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57 ABSTRACT 

An automatic tuner for control Systems that produces, as 
output values, parameters of an arbitrary controller. The 
controller is in a control loop So that its output effects 
changes in actuators and regulates a physical process. The 
controller has either linear or nonlinear controller 
components, or a combination of both. The tuner has a 
nonlinear approximator that has been optimized off-line. The 
off-line optimization is done without Supervised learning So 
that desired outputs of the nonlinear approximator do not 
need to be available, and Separate optimization to generate 
the desired outputs is not necessary. The off-line optimiza 
tion can also rely on arbitrary criteria. Such optimization 
ensures robustness of generated controller parameters So that 
the input proceSS characteristics do not need to be highly 
accurate. The inputs to the nonlinear approximator consist of 
two sets of input parameters, either of which may be empty. 
A first Set of input parameters can relate to proceSS charac 
teristics. A Second Set of input parameters can relate to 
desired closed-loop System behavior. The output values may 
be proportional and/or integral and/or derivative gains for 
PID-like controllers, or otherwise be parameters for delay 
compensation controllers, controllers that consist of lead-lag 
terms in combination with PID controllers, higher-order 
linear controllers, or nonlinear controllers of predetermined 
Structure. The nonlinear approximator may be implemented 
as a compositional Sigmoidal mapping, a multilayer percep 
tion Structure, a fuzzy logic model, a radial basis function 
network, a polynomial expansion, or other parametrized 
nonlinear Structure. 
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NONLINEAR-APPROXMATOR-BASED 
AUTOMATIC TUNER 

BACKGROUND OF THE INVENTION 

The present invention pertains to tuners for controllers, 
and particularly to automatic tuners for controllers. More 
particularly, the invention pertains to nonlinear 
approximator-type of tuners. U.S. Pat. No. 5,311,421, by 
Masahide Nomura et al., issued May 10, 1994, and entitled 
“Process Control Method and System for Performing Con 
trol of a Controlled System by Use of a Neural Network.” 
provides background information for the present invention 
and is hereby incorporated by reference in this description. 

SUMMARY OF THE INVENTION 

The invention is a technique for developing a tuner which 
is used for tuning or optimally guiding a controller. The 
tuner has a preprocessor for transforming a set of input 
Signals into a set of normalized parameters. These param 
eters are inputted to a nonlinear approximator which oper 
ates on the Set of normalized parameters to result in a set of 
normalized tuning parameters. The Set of normalized tuning 
parameters goes to a postprocessor which Scales this set of 
parameters into controller tuning parameters which go to the 
controller. The nonlinear approximator can be based on 
neural networks or other parametrized nonlinear Structures. 
In essence, determining nonlinear approximator parameters 
actually amounts to designing or Setting-up a tuner. In turn, 
the tuner tunes the controller having a closed loop, with 
appropriate controller parameters. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1 shows a basic controller and process relationship. 
FIG. 2 shows a controller with a tuner, along with a 

proceSS. 
FIG. 3 shows a proceSS with a step-function input. 
FIG. 4 shows the characteristics of an open loop Step 

response of the process in FIG. 3. 
FIG. 5 shows a graph with a step function having a 

resultant overshoot and an oscillatory Settling which has to 
be modeled as at least a Second order System with delay. 

FIG. 6 reveals the closed-loop Step response parameters of 
a System. 

FIG. 7 reveals a tuner with separate inputs for process 
characteristic parameters and closed-loop performance 
parameterS. 

FIG. 8 is a graph of fast settling performance with is 
overshoot. 

FIG. 9 is a graph of slow settling performance without 
overshoot. 

FIGS. 10a and 10b show an automatic tuner for processes 
that can be modeled as first-order linear Systems with delay. 

FIG. 11 shows a neural network tuner used in conjunction 
with a parametrized neurocontroller. 

FIG. 12 illustrates a prior art neural network tuner with a 
Supervised learning algorithm feature. 

FIG. 13 is a schematic of one framework of the present 
invention, not relying on Supervised learning. 

FIG. 14a shows an example of a tuner for a proportional 
integral (PI) controller embodied as a neural network with 
one tuning knob input and outputs for proportional and 
integral gains. 

FIG. 14b shows a tuner embodied as a computationally 
Simple compositional mapping with one tuning. 
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2 
FIG. 15 shows how the tuner of FIG. 14 can be used for 

a known linear first-order process. 
FIG. 16 is a graph for Slow or fast Settling, dependent 

upon tuner adjustment input. 
FIG. 17 is a schematic for developing the tuner of FIG. 15 

using a nonlinear optimization algorithm. 

DESCRIPTION OF THE EMBODIMENT 

FIG. 1 shows a simple System proportional-integral 
derivative (PID) controller 12 that may be used for control 
of the temperature in a room. The Setpointy for temperature 
is input at line 13 to controller 14 which has a u output on 
line 15 for controlling an airflow, such as heat or hot air flow, 
to process 16. The controller output goes to the furnace Via 
a gas valve or other furnace controlling device. Process 16 
is the room having its Space temperature controlled. An 
output y on line 18 indicates the temperature of the room. 
Signal y is fed back to an input 20 of controller 14. In other 
words, controller 14 looks at the current temperature on line 
18 and the setpoint (thermostat) temperature (y desired) on 
line 13, and uses the difference between the temperatures to 
calculate heating input 15 to the room or process 16. 

u” can be shown relative to various domains in a simple 
proportional-integral (PI) controller according to the follow 
ing equations, where: 
k is the proportional gain for the controller; 
k is the integral gain for the controller; 
t is time, 
T is an integration variable; 
e(t) is the process output error at time t; 
u(t) is the controller output at time t; 
y(t) is the process output at time t; 
y(t) is the desired process output or setpoint of time t; 
U(S) is the Laplace transform of u(t); 
E(S) is the Laplace transform of e(t); 
j is a Summation index; and 
1 is a discrete time indeX. 

