
(19) United States
US 2002O129146A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0129146A1
Aronoff et al. (43) Pub. Date: Sep. 12, 2002

(54) HIGHLY AVAILABLE DATABASE CLUSTERS
THAT MOVE CLIENT CONNECTIONS
BETWEEN HOSTS

(76) Inventors: Eyal Aronoff, Irvine, CA (US); Eyal
Kalderon, Tustin, CA (US); Bill
Romine, Tustin, CA (US)

Correspondence Address:
KNOBBE MARTENS OLSON & BEAR LLP
620 NEWPORT CENTER DRIVE
SIXTEENTH FLOOR
NEWPORT BEACH, CA 92660 (US)

(21) Appl. No.: 10/072,317

(22) Filed: Feb. 6, 2002

Related U.S. Application Data

(60) Provisional application No. 60/266,908, filed on Feb.
6, 2001.

Publication Classification

(51) Int. Cl." G06F 15/173; G06F 17/30;
G06F 7700

(52) U.S. Cl. .. 709/225; 707/10

(57) ABSTRACT

Aspects of embodiments of the present disclosure include a
highly available database cluster that can maintain a con
nection with potentially geographically remote client appli
cation programs, including non-fault tolerant application
programs, even in the event of one of the database manage
ment systems (DBMS) of the cluster becoming unavailable.
For example, the database cluster can advantageously move
a client connection between a failing, unbalanced, or over
loaded DBMS, to another DBMS within the cluster. The
database cluster can include connection managers that moni
tor a connection between a client application program and a
primary DBMS. When one connection manager determines
that the primary DBMS is unavailable, the connection
manager of a Secondary DBMS can assume the connection
to the client application as if it were the primary DBMS. The
connection manager can finish all open transactions, thereby
avoiding the need to roll back the same. Moreover, the
connection managers can monitor the connection at the
DBMS communication level, such as, for example, the
SOL*Net level.

100

NETWORK
k coMMUNICATION

120
ROUTING u?

PRIMARY
CONNECTION
MANAGER

140 -

DEVICE ---
SECONDARY
CONNECTION
MANAGER

-150

PRIMARY in SEconDARYur'
g| DBMS CLUSTER D B M S L-135 110

sts s DATA DATA
FILE FLE

DATA
FILE

- 30

Sep. 12, 2002 Sheet 1 of 3 US 2002/0129146A1 Patent Application Publication

0 || || >HELSTATO
gel-,

SW8C] „_^1x+vdNOOBS
9 SOH

LOG FILE

Patent Application Publication Sep. 12, 2002 Sheet 2 of 3 US 2002/0129146A1

/N 105
(CLIENTL?
N /

100 115
--- COMMUNICATION i?
k NETWORK

ROUTING 120
DEVICE

- - - - - -- -

140 150
\- i

C)
O 205 245 R
Z C)
Z O

u | PRIMARY SECONDARY 6
d2 CONNECTION CONNECTION 3 D

D D
U O 2 210 CIMPORT) 250 f

D Z
G.) MEMORY MEMORY I 215 QUEUE 255

STATISTCS 275 STATISTICS O
... -- 2

(MONITOR REPLAY MONITOR
280

220 PROTOCOL PROTOCOL. 20 | SHADow SHADOW

| PRIMARY SECONDARYL-15s 145 - DBMS

Patent Application Publication Sep. 12, 2002 Sheet 3 of 3 US 2002/0129146A1

300

305
k MONITOR STATISTICs u?

r
DETECT NEED TO MOVE to

CONNECTION FROM HOST A

INSTRUCT ROUTER TO FORWARD 321
COMMUNICATION TO SECONDARY

DBMS

WHEN NEEDED, SEND KEEPALIVE 322
MESSAGE TO CLIENT(S)

TRANSPARENTLY
MOVE THE
CLIENT 324.

CONNECTION TO topia.gif OF r
ANOTHER NODE?

HOST

- REMOVE ANY LEFTOVER r-326
320 COMMITTED TRANSACTIONS ?

ESTABLISH COMMUNICATION 328
BETWEEN CLIENT AND THE

SECONDARY DBMS

FIG. 3

US 2002/0129146A1

HIGHLY AVAILABLE DATABASE CLUSTERS
THAT MOVE CLIENT CONNECTIONS BETWEEN

HOSTS

REFERENCE TO RELATED APPLICATION

0001. The present application claims priority benefit
under 35 U.S.C. S 119(e) from U.S. Provisional Application
No. 60/266,908, filed Feb. 6, 2001, entitled “HIGHLY
AVAILABLE DATABASE CLUSTERS,” which is incorpo
rated herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates to the field of highly
available database clusters. More specifically, the invention
relates to database clusters that transparently move client
connections between hosts.

