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Graphics Processing Systems

The present invention relates to graphics processing systems, and in
particular to tile-based graphics processing systems.

Graphics processing is normally carried out by first splitting the scene to be
displayed into a number of similar basic components or “primitives”, which
primitives are then subjected to the desired graphics processing operations. The
graphics “primitives” are usually in the form of simple polygons, such as triangles.

Each primitive is at this stage defined by and represented as a set of
vertices. Each vertex for a primitive has associated with it a set of data (such as
position, colour, texture and other attributes data) representing the vertex. This
data is then used, e.g., when rasterising and rendering the primitive(s) to which the
vertex relates in order to generate the desired render output of the graphics
processing system.

Once primitives and their vertices have been generated and defined, they
can be processed by the graphics processing system, in order, e.g., to display the
frame.

This process basically involves determining which sampling points of an
array of sampling points covering the output area to be processed are covered by a
primitive, and then determining the appearance each sampling point should have
(e.g. in terms of its colour, etc.) to represent the primitive at that sampling point.
These processes are commonly referred to as rasterising and rendering,
respectively.

The rasterising process determines the sample positions that should be
used for a primitive (i.e. the (x, y) positions of the sample points to be used to
represent the primitive in the output, e.g. scene to be displayed). This is typically
done using the positions of the vertices of a primitive.

The rendering process then derives the data, such as red, green and blue
(RGB) colour values and an "Alpha" (transparency) value, necessary to represent
the primitive at the sample points (i.e. "shades" each sample point). This can
involve, as is known in the art, applying textures, blending sample point data

values, etc..
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(In graphics literature, the term "rasterisation" is sometimes used to mean
both primitive conversion to sample positions and rendering. However, herein
"rasterisation" will be used to refer to converting primitive data to sampling point
addresses only.)

These processes are typically carried out by testing sets of one, or of more
than one, sampling point, and then generating for each set of sampling points found
to include a sample point that is inside (covered by) the primitive in question (being
tested), a discrete graphical entity usually referred to as a "fragment" on which the
graphics processing operations (such as rendering) are carried out. Covered
sampling points are thus, in effect, processed as fragments that will be used to
render the primitive at the sampling points in question. The "fragments" are the
graphical entities that pass through the rendering process (the rendering pipeline).
Each fragment that is generated and processed may, e.g., represent a single
sampling point or a set of plural sampling points, depending upon how the graphics
processing system is configured.

(A "fragment” is therefore effectively (has associated with it) a set of
primitive data as interpolated to a given output space sample point or points of a
primitive. It may also include per-primitive and other state data that is required to
shade the primitive at the sample point (fragment position) in question. Each
graphics fragment may typically be the same size and location as a "pixel" of the
output (e.g. output frame) (since as the pixels are the singularities in the final
display, there may be a one-to-one mapping between the "fragments" the graphics
processor operates on (renders) and the pixels of a display). However, it can be
the case that there is not a one-to-one correspondence between a fragment and a
display pixel, for example where particular forms of post-processing, such as
downsampling, are carried out on the rendered image prior to displaying the final
image.)

(It is also the case that as multiple fragments, e.g. from different overlapping
primitives, at a given location may affect each other (e.g. due to transparency
and/or blending), the final pixel output may depend upon plural or all fragments at
that pixel location.)

(Correspondingly, there may be a one-to-one correspondence between the
sampling points and the pixels of a display, but more typically there may not be a
one-to-one correspondence between sampling points and display pixels, as

downsampling may be carried out on the rendered sample values to generate the
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output pixel values for displaying the final image. Similarly, where multiple
sampling point values, e.g. from different overlapping primitives, at a given location
affect each other (e.g. due to transparency and/or blending), the final pixel output
will also depend upon plural overlapping sample values at that pixel location.)

Figure 1 shows a typical computer graphics processing system, comprising
a host processor (CPU) 1, a graphics processing unit (GPU) 3, and a memory 5 for
storing data required by and/or generated by the host processor 1 and graphics
processor 3.

When an application 2 that is executing on the host processor 1 requires
graphics processing from the graphics processor 3, such as a frame to be
displayed, the application 2 will send appropriate commands and data to a driver 4
for the graphics processor 3 that is running on the host processor 1.

The driver 4 will then send appropriate commands and data to the graphics
processor 3 to cause it to generate the render output required by the application 2.
The driver 4 sends commands and data to the graphics processor 3 by writing to
data structures 6 in the memory 5, which data structures 6 are then read by the
graphics processor 3.

The commands and data provided by the driver 4 will include commands to
“draw” primitives to be rendered for the render output to be generated by the
graphics processor 3, together with associated vertex data representing the vertices
to be used for the primitives for the render output.

The commands sent to the graphics processor 3 cause the graphics
processor 3 to read and process the vertex data to generate the render output. The
graphics processor 3 will typically use the vertex data for a primitive to rasterise the
primitive to one or more fragments each (potentially) applying to a region (area) of
the render output. The fragments will then be rendered.

The completed render output (e.g. frame) may be written in a frame buffer 7
in the memory 5, from where it may be provided for display on a display device,
such as a screen or printer.

Some graphics processing systems use so-called “tile-based” rendering. In
tile-based rendering, the two-dimensional render output (i.e. the output of the
rendering process, such as an output frame to be displayed) is rendered as a
plurality of smaller area sub-regions, usually referred to as “tiles”. The tiles are
each rendered separately (typically one-after-another). The rendered tiles are then

recombined to provide the complete render output (e.g. frame for display). In such
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arrangements, the render output is typically divided (by area) into regularly-sized
and shaped rendering tiles (they are usually e.g., squares or rectangles).

Other terms that are commonly used for “tiling” and “tile-based” rendering
include “chunking” (the rendering tiles are referred to as “chunks”) and “bucket’
rendering. The terms “tile” and “tiling” will be used hereinafter for convenience, but
it should be understood that these terms are intended to encompass all alternative
and equivalent terms and techniques.

The advantage of such tile-based rendering is that primitives that do not
appear in a given tile do not have to be processed for that tile, and therefore can be
ignored when the tile is processed. This can allow the overall amount of graphics
processing necessary for a given render output to be reduced.

The Applicants have recognised that it may be desirable to perform a
graphics processing operation for the entirety of a render output (e.g. frame) being
generated. For example, when performing a stencil operation it may be desirable to
first clear the stencil buffer for the entire render output (frame).

The Applicants further believe that there remains scope for improvements to
performing graphics processing operations for an entire render output, particularly
in the case of tile-based graphics processing systems.

According to a first aspect of the present invention, there is provided a
method of operating a graphics processing system comprising a graphics
processor, the method comprising:

when it is desired to perform a graphics processing operation for the entirety
of the area of a render output that is being generated by the graphics processor:

issuing, to the graphics processor, a command to draw a primitive
that occupies the entirety of the area of the render output and to perform the
graphics processing operation for the primitive, and in response to which
command, the graphics processor will determine the vertices for the
primitive from the area of the render output; and

the graphics processor in response to the command:

determining the vertices for the primitive to be drawn in response to
the command from the area of the render output;

drawing the primitive using the determined vertices so as to occupy
the entirety of the area of the render output; and

performing the graphics processing operation defined for the

command for the primitive.
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According to a second aspect of the present invention, there is provided a
graphics processing system comprising command issuing circuitry and a graphics
processor;

wherein the command issuing circuitry is configured to:

when it is desired to perform a graphics processing operation for the entirety
of the area of a render output that is being generated by the graphics processor:

issue, to the graphics processor, a command to draw a primitive that
occupies the entirety of the area of the render output and to perform the
graphics processing operation for the primitive, and in response to which
command, the graphics processor will determine the vertices for the
primitive from the area of the render output; and

the graphics processor is configured to, in response to a command to draw
a primitive that occupies the entirety of the area of the render output and to perform
a graphics processing operation for the primitive:

determine the vertices for the primitive to be drawn in response to
the command from the area of the render output;

draw the primitive using the determined vertices so as to occupy the
entirety of the area of the render output; and

perform the graphics processing operation defined for the command
for the primitive.

The present invention is concerned with performing graphics processing
operations for the entirety of the area of a render output being generated
(rendered). Thus, the present invention is concerned with performing “full-frame”
graphics processing operations, that affect the entire area of the frame being
rendered.

In the present invention such a “full-frame” graphics processing operation is
triggered by issuing a specific, “full-frame”, command to the graphics processor
which instructs the graphics processor to draw a primitive occupying (covering) the
entirety of the area of the render output being rendered, a “full-frame” primitive, and
to perform the graphics processing for the so-drawn “full-frame” primitive (and so for
the entirety of the area of the render output (frame) being generated).

Furthermore, in the present invention, the graphics processor is configured
to, in response to receiving the “full-frame” command, determine the vertices for the
“full-frame” primitive from the area of the render output (frame), and draw the “full-

frame” primitive using the so-determined vertices.
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This means that the vertices for the “full-frame” primitive do not need to be
(and are not) explicitly specified in the command and any associated data sent to
the graphics processor, but are instead, in effect, “implicit” to the “full-frame”
command itself.

Thus, in the present invention, instead of, e.g., the graphics processor
determining vertices to use for the “full-frame” primitive from vertex data that is
supplied to the graphics processor by a host processor, and that is, e.g., stored in,
and read by the graphics processor from, memory, the graphics processor
determines the vertices from (based on) the area of the render output.

Thus, for example, where the render output is a frame to be displayed, the
graphics processor can determine the vertices for the “full-frame” primitive from the
area of the frame. For example, where (as will typically be the case) the frame is a
rectangular or square area, the vertices for the “full-frame” primitive may (be
determined by the graphics processor to) correspond to the four corners of the
frame.

The Applicants have recognised that since the vertices of a “full-frame”
primitive occupying the entirety of the area of the render output (frame) being
generated should correspond to the vertices (corners) of the render output (frame)
being generated, a command to the graphics processor to draw such a “full-frame”
primitive does not need to “explicitly” define or refer to vertex positions for the “full-
frame” primitive in order for the graphics processor to be able to draw the “full-
frame” primitive.

Thus, the “full-frame” command of the present invention does not refer
explicitly to vertex data. Correspondingly, issuing the “full-frame” command to draw
the “full-frame” primitive to the graphics processor should be (and preferably is)
performed without writing vertex data associated with (and defining the vertices of)
the “full-frame” primitive to (the) memory. Correspondingly, the graphics processor,
in response to the “full-frame” command, determines the vertex positions for the
“full-frame” primitive from (based on) the area of the render output (frame) rather
than from explicitly indicated vertex data (read from (the) memory).

The present invention accordingly allows the performance of a graphics
processing operation for the entirety of a render output without the need to read
(and without reading) vertex data from memory. Accordingly, the requirements for

reading and writing vertex data where a “full-frame” operation is to be performed
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can be avoided, and moreover, generation of the vertex data in the first place can
be avoided.

The present invention can thus reduce memory traffic (bandwidth) and
usage, and accordingly power usage, when performing graphics processing
operations for an entire render output. This is generally beneficial, but may be
particularly advantageous for graphics processors that are to be used in low power
and portable devices.

It will be appreciated, therefore, that the present invention provides an
improved graphics processing system. Moreover, and as will be become apparent
from the following, the present invention becomes particularly advantageous in the
context of a tile-based graphics processing system.

The graphics processor may be any suitable and desired processor, e.g.
and preferably a graphics processing unit (GPU). The graphics processor should
be operable to process graphics processing commands (including the “full-frame”
command) (and data) to generate (render) a render output (frame).

In a preferred embodiment, the graphics processor is a tile-based graphics
processor (and the graphics processing system is a tile-based graphics processing
system), and the render output (area) is accordingly divided into plural rendering
tiles for rendering purposes (is processed on a tile-by-tile basis (by the graphics
processor)).

The render output can be any suitable and desired render output to be
generated (rendered) by the graphics processor. The render output to be
generated (rendered) by the graphics processor may typically be a frame intended
for display on a display device, such as a screen or printer, but may also, for
example, comprise intermediate data intended for use in later rendering passes
(also known as a "render to texture" output), etc..

The render output will typically be represented as a rectangular array of data
elements (pixels), e.g. representing an image, wherein generating (rendering) the
render output includes the graphics processor determining the colour (or greyscale)
value to be used for each data element (pixel) of the render output (frame).