(1) 

where e(t) = y(t) - y(t) 

ki (2) 
U(s) = k E(s) + E(s) 

(3) 
u(l) = ke(1) + k, Se(i)At 

Equation (1) is stated for the continuous-time domain, 
equation (2) for the Laplace or frequency domain, and 
equation (3) for the discrete-time domain. The proportional 
(k) and integral (k) gains are set to values appropriate for 
the application of control System 14 to process 16. At is the 
Sampling interval. 
The algorithms, used for Setting controller gains, for 

instance k and k, are called “tuning algorithms.” The tuning 
algorithm is implemented in a tuner 21 of FIG. 2. The tuner 
puts gainsk, and k into controller 14 via line 22. To Set these 
gains is often done by a “trial and error” approach in the 
related art. Current tuners in the art are not wholly Satisfac 
tory. 

Inputs to tuner 21 need to indicate two types of informa 
tion. The first type of information is the relevant dynamics 
of the process (e.g., characteristics of the room, Such as its 
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heat loss, heating-up time constant, and the delay due to 
ductwork from the furnace to the room). The second type of 
information is desired dynamics of the closed loop (e.g., 
time to reach the Setpoint, Settling time, OverShoot, toler 
ances of overshoot, and importance of reducing control 
energy). 

FIG.3 shows a step function 24 of u to input 15 of process 
16 and output y from line 18. FIG. 4 shows the character 
istics of an open loop Step response of process 16. The 
proceSS is of a first order with a delay linear System which 
is usually Sufficient for most industrial and building control 
processes. Such System has three process model parameters 
K., T., and Tp. 
The gain is K=(y1-yo)/(u-uo). 
The time constant, T=t2-t, (which is the time that y 

takes to reach 63 percent of the final output). The dead time 
or delay is T-ta-to. If K. T., T , are changed, then the 
curve for y will change. 

FIG. 5 shows a graph with a step function having a 
resultant overshoot and an oscillatory Settling 25 which has 
to be modeled as at least a Second order System with delay, 
relative to input 24. 

FIG. 1 shows a closed-loop system 12 with a step function 
signal 24 to input 13. FIG. 6 reveals the closed-loop step 
response parameters of System 12. 

Process overshoot is Y=(y-y)/(y-yo) 
Settling time is ts=t-to 
Rise time is r=t2-to 

Control energy is E = X (u(t) - u(t, - 1))2 
T=to 

One important objective in tuning a controller is to 
manipulate these and other closed-loop response parameters. 
For example, large overshoots are typically undesirable, but 
often unavoidable if fast Settling times are required (the 
Settling time is the time after the Setpoint change after which 
the process outputy is within Some quantity, e.g. 95%, of the 
desired output or setpoint Y, with the percentage computed 
relative to the magnitude of the setpoint change). For fast 
Settling, control energies will also typically be high. The 
response parameters have a complex relationship to each 
other and to the tuning parameters, and no formulae are 
available that can accurately characterize this relationship. 

Different tuning methods take different types of tuner 
inputs of the relevant dynamics of the proceSS and desired 
dynamics of the loop, and provide gains for different types 
of controllers. The present invention of tuning can be used 
for any kind of linear or nonlinear controller, not just a PID 
type. Tuner inputs can be customized as desired, and the 
tuner can be made robust to whatever extent desired. 
RobustneSS is the graceful tolerance of uncertainty of knowl 
edge about the System. It is also the graceful tolerance of 
change or drift in the System. 
Two kinds of parameters are “nominal” and “estimated”. 

For example, K is the nominal or actual gain and K. is 
estimated gain. Controllers are designed to take into con 
sideration that Kz K. 

Features of the present invention are the use of one or 
Several nonlinear approximators in the tuner, and the use of 
a general optimization System. The following types of 
nonlinear approximators are explicitly considered: 

Conventional multilayer perceptron neural networks 
Computationally simple, compositional Sigmoidal nonlin 

ear mappingS 
Radial basis function networks 
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4 
Functional link networks 
Cerebellar model articulation controller (CMAC) net 
works 

FuZZy logic models 
Wavelet networks 
Polynomial expressions 
Specific nonlinear parametrized Structures based on 
human intuition about controller tuning 

The common aspect of these and other relevant approxima 
tor Structures is that they implement nonlinear mappings the 
form of which can be adjusted by manipulating parameters 
asSociated with the approximator. Thus generally a nonlin 
ear approximator, as used in this invention, can be expressed 
as follows: 

p=F(I; p.) 