BACKGROUND OF THE INVENTION

0003) A database is generally considered to be a collec
tion of information or data organized in a way that computer
programs can quickly acceSS or Select desired portions of the
collection. A database management system (DBMS)
includes the collection of computer programs that enable the
quick Storage, Selection, modification, and extraction of
desired portions of data from the database. Exemplary
DBMSs include those commercially available from Oracle
Corporation, IBM, or the like. Application programs, on the
other hand, typically include client programs that connect to
a DBMS to provide users the ability to interact with the data
of the database, Such as, for example, to Select, modify,
organize, delete, or the like, Some or all of the foregoing
data. Exemplary application programs include payroll or
inventory programs, online Stores, or the like.
0004. Often, the application programs are designed to be
continually connected to a DBMS, thereby having substan
tially continuous access to data Stored within the same.
Unless Specifically coded to recover, these application pro
grams typically fail when their connection to the DBMS
fails or is otherwise unavailable, Such as during a System
failure. For many application program environments, this
failure is undesirable.

0005 System designers have created various solutions to
reduce the effects of an application program losing a con
nection to a DBMS. For example, system designers often
employ database clusters to offer backup Solutions to failed
systems. Database clusters can include two or more DBMSs
accessing shared data files. For example, the shared data
files can include data files having the same Set of data from
the replication of changes from one DBMS to another. Also,
the shared data files can include multiple DBMSs that access
the Same physical Storage. Through the shared data files,
system designers allow one DBMS to replace another in the
event of a failure.

0006 There are several drawbacks associated with the
foregoing database clustering Solution, especially when
employed in environments allowing for little or no down
time, Such as, for example, high availability Solutions. For
example, when a DBMS fails, the connection from the
application program to the DBMS can be lost, thereby
potentially losing all open transactions from the same.
Additionally, data not replicated from a failing DBMS can

Sep. 12, 2002

be lost. Moreover, during load balancing, Simultaneous
updates of the same data on different DBMSs can occur in
Some replication Solutions. Also, a large amount of commu
nication traffic among a cluster, and/or hardware limitations
of the same, can reduce the cost effectiveness of geographi
cally diverse Systems. Moreover, as discussed, the failure of
an individual DBMS results in a failure of non-fault tolerant
program applications.
0007 On the other hand, system designers may also
employ application Servers in order to reduce the effects of
losing a connection to a DBMS. For example, System
designers often have application programs connect to an
application Server, where the application Server includes the
functionality to recover lost client connections to one or
more secondary DBMSs within a database cluster. However,
the application Server generally includes a proprietary pro
tocol used in communications from the application program
to the application Server. The proprietary protocol is gener
ally not native to the DBMS and therefore, each connecting
application program will first be routed through the appli
cation Server. Thus, the application Server Solution is not
well Suited for geographically diverse Storage Systems.
0008 Embodiments of the present invention seek to
overcome Some or all of these and other problems.

SUMMARY OF THE INVENTION

0009. Therefore, a need exists for a database cluster that
can maintain a connection with potentially geographically
remote client application programs, including non-fault tol
erant application programs, even in the event of a failure or
other unavailability of the primary DBMS. Accordingly,
aspects of embodiments of the present disclosure include a
highly available database cluster that can maintain a con
nection with potentially geographically remote client appli
cation programs, including non-fault tolerant application
programs. For example, the database cluster can advanta
geously move a client connection between a failing, unbal
anced or overloaded DBMS, to another DBMS within the
database cluster.

0010. According to one embodiment, the database cluster
includes connection managers which monitor a connection
between a client application program and a primary DBMS.
When one connection manager determines that the primary
DBMS is unavailable, has an unbalanced share of the
Workload of the cluster, or the like, the connection manager
of a secondary DBMS can assume the connection to the
client application as if it were the primary DBMS. For
example, the connection manager can finish all open trans
actions, thus avoiding the need to roll back the Same.
Embodiments of the connection managers can also monitor
the connection at the DBMS communication level, Such as,
for example, the SQL*Net level. According to one embodi
ment, the connection managers capture enough information
about the connection to restore the connection to its current
state on another DBMS in the cluster.

0011 Based on the foregoing, an aspect of an embodi
ment of the invention includes a data processing System
comprising a database cluster which can move a connection
between a remote client and a first DBMS within the cluster
to a second DBMS within the cluster when the database
cluster determines that the first DBMS has failed, wherein
the movement of the connection is transparent to the remote

US 2002/0129146A1

client and the connection includes communication in a
protocol native to the first and second DBMSs, such as, for
example, SQL*.Net.

0012 Another aspect of an embodiment of the invention
includes a data processing System comprising a database
cluster which can move a connection between a remote
client and a first DBMS to a second DBMS when the
database cluster determines that the first DBMS is executing
an unbalanced portion of the cluster workload, wherein the
movement of the connection is transparent to the remote
client.