The tiles that the render output may be divided into for rendering purposes
can be any suitable and desired such tiles. The size and shape of the rendering
tiles may normally be dictated by the tile configuration that the graphics processor is

configured to use and handle.
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The rendering tiles are preferably all the same size and shape (i.e.
regularly-sized and shaped tiles are preferably used), although this is not essential.
The tiles are preferably square or rectangular. The size and number of tiles can be
selected as desired. In a preferred arrangement, each tile is 16 x 16, or 32 x 32
data elements (pixels) in size (with the render output then being divided into
however many such tiles as are required for the render output size and shape that
is being used).

Graphics processing commands (including the “full-frame” command) (and
data) may be issued to the graphics processor in any suitable and desired manner.

In a preferred embodiment, the graphics processing system includes a, e.g.
host, processor which issues graphics processing commands (including the “full-
frame” command) (and data) to the graphics processor. The, e.g. host, processor
can be any suitable and desired processor, such as and preferably a central
processing unit (CPU), of the graphics processing system.

In a preferred embodiment, the, e.g. host, processor of the graphics
processing system generates the graphics processing commands (including the
“full-frame” command) (and data) for the graphics processor in response to
instructions from an application executing on the processor. This is preferably done
by a driver for the graphics processor that is executing on the, e.g. host, processor.

In a preferred embodiment, graphics processing commands (including the
“full-frame” command) (and data) are written to memory, e.g. by the driver, and the
graphics processor then reads the graphics processing commands (including the
“full-frame” command) (and data) therefrom.

The memory can be any suitable and desired storage. The memory may be
an on-chip memory (i.e. on the same chip as the, e.g. host, processor and/or CPU
and/or the graphics processor) or it may be an external (main) memory (i.e. not on
the same chip as the, e.g. host, processor and/or the graphics processor). Where
the memory is an external memory, it may be connected to the, e.g. host, processor
and/or to the graphics processor by a suitable interconnect.

The “full-frame” command is issued to the graphics processor when it is
desired to perform a graphics processing operation for the entirety of the area of the
render output. According to a preferred embodiment, the, e.g. host, processor (e.g.
the driver for the graphics processor) recognises when a graphics processing
operation for the entirety of the area of the render output is to be performed (e.g.

when the application has so requested), and when it is recognised that a graphics
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processing operation for the entirety of the area of the render output is to be
performed, issues a “full-frame” command to the graphics processor accordingly.

The “full-frame” command that is issued to the graphics processor is a
command that triggers the graphics processor to draw a primitive occupying the
entirety of the area of the render output, and to perform a graphics processing
operation for that “full-frame” primitive.

The “full-frame” command will typically be included in a sequence of plural
graphics processing commands issued to the graphics processor to cause the
graphics processor to generate (render) a desired render output (e.g. frame). The
sequence of plural graphics processing commands issued to the graphics
processor to generate (render) the render output may include one or more
instances of a “full-frame” command.

Thus, in a preferred embodiment, a sequence of plural graphics processing
commands that includes one or more instances of a “full-frame” command to draw
(one or more instances of) a “full-frame” primitive occupying the entire area of the
render output is issued to the graphics processor to generate (render) the render
output, together with one or more other commands to draw one or more other
primitives. The one or more other primitives will typically not occupy the entire area
of the render output, but may each occupy some but not all of the area of the render
output.

To facilitate the rendering operation, the graphics processing commands
(and data) to be processed for the render output (including any “full-frame”
commands) may be organised into distinct draw calls, wherein the draw calls for the
render output are processed in turn to generate the render output.

As discussed above, the data associated with a (and each) command to
draw a primitive issued to the graphics processor (other than a “full-frame”
command in the manner of the present invention) will typically also include vertex
data defining the vertices of the respective primitive to draw. In contrast, (each
instance of) a “full-frame” command should not be (and preferably is not)
associated with vertex data defining the vertices of the “full-frame” primitive.

The “full-frame” command of the present invention triggers the graphics
processor to draw a “full-frame” primitive. The command can indicate this is any
suitable and desired manner, such as by having a particular command identifier that

the graphics processor interprets accordingly. For example, the driver for the



10

15

20

25

30

35

-10 -

graphics processor can generate an appropriate “full-frame” job descriptor and
issue that descriptor for processing by the graphics processor.

As well as indicating a “full-frame” primitive operation, the “full-frame”
command also triggers the graphics processor to perform a desired graphics
processing operation for the entirety of the render output (for the “full-frame”
primitive).

This can be done in any suitable and desired manner. In a preferred
embodiment, the graphics processing operation is indicated by configuration (state)
data that is associated with the “full-frame” command, such as, and preferably, a
draw call descriptor (DCD) for the draw call being processed.

Thus, in a preferred embodiment, a (and each) command is associated with
configuration data (state data) for configuring the graphics processor to perform the
desired graphics processing operation for the (respective) “full-frame” primitive.

Preferably, the configuration data (state data) (for a “full-frame” command) is
issued to the graphics processor by the, e.g. host, processor (along with the
respective command(s)), preferably by the e.g. driver for the graphics processor
running on the, e.g. host, processor writing the configuration data (state data) to
(the) memory, with the graphics processor then reading the configuration data
(state data) from the memory.

The configuration data (state data) may be associated with a “full-frame”
command in any suitable and desired manner. In a particularly preferred
embodiment, (each instance of) the “full-frame” command comprises information
indicative of the (respective) configuration data (state data) (stored in (the)
memory). For example, and in a preferred embodiment, (each instance of) the “full-
frame” command includes an index or pointer indicative of (respective)
configuration data (state data) (e.g. stored in (the) memory).

Thus, in a preferred embodiment, the graphics processor reads the “full-
frame” command (from (the) memory), then reads configuration data (state data)
(from (the) memory) according to information indicative of the location of the
configuration data (state data) included in the read “full-frame” command, and then
performs the graphics processing operation for the “full-frame” primitive according
to the read configuration data.

The “full-frame” primitive that the “full-frame” command instructs the
graphics processor to draw occupies the entirety of the area of the render output

(e.g. frame) (occupies the entirety of the area corresponding to each data element
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(sampling position) of the render output), but can otherwise be any suitable and
desired primitive. This may depend, e.g., upon the shape and configuration of the
render output that is being generated.

Where (as will typically be the case) the render output (frame) corresponds
to a rectangular (including square) area, the “full-frame” primitive will be (and is
preferably) defined by four vertices: one vertex at each of the four corners of the
rectangle (e.g. square). Other arrangements would be possible.

Drawing the “full-frame” primitive can be performed in any suitable and
desired manner which includes the graphics processor determining the vertices for
the “full-frame” primitive from the area of the render output (frame). The vertices for
the “full-frame” primitive are determined by the graphics processor from the area
(the (two-dimensional) size (and position)) of the render output (e.g. frame), but can
otherwise be determined in any suitable and desired manner.

The graphics processor may explicitly determine the vertices for the “full-
frame” primitive, e.g. by assessing the area (the (two-dimensional) size (and
position)) of the render output (frame), and assigning vertices to appropriate
extremities (vertices) of the render output, e.g. one vertex at each of the four
corners of the render output. Where the render output is a frame to be displayed,
the graphics processor may assess the area of the frame based on the defined
area of the frame buffer that is storing the frame.

In a preferred embodiment, the graphics processor reads width and height
values of the render output (target) (e.g. frame), preferably from a descriptor (state
information) for the render output (e.g. a “Frame Buffer Descriptor”), e.g. stored in
(the) memory, and then determines the vertices for the “full-frame” primitive (and
draws the “full-frame” primitive) using the read width and height values. For
example, and preferably, the graphics processor sets the coordinates of one vertex
of the “full-frame” at one corner of the render output (frame), and determines the
coordinates of other vertices of the “full-frame” primitive by adding or subtracting
width and/or height values as appropriate.

Once the vertices for the “full-frame” primitive have been determined, the
graphics processor draws the “full-frame” primitive and performs the graphics
processing operation for the primitive. This can be done in any suitable and desired
manner.

In a preferred embodiment, the “full-frame” primitive is first subjected to a

triangle (primitive) set up operation (preferably in a triangle set up unit) that uses
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the determined vertices for the full-frame primitive to generate barycentric functions
for varying interpolation, and, optionally, and preferably, a set of edge functions for
the primitive. In a preferred embodiment, both barycentric functions and edge
functions are generated, although the edge functions need not be generated from
the vertices, if desired, as because the “full-frame” primitive edge completely covers
the render output, edge functions may not strictly be needed, or can be anything
that covers the entire frame as the area outside the frame will not be subdivided
anyway.

The triangle set up process (triangle set up unit) is preferably able to run a
respective, different, triangle set up process (program) for each specific primitive
type, so, accordingly, in a preferred embodiment, a distinct triangle set up process
(program) is defined for a “full-frame” primitive that is executed in response to
receiving a “full-frame” command (primitive) for processing.

The graphics processing and processor preferably then rasterises the “full-
frame” primitive to graphics fragments, and then performs the graphics processing
operation for the graphics fragments.

The (rasteriser of the) graphics processor, should, and preferably does
rasterise the “full-frame” primitive to generate graphics fragments covering the
entire of the area of the render output.

In a preferred embodiment, the (rasteriser of the) graphics processor is
configured to perform so-called “hierarchical” rasterisation. Thus, in a preferred
embodiment, the (rasteriser of the) graphics processor is configured to rasterise
primitives, including a “full-frame” primitive, by testing larger patches of the render
output to be generated against the primitive to be rasterised, to determine if the
primitive covers (at least in part) any smaller patches of the render output that the
larger patch encompasses. If the primitive does cover (at least in part) any smaller
patches of the render output that the larger patch encompasses, then the larger
patch is sub-divided into those smaller patches, and the process is then repeated
for each smaller patch of the render output that was found to be at least partially
covered by the primitive.

In this way, the rasterisation process operates to iteratively test the primitive
against progressively smaller patches of the render output. A fragment or
fragments is then generated for rendering for patches of sampling points found to

be covered at least in part by the primitive in question.
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In such an arrangement, a “full-frame” primitive of the present invention can
be handled in the same way, but in a preferred embodiment, where hierarchical
rasterisation is used, the rasteriser generates fragments for the “full frame” primitive
in respect of the largest tested patch immediately without subdividing that patch into
smaller patches (for testing) (since it is known that the “full frame” primitive will
cover all of the render output area.

The graphics processing operation that the “full-frame” command instructs
the graphics processor to perform for the “full-frame” primitive occupying the
entirety of the area of the render output can be any suitable and desired graphics
processing operation.

The graphics processing operation should be an operation that it is desired
to perform for the entirety of the area of the render output. Thus, the graphics
processing operation should be a graphics processing operation that has (or at
least has the potential to have) an effect in respect of the entire area of the render
output.

The graphics processing operation can (directly) affect (e.g. write to) data
elements values of the render output. Alternatively, the graphics processing
operation can affect data values associated with the render output, but which are
not the render output itself, such as depth values and/or stencil values and/or other
values that the graphics processor uses to generate the render output. (In such
embodiments, the graphics processing operation accordingly will indirectly affect
the render output.)

In a preferred embodiment, the graphics processing operation is a graphics
processing operation for the entire area of the render output, which if repeated,
would produce the same result (in respect of each data element of the entire render
output) as performing only a single instance of the graphics processing operation.
In other words, performing the graphics processing operation two or more times in a
row would produce the same output result as performing the graphics processing
operation only a single time.

In a preferred embodiment, the graphics processing operation is an
operation that sets the value for each data element for a target area corresponding
to the entire area of the render output to a respective selected, preferably
predetermined, value. The graphics processing operation may set the data

elements for the target area to different values to each other, or may set each data
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element for the target area to the same value (as the value for each other data
element).

The graphics processing operation may be an operation which sets data
values for the render output. For example, and in an embodiment, the graphics
processing operation may set each data element value of the render output, for
example by writing (drawing) to each data element of the render output. In one
such embodiment, the graphics processing operation is a so-called “blitting”
operation, in which an image is drawn across the entire render output (frame). In
another embodiment, the graphic processing operation is a “clear to image” or
“clear to pattern” operation in which the entire render output (frame) is cleared to a
background image or pattern.

