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METHODS AND APPARATUS FOR DETECTING AND IDENTIFYING

MALWARE BY MAPPING FEATURE DATA INTO A SEMANTIC SPACE

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to and the benefit of U.S. Provisional Patent Application
No. 62/369,984, filed August 2, 2016 and titled “Methods and Apparatus for Detecting and
Identifying Malware by Mapping Feature Data into a Semantic Space,” which is incorporated

herein by reference in its entirety.

BACKGROUND

[0002] Embodiments described herein relate generally to efficiently processing data from
potential malware files to determine relationships between the potential malware files, and
known malware threats.

[0003] In some known systems, characteristics of a malware file may be used to identify the type
of malware detected. However, determining the most useful characteristics from a potential
malware file can be difficult and resource-intensive since identifying different malware threats
can involve identifying different characteristics to extract and compare with known malware
threats. For example, certain characteristics of a given malware file can be better for identifying
some malware threats than other characteristics of the malware file. Alternatively, characteristics
for some types of suspected malware threats can be difficult to compare with known malware

threats when those characteristics are not represented in a particular format. Determining the best



manner in which to represent characteristics for a potential malware threat, however, can also be
difficult and resource-intensive.

[0004] Accordingly, a need exists for methods and apparatus that can process features of
malware files to determine how to represent and process characteristics of a potential malware

threat.

SUMMARY
[0005] In some embodiments, an apparatus includes a memory and a processor operatively
coupled to the memory. The processor is configured to identify a feature vector for a potentially
malicious file and provide the feature vector as an input to a trained neural network autoencoder
to produce a modified feature vector. The processor is configured to generate an output vector by
introducing Gaussian noise into the modified feature vector to ensure a Gaussian distribution for
the output vector within a set of modified feature vectors. The processor is configured to provide
the output vector as an input to a trained neural network decoder associated with the trained
neural network autoencoder to produce an identifier of a class associated with the set of modified
feature vectors. The processor is configured to perform a remedial action on the potentially

malicious file based on the potentially malicious file being associated with the class.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 1s a diagram illustrating a feature vector server, according to an embodiment.
[0007] FIG. 2 is a diagram illustrating classifying features of a potential malware threat,

according to an embodiment.



[0008] FIG. 3 is a diagram illustrating determining distances based on malware classifications,
according to an embodiment.

[0009] FIG. 4 is a diagram illustrating modifying feature vectors, according to an embodiment.
[00010] FIG. 5 is a diagram illustrating training a triple loss function neural network to
modify a feature vector, according to an embodiment.

[00011] FIG. 6 is a logic flow diagram illustrating training a triple loss function neural
network, according to an embodiment.

[00012] FIG. 7 is a logic flow diagram illustrating identifying a malware threat using a
triple loss function neural network, according to an embodiment.

[00013] FIG. 8a is a logic flow diagram illustrating variational autoencoder and decoder
neural networks, according to an embodiment.

[00014] FIG. 8b is a flow diagram illustrating a variational autoencoder and decoder for
predicting families, according to an embodiment.

[00015] FIG. 9 is a logic flow diagram illustrating identifying a malware threat using a

variational autoencoder neural network, according to an embodiment.

DETAILED DESCRIPTION
[00016] In some implementations, a processor can extract features from a potential
malware file. In one embodiment, the processor can train a deep neural network to modify the
features to more closely identify a match between the potential malware file and known samples
of malware files. The deep neural network can be trained based on triple loss function neural

networks and/or based on variational autoencoder neural networks. The processor can then
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identify an identity of the potential malware file based on matching the modified features to
known malware samples.

[00017] In some embodiments, an apparatus includes a memory and a processor
operatively coupled to the memory. The processor is configured to identify a feature vector for a
potentially malicious file and provide the feature vector as an input to a trained neural network
autoencoder to produce a modified feature vector. The processor is configured to generate an
output vector by introducing Gaussian noise into the modified feature vector to ensure a
Gaussian distribution for the output vector within a set of modified feature vectors. The
processor is configured to provide the output vector as an input to a trained neural network
decoder associated with the trained neural network autoencoder to produce an identifier of a
class associated with the set of modified feature vectors. The processor is configured to perform
a remedial action on the potentially malicious file based on the potentially malicious file being
associated with the class.

[00018] In some embodiments, a method includes training a triple-loss function neural
network by providing an anchor feature vector associated with a first class, a training feature
vector associated with the first class, and a training feature vector associated with a second class
different from the first class. The method includes identifying a feature vector for an artifact and
providing the feature vector as an input to the triple-loss function neural network to produce a
modified feature vector. The method can further include classifying the artifact as associated
with a class of artifacts based on a distance between the modified feature vector and a set of
modified feature vectors from multiple sets of modified feature vectors being less than a distance

between the modified feature vector and each remaining set of modified feature vectors from the
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multiple sets of modified feature vectors. The set of modified feature vectors is associated with
the class of artifacts. The method can include performing an action associated with the artifact
based on the artifact being classified as associated with the class of artifacts.

[00019] In some implementations, a non-transitory processor-readable medium stores
code representing instructions to be executed by a processor. The code includes code to cause the
processor to identify a feature vector for an artifact and provide the feature vector as an input to a
machine learning model to produce a modified feature vector. The code further includes code to
classify the artifact as associated with a class of artifacts based on a distance between the
modified feature vector and a set of modified feature vectors from multiple sets of modified
feature vectors being less than a distance between the modified feature vector and each
remaining set of modified feature vectors from the multiple sets of modified feature vectors. The
set of modified feature vectors is associated with the class of artifacts. The code further includes
code to perform an action associated with the artifact based on the artifact being classified as
associated with the class of artifacts.

[00020] As used herein, an artifact can be or include, for example, any dataset(s),
filepath(s), Uniform Resource Locator (URL), file(s), device(s), device behavior, user behavior,
network behavior, network identifier, and/or entity represented and/or associated with computer-
related resources. For example, an artifact can include a function of software code, a
webpage(s), a data file(s}, a model file(s), a source file{s), a scripi(s}, a process, a bmary
executable file(s), 8 table{s) in a database system, a development deliverable(s), an active
content{s}, a word-processing document{s}, an e~mail messagefs), a text message, a network
address, a device or entity {e.g., a network-connected compute device and/or computer system, a

5



server, a smartphone, a tablet a laptop, a multimedia device, eic.), a network address (e.g., a
Media Control (MAC) address, Internet Protocol (IP) address, etc.} of a compute device, and/or
the like.

[00021] FIG. 1 is a diagram illustrating a feature vector server 102. For example, in some
implementations, a feature vector server 102 can collect information relating to data files (or
other artifacts), and can classify the artifacts (e.g., determine whether or not the data files are
malicious or benign). For example, the feature vector server 102 can include at least one
processor 104, at least one memory 106, and at least one feature vector database 108.