0013 Another aspect of an embodiment of the invention
includes a method of moving a client connection from a first
DBMS to a second DBMS. The method comprises moni
toring a state of a client connection to a first DBMS, wherein
the client connection includes communication in a protocol
native to the first DBMS. The method also comprises
detecting a condition of the connection which indicates the
connection should be moved, and moving the client con
nection to a second DBMS without the client dropping the
client connection.

0.014 For purposes of Summarizing the invention, certain
aspects, advantages and novel features of the invention have
been described herein. Of course, it is to be understood that
not necessarily all Such aspects, advantages or features will
be embodied in any particular embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0.015. A general architecture that implements the various
features of the invention will now be described with refer
ence to the drawings. The drawings and the associated
descriptions are provided to illustrate embodiments of the
invention and not to limit the Scope of the invention.
Throughout the drawings, reference numbers are re-used to
indicate correspondence between referenced elements. In
addition, the first digit of each reference number indicates
the figure in which the element first appears.

0016 FIG. 1 illustrates a block diagram of an exemplary
data processing System including a database cluster accord
ing to embodiments of the invention.

0017 FIG. 2 illustrates a block diagram of exemplary
connection managers of the database cluster of FIG. 1,
according to embodiments of the invention.

0018 FIG. 3 illustrates a flow chart of a fail-over pro
ceSS, according to embodiments of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0.019 Aspects of embodiments of the present disclosure
include a highly available database cluster that can move
connections with one or more client program applications
from a first host to a Second in the event of, for example, a
failure of the first host, an unbalanced or overloaded work
load present on the first host, or the like. Additionally, the
cluster can provide communication in the native protocol of
underlying database management Systems (DBMSs),
thereby providing fault tolerant connections for potentially
geographically remote and potentially non-fault tolerant
client application programs.

Sep. 12, 2002

0020. According to one embodiment, the database cluster
includes connection managers that monitor a connection
between a client application program and a primary DBMS.
When one connection manager determines that the primary
DBMS is unavailable, has an unbalanced share of the
Workload of the cluster, or the like, the connection manager
of a secondary DBMS can assume the connection to the
client application as if it were the primary DBMS. In one
embodiment, the assumption of the connection by the Sec
ondary connection manager is transparent to the client.
Moreover, the Secondary connection manager can replay or
finish all open transactions, thus picking up the connection
to the client in a state exactly where the primary DBMS
failed. Embodiments of the connection managers can also
monitor a connection at the DBMS communication level,
such as, for example, the SQL*Net level. According to one
embodiment, the connection managers capture enough
information about the connection to restore the connection
to its current state on another DBMS in the cluster.

0021 According to one embodiment, the connection
manager monitors a current state of TCP and IP protocols of
a TCP/IP connection. When one connection manager deter
mines that it should assume the TCP/IP connection, the
connection manager continues the TCP conversation that the
client originally Started with the other connection manager.
0022. The foregoing solution advantageously provides a
database cluster offering high availability to its connecting
clients, including non-fault tolerant clients, by moving con
nections between DBMSs within a database cluster.

0023 To facilitate a complete understanding of the inven
tion, the remainder of the detailed description describes the
invention with reference to the drawings, wherein like
reference numbers are referenced with like numerals
throughout.
0024 FIG. 1 illustrates a block diagram of an exemplary
data processing System 100, according to an embodiment of
the invention. As shown in FIG. 1, the data processing
system 100 includes a client application program 105 (client
105) communicating with a highly available database cluster
110 (cluster 110) through a communication network 115.
According to one embodiment, the client 105 comprises
computer programs Such as payroll or inventory programs,
online Stores, human resource applications, or the like,
executing on one or more remote computer devices or
Systems.
0025. An artisan will recognize from the disclosure
herein that the client 105 can comprise virtually any client
program designed to connect with a DBMS to interact with
data Stored therein, Such as, for example, to Select, modify,
organize, delete, index, or the like, Some or all of the
foregoing data. Moreover, the artisan will recognize from
the disclosure herein that the client 105 can execute on a
wide variety of computer devices, Such as, for example,
personal digital assistants, mobile telephones, handheld
computer devices, laptop computers, WorkStations, main
frame computers, combinations of the same, or the like.
0026. The cluster 110 can comprise two or more DBMSs,
able to access portions of Shared, replicated, or otherwise
mirrored data. Exemplary DBMSs include those commer
cially available from Oracle Corporation, IBM, or the like.
According to one embodiment, the DBMSs of the cluster
110 execute on one or more hosts or other computing
devices.