where p is the vector of controller tuning parameters, I is the 
input vector to the nonlinear approximator, and p is the 
parameter vector for the approximator. For example, a 
conventional multilayer perceptron neural network may 
implement the mapping F as: 

i=h 
pi = 1 + exp S. s 

where the hi are intermediate ("hidden unit') variables 
computed as: 

re 
Here the parameter vector pa consists of the input-to-hidden 
weights W.", the hidden-to-output weights W., and the 
hidden and output bias weights b," and b. i and k are 
Summation indices, j is the element of the approximator 
output vector, h is the number of hidden units, and n is the 
number of elements of the input vector I. These expressions 
relate to “one-hidden-layer neural networks. Multiple lay 
ers of hidden units can also be used. 
AS another example, a computationally simple, composi 
tional Sigmoidal nonlinear mapping may implement F as: 

k=n 
- S will + bh 
k=1 

is . W; + ai 
pil = i=1 vj -- I. W; + al 

where the parameter vector p comprises the vectors w and 
the Scalars a, and v i is a Summation index and b is the 
number of nonlinear elements in the Structure. The period (.) 
denotes the dot product operator. Note that this form of the 
nonlinear approximator, which otherwise resembles a neural 
network, does not require the use of transcendental functions 
Such as exponentials or hyperbolic tangents which are costly 
to compute. This approximator is the approach of first choice 
for this invention. Again, multiple “layers' of the nonlin 
earities can be used. 
As a third example, a radial basis function network may 

implement the mapping F as: 

where the parameter vector p comprises the vectors u and 
the scalars O, and W i is a Summation index and N is the 
number of Gaussian nonlinearities in the Structure. 
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AS a final example, a polynomial expansion may be used 
as the nonlinear approximator Such as: 

where the parameter vector p comprises the Scalars a and 
b and n is the number of elements in the input vector I. k 
and l are Summation indices. 

FIG. 7 reveals a controller system 30 which has a 
nonlinear-approximator-based automatic tuner 21 having 
Separate inputs for proceSS characteristic parameters and 
closed loop performance parameters. The latter can be used 
to adjust closed-loop performance for Slow or fast Settling. 
Inputs 26 and 27 permit one pre-designed tuner 21 to be used 
for many applications or be universal for large and various 
classes of applications. A nonlinear approximator 28 is 
optimized off-line but without using Supervised learning 
methods. Nonlinear approximator 28 may be a neural net 
work but is not used as a nonlinear regression model (as it 
is in Nomura et all-see their FIG. 33). 

In addition to neural network or other nonlinear approxi 
mator 28, automatic tuner 21 can contain preprocessing and 
post-processing functions. These include Scaling functions 
which are done outside of the neural network. Scaling is 
performed mainly for linearity purposes. Process character 
istic parameters 26 (notated as p, later) and closed-loop 
performance parameters 27 (notated as p, later) allow one 
pre-designed automatic tuner 21 to be used for a broad 
variety of applications. No on-line or application-specific 
training or optimization of the neural network, or modifi 
cation of other components of the automatic tuner, are 
needed. 
A specific example is neural-network-based automatic 

tuner 21 for processes that can be modeled as first-order with 
dead time linear processes. Such processes can be modeled 
with three process model (or process characteristic) param 
eters 26: the process gain, time constant, and dead time. One 
closed-loop performance parameter is also assumed: a Set 
tling time knob ds (this constitutes the closed loop perfor 
mance parameter at 27 in FIG. 7), which can be used to 
adjust closed-loop performance for slow or fast Settling. 
There may be other closed-loop performance parameters on 
input 27. In this case, the neural network can be off-line 
optimized without using Supervised learning that is used in 
the related art (as discussed below) using a simulation-based 
optimization System. 

FIG. 8 shows the fast Settling (i.e., low ts) performance 
with overshoot for a low ds input 27. FIG. 9 shows the slow 
Settling (i.e., high ts) performance without overshoot for a 
high ds input 27. There may be a knob for ds that provides 
an analog-like variation, Such as from Zero to one, to 
automatic tuner 21. 
The key feature of the present invention is the design of 

nonlinear approximator 28. During operation in a Setup 
similar to FIG. 7, automatic tuner 21 can have a basic 
architecture, with pre-processor, non-linear approximator 28 
and post-processor, as shown in figure 10a. Note in figure 
10b that three process characteristic parameters are input to 
automatic tuner 21: estimates of process gain, time constant, 
and dead time (notated K. T and T). Output 22 of the 
tuner 21 consists of controller parameters (for example, for 
a PID controller, these would be the proportional, integral, 
and derivative gains) P. In figure 10b, P." is an internal 
variable to automatic tuner 21 that consists of baseline 
controller parameters which are then modified in a context 
Sensitive way by neural network or a nonlinear approximator 
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6 
28. Note that by intelligently structuring autotuner 21, the 
number of inputs required for nonlinear approximator 28 is 
reduced-in this case, to two. T/T, to line 46 and ds to line 
29 are inputted to nonlinear approximator 28. An output 31, 
P, which is a control parameter, is fed into Summing 
junction 32. AP bias is added at line 33 to P at Summer 32 
which outputs a pnom, which is the Vector of nominal 
(unscaled) control parameters, at line 34 and is inputted to 
scaling mechanism 35. Output 22 of scaling 35 goes to 
controller 14. 

Tuner 21 can be used in control structure having both 
linear and nonlinear components. For example, tuner 21 can 
be used in conjunction with a parametrized neurocontroller 
36, as shown in FIG. 11. 