[00022] The at least one processor 104 can be any hardware module and/or component
configured to receive and process data, and/or to execute code representing executable
instructions. In some embodiments, the at least one processor 104 can be a general purpose
processor, a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit
(ASIC), a Digital Signal Processor (DSP), and/or the like. The at least one memory 106 can be a
hardware module and/or component configured to store data accessible by the at least one
processor 104, and/or to store code representing executable instructions for the at least one
processor 104. The memory 106 can be, for example, a random access memory (RAM), a
memory buffer, a hard drive, a database, an erasable programmable read-only memory
(EPROM), an electrically erasable read-only memory (EEPROM), a read-only memory (ROM)
and/or so forth. In some instances, the memory 106 stores instructions to cause the processor 104
to execute modules, processes and/or functions associated with the feature vector server 102.
[00023] In some implementations, the at least one feature vector database 108 can be a

database, data store, file, and/or other structure configured to store a feature vector table 108a, a
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malware detection neural network data structure table 108b, and/or other data for identifying
malware threats. The at least one feature vector database 108 can be stored in the at least one
memory, and/or can be stored separately from the at least one memory. For example, a feature
vectors table 108a of the at least one feature vector database 108 can store feature vectors
generated based on malware samples received at the feature vector server 102. Feature vectors
can include characteristics and/or features of a potential malware file that can be used to identify
potential characteristics of a malware threat. A record in the feature vectors table 108a can
include, for example, a feature vector identifier, an array and/or other data structure including
values used to form a feature vector, a classifier associated with the feature vector, a malware
type associated with the feature vector, and/or other data that can identify the feature vector.

[00024] A malware detection neural network data structures table 108b can store data
structures embodying deep neural networks configured to process feature vectors to identify
potential malware threats. Such deep neural networks can include triple loss function neural
networks, variational autoencoder neural networks, and/or other deep neural networks. For
example, a record in the malware detection neural network data structures table 108b can
include, for example, a malware detection neural network identifier, a graph and/or similar data
structure representing a malware detection neural network data structure, an indicator indicating
whether the malware detection neural network data structure has been trained, a timestamp
indicating a last date and/or time at which the malware detection neural network data structure
was trained, and/or similar information that can be used with the malware detection neural

network to process feature vectors.



[00025] A class label table 108c can store data structures of class labels that can keep
track of which feature vectors are associated with a given class. For example, a record in the
class label table 108¢ can include, for example, a class label identifier, a class label name, a class
Gaussian distribution, a list of feature vectors and/or malware files associated with the class,
and/or similar information.

[00026] A malware file table 108d can store malware sample files and/or related metadata.
For example, a record in the malware file table 108d can include, for example, a malware sample
file identifier, a malware sample file, malware sample file metadata, a timestamp of when the
malware sample file was stored, a feature vector identifier associated with the malware sample
file, and/or similar information.

[00027] In some implementations, for example, the at least one processor 104 can be
configured to use feature vectors (e.g., generated from suspected malware samples and/or
retrieved from the feature vectors table 108a of the at least one feature vector database 108) as
input to a malware detection neural network (e.g., retrieved from the malware detection neural
network data structures table 108b of the at least one feature vector database 108). The malware
detection neural network can output information that can be used to identify suspected malware.
The output information may be used in combination with other information to identify suspected
malware or to convict suspected malware as malware.

[00028] FIG. 2 is a diagram illustrating classifying features of a potential malware threat.
For example, in some implementations, the at least one processor 104 can classify feature vectors
into multiple classes and/or families 204 and 206, each representing a different malware threat, a

different malware source, a likelihood that the threat is malware, a degree of threat, and/or
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similar classifications. Each class can include one or more feature vectors 208 (and/or malware
samples from which feature vectors can be derived). When the at least one processor 104
receives a potential malware file, the at least one processor 104 can generate a feature vector
202, e.g., based on features of the malware file that can be derived from metadata and/or other
data from the potential malware file. For example, a feature vector 202 can include metadata
relating to a name of the potential malware file, an age of the potential malware file, a size of the
potential malware file, a location of the potential malware file, a provenance of a potential
malware file, a prevalence of a potential malware file, a pedigree of a potential malware file, a
reputation of a potential malware file, an author of the potential malware file, an owner of a
potential malware file, a user of a potential malware file, an application category associated with
the potential malware file, a type of encoding (e.g., encryption, compression) associated with the
potential malware file, specific characters and/or strings within the potential malware file,
information derived from characters and/or strings within the potential malware file, opcodes
associated with the potential malware file, information derived from analysis of the binary data
of the potential malware file, behavior of a potential malware file, abstracted functionality of the
malware file, dynamic traces associated with the potential malware file, behavior features of the
malware file, information retrieved by running the potential malware file, data output by the
potential malware file and/or other characteristics of the potential malware file. The at least one
processor 104 can generate a class-tagged feature vector, e.g., by using a malware detection
neural network to process the feature vector 202. The at least one processor 104 can then match
the class-tagged feature vector to feature vectors 208 in that class, so as to identify the potential

malware sample.



[00029] FIG. 3 1s a diagram illustrating determining distances based on malware
classifications. For example, in some implementations, the at least one processor 104 can
calculate distances between feature vectors, e.g., to represent a degree of similarity between the
feature vectors. In some implementations, for example, feature vectors associated with the same
class can be closer and/or more similar to each other, than feature vectors of different classes.
Thus, given a first vector 302 associated with a first class, a second vector 304 associated with
the first class, and a third vector 306 associated with a second class, a distance 308 between the
first vector 302 and the second vector 304 can be less than a distance 310 between the second
vector 304 and the third vector 306.

[00030] In some implementations, a malware detection neural network can also modify
feature vectors, so as to ensure that a distance between feature vectors associated with the same
class 1s smaller (e.g., by some factor) than a distance between a feature vector of that class, and a
feature vector of a different class. In some implementations, for example, a malware detection
neural network can modify a feature vector, such that a distribution of the feature vectors
associated with a given class follow a Gaussian distribution. For example, after the at least one
processor 104 calculates a feature vector for a potential malware sample, the malware detection
neural network can transform the feature vector such that the feature vector is associated with a
particular position in a semantic space (e.g., such that the distance between the transformed
feature vector and other feature vectors in the database is modified to reflect a semantic
relationship between feature vectors in the class, and feature vectors outside of the class). In
some implementations, the distribution of the feature vectors in the semantic space can be

modified, such that the distribution follows a Gaussian distribution, and/or a similar
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mathematical model. Thus, once a new feature vector has been modified to fit within the
semantic space of a particular class, the at least one processor 104 can use a distance (e.g., a
Euclidean distance, Hamming distance, and/or a similar distance function) between the new
feature vector and feature vectors associated with the class to determine relationships between
the new feature vector, and feature vectors associated with the class..