US 2002/0129146A1

0027. The communication network 115 comprises some
or all of the Internet. However, an artisan will recognize
from the disclosure herein that the communications network
115 can include a wide range of interactive communications
mediums. For example, the communications network 115
can include interactive television networks, telephone net
Works, wireleSS data transmission Systems, two-way cable
Systems, customized computer networks, interactive kiosk
networks, automatic teller machine networks, direct links,
private local or wide area networks, and the like.

0028. In one embodiment, the client 105 connects to the
cluster 110 through the communication network 115. The
client 105 issues instructions or transactions including one
or more operational Statements to be carried out against data
stored in data files accessible by the cluster 110. When the
cluster 110 has executed the instructions or transactions, the
cluster 110 returns an indication of the same to the client
105. Moreover, the cluster 110 can move the foregoing
connection with the client 105 from a first host to a second
in the event of, for example, a failure of the first host, an
unbalanced or overloaded workload present on the first host,
or the like. Additionally, the cluster 110 can provide com
munication in the native protocol of the underlying two or
more DBMSs, thereby providing fault tolerant connections
for the potentially geographically remote and potentially
non-fault tolerant client 105. For example, the cluster 110
can monitor a connection at the DBMS communication
level, such as, for example, a SQL*Net level. The cluster
110 can capture enough information about the connection to
restore the connection to its current State on another DBMS
in the cluster.

0029 FIG. 1 also shows the cluster 110 including a
routing device 120 communicating with a primary host 125
(Host A 125) to execute transactions against one or more
shared data files 130. Additionally, FIG. 1 shows the routing
device 120 having the ability to communicate with a sec
ondary host 135 (Host B 135), which in turn also includes
the ability to execute transactions against the one or more
shared data files 130. According to one embodiment, Host A
125 includes a primary connection manager 140 and a
primary DBMS 145, while Host B 135 includes a secondary
connection manager 150 and a secondary DBMS 155. FIG.
1 also shows the primary connection manager 140 commu
nicating with the Secondary connection manager 150.

0030 Routing device 120 comprises a device, such as,
for example, a router, hub, or the like, that connects any
number of computing Systems or networkS. Generally, rout
ing device 120 uses information in data packets, along with
a forwarding table to determine where the data packets go.
According to one embodiment, the routing device 120 is
configured in Such as fashion as to forward all packets
destined for the database cluster 110 to both the primary
connection manager 140 and the Secondary connection
manager 150. An artisan will recognize that the function of
such routing will be to enable a virtual IP address (VIP) that
may be shared between hosts.

0031. In one embodiment, the routing device 120 sends
all data packets from the client 120 to both the primary
connection manager 140 and the Secondary connection
manager 150. The Secondary connection manager monitors
Statistics related to, for example, the number of clients
connected to the primary connection manger. The primary

Sep. 12, 2002

connection manager assumes responsibility for the data
packets send from the client 105 to the primary DBMS 145.
Thus, when the client 105 sends transactions, in the form of
data packets, through the communication network 115 to the
primary DBMS 145, the data packets are routed to the
primary connection manager 140, forming a connection
between the primary connection manager 140 and the client
105. The primary connection manager 140 then forwards the
data packets to the primary DBMS 145, forwards a copy of
the data packets to the Secondary connection manager 150,
and monitorS Statistics related to, for example, the number of
connected clients and the Status of the Secondary connection
manager 150. Meanwhile, the Secondary connection man
ager 150 receives the copied data packets, holds them in
memory, and monitorS Statistics related to, for example, the
number of connected clients and the Status of the primary
connection manager 140.

0032) The primary DBMS 145 receives the data packets
from the primary connection manager 140, assembles them
into operational Statements of transactions, and executes the
same against the data files 130. The primary DBMS 145 then
returns the requested data and/or acknowledgment of the
received data packets back to the primary connection man
ager 140, which in turns forwards a copy to the Secondary
connection manager 150 and a copy to the respective client
105 through the communication network 115.

0033. In an embodiment, the secondary connection man
ager 150 can detect a condition of the connection between
the primary connection manager 140 and the client 105 from
the Statistics being monitored. For example, the Secondary
connection manager 150 can detect a failure of the connec
tion, an unbalanced or overloaded workload on the primary
connection, or the like. In Such circumstances, the Secondary
connection manager assumes control of the connection and
replayS any rolled back transactions against the data files
130 through the secondary DBMS 155 as follows.

0034. The secondary connection manager 150 commu
nicates with the routing device 120 to acknowledge TCP
requests from the client 105 to the primary connection
manager 140. These acknowledgements advantageously
keep the client TCP connection from timing out and failing.
Additionally, the Secondary connection manager 150 replayS
any operational Statements of transactions rolled back due
to, for example, the failure of the primary connection. AS is
generally known in the art, upon failure of a DBMS, all
operational Statements of open transactions (for, example,
non-committed transactions) executed against the data files
130 are rolled back as if they never occurred. However,
because the operational Statements of open transactions are
Stored in the foregoing memory of the Secondary connection
manager 150, these operational Statements from open trans
actions can be reexecuted against the data files 130 through
the secondary DBMS 155. After replaying the foregoing
operational Statements, the Secondary connection manager
150 begins forwarding data packets from the client 105 to
the secondary DBMS 155 to be executed against the data
files 130.