Neural network based automatic tuner 21 is optimized off 
line using a design framework. An "evolutionary comput 
ing algorithm has been developed that incorporates aspects 
of genetic algorithms. Also, a gradient Search can be 
enabled, with gradients numerically computed. 
The flexible nature of the design framework permits one 

to optimize for criteria that more conventional approaches 
Seldom permit. In particular, performance criteria need not 
be quadratic, or even differentiable; control Structures can be 
arbitrarily nonlinear; and robustness can explicitly be con 
sidered. The present approach to the optimization of neural 
network based automatic tuner 21 does not require “learning 
in advance” in which input-output combinations must be 
first compiled using a Separator optimization program, and 
neural network 28 then trained using Supervised learning. 
The present approach can thus be contrasted to the approach 
of Nomura et al. (U.S. Pat. No. 5,311,421) in which the use 
of a neural network for tuning is also disclosed but in which 
the development of the neural network requires a Supervised 
learning algorithm for which appropriate teaching data must 
be collected. 
One may use Supervised learning of Nomura et al. for 

neural network tuner 37 of FIG. 12. Fortuner 37, inputs may 
be designated X and outputs designated P. d.s. is part of X. 
P are control parameters. P is compared with the desired 
output P* and the result of the comparison at comparator 
junction 38 is errore, which is fed to learning algorithm 39. 
Algorithm 39 then provides an output to neural network 40 
to adjust the weights for output adjustments. For that Super 
vised learning, a large database of (X, P*) pairs need to be 
compiled in advance. P. needs to be computed for many 
different cases in advance. Nomura et al. involves the 
inputting of information with the characteristics contained 
therein to a neural network 40 for “learning in advance a 
correlation” between the information containing the charac 
teristics and a control parameter and determining a control 
parameter for a controller. “Learning in advance” means the 
determining of optimal control parameters corresponding to 
different characteristics of the model of the combined 
controller-controlled System and then using the optimal 
control parameters as learning teacher data. In Nomura et al., 
it is also assumed that input-output combinations are avail 
able as learning data (col. 11, lines 11-17). The C.'s in 
equation (10) are ideal outputs that the neural network is 
trained to match, and thus C.'s are to be available for neural 
network training. The neural network is used as a nonlinear 
regression model and thus the neural network is regressed 
using input-output training data. 

The present approach does not rely on Such Supervised 
learning. No collection of (X, P) pairs is needed and no 
computation of (optimal) P*S is required. The present 
neural network is developed using off-line optimization 
without any need for “learning in advance' in the Sense of 
Nomura et al. No input-output training data is needed. 
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It should be noted that the prior art of Nomura et al., by 
Virtue of its reliance on a Supervised learning approach, is 
restricted to certain types of neural network tuners. Our 
invention eSchewS Supervised learning entirely in favor of a 
Simulation-based optimization approach, and an important 
ancillary benefit of this approach is that the tuner can 
comprise arbitrary nonlinear approximators, including but 
certainly not limited to the type of neural network Structure 
employed in the cited prior art. 

FIG. 13 shows the design framework 41 of the present 
invention Schematically. For each parameter vector p, 
closed-loop Simulations are run and a performance criterion 
value computed. No learning teacher data is required. The 
vector p can contain gains for a linear control Structure, So 
that one can optimize a fixed controller for Some criterion; 
it can contain parameters for a nonlinear-approximator 
based tuner or neural network controller (e.g., parametrized 
neurocontroller (PNC) 36 in FIG. 11); or it can contain 
parameters for both the tuner and controller, so that both 
modules can Simultaneously be optimized. The objective of 
the design activity is to develop tuners or controllers that can 
be used for a broad range of applications. Thus, numerous 
closed-loop Simulations must be run for every choice of p. 
In these Simulations, various parameters are varied depend 
ing on the design requirements: 

Process model parameters p, which are input to the 
process model (PM) in the closed-loop simulation 

Estimation errors between these process model param 
eters and the process model parameter estimates p, of 
which the latter are input to the tuner and/or controller 

Initial conditions, especially in the case that the closed 
loop controller or process model is nonlinear 

Setpoint profiles, also for nonlinear controllers or nonlin 
ear proceSS models 

Parameters p, that affect the cost function-the use of these 
parameters allow us to develop one control Solution for 
a class of parametrized criteria 

Each closed-loop Simulation results in one elementary 
cost function J, being computed. The results of all the 
Simulations conducted for one vectorp are composed into an 
overall cost function J which is returned to the optimization 
algorithm: 

where N is the number of closed-loop simulations performed 
(typically 1000). 

The above paragraphs describe the general framework of 
the design System. For this project, one has made specific 
choices for optimization runs. Note these below: 

Process models are first order with dead time. The process 
gain K is normalized to 1.0, the process time constant 
T to 10.0. The process dead time T, varies so that the 
constraint in the next Statement holds: 

Estimates of K, T, and T are input to the neural network 
controller or tuner. These estimates are perturbations of 
the true model parameters as discussed below. T., is 
limited to the range (0.2T). 

The parameter estimate for a parameter p is bounded 
uniformly within (1-r)p, (1+r)p.), where r is a param 
eter, r is a function of the criterion parameter ds, which 
can vary between 0 and 1. This function is a linear 
function So that the minimum value of r, achieved when 
ds is 0, is r, and the maximum Value, corresponding 
to dis equal to 1, is r. Thus, ds controls the 
robustness of the control, in addition to being a Settling 
time knob as discussed below. 
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The only criterion parameter employed is ds. The 

elementary criterion is: 

Here ts, is the Scaled Settling time for the Simulation, y, 
is the Scaled maximum fractional overshoot relative to the 
setpoint change, and (XAu) is the scaled Sum of control 
moves over the Simulation period. ds, ts, y, and Au all 
of course vary with each closed-loop Simulation, but for 
clarity one has not explicitly indicated the dependence on 
case i in this equation. The weighting factors used for most 
experiments are ao: 0.75, a : 0.2, a: 0.05. 
The overall cost function J is simply the sum of the 

individual Ji's: 

The Scaled Settling time ts, is based on the computed 
Settling time ts, as follows. First, the maximum and 
minimum expected values are computed for ts: 

and then ts, is linearly Scaled within these limits, and 
bounded outside: 

1.O iftsT 2 if 

O.O iftsT is tgif 
t&T = 

tST - i. 
otherwise 

t; - it 

A similar approach is followed for calculatingy from y. 
A fractional overshoot of 0.0 (i.e., no overshoot) maps to a 
y value of 0.0, and a fractional overshoot of 20 percent or 
more (relative to the setpoint change) maps to 1.0, with the 
Scaling in between again being linear. For the Squared Sum 
of control moves, these bounds are 1.0 and 3.0. 
The above has specified in some detail how the optimi 

Zation algorithm evaluates a parameter vector. This Scheme 
has been followed for neural network tuner designs for 
different controllers. Parameter choices for two types of 
controllers-PI/PID and “higher order linear controllers' 
(HOLC) are shown below: 

Design 
Parameter PID/PI Tuner HOLC Tuner 

min O O 
max O.25 0.5 
Amin O.2 O.1 
Amax 2.O 2.0 
Ann 2.O 1.O 
Amax 8.0 6.O 

Thus, both the PID/PI tuner and the HOLC tuner are 
designed to allow robustneSS/performance tradeoffs to be 
done by simply adjusting one knob (ds). 
An outline of the evolutionary computing algorithm used 

for the design of the neural network tuners (the parameter 
vector is notated as w rather than p) is provided: 

1. Generate an initial Set or population of Vectors w, ..., 
w and evaluate cost function values J.-J(w). 
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jaie-X a graceX Compute J=J, w= J. 

2. Select a parameter vector w at random (uniform 
distribution) from population 

3. Select the perturbation standard deviation O, randomly 
from between specified lower and upper bounds, O..." 
and O' 4 

4. Generate a perturbation vector Ö-N(0, O.) 
5. Generate a parameter vector w"<-w'+8, and evaluate 

J(w") 
6. If J(w")s.J., then Replace w, with w' Set w' to w" 
Recompute J, and W. Goto Step 5 Reapply per 
turbation} 

7. Goto Step 2 
According to the present invention, one can design a tuner 

by employing a nonlinear optimization algorithm in con 
junction with a closed-loop Simulation System. The nonlin 
ear optimization algorithm attempts to minimize the value of 
the cost function J(p) by appropriately adjusting the nonlin 
ear approximator parameters p. FIGS. 14a and 14b show 
two similar nonlinear-approximator-based tunerS 21. In FIG. 
14a, the nonlinear approximator is implemented as a mul 
tilayer perceptron neural network. The parameters to be 
optimized in this case are w, . . . , w. In FIG. 14b, the 
nonlinear approximator is implemented as a computation 
ally simple compositional mapping-the figure shows the 
mathematical formulation of the mapping. Because of its 
computational Simplicity, this is a preferred embodiment. 
The parameters to be optimized in this case are w, w, ..., 
We a1, a2, . . . . at V11 V21, . . . , Vh1. V12, V22, . . . , Vtz. It 
should be noted that the implementations of FIGS. 14a and 
14b have very similar features, and in both cases output K. 
and K as functions of ds and the respective parameters. 
However, the Supervised learning algorithm described in 
Nomura et al. cannot directly be used for the approximator 
of FIG. 14b. Once the appropriate parameters are deter 
mined so as to minimize J(p), tuner 21 can be applied to real 
Systems (provided that the constraints assumed in the design 
hold for the real system). 

The optimization involved in tuner design may seem 
complex and time consuming. However, once designed, 
tuner 21 can be easily used in a variety of different appli 
cations on simple computational platforms. FIG. 15 shows 
how tuner 21 is used for system control. Tuners can be 
designed and used in different embodiments, depending on 
the nature of user-control of closed-loop performance 
desired, and the types of Systems and controllers the tuner 
will be used with. 

In one example embodiment of a fixed first order linear 
process, PI controller, for Settling time tuning, one can 
describe how this invention can be applied to design a 
nonlinear-approximator-based tuner 21 for PI controller 14 
with a “settling time” tuning knob. 29 when the processes for 
which tuner 21 is designed are assumed to be adequately 
characterized by first-order linear dynamics which are accu 
rately known. A system is illustrated in FIG. 15. The process 
model is expressed in the Laplace domain as: 

Kp 
T.S + 1 

dy 1. 
U :: - ()--i T 

where K is the process gain and T, the time constant, the 
values for which are known (through experiments or process 
knowledge). Tuner 21 has one tuning knob 29, d, which can 
be varied over a range 0.0 to 1.0 to make the proceSS 
response to a setpoint change be fast or slow. For fast 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
Settling, one is relatively tolerant of overshoot in the 
response, and control action. For Slow Settling, however, one 
wants overshoot to be minimized and control action not to 
be aggressive. FIG.16 shows curve 42 of y when d is low 
and curve 43 when d is high for Setpoint change 24. A 
possible cost function 44 (FIG. 17) for this embodiment is 
the following: 