Alternatively, and in an embodiment, the graphics processing operation sets
data values associated with the render output, but which are not the render output
itself, in respect of the entire area of the render output (for all data elements
(positions) in the render output). For example, the graphics processing operation is
preferably an operation which sets depth values and/or stencil values and/or other
values that the graphics processor uses to generate the render output. (In such
embodiments, the graphics processing operation accordingly will indirectly affect
the render output.)

Thus, in an embodiment, the graphics processing operation that is
performed for the “full-frame” primitive is an operation which affects (e.g. sets)
depth and/or stencil and/or other values that the graphics processor uses to
generate the render output for an area corresponding to the entire area of the
render output.

In one such embodiment, the graphics processing operation is a “clear”
operation in which depth and/or stencil values and/or other values that the graphics
processor uses to generate the render output are cleared for an area corresponding
to the entire area of the render output (e.g. each corresponding data element value
is set to a data value which indicates that the data element is “cleared”, such as
zero or “NaN”).

Thus, according to a preferred embodiment, the graphics processing system
comprises a depth buffer for storing depth data and/or a stencil buffer for storing
stencil data (in (the) memory). The depth buffer may store depth data for an area
corresponding to the entirety of the area of the render output. Similarly, the stencil

buffer may store stencil data for an area corresponding to the entirety of the area of
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the render output. The graphics processing (e.g. clear) operation may accordingly
affect (clear) the entirety of the depth and/or stencil buffer.

It will be appreciated that in a tile-based graphics processing system, the
depth buffer may typically store depth data for an area corresponding to a single, or
a few, rendering tiles (only). Similarly, the stencil buffer may typically store stencil
data for an area corresponding to a single, or a few rendering tiles (only). In these
embodiments, therefore, the graphics processing (e.g. clear) operation may affect
(clear) the entirety of the depth and/or stencil buffer in respect of each rendering tile
that the render output has been divided into.

In another preferred embodiment, the graphics processing operation is a
background loading operation, in which a background image or pattern for the
entire render output is loaded. In this case, it may be unnecessary to repeat
loading the same background image or pattern in respect of some rendering tiles,
for example in the case that “clear to background” graphics processing operations
are being performed.

In another preferred embodiment, the graphics processing operation is a
graphics processing operation for the entire area of the render output, which if
repeated, would produce an undesired result. In other words, performing the
graphics processing operation two or more times in a row would produce an
undesired result, whereas performing the graphics processing operation only once
produces a desired result.

For example, and preferably, the graphics processing operation is a “full-
frame” filtering or other operation which it is desired to perform only once in respect
of previously drawn data. For example, where some rendering tiles of a filtered
render output are overwritten and others are not, it may be desired to re-apply the
“full-frame” filter operation to the overwritten rendering tiles, but not to the other tiles
to which the filter has already been applied.

As already mentioned, in a tile-based graphics processing system, the
graphics processing operation is performed on a tile-by-tile basis. Thus the present
invention, in this case will comprise the graphics processor processing the “full-
frame” command (and performing the graphics processing operation) on a
tile-by-tile basis.

In a preferred embodiment, tile-by-tile processing is achieved by the use of
so-called “primitive lists”. Thus, in a preferred embodiment, the graphics processing

system (e.g. the host processor and/or driver for the graphics processor and/or
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graphics processor) is operable to arrange graphics processing commands (to draw
primitives) (including the “full-frame” command) (and data) for processing (in
respect of a (or each) draw call) into lists representing different sub-regions of the
render output. Each such “primitive list” should indicate to the graphics processor
the graphics processing commands (primitives) that are to be processed for a
respective sub-region (e.g. for a respective draw call).

The individual primitive lists and the commands (primitives) in them can be
arranged in any desired and suitable fashion and include any desired and suitable
data. The commands (primitives) are preferably listed (ordered) in each primitive
list in the desired processing order (first to last).

The primitive lists may be prepared for any suitable and desired sub-regions
of the render output. The (and each) sub-region may, e.g., correspond to a single
rendering tile, or to a set of plural rendering tiles, as desired.

In one embodiment, primitive lists are prepared for (only) a single set of sub-
regions of the render output area, with each sub-region in the set of sub-regions
corresponding to the same size and shape sub-region of the render output. Ina
preferred such arrangement, each sub-region corresponds to a respective one of
the rendering tiles that the render output has been divided into. Thus, in this case,
each rendering tile will have a primitive list that is exclusive to that rendering tile
prepared for it.

In another preferred embodiment, primitive lists are prepared for two or
more different sets of sub-regions of the render output, wherein each different set of
sub-regions comprises different sized sub-regions to the sub-regions in the other
sets of render output sub-regions for which primitive lists can be prepared.

In this case, each render output sub-region preferably comprises a group of
one or more contiguous rendering tiles. Preferably, the render output sub-regions
are rectangular (including squares). Preferably, the render output sub-regions in a
given set of render output sub-regions all have the same size, and preferably also
the same shape, as each other (i.e. preferably cover the same number of rendering
tiles).

Each set of sub-regions preferably comprises sufficient sub-regions to cover
(and covers) the entire render output (frame), i.e. encompass all the individual
rendering tiles that the render output is divided into.

In a preferred embodiment, the sets of sub-regions comprise one set of
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rendering tile (that are one (1x1) rendering tile in size), and one or more (and
preferably more than one) sets of sub-regions in which each sub-region of the set
corresponds to (encompasses) more than one rendering tile.

In a particularly preferred arrangement, the sets of render output
sub-regions for which primitive lists can be prepared are arranged in a hierarchical
fashion, i.e. such that the number of sub-regions in each set progressively changes
as one moves through the sets of sub-regions. The sets of sub-regions are most
preferably arranged such that they effectively form a pyramidal structure as one
progresses up the sets. The render output area and/or number of rendering tiles
included in the sub-regions preferably progressively increases as one moves up the
sets of sub-regions from lowest set (which may, e.g., be, and in one preferred
embodiment is, a base, single rendering tile sub-region set).

In a preferred embodiment, the sets of sub-regions layering hierarchy is
arranged such that primitive lists can, in effect, be prepared for the entire render
output, for the render output area divided into four sub-regions, for the render
output area divided into 16 sub-regions, for the render output area divided into 64
sub-regions, and so on, e.g., and preferably, down to its division into the individual
rendering tiles.

The graphics processing commands (primitives) (in respect of a (or each)
draw call) may be arranged (e.g. by the driver for the graphics processor and/or the
graphics processor) into primitive lists representing different sub-regions of the
render output in any suitable and desired manner.

A (and each) command to draw a primitive will typically be placed into
primitive lists by processing vertex data associated with (and defining the vertices
of) the primitive to determine which sub-region(s) of the render output the primitive
(potentially) falls within, e.g. using exact binning, or bounding box binning.

Thus, any “full-frame” commands to draw a “full-frame” primitive could be
placed into primitive lists by (e.g. the driver) processing a set of any vertices defined
for the “full-frame” primitive.

However, in a preferred embodiment, “full-frame” commands to draw a “full-
frame” primitive are placed into primitive lists by the graphics processing system
(e.g. the driver) recognising that the “full-frame” command applies to the entire area
of the render output, and when a “full-frame” command that applies to the entire
area of the render output is recognised, listing the “full-frame” command in one or

more primitive lists corresponding to (that encompass) the entire area of the render
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output (without reading (and processing) vertex data associated with (and defining
the vertices of) the “full-frame” primitive). Thus, a “full-frame” command to draw a
“full-frame” primitive is preferably listed in the primitive lists without needing to read
(and without reading) (and process) vertex data associated with (and defining the
vertices of) the “full-frame” primitive.

Thus, in the case where primitive lists are prepared for (only) a single set of
sub-regions of the render output area, a “full-frame” command should be, and is
preferably, included in each primitive list, i.e. each sub-region that the render output
has been divided into.

In the case where primitive lists are prepared for plural sets of sub-regions
(in a “hierarchical” fashion), a “full-frame” command is preferably listed at the
“highest” level of the hierarchy and in all the lists at that level of the hierarchy (so as
to encompass the entire render output area). For example, where one of the sets
of sub-regions contains a single sub-region that encompasses the entire render
output (which will accordingly be at the “highest” level of the hierarchy), a “full-
frame” command is preferably listed (once) in the primitive list for that single
sub-region encompassing the entire render output.

Once all the commands (including any “full-frame” commands) have been
placed into primitive lists and primitive lists have been prepared for the render
output sub-regions, the rendering tiles are preferably then processed and rendered,
using the primitive lists to determine which commands (and primitives) need to be
processed for each tile. Preferably, the graphics processor comprises a primitive
list reading unit (circuit) configured to read the primitive lists and determine which
commands to process for a rendering tile.

Preferably, each rendering tile is processed and rendered separately, i.e.
the separate, individual tiles are rendered one-by-one (i.e. on at tile-by-tile basis).
This rendering can be carried out in any desired manner, for example, by rendering
the individual tiles in succession or in a parallel fashion, and storing the output for
each tile, e.g., in the frame buffer (in (the) memory), e.g. for display.

Thus the present invention preferably comprises, once the primitive lists
have been prepared, processing the commands (including any “full-frame”
commands) to generate the render output, on a tile-by-tile basis, (the primitive list
reading circuit) using the primitive lists to determine which commands to process for
each tile to be rendered (to determine which primitives should be rendered for

which tiles).
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As will be discussed further below, the Applicants have recognised that
when performing a graphics processing operation for the entire area of a render
output that is being generated on a tile-by-tile basis, it may be the case that that
processing operation performed in respect of one or more of the tiles that the
render output has been divided into does not in fact need to be performed.

For example, and as will be discussed further below, in the case of a stencil
buffer clear operation which clears the entire stencil buffer for the entirety of the
area of the render output, it may not be necessary to perform the clear operation in
respect of tiles for which no stencil buffer write operations have been performed
since the previous stencil buffer clear operation was performed.

Thus, in a preferred embodiment, where the graphics processor is a tile-
based graphics processor, the method comprises (and the graphics processor is
correspondingly configured to) determining whether processing (executing) the “full-
frame” command for a tile of the render output being processed would cause the
graphics processor to perform an unnecessary graphics processing operation for
that tile of the render output, and when it is determined that processing the “full-
frame” command for the tile would cause the graphics processor to perform an
unnecessary graphics processing operation for the tile, omitting processing
(executing) the “full-frame” command for the tile. This is preferably done for plural,
and preferably for each, of the rendering tiles that are being processed to generate
the render output (that the render output has been divided into for rendering
purposes).

Thus, according to an embodiment of the present invention, the graphics
processor is a tile-based graphics processor, in which a render output of the
graphics processor is divided into plural rendering tiles for rendering purposes, and
each rendering tile is generated by the graphics processor processing graphics
processing commands for the respective rendering tile; and the method comprises:

the graphics processor, when generating a rendering tile, in response to the
graphics processing command to draw a primitive that occupies the entirety of the
area of the render output and to perform a graphics processing operation for the

primitive to be processed for the rendering tile:
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determining whether it is unnecessary to process the graphics
processing command for the rendering tile; and

when it is determined that processing the graphics processing
command for the rendering tile is unnecessary, omitting processing the
graphics processing command for the rendering tile.

According to an embodiment of the present invention, the graphics
processor is a tile-based graphics processor, in which a render output of the
graphics processor is divided into plural rendering tiles for rendering purposes; and
the graphics processor comprises:

rendering circuitry configured to generate each rendering tile by processing
graphics processing commands for the respective rendering tile; and

command omitting circuitry configured to, when the graphics processor is
generating a rendering tile, in response to a graphics processing command to draw
a primitive that occupies the entirety of the area of the render output and to perform
a graphics processing operation for the primitive to be processed for the rendering
tile:

determine whether it is unnecessary to process the graphics
processing command for the rendering tile; and

when it is determined that processing the graphics processing
command for the rendering tile is unnecessary, cause the rendering circuitry
of the graphics processor to omit processing the graphics processing
command for the rendering tile.

As will be appreciated by those skilled in the art, these embodiments of the
present invention can and preferably do include one or more, and preferably all, of
the preferred and optional features of the present invention described herein, as
appropriate.

In these embodiments, it will be appreciated the (rendering circuit of the)
graphics processor processes (renders) the “full-frame” command for the rendering
tile when it is not determined that processing the “full-frame” command for the
rendering tile is unnecessary (when it is determined that processing the “full-frame”
command for the rendering tile is necessary).