0035 Based on the foregoing disclosure, the database
cluster 110 advantageously moves a connection between the
primary DBMS 145 and the client 105 to the secondary
DBMS 155 in the cluster 110, when the primary DBMS 145
fails, becomes unbalanced, overloaded, or the like. Addi

US 2002/0129146A1

tionally, the database cluster 110 advantageously replays any
rolled back Statements of open transactions during fail-over
to the secondary DBMS 155, thereby providing an assump
tion of the connection that is transparent to the client 105.
Accordingly, the cluster 110 avoids failure of non-fault
tolerant clients by moving the connection rather than allow
ing it to fail. Additionally, the cluster 110 advantageously
provides communication in the native protocol of the under
lying two or more DBMSs, thereby providing fault tolerant
connections for the potentially geographically remote and
potentially non-fault tolerant client 105.
0.036 FIG. 2 illustrates a block diagram of embodiments
of the primary and Secondary connection managers, 140 and
150, of the cluster 110, according to embodiments of the
invention. FIG. 2 shows the primary connection manager
140 including a primary connection 205 communicating
with a memory 210 including statistics 215, a monitor
process 220 also communicating with the memory 210, and
a protocol shadow 225 communicating with the memory 210
and the primary DBMS 145. Moreover, FIG. 2 shows the
Secondary connection manager 150 including a Secondary
connection 245 communicating with a memory 250 includ
ing Statistics 255, a monitor proceSS 260 also communicat
ing with the memory 250, and a protocol shadow 265
communicating with the memory 250 and the secondary
DBMS 155. In addition, the secondary connection manager
150 includes an import process 270 communicating with the
primary connection 205 and a queue 275. The secondary
connection manager 150 also includes a replay process 280
communicating with the queue 275 and the protocol shadow
265. Moreover, while not shown, an additional redo monitor
can access one or more log files 285 associated with the
primary DBMS 145. The redo monitor also can communi
cate with the memory 210 and review the statistics 215.
FIG. 2 also shows the protocol shadow 265 accessing the
one or more log files 285.
0037. The following simplified exemplary transactions
are disclosed to provide an understanding of the operation of
the primary and Secondary connection managers, 140 and
150 respectively, however, they are not intended to limit the
Scope of the disclosure. Rather, an artisan will recognize
from the disclosure herein, alternative arrangements to Sim
plify or expand one or more of the features or aspects
disclosed herein.

Normal Operation

0.038. When the client 105 begins a transaction by issuing
an operational Statement to be applied against the data files
130, the client 105 distributes the statement across one or
more data packets. The data packets are forwarded through
the communication network 115 to the routing device 120,
where, as disclosed, the routing device 120 forwards the
packets to the primary connection 205 and to the Secondary
connection 245. The primary connection 205 examines
Statistics in the Statistics 215 generated by the redo monitor.
These Statistics include, for example, the current location of
transaction being stored in the log files 285. The primary
connection transmits a copy of each data packet along with
the current log file location, Such as a Sequence number, to
the import proceSS 270 of the Secondary connection manager
150, and places a copy in the memory 210. The import
process 270 stores the data packets in the queue 275. The
protocol shadow 225 accesses the memory 210 and retrieves

Sep. 12, 2002

the data packets. The protocol shadow 225 forwards the
packets to the primary DBMS 145, where the packets are
assembled and the operational Statement executed against
the data files 130. Moreover, as is generally known in the art,
the DBMS can also keep a record or log of the executed
statement, generally in the log file 285.

0039. The DBMS 145 forwards a result of the statement
and/or and acknowledgement of receipt of the same, back to
the protocol shadow 225, preferably in one or more
acknowledgement data packets. The protocol Shadow 225
transfers the data packets back to the memory 210, where
they are picked up by the primary connection 205. The
primary connection 205 forwards a copy of the data packets
to the import process 270 and to the client 105. Thus, the
client 105 receives the results and/or acknowledgement of
the transmitted Statement of an open transaction.