In this expression, E() denotes the expectation operator, and 
de0,1) denotes that the expectation is to be taken over a 
(uniformly distributed) range from 0 to 1 of values of d. t. 
represents the Settling time of the closed-loop simulation, y, 
the overshoot in the response, and Au, the maximum 
control move encountered. The functions f(..), f(..), and 
f(...) are Scaling functions So that the effect of the three 
terms is in accordance with the relative importance of each 
of these features. Note that Since d is an input to tuner 21 
which outputs PI gains that influence the closed-loop behav 
ior (and hence y, t, and Au, ), the value of the 
expression (1) is a function of parameters p of the nonlinear 
approximator. 
Once a tuner 21 is designed to minimize J(w) in equation 

(1), it can directly be used to control the target process. The 
control performance can be adjusted through the use of the 
tuning knob d 29. When d is low (near 0), setpoint 
changes will be rapidly tracked. When d is high (near 1), 
fast Setpoint tracking is no longer important, but output 
overshoot and the maximum actuator move will be mini 
mized. Of course, Since tuner design 21 is based on a specific 
process model, the tuner performance will largely be depen 
dent on the accuracy of the model. For cases where the 
model is not precisely known, tuners can be optimized for 
robust performance. 

Equation (1) cannot be analytically Solved in most cases 
of practical interest. However, it can be approximated by 
Monte Carlo simulations to as high a degree of accuracy as 
required. This simulation approximation is guided by a 
nonlinear optimization algorithm 45 of FIG. 17. Of course, 
high precision is gained at the expense of computing time. 

For the embodiment of an uncertain first order with delay 
linear process, PID controller, Settling time tuning, one no 
longer assumes that the process is precisely known. Instead, 
tuner 21 is designed to optimize performance over a range 
of process models. One extends the proceSS model of the 
embodiment of a fixed first order linear process and PI 
controller, by adding a delay or dead-time: 

Ke-d 
T.S + 1 

where T is the process dead time. The three process 
parameters are assumed to lie within known spaces K (for 
Kp), T (for Tp), and 0 (for Ta). In addition, one is now 
interested in a tuner for a PID controller in interactive form. 
The controller transfer function is: 

) E(s) i) ( 
where U(S) is the controller output (Laplace transformed), T, 
is the integral time, t, the derivative time, C. the rate 
amplitude (a known constant), and E(s) the error (Laplace 
transformed). 

1 + TS 
1 + CTS u(s) -K ( 1 + 
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In this case, one can adopt the following cost function: 

aX (2) 
d 60, 1 

J(w) = Ke K (l- d.)fs (ts) + dstfos (yos) + dstfin (Auma)) 
Te T 
T. e. (e) 

Here, instead of minimizing an expectation, one is interested 
in minimizing the worst case performance. The maximum is 
computed over spaces for de K.T. and T. The robustness st 

asSociated with a tuner that is optimized for Cost Function 
(2) implies a loss of nominal performance. If in fact the 
proceSS model parameter estimates were known more pre 
cisely than one assumes here, then better control could be 
achieved. This Suggests that a tuning knob could be added 
that allows the user of the tuner to make the robustness 
Versus nominal performance tradeoff on a case-by-case basis 
without reoptimization. The next embodiment description 
discusses this aspect of the invention. 

In an embodiment of an uncertain first order linear 
process, multiple lead-lag controller, for Settling time and 
robustness tuning, the controller is not of the PID variety but 
consists of three lead lag terms: 

ao (a 1s + 1) (a2S + 1) (ass + 1) 
E(s) 

A Second tuning knob, r, is added that also varies between 
0 and 1. The parameter spaces over which tuner 21 operates 
are now a function of r: 

E (3) 
d 60, 1 

J(w) = r(0.1) ( – d.)f(t) + d.f.(y) + d.fm (Auna)) 
Ke K(r) 
Te T(r) 

For simplicity, one may revert to the Simple delay-leSS 
proceSS model. 

For r=0, the expectation is evaluated over Small SpaceSK 
and T in this case, and one is interested in maximizing 
performance at the expense of robustness. AS r is increased, 
the ranges increase in accordance with prespecified func 
tions K(r) and T(r). Note that the effect of r can be incor 
porated into d, itself-the slower Settling times associated 
with high d values are consistent with increased robustness. 
Thus, Cost Function (3) could be simplified by removing r 
and making K and T dependent on d. 

In the embodiments discussed So far, tuner 21 input has 
not included any information on process 16 itself. The tuners 
can be used for different processes to the extent that they fall 
within the robustness spaces K, T, and 0 above. The next 
two embodiments are described in which the tuner is also 
provided process parameter estimates as inputs, and is 
thereby generically applicable to a considerably larger Space 
of processes. For the first embodiment, the generic feature is 
obtained Simply by Scaling controller gains. 

In a proceSS-generic tuner, first order proceSS model, one 
may assume the design conditions of the embodiment of a 
first order linear process with a PI controller, and let the 
tuner be designed for specific nominal values of K and T. 
Let these values be K" and T.", respectively. For a 
given setting of d, let the gains output by the tuner be K'" 
and K". The same tuner outputs can be used for a different 
process (one that permits a first order approximation) with a 
gain of K" and a time constant of T" by adapting the 
gains as follows: 
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Tom 

Scaling formulae can be derived for all cases where both 
the controller and the proceSS model are linear. Similar 
formulae can also be derived for Some cases where the 
controller is nonlinear and the process model is linear. Such 
Scaling formulae can compensate for arbitrary K, and T. 
values. In cases where the proceSS model contains additional 
parameters, the nominal values above need to be functions 
of model parameters. 
One may extend the embodiment of the proceSS-generic 

tuner, first order process model, by adding a delay (dead 
time) to the process model. To design a tuner that will work 
for all processes that can be modeled as a first-order linear 
System with delay, provided that the delay does not exceed 
Some constant factor f of the time constant T., one can 
provide a process model input to the tuner. This input is 

