register references. Based on the logical register references, the
register remapping logic will determine whether remapping should or should not be
applied, and will then apply a remapping to physical register references as required.
If it is determined that remapping should not be applied, the logical register references
are provided as the physical register references. The preferred manner in which the

remapping is performed will be discussed in more detail later.

Each output physical register reference from the register remapping logic is
passed to the Piccolo processor core 54, such that the processor core can then apply
the instruction to the data item in the particular register 10 identified by the physical

register reference.

The remapping mechanism of the preferred embodiment allows each bank of

registers to be split into two sections. namely a section within which registers may be

10

15

20

25

WO 98/12628 PCT/GB97/02261

43

remapped, and a section in which registers retain their original register references
without remapping. In preferred embodiments, the remapped section starts at the

bottom of the register bank being remapped.

A number of parameters are employed by the remapping mechanism, and these
parameters will be discussed in detail with reference to Figure 6, which is a block
diagram illustrating how the various parameters are used by the register remapping
logic 52. It should be noted that these parameters are given values that are relative to
a point within the bank being remapped, this point being, for example, the bottom of
the bank.

The register remapping logic 52 can be considered as comprising two main
logical blocks, namely the Remap block 56 and the Base Update block 58. The
register remapping logic 52 employs a base pointer that provides an offset value to be
added to the logical register reference, this base pointer value being provided to the

remap block 56 by base update block 38.

A BASESTART signal can be used to define the initial value of the base
pointer, this for example typically being zero, although some other value may be
specified. This BASESTART signal is passed to multiplexor 60 within the Base
Update block 58. During the first iteration of the instruction loop, the BASESTART
signal is passed by the multiplexor 60 to the storage element 66, whereas for
subsequent iterations of the loop, the next base pointer value is supplied by the

multiplexor 60 to the storage element 66.

The output of the storage element 66 is passed as the current base pointer value
to the ReMap logic 56, and is also passed to one of the inputs of an adder 62 within
the Base Update logic 58. The adder 62 also receives a BASEINC signal that provides
a base increment value. The adder 62 is arranged to increment the current base pointer
value supplied by storage element 66 by the BASEINC value, and to pass the result

to the modulo circuit 64.

10

WO 98/12628 PCT/GB97/02261

44

The modulo circuit also receives a BASEWRAP value, and compares this value
to the output base pointer signal from the adder 62. If the incremented base pointer
value equals or exceeds the BASEWRAP value, the new base pointer is wrapped
round to a new offset value. The output of the modulo circuit 64 is then the next base
pointer value to be stored in storage element 66. This output is provided to the

multiplexor 60, and from there to the storage element 66.

However, this next base pointer value cannot be stored in the storage element
66 until a BASEUPDATE signal is received by the storage element 66 from the loop
hardware managing the REPEAT instruction. The BASEUPDATE signal will be
produced periodically by the loop hardware, for example each time the instruction loop
is to be repeated. When a BASEUPDATE signal is received by the storage element
66. the storage element will overwrite the previous base pointer value with the next
base pointer value provided by the multiplexor 60. In this manner, the base pointer

value supplied to the ReMap logic 58 will change to the new base pointer value.

The physical register to be accessed inside a remapped section of a register
bank is determined by the addition of a logical register reference contained within an
operand of an instruction, and the base pointer value provided by the base update logic
58. This addition is performed by adder 68 and the output is passed to modulo circuit
70. In preferred embodiments, the modulo circuit 70 also receives a register wrap
value, and if the output signal from the adder 68 (the addition of the logical register
reference and the base pointer value) exceeds the register wrap value, the result will

wrap through to the bottom of the remapped region. The output of the modulo circuit
70 is then provided to multiplexor 72.

A REGCOUNT value is provided to logic 74 within Remap block 56,
identifying the number of registers within a bank which are to be remapped. The logic
74 compares this REGCOUNT value with the logical register reference, and passes a
control signal to multiplexor 72 dependent on the result of that comparison. The

multiplexor 72 receives as its two inputs the logical register reference and the output

10

15

20

WO 98/12628 PCT/GB97/02261

45

from modulo circuit 70 (the remapped register reference). In preferred embodiments
of the present invention, if the logical register reference is less than the REGCOUNT
value, then the logic 74 instructs the multiplexor 72 to output the remapped register
reference as the Physical Register Reference. If, however, the logical register reference
is greater than or equal to the REGCOUNT value, then the logic 74 instructs the
multiplexor 72 to output the logical register reference directly as the physical register

reference.

As previously mentioned, in preferred embodiments, it is the REPEAT
instruction which invokes the remapping mechanism. As will be discussed in more
detail later, REPEAT instructions provide four zero cycle loops in hardware. These
hardware loops are illustrated in Figure 5 as part of the instruction decoder 50. Each
time the instruction decoder 50 requests an instruction from cache 6, the cache returns
that instruction to the instruction decoder, whereupon the instruction decoder
determines whether the returned instruction is a REPEAT instruction. If so, one of the

hardware loops is configured to handle that REPEAT instruction.

Each repeat instruction specifies the number of instructions in the loop and the
number of times to go around the ioop (which is either a constant or read from a
Piccolo register). Two opcodes REPEAT and NEXT are provided for defining a
hardware loop, the NEXT opcode being used merely as a delimiter and not being
assembled as an instruction. The REPEAT goes at the start of the loop, and NEXT
delimits the end of the loop, allowing the assembler to calculate the number of
instructions in the loop body. In preferred embodiments, the REPEAT instruction can
include remapping parameters such as the REGCOUNT, BASEINC, BASEWRAP and
REGWRAP parameters to be employed by the register remapping logic 52.

A number of registers can be provided to store remapping parameters used by
the register remapping logic. Within these registers, a number of sets of predefined
remapping parameters can be provided, whilst some registers are left for the storage

of user defined remapping parameters. If the remapping parameters specified with the

10

15

WO 98/12628 PCT/GB97/02261

46

REPEAT instruction are equal to one of the sets of predefined remapping parameters,
then the appropriate REPEAT encoding is used, this encoding causing a multiplexor
or the like to provide the appropriate remapping parameters from the registers directly
to the register remapping logic. If, on the other hand, the remapping parameters are
not the same as any of the sets of predefined remapping parameters, then the
assembler will generate a Remapping Parameter Move Instruction (RMOV) which
allows the configuration of the user defined register remapping parameters, the RMOV
instruction being followed by the REPEAT instruction. Preferably, the user defined
remapping parameters would be placed by the RMOV instruction in the registers left
aside for storing such user defined remapping parameters, and the multiplexor would
then be programmed to pass the contents of those registers to the register remapping

logic.

In the preferred embodiments, the REGCOUNT, BASEINC, BASEWRAP and
REGWRAP parameters take one of the values identified in the following chart:

WO 98/12628 PCT/GB97/02261

47

PARAMETER DESCRIPTION

REGCOUNT This identifies the number of 16 bit
registers to perform remapping on, and
may take the values 0, 2, 4, 8.
Registers below REGCOUNT are

remapped, those above or equal to
REGCOUNT are accessed directly.

BASEINC This defines by how many 16 bit
registers the base pointer is
incremented at the end of each loop
iteration. It may in preferred
embodiments take the values 1. 2, or
4, although in fact it can take other
values if desired, including negative
values where appropriate.

BASEWRAP This determines the ceiling of the base
calculation. The base wrapping
modulus may take the values 2. 4, 8.

REGWRAP This determines the ceiling of the
remap calculation. The register
wrapping modulus may take the values
2, 4, 8. REGWRAP may be chosen to
be equal to REGCOUNT.

Returning to Figure 6, an example of how the various parameters are used by
the remap block 56 is as follows (in this example, the logical and physical register

values are relative to the particular bank):

if (Logical Register < REGCOUNT)

Physical Register = (Logical Register + Base) MOD REGCOUNT

10

15

WO 98/12628 PCT/GB97/02261

48

else

Physical Register = Logical Register

end if

At the end of the loop, before the next iteration of the loop begins, the

following update to the base pointer is performed by the base update logic 58:
Base = (Base + BASEINC) MOD BASEWRAP

At the end of a remapping loop, the register remapping will be switched off
and all registers will then be accessed as physical registers. In preferred embodiments,
only one remapping REPEAT will be active at any one time. Loops may still be
nested, but only one may update the remapping variables at any particular time.

However, it will be appreciated that, if desired, remapping repeats could be nested.

To illustrate the benefits achieved with regards to code density as a result of
employing the remapping mechanism according to the preferred embodiment of the
present invention, a typical block filter algorithm will now be discussed. The
principles of the block filter algorithm will first be discussed with reference to Figure
7. As illustrated in Figure 7, accumulator register A0 is arranged to accumulate the
results of a number of multiplication operations, the multiplication operations being
the multiplication of coefficient c0 by data item d0, the multiplication of coefficient
cl by data item d1, the multiplication of coefficient ¢2 by data item d2, etc. Register
Al accumulates the results of a similar set of multiplication operations, but this time
the set of coefficients have been shifted such that cO is now multiplied by dl, cl is
now multiplied by d2, ¢2 is now multiplied by d3, etc. Likewise, register A2

accumulates the results of multiplying the data values by the coefficient values shifted

10

15

WO 98/12628 PCT/GB97/02261

49

another step to the right, such that c0 is multiplied by d2, cl is muitiplied by d3, c2
is multiplied by d4, etc. This shift, multiply, and accumulate process is then repeated

with the result being placed in register A3.