0040. The client 105 may then desire to finalize, or
commit the transaction against the data files 130. In such
case, the client 105 issues a commit Statement, which is
forwarded to the primary DBMS 145 and the import process
270, along with the Subsequent result and/or acknowledge
ment, in a manner Similar to that disclosed. In one embodi
ment, the protocol shadow 225 stores sufficient data from the
data packets that it can assemble the Statements of a given
transaction. When the protocol shadow 225 determines the
data packets for a commit Statement have been Sent to the
primary DBMS 145, the protocol shadow attaches a marker
to the result/acknowledgement data packets associated with
the primary DBMS 145 acknowledging execution of the
commit Statement. According to one embodiment, the
marker comprises a location marker, Such as, for example, a
sequence number from the primary DBMS 145. Then, as
disclosed, the result/acknowledgement data packets are
transmitted with their marker to the import process 270.
According to one embodiment, the import process 270
recognizes the marker placed on the data packets associated
with the commit Statement, and recognizes that the entire
transaction has been executed by the primary DBMS 145
against the data files 130. Therefore, the import process 270
deletes the data packets associated with the now finalized
transaction from the queue 275.
0041 Based on the foregoing, the protocol shadow 225
and the import proceSS 270 advantageously work together to
ensure that only the data packets associated with open
transactions remain in the queue 275.

0042. The primary connection 205 also stores the statis
tics 215 related to the connection with the client 105 in the
memory 210. In one embodiment, the statistics include
sufficient information for the monitor process 220 to deter
mine whether the primary connection 205 has failed, is
processing an unbalanced or overloaded workload, or the
like, and whether the secondary connection 245 has failed,
is processing an unbalanced or overloaded workload, or the
like. For example, the statistics 215 can include the number
of clients seen by the primary connection 205, the number
of clients Seen by the Secondary connection 245, the Status
of communication with Secondary communication manager
150, or the like. The primary connection 205 acquires the
Statistics 215 corresponding to information from the Sec
ondary connection manager 150 through the connection
between the primary connection 205 and the secondary
connection 245. Moreover, according to one embodiment,

US 2002/0129146A1

the foregoing Status of the Secondary communication man
ger 150 can be ascertained through Straightforward ping or
ping-like commands.

Fail-Over

0.043 FIG. 3 illustrates a flow chart of a fail-over process
300, according to embodiments of the invention. As shown
in FIG.3, the fail-over process 300 begins with BLOCK305
where the cluster 110 monitors the statistics of one or more
connections with one or more clients. In the foregoing
example, the monitoring corresponds to the monitor pro
cesses 220 and 260. In BLOCK 310, the cluster 110 detects
the need to move the connection from one DBMS to another.
For example, the monitor 260 may determine that the
primary DBMS 145 has failed, become unbalanced, over
loaded, or the like, and determine that the Secondary con
nection manager 150 should assume the connection with the
client 105. When the determination that a connection move
is desired, the fail-over process 300 proceeds to BLOCK
320, where the cluster 110 moves the connection from one
DBMS to another without losing the connection or causing
even a non-fault tolerant client to fail. For example, the
Secondary connection 245 can communicate with the routing
device 120 to assume the IP address (or VIP) of the primary
DBMS 145. Additionally, the secondary connection man
ager 150 can replay all Statements of open transactions
which were rolled back in the data files 130. Accordingly,
the move is transparent to the client 105 who does not lose
the connection and does not know that a change has been
made.

0044 According to one embodiment, BLOCK 320 can
include SUBBLOCK 321, where the cluster 110 instructs
the routing device 120 to forward communication from the
client to another DBMS. For example, as disclosed, the
secondary connection 245 can assume the IP address of the
primary DBMS 145. BLOCK320 can also include SUB
BLOCK 322, where the cluster 110 can send a keepalive
message to one or more clients to ensure against failure of
the connection to the Same. According to one embodiment,
the client 105 resends data packets which are not responded
to or otherwise acknowledged by the cluster 110. When the
client 105 resends the same data packets a predetermined
amount of times, the client 105 may register a failure of the
connection, thereby causing non-fault tolerant clients (Such
as those clients not programmed to recover) to also fail.
Thus, during the fail-over process 300, the cluster 110 can
respond to the client 105 with a message or acknowledge
ment that keeps the client 105 from resending the same data
packets, therefore keeping the client from determining that
the connection has failed. According to one embodiment, the
Secondary connection 245 Sends the foregoing keepalive
meSSageS.

0045 BLOCK320 of the fail-over process 300 can also
include SUBBLOCK324 where the cluster 110 replays any
Statements from open transactions that were rolled back
during the failure of the primary DBMS 145. For example,
the replay process 280 can access the queue 275 to retrieve
data packets associated with rolled back transactions and to
forward them to the protocol shadow 265. For example, as
disclosed in the foregoing, the import proceSS 270 removes
the Statements associated with all finalized or committed
transactions, thereby leaving only rolled back transactions in
the queue 275.