The design cost function (1) is now extended as: 

E (4) 
J(w) = d 60, 1 (l- d.)fs (ts) + dstfos (yos) + dstfin (Auma)) 

T. e. O, B 

So the tuner design is performed for fixed values of K, and 
T, and with T varying between 0 and BT. Once the design 
is complete-a weight vector w is determined that minimizes 
Cost Function (4)-the resulting tuner can then be used for 
any process that can be modeled as first order with dead 
time, the only constraint imposed being that the dead time is 
no greater than B times the process time constant. For Such 
use, estimated values of proceSS gain, time constant, and 
dead time need to be input to the tuner. These are used to 
compute Tr and also to effect Scalings Such as those defined 
above. Since Cost Function (4) does not address robustness, 
these parameters must be accurately known. 

In a State feedback controller, having a nonlinear process 
model and input disturbance rejection tuning, one assumes 
that the process is nonlinear, with model Structure known: 

In this model, the X are State variables and Y is a parameter. 
For a control Structure, one adopts a linear State-feedback 
control law: 

where Ax=x, the difference between the desired state 
value and the measured value. Thus, the tuning problem in 
this case is to estimate appropriate values of the controller 
parameters a1, a2, and as. This is to be done on the basis of 
two knobS: One is a performance criterion Setting d that 
allows the user to tradeoff control action versus fast distur 
bance rejection for Step input disturbances. The other is an 
estimate y of the model parametery. By incorporating this 
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latter parameter, one allows the Same controller and tuner to 
be used over a range of processes of Structure Similar to 
equation (5) without being limited to process models with Y 
equal to Some Specific nominal value. The fact that we use 
an estimate of Y instead of the actual value implies that the 
tunings will have designed-in robustness to errors in param 
eter estimation. A Suitable cost function for this embodiment 
is the following: 

de-dna, dinal 
x(0) 6Xo 

Values of Y for which this tuner is designed, range from 1 to 
5. The estimation error for tuning input purposes is up to tÖ, 
and is a function of d. So that greater robustness is 
demanded for slow rejection time. The Step input distur 
bances d that one is interested in rejecting have amplitudes 
between -d and d. t is the time to reject the input 
disturbance and X(Au) is the Sum-Squared control action. 
The expectation must also be computed over a space X of 
initial conditions x(0). 

For the embodiment of a state feedback controller having 
a nonlinear proceSS model and input disturbance tuning as 
above, one can also employ a nonlinear controller of known 
Structure, for example: 

In this embodiment the tuner outputs Six parameters a-a- 
Cost Function (6) can again be used. 

For a PD controller, integrating linear process, easy-to 
compute response feature inputs, rise time tuning, the fol 
lowing may be implemented. 

The proceSS model is: 

The controller is: 

u(t) = Ke(t) + K-Oct. AD At 

Tuner outputs are proportional gain K and derivative 
gain K. The tuner input consists of Simple features com 
puted from the process output after exciting the proceSS at 
time to with a pulse of height H and width W. The process 
output is measured at times to-nW/4, for n=0, 1,..., 10. Ten 
features are computed simply as y(t+nW/4)-y(t) for n=1, 
2, ... , 10. Neither Tp nor Kp are assumed to be known in 
this embodiment. However, appropriate values for H and W 
do depend on the process, and Some general notions of the 
time constant and gain are needed. 

In all the above embodiments, the key piece of the tuner 
is a nonlinear approximator. Various nonlinear approxima 
tors can be used in this context, including multilayer per 
ceptron neural networks, computationally simple Sigmoidal 
compositions, radial basis function networks, functional link 
networks, CMAC networks, fuzzy logic models that employ 
fuZZification and/or defuZZification and/or membership 
functions, wavelet networks, polynomial expansions, and 
Specific nonlinear parametrized Structures. 
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I claim: 
1. A tuner for producing internal gain parameters of a 

controller, comprising: 
preprocessing means, having an input and an output, for 

processing a Set of parameters at the input into a set of 
transformed parameters at the output; 

nonlinear approximator means, having an input connected 
to the output of Said preprocessing means and having 
an output, for operating on the Set of transformed 
parameters to produce a set of normalized controller 
tuning parameters at the output wherein Said nonlinear 
approximator means is offline optimized in model 
based simulation without advance Supervised learning; 
and 

postprocessing means, having a first input connected to 
the output of Said nonlinear approximator means, and 
having a Second input and an output, for Scaling the Set 
of normalized controller tuning parameters into a set of 
Scaled controller tuning parameters at the output, 
wherein the Scaled controller tuning parameters are fed 
to the controller for optimally controlling a process. 

2. The tuner of claim 1 wherein Said nonlinear approxi 
mator means is a neural network. 

3. The tuner of claim 1 wherein Said nonlinear approxi 
mator means is a fuzzy approximator. 

4. The tuner of claim 1 wherein Said nonlinear approxi 
mator means is a radial basis function approximator. 

5. The tuner of claim 1 wherein said nonlinear approxi 
mator means is an approximator that utilizes nontranscen 
dental mathematical functions. 

6. The tuner of claim 1 wherein Said nonlinear approxi 
mator means is an approximator that utilizes computation 
ally simple compositional Sigmoidal mappings. 