If register remapping in accordance with the preferred embodiment of the
present invention is not employed, then the following instruction loop will be required

to perform the block filter instruction:

; start with 4 new data values

ZERO {AO-A3} ; Zero the accumulators

REPEAT Z1

. zl= (number of coeffs/4)

; do the next four coefficients, on the first time around:

;a0 += do*co+dl*cl+d2*c2+d3*c3

; al += dl*cO+d2*cl+d3*c2+d4a*c3

; a2 += d2*c0+d3*cl+d4*c2+dS5*c3

; a3 += d3*c0+da*cl+d5*c2+d6*c3

MULA A0, X0.1%, Y0.1 , AO ; a0 += do*c0, and load d4

MULA Al, X0.h , Y0.1 , Al ; al += d1*co

wh

10

15

WO 98/12628

NEXT

A2,

A3,

A0,

Al,

A2,

A3,

AO,

Al,

A2,

A3,

A0,

Al,

A2,

A3,

X1.

X1.

X0.

X1.

X1.

X0.

X1.

X1.

X0.

X0.

X1l.

X0.

X0.

X1.

YO.

YO.

YO.

YO0.

YO.

Y1.

Y1l.

Yl.

Y1.

Yl.

‘1.

Y1.

Y1.

A2

A3

A0

Al

A2

A3

AQO

Al

A2

A3

AQ

Al

A2

A3

50

az

a3

a0

al

az

a3l

ao

al

az2

a3l

al

al

a2

a3l

d2*c0

d3*co,

di*cl,

d2+*c1

d3i*cl

d4*cl,

d2*c2,

d3*c2

d4g*c2

ds*c2,

d3*c3,

d4a*c3

ds*c3

dé6*c3,

PCT/GB97/02261

and load c4

and load ds5

and load c5

and load de

and load cé

and load 47

and load c7

In this example, the data values are placed in the X bank of registers and the

coefficient values are placed in the Y bank of registers. As a first step, the four

10

15

20

WO 98/12628

PCT/GB97/02261

51

accumulator registers A0, Al, A2. and A3 are set to zero. Once the accumulator
registers have been reset, an instruction loop is then entered, which is delimited by the
REPEAT and NEXT instructions. The value Z1 identifies the number of times that
the instruction loop should be repeated. and for the reasons that will be discussed later,
this will actually be equal to the number of coefficients (c0, cl, c2, etc.) divided by
4.

The instruction loop comprises 16 multiply accumulate instructions (MULA),
which, after the first iteration through the loop, will result in the registers A0, Al, A2,
A3 including the result of the calculations shown in the above code between the
REPEAT and the first MULA instruction. To illustrate how the multiply accumulate
instructions operate, we will consider the first four MULA instructions. The first
instruction multiplies the data value within the first, or lower, 16 bits of the X bank
register zero with the lower 16 bits within Y bank register zero, and adds the result
to the accumulator register AO. At the same time the lower 16 bits of the X bank
register zero are marked by a refill bit, this indicating that that part of the register can
now be refilled with a new data value. It is marked in this way, since as will be
apparent from Figure 7, once data item d0 has been multiplied by the coefficient c0
(this being represented by the first MULA instruction), then dO is no longer required

for the rest of the block filter instruction and so can be replaced by a new data value.

The second MULA instruction then multiplies the second, or higher 16 bits of
the X bank register zero with the lower 16 bits of the Y bank register zero (this
representing the multiplication dl x c0 shown in Figure 7). Similarly, the third and
fourth MULA instructions represent the multiplications d2 x c0, and d3 x c0,
respectively. As will be apparent from Figure 7, once these four calculations have been
performed, coefficient CO is no longer required and so the register Y0.1 is marked by

a refill bit to enable it to be overwritten with another coefficient (c4).

The next four MULA instructions represent the calculations dlxcl, d2xcl,

d3xcl, and ddxcl, respectively. Once the calculation d1xcl has been performed, the

i

10

20

WO 98/12628

PCT/GB97/02261

32

register X0.h is marked by a refill bit since d1 is no longer required. Similarly, once
all four calculations have been performed, the register YO0.h is marked for refilling,
since the coefficient cl is no longer needed. Similarly, the next four MULA
instructions correspond to the calculations d2xc2, d3xc2, d4xc2, and d5xc2. whilst the

final four calculations correspond to the calculations d3xc3, d4xc3, d5xc3, and d6xc3.

Since, in the above described embodiment, registers are not remappable, each
multiplication operation has to be reproduced explicitly with the specific register
required being designated in the operands. Once the sixteen MULA instructions have
been performed, the instruction loop can be repeated for coefficients c4 to ¢7 and data
items d4 to d10. Also, because the loop acts on four coefficient values per iteration,
then the number of coefficient values must be a multiple of four and the computation

Z1 = no. of coeffs/4 must be calculated.

By employing the remapping mechanism in accordance with the preferred
embodiment of the present invention, the instruction loop can be dramatically reduced,
such that it now only includes 4 multiply accumulate instructions, rather than the 16
multiply accumulate instructions that were otherwise required. Using the remapping

mechanism, the code can now be written as follows:

: start with 4 new data values
ZERO {A0-A3) ; Zero the accumulators

REPEAT Z1, X++ n4 wé4 r4, Y++ nd4 w4 ré; Zl= (number of coefficients)
: Remapping is applied to the X and Y banks.

. Four 16 bit registers in these banks are remapped.

10

15

WO 98/12628

;. The base pointer

. iteration of the

. The base pointer

; bank.

NEXT

PCT/GB97/02261

53

for both banks is incremented by one on each

loop.

wraps when it reaches the fourth register in the

Yo.l , AO ; a0 += do*cO, and load d4
Y0.1l , Al ; al += dl*coO
Y0.l1 , A2 ; a2 += d2¥*co
¥0.1", A3 . a3 += d3*c0, and load c4

; go round loop and advance remapping

As before, the first step is to set the four accumulator registers A0-A3 to zero.

Then, the instruction loop is entered, delimited by the REPEAT and NEXT opcodes.

The REPEAT instruction has a number of parameter

as follows:

s associated therewith, which are

X4+ - indicates that BASEINC is ’1” for the X Bank of registers

n4 . indicates that REGCOUNT is 4’ and hence the first four X Bank registers

X0.1 to X1.h are to be remapped

w4 indicates that BASEWRAP is *4’ for the X Bank of registers

10

15

WO 98/12628 PCT/GB97/02261

54
r4 - indicates that REGWRAP is 4’ for the X Bank of registers

Y++ : indicates that BASEINC is '1”° for the Y Bank of registers

n4 - indicates that REGCOUNT is ’4’ and hence the first four Y Bank registers

YO0.l to Y1.h are to be remapped

wd - indicates that BASEWRAP is ’4’ for the Y Bank of registers

r4 - indicates that REGWRAP is "4’ for the Y Bank of registers

It should also be noted that now the value Z1 is equal to the number of

coefficients, rather than being equal to the number of coefficients/4 as in the prior art

example.

For the first iteration of the instruction loop, the base pointer value is zero, and
so there is no remapping. However, next time the loop is executed, the base pointer

value will be ’1’ for both the X and Y banks, and so the operands will be mapped as

follows:

X0.1 becomes X0.h

X0.h becomes X1.1

X1.! becomes X1.h

X1.h becomes X0.1 (since BASEWRAP is '4’)

Y0.l becomes Y0.h

10

15

20

WO 98/12628 PCT/GB97/02261

55
Y0.h becomes Y1.1

Y1.l becomes Y1l.h

Y1.h becomes Y0.l (since BASEWRAP is ’4’)

Hence, it can be seen that on the second iteration, the four MULA instructions
actually perform the calculations indicated by the fifth to eight MULA instructions in
the example discussed earlier that does not include the remapping of the present
invention. Similarly, the third and fourth iterations through the loop perform the
calculations formerly performed by the ninth to twelfth, and thirteenth to sixteenth

MULA instructions of the prior art code.

Hence, it can be seen that the above code performs exactly the same block
filter algorithm as the prior art code, but improves code density within the loop body
by a factor of four, since only four instructions need to be provided rather than the

sixteen required by the prior art.

By employing the register remapping technique in accordance with preferred

embodiments of the present invention, the following benefits can be realised:

1. It improves code density;

2. It can in certain situations hide the latency from marking a register being as
empty to that register being refilled by Piccolo’s reorder buffer. This could be

achieved by unrolling loops, at the cost of increased code size;

-~

3. It enables a variable number of registers to be accessed - by varying the
number of loop iterations performed the number of registers accessed may be varied,

and

10

15

20

WO 98/12628

PCT/GB97/02261
56
4. It can ease algorithm development. For suitable algorithms, the programmer

can produce a piece of code for the nth stage of the algorithm, then use register

remapping to apply the formula to a sliding set of data.

It will be apparent that certain changes can be made to the above described
register remapping mechanism without departing from the scope of the present
invention. For example, it is possible for the bank of registers 10 to provide more
physical registers than can be specified by the programmer in an instruction operand.
Whilst these extra registers cannot be accessed directly, the register remapping
mechanism can make these registers available. For example, consider the example
discussed earlier where the X bank of registers has four 32 bit registers available to
the programmer, and hence eight 16 bit registers can be specified by logical register
references. It is possible for the X bank of registers to actually consist of, for exampie,
six 32 bit registers, in which case there will be four additional 16 bit registers not
directly accessible to the programmer. However, these extra four registers can be made
available by the remapping mechanism thereby providing additional registers for the

storage of data items.

The following assembler syntax may will be used:

>> means logical shift right or shift left if the shift operand is negative (see

<|scale> below).

->> means arithmetic shift right or shift left if the shift operand is negative

(see <scale> below).