In this case, the (rendering circuit of the) graphics processor, in respect of
the rendering tile it is generating, draws the “full-frame” primitive and performs the

“full-frame” graphics processing operation for the “full-
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frame” primitive in the manner as described above. The graphics processor also
determines the vertices to use for the “full-frame” primitive from the area of the
render output as described above. Instances of a “full-frame” determined as being
unnecessary to process (render) for a rendering tile, however, are not processed
(rendered) by the (rendering circuit of the) graphics processor for the rendering tile.

Thus, a “full-frame” graphics processing command should be, and
preferably is, processed (rendered) in respect of those rendering tiles where it is not
determined (it is other than) to be unnecessary to do so (where it is determined to
be necessary to do so), but not in respect of those rendering tiles where it is
determined to be unnecessary to do so.

Thus, in these embodiments, the total number of graphics processing
operations required to perform a graphics processing operation for the entire area
of a render output in a tile-based graphics processing system may be reduced.
These embodiments accordingly can reduce processing, and accordingly power
usage, for graphics processing operations that are to be performed for an entire
render output.

The graphics processing operation may be any suitable and desired “full-
frame” graphics processing operation (e.g., and preferably, as described above). In
a particularly preferred embodiment, the “full-frame” command is a command to
draw a “full-frame” primitive and to perform a “full-frame” graphics processing
operation for the “full-frame” primitive that sets each data element corresponding to
the entire area of the render output to a respective selected, preferably
predetermined value. The operation may set data element values for the render
output (frame), or for data element values associated with the render output (such
as depth and/or stencil values and/or other values).

Thus, the graphics processing operation is preferably an operation which,
when repeated, produces the same result (in respect of each data element) for the
entire render output, such as, and preferably, a “full-frame” clear operation, to e.g.
clear depth values and/or stencil values for the entire render output.

Where the graphics processing operation is a graphics processing operation
which if repeated, would produce an undesired result, or the same result as
performing only a single instance of the graphics processing operation, the

(command omitting circuit of the) graphics processor preferably identifies
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appropriate opportunities to omit repeating the “full-frame” graphics processing
operation for a rendering tile.

Thus, according to a preferred embodiment, determining whether it is
unnecessary to process the “full-frame” graphics processing command for the
rendering tile comprises determining whether processing the “full-frame” graphics
processing command for the rendering tile would cause the graphics processor to
unnecessarily or undesirably repeat the graphics processing operation for the
rendering tile. In this case, it is determined that it is unnecessary to process the
“full-frame” graphics processing command for the rendering tile when it is
determined that processing the “full-frame” graphics processing command for the
rendering tile would cause the graphics processor to unnecessarily or undesirably
repeat the graphics processing operation for the rendering tile.

The Applicants have recognised that it may be undesirable or unnecessary
to repeat a graphics processing command which affects each data element
corresponding to the entire area of a render output in respect of one or more
rendering tiles. For example, it may be unnecessary to repeatedly perform a clear
operation to set each data element to a value indicating that the data element is
“cleared”, e.g. zero or “NaN” for a rendering tile.

For example, it may be desired to perform a series of plural stencil
operations, each including a stencil clear operation for the entire area of the render
output. In a tile-based graphics processing system, each such stencil operation will
typically be performed by first clearing the entire stencil buffer for the particular tile
that is being processed to a “cleared” state. Then, if the particular tile corresponds
to an area of the render output that it is desired to stencil, writing stencil data to the
stencil buffer.

If, however, the particular tile that is being processed does not correspond
to an area of the render output that it is desired to stencil, then stencil data will not
be written to the stencil buffer, and so the stencil buffer will remain unchanged and
in the “cleared” state. In a subsequent stencil operation for that tile, therefore,
clearing the stencil buffer will be unnecessary, since the stencil buffer will already
be in the “cleared” state. Similarly, in the case of a depth clear operation for the
entirety of the render output, or a “blitting” operation for the entirety of the render
output, some tiles may undergo unnecessary graphics processing operations.

The Applicants have accordingly recognised that in a tile-based graphics

processing system which is repeatedly performing a graphics processing operation
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that, for example, sets each data element for a target area corresponding to the
entire render output to a respective selected (predetermined) value (such as a
stencil clear operation), repeatedly performing such an operation will have the same
effect as performing the operation only once, for rendering tiles where other
commands affecting the selected (predetermined) values are not processed by the
graphics processor in between. Accordingly, some rendering tiles (e.g. those tiles
which correspond to areas which it is not desired to stencil) may undergo a large
number of unnecessary graphics processing operations (e.g. clear operations).

Accordingly, in the present embodiments, such unnecessary operations are
identified and omitted such that the number of “full-frame” commands processed
(executed) by the graphics processor may be significantly reduced.

The graphics processor, (the command omitting circuit) may determine
whether processing the “full-frame” graphics processing command for the rendering
tile would cause the graphics processor to unnecessarily or undesirably repeat the
graphics processing operation for the rendering tile in any suitable and desired
manner.

In a preferred embodiment, the graphics processor determines whether
another (repeated) instance of the “full-frame” command is to be, or has been,
processed for the rendering tile. (and can be omitted).

Thus, in a preferred embodiment, determining whether it is unnecessary to
process the graphics processing command for the rendering tile comprises
determining whether a repeated instance of the command is to be processed for the
rendering tile, wherein the command and the repeated instance of the command
are to be processed for the rendering tile without an intermediate command in
response to which the graphics processor will set a data element for the rendering
tile to a value other than the respective selected value; and determining that it is
unnecessary to process the graphics processing command for the rendering tile
when it is determined that a repeated instance of the command is to be processed
for the rendering tile, wherein the command and the repeated instance of the
command are to be processed for the rendering tile without an intermediate
command in response to which the graphics processor will set a data element for
the rendering tile to a value other than the respective selected value.

This operation may be achieved in any suitable and desired manner. In a
preferred embodiment, the graphics processor comprises primitive list reading

circuitry (e.g., and preferably, as described above) (wherein the primitive list reading
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circuit comprises the command omitting circuit), and the primitive list reading circuit,
in response to reading the “full-frame” graphics processing command in a primitive

list for the rendering tile, determines whether a repeated instance of the “full-frame”
command is to be processed for the rendering tile.

Preferably, the (command omitting circuit of the) graphics processor (e.g.
primitive list reading circuit) does this by determining whether the next command to
be processed for the rendering tile (which affects (writes to) data elements for the
rendering tile) is a repeated instance of the “full-frame” command.

It is then determined that processing the “full-frame” graphics processing
command for the rendering tile would cause the graphics processor to
unnecessarily or undesirably repeat the graphics processing operation for the
rendering tile (and so processing the “full-frame” command is unnecessary) when it
is determined that the next command to be processed for the rendering tile (which
affects (writes to) data elements for the rendering tile) is a repeated instance of the
“full-frame” command.

Preferably, the graphics processor (e.g. primitive list reading circuit) only
considers whether the next or previous command, immediately following or
preceding the “full-frame” command, for the rendering tile is a repeated instance of
the “full-frame” command (i.e. the graphics processor (e.g. primitive list reading
circuit) preferably determines whether the “full-frame” command is one of
consecutive repeated instances of the “full-frame” command to be processed for the
rendering tile (in the primitive list(s) for the rendering tile).

However, it would also be possible for the graphics processor (e.g. primitive
list reading circuit) to, in effect, “ignore” any commands in between repeated
instances of the “full-frame” command which, e.g., and preferably, do not affect (e.qg.
write to) data elements for the rendering tile (and so, e.g., consider whether the
next command to be processed for the rendering tile which does affect (e.g. write
to) data elements for the rendering tile, is a repeated instance of the “full-frame”
command).

(Similarly, it will be appreciated that the graphics processor (e.g. primitive list
reading circuit) could determine that a “full-frame” graphics processing command is
unnecessary to process when it is determined that the “full-frame” command itself is
a repeated instance of an e.g. previous “full-frame” command.)

Thus, in a preferred embodiment, the graphics processor determines

whether the “full-frame” graphics processing command is one of consecutive
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(repeated) instances of the “full-frame” graphics processing command to be
processed for the rendering tile; and determines that it is unnecessary to process
the “full-frame” graphics processing command for the rendering tile when it is
determined that the “full-frame” graphics processing command is one of
consecutive (repeated) instances of the “full-frame” graphics processing command
to be processed for the rendering tile.

The (command omitting circuit of the) primitive list reading circuit may
identify that the next (or previous) command to be processed for the rendering tile is
a repeated instance of the “full-frame” command in any suitable and desired
manner.

In a preferred embodiment, the primitive list reading circuit, upon reading a
“full-frame” command from a primitive list for the rendering tile, “holds back” the
“full-frame” command, and before the graphics processor processes the “full-frame”
command, the primitive list reading circuit determines the next command to be
processed for the rendering tile (by reading the primitive list(s) for the rendering
tile). The primitive list reading circuit then preferably determines whether the next
command to be processed for the rendering tile is a second (repeated) instance of
the “full-frame” command.

The (command omitting circuit of the) primitive list reading circuit may
determine whether the next command to be processed for the rendering tile is a
second (repeated) instance of the “full-frame” command in any suitable and desired
manner.

In a preferred embodiment, the graphics processing system is configured
such that each instance of the “full-frame” command comprises the same
configuration data (state data) indicating data (e.g. an index or pointer) as each
other instance of the “full-frame” command (indicative of the same configuration
data (state data)).

Thus, in a particularly preferred embodiment, repeated instances of a “full-
frame” command are identified by comparing configuration data (state data)
indicating data (e.g. indexes or pointers, such as, and preferably, an index for a
draw call descriptor) included in the commands. If the configuration data (state
data) indicating data, e.g. (e.g. draw call descriptor) indexes, for the commands are
the same, then the commands can be, and are preferably, taken to be the same

(and vice-versa).
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Thus, the (command omitting circuit of the) primitive list reading circuit
preferably determines whether the next command to be processed for the rendering
tile is a second (repeated) instance of the “full-frame” command by comparing the
configuration data (state data) indicating data (e.g. indexes or pointers) included in
the commands. [n this case, it is determined that the next command to be
processed for the rendering tile is a second (repeated) instance of the “full-frame”
command when the configuration data (state data) indicating data (e.g. index or
pointer) for the next command is the same as the configuration data (state data)
indicating data (e.g. index or pointer) for the (first) “full-frame” command.

Then, when it is determined that the next command to be processed for the
rendering tile is a second (repeated) instance of the “full-frame” command, the
primitive list reading circuit preferably causes the graphics processor to omit
processing one of the repeated instances of the “full-frame” command. This may
be achieved by the primitive list reading circuit passing (only) a single instance of
the “full-frame” command to subsequent stages of the graphics processor, such as
the rasteriser, for processing. Preferably, the second (repeated) instance of the
“full-frame” command, in effect, “overwrites” the first instance of the “full-frame”
command.

In this way, identified repeated instances of a “full-frame” command may, in
effect, be “coalesced” into a single “full-frame” command for subsequent processing
by the e.g. rasteriser of the graphics processor, so that only a single instance of the
repeated “full-frame” command (i.e. the “coalesced” command) is processed for the
rendering tile.

If, however, the next command to be processed for the rendering tile is not a
second instance of the “full-frame” command (if the next command is a different
command), the primitive list reading circuit then preferably causes the graphics
processor to process both the first instance of the “full-frame” command and (then)
the next command. Thus, the primitive list reading circuit may pass both
commands to subsequent stages of the graphics processor, such as the rasteriser,
for processing.

Where the (rasteriser of the) graphics processor processes only a single
instance of repeated instances of a “full-frame” command, then the graphics
processor preferably loads configuration data (state data) for only a single instance

of the “full-frame” command.
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Thus, a particularly preferred embodiment comprises the graphics processor
reading (loading) configuration data (state data) (from (the) memory) for only one of
unnecessarily or undesirably repeated instances of a “full-frame” command, and
then processing (only) a single instance of the “full-frame” command according to
the read configuration data (state data).

Thus in the present embodiment, the primitive list reader is able to identify
repeated instances of the “full-frame” command before the graphics processor
reads (loads) configuration data (state data) for the repeated instances of the “full-
frame” command. This can avoid the need to read (load) configuration data in
respect of unnecessarily or undesirably repeated instances of the “full-frame”
command, thereby reducing bandwidth requirements. Thus, the present
embodiment can further reduce memory traffic (bandwidth) and usage, and
accordingly power usage, for graphics processing operations for an entire render
output.