7. A tuner for producing internal gain parameters of a 
controller, comprising: 

preprocessing means, having an input and an output, for 
transforming a set of input parameters at the input into 
a set of normalized parameters at the output, 

nonlinear approximator means, having an input connected 
to the output of Said preprocessing means and having 
an output, for algorithmically operating on the Set of 
normalized parameters in that Said nonlinear approxi 
mator means is Setup offline using a System that inte 
grates closed-loop Simulations with an optimization 
algorithm that optimizes parameters of Said nonlinear 
approximator means to minimize a cost function that 
indicates performance of the closed-loop Simulations to 
result in a Set of normalized tuning parameters at the 
output, and 

postprocessing means, having a first input connected to 
the output of Said nonlinear approximator means, hav 
ing a Second input connected to the input of the 
preprocessing means and having an output, for Scaling 
the Set of normalized tuning parameters into controller 
tuning parameters at the output. 

8. The tuner of claim 7 wherein: 
the input parameters are either or both of two types of 

parameters, wherein the two types of parameters are: 
parameters characterizing a System to be controlled; 

and 
parameters characterizing a desired closed-loop behav 

ior; and 
Said nonlinear approximator means is optimized offline 

without Supervised learning and wherein the offline 
optimization does not require generation of optimized 
tuning parameters for optimizing Said nonlinear 
approximator means. 
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9. The tuner of claim 8 wherein said nonlinear approxi 
mator means is a neural network. 

10. The tuner of claim 8 wherein said nonlinear approxi 
mator means is a fuzzy approximator. 

11. The tuner of claim 8 wherein said nonlinear approxi 
mator means is a radial basis function approximator. 

12. The tuner of claim 8 wherein said nonlinear approxi 
mator means is an approximator that utilizes nontranscen 
dental mathematical functions. 

13. The tuner of claim 8 wherein said nonlinear approxi 
mator means is an approximator that utilizes computation 
ally simple compositional Sigmoidal mappings. 

14. A System for Setting up a tuner comprising: 
a tuner having inputs; 
approximator parameters, 
controller parameters, 
a closed-loop control Simulator; 
a cost function; and 
an optimization algorithm; and 
wherein: 

the tuner includes a nonlinear approximator, the behav 
ior of which can be modified by adjusting the 
approximator parameters, 

the tuner outputs controller parameters which are used 
in Simulations with the closed loop control Simula 
tor, 

a value of the cost function is computed from closed 
loop control Simulations, 

the value of the cost function is input to the optimiza 
tion algorithm which optimizes approximator param 
eters, 

optimized approximator parameters minimize the value 
of the cost function; 

a minimized value of the cost function leads to appro 
priate controller parameters, and 

appropriate controller parameters result in optimized 
controller performance. 

15. The system of claim 14 wherein the nonlinear 
approximator is a neural network. 

16. The system of claim 14 wherein the nonlinear 
approximator is a fuZZy approximator. 

17. The system of claim 14 wherein the nonlinear 
approximator is a radial basis function approximator. 

18. The system of claim 14 wherein the nonlinear 
approximator is an approximator that utilizes nontranscen 
dental mathematical functions. 

19. The tuner of claim 14 wherein the nonlinear approxi 
mator is an approximator that utilizes computationally 
Simple compositional Sigmoidal mappings. 

20. A tuner for producing internal gain parameters of a 
controller, comprising: 
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preprocessing means, having an input and an output, for 

processing a set of input tuning parameters that indicate 
desired or appropriate performance characteristics at 
the input into a set of transformed parameters at the 
output; 

nonlinear approximator means, having an input connected 
to the output of Said preprocessing means and having 
an output, for operating on the Set of transformed 
parameters to produce a set of normalized tuning 
parameters at the output; and 

postprocessing means, having a first input connected to 
the output of Said nonlinear approximator means, and 
having a Second input and an output, for Scaling the Set 
of normalized tuning parameters into a set of Scaled 
tuning parameters at the output, wherein the Scaled 
tuning parameters are fed to the controller for optimally 
controlling a process. 

21. The tuner of claim 20 wherein said nonlinear approxi 
mator means is a neural network. 

22. The tuner of claim 20 wherein said nonlinear approxi 
mator means is a fuzzy approximator. 

23. The tuner of claim 20 wherein said nonlinear approxi 
mator means is a radial basis function approximator. 

24. The tuner of claim 20 wherein said nonlinear approxi 
mator means is an approximator that utilizes nontranscen 
dental mathematical functions. 

25. The tuner of claim 20 wherein said nonlinear approxi 
mator means is an approximator that utilizes computation 
ally simple compositional Sigmoidal mappings. 

26. The tuner of claim 20 further comprising a set of input 
tuning parameters that indicate characteristics of open loop 
dynamics of a System to be controlled. 

27. The tuner for producing actual values of internal gain 
parameters of a controller that is to be used for controlling 
a process, comprising: 

preprocessing means, having an input and an output, for 
processing a Set of parameters at the input into a set of 
transformed parameters at the output; 

nonlinear approximator means, having an input connected 
to the output of Said preprocessing means and having 
an output, for operating on Said Set of transformed 
parameters to produce normalized actual values of 
internal gain parameters of Said controller; and 

postprocessing means having a first input connected to the 
output of Said nonlinear approximator means, and 
having a Second input and an output, for Scaling Said 
normalized actual values of internal gain parameters 
into Said actual values of internal gain parameters of 
Said controller at the output, wherein Said actual values 
of internal gain parameters are input to the controller 
for optimally controlling Said process. 

k k k k k 


