
(19) United States
US 2010O293523A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0293523 A1
AHADIAN et al. (43) Pub. Date: Nov. 18, 2010

(54) DEVELOPMENT ENVIRONMENT
CONFIGURED TO GENERATE
APPLICATION SOURCE CODE FROM
DATABASE OBJECTS

(75) Inventors: AZADEH AHADIAN, San Jose,
CA (US); Todd R. Bender, San
Jose, CA (US); Stephen A.
Brodsky, Los Gatos, CA (US);
Clifford D. Chu, San Francisco,
CA (US); Zeus O. Courtois,
Laredo, TX (US); Rebecca B. Nin,
Morgan Hill, CA (US); Michael L.
Pauser, Morgan Hill, CA (US);
Brian G. Payton, San Jose, CA
(US); Sonali Surange, San Ragael,
CA (US); Hongdi Zhang, San Jose,
CA (US)

Correspondence Address:
PATTERSON & SHERIDAN, LLP/IBM SVL
3040 POST OAKBLVD., SUITE 1500
HOUSTON, TX 77056-6582 (US)

(73) Assignee: International Business Machines,
Corporation, Armonk, NY (US)

(21) Appl. No.: 121537,121

112

- CPU
DEVELOPMENT

He- PROJECT

4 102

N - 104

- N - 124

STORAGE - N - 108

IDE TOOL - N - 120

He- PROJECT

FILE N 122
MEMORY -- 106

NETWORK iNTERFACE 1-1 110

INPUT
DEVICE

- 114

DISPLAY
DEVICE

116-7

(22) Filed: Aug. 6, 2009

Related U.S. Application Data

(63) Continuation of application No. 12/464,712, filed on
May 12, 2009.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)
GO6F 17/30 (2006.01)

(52) U.S. Cl. 717/108; 707/E17.055

(57) ABSTRACT

Development tools are disclosed that connect various arti
facts in a database aware fashion. For example, the develop
ment environment may integrate SQL query builders across
multiple application development interfaces (e.g., a source
code editor, XML editor, database Scripting tools, etc.), sig
nificantly improving developer productivity, reducing devel
opment cost and time. Thus, the process of consuming het
erogeneous artifacts in an application (or creating them for
consumption) becomes a very productive experience, elimi
nating the need to manually cut/paste information in multiple
project files in many cases.

100

DATABASE
130 SERVER

APPLICATION SERVER
DATABASE

APPLICATION

155

160 A
WEBSERVER

HTTP st

US 2010/0293523 A1 Nov. 18, 2010 Sheet 1 of 9 Patent Application Publication

US 2010/0293523 A1 Nov. 18, 2010 Sheet 2 of 9 Patent Application Publication

OZI,

SETIH LOETO? Jc] EO?HTYOSTEICJOW \/ IV/C]

Patent Application Publication Nov. 18, 2010 Sheet 3 of 9 US 2010/0293523 A1

300

RECEIVE DEVELOPER REGUEST 305
TO OPEN PROJECT FILE, (e.g. SOURCE

CODE FILE OR OTHER PROJECT ARTIFACT)

310
DISPLAY CONTENT OF

REQUESTED PROJECT FILE

315
DISPLAY QUERYBUILDERPANE;

USER COMPOSES DATABASE QUERY

320
GENERATESOL OUERY SOURCE

FROM USER INPUT

325
INSERT GENERATED SOURCE CODE

IN OPENED PROJECT FILE

330
RECORD INDICATION OF RELATIONSHIP
BETWEEN QUERY AND PROJECT FILE

USER UPDATES COMPOSED QUERY; 335
IDE PROPAGATES CHANGESTO
QUERY IN PROJECT FILE(S)

US 2010/0293523 A1 Sheet 4 of 9 , 2010 18 NOV. ion icat Publi ion icat Patent Appl

G07

NYNN

Patent Application Publication Nov. 18, 2010 Sheet 5 of 9 US 2010/0293523 A1

USERNAVIGATES DATABASE 505
USING DATABASE TOOL

RECEIVE SELECTION OF DATABASE 510
OBJECT (e.g. SQL QUERY)

RECEIVE PARAMETERS FORAPPLICATION 515
CONFIGURED TO ACCESS SELECTED OBJECT

GENERATE APPLICATION SOURCE
CODE FOR SELECTED DATABASE OBJECT, 520
ACCORDING TO SPECIFIED PARAMETERS

STORE APPLICATION AND A 525
RELATIONSHIPBETWEEN

APPLICATION AND DATABASE OBJECT

FIG. 5

Patent Application Publication Nov. 18, 2010 Sheet 7 of 9 US 2010/0293523 A1

RECEIVE USER SELECTION OF
PROJECTED ITEM (e.g. PROGRAM 705
ROUTINE, XML FILE), TO INCLUDE

INSTORED PROCEDURE

700

IDENTIFY MAPPING BETWEEN
PROGRAM OBJECTS AND
DATABASE ENTITIES (e.g. 710

PROGRAM VARIABLES MAPPING
TODATABASE COLUMN)

GENERATE STORED PROCEDURE
FROM SELECTED OBJECT: 715

OPTIONALLY DEPLOY TODATABASE

STORE RELATIONSHIPBETWEEN
SELECTED PROJECT ITEM
AND STORED PROCEDURE

720

FIG. 7

US 2010/0293523 A1

005

Patent Application

: ds · uJ00 06exped

Patent Application Publication Nov. 18, 2010 Sheet 9 of 9 US 2010/0293523 A1

900

RECEIVE SELECTION OF
ONE ORMORE PROJECT ITEMS 905
TO USE IN DATABASE PACKAGE

(e.g. SOURCE FILES)

PARSE SELECTED OBJECTS 910
TOIDENTIFY QUERIES;

GENERATE DATABASE PACKAGE
FROMIDENTIFIED OUERIES 915

OPTIONALLY DEPLOYDATABASE

STORE RELATIONSHIPBETWEEN 920
OUERIES PASSED FROMPROJECT
ITEMS AND DATABASE PACKAGE

FIG. 9

US 2010/0293523 A1

DEVELOPMENT ENVIRONMENT
CONFIGURED TO GENERATE

APPLICATION SOURCE CODE FROM
DATABASE OBJECTS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of co-pending
U.S. patent application Ser. No. 12/464,712, filed May 12,
2009, which is herein incorporated by reference in its entirety

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003 Embodiments of the invention relate to tools used to
develop application software. More specifically, embodi
ments of the invention provide an enhanced integrated devel
opment environment (IDE) for managing application Source
code, database systems, and related artifacts.
0004 2. Description of the Related Art
0005 Developing software applications is a complex task,
and IDE tools are available to assist computer programmers
with the development process. Currently, IDE tools are avail
able to assist programmers developing applications in a vari
ety of programming languages (e.g., Java R.net, C, C++, C#,
etc.). These tools are typically configured with features Such
as auto-indenting, Syntax highlighting, type checking, and a
variety of other features that assist the development process.
An IDE tool usually includes a text editor that visually dis
plays errors as source code is typed, allowing a developer to
correct errors before proceeding with the next line to code.
Typically, IDE tools are optimized for different programming
languages and errors are identified based on the programming
language being used by the developer, often determined a
Suffix of a project file (e.g., .cpp for a c++ program or java for
a Java R program).
0006. However, application programs have long since
ceased to be developed as a single application built from a
group of Source code files. Instead, multiple applications
interact with one another to provide users with a particular
service. Frequently, for example, developers compose appli
cations that interact with a database engine. The database may
be developed with the application, but applications are also
developed to interact with (often complex) existing database
systems.
0007 Typically, such an application may be configured
with (or be configured to generate) a number of database
queries (e.g., SQL statements) as well as the code needed to
connect to the database, Submit a query and receive results.
Further, many object-to-relational frameworks exist for mov
ing data between a database and an application program.
Similarly, an application server may interact with a database
and a web server to provide a web-based application. Part of
the application code may create persistence for user data
using database queries stored in XML files. More generally,
database applications such as these typically have to create?
consume numerous artifacts based on the business needs,
inter-component interactions and best practices. Commonly
used artifacts in a database application are SQL statements in
Java code, stored procedures (which internally could be writ
ten in SQL/Java or another language), Xml files, SQL files
from database projects, etc.
0008 To build these applications, developers typically
interact with development tools customized for each distinct

Nov. 18, 2010

type of artifact. For example, as noted above, IDE tools may
be used to compose source code in a variety of programming
languages. Similarly, database tools may be used to create
database models and compose queries using visual tools, etc.
Each of these artifacts may have development tools within
their own area/view/perspective/module within an IDE. That
is, Java developers use a Java perspective of an IDE tool to
build Java applications, database administrators use a data
perspective of the IDE tool to build and improve SQL scripts
or procedures. However, while many of the results of a devel
opment effort overlap significantly and interact with one
another, the development tools themselves do not include
mechanisms for connecting different aspects of the develop
ment process with one another.

SUMMARY OF THE INVENTION

0009. One embodiment of the invention includes a method
for an integrated development environment (IDE) tool to
manage database aware application development. The
method generally includes executing the IDE tool on a com
puting system having at least a processor, a memory, and a
storage device. The IDE tool is configured to perform an
operation which includes presenting within an interface of the
IDE tool, a display of the database data model, receiving a
selection of a database object of the database data model, and
generating application source code configured to access the
selected database object. The operation also includes storing
an indication of the relationship between the database object
and the application source code.
0010. Another embodiment of the invention includes a
computer-readable storage medium containing an IDE tool,
which when executed on a processor, performs an operation
to manage database aware application development. The
operation may generally include presenting within an inter
face of the IDE tool, a display of the database data model,
receiving a selection of a database object of the database data
model, and generating application source code configured to
access the selected database object. The operation also
includes storing an indication of the relationship between the
database object and the application source code.
0011 Still another embodiment of the invention includes a
system having a processor and a memory containing an IDE
tool, which when executed on a processor, performs an opera
tion to manage database aware application development. The
operation may generally include presenting within an inter
face of the IDE tool, a display of the database data model,
receiving a selection of a database object of the database data
model, and generating application source code configured to
access the selected database object. The operation also
includes storing an indication of the relationship between the
database object and the application source code.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. So that the manner in which the above recited fea
tures, advantages and objects of the present invention are
attained and can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.
0013. It is to be noted, however, that the appended draw
ings illustrate only typical embodiments of this invention and
are therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodiments.

US 2010/0293523 A1

0014 FIG. 1 illustrates an example computing system run
ning an integrated development environment (IDE) tool,
according to one embodiment of the invention.
0015 FIG. 2 illustrates an example of components from an
IDE tool, according to one embodiment of the invention.
0016 FIG. 3 illustrates a method for interactively editing
an SQL query, according to one embodiment of the invention.
0017 FIG. 4 illustrates an example screen display from of
an IDE tool, according to one embodiment of the invention.
0018 FIG. 5 illustrates a method for generating applica
tion code associated with a database object, such as a query,
according to one embodiment of the invention.
0019 FIG. 6 illustrates an example screen display from of
an IDE tool, according to one embodiment of the invention.
0020 FIG. 7 illustrates a method for generating a stored
procedure for a database system from information maintained
in a in a project file in a development project, Such as a source
code file, according to one embodiment of the invention.
0021 FIG. 8 illustrates an example screen display from of
an IDE tool, according to one embodiment of the invention.
0022 FIG. 9 illustrates a method for generating a database
package from project files associated with a development
project, according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0023. As noted above, software applications include many
heterogeneous artifacts—each of which may be created by
different individuals having different skill sets. And develop
ers often share such artifacts with one another in an iterative
process as application development evolves. Doing so fre
quently requires artifacts to be moved between different
project files manually. For example, the text of an SQL state
ment composed by a database administrator (having expertise
in a particular database) has to be manually cut/paste from
SQL Scripts into application source code (being composed by
a developer). More simply, at least from a developer's per
spective, IDE tools having a common underlying understand
ing of the components needed to build a database application
are missing.
0024. Embodiments of the invention introduce develop
ment tools that connect these various artifacts in a database
aware fashion. For example, embodiments of the invention
integrate SQL query builders across multiple application
development interfaces (e.g., a source code editor, XML edi
tor, database scripting tools, etc.) significantly improving
developer productivity, reducing development cost and time.
Thus, the process of consuming heterogeneous artifacts in an
application (or creating them for consumption) becomes a
very productive experience, eliminating the need to manually
cut/paste information in multiple project files. Further, con
necting the various development tools empowers novice users
to perform complex tasks. For example, a visual SQL builder
may allow a novice developer to easily build database objects
representing a complex query and incorporate SQL state
ments generated from the database object into application
Source code. Further, once incorporated into the source code,
the IDE tool may monitor the database object in the query
development tool. Subsequent changes to the query in the
visual SQL builder result in updates to the text of a query
statement in application Source code. Thus, rather than
require the developer to manually cut and paste the query
from the development tool to the source code file each time it
is changed during the development process, the IDE tool

Nov. 18, 2010

manages the relationship between these items for the devel
oper within a given development project. Therefore, the IDE
tool greatly simplifies both the development and maintenance
of an application, particularly in cases where a complex,
finely tuned query resides in multiple locations within a
development project.
0025 Relationships between a variety of development
artifacts and the development tool may be managed in a
similar manner. For example, application Source code and/or
database statements may be used to generate and maintain
database queries within stored procedures, database pack
ages, XML files, and a variety of other application develop
ment artifacts.

0026. In the following, reference is made to embodiments
of the invention. However, it should be understood that the
invention is not limited to specific described embodiments.
Instead, any combination of the following features and ele
ments, whether related to different embodiments or not, is
contemplated to implement and practice the invention. Fur
thermore, although embodiments of the invention may
achieve advantages over other possible solutions and/or over
the prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting of the invention. Thus,
the following aspects, features, embodiments and advantages
are merely illustrative and are not considered elements or
limitations of the appended claims except where explicitly
recited in a claim(s). Likewise, reference to “the invention
shall not be construed as a generalization of any inventive
subject matter disclosed herein and shall not be considered to
be an element or limitation of the appended claims except
where explicitly recited in a claim(s).
0027. One embodiment of the invention is implemented as
a program product for use with a computer system. The pro
gram(s) of the program product defines functions of the
embodiments (including the methods described herein) and
can be contained on a variety of computer-readable storage
media. Illustrative computer-readable storage media include,
but are not limited to: (i) non-Writable storage media (e.g.,
read-only memory devices within a computer Such as CD
ROM disks readable by a CD-ROM drive) on which infor
mation is permanently stored; (ii) Writable storage media
(e.g., floppy disks within a diskette drive or hard-disk drive)
on which alterable information is stored. Such computer
readable storage media, when carrying computer-readable
instructions that direct the functions of the present invention,
are embodiments of the present invention. Other media
include communications media through which information is
conveyed to a computer. Such as through a computer or tele
phone network, including wireless communications net
works. The latter embodiment specifically includes transmit
ting information to/from the Internet and other networks.
Such communications media, when carrying computer-read
able instructions that direct the functions of the present inven
tion, are embodiments of the present invention. Broadly, com
puter-readable storage media and communications media
may be referred to herein as computer-readable media.
0028. In general, the routines executed to implement the
embodiments of the invention, may be part of an operating
system or a specific application, component, program, mod
ule, object, or sequence of instructions. The computer pro
gram of the present invention typically is comprised of a
multitude of instructions that will be translated by the native
computer into a machine-readable format and hence execut
able instructions. Also, programs are comprised of variables

US 2010/0293523 A1

and data structures that either reside locally to the program or
are found in memory or on storage devices. In addition,
various programs described hereinafter may be identified
based upon the application for which they are implemented in
a specific embodiment of the invention. However, it should be
appreciated that any particular program nomenclature that
follows is used merely for convenience, and thus the inven
tion should not be limited to use solely in any specific appli
cation identified and/or implied by Such nomenclature.
0029 FIG. 1 illustrates an example computing system 100
running an integrated development environment (IDE) tool,
according to one embodiment of the invention. As shown, the
computing system 100 includes a computer 102. The com
puter 102 is connected to other computers via a network 130.
In general, the network 130 may be a telecommunications
network and/or a wide area network (WAN). In a particular
embodiment, the network 130 is the Internet.
0030 The computer 102 generally includes a processor
104 connected via a bus 1 12 to a memory 106, a network
interface device 1 10, a storage 108, an input device 114, and
an output device 116. The computer 102 is generally under
the control of an operating system. Examples of operating
systems include UNIX, versions of the Microsoft Windows.(R)
operating system, and distributions of the LinuxOR operating
system. (Note: Linux is at trademark of Linus Torvalds in the
United States and other countries.) More generally, any oper
ating system Supporting the functions disclosed herein may
be used. The processor 104 is included to be representative of
a single CPU, multiple CPUs, a single CPU having multiple
processing cores, and the like. The memory 106 may be a
random access memory. While the memory 106 is shown as a
single entity, it should be understood that the memory 106
may comprise a plurality of modules, and that the memory
106 may exist at multiple levels, from high speed registers
and caches to lower speed but larger DRAM chips. The net
work interface device 110 may be any type of network com
munications device allowing the computer 102 to communi
cate with other computers via the network 130.
0031. The input device 114 may be any device for provid
ing input to the computer 102. For example, a keyboard,
keypad, light pen, touch-screen, track-ball, or speech recog
nition unit, audio/video player, and the like may be used. The
output device 116 may be any device for providing output to
a user of the computer 102. For example, the output device
116 may be any conventional display screen or set of speak
ers, along with their respective interface cards, i.e., video
cards and Sound cards. Although shown separately from the
input device 114, the output device 116 and input device 114
may be combined. For example, a display screen with an
integrated touch-screen, a display with an integrated key
board, or a speech recognition unit combined with a text-to
speech converter may be used.
0032. The storage 108 may be a hard disk drive storage
device. Although the storage 108 is shown as a single unit, the
storage 108 may be a combination of fixed and/or removable
storage devices, such as fixed disc drives, floppy disc drives,
tape drives, removable memory cards, or optical storage. The
memory 106 and the storage 108 may be part of one virtual
address space spanning multiple primary and secondary Stor
age devices.
0033. As shown, the memory 106 of the computer 102
includes an IDE tool 120 being used to access a project file
122. The project file 122 is included to be representative of a
variety of different development artifacts, e.g., application

Nov. 18, 2010

source code files, library header files, XML files, database
Scripts, DDL files, SQL statements, markup language docu
ments, JSP files, etc. Further, the project file 122 represents
one file of a larger development project 124. More generally,
project “project file’ refers to any file used to develop com
puter Software, frequently grouped together into logical
projects for convenience. Of course, the development project
itself is not mandatory and a “project file' may exist without
an association to a specific development project (e.g., a file
containing JavaSource code configured to connect and Submit
queries to a database system). As described in greater detail
below, in one embodiment, the IDE tool 122 may provide
plurality of editing tools, each configured to share and man
age database aware information across multiple files within
the development project 124.
0034 FIG. 1 also shows database servers 140, application
server 150, and web servers 160. Additionally, the application
server 150 includes a database application 155. The database
application 155 is included to be representative of a complete,
deployed application composed using the IDE tool 120. For
example, database application 155 may be hosted by the
application server 150 and configured to access databases in
the database server 140. In such a scenario, users may access
the database application 155 through a web-based interface,
where web pages requested through the web server 160 are
generated by the application server 150 (e.g., by issuing data
requests to database servers 140 and encapsulating query
results in HTML markup). Of course, this scenario represents
just one possible scenario for an application generated from
development project 124 developed using IDE tool 106.
0035 FIG. 2 illustrates components of the IDE tool 120

first shown in FIG. 1, according to one embodiment of the
invention. As shown, the IDE tool 120 includes multiple
development perspectives 230. Further, the IDE tool 120
includes a compiler/linker 205, a deployment tool/package
builder 210, and SQL query relationships 215. And the
project files 220 include a database data model 222, database
packages/queries 224, Source code files 226, and artifacts
228. As is known, the compiler/linker 205 may provide a
Software application configured to generate object code from
the project files included in a given development project.
Similarly the deployment tool/packager 210 may be used to
create an installation package or deploy a given package to an
application server. Additionally, the deployment tool/pack
ager 210 may be configured to create a database package (i.e.,
a collection of pre-prepared queries which may be invoked by
a database engine) or stored procedure on a database system.
0036. In one embodiment, the development perspectives
230 provide a plurality of different editing tools each used to
develop a database aware software application. Illustratively,
the development perspectives 230 include a database query
builder 232, a source code builder 234, and an XML builder
236. Of course, the IDE tool 120 may include additional
development perspectives 230 tailored to allow developers to
build other development artifacts associated with a database
aware application. The project files 220 may be accessed by
the various development perspectives 230, allowing each dis
tinct type of project file to be edited using a tool tailored for a
given type of project file. Further, the development perspec
tives 230 may be configured to interact with one another—
allowing changes to a given project file to be propagated to
others. For example, SQL query relationships 315 may be
used to identify where a database query (composed using the
database builder 232) is used in other project files 220 (e.g., in

US 2010/0293523 A1

one of the source code files 226). Illustratively, the project
flies include a database data model 222, a set of packages or
SQL queries 224, source code files 226, and other artifacts
228 (e.g., XML files). Of course, like the development per
spectives 230, the project files supported by the IDE tool 120
may include a variety of other project file types.
0037. The database query builder 232 may provide a
visual tool used to compose a database query. In one embodi
ment, the database query builder 232 provides a graphical
user interface configured to allow developers to build com
plex SQL statements. For example, database query builder
232 may present developers with a design canvas which
allows large SQL statements to be built in fragments, such as
from clauses, predicates and so forth. Such an interface may
allow query relationships resulting in joins between numer
ous tables to be represented by connecting lines between
tables on a design canvas. Further, as the design is being
edited, the resulting SQL may be presented to a user. Once
completed, a user may provide a name for the query, and the
IDE 120 may store the query within one of the project files
210.

0038 Similarly, the source code builder 234 may provide
a text-editing tool used to edit source code within a source
code file 226. The source code builder 224 may be configured
to provide a variety of features such as auto-indenting, syntax
highlighting, type checking, and a variety of other features
that assist the development process. In one embodiment, the
Source code may include the appropriate routines needed to
connect to and Submit a query (e.g., an SQL query) to a
database configured according to a particular data model 212.
The XML builder 236 may provide a tool used to compose
XML grammars, or build XML documents consistent with a
particular grammar. For example, the XML document may
provide a document used to markup multiple SQL queries.
Further, as noted, the queries in Such a document may be
edited using the database builder 232 and the IDE tool 120
may be configured to maintain the relationship between the
query within one of the artifacts 228 (e.g., an XML file) and
a particular database query 234 composed using the database
query builder 232.
0039 FIG. 3 illustrates a method 300 for interactively
editing an SQL query, according to one embodiment of the
invention. As shown, the method 300 begins at step 305 where
the IDE tool 120 receives a request to open a given project file
220. For example, a developer may open a source code file
that is to include Software routines configured to access a
database. At step 310, the IDE tool 120 may display the
content of the requested project file. For example, FIG. 4
illustrates an example screen display 400 from the IDE tool
120, according to one embodiment of the invention. As
shown, a source code pane 405 displays a fragment of Source
code for a routine “EmployeeData.” This routine includes a
statement 410 with an embedded SQL query (beginning with
Select (sql)="SELECT. SSURANGE ...”).
0040. Returning to the method 300, at step 315, the IDE
tool 120 may display a query builder pane, allowing the user
to compose or modify a database query to be included in the
project file. For example, the screen display 400 includes a
design canvas 420 used to build a database query to include in
the source code of the “EmployeeData routine. In this case,
the SQL statement 410 in the source code pane 405 is dis
played in a visual form in the design canvas 420. As shown, a
table 422 “Department” and a table 426 “Employee' are
joined by a link 424. The link 424 represents a join relation

Nov. 18, 2010

ship in the SQL query generated from the visual representa
tion. As shown, the user has selected to include table 422 and
table 426 in a query and specified what column to retrieve data
from using checkboxes. Additionally, data from the columns
are joined using a primary/key foreign key relationship
between these two tables (represented using the link 424).
Further, the design canvas 420 includes a pane 428 providing
a database object name for this query “Statement1.sql.” In this
example, the pane 428 includes multiple tabs used to switch
between editing different aspects of a database query. As
shown, the columns tab 430 is selected—allowing the devel
oper to specify what columns and tables to return data from
that satisfies query conditions. The user may also Switch to a
conditions tab 432, a groups tab 434, and a group conditions
tab 436, each used to access a visual interface, which allows
a developer to edit different elements of a database query.
0041. In addition to composing a database query using the
design canvas shown in FIG. 4, the IDE tool 120 (and data
base query builder 232) may be adapted to provide developers
with a variety of other functions related to database query
development. For example, the developer may use the data
base query builder 232 to perform query tuning, associating
performance measurement (both predictive and measured),
query testing/test generation/test execution, querying/report
ing and operating on the accumulated information, as well as
provide integrated query formatting/annotating, and docu
mentation generation.
0042. Again returning to the method 300, at step 320, the
IDE tool 120 generates an SQL query statement from the user
input in the design canvas 420. And at step 325, the IDE tool
120 may insert the generated query source in the project file
opened by the user at step 305, e.g., the IDE tool may insert
statement 410 shown in pane 405 of FIG. 4. At step 330, the
IDE tool may record an indication of the relationship between
the database object (e.g., the “Statement1...sql' object shown
in a visual format in design canvas 420) and the use of that
database object within another project file 220 (e.g., the
source code of the “EmployeeData routine shown in pane
405. In one embodiment, at step 335, if the developer updates
the composed query, e.g., adds additional columns from the
“Department Name” table 422, the IDE tool 120 may update
the text of the query statement 410 in the source code file, and
in any other files which include the database query repre
sented by the “Statement1...sql' database object. In other
words, changes made in the design canvas 420 of the database
query builder 232 are reflected in the Java code. This elimi
nates the need for manual copy/paste operations between
Source code and database development tools. Doing so pro
vides application developers with a powerful, easy to use user
interface. Thus, application developers, who may not have
substantial SQL expertise, can still build complex SQL state
ments to include in source code files. Further, the IDE tool
120 manages the use of those statements throughout a soft
ware development project.
0043. Note, although described relative to project file 220,
which stores application source code, the IDE tool 120 may
interact with a variety of different project artifacts that con
tain database query statements. For example documents in
other source code languages, XML (or other markup lan
guages) etc. may contain text representations of database
queries. Further, although described relative to relational
database statements (e.g., SQL) embodiments of the inven
tion may be adapted for use with other database architectures

US 2010/0293523 A1

(e.g., hierarchal databases Such as the Information Manage
ment System (IMS) available from IBM).
0044) Further, the IDE tool 120 may also be configured to
assist developers working on the database side of data devel
opment project. Such developers may compose a variety of
different development artifacts such as SQL script files,
stored procedure definitions and other development files. For
example, in one embodiment, the IDE tool 120 may create
database access layers from SQL scripts or from within SQL
editors containing Such scripts. The code generation can also
generate sample applications customized to match business
needs, e.g. applications tailored to an existing database. This
allows developers to quickly consume SQL resources within
Software applications being developed, significantly reducing
many manual steps.
0045 FIG. 5 illustrates a method 500 for generating appli
cation code associated with a database object, Such as a SQL
query statement, according to one embodiment of the inven
tion. As shown, the method 500 begins at step 505 where a
user navigates through a database data model using the IDE
tool 120. And at step 510, the IDE tool 120 receives a selec
tion of a database object, such as an SQL query script. FIG. 6
illustrates an example of this scenario in which a screen
display 600 shows a user navigating through a data project
explorer pane 605. Illustratively, the user has selected a data
base object 607 named “Statement1...sql' and right-clicked a
mouse, resulting in the display of a context menu 609. Among
other options, the context menu 609 includes a menu item to
generate a stored procedure and a menu item 620 to generate
query code for the selected database object.
0046. A dialog box 615 shows the results of selecting the
'generate query code” menu item 620. Among others, the
dialog box 615 allows the developerto specify a source folder
625 to store code generated around the database object. In this
example, the developer has selected to generate a new bean
object (a Java construct) using radio button 630. Note, the
bean object is used to store a result set generated from the
query represented by the “Statement1 .sql' database object.
Further, a checkbox 635 is used to indicate that the IDE tool
should generate a method interface for the selected database
object 607 (i.e., the “Statement1.sql' object).
0047 Returning to the method 500, at step 515, the IDE
tool receives parameters for an application configured to
access the selected database object, Such as the ones illus
trated in FIG. 6. The parameters specify what code objects
should be generated to access/create/update the database
object. At step 520, the IDE tool 120 generates application
Source code for the selected database object, according to the
specified parameters. For example, the developer may select
the “Finish button of the dialog box 615. In this scenario, the
IDE tool 120 responds by generating a Java package named
“com.app' (entered in a textbox 635) with an interface and
method named as shown in FIG. 6. Further, the generated
code includes a Java bean named “My JavaApp' to include a
result set in 640.

0048 Thus, once a database query is composed, the IDE
tool may be configured to generate a relational-to-object
interface for this database query. Further, at step 525, the IDE
tool 120 may store the application code generated at step 520
as well as an indication of the relationship between the data
base object (i.e., the “Statement1.sql' object) and the gener
ated source code (stored in the “com.app” source file. There
after, should the developer modify the database statement
underlying the generated source code, the IDE tool may be

Nov. 18, 2010

configured to update the source code (or simply notify the
developer that the database code has changed).
0049. In one embodiment, the IDE tool 120 may be con
figured to generate stored procedures from the content of
various project files 210. For example, a stored procedure
may be generated from a Java method in the source code
builder 234. A user interface may then be displayed to devel
oper, which presents the proposed signature, input, output
parameters, and types, etc. to provide a single click experi
ence when creating stored procedures. Depending on busi
ness needs and practices followed by a development project,
database routines Such as stored procedures can be a signifi
cant part of database access. A stored procedure generally
provides a Subroutine available to applications accessing a
relational database system. A stored procedure may be com
posed in many languages including SQL, Java, and other
database or programming languages. FIG. 7 illustrates a
method for generating a stored procedure for a database sys
tem from information maintained in a in a project file in a
development project, Such as a source code file, according to
one embodiment of the invention.

0050. As shown, the method 700 begins at step 705 where
the IDE tool 120 receives a user selection of a project item to
include in a stored procure. And at step 710, the IDE tool 120
identifies a mapping between program objects and database
entities. For example, the user may select a program routine
Such as a Java method (composed using the Source code
builder 234), a SQL query (composed using the database
query builder 232), or other development project artifact.
FIG. 8 illustrates an example using the source code builder
234. Specifically, FIG. 8 illustrates an example screen display
800 generated by the IDE tool 120, according to one embodi
ment of the invention. As shown, the source code builder 234
displays the source code for a Java method 805 named “pasp.”
In this example, the developer has selected a line of source
code (indicated by the highlighting and the position of a
cursor 807) and right-clicked amouse, resulting in the display
of a context menu 810. Among other options, the context
menu 810 includes a menu item 811 which the developer may
select to generate a stored procedure from the selected pro
gram object (i.e., the Java method 805).
0051. In one embodiment, in response, the IDE tool 120
may present the developer with dialog box 815. In this
example, the user the dialog box 815 allows the developer to
name a stored procedure to generate from the selected Java
method 805 and presents the user with the mappings between
the application source code (Java names 820) and the corre
sponding database object names (SQL names 825) identified
by the IDE tool 120. That is, the dialog box 815 includes
references to variable names in the source code, which map to
objects in the database such as table/column names. Addi
tionally, the developer may specify whether to deploy the
stored procedure or save the stored procedure as one of the
project files in the development project. At step 715 of method
700, once the developer completes specifying options in the
dialog box 815, the “Finish button may be used to generate
and potentially deploy the stored procedure corresponding to
the project file (e.g., the source code in Java method 805). And
at step 720, the IDE tool 120 may store an indication of the
relationship between the selected project item (e.g., the
source code of the Java method 805) and the stored procedure
generated from this project item. Thereafter, should the devel
oper modify the database statement underlying the generated

US 2010/0293523 A1

stored procedure, the IDE tool may be configured to update
the source code (or simply notify the developer that the data
base code has changed).
0052. The IDE tool may be configured to generate addi
tional database objects from SQL statements stored inside
project files (e.g., Java files or XML files). For example, a
properties file used to bind SQL into database packages typi
cally define properties on a per Java file basis. In one embodi
ment the IDE tool 120 mamaintains a connection between the
java files containing the SQL and the options needed to per
form the bind. Further, the IDE tool 120 may be configured to
generate the database package from one or more SQL state
ments in program source code.
0053 FIG. 9 illustrates a method 900 for generating a
database package from project files associated with a devel
opment project, according to one embodiment of the inven
tion. As shown, the method 900 begins at step 905, where the
IDE tool 120 receives a selection of one or more project files
to use in a database package. As noted, the project files may
include program Source code files. Similarly, the project files
may also include XML files used to store a collection of SQL
queries used by the Java Persistence API to allow a Java bean
to interact with a database. In one embodiment, the developer
may specify the properties file(s) to bind the SQL queries and
build a database package from the queries in the project file.
Accordingly, at step 910, the IDE tool 120 parses the selected
project files to identify database queries in the file. At step
915, the IDE tool 120 may generate a database package that
includes the identified queries. Optionally, the package may
be deployed to a given database. As known, a database may
generate an access plan for each query in the database pack
age, improving database performance when Such queries are
invoked by an application.
0054) At step 920, the IDE tool 120 may store an indica
tion of the relationship between the selected project item and
the database package generated from the project item identi
fied at step 805. Thereafter, should the developer modify the
database statement underlying the database package, the IDE
tool 120 may be configured to update the database package
(or simply notify the developer that the database code has
changed).
0055 Advantageously, as described herein, the IDE tool
may be configured to assist developers working on a database
aware software application. Such applications may include
many distinct development artifacts, e.g., source code files,
XML files, SQL scripts, archive files, etc. Embodiments of
the invention provide development tools that connect various
artifacts Such as these in a database aware fashion. For
example, embodiments of the invention integrate SQL query
builders across multiple application development interfaces
(e.g., a source code editor, XML editor, database scripting
tools, etc.) significantly improving developer productivity,
reducing development cost and time. Further, once incorpo
rated into the source code, an IDE tool may monitor database
objects generated using a query development. Subsequent
changes to the query in the visual SQL builder result in
updates to the text of a query statement in application Source
code. Thus, rather than require the developer to manually cut
and paste the query from the development tool to the Source
code file each time it is changed during the development
process, the IDE tool manages the relationship between these
items for the developer within a given development project.
Therefore, the IDE tool greatly simplifies both the develop
ment and maintenance of an application, particularly in cases

Nov. 18, 2010

where a complex, finely tuned query resides in multiple loca
tions within a development project.
0056 While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A computer-implemented method for an integrated

development environment (IDE) tool to manage database
aware application development, the method comprising:

executing the IDE tool on a computing system having at
least a processor, a memory, and a storage device,
wherein the IDE tool is configured to perform an opera
tion, comprising:
presenting within an interface of the IDE tool, a display

of the database data model,
receiving a selection of a database object of the database

data model,
generating application source code configured to access

the selected database object, and
storing an indication of the relationship between the

database object and the application source code.
2. The method of claim 1, wherein the operation further

comprises, prior to generating the application source code,
receiving one or more parameters characterizing the applica
tion source code to be generated to access the database object.

3. The method of claim 1, wherein generating application
Source code comprises generating a stored procedure.

4. The method of claim 3, further comprising, deploying
the stored procedure to a database engine.

5. The method of claim 1, wherein the operation further
comprises:

receiving a request to access the application source code;
presenting the application source code on an editing pane

of the IDE tool; and
in response to determining that one or more modifications

have been made to the application source code, updating
the selected database object to conform to the modifica
tions made to the application source code.

6. The method of claim 1, wherein the operation further
comprises:

receiving a request to access the selected database object;
presenting the database object on a design canvas of the
IDE tool; and

in response to determining that one or more modifications
have been made to the database object:
regenerating the application Source code to conform to

the modifications made to the database object.
7. The method of claim 1, wherein the database object

comprises a database query.
8. The method of claim 7, wherein generating the applica

tion source code comprises generating a relational-to-object
interface for the database query.

9. A computer-readable storage medium containing an
integrated development environment (IDE) tool, which when
executed on a processor, performs an operation to manage
database aware application development, the operation com
prising:

presenting within an interface of the IDE tool, a display of
the database data model,

receiving a selection of a database object of the database
data model,

US 2010/0293523 A1

generating application source code configured to access
the selected database object, and

storing an indication of the relationship between the data
base object and the application source code.

10. The computer-readable storage medium of claim 9.
further comprising, prior to generating the application Source
code, receiving one or more parameters characterizing the
application source code to be generated to access the database
object.

11. The computer-readable storage medium of claim 9.
wherein generating application source code comprises gen
erating a stored procedure.

12. The computer-readable storage medium of claim 11,
wherein the operation further comprises, deploying the stored
procedure to a database engine.

13. The computer-readable storage medium of claim 9.
wherein the operation further comprises:

receiving a request to access the application Source code;
presenting the application source code on an editing pane

of the IDE tool; and
in response to determining that one or more modifications

have been made to the application source code, updating
the selected database object to conform to the modifica
tions made to the application Source code.

14. The computer-readable storage medium of claim 9.
wherein the operation further comprises:

receiving a request to access the selected database object;
presenting the database object on a design canvas of the
IDE tool; and

in response to determining that one or more modifications
have been made to the database object:
regenerating the application source code to conform to

the modifications made to the database object.
15. A system, comprising:
a processor; and
a memory containing an integrated development environ
ment (IDE) tool, which when executed on a processor,

Nov. 18, 2010

performs an operation to manage database aware appli
cation development, the operation comprising
presenting within an interface of the IDE tool, a display

of the database data model,
receiving a selection of a database object of the database

data model,
generating application source code configured to access

the selected database object, and
storing an indication of the relationship between the

database object and the application source code.
16. The system of claim 15, further comprising, prior to

generating the application Source code, receiving one or more
parameters characterizing the application source code to be
generated to access the database object.

17. The system of claim 15, wherein generating application
Source code comprises generating a stored procedure.

18. The system of claim 17, wherein the operation further
comprises, deploying the stored procedure to a database
engine.

19. The system of claim 15, wherein the operation further
comprises:

receiving a request to access the application source code;
presenting the application source code on an editing pane

of the IDE tool; and
in response to determining that one or more modifications

have been made to the application source code, updating
the selected database object to conform to the modifica
tions made to the application source code.

20. The system of claim 15, wherein the operation further
comprises:

receiving a request to access the selected database object;
presenting the database object on a design canvas of the
IDE tool; and

in response to determining that one or more modifications
have been made to the database object:
regenerating the application Source code to conform to

the modifications made to the database object.
c c c c c