RORmeans Rotate Right.

SAT(a)means the saturated value of a (saturated to 16 or 32 bits depending

on the size of the destination register). Specifically, to saturate to 16

10

15

WO 98/12628

PCT/GB97/02261

57

bits, any value greater than +0x7fff is replaced by +0x7fff and

any value less than -0x8000 is replaced by -0x8000. Saturation

to 32 bits is similar with extremes +Ox7FEEEFEF and -0x80000000. If the

destination register is 48 bits the saturation is still at 32 bits.

Source operand 1 can be one of the following formats:

<srel>will be used a shorthand for {Rn/Rn.ljRn.hiRn.x]["]. In other words
all 7 bits of the source specifier are valid and the register is read as
a 32-bit value (optionally swapped) or a 16-bit value sign extended.
For an accurnulator only the bottom 32 bits are read. The * specifies
register refill.

<srcl_16>is short for [Rn.liRn.h]("]. Only 16-bit values can be read.

<srcl_32>is short for [RnjRn.x]["]. Only a 32-bit value can be read, with the

upper and lower halves optionally swapped.

Source operand 2 can be one of the following formats:

<src2>will be a shorthand for three options:

a source register of the form [Rn'Rn.lRn.hiRn.x][*], plus 2
scale (<scale>) of the final result.

an optionally shifted eight bit constant (<immed_8>), but no
scale of the final result.

a six bit constant (<immed_6>), plus a scale (<scale>) of the
final result.

<src2_maxmin> is the same as <src2> but a scale is not permitted.
<src2_shift> shift instructions provide a limited subset of <src2>. See above.

for details.

10

15

20

25

WO 98/12628

<src2_par>

PCT/GB97/02261

58

as for <src2_shift>

For instructions which specify a third operand:

<acc>

is short for any of the four accumulator registers [A0}A1}A2|A3].

All 48 bits are read. No refill can be specified.

The destination register has the format:

<dest>

extension

register

<scale>

available

<immed_8>

byte

0xYZ000000,

<imm_6>

which is short for [RnjRn.lRn.h.l} J[*]. With no “.”

the full register is written (48 bits in the case of an accumulator).

In the case where no write back to the register is required, the

used is unimportant. The assembler supports the omission of a
destination register to indicate that write back is not required or
“1” to indicate that no writeback is required but flags should be
set as though the result is a 16-bit quantity. ~ denotes that the
value is written to the output FIFO.

represents a number of arithmetic scales. There are fourteen

scales:
ASR #0, 1, 2,3, 4,6, 8,10
ASR #12 to 16
LSL #1

stands for a unsigned 8-bit immediate value. This consists of a
rotated left by a shift of 0, 8, 16 or 24. Hence values
0x00YZ0000, 0x0000YZ00 and 0x000000YZ can be encoded

for any YZ. The rotate is encoded as a 2 bit quantity.

Stands for an unsigned 6-bit immediate.

<PARAMS> is used to specify register re-mapping and has the following format:

<BANK><BASEINC> n<RENUMBER> w<BASEWRAP>

10

15

20

25

WO 98/12628

<BANK>

<BASEINC>

59
can be [X|Y'Z)

can be [+++1)+2}+4]

<RENUMBER> can be [012/48]
<BASEWRAP> can be [2148]

PCT/GB97/02261

The expression <cond> is shorthand for any one of the following condition

codes. Note that the encoding is slightly different from the ARM since the unsigned

LS and HI codes have been replaced by more useful signed overflow/underflow tests.

The V and N flags are set differently on Piccolo than on the ARM so the translation

from condition testing to flag checking is not the same as the ARM either.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

EQ Z=0

NE Z=1

cs C=1

cC C=0

MI/LT N=1

PL/GE N=0

VS V=l

vC V=0

VP V=1 & N=0

VN V=1 & N=1l
reserved

reserved

GT N=0& Z=0
LE N=1|Z=Il
AL

reserved

Last result was zero.
Last result was non zero.

Used after a shift/MAX operation.

Last result was negative.

Last result was positive

Signed overflow/saturation on last result
No overflow/saturation on last result
Overflow positive on last result.

Overflow negative on last result

Since Piccolo deals with signed quantities, the unsigned LS and HI conditions

have been dropped and replaced by VP and VN which describe the direction of any

overflow. Since the result of the ALU is 48 bits wide, MI and LT now perform the

10

15

WO 98/12628

PCT/GBY7/02261

60

same function, similarly PL and GE. This leaves 3 slots for future expansion.
All operations are signed unless otherwise indicated.
The primary and secondary condition codes each consist of:

N - negative.

Z - zero.

C - carry/unsigned overflow.

V - signed overflow.

Arithmetic instructions can be divided into two types; parallel and *full width’.
The “full width’ instructions only set the primary flags, whereas the paralle! operators

set the primary and secondary flags based on the upper and lower 16-bit haives of the

result.

The N, Z and V flags are calculated based on the full ALU resuit, after the
scale has been applied but prior to being written to the destination. An ASR will
always reduce the number of bits required to store the result, but an ASL would
increase it. To avoid this Piccolo truncates the 48-bit result when an ASL scale is

applied, to limit the number of bits over which zero detect and overflow must carried

out.

The N flag is calculated presuming signed arithmetic is being carried out. This
is because when overflow occurs, the most significant bit of the result is either the C

flag or the N flag, depending on whether the input operands are signed or unsigned.

The V flag indicates if any loss of precision occurs as a result of writing the
result to the selected destination. If no write-back is selected a ’size’ is still implied,

and the overflow flag is set correctly. Overflow can occur when:
-Writing to a 16-bit register when the result is not in the range -2”15 to 2°15-1.
-Writing to a 32-bit register when the result is not in the range -2°31 to 2731-1.

Paralle] add/subtract instructions set the N, Z and V flags independently on the

upper and lower halves of the resulit.

10

15

20

25

WO 98/12628 PCT/GB97/02261

61
When writing to an accumulator the V flag is set as if writing to a 32-bit

register. This is to allow saturating instructions to use accumulators as 32-bit registers.

The saturating absolute instruction (SABS) also sets the overflow flag if the

absolute value of the input operand would not fit in designated destination.

The Carry flag is set by add and subtract instructions and is used as a "binary’
flag by the MAX/MIN, SABS and CLB instructions. All other instructions, including

multiply operations preserve the Carry flag(s).

For add and subtract operations the Carry is that which is generated by either

bit 31 or bit 15 or the result, based on whether the destination is 32 or 16-bits wide.

The standard arithmetic instructions can be divided up into a number types,

depending on how the flags are set:

In the case of Add and Subtract instructions, if the N bit is set, then all flags

are preserved. If the N bit is not set then the flags are updated as follows:
Z is set if the full 48 bit result was 0.
N is set if the full 48 bit result had bit 47 set (was negative).
V is set if either:

The destination register is 16-bit and the signed result will not fit into

a 16-bit register (not in the range 2N 5<=x<2"13)

The destination register is a 32/48 bit register and the signed result will

not fit into 32 bits.

If <dest> is a 32 or 48 bit register then the C flag is set if there is a carry out
of bit 31 when summing <src!> and <src2> or if no borrow occurred from bit 31
when subtracting <src2> from <src1> (the same carry value you would expect on the
ARM). If <dest> is a 16-bit register then the C flag is set if there is a carry out of bit
15 of the sum.

The secondary flags (SZ, SN, SV, SC) are preserved.

In the case of instructions which either carry out a multiplication or accumulate

from a 48-bit register.

10

15

20

WO 98/12628

62

Z is set if the full 48 bit result was 0.

N is set if the full 48 bit result had bit 47 set (was negative).
V is set if either (1) the destination register is 16-bit and the signed result will
not fit into a 16-bit register (not in the range -2715<=x<2”15) or (2) the

destination register 1s a 32/48 bit register and the signed result will not fit into

32 bits.

C is preserved.

The secondary flags (SZ, SN, SV, SC) are preserved.

The other instructions, including logical operations, parallel adds and subtracts.

max and min, shifts etc. are covered below.

The Add and Subtract instructions add or subtract two registers, scale the
result, and then store back to a register. The operands are treated as signed values.

Flag updating for the non-saturating variants is optional and may be suppressed by

appending an N to the end of the instruction.

31302928272625242322212019181716151413 1211109 8 7 6 5

PCT/GB97/02261

43 2

1

0

0 OPC F|S DEST SIIR SRCI

SRC2

OPC specifies the type of instruction.

Action (OPC):

10

15

25

WO 98/12628 PCT/GB97/02261

63

100N0O dest = (srcl + src2) (->> scale) (, N)

110NO dest = (srcl - src2) (-=>> scale) (, N)

10001 dest = SAT((srcl + src2) (->> scale))

11001 dest = SAT((srcl - src2) (->> scale))

01110 dest = (src2 - srcl) (->> scale)

01111 dest = SAT((src2 - srcl) (->> scale))

10INO dest = (srcl + src2 + Carry) (->> scale) (, N)

111INO dest = (srcl - src2 + Carry - 1) (->> scale) (, N)
Mnemonics:

100N0O ADD{N} <dest>, <srcl>, <src2> {,<scale>}

110NO SUB{N} <dest>, <srcl>, <src2> {,<scale>}

10001 SADD <dest>, <srcl>, <src2> {,<scale>}

11001 SSUB <dest>, <srcl>, <src2> {,<scale>}

01110 RSB <dest>, <srcl>, <src2> {,<scale>}

01111 SRSB <dest>, <srcl>, <src2> {,<scale>}

101NO ADC{N} <dest>, <srcl>, <src2> {,<scale>}

111NO SBC{N} <dest>, <srcl>, <src2> {,<scale>}

The assembler supports the following opcodes
CMP <srcl>, <src2>

CMN <srcl>, <src2>

CMRP is a subtract which sets the flags with the register write disabled. CMN is an add
which sets the flags with register write disabled.

Flags:

These have been discussed above.

10

15

20

WO 98/12628

Reasons for inclusion:

ADC is useful for inserting carry into the bottom of a register following a
shif MAX/MIN operation. It is also used to do a 32/32 bit divide. It also provides for

extended precision adds. The addition of an N bit gives finer control of the flags, in

64

PCT/GB97/02261

particular the carry. This enables a 32/32 bit division at 2 cycles per bit.

Saturated adds and subtracts are needed for G.729 etc.

Incrementing/decrementing counters. RSB is useful for calculating shifts (x=32-x is

a common operation). A saturated RSB is needed for saturated negation (used in

G.729).

Add/subtract accumulate instructions perform addition and subtraction with

accumulation and scaling/saturation. Unlike the multiply accumulate instructions the

accumulator number cannot be specified independently of the destination register. The

bottom two bits of the destination register give the number, acc, of the 48 bit

accumulator to accumulate

into.

Hence ADDA X0,X1,X2,A0 and ADDA

A3,X1,X2,A3 are valid, but ADDA X1,X1,X2,A0 is not. With this class of instrucﬁon,

the result must be written back to a register - the no writeback encodings of the

destination field are not allowed.

31302928 27262524 23 2221201918 1716151413 121110 9 8 7 6 5

4

3

2

1

0

01010 110§SatF]|S

DEST

S1

SRC1

SRC2

10

15

25

WO 98/12628 PCT/GB97/02261
65

OPC specifies the type of instruction. In the following acc is (DEST[1:0]). The Sa bit

indicates saturation.

Action (OPC):

0 dest = {SAT}(acc + (srcl + src2)) {->> scale}
1 dest = {SAT}(acc + (srcl - src2)) {->> scale}

Mnemonics:
0 {S}ADDA <dest>, <srcl>, <src2>, <acc> {,<scale>}
1 {S}SUBA <dest>, <srcl>, <src2>, <acc> {,<scale>}

An S before the command indicates saturation.

Flags:

See above.

Reasons for inclusion:

The ADDA (add accumulate) instruction is useful for summing two words of an array
of integers with an accumulator (for instance to find their average) per cycle. The
SUBA (subtract accumulate) instruction is useful in calculating the sum of the
differences (for correlation); it subtracts two separate values and adds the difference
to a third register.

Addition with rounding can be done by using <dest> different from <acc>. For
example, X0=(X1+X2+16384)>>15 can be done in one cycle by keeping 16384 in AO.
Addition with a rounding constant can be done by ADDA X0,X1,#16384,A0.

For a bit exact implementation of:

sum of ((a_i * b_i)>>k) (quite common - used in TrueSpeech)

10

15

20

25

WO 98/12628

the standard Piccolo code would be:

tl, a_0, b_0, ASR¥k

MUL
ADD
MUL
ADD

ans, ans, tl
t2,a 1, b 1, ASR#k

ans, ans, t2

PCT/GB97/02261

There are two problems with this code; it is too long and the adds are not to 48-bit

precision so guard bits can’t be used. A better solution is to use ADDA:

This gives a 25% speed increase and retains 48-bit accuracy.

MUL
MUL

ADDA

tl, a_0, b_0, ASR#k
12,2 1,b_1, ASR¥k

ans, tl, t2, ans

Add/Subtract in Parallel instructions perform addition and subtraction on two

signed 16-bit quantities held in pairs in 32-bit registers. The primary condition code

flags are set from the result of the most significant 16 bits, the secondary flags are

updated from the least significant half. Only 32-bit registers can be specified as the

source for these instructions, although the values can be halfword swapped. The

individual halves of each register are treated as signed values. The calculations and

scaling are done with no loss of precision. Hence ADDADD X0, X1, X2, ASR#1 will

produce the correct averages in the upper and lower halves of X0. Optional saturation

is provided for each instruction for which the Sa bit must be set.

3130292827262524 23 222120191817 161514 131211109 8 7 6 5 4 3 2 1

0

0

0

oPC

Sa

F

DEST

S1

SRC1

SRC2

10

15

20

25

30

WO 98/12628 PCT/GB97/02261

67

OPC defines the operation.

Action (OPC):

000 desth = (srcl.h + src2.h) ->> {scale},
dest.l = (srcl.l + src2.]) ->> {scale}

001 dest.h = (srcl.h + src2.h) ->> {scale},
dest.] = (srcl.l - src2.1) ->> {scale}

100 dest.h = (srcl.h - src2.h) ->> {scale},
dest.] = (srcl.l + src2.l) ->> {scale}

101 dest.h = (srcl.h - src2.h) ->> {scale},

dest.] = (srcl.] - src2.l) ->> {scale}

Each sum/difference is independently saturated if the Sa bit is set.

Mnemonics:
000 {S}ADDADD <dest>, <srcl 32>, <src2_32> {,<scale>}
001 {S}ADDSUB <dest>, <srcl_32>, <src2_32> {,<scale>}
100 {S}SUBADD <dest>, <srcl 32>, <src2_32> {,<scale>}
101 {S}SUBSUB <dest>, <srcl 32>, <src2_32> {,<scale>}

An S before the command indicates saturation.

The assembler also supports

CMNCMN <dest>, <srcl_32>, <src2_32> {,<scale>}
CMNCMP <dest>, <srcl_32>, <src2_32> {,<scale>}
CMPCMN <dest>, <srcl_32>, <src2_32> {,<scale>}
CMPCMP <dest>, <srcl_32>, <src2_32> {,<scale>}

generated by the standard instructions with no write-back.

e

WO 98/12628

PCT/GB97/02261
68
Flags:
C 1s set if there is a carry out of bit 15 when adding the two upper
sixteen bit halves.
Z is set if the sum of the upper sixteen bit halves is 0.
N is set if the sum of the upper sixteen bit halves is negative.
A% is set if the signed 17 bit sum of the upper sixteen bit halves

will not fit into 16 bits (post scale).

SZ, SN, SV, and SC are set similarly for the lower 16-bit halves.

Reason for inclusion:

The parallel Add and Subtract instructions are useful for performing operations on
complex numbers held in a single 32-bit register. They are used in the FFT kernel. It

is also useful for simple addition/subtraction of vectors of 16-bit data, allowing two

elements to be processed per cycle.

The Branch (conditional) instruction allows conditional changes in control flow.

Piccolo may take three cycles to execute a taken branch.

3130292827262524 23 222120191817161531413 1211109 8 7 6 5 4 3 2 1 0

0 11111 100 000 IMMEDIATE_16 ‘COND

Action:

Branch by offset if <cond> holds according to the primary flags.
The offset is a signed 16-bit number of words. At the moment the range

of the offset is restricted to -32768 to +32767 words.

WO 98/12628

69

The address calculation performed is

PCT/GB97/02261

target address = branch instruction address + 4 + OFFSET

5 Mnemonics:

B<cond> <destination_label>

Flags:

10 Unaffected.

Reasons for inclusion:

Highly useful in most routines.

15 Conditional Add or Subtract instructions conditionally add or subtract src2 to

srcl.

3130292827 262524 23 222120191817 16151413 121110 9 8 7 6 5 4 3210

{ 0010 OfF|[S DEST SR
P D 1
C

SRC1

SRC2

20

OPC specifies the type of instruction.

WO 98/12628

PCT/GB97/02261
70
Action (OPC):
0 if (carry set) temp=srcl-src2 else temp=srci+src2
dest = temp {->> scale}
1 if (carry set) temp=srcl-src2 else temp=srcl+src2
5 dest = temp {->> scale} BUT if scale is a shift left

then the new value of carry (from srcl-src2 or

srcl+src2) is shifted into the bottom.

Mnemonics:
10
0 CAS <dest>, <srcl>, <src2> {,<scale>}
1 CASC <dest>, <srcl>, <src2> {,<scale>}
Flags:
15 See above.

Reasons for inclusion:

The Conditional Add or Subtract instruction enables efficient divide code to be

constructed.

Example 1: Divide the 32-bit unsigned value in X0 by the 16-bit unsigned value in
20 X1 (with the assumption that X0 < (X1<<16) and X1.h=0).

10

15

20

25

WO 98/12628 PCT/GB97/02261

71
LSL XlI, X1, #15 ; shift up divisor
SUB Xl, X1, #0 ; set the carry flag
REPEAT #16
CASC X0, X0, X1, LSL#1
NEXT

At the end of the loop X0.1 holds the quotient of the divide. The remainder can be

recovered from X0.h depending on the value of carry.

Example 2: Divide the 32-bit positive value in X0 by the 32-bit positive value in X1,

with early termination.

MOV X2, #0 ; clear the quotient
LOG Z0, X0 - number of bits X0 can be shifted
LOG Z1, X1 - number of bits X1 can be shifted
SUBS 70,21, Z0 ; X1 shift up so 1’s match
BLT div_end : X1>X0 so answer is 0
LSL X1, X1, Z0 : match leading ones
ADD 70, 720, #1 : number of tests to do
SUBS Z0, Z0, #0 ; set carry
REPEAT Z0
CAS X0, X0, X1, LSL#1
ADCN X2, X2, X2
NEXT
div_end

At the end, X2 holds the quotient and the remainder can be recovered from XO0.

The Count Leading Bits instruction allows data to be normalised.

WO 98/12628 PCT/GB97/02261

72

313029 2827262524 23 22212019 18 1716 151413121110 9 8 7 6 5 4 3 2 | 0

oi1oil FtS DEST SIIR SRCI 101110000000
D 1

5 Action:
dest is set to the number of places the value in srcl must be
shifted left in order for bit 31 to differ from bit 30. This is a

value in the range 0-30 except in the special cases where srcl

is either -1 or 0 where 31 is returned.

10
Mnemonic:
CLB <dest>, <srcl>
Flags:
15
Z 1s set if the result is zero.
N is cleared.
C 1s set if srcl is either -1 or 0.
AY 1s preserved.
20

Reasons for inclusion:

Step needed for normalisation.

25 Halt and Breakpoint instructions are provided for stopping Piccolo execution

WO 98/12628 PCT/GB97/02261

73

31 30 29 28 27 26 25 24 23 22212019 18 17 16 1514 13 1211 10 9 8 76 543210

i 1111 1t |OP 00000000000000000000000

5 OPC specifies the type of instruction.

Action (OPC):
0 Piccolo execution is stopped and the Halt bit is set in the
Piccolo status register.
10 1 Piccolo execution is stopped, the Break bit is set in the
Piccolo status register and the ARM is interrupted to say

that a breakpoint has been reached.

Mnemonics:
15
0 HALT
1 BREAK
Flags:
20 Unaffected

Logical Operation instructions perform a logical operation on a 32 or 16-bit

register. The operands are treated as unsigned values.

WO 98/12628

PCT/GB97/02261
74
3130292827262524 23 22212019 181716151413 121110 9 8 7 6 5 4 3 2 1 0
1l 000 |[OPC|F DEST SH|R SRCt SRC2
1
5 OPC encodes the logical operation to perform.

Action (OPC):

00
10 01
10

11

Mnemonics:
15
00
01
10
11

20

dest = (srcl & src2) {->> scale}

dest = (srcl | src2) {->> scale}

dest =

dest =

AND

ORR

BIC

EOR

(srcl & ~src2) {->> scale}

(srcl ” src2) {->> scale}

<dest>, <srcl>, <src2> {,<scale>}
<dest>, <srcl>, <src2> {,<scale>)
<dest>, <srcl>, <src2> {,<scale>)}

<dest>, <srcl>, <src2> {,<scale>}

The assembler supports the following opcodes

TST

<srcl>, <src2>

TEQ <srcl>, <src2>

5

10

15

20

WO 98/12628

TST is an AND with the register write disabled. TEQ is an EOR with the register

write disabled.

Flags:

Z is set if the result is all zeros

N,C V are preserved

SZ, SN, SC, SV are preserved

Reasons for inclusion:

Speech compression algorithms use packed bitfields for encoding information.

Bitmasking instructions help for extracting/packing these fields.

Max and Min Operation instructions perform maximum and minimum

operations.

75

PCT/GB97/02261

3130292827262524 23 222120191817161514 131211109 8 7 6 5 4 3 2 1 0
0 101 O|J1|F1S DEST S1|R SRC1 SRC2
P D 1

OPC specifies the type of instruction.

Action (OPC):

10

15

20

25

WO 98/12628 PCT/GB97/02261

76
0 dest = (srcl <= src2) ? srel : src2
1 dest = (srcl > src2) ? srcl : src2
Mnemonics:
0 MIN <dest>, <srcl>, <sr¢2>
1 MAX <dest>, <srcl>, <src2>
Flags:
Z 1s set if the result is zero
N is set if the result is negative
C For Max: C is set if sre2>=srcl (dest=srcl case)
For Min: C is set if src2>=srcl (dest=src2 case)
\% preserved.

Reasons for inclusion:

In order to find the strength of a signal many algorithms scan a sample to find the
minimum/maximum of the absolute value of the samples. The MAX and MIN
operations are invaluable for this. Depending on whether you wish to find the first or

last maximum in the signal the operands srcl and src2 can be swapped around.
MAX X0, X0, #0 will convert X0 to a positive number with clipping below.
MIN X0, X0, #255 will clip X0 above. This is useful for graphics processing.

Max and Min Operations in Parallel instructions perform maximum and

WO 98/12628

77

minimum operations on parallel 16-bit data.

3130292827262524 232221201918 1716151413 1211109 8 7 6 5 4 3 2

PCT/GB97/02261

1

0

5 0 111 Oi11F|S DEST SI{R SRC1

SRC2_PARALLEL

OPC specifies the type of instruction.

10 Action (OPC):

0 dest.] = (srcl.l <= src2.l) ? srcl.l : src2.

dest.h = (srcl.h <= src2.h) ? srcl.h : src2.h

15 1 dest.] = (srcl.l > src2.l) 7 srcl.l : src2.1

dest.h = (srcl.h > src2.h) ? srcl.h : src2.h

Mnemonics:
0 MINMIN <dest>, <srcl>, <src2>

20 1 MAXMAX <dest>, <srcl>, <src2>

WO 98/12628 PCT/GB97/02261

78
Flags:
Z 1s set if the upper 16 bits of the result is zero
N is set if the upper 16 bits of the result is negative
5 C For Max: C is set if src2.h>=srcl.h (dest=srcl case)
For Min: C is set if src2.h>=srcl.h (dest=src2 case)
\% preserved.
SZ,SN,SC,SV are set similarly for the lower 16-bit halves.
10 Reasons for inclusion:

As for 32-bit Max and Min.

Move Long Immediate Operation instructions allow a register to be set to any

signed 16-bit, sign extended value. Two of these instructions can set a 32-bit register

15 to any value (by accessing the high and low half in sequence). For moves between

registers see the select operations.

3130292827262524 23 222120191817 161514 131211109 8 7 6 5 4 3 2

]

0

1 11100 F|S DEST IMMEDIATE_15 +

000

20

Mnemonics:

WO 98/12628 PCT/GB97/02261

79
MOV <dest>, #<imm_16>

The assembler will provide a non-interlocking NOP operation using this MOV

instruction, i.e. NOP is equivalent to MOV , #0.

5
Flags:
Flags are unaffected.
Reasons for inclusion:
10
[nitialising registers/counters.
Multiply Accumulate Operation instructions perform signed multiplication with
accumulation or de-accumulation, scaling and saturation.
15
31302928 27262524 23 22212019 181716151413 121110 9 8 7 6 5 4 3 2 1 0
1| 10 | OPC|Sa|F|S DEST AR SRC! SRC2_MULA
D it
20
The field OPC specifies the type of instruction.
Action (OPC):
25 00 dest = (acc + (srcl * src2)) {->> scale}

01 dest = (acc - (srcl * src2)) {->> scale}

In each case the result is saturated before being written to the
destination if the Sa bit is set.

30

WO 98/12628 PCT/GB97/02261

80

Mnemonics:

00 {SMULA <dest>, <srcl_16>, <src2_16>, <acc> {,<scale>}
01 {S}MULS <dest>, <srcl_16>, <src2 16>, <acc> {,<scale>}

5
An S before the command indicates saturation.
Flags:
10 See section above.
Reasons for inclusion:
A one cycle sustained MULA is required for FIR code. MULS is used in the FFT
15 butterfly. A MULA is also useful for muitiply with rounding. For example
A0=(X0*X1+16384)>>15 can be done in once cycle by holding 16384 in another
accumulator (Al for example). Different <dest> and <acc> is also required for the
FFT kernel.
Multiply Double Operation instructions perform signed multiplication, doubling
20 the result prior to accumulation or de-accumulation, scaling and saturation.
3130292827262524 23 2221201918 1716 1514131211109 8 7 6 5 4 3 2 1 0
1} 10 {t|ofJ1|Fis DEST AlR SRCI1 0|A|R SRC2 SCALE
D 111 0]2
C
25

OPC specifies the type of instruction.

Action (OPC):

30 0 dest = SAT((acc + SAT(2 * srcl * src2)) {->> scale})

10

15

25

WO 98/12628 PCT/GB97/02261

81
1 dest = SAT((acc - SAT(2 * srcl * src2)) {->> scale})

Mnemonics:
0 SMLDA <dest>, <srcl 16>, <src2_16>, <acc> {,<scale>}
1 SMLDS <dest>, <srcl_16>, <src2_16>, <acc> {,<scale>}
Flags:

See section above.

Reasons for inclusion:

The MLD instruction is required for G.729 and other algorithms which use fractional
arithmetic. Most DSPs provide a fractional mode which enables a left shift of one bit
at the output of the multiplier, prior to accumulation or writeback. Supporting this as
a specific instruction provides more programming flexibility. The name equivalents for

some of the G series basic operations are:

L _msu => SMLDS
L_mac => SMLDA

These make use of the saturation of the multiplier when left shifting by one bit. If a
sequence of fractional multiply-accumulates is required, with no loss of precision,
MULA can be used, with the sum maintained in 33.14 format. A left shift and saturate
can be used at the end to convert to 1.15 format, if required.

Multiply Operation instructions perform signed multiplication, and optional

scaling/saturation. The source registers (16-bit only) are treated as signed numbers.

WO 98/12628 PCT/GB97/02261

82

3130292827262524 23 22212019 181716151413 121110 9 8 7 6 5 4 3 2 1 0

00011 O|F|S DEST SI{R SRCI SRC2
P D 1
C
5 OPC specifies the type of instruction.

Action (OPC):

0 dest = (srcl * src2) {->> scale}
10 1 dest = SAT((srcl * src2) {->> scale})
Mnemonics:
0 MUL <dest>, <srcl_16>, <src2> {,<scale>}
15 1 SMUL <dest>, <srcl_16>, <src2> {,<scale>}

Flags:

See section above.

20
Reasons for inclusion:
Signed and saturated multiplies are required by many processes.
Register List Operations are used to perform actions on a set of registers. The
25 Empty and Zero instructions are provided for resetting a selection of registers prior to,

or in between routines. The Output instruction is provided to store the contents of a

list of registers to the output FIFO.

10

20

WO 98/12628

83

PCT/GB97/02261

3130292827 262524 23 222120191817161514 131211109 8 7 6 5 4 3 2 1 0

11111

0 OPC 00

REGISTER_LIST_l16

SCALE

OPC specifies the type of instruction.

Action (OPC):

000

for (k=0; k<16, k++)

if bit k of the register list 1s set then register k 1s

marked as being empty.

001

010
011
100

101

110

111

for (k=0; k<16; k++)

if bit k of the register list is set then register k is set

to contain 0.
Undefined
Undefined
for (k=0; k<16; k++)

if bit k of the register list is set then

(register k ->> scale) is written to the output FIFO.

for (k=0; k<16; k++)

if bit k of the register list is set then

(register k ->> scale) is written to the output FIFO and

register k is marked as being empty.

for (k=0; k<16; k++)

if bit k of the register list is set then

SAT(register k ->> scale) is written to the output FIFO.

for (k=0; k<16; k++)

if bit k of the register list is set then

SAT(register k ->> scale) is written to the output FIFO and

register k is marked as being empty.

WO 98/12628

PCT/GB97/02261
84
Mnemonics:
000 EMPTY <register_list>
001 ZERO <register_list>
5 010 Unused
011 Unused
100 OUTPUT <register_list> {,<scale>}
101 OUTPUT <register_list>" {,<scale>}
110 SOUTPUT <register_list> {,<scale>}
10 111 SOUTPUT <register_list>" {,<scale>}
Flags:
Unaffected
15 Examples:
EMPTY {AO, Al, X0-X3}
ZERO {Y0-Y3}
OUTPUT {X0-Y1}"
20
The assembler will also support the syntax
OUTPUT Rn
25 In which case it will output one register using a MOV #, Rn instruction.

The EMPTY instruction will stall until all registers to be empties contain valid data

WO 98/12628 PCT/GB97/02261

85

(i.e. are not empty).

Register list operations must not be used within re-mapping REPEAT loops.

5 The OUPUT instruction can only specify up to eight registers to output.

Reasons for inclusion:

After a routine has finished, the next routine expects all registers to be empty so it can
10 receive data from the ARM. An EMPTY instruction is needed to accomplish this.
Before performing a FIR or other filter all accumulators and partial results need to be
zeroed. The ZERO instruction helps with this. Both are designed to improve code
density by replacing a series of single register moves. The OUTPUT instruction is

included to improve code density by replacing a series of MOV *, Rn instructions.
15

A Remapping Parameter Move Instruction RMOV is provided to allow the

configuration of the user defined register re-mapping parameters.

The instruction encoding is as follows:

20

3130292827 262524 23 222120191817 16151413 1211109 8 7 6 5 4 3 210

1 [RU RN 101 00 ZPARAMS YPARAMS XPARAMS

25 Each PARAMS field is comprised of the following entries:

10

15

WO 98/12628

PCT/GB97/02261

86

BASEWRAP

BASEINC 0

RENUMBER

The meaning of these entries is described below

PARAMETER

DESCRIPTION

RENUMBER

Number of 16-bit registers to
perform re-mapping on, may take

the values 0, 2, 4, 8.

Registers below RENUMBER are
re-mapped, those above are

accessed directly.

BASEINC

The amount the base pointer is
incremented at the end of each
loop. May take the values 1, 2, or
4.

BASEWRAP

The base wrapping modulus may

take the values 2, 4, 8.

Mnemonics;

RMOV <PARAMS>, [<PARAMS>]

The <PARAMS> field has the following format:

<PARAMS> ::=
w<BASEWRAP>

<BANK><BASEINC> n<RENUMBER>

10

15

20

25

WO 98/12628

PCT/GB97/02261

87
<BANK> = [XIY/Z]
<BASEINC> ::= [++4+]1421+4]
<RENUMBER> ::= [0/2148]
<BASEWRAP> ::= [21418]

If the RMOV instruction is used whilst re-mapping is active, the behaviour is
UNPREDICTABLE.

Flags:

Unaffected

Repeat Instructions provide four zero cycle loops in hardware. The
REPEAT instruction defines a new hardware loop. Piccolo uses hardware loop 0
for the first REPEAT instruction, hardware loop 1 for a REPEAT instruction
nested within the first repeat instruction and so on. The REPEAT instruction does
not need to specify which loop is being used. REPEAT loops must be strictly
nested. If an attempt is made to nest loops to a depth greater than 4 then the

behaviour is unpredictable.

Each REPEAT instruction specifies the number of instructions in the loop
(which immediately follows the REPEAT instruction) and the number of times to

go around the loop (which is either a constant or read from a Piccolo register).

If the number of instructions in the loop is small (1 or 2) then Piccolo may

take extra cycles to set the loop up.

If the loop count is register-specified, a 32-bit access is implied (S1=1),
though only the bottom 16 bits are significant and the number is considered to be

unsigned. If the loop count is zero, then the action of the loop is undefined. A copy

wn

WO 98/12628 PCT/GB97/02261

88

of the loop count is taken so the register can be immediately reused (or even

refilled) without affecting the loop.

The REPEAT instruction provides a mechanism to modify the way in which

register operands are specified within a loop. The details are described above

Encoding of a REPEAT with a

register specified number of loops:

31 30 29 28 27 26 25 24 23 222120 19 18 17 16 15 14 13 12 1] 109 8 7 6 35 43 21 ¢

—

11110 0| RFIELD 4 00 fOIR SRC1 0000 #INSTRUCTIONS 8

Encoding of REPEAT with a fixed number of loops:

31 30 29 28 27 26 25 24 23 2202019181716 1514 13 1211 10 9 8 7 6 5 43

(%)
(==}

1 11110 1| RFIELD 4 #LOOPS 13 #INSTRUCTIONS _8

The RFIELD operand specifies which of 16 re-mapping parameter configurations to

use inside the loop.

PCT/GB97/02261

WO 98/12628
89
RFIELD Re-mapping Operation
0 No Re-mapping Performed
1 User Defined Re-mapping
2.15 Preset Re-mapping Configurations TBD
5

The assembler provides two opcodes REPEAT and NEXT for defining a
hardware loop. The REPEAT goes at the start of the loop and the NEXT delimits
the end of the loop, allowing the assembler to calculate the number of instructions

in the loop body. For the REPEAT it is only necessary to specify the number of

10 loops either as a constant or register. For example:
REPEAT X0
MULA A0, Y0.1, Z0.1, A0
MULA A0, Y0.h", Z0.h", A0

15 NEXT

This will execute the two MULA instructions X0 times. Also,
REPEAT #10
MULA A0, X0*, YO, A0
20 NEXT

will perform 10 multiply accumulates.
The assembler supports the syntax:

25

0 98/12628 PCT/GB97/02261
W

90
REPEAT #iterations [, <PARAMS>]

To specify the re-mapping parameters to use for the REPEAT. If the required re-
mapping parameters are equal to one of the predefined set of parameters, then the

5 appropriate REPEAT encoding is used. If it is not then the assembler will generate
an RMOV to load the user defined parameters, followed by a REPEAT instruction.
See the section above for details of the RMOV instruction and the re-mapping

parameters format.

If the number of iterations for a loop is O then the action of REPEAT is
10 UNPREDICTABLE.

If the number of instructions field is set to O then the action of REPEAT is
UNPREDICTABLE.

A loop consisting of only one instruction, with that instruction being a branch will
have UNPREDICTABLE behaviour.

15 Branches within the bounds of a REPEAT loop that branch outside the bounds of
that loop are UNPREDICTABLE.

The Saturating Absolute instruction calculates the saturated absolute of

source .
20 313029 28 27 26 25 24 23 22 21 20 19 |3 1716 1514131211109 8 7 ¢ 5 4 3210
0 10011 Fls DEST S1IR SRCI 100000000000
D 1
Action;

25

dest = SAT((srcl >= 0) ? srel : -srcl). The value is always

WO 98/12628 PCT/GB97/02261

91

saturated. In particular the absolute value of 0x80000000

is Ox7fffffff and NOT 0x80000000!

Mnemonic:
5
SABS <dest>, <srcl>
Flags:
10 Z is set if the result is zero.
N is preserved.
C is set of src1<0 (dest=-srcl case)
\% is set if saturation occured.
15 Reasons for inclusion:
Useful in many DSP applications.
Select Operations (Conditional Moves) serve to conditionally move either
20 source 1 or source 2 into the destination register. A select is always equivalent to a

move. There are also parallel operations for use after parallel adds/subtracts.

Note that both source operands may be read by the instruction for
implementation reasons and so if either one is empty the instruction will stall,

trrespective of whether the operand is strictly required.

WO 98/12628 PCT/GB97/02261

92

313029 2827262524 23 22212019 181716 151413121110 9 8 7 6 5 4 3 2 1 0

1| o1t {OPC|F|s DEST SI{R SRCI SRC2_SEL
D !
5 OPC specifies the type of instruction.

Action (OPC):

00 If <cond> holds for primary flags then dest=src!

else dest=src2.

10 01 If <cond> holds for the primary flags then dest.h=srcl.h

else dest.h=src2.h,

If <cond> holds for the secondary flags then dest.l=srcl.1

else dest.l=src2.1.