Additionally or alternatively, in a preferred embodiment, the graphics
processor reads configuration data (state data) (from (the) memory) according to
information indicative (e.g. an index or pointer) of the (location of) configuration data
(state data) included in a “full-frame” command, processes the “full-frame”
command according to the read configuration data (state data), and then processes
one or more other instances of the “full-frame” command according to the read
configuration data (state data).

The Applicants have furthermore recognised that where plural instances of a
“full-frame” command are to be processed, then it may be advantageous to only
read configuration data (state data) associated with the “full-frame” command for
(only) one of the plural instances of the “full-frame” command to be processed,
rather than for each of the plural instances of the “full-frame” command to be
processed.

This means that the overall bandwidth consumed can be reduced as
compared to reading configuration data (state data) for each of the plural instances
of the “full-frame” command. Thus, the present embodiment can further reduce
memory traffic (bandwidth) and usage, and accordingly power usage, for graphics
processing operations for an entire render output.

Additionally or alternatively, in a preferred embodiment, where the “full-
frame” command is a command to draw a “full-frame” primitive and to perform a

“full-frame” graphics processing operation for the “full-frame” primitive that sets
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each data element corresponding to the entire area of the render output to a
respective selected, preferably predetermined value, determining whether it is
unnecessary to process the “full-frame” graphics processing command for the
rendering tile comprises determining whether each data element for the rendering
tile is (already) set to the respective selected value; and determining that it is
unnecessary to process the “full-frame” command for the rendering tile when it is
determined that each data element for the rendering tile is (already) set to the
respective selected value.

This operation may be achieved as desired. However, in a preferred
embodiment, the graphics processor comprises a rasteriser (e.g., and preferably, as
described above) (and the rasteriser comprises the command omitting circuit), and
the rasteriser, before rasterising (processing) the “full-frame” primitive for the
rendering tile, determines whether each data element for the rendering tile is
(already) set to the respective selected value. The rasteriser then omits processing
(omits rasterising (generating fragments for)) the “full-frame” primitive for the
rendering tile when it is determined that each data element for the rendering tile is
(already) set to the respective selected value.

For example, and in a preferred embodiment, where the graphics
processing operation is a “full-frame” clear operation to be performed for a “full-
frame” primitive in respect of a rendering tile, the rasteriser determines whether the
rendering tile is already cleared, and if the rendering tile is already cleared, omits
rasterising the “full-frame” primitive for the rendering tile.

In a particularly preferred embodiment, the rasteriser is configured to
perform so-called “hierarchical” rasterisation (e.g., and preferably, as described
above), and the rasteriser of the graphics processor is configured to, in response to
the “full-frame” command to draw the “full-frame” primitive covering the entire area
of the render output to be processed for the rendering tile, test the “full-frame”
primitive against a patch covering the entire area of the render output being
generated to determine if each data element for the rendering tile is (already) set to
the respective selected value. If it is determined that each data element for the
rendering tile is (already) set to the respective selected value, then the patch is
preferably not subdivided, and preferably no fragments are generated for the patch.

In this way, fragments are not generated for the “full-frame” primitive in
respect of the rendering tile, and so processing (rendering) of the “full-frame”

command is stopped (“skipped over”) for that rendering tile.
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In another preferred embodiment, where the “full-frame” command is a
command to perform a “full-frame” clear operation (to clear, e.g., stencil values
and/or depth values), the (command omitting circuit of the (primitive list reading
circuit of the)) graphics processor identifies whether any other graphics processing
commands (in the primitive list(s)) are to be processed for the rendering tile
following the “full-frame” command which could (or will) affect (e.g. draw to) data
values corresponding to the rendering tile.

Thus, in this case, determining whether it is unnecessary to process the
“full-frame” clear command for the rendering tile preferably comprises determining
whether other commands (in the primitive list(s)) are to be processed for the
rendering tile following the “full-frame” clear command (which e.g. affect (draw to) or
use data values corresponding to the rendering tile).

In this case, it is determined that processing the “full-frame” clear command
for the rendering tile is unnecessary when it is determined that no other commands
following the “full-frame” clear command (which affect (draw to) or use data values
corresponding to the rendering tile) are to be processed for the rendering tile.

The Applicants have recognised that in the case of a “full-frame” clear
operation, it may not be necessary to perform the clear operation for a rendering tile
if there are no other commands to process for that rendering tile following the clear
operation to generate the render output and/or if the data values for the rendering
tile are not subsequently used.

Although the present invention has been described above with particular
reference to a single rendering tile, it will be appreciated that the present invention
can be, and preferably is, applied to plural and preferably to each rendering tile that
is generated by the graphics processor to form the render output (frame). Similarly,
although the present invention has been described above with particular reference
to generating a single render out (e.g. frame), it will be appreciated that the present
invention can be, and preferably is, applied to each of plural render outputs
(frames) in a sequence of render outputs (frames) being generated by the graphics
processor.

The present invention can be implemented in any suitable system, such as a
suitably configured micro-processor based system. In an embodiment, the present
invention is implemented in a computer and/or micro-processor based system. The
present invention is preferably implemented in a portable device, such as, and

preferably, a mobile phone or tablet.
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The present invention is applicable to any form or configuration of graphics
processor, such as graphics processors having a "pipelined" arrangement (in which
case the graphics processor comprises a rendering pipeline).

The graphics processing system and/or graphics processor may also
comprise, and/or be in communication and/or associated with, one or more
memories and/or memory devices that store the data described herein, and/or the
output data generated by the graphics processing system or graphics processor,
and/or software for performing the processes described herein.

The various functions of the present invention can be carried out in any
desired and suitable manner. For example, the functions of the present invention
can be implemented in hardware or software, as desired. Thus, for example,
unless otherwise indicated, the various functional elements, stages, and "means" of
the present invention may comprise a suitable processor or processors, controller
or controllers, functional units, circulitry, circuits, processing logic, microprocessor
arrangements, etc., that are operable to perform the various functions, etc., such as
appropriately dedicated hardware elements (processing circuit(s)/circuitry) and/or
programmable hardware elements (processing circuit(s)/circuitry) that can be
programmed to operate in the desired manner.

It should also be noted here that, as will be appreciated by those skilled in
the art, the various functions, etc., of the present invention may be duplicated
and/or carried out in parallel on a given processor. Equally, the various processing
stages may share processing circuits/circuitry, etc., if desired.

Furthermore, any one or more or all of the processing stages of the present
invention may be embodied as processing stage circuit/circuitry, e.g., in the form of
one or more fixed-function units (hardware) (processing circuits), and/or in the form
of programmable processing circuits that can be programmed to perform the
desired operation. Equally, any one or more of the processing stages and
processing stage circuits/circuitry of the present invention may be provided as a
separate circuit element to any one or more of the other processing stages or
processing stage circuits, and/or any one or more or all of the processing stages
and processing stage circuits may be at least partially formed of shared processing
circuits.

Subject to any hardware necessary to carry out the specific functions

discussed above, the components of the graphics processing system can otherwise
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include any one or more or all of the usual functional units, etc., that such
components include.

It will also be appreciated by those skilled in the art that all of the described
embodiments of the present invention can, and in an embodiment do, include, as
appropriate, any one or more or all of the features described herein.

The methods in accordance with the present invention may be implemented
at least partially using software e.g. computer programs. It will thus be seen that
when viewed from further embodiments the present invention provides computer
software specifically adapted to carry out the methods herein described when
installed on a data processor, a computer program element comprising computer
software code portions for performing the methods herein described when the
program element is run on a data processor, and a computer program comprising
code adapted to perform all the steps of a method or of the methods herein
described when the program is run on a data processing system. The data
processor may be a microprocessor system, a programmable FPGA (field
programmable gate array), etc.

The present invention also extends to a computer software carrier
comprising such software which when used to operate a display controller, or
microprocessor system comprising a data processor causes in conjunction with
said data processor said controller or system to carry out the steps of the methods
of the present invention. Such a computer software carrier could be a physical
storage medium such as a ROM chip, CD ROM, RAM, flash memory, or disk, or
could be a signal such as an electronic signal over wires, an optical signal or a
radio signal such as to a satellite or the like.

It will further be appreciated that not all steps of the methods of the present
invention need be carried out by computer software and thus from a further broad
embodiment the present invention provides computer software and such software
installed on a computer software carrier for carrying out at least one of the steps of
the methods set out herein.

The present invention may accordingly suitably be embodied as a computer
program product for use with a computer system. Such an implementation may
comprise a series of computer readable instructions either fixed on a tangible,
nontransitory medium, such as a computer readable medium, for example, diskette,
CDROM, ROM, RAM, flash memory, or hard disk. It could also comprise a series

of computer readable instructions transmittable to a computer system, via a modem
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or other interface device, over either a tangible medium, including but not limited to
optical or analogue communications lines, or intangibly using wireless techniques,
including but not limited to microwave, infrared or other transmission

techniques. The series of computer readable instructions embodies all or part of
the functionality previously described herein.

Those skilled in the art will appreciate that such computer readable
instructions can be written in a number of programming languages for use with
many computer architectures or operating systems. Further, such instructions may
be stored using any memory technology, present or future, including but not limited
to, semiconductor, magnetic, or optical, or transmitted using any communications
technology, present or future, including but not limited to optical, infrared, or
microwave. It is contemplated that such a computer program product may be
distributed as a removable medium with accompanying printed or electronic
documentation, for example, shrinkwrapped software, preloaded with a computer
system, for example, on a system ROM or fixed disk, or distributed from a server or
electronic bulletin board over a network, for example, the Internet or World Wide
Web.

Various embodiments of the present invention will now be described by way
of example only and with reference to the accompanying drawings, in which:

Figure 1 shows an exemplary graphics processing system which may be
operated in accordance with an embodiment of the present invention;

Figure 2 illustrates a driver and memory data structures of a graphics
processing system in accordance with an embodiment of the present invention;

Figure 3A shows an exemplary sequence of graphics processing commands
which may be processed in the manner of the present invention; and Figure 3B
illustrates the effects of processing the exemplary sequence of graphics processing
commands of Figure 3A;

Figure 4 illustrates how the commands of the exemplary sequence of
graphics processing commands of Figure 3A are placed into different levels of a
hierarchy of primitive lists in a manner in accordance with an embodiment of the
present invention;

Figure 5 illustrates how stencil buffer commands of the exemplary sequence
of graphics processing commands of Figure 3A apply to stencil values
corresponding to different tile regions of the render output in a manner in

accordance with an embodiment of the present invention;
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Figure 6 illustrates how commands of the exemplary sequence of graphics
processing commands of Figure 3A apply to different tile regions of the render
output in a manner in accordance with an embodiment of the present invention; and

Figure 7 shows an exemplary graphics processing system which may be
operated in accordance with an embodiment of the present invention.

Like reference numerals are used for like components where appropriate in
the drawings.

A preferred embodiment of the present invention will now be described with
reference to the Figures.

The preferred embodiment of the present invention relates to performing a
graphics processing operation for the entire area of a render output (preferably a
frame for display) being generated by a graphics processor of a graphics
processing system.

Such a system may be configured as shown in Figure 1 (and described
above). Figure 1 shows a typical computer graphics processing system, comprising
a host processor (CPU) 1, a graphics processing unit (GPU) 3, and a memory 5 for
storing data required by and/or generated by the host processor (CPU) 1 and
graphics processing unit (GPU) 3.

The memory 5 may be "on-chip" with the GPU 3 and/or CPU 1, or may be
an external memory that can be accessed by the GPU 3 and/or CPU 1.

When an application 2 that is executing on the CPU 1 requires graphics
processing from the GPU 3, such as a frame to be displayed, the application 2 may
send appropriate commands and data to a driver 4 for the GPU 3 that is running on
the CPU 1.

The driver 4 may then send appropriate commands and data to the GPU 3
to cause it to generate the graphics output required by the application 2. The
commands and data provided by the driver 4 typically include commands to “draw”
primitives to be rendered for the render output (frame) to be generated by the GPU
3, together with associated vertex data representing the vertices to be used for the
primitives for the render output (frame).