[00031] FIG. 4 1s a diagram illustrating modifying feature vectors. For example, in some
implementations, the at least one processor 104 can generate a feature vector 404, e.g., using
information extracted from a potential malware file 402 (e.g., such as file attributes, file
metadata, behavior information, and/or other information). Using a malware detection neural
network 406 (e.g., such as a Siamese neural network and/or a similar neural network using a
triple loss function, a variational autoencoder neural network, and/or a similar neural network),
the at least one processor 104 can generate a modified feature vector 408, e.g., to map the feature
vector to a semantic space of a class with which the feature vector can be associated. The at least
one processor 104 can then calculate distances between the modified feature vector 408, and
other feature vectors 410 associated with the class. A smaller distance calculated between the
modified feature vector 408 and at least one the other feature vectors 410, can indicate a stronger
relationship between the modified feature vector 408 and that feature vector 410. Thus, the at
least one processor 104 can determine a potential identity of the potential malware file, based on
determining which feature vector 410 is closest to the modified feature vector 408.

[00032] FIG. 5 is a diagram illustrating training a triple loss function neural network to
modify a feature vector. For example, in some implementations, the malware detection neural

network 502 can be trained to determine how to modify a vector to fit within a given class, using
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triples of feature vectors. For example, the at least one processor 104 can form triples including a
class anchor vector 404, a feature vector 302 associated with the same class as the class anchor
vector, and a feature vector 306 associated with a class different from the class associated with
the class anchor vector. The class anchor vector can be a feature vector of a particular class that
has been selected as being representative of the feature vectors associated with that class. By
training using triples with these three feature vectors, the at least one processor 104 can train the
malware detection neural network 502 to detect differences between feature vectors of different
classes, to identify a class with which to associate a given feature vector, and to modify the
feature vector based on the feature vector’s association with a given class.

[00033] For example, the at least one processor 104 can feed each feature vector from a
feature vector triple as input to the malware detection neural network 502. The malware
detection neural network 502 can produce modified feature vectors 504 that can be used to
determine error rates of the malware detection neural network 502. If the malware detection
neural network 502 1s undergoing supervised learning, the malware detection neural network 502
can receive feature vectors that already include class attributes, and can determine how to
calculate distances between feature vectors associated with various classes, based on those class
attributes. If the malware detection neural network 502 is undergoing unsupervised learning, the
at least one processor 104 can feed each of the triples as input to the malware detection neural
network 502 without class attributes, such that the malware detection neural network 502
determines to which class each feature vector can belong, as well as distances between feature

vectors associated with the same, or a different, class. The at least one processor 104 can train
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the malware detection neural network 502 until predetermined criteria have been met (e.g., until
a predetermined number of training epochs have been completed, and/or based on other criteria).
[00034] FIG. 6 is a logic flow diagram illustrating training a triple loss function neural
network. For example, in some implementations, the feature vector server 102 (i.e., via the at
least one processor 104) can, for each malware sample in the feature vector database 108, at 602,
generate, at 604, a feature vector representing characteristics of that malware sample. The at least
one processor 104 can associate, at 606, the feature vector with a class label (e.g., from the class
label table 108c of the feature vector database 108). The at least one processor 104 can
determine, at 608, whether there are more malware samples to process, and can continue to
generate feature vectors and associate the feature vectors with a class label for any additional
malware samples (at 604 and 606). If feature vectors have been generated for each malware
sample file, the at least one processor 104 can begin a training epoch (e.g., a round of training for
the triple loss function neural network). For example, for each training epoch, at 610, the at least
one processor 104 can select, at 612, a training group of feature vectors, from the feature vectors
stored in the feature vector database 108. For example, in some implementations, the at least one
processor 104 can select a random group of feature vectors from the feature vector database 108
for training.

[00035] The at least one processor 104 can, from the training group of feature vectors,
select, at 614, a class anchor vector from the training group. In some implementations, the class
anchor vector can be selected randomly. The class anchor vector can serve as a baseline against
which other features in the training group can be compared. The at least one processor 104 can

also select, at 616, a feature vector from the training group that is associated with the same class
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as the class anchor vector (e.g., by selecting another feature vector from the training group that is
associated with the same class label as the class anchor vector), and can select, at 618, a feature
vector from the training group that is associated with a different class as the class anchor vector
(e.g., by selecting another feature vector from the training group that is associated with a
different class label). The at least one processor 104 can form, at 620, a triple including the class
anchor vector, the feature vector associated with the same class, and the feature vector associated
with the different class. In some implementations, the at least one processor 104 can generate
multiple triples to be input for training during the training epoch, where each triple is a possible
combination of feature vectors from the training group that include an anchor vector, a feature
vector of the same class, and a feature vector of a different class. In some implementations, the
feature vector of the same class and the feature vector of the different class can be randomly
selected from the training group. In some implementations, the feature vector of the same class
and the feature vector of the different class can be the largest outliers of the training group (e.g.,
the feature vector of the same class can be a feature vector with the largest distance between that
feature vector and the anchor vector, while still ensuring that the feature vector and the anchor
vector are of the same class, and/or the like).

[00036] The at least one processor 104 can then train, at 622, the triple loss function
neural network by providing the triple as training input to the triple loss function neural network.
For example, the triple loss function neural network can be trained to learn associations between
class labels and feature information, while also learning how to modify feature vectors based on
class distance preferences. For example, the triple loss function neural network can be trained to

modify feature vectors, such that feature vectors associated with a first class will be close to each
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other in distance (e.g., will be determined to be more similar to each other), and feature vectors
associated with a second class will be further away in distance, to feature vectors associated with
the first class, than feature vectors associated with the first class are to each other (e.g., feature
vectors of different classes will be determined to be less similar with each other than they are to
feature vectors associated with the same class).

[00037] In some implementations, the triple loss function neural network can be trained
such that a difference between an average distance between feature vectors associated with the
same class, and an average distance between feature vectors associated with different classes,
exceeds a predetermined threshold (e.g., that a distance between feature vectors associated with
the same class is smaller, by some factor, than a distance between a feature vector of that class,
and a feature vector of a different class). The triple loss function neural network can also be
trained such that the average distance between feature vectors associated with the same class
falls below a predetermined threshold. If the at least one processor 104 has determined, at 624,
that there are more training epochs, the at least one processor 104 can continue to select training
groups and to train the triple loss function neural network. If the at least one processor 104 has
determined that predetermined criteria have been met (e.g., the predetermined number of epochs
have been reached, an overall error rate of the triple loss function neural network has converged,
and/or the like), the at least one processor 104 can end the training process.