Sep. 12, 2002

0046 BLOCK320 of the fail-over process 300 can also
include SUBBLOCK326 where the cluster 110 removes any
leftover committed transactions that may have Slipped
through. For example, it is possible that Host A 125 can fail
after the primary DBMS 145 executes a commit statement
for a particular transaction, but before the result/acknowl
edgement of the Same can be transmitted to the import
process 270. Thus, the secondary connection manager 150
believes the Statements associated with the foregoing trans
action were rolled back, e.g., because they were left in the
queue 275, and therefore, the replay process 280 will
forward the already committed Statements to the protocol
shadow 265. In one embodiment, the protocol shadow 265
parses the log file 285 of the primary DBMS 145 to ensure
a commit Statement associated with the open transaction was
not received. When the protocol shadow 265 determines that
a commit Statement was received, the protocol shadow 265
deletes the statements associated therewith before their
asSociated data packets are forwarded to the Secondary
DBMS 155 to be executed against the data files 130.
0047 BLOCK320 of the fail-over process 300 can also
include SUBBLOCK 328 where the cluster 110 establishes
communication between the client and the Secondary
DBMS. For example, after all rolled back statements are
either executed against the data files 130 through the sec
ondary DBMS 155 or deleted from the queue 275 by the
protocol shadow 265, the protocol shadow 265 begins
accessing new data packets Stored in the memory 250 by the
Secondary connection 245 after it assumed the connection to
the client 105 from the primary connection manager 140.
Thus, after bringing the secondary DBMS 155 back up to the
point of failure of the primary DBMS 145, the secondary
connection manager 150 performs operations Similar to the
normal operations of the primary connection manager 140 as
disclosed above.

0048. According to one embodiment, the system admin
istrator of the database cluster 110 can designate whether the
Secondary connection manager 150 through the monitor
process 260 fails-back to the primary connection manager
140 after the cause of failure of the same is repaired, or
whether the Secondary connection manager 150 simply
becomes the primary and Vice versa.
0049. Although the foregoing invention has been
described in terms of certain preferred embodiments, other
embodiments will be apparent to those of ordinary skill in
the art from the disclosure herein. For example, the data
packets captured from the primary connection manager 140
can be replicated to other DBMSs by replaying the same on
the other DBMSs. This replication has several advantages
over other replication techniques including a potential
reduction in the traffic keeping the database cluster Synchro
nized, thereby advantageously providing economical repli
cation of geographically diverse data files.
0050. The captured data packets can also be used to assist
a transaction log based replication System. For example, the
data packets can be directed to the other databases in the
cluster prior to committing the transactions. Accordingly,
committed transactions on a particular DBMS are not lost
when the DBMS fails, as these transactions may advanta
geously be replayed on the other DBMSs in the cluster.
0051. The captured data packets can also be used to assist
a transaction log based replication System when posting

US 2002/0129146A1

replicated modifications. Some modifications (such as a
vertical table update or DDL operation) may be difficult to
replicate via a log-based replication. When the original data
packets are available, posting the original SQL rather than
the data from the transaction log may be more efficient and
Straightforward.

0.052 According to another embodiment, software may
be added just below the client 105, thereby providing a
mechanism to replay incomplete transactions. For example,
a typical client application does not access the database
directly, but instead uses Some type of intermediate layer
such as ODBC or JDBC, OCI, or the like. The foregoing
added Software can advantageously replace this intermediate
layer.

0.053 Additionally, other combinations, omissions, Sub
Stitutions and modifications will be apparent to the skilled
artisan in View of the disclosure herein. Accordingly, the
present invention is not intended to be limited by the
reaction of the preferred embodiments, but is to be defined
by reference to the appended claims.
0.054 Additionally, all publications, patents, and patent
applications mentioned in this Specification are herein incor
porated by reference to the Same extent as if each individual
publication, patent, or patent application was specifically
and individually indicated to be incorporated by reference.

What is claimed is:

1. A database cluster which avoids client failure by
connecting to multiple nodes of the cluster, the database
cluster comprising:

a first computing System including:

a primary connection manager which forms a client
connection with and receives transactions from at
least one client, and

a primary database management System (DBMS)
which communicates with the primary connection
manager to receive the transactions and executes the
transactions on data Stored in one or more data files,
and

a Second computing System including:

a Secondary connection manager, and

a secondary DBMS which communicates with the
Secondary connection manager and can acceSS data
Stored in the one or more data files,

wherein when the Second connection manager determines
that a predetermined condition is met, the Second
connection manager receives data from the client con
nection, replays incomplete portions of open transac
tions on the data through the secondary DBMS, and
begins to receive additional transactions from the at
least one client to be executed against the one or more
data files.

2. The highly available database cluster of claim 1,
wherein the predetermined condition comprises a failure of
the first computing System.

3. The highly available database cluster of claim 1,
wherein the predetermined condition comprises a failure of
the primary DBMS.