The driver 4 may send commands and data to the GPU 3 by writing to data
structures 6 in the memory 5, which data structures 6 may then be read by the GPU
3. Typically, the CPU 1 also writes vertex data defining the vertices for primitives to

be drawn to the memory 5.
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The commands sent to the GPU 3 will then typically cause the GPU 3 to
read and process the vertex data stored in the memory 5 to generate the render
output (frame). The GPU 3 will typically use the vertex data for a primitive to
rasterise the primitive so as to determine a region of the render output (frame) to
which the primitive applies, and to then render the primitive for that region.

Once all of the primitives to be rendered for the render output (frame) have
been rendered, the completed render output (frame) may be written to a frame
buffer 7 in the memory 5, from where it may be provided for display on a display
device, such as a screen or printer.

In these embodiments of the present invention, the graphics processing
system is configured such that when it is desired to perform a graphics processing
operation acting over the entirety of the area of a render output (frame) that is being
generated, e.g. when it is desired to perform a “full-frame” graphics processing
operation, the CPU 1 issues to the GPU 3 a particular, or “special” command to
draw a primitive that occupies the entirety of the area of the render output (frame)
being generated, e.g. the CPU 1 issues to the GPU 3 a “full-frame” command to
draw a “full-frame” primitive. The GPU 3 then draws the “full-frame” primitive and
performs the graphics processing operation for the “full-frame” primitive. As
discussed above, the Applicants have found this to be a particularly efficient and
convenient arrangement for performing a “full-frame” graphics processing
operation.

Moreover, the “full-frame” command to draw a “full-frame” primitive is issued
to the GPU 3 without the CPU 1 writing (or having written) vertex data defining the
vertices of the “full-frame” primitive to the memory 5. In contrast, in these
embodiments, the GPU 3, in response to the “full-frame” command, determines
(itself) the vertices to use for the “full-frame” primitive from the area of the frame (or
frame buffer 7).

As discussed above, this has the advantage of e.g. avoiding the need for
the CPU 1 to write vertex data to the memory 5 and the GPU 3 to read vertex data
from the memory 5 for the “full-frame” primitive. Accordingly, bandwidth and power
requirements for performing a “full-frame” graphics processing operation can be
reduced.

In the present embodiments, the graphics processing system uses so-called
“tile-based” rendering. The “full-frame” command to draw a “full-frame” primitive is

thus preferably processed on a “tile-by-tile” basis.
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Figure 2 shows the operation of the driver 4 for a tile-based graphics
processing system in more detail, according to the present embodiments. As
shown in Figure 2, the driver 4, in response to the commands and data received
from the application 2, may write to the data structures 6 in the memory 5. The
data structures 6, at this stage, may include commands 8A to be processed for the
frame, together with a list of state descriptors 9.

The state descriptors 9 may include data for configuring the GPU 3 to
process the commands, such as data in the form of any one or more of: a “Draw
Call Descriptor” (“DCD”), a “Frame Buffer Descriptor” (“FBD”), a “Renderer Target
Descriptor” (‘RTD”), a “Blend Descriptor”, “Scissor Box Descriptor”, a “Shader
Program Descriptor’, a “Texture Descriptor”, and other descriptors that describe the
renderer state. Typically, each command in the list of primitives 8A includes one or
more indices indicating the data for the state descriptors 9 to use to process the
command in question. The memory 6 can also store the vertex data defining the
vertices of the primitives.

As discussed above, in tile-based rendering, the two-dimensional render
output (frame) is rendered as a plurality of smaller area sub-regions, usually
referred to as “tiles”. The tiles are each rendered separately (typically
one-after-another). The rendered tiles are then recombined to provide the complete
render output (e.g. frame for display). In such arrangements, the render output is
typically divided (by area) into regularly-sized and shaped rendering tiles (they are
usually e.g., squares or rectangles).

The advantage of such tile-based rendering is that graphics processing
commands (primitives) that do not apply to a given tile do not have to be processed
for that tile, and therefore can be ignored when the tile is processed. This allows
the overall amount of graphics processing necessary for a given render output to be
reduced.

In a tile-based rendering system, it is accordingly usually desirable to be
able to identify and know those commands (primitives) that actually apply to a given
rendering tile so as to, e.g., avoid unnecessarily processing commands and
primitives that do not actually apply to a tile.

In order to facilitate this, in the present embodiments, the GPU 3 prepares
for each rendering tile a list of the commands (primitives) to be processed for that
rendering tile (e.g. that will apply to the tile), by arranging the primitives in the list of

primitives 8A produced by the driver 4 into respective “primitive lists” 8B (which can
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also be referred to as a “tile list” or “polygon list”) that identify (e.g. by reference to a
primitive indicator) the commands (primitives) to be processed for the tile in
question.

In one embodiment, the GPU 3 prepares primitive lists for only single
rendering tiles (one for each single rendering tile). In another embodiment,
however, the GPU 3 prepares primitive lists both for single rendering tiles, and
primitive lists for output frame areas comprising more than one tile (i.e. primitive
lists that encompass more than one rendering tile (and thereby, in effect, a larger
area) of the frame to be generated). In other words, as well as preparing lists of
commands (primitives) that are exclusive to single rendering tiles only, primitive lists
that can and will be used for plural rendering tiles in common can be and are
prepared.

In one such embodiment, primitive lists are prepared for plural sets of
rendering tiles that are arranged in a hierarchical fashion. For example, at the “top
level” of the hierarchy, a primitive list is prepared in respect of the entire output
frame. At the next “level’ of the hierarchy, a primitive list is prepared in respect of
each of four sub-regions that the frame area is divided into. At the next “level” of
the hierarchy, a primitive list is prepared in respect of each of 16 sub-regions that
the frame area is divided into, and so on, down to the “bottom level” of the hierarchy
where primitive lists are prepared in respect of each individual rendering tile.

When a command to draw a primitive is received for processing by the GPU
3, it may be put in the appropriate primitive list(s) (stored in the data structures 6 in
the memory 5). This is typically done by reading and processing vertex data for the
primitive (from the memory 5) to determine a location for the primitive, comparing
the primitive's location with the locations of the frame areas for which primitive lists
are being prepared, and then allocating the primitive to the primitive list(s) based on
the comparison. This may be done using a bounding box binning technique or an
exact binning technique, for example.

In contrast, in the present embodiments, the “full-frame” command to draw a
“full-frame” primitive may be listed in the appropriate primitive list(s) without reading
and processing vertex data for the “full-frame” primitive. In this regard, the
Applicants have recognised that it is possible to determine the primitive list(s) to list
a “full-frame” primitive in without needing to read and process vertex data for the

“full-frame” primitive, since a “full-frame” primitive should, by definition, be listed in
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primitive list(s) for an area corresponding to the entire render output frame in order
for the primitive to be processed for the entire frame.

Thus, where primitive lists are prepared for (only) single rendering tiles, the
“full-frame” command may be listed in the primitive lists for each rendering tile
(preferably without reading and processing vertex data for the “full-frame” primitive).
Where primitive lists are prepared in a hierarchical fashion, the “full-frame”
command may be listed in the primitive list for the entire output frame, at the “top
level” of the hierarchy (preferably without reading and processing vertex data for the
“full-frame” primitive).

Once lists of commands (primitives) to be processed (the primitive lists)
have been prepared for each single rendering tile (and for frame areas comprising
more than one tile, as the case may be), the primitive lists may be stored for use in
the data structures 6 in the memory 5, e.g., to allow the GPU 3 to identify which
commands (primitives) need to be considered (and processed) when the tile in
question is rendered.

Then, when a tile is being rendered, the GPU 3 may read the primitive list(s)
for the tile in question, and process each command listed in the list(s) in turn to
generate an output frame area for the tile. The GPU 3 will typically process each
command to draw a primitive by rasterising the primitive to fragments and then
processing (rendering) the fragments.

Each tile may be rendered in turn in this manner, and the output frame
areas for all of the tiles combined to generate the entire output frame, which may be
stored in the frame buffer 7 in the memory 5 for display.

Thus, in a preferred embodiment, the GPU 3 rasterises a “full-frame”
primitive to fragments covering the entire frame area, and then processes (renders)
those fragments. This is done without reading and processing vertex data for the
“full-frame” primitive.

Figure 3A shows an example list of commands sent by the application 2 to
the driver 4 to perform two stencil operations in an embodiment of the present
invention. Before the GPU 3 processes these commands, all of the state
descriptors 9 stored in the memory 5 may be set to “default’ states.

The first command in the example shown in Figure 3A, command C1, is a
“full-frame” command to clear stencil values for an area corresponding to the entire
output frame by drawing a “full-frame” primitive and processing the “full-frame”

primitive to clear the stencil values.
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As discussed above, commands such as those shown in Figure 3A will
typically be processed in a tile-based graphics processing system by processing the
commands on a “tile-by-tile” basis. Thus, for example, each time command C1 is
processed for a particular tile, the stencil buffer for the tile may be “cleared”.

As shown in Figure 3A, command C1 is followed by command S1, which is
a command to draw a first stencil mask to the stencil buffer (for the appropriate
tile(s)). The next command in the list of commands, command O1, is a command
to draw object 1 to the frame buffer 7 using the first stencil mask drawn according to
command S1.

As discussed above, upon receiving these commands, the driver 4 may
instruct the GPU 3 to process the commands appropriately. Thus, the GPU 3 may
read each command provided to it by the driver 4, load state data associated with a
respective command from the state descriptors 9 in memory 5 according to an
index in the command, and process the command according to the state data.

The effect of the GPU 3 processing the first three commands (C1, S1 and
O1) is illustrated in the top row of Figure 3B. As shown in the top row of Figure 3B,
by applying the first stencil buffer mask drawn according to command S1 to object 1
according to command O1, only the masked portion of object 1 is drawn to the
frame buffer 7.

Once object 1 has been written out to the frame buffer 7, in this example, it
is desired to perform a second stencil operation using a different stencil mask. To
ensure that the previously drawn stencil data does not affect the second stencil
operation, the entirety of the stencil data is cleared.

Thus, as shown in Figure 3A, the list of commands sent by the application 2
to the driver 4 includes a second “full-frame” clear command, command C2, to clear
stencil values for an area corresponding to the entire output frame. As shown in
Figure 3A, this is followed by command S2 to draw a second stencil mask, and then
command O2 to draw object 2 to the frame buffer 7 using the second stencil mask
drawn according to command S2.

The effect of the GPU 3 processing commands C2, S2 and O2 is illustrated
in the middle row of Figure 3B. As shown in the middle row of Figure 3B, by
applying the second stencil buffer mask drawn according to command S2 to object
2 according to command O2, only the masked portion of object 2 is drawn to the

frame buffer 7.
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The combination of the two stencil operations is illustrated in the bottom row
of Figure 3B. As shown in the bottom row of Figure 3B, the frame buffer 7 includes
object 2 stencilled according to the second stencil mask overlaying object 1
stencilled according to the first stencil mask.

Figure 4 illustrates the preparing of “hierarchical” primitive lists for the
graphics processing commands of the example of Figure 3, in accordance with the
present embodiments.

As discussed above, in the present embodiments, the graphics processing
system is configured such that a “full-frame” command to draw a “full-frame”
primitive, is listed in the primitive list for the entire area of the output frame, i.e. at
the highest level of the hierarchy. This is done without the GPU 3 reading and
processing vertex data for the “full-frame” primitive.

Thus, as shown in Figure 4, the GPU 3 lists the “full-frame” clear command
CA1, at the highest level of the hierarchy, level “0”. Similarly, “full-frame” clear
command C2 is also listed in the primitive list for level “0”.

As shown in Figure 4, commands S1, S2, O1 and O2, however, are each
listed in various primitive lists at lower levels, levels “3” and “4”, of the hierarchy.
This may be done, in contrast with the case of “full-frame” commands, by the GPU
3 processing vertex data defining the vertices of primitives corresponding to the
desired operations to determine the position of the primitive in question, and
comparing the position of the primitive in question with the positions of the
“hierarchical” sub-regions that the output frame has been divided into to determine
the appropriate sub-region(s) to list the primitive for.

Figure 5 illustrates how the stencil commands of the example of Figure 3
apply to stencil values corresponding to different tile regions of the output frame.
As illustrated in Figure 5A, both stencil write commands S1 and S2 apply to the tiles
of region C; only the first stencil write command, S1, applies to the tiles of region B;
only the second stencil write command, S2, applies to the tiles of region D; and
neither command S1 nor command S2 apply to the tiles of region A. “Full-frame”
stencil clear commands C1 and C2, however, each apply to stencil values for the
entire area of the output frame, i.e. “full-frame” stencil clear commands C1 and C2
each apply to the tiles of regions A, B, C and D.