WO 98/12628 PCT/GB97/02261
93

10 If <cond> holds for the primary flags then dest.h=srcl.h

else dest.h=src2.h,

If <cond> fails for the secondary flags then dest.lI=srcl.]

else dest.l=src2.l.

5 11 Reserved
Mnemonics
00 SEL<cond> <dest>, <srcl>, <src2>
10 01 SELTT<cond> <dest>, <srcl>, <src2>
10 SELTF<cond> <dest>, <srcl>, <src2>

11 Unused

wn

10

15

WO 98/12628 PCT/GB97/02261

94

If a register is marked for refill, it is unconditionally refilled. The assembler also

provides the mnemonics:

MOV<cond> <dest>, <srcl>
SELFT<cond> <dest>, <srcl>, <src2>
SELFF <cond> <dest>, <srcl>, <src2>

MOV<cond> A,B is equivalent to SEL<cond> A, B, A. SELFT and SELFF are
obtained by swapping srcl and src2 and using SELTF, SELTT.

Flags:

All flags are preserved so that a sequence of selects may be performed.

Reasons for inclusion:

Used for making simple decisions inline without having to resort to a branch. Used
by Viterbi algorithms and when scanning a sample or vector for the largest

element.

WO 98/12628 PCT/GB97/02261

95

Shift Operation instructions provide left and right logical shifts, right
arithmetic shifts, and rotates by a specified amount. The shift amount is considered
to be a signed integer between -128 and +127 taken from the bottom 8 bits of the
register contents or an immediate in the range +1 to +31. A shift of a negative

5 amount causes a shift in the opposite direction by ABS(shift amount).

The input operands are sign extended to 32-bits; the resulting 32-bit output is sign

extended to 48-bits before write back so that a write to a 48-bit register behaves

sensibly.
10 3130292827262524 23 222120191817 161514 13121110 9 8 7 6 5 4 3 2 10
1 010 OPC{F|{S DEST S1}R SRC! SRC2_SEL

OPC specifies the type of instruction.

15

Action (OPC):

10

15

20

25

WO 98/12628

00
01
10
11

Mnemonics:

00
01
10
11

Flags:

O < Z N

dest = (src2>=0) ? srcl << src2 : srcl >> -src2
dest = (src2>=0) ? srcl >> src2 : srcl << -src2
dest = (src2>=0) ? srcl ->> sre2 : srel << -src2

dest = (src2>=0) ? srcl ROR src2 : srcl ROL -src2

ASL
LSR
ASR
ROR

96

<dest>, <srcl>, <src2_16>
<dest>, <srcl>, <src2_16>
<dest>, <srcl>, <src2 16>

<dest>, <srcl>, <src2 16>

is set if the result is zero.

is set if the result is negative

is preserved

PCT/GB97/02261

is set to the value of the last bit shifted out (as on the ARM)

The behaviour of register specified shifts is:

-LSL by 32 has result zero, C set to bit 0 of srcl.
-LSL by more than 32 has result zero, C set to zero.
-LSR by 32 has result zero, C set to bit 31 of srcl.

-LSR by more than 32 has result zero, C set to zero.

-ASR by 32 or more has result filled with and C equal to bit 31 of srcl.

-ROR by 32 has result equal to srcl and C set to bit 31 of srcl.

-ROR by n where n is greater than 32 will give the same result and carry out as

ROR by n-32; therefore repeatedly subtract 32 from n until the amount is in the

range | to 32 and see above.

Reasons for inclusion:

Multiplication/division by a power of 2. Bit and field extraction. Serial registers.

10

15

20

25

30

WO 98/12628 PCT/GB97/02261

97

Undefined Instructions are set out above in the instruction set listing. Their
execution will cause Piccolo to halt execution, and set the U bit in the status
register, and disable itself (as if the E bit in the control register was cleared). This
allows any future extensions of the instructions set to be trapped and optionally
emulated on existing implementations.

Acessing Piccolo State from ARM is as follows. State access mode is used

to observe/modify the state of Piccolo. This mechanism is provided for two

purposes:
-Context Switch.

-Debug.

Piccolo is put in state access mode by executing the PSTATE instruction. This
mode allows all Piccolo state to be saved and restored with a sequence of STC and
LDC instructions. When put into state access mode, the use of the Piccolo
coprocessor ID PICCOLOI is modified to allow the state of Piccolo to be accessed.
There are 7 banks of Piccolo state. All the data in a particular bank can be loaded
and stored with a single LDC or STC.

Bank 0: Private registers.

- 1 32-bit word containing the value of the Piccolo ID Register (Read Only).
- 1 32-bit word containing the state of the Control Register.
- 1 32-bit word containing the state of the Status Register.

- 1 32-bit word containing the state of the Program Counter.

Bank 1: General Purpose registers (GPR).

- 16 32-bit words containing the general purpose register state.

Bank 2: Accumulators.

- 4 32-bit words containing the top 32-bits of the accumulator registers (N.B.

duplication with GPR state is necessary for restoration purposes - would imply

10

15

20

25

WO 98/12628 PCT/GB97/02261

98

another write enable on the register bank otherwise).

Bank 3: Register/Piccolo ROB/Output FIFO Status.

- 1 32-bit word indicating which registers are marked for refill (2 bits for each 32-

bit register).

- 8 32-bit words containing the state of the ROB tags (8 7-bit items stored in bits 7
to 0).

- 3 32-bit words containing the state of the unaligned ROB latches (bits 17 to 0).

- 1 32-bit word indicating which slots in the output shift register contain valid data

(bit 4 indicates empty, bits 3 to 0 encode the number of used entries).

- 1 32-bit word containing the state of the output FIFO holding latch (bits 17 to 0).

Bank 4: ROB Input Data.

- 8 32-bit data values.

Bank 5: Output FIFO Data.

- 8 32-bit data values.

Bank 6: Loop Hardware.

- 4 32-bit words containing the loop start addresses.

- 4 32-bit words containing the loop end addresses.

- 4 32-bit words containing the loop count (bits 15 to 0).

- 1 32-bit word containing user defined re-mapping parameters and other re-

mapping state.

The LDC instruction is used to load Piccolo state when Piccolo is in state

WO 98/12628 PCT/GB97/02261

99
access mode. The BANK field specifies which bank is being loaded.

3130292827262524 23 222120191817 16151413 1211109 8 7 6 5 4 3 2 1 0

COND 110 P|UJO|W]I BASE BANK PICCOLOI OFFSET

The following sequence will load all Piccolo state from the address in register RO.
LDP BO, [RO], #16 ! ; private registers
LDP BI, [RO], #64 ! ; load general purpose registers
LDP B2, [R0], #16 ! ; load accumulators
LDP B3, [R0], #56 ! ; load Register/ROB/FIFO status
LDP B4, [RO], #32 ! ; load ROB data
LDP BS, [R0], #32 ! ; load output FIFO data

LDP B6, [R0O], #52 ! ; load loop hardware

The STC instruction is used to store Piccolo state when Piccolo is in state

access mode. The BANK field specifies which bank is being stored.

3130292827262524 23 22212019 181716151413 1211109 8 7 6 5 4 3 2 10

COND 110 PlU}O|W]|O BASE BANK PICCOLOL1 OFFSET

The following sequence will store all Piccolo state to the address in register RO

10

15

20

25

WO 98/12628

PCT/GB97/02261

100

STP B0, [RO], #16 ! ; save private registers

STP Bl, [RO], #64 ! ; save general purpose registers
STP B2, [RO], #16 ! ; save accumulators

STP B3, [RO], #56 ! ; save Register/ROB/FIFO status
STP B4, [RO], #32 ! ; save ROB data

STP BS, [RO], #32 ! ; save output FIFO data

STP B6, [RO], #52 ! ; save loop hardware

Debug Mode - Piccolo needs to respond to the same debug mechanisms as
supported by ARM i.e. software through Demon and Angel, and hardware with

Embedded ICE. There are several mechanisms for debugging a Piccolo system:
-ARM instruction breakpoints.

-Data breakpoints (watchpoints).

-Piccolo instruction breakpoints.

-Piccolo software breakpoints.

ARM instruction and data breakpoints are handled by the ARM Embedded
ICE module; Piccolo instruction breakpoints are handled by the Piccolo Embedded

ICE module; Piccolo software breakpoints are handled by the Piccolo core.

The hardware breakpoint system will be configurable such that both the ARM and
Piccolo will be breakpointed.

Software breakpoints are handled by a Piccolo instruction (Halt or Break) causing
Piccolo to halt execution, and enter debug mode (B bit in the status register set),
and disable itself (as if Piccolo had been disabled with a PDISABLE instruction).
The program counter remains valid, allowing the address of the breakpoint to be

recovered. Piccolo will no longer execute instructions.

Single stepping Piccolo will be done by setting breakpoint after breakpoint on the

10

15

20

WO 98/12628 PCT/GB97/02261

101

Piccolo instruction stream

Software Debug - The basic functionality provided by Piccolo is the ability to load
and save all state to memory via coprocessor instructions when in state access
mode. This allows a debugger to save all state to memory, read and/or update it,
and restore it to Piccolo. The Piccolo store state mechanism will be non-
destructive, that is the action of storing the state of Piccolo will not corrupt any of
Piccolo’s internal state. This means that Piccolo can be restarted after dumping its

state without restoring it again first.

The mechanism to find the status of the Piccolo cache is to be determined.

Hardware Debug - Hardware debug will be facilitated by a scan chain on Piccolo’s
coprocessor interface. Piccolo may then be put into state access mode and have its

state examined/modified via the scan chain.