Sep. 12, 2002

4. The highly available database cluster of claim 1,
wherein the predetermined condition comprises an unbal
anced workload between the first and Second computing
Systems.

5. The highly available database cluster of claim 1,
wherein the primary connection manager and the Secondary
connection manager communicate with one another.

6. The highly available database cluster of claim 5,
wherein the primary connection manager transmits copies to
the Secondary connection manager of data packets which
include the transactions and responses or acknowledgements
to the transactions.

7. The highly available database cluster of claim 5,
wherein the primary connection manager and the Secondary
connection manager exchange Statistics in order to monitor
the client connection.

8. The highly available database cluster of claim 7,
wherein the Statistics include the number of clients con
nected to the primary connection manager.

9. The highly available database cluster of claim 7,
wherein the statistics include the number of clients the
Secondary connection manager can See connected to the
primary connection manager.

10. The highly available database cluster of claim 7,
wherein the Statistics include whether the Secondary con
nection manager can communicate with the primary con
nection manager.

11. A primary and at least one Secondary connection
manager of a database cluster, which manage a connection
between at least one client and two or more database
management systems (DBMSs), wherein the primary and at
least one Secondary connection manager can move the
connection from the primary connection manager to the at
least one Secondary connection manager while providing
protocols for the connection native to the two or more
DBMSs, the primary and Secondary connection manager
comprising:

a first memory;
a primary connection configured to form a connection

with a client and to place Statements from transactions
from the client into the first memory;

a primary protocol Shadow configured to retrieve the
Statements and forward the Statements to a primary
DBMS;

a Secondary memory;
a Secondary connection configured to receive transactions

from the connection with the client when one or more
predetermined conditions are met and to place new
Statements from the transactions from the client into the
Second memory;

at least one process configured to replay any incomplete
Statements of open transactions, and

a Secondary protocol Shadow configured to connect to the
at least one proceSS until the incomplete Statements are
forwarded to a secondary DBMS and then to connect to
the Secondary memory to retrieve the new Statements
and forward the new Statements to the Secondary
DBMS.

12. The primary and at least one Secondary connection
manager of claim 11, wherein the protocol native to the two
or more DBMSs comprises SQL*.Net.

US 2002/0129146A1

13. The primary and at least one Secondary connection
manager of claim 11, wherein the at least one process further
comprises:

an import proceSS configured to retrieve the Statements
from the primary connection and Store those Statements
asSociated with open transactions, and

a replay process configured to access the Stored State
ments and to forward the Stored Statements to the
Secondary protocol Shadow.

14. The primary and at least one Secondary connection
manager of claim 11, wherein the Secondary protocol
Shadow is configured to access a log file of the primary
DBMS to ensure against replaying of Statements of closed
transactions.

15. The primary and at least one Secondary connection
manager of claim 11, wherein the primary and Secondary
connections communicate with one another.

16. The primary and at least one Secondary connection
manager of claim 15, wherein the primary connection and
the Secondary connection eXchange Statistics in order to
monitor the connection.

17. A method of providing native protocol access and
transparent fail-over to a client connection thereby avoiding
a client failure when a primary host fails, the method
comprising:

rerouting a client connection between a first host and a
client to a Second host;

replaying at least one Statement from open transactions,
wherein the at least one Statement includes a statement
received but not committed by the first host when the
client connection was moved from the first host; and

establishing communication between the Second host and
the client over the client connection.

18. The method of claim 17, further comprising sending
keepalive messages to the client in order to keep the client
from dropping the client connection.

19. The method of claim 17, wherein the replaying at least
one Statement further comprising removing leftover State
ments of closed transactions.

Sep. 12, 2002

20. A method of providing transparent fail-over to a client
connection thereby avoiding a client failure when a primary
database management system DBMS fails, the method com
prising:

monitoring Statistics of a client connection between a first
DBMS and a client;

determining from the Statistics a need to move the client
connection to a second DBMS while keeping the client
connection alive from a perspective of the client;

rerouting the client connection to the second DBMS;
replaying any Statements from open transactions rolled

back when the client connection was moved from the
first DBMS; and

establishing communication between the second DBMS
and the client over the client connection.

21. A data processing System which provides transparent
fail-over to a client connection, thereby avoiding a client
failure when a primary host fails, the data processing System
comprising:

a first host configured to accept a client connection from
a client;

a connection manager which reroutes the client connec
tion to a Second host without recognition by the client;
and

a replay proceSS which forwards to the Second host at least
one incomplete statement from open transactions when
the client connection was moved from the first host,
wherein the connection manager establishes commu
nication between the Second host and the client over the
client connection.

22. The data processing System of claim 21, wherein the
client communication comprises a protocol native to the
primary host.

23. The data processing System of claim 22, wherein the
protocol comprises SQL*.Net.