[00038] FIG. 7 is a logic flow diagram illustrating identifying a malware threat using a
triple loss function neural network. For example, in some implementations, the feature vector
server 102 (i.e, via the at least one processor 104) can receive, at 702, a potentially-malicious

file. For example, a client device, separate server, and/or other networked device can send a
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potentially-malicious file to the feature vector server 102. The at least one processor 104 can
extract, at 704, file features and/or characteristics from the potentially-malicious file, and can add
the features to a vector to form a feature vector. The at least one processor 104 can provide, at
706, the feature vector as input to a trained neural network (e.g., see at least Fig. 6 for more
details on training the neural network). The at least one processor 104 can use the trained neural
network to calculate, at 708, an output vector (e.g., an embedding vector). For example, the
trained neural network can be trained to identify a class of the feature vector, based on the values
included in the feature vector. The output vector (e.g., embedding vector) can represent a
modified feature vector, e.g., that has been modified to provide additional meaning, context
and/or to more closely resemble other feature vectors in that class.

[00039] The at least one processor 104 can then, in some implementations, use the output
vector to identify a malware threat. Specifically, for each feature vector in the feature vector
database 108, at 710, the at least one processor 104 can calculate, at 712, a distance between the
output vector and that feature vector. The at least one processor 104 can determine, at 714,
whether or not there is a potential match between the output vector and that feature vector based
on the distance (e.g., can determine that there is a match if the distance is below a predetermined
threshold, or is the smallest distance calculated, and can determine that there is not a match if the
distance is above a predetermined threshold, or if the distance is not the smallest distance
calculated between the two vectors). If the output vector matches the feature vector, the at least
one processor 104 can output, at 716, that feature vector (and information relating to the sample
malware file associated with that feature vector) as a potential match to the potentially-malicious

file. For example, the at least one processor 104 can send the information relating to the sample
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malware file and the feature vector to the client device and/or other networked device that sent
the potentially-malicious file, can render the results of the distance calculations in a user
interface, and/or can output the information through similar means. The at least one processor
104 can also automatically take remedial measures (e.g., can instruct the client device and/or
other device to quarantine and/or delete the malicious file, and/or the like). If the output vector
and the feature vector are determined to not be a match, the at least one processor 104 can
determine, at 718, whether or not there are more features in the database that have not been
processed, and can continue to calculate distances between output vectors and feature vectors.
[00040] FIG. 8a is a logic flow diagram illustrating variational autoencoder and decoder
neural networks. For example, in some implementations, rather than using a neural network that
relies on a triple loss function, the at least one processor 104 can use a variational autoencoder
neural network 808 to encode feature vectors 802 into embedding vectors 804. Embedding
vectors 804 can be modified feature vectors that can be matched with feature vectors stored in
the feature vector database 108, so as to identify a malware threat represented by the embedding
vector 804. A decoder neural network 810 can be used to identify a class label 806 by decoding
the embedding vector 804. In some implementations, for example, if the decoder neural network
810 1s trained using supervised learning techniques (e.g., where a class label is provided to the
decoder neural network 810 as an expected result of processing the embedding vector 804), the
decoder neural network 810 can output a class label associated with the original feature vector
802 when the embedding vector 804 is provided as input to the decoder neural network 810.
[00041] In some implementations, the at least one processor 104 can also add Gaussian

noise 812 to the embedding vector 804, and/or can otherwise modify the embedding vector 804,
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e.g., before providing the embedding vector 804 as input to the decoder neural network 810.
Adding Gaussian noise 812 can help preserve Gaussian distribution of the feature vectors with
the same class and/or family, while ensuring that the embedding vector 804 includes sufficient
context that can help the decoder neural network 810 determine the class label 806. Specifically,
the Gaussian noise can ensure that the variational autoencoder neural network 808 is trained to
generate an embedding vector 804 that is invariant under Gaussian noise, while also ensuring
that the embedding vector 804 includes enough information to determine a class label 806
associated with the original feature vector 802. Using the decoder neural network 810, the at
least one processor 104 can calculate distances between a modified embedding vector and other
modified embedding feature vectors stored in the feature vector database 108 to determine
vectors that are similar to the embedding vector, to identify a resulting malware class and/or
threat.

[00042] FIG. 8b is a flow diagram illustrating variational autoencoder and decoder neural
networks for predicting families of artifacts (e.g., different classes of artifacts), according to an
embodiment. For example, in some implementations, a processor (e.g., the at least one processor
104 as shown in FIG. 1) can use a variational autoencoder neural network 820 to encode an
extracted feature vector 815 into an embedding vector 830. As discussed above, the embedding
vector 830 can represent a modified feature vector (e.g., that has been modified to provide
additional meaning, context and/or to more closely resemble other feature vectors in that class).
In some instances, at 840, the processor can also add noise 822 (e.g., Gaussian noise) to, and/or
otherwise modify, the embedding vector 830 to ensure the embedding vector 830 follows a

particular distribution (e.g., a Gaussian distribution) within the semantic space of the family
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and/or class associated with that feature vector 815. The decoder neural network 850 can receive
the embedding vector 830 including the added Gaussian noise as an input to determine, a class
label 860 (and/or predicted family) associated with the original feature vector 815.

[00043] FIG. 9 is a logic flow diagram illustrating identifying a malware threat using a
variational autoencoder neural network (e.g., variational autoencoder neural network 808 of FIG.
8a and/or variational autoencoder neural network 820 of FIG. 8b). For example, in some
implementations, for each vector in a vector database, at 902, the feature vector server 102 (i.e.,
via the at least one processor 104) can train, at 904, a variational autoencoder neural network to
receive that feature vector as an input, and to produce an embedding vector as an output. For
example, the at least one processor 104 can provide the feature vector as an input to a variational
autoencoder neural network configured to modify the feature vector to produce an embedding
vector that can be used to identify malware threats in the feature vector database 108. The at least
one processor 104 can also train, at 908, a decoder neural network (e.g., decoder neural network
810 of FIG. 8a and/or decoder neural network 850 of FIG. 8b) to receive the outputted
embedding vector as input to determine class labels associated with the original feature vector.
For example, using the embedding vector as input, the decoder neural network can be trained to
analyze and/or classify the embedding vector to produce the class label, the original feature
vector, and/or similar information, based on whether or not the decoder neural network is being
trained using supervised learning, unsupervised learning, and/or a similar technique
(respectively). For example, in some implementations, the decoder neural network can be trained
to conduct a nearest neighbor analysis and/or determine distances between feature vectors of a

same class and/or family, similar the distance analysis described above. In some
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implementations, Gaussian noise can be added, at 906, to the embedding vector to ensure that the
embedding vector, when mapped to semantic space, follows Gaussian distribution in comparison
with feature vectors in the feature vector database 108. The at least one processor 104 can
determine, at 910, whether there are additional feature vectors with which to train the variational
autoencoder neural network 808, and can continue to train the neural networks if there are
additional features.

[00044] The at least one processor 104 can also receive, at 912, (e.g., from an external
source such as a client device, a different server, and/or the like) a potentially-malicious file. The
at least one processor 104 can generate, at 914, a feature vector from the potentially-malicious
file, e.g., by extracting features and/or characteristics from the potentially-malicious file and
adding them to a vector. The at least one processor 104 can provide, at 916, the feature vector to
the variational autoencoder neural network to produce an output vector. Specifically, the
variational autoencoder neural network can receive the feature vector as input, and can modify
the feature vector to change the feature vector into an embedding vector. The at least one
processor 104 can also add, at 918, Gaussian noise to, and/or otherwise modify, the output
vector, so as to ensure the output vector follows Gaussian distribution within the semantic space
of the class associated with that output vector.

[00045] The at least one processor 104 can provide the output vector as an input to the
decoder neural network. In some instances, the decoder neural network conduct a nearest
neighbor analysis and/or determine distances between feature vectors of a same class and/or
family. Specifically, the at least one processor 104 (executing the decoder neural network) can

calculate, at 920, distance values between the output vector, and feature vectors and/or malware
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samples, stored in the feature vector database 108. Specifically, for each feature vector stored in
the feature vector database 108 (and/or for a portion of the feature vectors stored in the feature
vector database 108), the at least one processor 104 can calculate a distance between that feature
vector, and the output vector. The at least one processor 104 (executing the decoder neural
network) can determine, at 922, an 1dentity of malware associated with a feature vector that is the
smallest distance from the modified output vector. Said another way, once the at least one
processor 104 can identify a feature vector that is the closest to the output vector, the at least one
processor 104 can determine an identity of the potentially-malicious file (e.g., identify a class
and/or family associated with the potentially-malicious file), by determining an identity (or class
or family) of a malware sample that is associated with that feature vector. The at least one
processor 104 (executing the decoder neural network) can output, at 924, information associated
with the identified malware, such as a class and/or family label, a malware name, identifier,
malware source, and/or other information identifying the malware threat. For example, the at
least one processor 104 can send the information relating to the identified malware to the client
device and/or other networked device that sent the potentially-malicious file, can render the
malware information in a user interface, can automatically instruct the client device and/or other
networked device to take remedial action (including deleting and/or quarantining the malicious
file, and/or the like) and/or can output the information through similar means.

[00046] While shown and described with respect to FIGS. 8a, 8b and 9 as outputting a
class label, predicted family and/or malware identifier, in other instances, any other data,
information, vector, identifier and/or property can be output from the decoder neural network
(e.g., decoder neural network 810 of FIG. 8a or decoder neural network 850 of FIG. 8b). For
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example, the decoder neural network can output an identifier of a predicted dynamic execution
application programming interface (API) call identified as associated with the extracted feature
vector and/or any other information identified as associated with the feature vector, class and/or
family.

[00047] While methods and apparatuses described above are described as being used for
detecting malware, in other implementations, methods and apparatuses described herein can be
used with any data processing involving making a determination about data based on a number
of features of the data (e.g., including but not limited to malware, image processing, and/or the
like).

[00048] While discussed herein as classifying malware, in other implementations, the
systems and methods described herein (e.g., the feature vector server 102 shown and described
with respect to FIG. 1) can be implemented to identify and/or classify any other type of artifact.
For example, the systems and methods described herein can be used to classify one or more
computer files and/or one or more portions of a computer file. The computer file can be of one or
more file types such as, for example, a document, a spreadsheet, a presentation, an executable, an
application data file, a temporarily stored file, a mountable image file, and/or the like, including
any suitable file extension, such as, for example ‘.exe’, ‘jar’, “.txt’, “.doc’, ‘.pdf’, “.xIsx’, ‘ppt’
and/or other file extensions.

[00049] In some instances, the feature vector server 102 can be configured to extract
computer file information using computer file metadata such as a file size, a file type, a file
attribute, a file author, Portable Executable (PE) header information, a file name and/or the like.

In other instances, computer file information can include contents of the computer file. The
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feature vector server 102 can be configured to use the computer file information to generate a
feature vector associated with the computer file. Using the generated feature vector associated
with the computer file, the feature vector server 102 can be configured to implement a triple-loss
function neural network and/or a variational autoencoder and decoder neural network (as
described above) to classify multiple computer file(s) into multiple classes and/or families.
[00050] For example, the feature vector server 102 can extract computer file information
associated with a spreadsheet. The feature vector server 102 can then generate a feature vector
associated with the spreadsheet based on the computer file information. The feature vector server
102 can implement a variational autoencoder neural network to generate a modified feature
vector from the originally generated feature vector associated with the spreadsheet. The feature
vector server 102 can then implement a decoder neural network to decode the modified feature
vector. The decoder neural network can calculate and/or identify a distance between the modified
feature vector and other feature vectors associated with classes (and/or families). Based on the
calculated distances, the decoder neural network can classify the computer file into a certain
class (and/or family). In some instances, the decoder neural network uses a nearest neighbor
comparison method to classify the computer file into a certain class (and/or family). Multiple
classes and/or families can be distinguished using multiple class labels, where each class label
can be associated with one class. In some instances, the output of the decoder neural network can
be a class label with which the computer file has been associated by the decoder neural network.
[00051] In some instances, the feature vector server 102 can be configured to identify
and/or classify the computer file(s) based on their file types. For example, the feature vector

server 102 can be configured to identify one or more documents, spreadsheets, presentations
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and/or the like. Using the generated feature vector associated with each of the documents,
spreadsheets, presentations, and/or the like, the feature vector server 102 can be configured to
implement the triple-loss function neural network and/or the variational autoencoder and decoder
neural network (as described above) to classify multiple computer file(s) into multiple classes
(and/or families). The multiple classes can be distinguished by different class labels such as
‘Word File’, ‘Excel File’, ‘PowerPoint File’ and/or the like. In some instances, the feature vector
server 102 can perform classification of one or more computer file(s) using metadata such as file
size, file type, file attribute, file author, Portable Executable (PE) header information, file name
and/or the like.
[00052] In yet another instance, the feature vector server 102 can be configured to classify
the one or more computer file(s) to identify an organization associated with the computer file, an
individual associated with the computer file, a group associated with the computer file, an
abnormality associated with the computer file, and/or the like. Moreover, in some instances, the
feature vector server 102 can be configured to classify the one or more computer file(s) for file
management purposes, file organization purposes, file operation purposes (for example, file
camouflage, file copying, file conversion, file deletion), and/or the like.
[00053] For another example, the system and methods described herein can be used to
identify and/or classify a user behavior. The user behavior can be associated with the user using
a computer system connected to a communication network. The user behavior analysis can
include the feature vector server 102 analyzing and/or monitoring a user’s internet activity, a

user’s activity on an application stored on the computer system, a user accessing specific files
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and/or resources, a user’s activity on an input device (such as maintaining a key log), and/or
other user-related activities.