The Piccolo Status register contains a single bit to indicate that it has executed a
breakpointed instruction. When a breakpointed instruction is executed, Piccolo sets
the B bit in the Status register, and halts execution. To be able to interrogate
Piccolo, the debugger must enable Piccolo and put it into state access mode by

writing to its control register before subsequent accesses can occur.

Figure 4 illustrates a multiplexer arrangement responsive to the Hi/Lo bit
and Size bit to switch appropriate halves of the selected register to the Piccolo
datapath. If the Size bit indicates 16 bits, then a sign extending circuit pads the

high order bits of the datapath with Os or 1s as appropriate.

10

15

20

25

WO 98/12628 PCT/GB97/02261

102

CLAIMS

1. Apparatus for data processing, said apparatus comprising:
a plurality of registers for storing data words to be manipulated; and

an arithmetic logic unit responsive program instruction words to perform
arithmetic logic functions specified by said program instruction words to generate

result data words; wherein

said arithmetic logic unit is responsive to at least one program instruction

word that includes:

(1) a destination register bit field specifying a destination register of said
plurality of registers into which a result data word from said

program instruction word is to be written; and

(ii) destination register write disable flag for selectively disabling said

writing of said result data word to said destination register.

2. Apparatus as claimed in claim 1, comprising an output buffer and wherein
said at least one program instruction word includes an output buffer write flag for

selectively enabling writing of said result data word to said output buffer.

3. Apparatus as claimed in claim 2, wherein said output buffer is a first in first
out memory. |
4, Apparatus as claimed in any one of the preceding claims, wherein said

arithmetic logic unit is operable to generate X-bit result data words or Y-bit result
data words, where X is greater than Y, and said at least one program instruction
word includes a destination register size flag for specifying whether said arithmetic

logic unit should generate an X-bit resuit data word or a Y-bit result data word.

10

15

WO 98/12628 PCT/GB97/02261

103
5. Apparatus as claimed in claim 4, wherein X is equal to 2Y.
6. Apparatus as claimed in claim 5, wherein when said destination register size

flag specifies a Y-bit result data word, then said destination register write disable
flag serves as a flag indicating into which of a highest order Y bits of said
destination register or a lowest order Y bits of said destination register said Y-bit
result data words should be written rather than selectively disabling said writing of

said result data word to said destination register.

7. Apparatus as claimed in claim 1, wherein said arithmetic logic unit sets at

least one condition code flag in dependence upon said result data word.

8. Apparatus as claimed in claim 7, wherein said at least one condition code
flag includes a zero result flag indicative of whether said result data word is zero,
and said at least one program instruction word includes a subtract instruction word

such that said arithmetic logic unit can preform:

when said destination register write disable flag does not disable said
writing of said result data word to said destination register, a subtract operation in
which a first operand is subtracted from a second operand to yield a subtraction
result data word, said subtraction result data word is written to said destination
register and said at least one condition code flag, including said zero result flag, is

updated; and

when said destination register write disable flag does disable said writing of
said result data word to said destination register, a compare operation in which a
first operand is subtracted from a second operand to yield a subtraction result data
word, said subtraction result data word is not written to said destination register

and said at least one condition code flag, including said zero result flag, is updated.

9. Apparatus as claimed in claims 2 and 7, wherein said arithmetic logic unit

10

20

WO 98/12628 PCT/GB97/02261

104

can perform:

when said destination register write disable flag does not disable said
writing of said result data word to said destination register and said output buffer
write flag enables writing of said result data word to said output buffer, a subtract-
write operation in which a first operand is subtracted from a second operand to
vield a subtraction result data word, said subtraction result data word is written to
said destination register and said output buffer and said at least one condition code

flag, including said zero result flag, is updated; and

when said destination register write disable flag does disable said writing of
said result data word to said destination register and said output buffer write flag
enables writing of said result data word to said output buffer, a compare-write
operation in which a first operand is subtracted from a second operand to yield a
subtraction result data word, said subtraction result data word is not written to said
destination register, said subtraction result data word is written to said output buffer

and said at least one condition code flag, including said zero result flag, is updated.

10. Apparatus as claimed in claim 7, wherein said arithmetic logic unit is
response to a conditional-move instruction in which a data word stored in one of
said plurality of registers is moved to another of said plurality of registers in

dependence upon said at least one condition code flag.

11. Apparatus as claimed in claim 7, wherein said arithmetic logic unit is
response to a conditional-branch instruction in which a branch to a non-sequential

program instruction word is made in dependence upon said at least one condition

code flag.

12. Apparatus as claimed in any one of the preceding claims, wherein said

plurality of registers comprise 4N registers, where N is a non-zero, positive integer.

WO 98/12628 PCT/GB97/02261
105
13. A method of processing data, said method comprising the steps of:
storing data words to be manipulated in a plurality of registers; and

in response to program instruction words, performing arithmetic logic
functions specified by said program instruction words to generate result data words;

5 wherein
at least one program instruction word includes:

(1) a destination register bit field specifying a destination register of said
plurality of registers into which a result data word from said

program instruction word 1s to be written; and

10 (ii) destination register write disable flag for selectively disabling said

writing of said result data word to said destination register.

PCT/GB97/02261

WO 98/12628

1/7

L bi4

Aowsy

A
ayoe)n sng ssalppy
<
H H sng eleqg
l0sse001d0o) |« > 9100 NdO
[OAU0D 4O

_/

14

5/

PCT/GB97/02261

WO 98/12628

2/7

sla)sibay 10ss8201do)

2 b4

o}

auizebepy Al

. [
T—— A
dO Aq parouidy NdO Aq peuesul
\
_ |0AU0D cw_
9l % 3 oY
A "
108|9S < \ 9l
1918168y 4D uy

_/

14

PCT/GB97/02261

WO 98/12628

3/7

<«
InQ eledg

e b4

mr(p

-«
oz
®S 89S |)
144
¢c
an
/ \ 0¢
A (
H/S
sdO
-[+
HON lapooa(d
x X Jo1s169Yy <«
uoneunsa(8poosp
Isul
woJd} siq
Hai 1sep
cl
0l
.Allll
N uj eled

PCT/GB97/02261

614

4/7

WO 98/12628

o
|0JJU0)D 9ZIS
XN\
A’
O1/'H
X3
ubls |
Lrwm
Al'.
il
%mm XN A
_ _/ 9l
<€\
GLIq <
\ \
| XIN <
ot f ol
Allull'

ayoe)H

PCT/GB97/02261

N

Y

alempleH
dooql

lapooaQg
uononsyj

0S

5/7

01607
Buiddeway
lalsibay

2]

\
8100

10Ss8001d

A

WO 98/12628

1

0l

lossaooido)

N~ ANTTTATTV T Sy N —

PCT/GB97/02261

WO 98/12628

6/7

9614

alepdn eseg uejgaseg deipeseg Jujaseg
8S
N 09
" lajulod Yy <
ose
cam O|NPON [< -+
> Juswa|] vo\ <«
abelols 9
99 [
elepdneseg
Jajulod
unonbay deip\bay ~ @seg
95 |
N Z
ONPON [« -+
< m oL <
laisibay 2/
leaisAud :
: depay

wmnE:z
laysibey
: {ea160

PCT/GB97/02261

WO 98/12628

7/7

2Bl

70 I _ oo_ =tV
€2 e | 0° =TV
e €0 o & ! =1V
o o €2 & & 0dF =0V
w| | | o] W] op

(WI0S[Y I oo[d) dId

INTERNATIONAL SEARCH REPORT

\
internationat Application No

PCT/GB 97/02261

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F9/302 GO6F9/38

According to Intemational Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication system followed by ¢lassification symbois)

IPC 6 GOG6F

Documentation searched other than minimumdocumaentation to the extent that such documents are included in the tields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 94 15279 A (UNIV LONDON ;BETTS ANDREW 1,7,8,
KEITH (GB)) 7 July 1994 10,11,13

Y see page 6, line 1 - page 8, line 20 2,3,9

Y see page 15, line 1 - page 16, line 9 4,5

Y MULLER M: "ARM6 A HIGH PERFORMANCE LOW 2,3,9

POWER CONSUMPTION MACROCELL"

PROCEEDINGS OF THE SPRING COMPUTER SOCIETY
INTERNATIONAL CONFERENCE (COMPCON), SAN
FRANCISCO, FEB. 22 - 26, 1993,

no. CONF. 38, 22 February 1993, INSTITUTE

pages 80-87, XP000379032
"ARM write buffer" *

OF ELECTRICAL AND ELECTRONICS ENGINEERS,

*x Page 85, right hand column, section 5:

Y o

Further documents are listad in the continuation ot box C.

E Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

“E£" earlier document but publishad on or after the international
tiling date

“L* document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other spacial reason (as specified)

“Q" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the intemational filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considerad novel or cannot be considered to
invoive an inventive step when the document is taken alone

Y document ot particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or mora other such docu—
marr:tes. such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

5 December 1997

Date of mailing of the internationai search repont

11/12/1997

Name and mailing addrass of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authonzed officer

Daskalakis, T

Fomn PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 97/02261

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

EP 0 395 348 A (APPLE COMPUTER) 31 October
1990
see the whole document

4,5

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

intormation on patent family members

Inter.ational Application No

PCT/GB 97/02261

Patent document Pubtication Patent family Publication
cited in search report date member(s) date
WO 9415279 A 07-07-94 NONE
EP 0395348 A 31-10-90 US 5001662 A 19-03-91

JP 2300983 A 13-12-90

Form PCTAISA/210 {patent family annex) {July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