The list of commands to be processed for the tiles of each region A-D is
illustrated in Figure 5B. As shown in Figure 5B, the tiles of region A have stencil

clear command C1 followed by stencil clear command C2 to be processed for them.
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The tiles of region B have stencil clear command C1, then stencil write command
S1, and then stencil clear command C2 to be processed for them. The tiles of
region C have stencil clear command C1, then stencil write command S1, then
stencil clear command C2, and then stencil write command S2 to be processed for
them. The tiles of region D have stencil clear command C1, then stencil clear
command C2, and then stencil write command S2 to be processed for them.

Thus, as shown in Figure 5B, in this example, the tiles of region A have two
stencil clear commands (C1 and C2) to be processed for them without a stencil
write command to be processed in between those stencil clear commands. Thus,
processing the first clear command C1 for the tiles of region A will have the effect of
clearing the tiles of region A such that, e.g. the value for each stencil data element
(pixel) for the tiles of region A will be set to zero (or another value indicating that a
data element is “cleared”). Processing the second clear command C2 for the tiles
of region A, will however, have essentially no effect for the tiles of region A, since
the tiles of region A will have already been cleared by processing command C1. As
can be seen from Figure 5B, the same applies to the tiles of region D.

Thus, in the present embodiments, the GPU 3 will only process a single
instance of the repeated stencil clear command in respect of the tiles of region A
(and the tiles of region D). l.e. the GPU 3 processes either command C1 or
command C2 for the tiles of region A (and D) (and omits processing the other).
Preferably, command C1 51, 52 is discarded and only command C2 is processed.
In this way, commands C1 and C2 are, in effect, “coalesced” into a single stencil
clear command for the tiles of regions A and D. As discussed above, this means
that the overall processing required to perform the stencil operation is reduced.

In the case of the tiles of region C, however, as shown in Figure 5B, the tiles
of this region are cleared, then written to by the first stencil write command S1, then
cleared again, and then written to again by the second stencil write command S2.
In this case, it will be appreciated that both clear operations should be (and
preferably are) performed to ensure that each write operation has the desired
effect.

Figure 6 illustrates how all of the graphics processing commands, including
commands O1 and O2, of the example of Figure 3 apply to different tile regions of
the output frame.

As shown in Figure 6, in this example, the tiles of regions A1, A3 and D1

each have two stencil clear commands (C1 and C2) to be processed for the tiles
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without any commands (at all) applying in between those stencil clear commands.
Thus, as with regions A and D of the example of Figure 5, according to the present
embodiments, the GPU 3 will only process a single instance of the repeated stencil
clear command in respect of these tiles. |.e. the GPU 3 processes either command
C1 or command C2 (preferably only command C2, and not command C1 61, 62,
63) for the tiles of regions A1, A3 and D1. This “coalescing” operation can reduce
bandwidth and processing requirements, as discussed above.

In the present embodiments, the “coalescing” operation of the present
invention is achieved by the GPU 3 “holding back” the processing of “full-frame”
commands.

Thus, in these embodiments, when the GPU 3 reads a “full-frame”
command for a tile it is processing, instead of immediately processing the “full-
frame” command for the tile, the GPU 3 first reads the next command to process in
the primitive list(s) for the tile. If the next command is also a “full-frame” command
which can be “coalesced” with the first “full-frame” command, then the GPU 3 then
“coalesces” the two commands such that, in effect, only one of the two “full-frame”
commands is processed by the GPU 3.

If the next command is not a “full-frame” command which can be
“coalesced” with the first “full-frame” command, however, then the GPU 3 may then
process both commands.

If there is no next command to process for the tile, then (e.g. in the case that
the “full-frame” command to process for the tile is a clear command) the GPU 3
may only process the “full-frame” (clear) command if it is necessary to do so, e.g. if
data for the tile is to be used for a subsequent graphics processing operation (e.g. if
it is to be “written back” to memory).

Thus, in the case of the tiles of region A1 (and regions A3 and D1) of the
example of Figure 6B (and regions A and D of the example of Figure 5B), the GPU
3 first reads command C1 61 and then, before processing command C1 61, reads
the next command for region A1, command C2. In this case, the GPU 3 will then
determine that both commands are “full-frame” clear operations, and so will then
“coalesce” these commands into a single “full-frame” clear command so as to
process a single “full-frame” clear command for the tiles of region A1.

In the case of the tiles of region C2 (and regions B1, B2, B3 and C1) (and
regions B and C in the example of Figure 5B) by contrast, the GPU 3 first reads

command C1 and then, before processing command C1, reads the next command
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for region C2, command S1. In this case, the GPU 3 will determine that the next
command is not a “full-frame” clear operation, and so will then send both
commands C1 and S1 for processing. Similarly, both commands C1 and O1 may
be sent for processing in the case of the tiles of regions A2 and D2.

Furthermore, in the case of the tiles of region B1 (and region B of the
example of Figure 5B), when the GPU 3 reads command C2, before processing
command C2, it may determine that there are no further commands to be
processed for region B1. In this case, the GPU 3 may then process command C2.
However, if e.g. the stencil buffer data for the tiles of region B1 will not be
subsequently used (e.g. written back to memory 5), then the GPU 3 may also omit
processing clear command C2 for the tiles of region B1.

In these embodiments, the “holding back” “coalescing” of a “full-frame”
command preferably occurs before the GPU 3 reads configuration (state) data for
the command. In this way, the GPU 3 can avoid reading state data for a command
which it is not necessary to process. Accordingly, as discussed above, state
descriptor “thrashing” and bandwidth requirements can be reduced.

This operation may be achieved in a graphics processing system configured
as shown in Figure 7. As shown in Figure 7, in the present embodiments, the GPU
3 includes a primitive list reader (circuit) 31, a resource allocation/state loading unit
32, a vertex loader 33, a triangle setup unit 34, a rasteriser 35, and a fragment
processing unit 36.

In these embodiments, the primitive list reader 31 of the GPU 3 determines
which command (primitive) is to be processed next for a tile currently being
rendered. It does this by considering the primitive lists 8B, stored in the memory 5,
and selecting from one of those lists the next command (primitive) to be processed.
Typically, the primitive list reader 31 reads the stored primitive lists 8B, that have
been determined as applying to the tile that is currently being rendered.

For example, where primitive lists are prepared in a “hierarchical” fashion in
the manner as described above, the primitive list reader 31 may read the primitive
list that is exclusive to the individual rendering tile that is being rendered, the
primitive list for the 2 x 2 rendering tile sub-region that includes the tile that is being
rendered, the primitive list for the 4 x 4 rendering tile sub-region that includes the
tile that is being rendered, and so on up to the primitive list for the rendering tile

sub-region that covers the entire frame.
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If the primitive list reader 31 selects a “full-frame” command (e.g. a “full-
frame” clear command, such as command C1), the “full-frame” command is “held
back”, and before the “full-frame” command is passed to the resource
allocation/state loading unit 32, the primitive list reader 31 selects the next
command (primitive) to be processed for the tile in the manner as described above.

The primitive list reader 31 may then compare the “held-back” “full-frame”
command with the next command. The comparison may be done by comparing
indices included in the commands which indicate of the location of state data stored
for the commands (e.g. draw call descriptor (DCD) indices). It is determined that
the next command is another instance of the “held-back” “full-frame” command
when the (e.g. “DCD”) index of the next command is the same as the (e.g. “DCD”)
index of the “held-back” command.

If, based on the comparison (of index values), it is determined that the next
command is not another instance of the “held-back” “full-frame” command (the
indices are different), then the first “full-frame” command is passed to the resource
allocation/state loading unit 32, followed by the next command. If, however, based
on the comparison (of index values), it is determined that the next command is
another instance of the “held-back” “full-frame” command (the indices are the
same), then only one of the two “full-frame” commands is passed to the resource
allocation/state loading unit 32, and the other “full-frame” command is discarded
(preferably the second “full-frame” command “overwrites” the first “full-frame”
command). In this way, the two “full-frame” commands are, in effect, “coalesced”
into a single “full-frame” command for a rendering tile.

The primitive list reader 31 then provides the selected “full-frame” command
to the resource allocation/state loading unit 32 which loads state data from state
descriptors 9 in the memory 5 according to the index in the command. The state
data for the “full-frame” command loaded by the resource allocation/state loading
unit 32 is used to configure the subsequent stages of the GPU 3 to process a “full-
frame” primitive so as to perform the “full-frame” command for the tile.

It will be appreciated that by “coalescing” two “full-frame” commands into a
single “full-frame” command before loading state data for the commands, only a
single set of state data needs to be loaded from memory by the resource
allocation/state loading unit 32 to process the single “full-frame” command.
Bandwidth and power requirements can accordingly be reduced, as compared to

loading state data for both commands. Bandwidth and power requirements may be
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further reduced by re-using loaded state data to process repeated instances of the
“full-frame” command for a tile, where appropriate.

Typically, the vertex loader 33 would retrieve the appropriate vertex data for
the primitive being processed from the memory 5, and provide the primitive (i.e. its
vertex data) to the triangle setup unit 34 which would process the vertex data, e.g.
by executing a triangle set up program, to provide data for the primitive in a form
that is suitable for 2D placement of the primitive in the frame to be displayed (such
as “edge functions defining the edges of the primitive and “barycentric functions” for
varying interpolation). The primitive data would then be provided to the rasteriser
35 for processing.

However, in the present embodiments, the “full-frame” command (primitive)
is “implicitly” full-frame and so is not associated with vertex data stored in the
memory 5. In this case, therefore, the GPU 3 (the triangle set up unit) (itself)
determines the vertices for the “full-frame” primitive.

It does this by reading width and height values for the frame being
generated from the “Frame Buffer Descriptor” stored in the data structures 6 in the
memory 5, and drawing the “full-frame” primitive as a front-facing axis-aligned

rectangle, having the following coordinates:

1. {0,0,0,1}
2. {width, 0,0, 1}
3. {0, height,0,1}.

The triangle setup unit 34 then executes a triangle setup program which is
specific to “full-frame” primitives, to generate edge functions and barycentric
functions for the “full-frame” primitive. In the present embodiments, the “full-frame”
triangle setup program generates the edge functions and barycentric functions for
the “full-frame” primitive using the determined vertex positions for the “full-frame”
primitive.

The rasteriser 35 then rasterises the “full-frame” primitive to fragments
covering the entire area of the region (tile) being processed. The rasteriser 35 then
provides those fragments to the fragment processing unit 36 for rendering. The
fragment processing unit 36 performs graphics processing operations according to
the loaded state data on the fragments, and stores the rendered fragment data in

tile buffers for providing to the frame buffer 7 (for a display).
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This process is repeated for all the commands (primitives) that need to be
processed for a given rendering tile (i.e. that are included in primitive lists 8
appropriate to the tile) until all the commands (primitives) for the tile have been
processed (and so the tile buffers contain all the rendered data for the tile in
question). The rendered tile data is then preferably written out (exported) to the
frame buffer 7 in the memory 5.

The GPU 3 then renders the next rendering tile in the same manner, and so
on, until all the individual rendering tiles for the frame have been rendered (and
written out to the frame buffer 7). The process is then repeated for the next output
frame to be generated, and so on.

The GPU 3 may be configured, additionally or alternatively, to “skip over”
“full-frame” commands, where appropriate. For example, in the present
embodiments, the GPU 3 is configured to be able to determine, upon receiving a
“full-frame” primitive to process to perform a “full-frame” clear operation in respect
of a rendering tile, whether the target area of the “full-frame” clear operation has
already been cleared. If the GPU 3 determines that the target area of the “full-
frame” clear operation has already been cleared, the GPU 3 omits processing
(“skips over”) the “full-frame” primitive for the tile.

In the present embodiments, the rasteriser 35 is configured to perform
“hierarchical” rasterisation, wherein the rasteriser 35 iteratively tests primitives
against progressively smaller patches of the frame, and generates fragments for
rendering for patches of sampling points found to be covered at least in part by the
primitive in question.