[00054] In some instances, the feature vector server 102 can be configured to analyze
and/or monitor the user behavior. The feature vector server 102 can be configured to extract
information associated with the user behavior. The feature vector server 102 can be configured
to use the extracted information to generate a feature vector associated with the user behavior.
Using the generated feature vector associated with the user behavior, the feature vector server
102 can be configured to implement a triple-loss function neural network and/or a variational
autoencoder and decoder neural network (as described above) to classify multiple user
behavior(s) into multiple classes and/or families.

[00055] For example, the feature vector server 102 can extract information associated with
the user behavior (for example, the user’s interaction with an application). The feature vector
server 102 can then generate a feature vector associated with the user’s interaction with the
application based on the extracted information associated with the user behavior. The feature
vector server 102 can implement a variational autoencoder neural network to generate a
modified feature vector from the originally generated feature vector associated with the user’s
interaction with the application. The feature vector server 102 can then implement a decoder
neural network to decode the modified feature vector. The decoder neural network can calculate
and/or identify a distance between the modified feature vector and other feature vectors
associated with classes (and/or families) of behavior. Based on the calculated distances, the
decoder neural network can classify the user behavior into a certain class (and/or family). In

some instances, the decoder neural network uses a nearest neighbor comparison method to
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classify the user behavior into a certain class (and/or family). Multiple classes and/or families
can be distinguished using multiple class labels, where each class label can be associated with
one class. In some instances, the output of the decoder neural network can be a class label under
which the user behavior has been classified by the decoder neural network.
[00056] In some instances, the feature vector server 102 can be configured to analyze
and/or classify the user behavior as a normal and/or an abnormal user behavior for the user, for
a group and/or role associated with the user, for an organization, and/or the like. In some
instances, the feature vector sever 102 can be configured to generalize the user behavior for
identifying a pattern among a group of people working in a team.
[00057] In another example, the feature vector server 102 can be configured to analyze
and/or classify the user behavior associated with online habits of the user (e.g., shopping habits
of the user). The feature vector server 102 can be configured to generate a feature vector using
demographic details of the user(s), details of the items selected, details of the items purchased,
and/or the like. The feature vector server 102 can implement the neural network as described
above. In some instances, the feature vector server 102 can be implemented by an online
shopping website(s) for classifying the user behavior shopping pattern.
[00058] In yet another example, the feature vector server 102 can be implemented by an
online media website for analyzing and/or classifying the behavior of a social media user. In
some instances, the social media user behavior can be analyzed to generate a user behavior
pattern. Based on the user behavior pattern, the feature vector server 102 can be configured to
produce recommendations/selections, present relevant offers, display advertisements and/or the
like.
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[00059] For yet another example, the systems and methods described herein can be used to
identify and/or classify one or more URLs. The URL can include references to a web page
(http), a file transfer (ftp) site, an email (mailto), a database (Java Database Connectivity
(JDBCQ)), a file path and/or the like.

[00060] In some instances, the feature vector server 102 can be configured to extract URL
information by analyzing at least a portion of the URL, an IP address associated with the URL,
a location associated with the URL, contents of a webpage associated with the URL, and/or the
like. The feature vector server 102 can be configured to use the URL information to generate a
feature vector associated with the URL. Using the generated feature vector associated with the
URL, the feature vector server 102 can be configured to implement a triple-loss function neural
network and/or a variational autoencoder and decoder neural network (as described above) to
classify one and/or more URLSs into multiple classes and/or families.

[00061] For example, the feature vector server 102 can be configured to identify the URL.
The feature vector sever 102 can be configured to extract the URL information by analyzing at
least a portion of the URL, an IP address associated with the URL, a location associated with
the URL, contents of a webpage associated with the URL, and/or the like. The feature vector
server 102 can then generate a feature vector associated with the URL based on the analyzed
URL information. The feature vector server 102 can implement a variational autoencoder neural
network to generate a modified feature vector from the originally generated feature vector
associated with the URL. The feature vector server 102 can then implement a decoder neural
network to decode the modified feature vector. The decoder neural network can calculate and/or

identify a distance between the modified feature vector and other feature vectors associated with
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classes (and/or families). Based on the calculated distances, the decoder neural network can
classify URL into a certain class (and/or family). In some instances, the decoder neural network
uses a nearest neighbor comparison method to classify the URL into a certain class (and/or
family). Multiple classes and/or families can be distinguished using multiple class labels, where
each class label can be associated with one class. In some instances, the output of the decoder
neural network can be a class label under which the URL has been classified by the decoder
neural network.
[00062] For example, the feature vector server 102 can be configured to identify and/or
analyze whether the URL is potentially malicious. In some instances, the feature vector server
102 can maintain a database of potentially malicious URLs for securing the computer system
from a suspicious attack. The database of potentially malicious URLs can include URLs
involved in performing activities such as phishing, domain forwarding and/or the like.
Furthermore, the feature vector server 102 can be configured to provide a remedial measure for
the identified malicious URL(s). The remedial measures can include the feature server vector
102 notifying the user regarding the identified URL. For example, the feature vector server 102
can be configured to instruct the client device (and/or other device) to quarantine and/or block
the malicious URL(s), and/or the like.
[00063] In some instances, the feature vector server 102 can be configured to flag (and/or
tag) the identified malicious URL. Furthermore, the feature vector server 102 can be configured
share at least a portion of details of the malicious URL(s) to other computer devices connected to
the communication network. In other implementations, the feature vector server 102 can classify

the URL based on an author of a website associated with the URL, a host of a website associated
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with the URL, a type of website associated with the URL, a number of users associated with the
URL, whether the URL is behaving normally and/or abnormally for that URL and/or for a type
of URL with which that URL 1s associated, and/or the like.

[00064] For another example, the systems and methods described herein can be used to
identify and/or classify a process(s) and/or an instance(s) of a computer program executed by a
processor (for example, processor 104 as shown in FIG. 1). The process(s) and/or instance(s)
executed by the processor 104 can include a child process, a parent process, a light-weight
process, an orphan process, a zombie process and/or the like.

[00065] In some instances, the feature vector server 102 can be configured to extract
process and/or instance information by analyzing the process(s) and/or instance(s) executed by
the processor. The feature vector server 102 can be configured to use the process and/or instance
information to generate a feature vector associated with the process(s) and/or instance(s). Such
process and/or instance information can include a type of process, an execution time and/or
duration associated with the process, an instantiator and/or parent of the process, a user device
associated with the process, a source of the process, memory use associated with the process,
processing time associated with the process, and/or the like. Using the generated feature vector
associated with the process(s) and/or instance(s), the feature vector server 102 can be configured
to implement a triple-loss function neural network and/or a variational autoencoder and decoder
neural network (as described above) to classify one and/or more process(s) and/or instance(s)
into multiple classes and/or families.

[00066] For example, the feature vector server 102 can be configured to identify the

process(s) and/or instance(s). The feature vector sever 102 can be configured to extract the
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process and/or instance information by analyzing at least a portion of the process(s) and/or
instance(s). The feature vector server 102 can then generate a feature vector associated with the
process(s) and/or instance(s) based on the analyzed process and/or instance information. The
feature vector server 102 can implement a variational autoencoder neural network to generate a
modified feature vector from the originally generated feature vector associated with the
process(s) and/or instance(s). The feature vector server 102 can then implement a decoder neural
network to decode the modified feature vector. The decoder neural network can calculate and/or
identify a distance between the modified feature vector and other feature vectors associated with
classes (and/or families). Based on the calculated distances, the decoder neural network can
classify the process(s) and/or instance(s) into a certain class (and/or family). In some instances,
the decoder neural network uses a nearest neighbor comparison method to classify the process(s)
and/or instance(s) into a certain class (and/or family). Multiple classes and/or families can be
distinguished using multiple class labels, where each class label can be associated with one class.
In some instances, the output of the decoder neural network can be a class label under which the
process(s) and/or instance(s) has been classified by the decoder neural network.

[00067] In some instances, the multiple classes and/or families can be based on different
details associated with the process(s) and/or instance(s). For example, some classes can be based
on a time-related information (for example, run time, wait time, hold time, idle time of the
processor (i.e. unused processor time capacity) and/or other process-related time), a process type
information (for example, system process, application process and/or the like), a process
execution related information (for example, process execution in a user space and/or in a kernel

space), a system resource requirement related information, a process lifecycle related
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information and/or other process-related information. In some instances, the classes and/or
families can be used to identify abnormal and/or normal operation of processes and/or instances.
Specifically, the feature vector server 102 can classify a process as operating normally for that
process, for a type of process associated with that process, for processes executing on a particular
machine, for processes executing within a particular environment, and/or the like.

[00068] For example, the feature vector server 102 can be configured to analyze and/or
monitor the time-related process information. The feature vector server 102 can be configured to
generate feature vector using the information related to the time lapsed during the execution of
the process(s) and/or instance(s) by the processor 104. Using the neural network (as described
above), the feature vector server 102 can be configured to classify features vectors associated
with the process(s) and/or instance(s) into multiple classes and/or families.

[00069] In some instances, the feature vector server 102 can be configured to provide
some process(s) and/or instance(s) optimization capability to an operating system. In other
instances, the feature vector server 102 can be configured to provide some security by
identifying malicious process(s) and/or instance(s) and/or preventing the execution of the
malicious process(s) and/or instance(s).

[00070] For yet another example, the systems and methods described herein can be used to
identify and/or classify one or more device connected to a communication network. A device
connected to the communication network can be a compute device such as a server, a computer,
a smartphone, a tablet, a laptop, a desktop, a router, a switch, a hub and/or other computing
device. The feature vector server 102 can be configured to identify one or more features of the

device such as, for example, an identification address, data content accessed by the device (for
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example, upload data, download data, shared data and/or the like), a historic record associated
with the device (for example, a record of device identified as malicious device, a datalog and/or
the like), a device type (for example, a client device, a server and/or the like), an execution time
of the device, a workload of the device, and/or other features associated with the device.

[00071] In some instances, the feature vector server 102 can be configured to extract
device information by analyzing at least a portion of the device specification(s), characteristic(s)
and/or feature(s). The feature vector server 102 can be configured to use the extracted device
information to generate a feature vector associated with the device connected to the
communication network. Using the generated feature vector associated with the device, the
feature vector server 102 can be configured to implement a triple-loss function neural network
and/or a variational autoencoder and decoder neural network (as described above) to classify one
and/or more device(s) connected to the communication network into multiple classes and/or
families.

[00072] For example, the feature vector server 102 can be configured to identify the
device(s) connected to the communication network. The feature vector sever 102 can be
configured to extract the device information by analyzing the device information. The feature
vector server 102 can then generate a feature vector associated with the device based on the
analyzed device information. The feature vector server 102 can implement a variational
autoencoder neural network to generate a modified feature vector from the originally generated
feature vector associated with the device connected to the communication network. The feature
vector server 102 can then implement a decoder neural network to decode the modified feature

vector. The decoder neural network can calculate and/or identify a distance between the modified
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feature vector and other feature vectors associated with classes (and/or families). Based on the
calculated distances, the decoder neural network can classify the device connected to the
communication network into a certain class (and/or family). In some instances, the decoder
neural network uses a nearest neighbor comparison method to classify the device into a certain
class (and/or family). Multiple classes and/or families can be distinguished using multiple class
labels, where each class label can be associated with one class. In some instances, the output of
the decoder neural network can be a class label with which the device has been associated by the
decoder neural network.

[00073] In some instances, the feature vector server 102 can be configured to identify and
classify the device(s) connected to the communication network by analyzing the identification
address(es) of the device such as a physical address (Media Access Control (MAC) address), a
logical address (Internet Protocol (IP) address) and/or the like. In some instances, the feature
vector server 102 can be configured to analyze and/or monitor at least a portion of content
accessed by the device, for example, the data downloaded and/or uploaded by the device
connected to a communication network. Moreover, the feature vector server 102 can be
configured to analyze and/or monitor the device to determine whether the device is allowed to
access and/or share at least a portion of content. In other instances, the feature vector server 102
can monitor behavior of the device and identify whether the behavior is normal and/or abnormal
for that device, for a group of devices associated with that device and/or the like.

[00074] Furthermore, the feature vector server 102 can provide remedial actions if the
identified device’s actions are determined to be abnormal. The feature vector server 102 can

implement remedial actions such as holding and/or quarantining an identified potentially
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malicious content, limiting and/or restricting the access of the device to the communication
network, banning and/or removing the device from the communication network, notifying the
communication network administrator and/or the like. In other instances, the feature vector
server 102 can provide remedial actions if the identified device(s) is trying to share and/or access
restricted data content.

[00075] In some instances, the feature vector server 102 can be configured to analyze
and/or monitor user account information linked to the device connected to the communication
network. For example, the feature vector server 102 can be configured to extract the user account
information (such as login credentials, username, age, sex and/or the like) for generating feature
vector associated with the user account. Using the generated feature vector associated with the
user account linked to the device, the feature vector server 102 can be configured to implement a
triple-loss function neural network and/or a variational autoencoder and decoder neural network
(as described above) to classify one and/or more user accounts connected to the communication
network into multiple classes and/or families.

[00076] Additionally, while methods and apparatuses descried above use a deep neural
network threat model, methods and apparatuses described herein may be used with any data
modeling and/or machine learning algorithm and/or model, including but not limited to decision
tree models, Bayesian networks, clustering models, and/or similar algorithms and/or models.
[00077] It is intended that the systems and methods described herein can be performed by
software (stored in memory and/or executed on hardware), hardware, or a combination
thereof Hardware modules may include, for example, a general-purpose processor, a field

programmable gate array (FPGA), and/or an application specific integrated circuit
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(ASIC). Software modules (executed on hardware) can be expressed in a variety of software
languages (e.g., computer code), including Unix utilities, C, C++, Java™, Ruby, SQL, SAS®,
the R programming language/software environment, Visual Basic™, and other object-oriented,
procedural, or other programming language and development tools. Examples of computer code
include, but are not limited to, micro-code or micro-instructions, machine instructions, such as
produced by a compiler, code used to produce a web service, and files containing higher-level
instructions that are executed by a computer using an interpreter. Additional examples of
computer code include, but are not limited to, control signals, encrypted code, and compressed
code. Each of the devices described herein can include one or more processors as described
above.

[00078] Some embodiments described herein relate to devices with a non-transitory
computer-readable medium (also can be referred to as a non-transitory processor-readable
medium or memory) having instructions or computer code thereon for performing various
computer-implemented operations. The computer-readable medium (or processor-readable
medium) is non-transitory in the sense that it does not include transitory propagating signals per
se (e.g., a propagating electromagnetic wave carrying information on a transmission medium
such as space or a cable). The media and computer code (also can be referred to as code) may be
those designed and constructed for the specific purpose or purposes. Examples of non-transitory
computer-readable media include, but are not limited to: magnetic storage media such as hard
disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital
Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROM:s), and holographic
devices; magneto-optical storage media such as optical disks; carrier wave signal processing
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modules; and hardware devices that are specially configured to store and execute program code,
such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs),
Read-Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments
described herein relate to a computer program product, which can include, for example, the
instructions and/or computer code discussed herein.

[00079] While various embodiments have been described above, it should be understood
that they have been presented by way of example only, and not limitation. Where methods and
steps described above indicate certain events occurring in certain order, the ordering of certain
steps may be modified. Additionally, certain of the steps may be performed concurrently in a
parallel process when possible, as well as performed sequentially as described above. Although
various embodiments have been described as having particular features and/or combinations of
components, other embodiments are possible having any combination or sub-combination of any
features and/or components from any of the embodiments described herein. Furthermore,
although various embodiments are described as having a particular entity associated with a
particular compute device, in other embodiments different entities can be associated with other

and/or different compute devices.
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What is claimed is:
1. An apparatus, comprising:
a memory; and
a processor operatively coupled to the memory, the processor configured to:
identify a feature vector for a potentially malicious file;
provide the feature vector as an input to a trained neural network autoencoder to
produce a modified feature vector;
generate an output vector by introducing Gaussian noise into the modified feature
vector, the Gaussian noise ensuring a Gaussian distribution for the output vector within a
set of modified feature vectors;
providing the output vector as an input to a trained neural network decoder
associated with the trained neural network autoencoder to produce as an output an
identifier of a class, the set of modified feature vectors being associated with the class;
and
performing a remedial action on the potentially malicious file based on the

potentially malicious file being associated with the class.

2. The apparatus of claim 1, wherein the trained neural network decoder is configured to
identify that a distance between the output vector and the set of modified feature vectors from a
plurality of sets of modified feature vectors is less than a distance between the output vector and
each remaining set of modified feature vectors from the plurality of sets of modified feature

vectors.
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3. The apparatus of claim 1, wherein the processor is configured to identify the feature
vector for the potentially malicious file by extracting characteristics from the potentially

malicious file.

4. A method, comprising:

training a triple-loss function neural network by providing an anchor feature vector
associated with a first class, a training feature vector associated with the first class, and a training
feature vector associated with a second class different from the first class;

identifying a feature vector for an artifact;

providing the feature vector as an input to the triple-loss function neural network to
produce a modified feature vector;

classifying the artifact as associated with a class of artifacts based on a distance between
the modified feature vector and a set of modified feature vectors from a plurality of sets of
modified feature vectors being less than a distance between the modified feature vector and each
remaining set of modified feature vectors from the plurality of sets of modified feature vectors,
the set of modified feature vectors being associated with the class of artifacts; and

performing an action associated with the artifact based on the artifact being classified as

associated with the class of artifacts.

5. The method of claim 4, wherein the identifying includes identifying the feature vector for
the potentially malicious file by extracting characteristics from the artifact.
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6. The method of claim 4, wherein the distance between the modified feature vector and the
set of modified feature vectors from the plurality of sets of modified feature vectors is at least

one of a Euclidean distance or a Hamming distance.

7. The method of claim 4, wherein the artifact is a potentially malicious file and the class of
artifacts is a class of malware, the performing includes quarantining the potentially malicious

file.

8. A non-transitory processor-readable medium storing code representing instructions to be
executed by a processor, the code comprising code to cause the processor to:

identify a feature vector for an artifact;

provide the feature vector as an input to a machine learning model to produce a modified
feature vector;

classify the artifact as associated with a class of artifacts based on a distance between the
modified feature vector and a set of modified feature vectors from a plurality of sets of modified
feature vectors being less than a distance between the modified feature vector and each
remaining set of modified feature vectors from the plurality of sets of modified feature vectors,
the set of modified feature vectors being associated with the class of artifacts; and

perform an action associated with the artifact based on the artifact being classified as

associated with the class of artifacts.
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9. The non-transitory processor-readable medium of claim 8, wherein the machine leaming
model is a trained neural network autoencoder, the code to cause the processor to classify
includes code to cause the processor to classify the artifact by providing the output vector to a

trained neural network decoder that produces as an output an identifier of the class.

10. The non-transitory processor-readable medium of claim 8, wherein the code to cause the
processor to classify includes code to cause the processor to calculate a distance value between

the output vector and each set of output vectors from the plurality of sets of output vectors.

11. The non-transitory processor-readable medium of claim 8, wherein the machine leaming

model is a trained triple-loss function neural network.

12. The non-transitory processor-readable medium of claim 8, wherein code is further
configured to cause the processor to:

introduce Gaussian noise into the modified feature vector prior to classifying the artifact
as associated with the class of artifacts to ensure a Gaussian distribution for the set of modified

feature vectors associated with the class of artifacts.

13. The non-transitory processor-readable medium of claim 8, wherein the artifact is a
potentially malicious file and the class of artifacts is a class of malware, the code to cause the
processor to perform includes code to cause the processor to quarantine the potentially malicious
file.

40



14. The non-transitory processor-readable medium of claim 8, wherein the distance between
the output vector and the set of modified feature vectors from the plurality of sets of modified

feature vectors is at least one of a Euclidean distance or a Hamming distance.
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