In these embodiments, the “hierarchical” rasteriser 35 is configured such
that upon receiving a “full-frame” primitive to rasterise for performing a “full-frame”
clear operation, the rasteriser 35 tests the “full-frame” primitive against a “full-frame”
(or “full-tile™) patch to determine if the target area covered by the patch has already
been cleared. Ifitis determined that the target area covered by the patch has
already been cleared, the patch is discarded and no fragments are generated for
the “full-frame” primitive for subsequent processing by the fragment processing unit
36. In this way, the “full-frame” command is “skipped over” by the rasteriser 35.

For example, in the case of a stencil clear operation, the “hierarchical”

rasteriser 35 may be configured (by state data) to have the following state:

Stencil reference value = clear value
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Stencil test = not equal

Stencil function = set to reference

This ensures that when stencil values are already equal to the cleared
value, subdivision is stopped and the current patch is discarded, such that no
fragments are generated for processing. If a stencil value is not equal to the
cleared value, subdivision proceeds, and the stencil values are subsequently
cleared by the generation and processing of fragments.

Thus, in the example of Figure 6B, stencil clear command C2 64, 65 may be
“skipped over” in this manner for the tiles of regions A2 and D2, since for these tiles
the stencil buffer will already have been cleared by command C1, while
intermediate command O1 will not have written to (affected) the stencil buffer.

Thus, by configuring the primitive list reader 31 in the above manner,
unnecessarily repeated instances of a “full-frame” command to be processed for a
rendering tile can be identified when the repeated “full-frame” commands are
immediately consecutive to each other in the sequence of graphics processing
commands to be processed for the rendering tile. Moreover, in this case, the
repeated “full-frame” commands can be identified before the resource
allocation/state loading unit 32 has loaded state data for the repeated commands.
This means, as discussed above, that state data only needs to be loaded for a
single instance of the repeated command.

By additionally configuring the rasteriser 35 in the above manner,
unnecessarily repeated instances of a “full-frame” command to be processed for the
rendering tile which are not immediately consecutive to each other in the sequence
of graphics processing commands to be processed for the rendering tile (but which
are separated by an intermediate command which does not, e.g. write to the stencil
buffer) can also be identified. However, in this case, the repeated commands are
identified after the resource allocation/state loading unit 32 has (already) loaded
state data for both instances of the command.

Although the above has been described with particular reference to omitting
processing a graphics processing command for a (singular) sub-region or tile, it will
be appreciated that the present invention can be applied to one or more, and
preferably each, sub-region or tile that the render output has been divided into.

Similarly, although the above has been described with particular reference

to a (singular) render output or frame, it will be appreciated that the present
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invention can be applied to one or more, and preferably each, render output or
frame that the graphics processor generates.

Although the above has been described with particular reference to a stencil
buffer clear operation, it will be appreciated that the present invention also extends
to other graphics processing operations and/or other target areas, such as a
“blitting” operation, or a depth buffer clear operation or a filtering operation.

Similarly, although the above has been described with particular reference
to generating an output frame for display, it will be appreciated that the present
invention also extends to other render outputs, such as intermediate data intended
for use in later rendering passes (e.g. a "render to texture" output).

It can be seen from the above, the present invention, in its preferred
embodiments at least, provides an improved method for performing graphics
processing operations for an entire render output in a tile-based graphics
processing system. This is achieved, in preferred embodiments of the present
invention at least, by a graphics processor of the graphics processing system
drawing a “full-frame” primitive by determining the vertices for the “full-frame”
primitive from the area of the render output, and performing the graphics processing
operation for the “full-frame” primitive. In preferred embodiments processing of a
“full-frame” graphics processing command for a rendering tile is omitted, when it is
determined that processing the “full-frame” graphics processing command for the
rendering tile is unnecessary.

The foregoing detailed description has been presented for the purposes of
illustration and description. It is not intended to be exhaustive or to limit the
technology to the precise form disclosed. Many modifications and variations are
possible in the light of the above teaching. The described embodiments were
chosen in order to best explain the principles of the technology and its practical
application, to thereby enable others skilled in the art to best utilise the technology
in various embodiments and with various modifications as are suited to the
particular use contemplated. It is intended that the scope be defined by the claims

appended hereto.
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CLAIMS

1. A method of operating a graphics processing system comprising a graphics
processor, the method comprising:
when it is desired to perform a graphics processing operation for the entirety
of the area of a render output that is being generated by the graphics processor:
issuing, to the graphics processor, a command to draw a primitive
that occupies the entirety of the area of the render output and to perform the
graphics processing operation for the primitive, and in response to which
command, the graphics processor will determine the vertices for the
primitive from the area of the render output; and
the graphics processor in response to the command:
determining the vertices for the primitive to be drawn in response to
the command from the area of the render output;
drawing the primitive using the determined vertices so as to occupy
the entirety of the area of the render output; and
performing the graphics processing operation defined for the

command for the primitive.

2. The method of claim 1, wherein issuing the command to draw the primitive
to the graphics processor is performed without writing vertex data associated with

the primitive to memory.

3. The method of claim 1 or 2, wherein the graphics processing system is a
tile-based graphics processing system, the render output is divided into plural
rendering tiles for rendering purposes, and the method comprises:

the graphics processor:

determining whether it is unnecessary to process the command for a
rendering tile of the plural rendering tiles that the render output has been divided
into; and

when it is determined that processing the command for the rendering tile is

unnecessary, omitting processing the command for the rendering tile.
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4 The method of any preceding claim, wherein the graphics processing
operation is an operation that sets each data element corresponding to the entire

area of the render output to a respective selected value.

5. The method of claim 4, wherein the graphics processing operation is
selected from: (i) a “blitting” operation; (ii) a stencil clear operation; (iii) a depth clear

operation; (iv) a background image loading operation; and (v) a filtering operation.

6. The method of claim 4 or 5 as dependent on claim 3, wherein determining
whether it is unnecessary to process the graphics processing command for the
rendering tile comprises determining whether a repeated instance of the command
is to be processed for the rendering tile, wherein the command and the repeated
instance of the command are to be processed for the rendering tile without an
intermediate command in response to which the graphics processor will set a data
element for the rendering tile to a value other than the respective selected value;
and

determining that it is unnecessary to process the graphics processing
command for the rendering tile when it is determined that a repeated instance of the
command is to be processed for the rendering tile, wherein the command and the
repeated instance of the command are to be processed for the rendering tile
without an intermediate command in response to which the graphics processor will
set a data element for the rendering tile to a value other than the respective

selected value.

7. The method of claim 6, wherein:

graphics processing commands to be processed by the graphics processor
to generate the render output are arranged into primitive lists representing different
sub-regions of the render output;

the graphics processor comprises a primitive list reading circuit which reads
the primitive lists to determine the graphics processing commands to be processed
for each rendering tile; and the method comprises:

the primitive list reading circuit, in response to reading the command in a
primitive list for the rendering tile:

determining whether a repeated instance of the command is to be

processed for the rendering tile by determining whether the next command
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to be processed for the rendering tile is a repeated instance of the
command; and

when it is determined that the next command to be processed for the
rendering tile is a repeated instance of the command, causing the graphics

processor to omit processing the command for the rendering tile.

The method of claim 6 or 7, further comprising:

when it is determined that processing the command for the rendering tile is

unnecessary:

the graphics processor then loading configuration data for
configuring the graphics processor to perform the graphics processing
operation for only a single instance of the command, and processing only a
single instance of the command according to the read configuration data for

the rendering tile.

The method of claim 4 or 5 as dependent on claim 3, wherein:

determining whether it is unnecessary to process the command for the

rendering tile comprises:

10.

determining whether each data element for the rendering tile is set to
the respective selected value; and

determining that it is unnecessary to process the command for the
rendering tile when it is determined that each data element for the rendering

tile is set to the respective selected value.

The method of claim 9, wherein:

the graphics processor comprises a rasteriser which determines whether

each data element for the rendering tile is set to the respective selected value by

testing the primitive against a patch covering the area of the render output being

generated.

11.

A graphics processing system comprising a command issuing circuit and a

graphics processor,

wherein the command issuing circuit is configured to:

when it is desired to perform a graphics processing operation for the entirety

of the area of a render output that is being generated by the graphics processor:
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issue, to the graphics processor, a command to draw a primitive that
occupies the entirety of the area of the render output and to perform the
graphics processing operation for the primitive, and in response to which
command, the graphics processor will determine the vertices for the
primitive from the area of the render output; and
the graphics processor is configured to, in response to a command to draw
a primitive that occupies the entirety of the area of the render output and to perform
a graphics processing operation for the primitive:
determine the vertices for the primitive to be drawn in response to
the command from the area of the render output;
draw the primitive using the determined vertices so as to occupy the
entirety of the area of the render output; and
perform the graphics processing operation defined for the command

for the primitive.

12. The system of claim 11, wherein the command issuing circuit is configured
to issue the command to draw the primitive to the graphics processor without

writing vertex data associated with the primitive to memory.

13. The system of claim 11 or 12, wherein the graphics processing system is a
tile-based graphics processing system, the render output is divided into plural
rendering tiles for rendering purposes; and

the graphics processor comprises a command omitting circuit configured to:

determine whether it is unnecessary to process the command for a
rendering tile of the plural rendering tiles that the render output has been divided
into; and

when it is determined that processing the command for the rendering tile is
unnecessary, cause the graphics processor to omit processing the command for the

rendering tile.

14. The system of any one of claims 11 to 13, wherein the graphics processing
operation is an operation that sets each data element corresponding to the entire

area of the render output to a respective selected value.
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15. The system of claim 14, wherein the graphics processing operation is
selected from: (i) a “blitting” operation; (ii) a stencil clear operation; (iii) a depth clear

operation; (iv) a background image loading operation; and (v) a filtering operation.

16. The system of claim 14 or 15 as dependent on claim 13, wherein the
command omitting circuit is configured to:

determine whether it is unnecessary to process the graphics processing
command for the rendering tile by determining whether a repeated instance of the
command is to be processed for the rendering tile, wherein the command and the
repeated instance of the command are to be processed for the rendering tile
without an intermediate command in response to which the graphics processor will
set a data element for the rendering tile to a value other than the respective
selected value; and

determine that it is unnecessary to process the graphics processing
command for the rendering tile when it is determined that a repeated instance of the
command is to be processed for the rendering tile, wherein the command and the
repeated instance of the command are to be processed for the rendering tile
without an intermediate command in response to which the graphics processor will
set a data element for the rendering tile to a value other than the respective

selected value.

17. The system of claim 16, wherein:

graphics processing commands to be processed by the graphics processor
to generate the render output are arranged into primitive lists representing different
sub-regions of the render output;

the graphics processor comprises a primitive list reading circuit which reads
the primitive lists to determine the graphics processing commands to be processed
for each rendering tile, wherein the primitive list reading circuit comprises the
command omitting circuit; and

the primitive list reading circuit is configured to, in response to reading the
command in a primitive list for the rendering tile:

determine whether a repeated instance of the command is to be
processed for the rendering tile by determining whether the next command
to be processed for the rendering tile is a repeated instance of the

command; and
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when it is determined that the next command to be processed for the
rendering tile is a repeated instance of the command, cause the graphics

processor to omit processing the command for the rendering tile.

18. The system of claim 16 or 17, wherein the graphics processor is further
configured to:
when it is determined that processing the command for the rendering tile is
unnecessary:
then load configuration data for configuring the graphics processor to
perform the graphics processing operation for only a single instance of the
command, and process only a single instance of the command according to

the read configuration data for the rendering tile.

19. The system of claim 14 or 15 as dependent on claim 13, wherein:
the command omitting circuit is configured to determine whether it is
unnecessary to process the command for the rendering tile by:
determining whether each data element for the rendering tile is set to
the respective selected value; and
determining that it is unnecessary to process the command for the
rendering tile is when it is determined that each data element for the

rendering tile is set to the respective selected value.

20. The system of claim 19, wherein:

the graphics processor comprises a rasteriser comprising the command
omitting circuit, wherein the rasteriser is configured to determine whether each data
element for the rendering tile is set to the respective selected value by testing the

primitive against a patch covering the area of the render output being generated.

21. A computer program comprising computer software code for performing the
method of any one of claims 1 to 10 when the program is run on data processing

means.



	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - CLAIMS
	Page 56 - CLAIMS
	Page 57 - CLAIMS
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS

