
(19) United States
US 20080205407A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0205407 A1
Chang et al. (43) Pub. Date: Aug. 28, 2008

(54) NETWORKSWITCH CROSS POINT

(76) Inventors: Andrew Chang, Mountain View,
CA (US); Ronak Patel, Los Gatos,
CA (US); Ming G. Wong, San Jose,
CA (US)

Correspondence Address:
FOUNDRY NETWORKS, INC.
Legal Department
4980 GREAT AMERICA PARKWAY
SANTA CLARA, CA 95054

(21) Appl. No.: 12/070,893

(22) Filed: Feb. 20, 2008

Related U.S. Application Data

(63) Continuation of application No. 09/855,015, filed on
May 15, 2001, now Pat. No. 7,356,030.

(60) Provisional application No. 60/249,871, filed on Nov.

Publication Classification

(51) Int. Cl.
H04L 2/56 (2006.01)

(52) U.S. Cl. .. 370/394

(57) ABSTRACT

A Switching fabric having cross points that process multiple
stripes of serial data. Each cross point includes a plurality of
port slices and ports. Each port includes a plurality of FIFOs,
a FIFO read arbitrator, a multiplexer, a dispatcher, and an
accumulator. In one embodiment, each cross point has eight
ports and eight port slices. A method for processing a stripe of
data at a cross point at one port slice includes storing data
received from other port slices in a plurality of FIFOs and
arbitrating the reading of the stored data. A step of writing
data received from a port at the one port slice to an appropriate
FIFO in a different port slice is also included. In one embodi
ment, a method for processing data in port slice based on wide
cell encoding and an external flow control command is pro

17, 2000. vided.

OO
-(- s

SWITCH FABRIC MODULE

106A OGB OBC OSO OSE OSF 106G OSH

104A 104B 104C 104D 104E . 104F 104G 04H

BLADE BLADE BLADE BLADE BLADE BLADE . BLADE BADE

-- -- --/ S-- -- S- - -- S--

108A 108B OBC OBD

US 2008/0205407 A1 Aug. 28, 2008 Sheet 1 of 36 Patent Application Publication

Patent Application Publication Aug. 28, 2008 Sheet 2 of 36 US 2008/0205407 A1

T - CT
3 C O

is - it
Cd

re

1N r

C

by CH- CH y H

g - O al CHE e - 9s -

o C-HR O CE H
V

d
O CO d
re- o Co r
Co r re- Cd
wa- : r

N

CV CI LU | -
g 5 s e (S C. 9. HEI S H d CE l

c. P Cad
d CO CO Cred

st- C Co ress
d r r c

r r

an a

C l C C -
aC 5 -ed. C 9s g C) o

C H
Ca
o o -

r Co Co rsr
C re- -- Co
w s

1N 1N

C || ||
l L1

s O 2 C s

It is it o
W :

r
ac Cs U.

re- Co au Co re
C r : ad r C
re- N q

Patent Application Publication Aug. 28, 2008 Sheet 3 of 36 US 2008/0205407 A1

FIG 3A
SWITCH FABRIC /102

104

SBIA 3O2

308AN 304A 308BY 304B 308C> 304c. 308D-N 304D

306A 30GB 306E

PACKET PACKET PACKET
PROCESSOR PROCESSOR 306C 306D PROCESSOR

PACKET PACKET
PROCESSOR PROCESSOR

FIG 3B
50 G

(SERIAL)

302

10 G
(SEL) 308C

10G PACKET SES300

415 G
(PARALLEL)

10 G O G 10 G
(SEL) 318BY (SEL) 318CN (SEIL)

OC-1920 PACKET PROCESSOR

4/5 G
(PARALLEL)

318A

36A 316B

3OSC 3OSO

Patent Application Publication Aug. 28, 2008 Sheet 4 of 36 US 2008/0205407 A1

FIG. 4

401A 401B -20?

402A port-slice0 port-slice1 4O2B

4OH 402H 4O2C 401C
422 TO ALL

PORT SLICES 423

PORT port-slice? 430 port-slice2 PORT
421.

424

PORT pOrt-slice6 426 port-slice.3 PORT

420 401G 402G I 425 402D 40 AD

02E 402F port-slice5 port-slice4 4

40 F- 40E

410

TOIFROM BLADE 104F

Patent Application Publication Aug. 28, 2008 Sheet 5 of 36 US 2008/0205407 A1

FIG. 5
PORT

SS FROM SEVEN OTHER
N PORT SLICES O-4, 6,7

530 FIFOFIFFIFOFF9FIFOIF9FOFFIFOIF FIFOFIF9FIFOIF) CTL | RAM CTL | RAM CTL | RAM, CTL | RAM. CTL RAM CTL RAM, CTL | RAM

540 FIFO READ es MULTIPLEXER 550
ARBITRATOR (MUX)

TO SEVEN OTHER

520 DISPATCHER /56

PORT SLICES O-4, 6,7

ACCUMULATOR

TRANSMIT SYNCH 570
FIFO MODULE

580

515 RECEIVE SYNCH
FIFO MODULE

DESERIALIZER SERIALIZER
RECEIVER(S) TRANSMITTER (S)

PORT | 510
4O1F

Patent Application Publication Aug. 28, 2008 Sheet 6 of 36 US 2008/0205407 A1

FIG. B.
600 SWITCHING FABRIC 1.

SERIALIZER TRANSMITTERS 640 645 DESERIALIZER RECEIVERS 15

BACKPLANE TRANSMIT ARBITRATOR-13 STRIPE INTERFACE MODULE 1650

STRIPE RECEIVE 685
STRIPE SEND QUEUES -G25

(SOURCE BASED)
SYNCHRONIZATION

OUEUES

CONTROLER/670
672

WIDE CELL GENERATORS 1620 ARBITRATOR

610
STRIPED ADMINISTRATIVE

TRAFFIC SORTER BASED MODULE
WIDE CALL
ASSEMBLER

676

675

680 e ADMINISTRATIVE
WIDE/NARROW CELL TRANSLATOR SIGNALS

DESTINATION QUEUES 615

604
LOCAL DESTINATION 690 -

TRANSMIT ARBITRATOR
602

DESERIALIZER RECEIVERS SERIALIZER TRANSMITTERS 19

LOCAL PACKET PROCESSORS

(COMMANDS
MESSAGES)

Patent Application Publication Aug. 28, 2008 Sheet 7 of 36 US 2008/0205407 A1

FIG 7

70\J SERIALIZER SERIALIZER 1740?
TRANSMITTER TRANSMITTER

630

SWITCH FABRIC TRANSMIT ARBITRATOR

STRIPE SEND
--K OUEUES > -e-

725

j x 1-1-B t f
720

WIDE CELL WIDE CELL
GENERATOR GENERATOR

1NBAckPLANE TRAFFIC SORTER . . . BACKPLANE TRAFFIC SORTER
SORT BY SLOT

NUMBER, Y 1. SOURCE 712 GLOBALILOCAL GLOBAL/LOCAL
TRAFFIC SORTER TRAFFIC SORTER

- CLOCK Eic Eic
703-N CROSS-CLOCK CROSS-CLOCK 700 DOMAIN SORTER DOMAIN SORTER

SYNCHRONIZER 716 SYNCHRONIZER

PARALLEL

'0N DESERIALIZER RECEIVER e DESERIALIZER RECEIVER

SERIAL Q

SOURCE O SOURCE is SOURCE 6 SOURCE 7
U-k

j

Patent Application Publication Aug. 28, 2008 Sheet 8 of 36 US 2008/0205407 A1

FIG. B

DESERIALIZER
RECEIVER

DESERIALIZER
RECEIVER

850 85On

645

- -
STRIPE 1 STRIPE 5

202A 2O2E

CROSSPOINT
SWITCH

CROSSPOINT
SWITCH

SERIALIZER
TRANSMITTER

SERIALIZER
TRANSMITTER

74On

Patent Application Publication Aug. 28, 2008 Sheet 9 of 36 US 2008/0205407 A1

950-N DESERIALIZER FIG. 9 DESERIALIZER - 950n
RECEIVER RECEIVER

O 90 PARALLEL

N 952 NJ CROSS-CLOCK CROSS-COCK 901
DOMAIN P. O. DOMAIN 1.

SYNCHRONIZER. SYNCHRONIZER

CLOCK

360-N STRIPE INTERFACE
WIDE CELL 962N "EEE

964\ SORTER

STRIPE INTERFACE

WIDE CELL
DECODER

SORTER

965 STRIPE RECEIVE N
SYNCH QUEUES

o 2 LEVELS; SOURCE PACKET PROCESSOR,
ARBITRATOR ORIGINATING SLOT NUMBER

LOCAL
672 RF siRIPEBASED WIDE CALL ASSEMBLERL-674

WIDE/NARROW CELL TRANSLATOR 1680 LOCAL
TRAFFIC
SORTER

LOCAL TRAFFIC |
OUEUES -

984
ONE OR MORE BACKPLANE
TRAFFIC OUEUES

SERIALIZER
TRANSMITTER

SERIALIZER
TRANSMITTER

Patent Application Publication Aug. 28, 2008 Sheet 10 of 36 US 2008/0205407 A1

FIG 10

10O2
START - 10

RECEIVENARRow INPUT CEus 100

soat RECEIVE INPUT CEus 100

GENERATE wipe STRIPED CEus 103

STORE GENERATED WIDE 1040
STRIPED CELLS

ARBITRATE THE TRANSMISSION OF-11050
STORED WIDE STRIPED CELLS

: TRANSMIT BLOCKS OF CELL DATA 11060
ACROSS MULTIPLE STRIPES

Patent Application Publication Aug. 28, 2008 Sheet 11 of 36 US 2008/0205407 A1

FIG 11

102

- 10
RECEIVE BLOCKS OF CELL, DATA 110

TRANSMITTED ACROSS MULTIPLE STRIPES

1120 SORT RECEIVED BLOCKS OF CELL, DATA

STORE SORTED Blocks of CEL DAIA 10

ASSEMBLE WIDE STRIPED CELLS BASED 1140
ON ARBITRATION CRITERIA

TRANSLATE WIDE STRIPED CELS TO 1150
NARROW OUTPUT CELS

STORE NARROW OUTPUT CELLS 1160

ARBITRATE THE TRANSMISSION OF STORED 1 1170
NARROW OUTPUT CELLS

1180 TRANSMIT NARROW OUTPUT CELLS

Patent Application Publication Aug. 28, 2008 Sheet 12 of 36 US 2008/0205407 A1

FIG. 12

ROUTINE FOR
GENERATING WIDE
STRIPED CELS

1200

PARSE EACH NARROW CELL 1210

CHECK FOR CONTROL INFORMATION IN NARROW 1220
- CELL INDICATING START OF PACKET

AT START OF Y - 1225
EACH PACKET

ENCODE NEW WIDE STRIPED CELLS 1230
HAVING BLOCKS EXTENDING ACROSS

MULTIPLE STRIPES UNTIL DATA FROM
ALL NARROW CELLS OF A RESPECTIVE
PACKET IS DISTRIBUTED INTO ONE OR
MORE ENCODED WIDE STRIPED CELLS

WRITE WIDE STRIPED CELLS TO AN 1240
APPROPRIATE STRIPE SEND QUEUE

Patent Application Publication Aug. 28, 2008 Sheet 13 of 36 US 2008/0205407 A1

FIG. 13

LANE O LANE 1 LANE 2 LANE 3

o or a a
o os o
e os I Do I on

1300

STATE INFORMATION

NAME DESCRIPTION
DESTINATION SLOT NUMBER

SLOT NUMBER WHERE CELL, DATA BEING SENT

PAYLOAD STATE RESERVED, SOP, DATA, ABORT

SOURCE OR
DESTINATION PACKET

PROCESSOR IDENTIFIER

ENCODED NUMBER
IDENTIFYING A SOURCE OR

DESTINATION PACKET PROCESSOR

RESERVED RESERVED

Patent Application Publication Aug. 28, 2008 Sheet 14 of 36 US 2008/0205407 A1

FIG. 14

ROUTINE FOR
ENCODING WIDE
STRIPED CELS

1400

ENCODE AN INITIAL, BLOCK OF A START
WIDE STRIPED CEL WITH INITIAL CELL

ENCODING INFORMATION

DISTRIBUTE INITIAL BYTES OF PACKET
DATA INTO AVAILABLE SPACE IN THE

CREATED INITIAL BLOCK

CONTINUE TO DISTRIBUTE REMAINING
BYTES OF PACKET DATA ACROSS NEW
BLOCKS IN THE WIDE STRIPED CELL

WIDE STRIPED
CELL REACHA

MAXIMUM
SIZE

1450

END OF
PACKET
REACHED2

1460 ENCODE THE LAST BLOCK OF THE END
WIDE STRIPED CELL WITH END OF

PACKET INFORMATION

Patent Application Publication Aug. 28, 2008 Sheet 15 of 36 US 2008/0205407 A1

FIG. 15A

STRIPE STRIPE 2 STRIPE 3 STRIPE STRIPE 5
CYCLE 0 1 2 3TLO 1 2 30 1 2 3 O LA 23 O L2 3

KO STATE DO DIKOSTATE D2 D3 KO STATE 04 D5 KOSTATE DS D7KO STATERESRES
2D D27
3D28 | | | | | | | | | | | | | | D47
4 D48 || | | | | | | | | | | DS7
5 DS9 || | | | | | | | | | | | | | | | | D87

6 D88 H. H. H. H. E. 0.08 | | | | | | | | |0427
8 D28 D147

1500 1

FIG 15B

STATE INFORMATION
DESCRIPTION

SLOT NUMBER DESTINATION SLOT NUMBER FOR
BIA TO CROSSPOINT SWITCH

DIRECTION
SOURCE SLOT NUMBER FOR

CROSSPOINT SWITCH TO BIA DIRECTION

PAYLOAD ENCODED PAYLOAD STATE INFORMATION
STATE (RESERVED, SOA, DATA, ABORT)

RESERVED RESERVED

Patent Application Publication Aug. 28, 2008 Sheet 17 of 36 US 2008/0205407 A1

FIG 15D

STRIPE STRIPE 2 STRIPE3 STRIPE 4 STRIPE 5
CYCLE LO 1 2 3TTLO 123LO L2 30 1 2 3 O L 2 3

1 KO | PDOD1 || | | | | | | | | | | | | | |
2 D8 O

D28 08 KO P. D2 D3
D48 D5, D12 D15 KO P DED7
DSB D7; D82 D35 D2O D23
EHSA D52 D55KO PD4 D5 D40 D43 DD72 D75D6 D19 D60 D63

3
4
5
6
7
8 D128 D131D92 D95D36 D39 D80 D83 D24 D27

Patent Application Publication Aug. 28, 2008 Sheet 18 of 36 US 2008/0205407 A1

FIG 16

STRIPE STRIPE 2 STRIPE 3 STRIPE 4 STRIPE 5
CYCLE LO 12 130 1 2 30 1 2 3T LO L 2 3 O L 23

16324ZZ32D22/YZD53%.22%KYSSY-SADCOSYZZZOOL

19 KZKZKKZD32,444053SNNSNDEYZZZOE3.90NNSS3RESEESN

ZZZYZ N NY
GREEN YELLOW ORANGE BLUE RED RUST PINK

2
3
4.
5
6
7
8
9 2.

N S S.

Patent Application Publication Aug. 28, 2008 Sheet 19 of 36 US 2008/0205407 A1

TRANSCEIVER(S)

CLOCKS)
MEMORY TRANSLATOR
POOL (S) ADMINISTRATION

MODULE

TRANSCEIVER(S)

TRANSMITTER (S)

CELLENCODER (S) REFERENCE CLOCK/1828

ADMINISTRATION / 182 ALTERNATE D R IO
E. MEMORY POOL (S)

FLOW CONTROLLER 1182?

PACKET DECODER(S) REFERENCE CLOCK/1820

RECEIVER(S)

Patent Application Publication Aug. 28, 2008 Sheet 20 of 36 US 2008/0205407 A1

FIG. 19

1904

RECEIVER(S)

SYNCHRONIZATION MODULE

CELLENCODER(S)

1914

MEMORY POOL (S)

PACKET ENCODER(S)

TRANSMITTER (S)

1906a 1906

TxA TXN

REFERENCE CLOCK

ALTERNATE
MEMORY
POOL (S)

192\ ADMINISTRATION
MODULE

1926N FLOW CONTROLLER

1928N REFERENCE CLOCK

US 2008/0205407 A1

HETTOHINOJ MOTH100d \HONGW

Aug. 28, 2008 Sheet 21 of 36 Patent Application Publication

US 2008/0205407 A1

HETTIOHINOJ

Aug. 28, 2008 Sheet 22 of 36

TOHIN00

NIWCWTWIHRS | (~9E??

Patent Application Publication

Patent Application Publication Aug. 28, 2008 Sheet 23 of 36 US 2008/0205407 A1

FIG 21B

2162 2164a 2164b 2100B

SERIDES SPECIAL
CHARACTER SERIDES DATA SERIDES DATA

CELLENCODER (S)

FIFO FIFO HEADER
A1 A2 A

PACKET DECODER

2160

2154 2156a

FIFO FIFO HEADER
B B2 B

PACKET DECODER

2150a 215Ob

FIG. 21C
100C

217O 21723 2172b OO

SERIDES SPECIAL
CHARACTER SERIDES DATA SERIDES DATA

2174

CELL, DECODER (S)

FIFO FIFO FIFO | FIFO
C1 C2 D1 D2

PACKET ENCODER PACKET ENCODER

2178a 2178b

Patent Application Publication Aug. 28, 2008 Sheet 24 of 36 US 2008/0205407 A1

FIG 21D

2186 CEL ENCODER

FIFO
NATIVE

HEADER
NATIVE

2184

218O PACKET, DECODER

US 2008/0205407 A1 Aug. 28, 2008 Sheet 25 of 36 Patent Application Publication

Patent Application Publication Aug. 28, 2008 Sheet 26 of 36 US 2008/0205407 A1

FIG. 22

(OPTIONAL)
STORE INFORMATION 2212

2214 FORMAT INFORMATION INTO ONE OR MORE CELLS

FORWARD ONE OR MORE CELLS 2216

Patent Application Publication Aug. 28, 2008 Sheet 27 of 36 US 2008/0205407 A1

FIG. 23A

START 2302

DETERMINE PORT TYPE 2304

2306 2308

ISPORT NO SELECT WARIABLE
TYPE BELOW CELL SIZE FORMAT
THRESHOLD?

SELECT FIXED CELL SIZE FORMAT

RECEIVE ONE or MORE packers 1231

2314 PARSE CONTROL INFORMATION FROMPACKET

236 DETERMINE SLOT AND STATE INFORMATION

2318 STORE SLOT AND STATE INFORMATION

PARSE PAYLOAD FROM PACKET 2320

STORE DATA 2322

O 2324

Patent Application Publication Aug. 28, 2008 Sheet 28 of 36 US 2008/0205407 A1

FIG. 23B
FROM 2322

IS
THERE REMAINING

DATA2

NO

INSERT K1 SPECIAL CHARACTER 2338

FORWARD ONE OR MORE CELS 2340

Patent Application Publication Aug. 28, 2008 Sheet 29 of 36 US 2008/0205407 A1

FIG. 24

st)120?

RECEIVE ONE OR MORE CELLS 2404

(OPTIONAL)

OUEUE ONE OR MORE CELLS 24O6

(OPTIONAL)

SYNCHRONIZE ONE OR MORE CELLS 24.08

PARSE ONE OR MORE CELLS INTO CONTROL 2410
INFORMATION AND DATA PAYLOAD

STORE CONTROL INFORMATION AND DATA PAYLOAD 1

FORMAT INFORMATION INTO ONE OF MORE PACKETs /

FORWARD ONE OR MORE PACKETS 2416

Patent Application Publication Aug. 28, 2008 Sheet 30 of 36 US 2008/0205407 A1

FIG. 25A

START 2502

RECEIVE ONE OR MORE CELLS -2504

(OPTIONAL)

SYNCHRONIZING ONE OF MORE CELLs 150

(OPTIONAL)
ARE CELLS

ARRIVING IN
ORDER2

2508 (OPTIONAL)

NO HOLD ONE OR / 2510
MORE CELLS UNTIL
ORDER REGAINED

21 PARSE CELL FOR CONTROL INFORMATION

2514 DETERMINE SLOT AND STATE INFORMATION

2516 STORE SLOT AND STATE INFORMATION

PARSE CELL FOR DATA 2518

STORE DATA 252O

ACCESS CONTROL INFORMATION 2522

TO 2524

Patent Application Publication Aug. 28, 2008 Sheet 31 of 36 US 2008/0205407 A1

FIG. 25B
FROM 2522

ACCESS DATA

FORM ONE OR MORE PACKETS

FORWARD ONE OR MORE PACKETS

2524

2526

2528

FIG. 26

START 26O2

2604 DETERMINE STATUS OF COMPONENTS

DETERMINE STATUS OF LINKS 2606

2608 MONITOR OPERATIONS OF COMPONENTS

MONITOR COUNTERS FOR ADMINISTRATIVE COMINDs 1

PERFORM RESETS OF COMPONENTS 2612

2614 CONFIGURE COMPONENT OPERATIONS

Patent Application Publication Aug. 28, 2008 Sheet 32 of 36 US 2008/0205407 A1

FIG. 27A

ROUTINE FOR PROCESSING DATA 2700
IN PORT SLICE BASED ON WIDE

CELLENCOOING AND A
FLOW CONTROL CONDITION

MANAGE 64-BIT ENTRIES IN 27 O
RECEIVE SYNCH FIFO

RECEIVE 2 CHUNKS OF 32-BIT 2720
DATA FROM RECEIVE SYNCH FIFO

DETECT KOIN THE FIRST BYTES 2722
OF FIRST CHUNK AND SECOND CHUNK

EXTRACT DESTINATION SLOT 2724
FROM THE STATE FIELD IN

THE HEADER IF KO IS DETECTED

Patent Application Publication Aug. 28, 2008 Sheet 33 of 36 US 2008/0205407 A1

FIG 27B

FROM STEP 2724

DETERMINE WHETHER THE CEL HEADER 2726
IS LOW-ALIGNED OR HIGH-ALIGNED

WRITE 64-BIT DATA TO THE DATA FIFO 2728
CORRESPONDING TO THE DESTINATION
SLOT IF CELL, HEADER IS EITHER

LOW-ALIGNED OR HIGH-ALIGNED BUT NOT BOTH

WRITE 2 64-BIT DATA TO 2 DATA 273O
FIFOS CORRESPONDING TO THE TWO

DESTINATION SLOS IF CELL, HEADERS APPEAR
IN THE FIRST CHUNK AND THE SECOND CHUNK
OF DATA (LOW-ALIGNED AND HIGH-ALIGNED)

FILL THE SECOND CHUNK OF 32-BIT DATA 2732
WITH IDLE CHARACTERS WHEN A CELL DOES
NOT TERMINATE AT THE 64-BIT BOUNDARY

AND THE SUBSEQUENT CELL, IS
DESTINED FOR A DIFFERENT SLOT

EARLY TERMINATE A CEL IF ERROR 2734
CONDITION IS DEFECTED BY INSERTING

KO AND ABORT STATE IN THE DATA

DETECT K1 CHARACTER IN THE FIRST 2736
BYTE OF DATAI (FIRST CHUNK) AND

DATAH (SECOND CHUNK)

WRITE SUBSEQUENT 64-BIT -2738
DATA TO ALL DESTINATION

DATA FIFOS

Patent Application Publication Aug. 28, 2008 Sheet 34 of 36 US 2008/0205407 A1

FIG. 27C

FROM STEP 2738

IF BOTH 32-BIT CHUNKS OF 2740
DATA ARE WALID, WRITE THEM

TO THE DATA FIFO RAM

IF ONLY ONE OF THE 32-BIT CHUNKS IS 2742
VALID SAVE IT IN A TEMPORARY REGISTER
IF FIFO DEPTH HAS NOT DROPPED BELOW

A PREDETERMINED LEVEL: COMBINE THE SAVED
32-BIT DATA AND THE SUBSEQUENT VALID 32-BIT

DATA AND WRITE THEM TO THE FIFO RAM

IF ONLY ONE OF THE 32-BIT CHUNKS IS 2744
VALID AND THE FIFO DEPTH HAS DROPPED
BELOW 4 ENTRIES, WRITE THE WALID

32-BIT CHUNK COMBINED WITH A 32-BIT
IDLE DATA TO THE FIFO RAM

INDICATE TO FIFO READ ARBITRATOR IF 2746
P KO HAS BEEN READ OR FIFO RAM

IS EMPTY TO REQUEST FOR ARBITRATION

INDICATE TO THE FIFO READ ARBITRATOR 2748
WHETHER KO IS ALIGNED TO THE FIRST 32-BIT

CHUNK OR THE SECOND 32-BIT CHUNK

WHEN FLOW CONTROL CONDITION IS DETECTED, 2750
STOP REQUESTING TO THE FIFO READ ARBITRATOR

AFTER THE CURRENT CEL IS COMPLETELY
READ FROM THE FIFO RAM

Patent Application Publication Aug. 28, 2008 Sheet 35 of 36 US 2008/0205407 A1

FIG 27D

FROM STEP 2750

ARBITRATE AMONG 7 REQUESTS 2760
FROM 7 FIFO CONTROLLERS AND
SWITCHAT CELL (KO) BOUNDARY

IF END OF THE CURRENT CELL IS 64-BIT ALIGNED, / 2762
THEN SWITCH TO THE NEXT REQUESTOR AND DELIVER

64-BIT DATA FROM THE REQUESTING FIFO
CONTROLLER TO THE DISPATCHER

IF END OF CURRENT CELL IS 32-BIT 2784
ALIGNED THEN COMBINE THE LOWER 32-BIT

OF THE CURRENT DATA WITH THE LOWER
32-BIT OF THE DATA FROM HE NEXT REQUESTING
FIFO CONTROLLER, AND DELIVER THE COMBINED

64-BIT DATA TO THE DISPATCHER

INDICATE TO THE DISPATCHER WHEN 2766
ALL 7 FIFO RAMS ARE EMPTY

Patent Application Publication Aug. 28, 2008 Sheet 36 of 36 US 2008/0205407 A1

FIG 27E

FROM STEP 2766

DELIVER 64-BIT DATA TO THE SERDES SYNCH FIFO 2770
MODULE AND TRANSMITTER IF NON-IDLE DATA IS
RECEIVED FROM THE FIFO READ ARBITRATOR

INJECT FIRST ALIGNMENT SEQUENCE TO 2772
BE TRANSMITTED TO THE SERDES SYNCH
FIFO MODULE AND TRANSMITTER WHEN

FIFO READ ARBITRATOR INDICATES THAT
ALL 7 FIFO RAMS ARE EMPTY

INJECT SECOND ALIGNMENT SEQUENCE TO BE 2774
TRANSMITTED TO THE SERDES SYNCH FIFO

MODULE AND RANSMITTER WHEN THE
PROGRAMMABLE TIMER EXPIRES AND THE

PREVIOUS CELL HAS BEEN COMPLETELY TRANSMITTED

INDICATE TO THE FIFO READ ARBITRATOR 2776
TO TEMPORARILY STOP SERVING ANY REQUESTOR

UNTIL THE CURRENT PRESCHEDULED
ALIGNMENT SEOUENCE HAS BEEN

COMPLETELY TRANSMITTED

2790
END

US 2008/0205407 A1

NETWORKSWITCH CROSS POINT

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application claims the benefit of U.S. Provi
sional Application No. 60/249,871, filed Nov. 17, 2000, the
full text of which is incorporated herein by reference as if
reproduced in full below.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The invention relates generally to network switches.
0004 2. Background Art
0005. A network switch is a device that provides a switch
ing function (i.e., determines a physical path) in a data com
munications network. Switching involves transferring infor
mation, such as digital data packets or frames, among entities
of the network. Typically, a Switch is a computer having a
plurality of circuit cards coupled to a backplane. In the
switching art, the circuit cards are typically called “blades.”
The blades are interconnected by a “switch fabric. Each
blade includes a number of physical ports that couple the
switch to the other network entities over various types of
media, such as Ethernet, FDDI (Fiber Distributed Data Inter
face), or token ring connections. A network entity includes
any device that transmits and/or receives data packets over
Such media.
0006. The switching function provided by the switch typi
cally includes receiving data at a source port from a network
entity and transferring the data to a destination port. The
Source and destination ports may be located on the same or
different blades. In the case of “local switching, the source
and destination ports are on the same blade. Otherwise, the
Source and destination ports are on different blades and
Switching requires that the data be transferred through the
switch fabric from the source blade to the destination blade.
In some case, the data may be provided to a plurality of
destination ports of the Switch. This is known as a multicast
data transfer.
0007 Switches operate by examining the header informa
tion that accompanies data in the data frame. The header
information includes the international standards organization
(ISO) 7-layer OSI (open-systems interconnection model). In
the OSI model, switches generally route data frames based on
the lower level protocols such as Layer 2 or Layer 3. In
contrast, routers generally route based on the higher level
protocols and by determining the physical path of a data
frame based on table look-ups or other configured forwarding
or management routines to determine the physical path (i.e.,
route).
0008 Ethernet is a widely used lower-layer network pro
tocol that uses broadcast technology. The Ethernet frame has
six fields. These fields include a preamble, a destination
address, Source address, type, data and a frame check
sequence. In the case of an ethernet frame, the digital Switch
will determine the physical path of the frame based on the
Source and destination addresses. Standard Ethernet operates
at a ten Mbit/s data rate. Another implementation of Ethernet
known as “Fast Ethernet” (FE) has a data rate of 100 Mega
bits/s. Yet another implementation of FE operates at 10 Giga
bits/sec.
0009. A digital switch will typically have physical ports
that are configured to communicate using different protocols

Aug. 28, 2008

at different data rates. For example, a blade within a switch
may have certain ports that are 10 Mbit/s, or 100 Mbit/s ports.
It may have other ports that conform to optical standards Such
as SONET and are capable of such data rates as 10 gigabits
per second.
0010 A performance of a digital switch is often assessed
based on metrics Such as the number of physical ports that are
present, and the total bandwidth or number of bits per second
that can be switched without blocking or slowing the data
traffic. A limiting factor in the bit carrying capacity of many
switches is the switch fabric. For example, one conventional
switch fabric was limited to 8 gigabits per second perblade. In
an eight blade example, this equates to 64 gigabits per second
of traffic. It is possible to increase the data rate of a particular
blade to greater than 8 gigabits per second. However, the
switch fabric would be unable to handle the increased traffic.
0011. It is desired to take advantage of new optical tech
nologies and increase port densities and data rates on blades.
However, what is needed is a switch and a switch fabric
capable of handling higher bit rates and providing a maxi
mum aggregate bit carrying capacity well in excess of con
ventional Switches.

BRIEF SUMMARY OF THE INVENTION

0012. The present invention provides a high-performance
network Switch. Serial link technology is used in a Switching
fabric. Serial data streams, rather than parallel data streams,
are switched in a switching fabric. Blades output serial data
streams in serial pipes. A serial pipe can be a number of serial
links coupling a blade to the switching fabric. The serial data
streams represent an aggregation of input serial data streams
provided through physical ports to a respective blade. Each
blade outputs serial data streams with in-band control infor
mation in multiple stripes to the Switching fabric.
0013. In one embodiment, the serial data streams carry
packets of data in wide striped cells across multiple stripes.
Wide striped cells are encoded. In-band control information
is carried in one or more blocks of a wide cell. For example,
the initial block of a wide cell includes control information
and state information. Further, the control information and
state information is carried in each stripe. In particular, the
control information and state information is carried in each
subblock of the initial block of a wide cell. In this way, the
control information and state information is available in-band
in the serial data streams (also called Stripes). Control infor
mation is provided in-band to indicate traffic flow conditions,
Such as, a start of cell, an end of packet, abort, or other error
conditions.
0014. A wide cell has one or more blocks. Each block
extends across five stripes. Each block has a size of twenty
bytes made up of five subblocks each having a size of four
bytes. In one example, a wide cell has a maximum size of
eight blocks (160 bytes) which can carry a 148 bytes of
payload data and 12 bytes of in-band control information.
Packets of data for full-duplex traffic can be carried in the
wide cells at a 50 Gb/sec rate in each direction through one
slot of the digital Switch. According to one feature, the choice
of maximum wide cell block size of 160 bytes as determined
by the inventors allows a 4x10 Gigabit/sec Ethernet (also
called 4x10 GE) line rate to be maintained through the back
plane interface adapter. This line rate is maintained for Eth
ernet packets having a range of sizes accepted in the Ethernet
standard including, but not limited to, packet sizes between
84 and 254 bytes.

US 2008/0205407 A1

0015. In one embodiment, a digital switch has a plurality
of blades coupled to a switching fabric via serial pipes. The
Switching fabric can be provided on a backplane and/or one or
more blades. Each blade outputs serial data streams with
in-band control information in multiple stripes to the switch
ing fabric. The switching fabric includes a plurality of cross
points corresponding to the multiple stripes. Each cross point
has a plurality of port slices coupled to the plurality of blades.
In one embodiment five stripes and five cross points are used.
Each blade has five serial links coupled to each of the five
cross points respectively. In one example implementation, the
serial pipe coupling a blade to switching fabric is a 50 Gb/s
serial pipe made up of five 10Gb/s serial links. Each of the 10
Gb/s serial links is coupled to a respective cross point and
carries a serial data stream. The serial data stream includes a
data slice of a wide cell that corresponds to one stripe.
0016. In one embodiment of the present invention, each
blade has a backplane interface adapter (BIA). The BIA has
three traffic processing flow paths. The first traffic processing
flow path extends in traffic flow direction from local packet
processors toward a Switching fabric. The second traffic pro
cessing flow path extends in traffic flow direction from the
Switching fabric toward local packet processors. A third traf
fic processing flow path carried local traffic from the first
traffic processing flow path. This local traffic is sorted and
routed locally at the BIA without having to go through the
Switching fabric.
0017. The BIA includes one or more receivers, wide cell
generators, and transmitters along the first path. The receivers
receive narrow input cells carrying packets of data. These
narrow input cells are output from packet processor(s) and/or
from integrated bus translators (IBTs) coupled to packet pro
cessors. The BIA includes one or more wide cell generators.
The wide cell generators generate wide Striped cells carrying
the packets of data received by the BIA in the narrow input
cells. The transmitters transmit the generated wide striped
cells in multiple stripes to the switching fabric.
0018. According to the present invention, the wide cells
extend across multiple stripes and include in-band control
information in each stripe. In one embodiment, each wide cell
generator parses each narrow input cell, checks for control
information indicating a start of packet, encodes one or more
new wide striped cells until data from all narrow input cells of
the packet is distributed into the one or more new wide striped
cells, and writes the one or more new wide striped cells into a
plurality of send queues.
0019. In one example, the BIA has four deserializer
receivers, 56 wide cell generators, and five serializer trans
mitters. The four deserializer receivers receive narrow input
cells output from up to eight originating Sources (that is, up to
two IBTs or packet processors per deserializer receiver). The
56 wide cell generators receive groups of the received narrow
input cells sorted based on destination slot indentifier and
originating source. The five serializer transmitters transmit
the data slices of the wide cell that corresponds to the stripes.
0020. According to a further feature, a BIA can also
include a traffic sorter which sorts received narrow input cells
based on a destination slot identifier. In one example, the
traffic sorter comprises both a global/traffic sorter and a back
plane sorter. The global/traffic sorter sorts received narrow
input cells having a destination slot identifier that identifies a
local destination slot from received narrow input cells having
destination slot identifier that identifies global destination
slots across the switching fabric. The backplane sorter further

Aug. 28, 2008

sorts received narrow input cells having destination slot iden
tifiers that identify global destination slots into groups based
on the destination slot identifier.

0021. In one embodiment, the BIA also includes a plural
ity of Stripe send queues and a Switching fabric transmit
arbitrator. The switching fabric transmit arbitrator arbitrates
the order in which data stored in the stripe send queues is sent
by the transmitters to the Switching fabric. In one example,
the arbitration proceeds in a round-robin fashion. Each stripe
send queue Stores a respective group of wide striped cells
corresponding a respective originating source packet proces
sor and a destination slot identifier. Each wide striped cell has
one or more blocks across multiple stripes. During a process
ing cycle, the Switching fabric transmit arbitrator selects a
stripe send queue and pushes the next available cell (or even
one or more blocks of a cell at time) to the transmitters. Each
stripe of a wide cell is pushed to the respective transmitter for
that stripe.
0022. The BIA includes one or more receivers, wide/nar
row cell translators, and transmitters along the second path.
The receivers receive wide striped cells in multiple stripes
from the switching fabric. The wide striped cells carry pack
ets of data. The translators translate the received wide striped
cells to narrow input cells carrying the packets of data. The
transmitters then transmit the narrow input cells to corre
sponding destination packet processors or IBTs. In one
example, the five deserializer receivers receive five subblocks
of wide striped cells in multiple stripes. The wide striped cells
carrying packets of data across the multiple stripes and
including destination slot identifier information.
0023. In one embodiment, the BIA further includes stripe
interfaces and stripe receive synchronization queues. Each
stripe interface sorts received subblocks in each stripe based
on originating slot identifier information and stores the Sorted
received subblocks in the stripe receive synchronization
queues.

0024. The BIA further includes along the second traffic
flow processing path an arbitrator, a striped-based wide cell
assembler, and the narrowf wide cell translator. The arbitrator
arbitrates an order in which data stored in the stripe receive
synchronization queues is sent to the striped-based wide cell
assembler. The striped-based wide cell assembler assembles
wide striped cells based on the received subblocks of data. A
narrowf wide cell translator then translates the arbitrated
received wide striped cells to narrow input cells carrying the
packets of data.
0025. A second level of arbitration is also provided
according to an embodiment of the present invention. The
BIA further includes destination queues and a local destina
tion transmit arbitrator in the second path. The destination
queues store narrow cells sent by a local traffic sorter (from
the first path) and the narrow cells translated by the translator
(from the second path. The local destination transmit arbitra
tor arbitrates an order in which narrow input cells stored in the
destination queues is sent to serializer transmitters. Finally,
the serializer transmitters then that transmits the narrow input
cells to corresponding IBTs and/or source packet processors
(and ultimately out of a blade through physical ports).
0026. According to a further feature of the present inven
tion, system and method for encoding wide striped cells is
provided. The wide cells extend across multiple stripes and
include in-band control information in each stripe. State
information, reserved information, and payload data may also

US 2008/0205407 A1

be included in each stripe. In one embodiment, a wide cell
generator encodes one or more new wide striped cells.
0027. The wide cell generator encodes an initial block of a
start wide striped cell with initial cell encoding information.
The initial cell encoding information includes control infor
mation (Such as, a special KO character) and state information
provided in each subblock of an initial block of a wide cell.
The wide cell generator further distributes initial bytes of
packet data into available space in the initial block. Remain
ing bytes of packet data are distributed across one or more
blocks in of the first wide striped cell (and subsequent wide
cells) until an end of packet condition is reached or a maxi
mum cell size is reached. Finally, the wide cell generator
further encodes an end wide striped cell with end of packet
information that varies depending upon the degree to which
data has filled a wide striped cell. In one encoding scheme, the
end of packet information varies depending upon a set of end
of packet conditions including whether the end of packet
occurs at the end of an initial block, withina Subsequent block
after the initial block, at a block boundary, or at a cell bound
ary.

0028. According to a further embodiment of the present
invention, a method for interfacing serial pipes carrying pack
ets of data in narrow input cells and a serial pipe carrying
packets of data in wide striped cells includes receiving narrow
input cells, generating wide striped cells, and transmitting
blocks of the wide striped cells across multiple stripes. The
method can also include sorting the received narrow input
cells based on a destination slot identifier, storing the gener
ated wide striped cells in corresponding stripe send queues
based on a destination slot identifier and an originating Source
packet processor, and arbitrating the orderin which the stored
wide striped cells are selected for transmission.
0029. In one example, the generating step includes parsing
each narrow input cell, checking for control information that
indicates a start of packet, encoding one or more new wide
striped cells until data from all narrow input cells carrying the
packet is distributed into the one or more new wide striped
cells, and writing the one or more new wide striped cells into
a plurality of send queues. The encoding step includes encod
ing an initial block of a start wide striped cell with initial cell
encoding information, Such as, control information and state
information. Encoding can further include distributing initial
bytes of packet data into available space in an initial block of
a first wide striped cell, adding reserve information to avail
able bytes at the end of the initial block of the first wide striped
cell, distributing remaining bytes of packet data across one or
more blocks in the first wide striped cell until an end of packet
condition is reached or a maximum cell size is reached, and
encoding an end wide striped cell with end of packet infor
mation. The end of packet information varies depending upon
a set of end of packet conditions including whether the end of
packet occurs at the end of an initial block, in any block after
the initial block, at a block boundary, or at a cell boundary.
0030 The method also includes receiving wide striped
cells carrying packets of data in multiple stripes from a
Switching fabric, translating the received wide Striped cells to
narrow input cells carrying the packets of data, and transmit
ting the narrow input cells to corresponding source packet
processors. The method further includes sorting the received
Subblocks in each stripe based on originating slot identifier
information, storing the Sorted received Subblocks in Stripe
receive synchronization queues, and arbitrating an order in
which data stored in the stripe receive synchronization queues

Aug. 28, 2008

is assembled. Additional steps are assembling wide striped
cells in the order of the arbitrating step based on the received
subblocks of data, translating the arbitrated received wide
striped cells to narrow input cells carrying the packets of data,
and storing narrow cells in a plurality of destination queues.
In one embodiment, further arbitration is performed includ
ing arbitrating an order in which data stored in the destination
queues is to be transmitted and transmitting the narrow input
cells in the order of the further arbitrating step to correspond
ing source packet processors and/or IBTs.
0031. Further embodiments, features, and advantages of
the present inventions, as well as the structure and operation
of the various embodiments of the present invention, are
described in detail below with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

0032. The accompanying drawings, which are incorpo
rated herein and form a part of the specification, illustrate the
present invention and, together with the description, further
serve to explain the principles of the invention and to enable
a person skilled in the pertinent art to make and use the
invention.
0033. In the drawings:
0034 FIG. 1 is a diagram of a high-performance network
Switch according to an embodiment of the present invention.
0035 FIG. 2 is a diagram of a high-performance network
Switch showing a Switching fabric having cross point
Switches coupled to blades according to an embodiment of
the present invention.
0036 FIG. 3A is a diagram of blade used in the high
performance network switch of FIG. 1 according to an
embodiment of the present invention.
0037 FIG. 3B shows a configuration of blade according
another embodiment of the present invention.
0038 FIG. 4 is a diagram of the architecture of a cross
point Switch with port slices according to an embodiment of
the present invention.
0039 FIG. 5 is a diagram of the architecture of a port slice
according to an embodiment of the present invention.
0040 FIG. 6 is a diagram of a backplane interface adapter
according to an embodiment of the present invention.
0041 FIG. 7 is a diagram showing a traffic processing path
for local serial traffic received at a backplane interface adapter
according to an embodiment of the present invention.
0042 FIG. 8 is a diagram of an example switching fabric
coupled to a backplane interface adapter according to an
embodiment of the present invention.
0043 FIG.9 is a diagram showing a traffic processing path
forbackplane serial traffic received at the backplane interface
adapter according to an embodiment of the present invention.
0044 FIG. 10 is a flowchart of operational steps carried
out along a traffic processing path for local serial traffic
received at a backplane interface adapter according to an
embodiment of the present invention.
0045 FIG. 11 is a flowchart of operational steps carried
out along a traffic processing path for backplane serial traffic
received at the backplane interface adapter according to an
embodiment of the present invention.
0046 FIG. 12 is a flowchart of a routine for generating
wide striped cells according to an embodiment of the present
invention.

US 2008/0205407 A1

0047 FIG. 13 is a diagram illustrating a narrow cell and
state information used in the narrow cell according to an
embodiment of the present invention.
0048 FIG. 14 is a flowchart of a routine for encoding wide
striped cells according to an embodiment of the present
invention.
0049 FIG. 15A is a diagram illustrating encoding in a
wide striped cell according to an embodiment of the present
invention.
0050 FIG. 15B is a diagram illustrating state information
used in a wide striped cell according to an embodiment of the
present invention.
0051 FIG. 15C is a diagram illustrating end of packet
encoding information used in a wide striped cell according to
an embodiment of the present invention.
0052 FIG. 15D is a diagram illustrating an example of a
cell boundary alignment condition during the transmission of
wide striped cells in multiple stripes according to an embodi
ment of the present invention.
0053 FIG. 16 is a diagram illustrating an example of a
packet alignment condition during the transmission of wide
striped cells in multiple stripes according to an embodiment
of the present invention.
0054 FIG. 17 illustrates a block diagram of a bus transla
tor according to one embodiment of the present invention.
0055 FIG. 18 illustrates a block diagram of the reception
components according to one embodiment of the present
invention.
0056 FIG. 19 illustrates a block diagram of the transmis
sion components according to one embodiment of the present
invention.
0057 FIG. 20 illustrates a detailed block diagram of the
bus translator according to one embodiment of the present
invention.
0058 FIG. 21A illustrates a detailed block diagram of the
bus translator according to another embodiment of the
present invention.
0059 FIG. 21B shows a functional block diagram of the
data paths with reception components of the bus translator
according to one embodiment of the present invention.
0060 FIG. 21C shows a functional block diagram of the
data paths with transmission components of the bus translator
according to one embodiment of the present invention.
0061 FIG. 21D shows a functional block diagram of the
data paths with native mode reception components of the bus
translator according to one embodiment of the present inven
tion.
0062 FIG. 21E shows a block diagram of a cell format
according to one embodiment of the present invention.
0063 FIG. 22 illustrates a flow diagram of the encoding
process of the bus translator according to one embodiment of
the present invention.
0064 FIGS. 23A-B illustrates a detailed flow diagram of
the encoding process of the bus translator according to one
embodiment of the present invention.
0065 FIG. 24 illustrates a flow diagram of the decoding
process of the bus translator according to one embodiment of
the present invention.
0066 FIGS. 25A-B illustrates a detailed flow diagram of
the decoding process of the bus translator according to one
embodiment of the present invention.
0067 FIG. 26 illustrates a flow diagram of the adminis
trating process of the bus translator according to one embodi
ment of the present invention.

Aug. 28, 2008

0068 FIGS. 27 A-27E show a routine for processing data
in port slice based on wide cell encoding and a flow control
condition according to one embodiment of the present inven
tion.
0069. The present invention will now be described with
reference to the accompanying drawings. In the drawings,
like reference numbers indicate identical or functionally
similar elements. Additionally, the left-most digit(s) of a ref
erence number identifies the drawing in which the reference
number first appears.

DETAILED DESCRIPTION OF THE INVENTION

Table of Contents

I. Overview and Discussion

II. Terminology

III. Digital Switch Architecture
0070 A. Cross Point Architecture
(0071 B. Port Slice Operation with Wide Cell Encoding
and Flow Control
0072 C. Backplane Interface Adapter
(0073 D. Overall Operation of Backplane Interface
Adapter
(0074 E. First Traffic Processing Path
0075 F. Narrow Cell Format
(0076 G. Traffic Sorting
(0077. H. Wide Striped Cell Generation
0078 I. Encoding Wide Striped Cells
(0079. J. Initial Block Encoding
0080 K. End of Packet Encoding
I0081 L. Switching Fabric Transmit Arbitration
I0082) M. Cross Point Processing of Stripes
I0083) N. Second Traffic Processing Path
I0084 O. Cell Boundary Alignment
I0085 P. Packet Alignment
I0086 Q. Wide Striped Cell Size at Line Rate
I0087 R. IBT and Packet Processing
I0088 S. Narrow Cell and Packet Encoding Processes
0089. T. Administrative Process and Error Control
(0090 U. Reset and Recovery Procedures

IV. Control Logic
V. Conclusion
I. Overview and Discussion
0091. The present invention is a high-performance digital
Switch. Blades are coupled through serial pipes to a Switching
fabric. Serial link technology is used in the switching fabric.
Serial data streams, rather than parallel data streams, are
switched through a loosely striped switching fabric. Blades
output serial data streams in the serial pipes. A serial pipe can
be a number of serial links coupling a blade to the Switching
fabric. The serial data streams represent an aggregation of
input serial data streams provided through physical ports to a
respective blade. Each blade outputs serial data streams with
in-band control information in multiple stripes to the switch
ing fabric. In one embodiment, the serial data streams carry
packets of data in wide striped cells across multiple loosely
coupled stripes. Wide striped cells are encoded. In-band con
trol information is carried in one or more blocks of a wide
striped cell.
0092. In one implementation, each blade of the switch is
capable of sending and receiving 50 gigabit per second full

US 2008/0205407 A1

duplex traffic across the backplane. This is done to assure line
rate, wire speed and non-blocking across all packet sizes.
0093. The high-performance switch according to the
present invention can be used in any Switching environment,
including but not limited to, the Internet, an enterprise sys
tem, Internet service provider, and any protocol layer Switch
ing (Such as, Layer 2, Layer 3, or Layers 4-7 Switching).
0094. The present invention is described in terms of this
example environment. Description in these terms is provided
for convenience only. It is not intended that the invention be
limited to application in these example environments. In fact,
after reading the following description, it will become appar
ent to a person skilled in the relevant art how to implement the
invention in alternative environments known now or devel
oped in the future.

II. Terminology

0095 To more clearly delineate the present invention, an
effort is made throughout the specification to adhere to the
following term definitions as consistently as possible.
0096. The terms “switch fabric' or “switching fabric'
refer to a switchable interconnection between blades. The
Switch fabric can be located on a backplane, a blade, more
than one blade, a separate unit from the blades, or on any
combination thereof.
0097. The term “packet processor refers to any type of
packet processor, including but not limited to, an Ethernet
packet processor. A packet processor parses and determines
where to send packets.
0098. The term “serial pipe” refers to one or more serial
links. In one embodiment, not intended to limit the invention,
a serial pipe is a 10 Gb/s serial pipe and includes four 2.5 Gb/s
serial links.
0099. The term “serial link” refers to a data link or bus
carrying digital data serially between points. A serial linkata
relatively high bit rate can also be made of a combination of
lower bit rate serial links.
0100. The term “stripe” refers to one data slice of a wide
cell. The term “loosely-coupled' stripes refers to the data flow
in stripes which is autonomous with respect to other stripes.
Data flow is not limited to being fully synchronized in each of
the stripes, rather, data flow proceeds independently in each
of the stripes and can be skewed relative to other stripes.

III. Digital Switch Architecture

0101. An overview of the architecture of the switch 100 of
the invention is illustrated in FIG. 1. Switch 100 includes a
switch fabric 102 (also called a switching fabric or switching
fabric module) and a plurality of blades 104. In one embodi
ment of the invention, Switch 100 includes 8 blades 104a
104.h. Each blade 104 communicates with Switch fabric 102
via serial pipe 106. Eachblade 104 further includes a plurality
of physical ports 108 for receiving various types of digital
data from one or more network connections.
0102. In a preferred embodiment of the invention, switch
100 having 8 blades is capable of switching of 400 gigabits
per second (Gb/s) full-duplex traffic. As used herein, all data
rates are full-duplex unless indicated otherwise. Each blade
104 communicates data at a rate of 50 Gb/s over serial pipe
106.

(0103 Switch 100 is shown in further detail in FIG. 2. As
illustrated, switch fabric 102 comprises five cross points 202.
Data sent and received between each blade and switch fabric

Aug. 28, 2008

102 is striped across the five cross point chips 202A-202E.
Each cross point 202A-202E then receives one stripe or /s of
the data passing through switch fabric 102. As depicted in
FIG. 2, each serial pipe 106 of a blade 104 is made up of five
serial links 204. The five serial links 204 of eachblade 104 are
coupled to the five corresponding cross points 202. In one
example, each of the serial links 204 is a 10G serial link, such
as, a 10G serial link made up of 4-2.5 Gb/s serial links. In this
way, serial link technology is used to send data across the
backplane 102.
0104. Each cross point 202A-202E is an 8-port cross
point. In one example, each cross point 2202A-E receives
eight 10G streams of data. Each stream of data corresponds to
a particular stripe. The stripe has data in a wide-cell format
which includes, among other things, a destination port num
ber (also called a destination slot number) and special in-band
control information. The in-band control information
includes special K characters, such as, a KO character and K1
character. The KO character delimits a start of new cell within
a stripe. The K1 character delimits an end of a packet within
the Stripe. Such encoding within each stripe, allows each
cross point 202A-202E to operate autonomously or indepen
dently of other cross points. In this way, the cross points
202A-202E and their associated stripes are loosely-coupled.
0105. In each cross point 202, there are a set of data struc
tures, such as data FIFOs (First in First out data structures).
The data structures store databased on the source port and the
destination port. In one embodiment, for an 8-port cross
point, 56 data FIFOs are used. Each data FIFO stores data
associated with a respective source port and destination port.
Packets coming to each Source port are written to the data
FIFOs which correspond to a source port and a destination
port associated with the packets. The Source port is associated
with the port (and port slice) on which the packets are
received. The destination port is associated with a destination
port or slot number which is found in-band in data sent in a
stripe to a port.
0106. In embodiments of the present invention, the switch
size is defined as one cell and the cell size is defined to be
either 8, 28, 48, 68, 88, 108, 128, or 148 bytes. Each port (or
port slice) receives and sends serial data at a rate of 10 Gb/s
from respective serial links. Each cross point 202A-202E has
a 160 Gb?s switching capacity (160 Gb/s=10 Gb/s 8 ports2
directions full-duplex). Such cell sizes, serial link data rate,
and Switching capacity are illustrative and not necessarily
intended to limit the present invention. Cross-point architec
ture and operation is described further below.
0107. In attempting to increase the throughput of
Switches, conventional wisdom has been to increase the width
of data buses to increase the “parallel processing capabilities
of the Switch and to increase clock rates. Both approaches,
however, have met with diminishing returns. For example,
very wide data buses are constrained by the physical limita
tions of circuit boards. Similarly, very high clock rates are
limited by characteristics of printed circuit boards. Going
against conventional wisdom, the inventors have discovered
that significant increases in Switching bandwidth could be
obtained using serial link technology in the backplane.
0108. In the preferred embodiment, each serial pipe 106 is
capable of carrying full-duplex traffic at 50 Gb/s, and each
serial link 204 is capable of carrying full-duplex traffic at 10
Gbfs. The result of this architecture is that each of the five
cross points 202 combines five 10 gigabit per second serial
links to achieve a total data rate of 50 gigabits per second for

US 2008/0205407 A1

each serial pipe 106. Thus, the total Switching capacity across
backplane 102 foreight blades is 50 gigabits per second times
eight times two (for duplex) or 800 gigabits per second. Such
Switching capacities have not been possible with conven
tional technology using synched parallel data buses in a
Switching fabric.
0109 An advantage of such a switch having a 50 Gb/s
serial pipe to backplane 102 from a blade 104 is that each
blade 104 can Support across a range of packet sizes four 10
Gb/s Ethernet packet processors at line rate, four Optical
Channel OC-1920 at line rate, or support one OC-768C at
linerate. The invention is not limited to these examples. Other
configurations and types of packet processors and can be used
with the switch of the present invention as would be apparent
to a person skilled in the art given this description.
0110 Referring now to FIG. 3A, the architecture of a
blade 104 is shown in further detail. Blade 104 comprises a
backplane interface adapter (BIA) 302 (also referred to as a
“super backplane interface adapter” or SBIA), a plurality of
Integrated Bus Translators (IBT)304 and a plurality of packet
processors 306. BIA 302 is responsible for striping the data
across the five cross points 202 of backplane 102. In a pre
ferred embodiment, BIA 302 is implemented as an applica
tion-specific circuit (ASIC). BIA 302 receives data from
packet processors 306 through IBTs 304 (or directly from
compatible packet processors). BIA302 may pass the data to
backplane 102 or may perform local switching between the
local ports on blade 104. In a preferred embodiment, BIA302
is coupled to four serial links 308. Each serial link 308 is
coupled to an IBT 304.
0111 Each packet processor 306 includes one or more
physical ports. Each packet processor 306 receives inbound
packets from the one or more physical ports, determines a
destination of the inbound packet based on control informa
tion, provides local Switching for local packets destined for a
physical port to which the packet processor is connected,
formats packets destined for a remote port to produce parallel
data and switches the parallel data to an IBT 304. Each IBT
304 receives the parallel data from each packet processor 306.
IBT304 then converts the parallel data to at least one serial bit
streams. IBT304 provides the serial bit stream to BIA302 via
a pipe 308, described herein as one or more serial links. In a
preferred embodiment, each pipe 308 is a 10 Gb/s XAUI
interface.

0112. In the example illustrated in FIG. 3A, packet pro
cessors 306C and 306D comprise 24 ten or 100 megabit per
second Ethernet ports, and two 1000 megabit per second or 1
Gb/s Ethernet ports. Before the data is converted, the input
data packets are converted to 32-bit parallel data clock data
133 MHz to achieve a four Gb/s data rate. The data is placed
in cells (also called “narrow cells') and each cell includes a
header which merges control signals in-band with the data
stream. Packets are interleaved to different destination slots
every 32 by cell boundary.
0113. Also in the example of FIG. 3A, IBT 304C is con
nected to packet processors 306C and 306D. In this example,
IBT304A is connected to a packet processor 306A. This may
be, for example, a ten gigabit per second OC-192 packet
processor. In these examples, each IBT 304 will receive as its
input a 64-bit wide data stream clocked at 156.25 MHz. Each
IBT 304 will then output a 10 gigabit per second serial data
stream to BIA302. According to one narrow cell format, each
cell includes a 4-byte header followed by 32 bytes of data. The

Aug. 28, 2008

4 byte header takes one cycle on the four XAUI lanes. Each
data byte is serialized onto one XAUI lane.
0114. BIA 302 receives the output of IBTs 304A-304D.
Thus, BIA 302 receives 4 times 10 Gbfs of data. Or alterna
tively, 8 times 5 gigabit per second of data. BIA302 runs at a
clock speed of 156.25 MHz. With the addition of manage
ment overhead and striping, BIA 302 outputs 5 times 10
gigabit per second data streams to the five cross points 202 in
backplane 102.
0115 BIA 302 receives the serial bit streams from IBTs
304, determines a destination of each inbound packet based
on packet header information, provides local Switching
between local IBTs 304, formats data destined for a remote
port, aggregates the serial bit streams from IBTs 304 and
produces an aggregate bit stream. The aggregated bit stream
is then striped across the five cross points 202A-202E.
0116 FIG. 3B shows a configuration of blade 104 accord
ing another embodiment of the present invention. In this
configuration, BIA302 receives output on serial links from a
10 Gb/s packet processor 316A, IBT 304C, and an Optical
Channel OC-1920 packet processor 316B.IBT304 is further
coupled to packet processors 306C,306D as described above.
10Gb/s packet processor 316A outputs a serial data stream of
narrow input cells carrying packets of data to BIA 302 over
serial link 318A. IBT 304C outputs a serial data stream of
narrow input cells carrying packets of data to BIA 302 over
serial link308C. Optical Channel OC-1920 packet processor
316B outputs two serial data streams of narrow input cells
carrying packets of data to BIA 302 over two serial links
318B, 318C.

A. Cross Point Architecture

0117 FIG. 4 illustrates the architecture of a cross point
202. Cross point 202 includes eight ports 401A-401H
coupled to eight port slices 402A-402H. As illustrated, each
port slice 402 is connected by a wire 404 (or other connective
media) to each of the other seven port slices 402. Each port
slice 402 is also coupled to through a port 401 a respective
blade 104. To illustrate this, FIG. 4 shows connections for
port 401F and port slice 402F (also referred to as port-slice 5).
For example, port 401 F is coupled via serial link 410 to blade
104F. Serial link 410 can be a 10G full-duplex serial link.
0118 Port slice 402F is coupled to each of the seven other
port slices 402A-402E and 402G-402H through links 420
426. Links 420-426 route data received in the other port slices
402A-402E and 402G-402H which has a destination port
number (also called a destination slot number) associated
with a port of port slice 402F (i.e. destination port number 5).
Finally, port slice 402F includes a link 430 that couples the
port associated with port slice 402F to the other seven port
slices. Link 430 allows data received at the port of port slice
402F to be sent to the other seven port slices. In one embodi
ment, each of the links 420-426 and 430 between the port
slices are buses to carry data in parallel within the cross point
202. Similar connections (not shown in the interest of clarity)
are also provided for each of the other port slices 402A-402E,
402G and 402H.
0119 FIG. 5 illustrates the architecture of port 401F and
port slice 402F in further detail. The architecture of the other
ports 401A-401E, 401G, and 401H and port slices 402A
402E, 402G and 402H is similar to port 401F and port slice
402F. Accordingly, only port 401F and port slice 402F need
be described in detail. Port 401F includes one or more dese
rializer receiver(s) 510 and serializer transmitter(s) 580. In

US 2008/0205407 A1

one embodiment, deserializer receiver(s) 510 and serializer
transmitter(s) 580 are implemented as serializer/deserializer
circuits (SERDES) that convert data between serial and par
allel data streams. In embodiments of the invention, port 401F
can be part of port slice 402F on a common chip, or on
separate chips, or in separate units.
0120 Port slice 402F includes a receive synch FIFO mod
ule 515 coupled between deserializer receiver(s) 510 and
accumulator 520. Receive synch FIFO module 515 stores
data output from deserializer receivers 510 corresponding to
port slice 402F. Accumulator 520 writes data to an appropri
ate data FIFO (not shown) in the other port slices 402A-402E,
402G, and 402H based on a destination slot or port number in
a header of the received data.

0121 Port slice 402F also receives data from other port
slices 402A-402E, 402G, and 402H. This data corresponds to
the data received at the other seven ports of port slices 402A
402E, 402G, and 402H which has a destination slot number
corresponding to port slice 402F. Port slice 402F includes
seven data FIFOs 530 to store data from corresponding port
slices 402A-402E, 402G, and 402H. Accumulators (not
shown) in the seven port slices 402A-402E, 402G, and 402H
extract the destination slot number associated with port slice
402F and write corresponding data to respective ones of seven
data FIFOs 530 for port slice 402F. As shown in FIG. 5, each
data FIFO 530 includes a FIFO controller and FIFO random
access memory (RAM). The FIFO controllers are coupled to
a FIFO read arbitrator 540. FIFO RAMs are coupled to a
multiplexer 550. FIFO read arbitrator 540 is further coupled
to multiplexer 550. Multiplexer 550 has an output coupled to
dispatcher 560. Dispatch 560 has an output coupled to trans
mit synch FIFO module 570. Transmit synch FIFO module
570 has an output coupled to serializer transmitter(s) 580.
0122. During operation, the FIFORAMs accumulate data.
After a data FIFO RAM has accumulated one cell of data, its
corresponding FIFO controller generates a read request to
FIFO read arbitrator 540. FIFO read arbitrator 540 processes
read requests from the different FIFO controllers in a desired
order, such as a round-robin order. After one cell of data is
read from one FIFO RAM, FIFO read arbitrator 540 will
move on to process the next requesting FIFO controller. In
this way, arbitration proceeds to serve different requesting
FIFO controllers and distribute the forwarding of data
received at different source ports. This helps maintain a rela
tively even but loosely coupled flow of data through cross
points 202.
(0123 To process a read request, FIFO read arbitrator 540
switches multiplexer 550 to forward a cell of data from the
data FIFO RAM associated with the read request to dis
patcher 560. Dispatcher 560 outputs the data to transmit
synch FIFO 570. Transmit synch FIFO 570 stores the data
until sent in a serial data stream by serializer transmitter(s)
580 to blade 104F.
B. Port Slice Operation with Wide Cell Encoding and Flow
Control
0.124. According to a further embodiment, a port slice
operates with respect to wide cell encoding and a flow control
condition. FIGS. 27 A-27E show a routine 2700 for process
ing data in port slice based on wide cell encoding and a flow
control condition (steps 2710-2790). In the interest ofbrevity,
routine 2700 is described with respect to an example imple
mentation of cross point 202 and an example port slice 402F.
The operation of the other port slices 402A-402E, 402G and
402H is similar.

Aug. 28, 2008

(0.125. In step 2710, entries in receive synch FIFO 515 are
managed. In one example, receive synch FIFO module 515 is
an 8-entry FIFO with write pointer and read pointer initial
ized to be 3 entries apart. Receive synch FIFO module 515
writes 64-bit data from a SERDES deserialize receiver 510,
reads 64-bit data from a FIFO with a clock signal and delivers
data to accumulator 520, and maintains a three entry separa
tion between read/write pointers by adjusting the read pointer
when the separation becomes less than or equal to 1.
I0126. In step 2720, accumulator 520 receives two chunks
of 32-bit data are received from receive synch FIFO 515.
Accumulator 520 detects a special character K0 in the first
bytes of first chunk and second chunk (step 2722). Accumu
lator 520 then extracts a destination slot number from the state
field in the header if K0 is detected (step 2724).
0127. As shown in FIG. 27B, accumulator 520 further
determines whether the cell header is low-aligned or high
aligned (step 2726). Accumulator 520 writes 64-bit data to the
data FIFO corresponding to the destination slot if cell header
is either low-aligned or high-aligned, but not both (step
2728). In step 2730, accumulator 520 writes 264-bit data to 2
data FIFOs corresponding to the two destination slots (or
ports) if cell headers appear in the first chunk and the second
chunk of data (low-aligned and high-aligned). Accumulator
520 then fill the second chunk of 32-bit data with idle char
acters when a cell does not terminate at the 64-bit boundary
and the subsequent cell is destined for a different slot (step
2732). Accumulator 520 performs an early termination of a
cell if an error condition is detected by inserting K0 and
ABORT state information in the data (step 2734). When
accumulator 520 detects a K1 character in the first byte of
data lGfirst chunk) and data h(second chunk) (step 2736),
and accumulator 520 writes subsequent 64-bit data to all
destination data FIFOs (step 2738).
I0128. As shown in FIG. 27C, in step 2740, if two 32-bit
chunks of data are valid, then they are written to data FIFO
RAM in one of data FIFOs 530. In step 2742, if only one of the
32-bit chunks is valid, it is saved in a temporary register if
FIFO depth has not dropped below a predetermined level. The
saved 32-bit data and the subsequent valid 32-bit data are
combined and written to the FIFO RAM. If only one of the
32-bit chunks is valid and the FIFO depth has dropped below
4 entries, the valid 32-bit chunk is combined with 32-bit idle
data and written to the FIFO RAM (step 2744).
I0129. In step 2746, a respective FIFO controller indicates
to FIFO read arbitrator 540 if KO has been read or FIFO RAM
is empty. This indication is a read request for arbitration. In
step 2748, a respective FIFO controller indicates to FIFO read
arbitrator 540 whether K0 is aligned to the first 32-bit chunk
or the second 32-bit chunk. When flow control from an output
port is detected (such as when a predetermined flow control
sequence of one or more characters is detected), FIFO con
troller stops requesting the FIFO read arbitrator 540 after the
current cell is completely read from the FIFO RAM (step
2750).
I0130. As shown in FIG. 27D, in step 2760, FIFO read
arbitrator 540 arbitrates among 7 requests from 7 FIFO con
trollers and switches at a cell (K0) boundary. If end of the
current cell is 64-bit aligned, then FIFO read arbitrator 540
switches to the next requestor and delivers 64-bit data from
FIFO RAM of the requesting FIFO controller to the dis
patcher 560 (step 2762). If end of current cell is 32-bit
aligned, then FIFO read arbitrator 540 combines the lower
32-bit of the current data with the lower 32-bit of the data

US 2008/0205407 A1

from the next requesting FIFO controller, and delivers the
combined 64-bit data to the dispatcher 560 (step 2764). Fur
ther, in step 2766, FIFO read arbitrator 540 indicates to the
dispatcher 560 when all 7 FIFO RAMs are empty.
0131. As shown in FIG. 27E, in step 2770, dispatcher 560
delivers 64-bit data to the SERDES synch FIFO module 570
and in turn to serializer transmitter(s) 580, if non-idle data is
received from the FIFO read arbitrator 540. Dispatcher 560
injects a first alignment sequence to be transmitted to the
SERDES synch FIFO module 570 and in turn to transmitter
580 when FIFO read arbitrator indicates that all 7 FIFO
RAMs are empty (step 2772). Dispatcher 560 injects a second
alignment sequence to be transmitted to the SERDES synch
FIFO module 570 and in turn to transmitter 580 when the
programmable timer expires and the previous cell has been
completely transmitted (step 2774). Dispatcher 560 indicates
to the FIFO read arbitrator 540 to temporarily stop serving
any requestor until the current pre-scheduled alignment
sequence has been completely transmitted (step 2776). Con
trol ends (step 2790).

C. Backplane Interface Adapter

0132) To describe the structure and operation of the back
plane interface adapter reference is made to components
shown in FIGS. 6-9. FIG. 6 is a diagram of a backplane
interface adapter (BIA) 600 according to an embodiment of
the present invention. BIA 600 includes two traffic processing
paths 603, 604. FIG. 7 is a diagram showing a first traffic
processing path 603 for local serial traffic received at BIA 600
according to an embodiment of the present invention. FIG. 8
is a diagram showing in more detail an example Switching
fabric 645 according to an embodiment of the present inven
tion. FIG. 9 is a diagram showing a second traffic processing
path 604 for backplane serial traffic received at BIA 600
according to an embodiment of the present invention. For
convenience, BIA 600 of FIG. 6 will also be described with
reference to a more detailed embodiment of elements along
paths 603, 604 as shown in FIGS. 7 and 9, and the example
switching fabric 645 shown in FIG. 8. The operation of a
backplane interface adapter will be further described with
respect to routines and example diagrams related to a wide
striped cell encoding scheme as shown in FIGS. 11-16.

D. Overall Operation of Backplane Interface Adapter

0.133 FIG. 10 is a flowchart of a routine 1000 interfacing
serial pipes carrying packets of data in narrow input cells and
a serial pipe carrying packets of data in wide striped cells
(steps 1010-1060). Routine 1000 includes receiving narrow
input cells (step 1010), sorting the received input cells based
on a destination slot identifier (1020), generating wide striped
cells (step 1030), storing the generated wide striped cells in
corresponding Stripe send queues based on a destination slot
identifier and an originating source packet processor (step
1040), arbitrating the order in which the stored wide striped
cells are selected for transmission (step 1050) and transmit
ting data slices representing blocks of wide cells across mul
tiple stripes (step 1060). For brevity, each of these steps is
described further with respect to the operation of the first
traffic processing path in BIA 600 in embodiments of FIGS.
6 and 7 below.

0134 FIG. 11 is a flowchart of a routine 1100 interfacing
serial pipes carrying packets of data in wide striped cells to
serial pipes carrying packets of data in narrow input cells

Aug. 28, 2008

(steps 1110-1180). Routine 1100 includes receiving wide
striped cells carrying packets of data in multiple stripes from
a switching fabric (step 1110), sorting the received subblocks
in each stripe based on Source packet processor identifier and
originating slot identifier information (step 1120), storing the
sorted received subblocks in stripe receive synchronization
queues (step 1130), assembling wide striped cells in the order
of the arbitrating step based on the received subblocks of data
(step 1140), translating the received wide striped cells to
narrow input cells carrying the packets of data (step 1150),
storing narrow cells in a plurality of destination queues (step
1160), arbitrating an order in which data stored in the stripe
receive synchronization queues is assembled (1170), and
transmitting the narrow output cells to corresponding source
packet processors (step 1180). In one additional embodiment,
further arbitration is performed including arbitrating an order
in which data stored in the destination queues is to be trans
mitted and transmitting the narrow input cells in the order of
the further arbitrating step to corresponding source packet
processors and/or IBTs. For brevity, each of these steps is
described further with respect to the operation of the second
traffic processing path in BIA 600 in embodiments of FIGS.
6 and 7 below.

I0135. As shown in FIG. 6, traffic processing flow path 603
extends in traffic flow direction from local packet processors
toward a switching fabric 645. Traffic processing flow path
604 extends in traffic flow direction from the switching fabric
645 toward local packet processors. BIA 600 includes dese
rializer receiver(s) 602, traffic sorter 610, wide cell generator
(s) 620, stripe send queues 625, switching fabric transmit
arbitrator 630 and sterilizer transmitter(s) 640 coupled along
path 603. BIA 600 includes deserializer receiver(s) 650,
stripe interface module(s) 660, stripe receive synchronization
queues 685, controller 670 (including arbitrator 672, striped
based wide cell assemblers 674, and administrative module
676), wide/cell translator 680, destination queues 615, local
destination transmit arbitrator 690, and sterilizer transmitter
(s) 692 coupled along path 604.

E. First Traffic Processing Path

0.136. Deserializer receiver(s) 602 receive narrow input
cells carrying packets of data. These narrow input cells are
output to deserializer receiver(s) 602 from packet processors
and/or from integrated bus translators (IBTs) coupled to
packet processors. In one example, four deserializer receivers
602 are coupled to four serial links (such as, links 308A-D,
318A-C described above in FIGS. 3A-3B). As shown in the
example of FIG. 7, each deserialize receiver 602 includes a
deserializer receiver 702 coupled to a cross-clock domain
synchronizer 703. For example, each deserializer receiver
702 coupled to a cross-clock domain synchronizer 703 can be
in turn a set of four SERDES deserializer receivers and
domain synchronizers carrying the bytes of data in the four
lanes of the narrow input cells. In one embodiment, each
deserializer receiver 702 can receive interleaved streams of
data from two serial links coupled to two sources. FIG. 7
shows one example where four deserializer receivers 702
(q-4) are coupled to two sources (–2) of a total of eight serial
links (k=8). In one example, each deserializer receiver 702
receives a capacity of 10 Gb/s of serial data.

US 2008/0205407 A1

F. Narrow Cell Format

0.137 FIG. 13 shows the format of an example narrow cell
1300 used to carry packets of data in the narrow input cells.
Such a format can include, but is not limited to, a data cell
format received from a XAUI interface. Narrow cell 1300
includes four lanes (lanes 0-3). Each lane 0-3 carries a byte of
data on a serial link. The beginning of a cell includes aheader
followed by payload data. The header includes one byte in
lane 0 of control information, and one byte in lane I of state
information. One byte is reserved in each of lanes 2 and 3.
Table 1310 shows example state information which can be
used. This state information can include any combination of
state information including one or more of the following: a
slot number, a payload state, and a source or destination
packet processor identifier. The slot number is an encoded
number, such as, 00, 01, etc. or other identifier (e.g., alpha
numeric or ASCII values) that identifies the blade (also called
a slot) towards which the narrow cell is being sent. The
payload State can be any encoded number or other identifier
that indicates a particular state of data in the cell being sent,
such as, reserved (meaning a reserved cell with no data), SOP
(meaning a start ofpacket cell), data (meaning a cell carrying
payload data of a packet), and abort (meaning a packet trans
fer is being aborted).

G. Traffic Sorting
0138 Traffic sorter 610 sorts received narrow input cells
based on a destination slot identifier. Traffic sorter 610 routes
narrow cells destined for the same blade as BIA 600 (also
called local traffic) to destination queues 615. Narrow cells
destined for other blades in a switch across the switching
fabric (also called global traffic) are routed to wide cell gen
erators 620.
0139 FIG. 7 shows a further embodiment where traffic
sorter 610 includes a global/traffic sorter 712 coupled to a
backplane sorter 714. Global/traffic sorter 712 sorts received
narrow input cells based on the destination slot identifier.
Traffic sorter 712 routes narrow cells destined for the same
blade as BIA 600 to destination queues 615. Narrow cells
destined for other blades in a switch across the switching
fabric (also called global traffic or backplane traffic) are
routed to backplane traffic sorter 714. Backplane traffic sorter
714 further sorts received narrow input cells having destina
tion slot identifiers that identify global destination slots into
groups based on the destination slot identifier. In this way,
narrow cells are grouped by the blade towards which they are
traveling. Backplane traffic sorter 714 then routes the sorted
groups of narrow input cells of the backplane traffic to corre
sponding wide cell generators 720. Each wide cell generator
720 then processes a corresponding group of narrow input
cells. Each group of narrow input cells represents portions of
packets sent from two corresponding interleaved sources
(–2) and destined for a respective blade. In one example, 56
wide cell generators 720 are coupled to the output of four
backplane traffic sorters 714. The total of 56 wide cell gen
erators 720 is given by 56-q*1-1, where j=2 sources, l=8
blades, and q four serial input pipes and four deserializer
receivers 702.

H. Wide Striped Cell Generation
0140 Wide cell generators 620 generate wide striped

cells. The wide striped cells carry the packets of data received
by BIA 600 in the narrow input cells. The wide cells extend

Aug. 28, 2008

across multiple stripes and include in-band control informa
tion in each stripe. In the interest of brevity, the operation of
wide cell generators 620,720 is further described with respect
to a routine 1200 in FIG. 12. Routine 1200 however is not
intended to be limited to use in wide cell generator 620, 720
and may be used in other structure and applications.
0141 FIG. 12 shows a routine 1200 for generating wide
striped cell generation according to the present invention
(steps 1210-1240). In one embodiment, each wide cell gen
erator(s) 620, 720 perform steps 1210-1240. In step 1210,
wide cell generator 620, 720 parse each narrow input cell to
identify a header. When control information is found in a
header, a check is made to determine whether the control
information indicates a start of packet (step 1220). For
example, to carry out steps 1210 and 1220, wide cell genera
tor 620, 720 can read lane 0 of narrow cell 1300 to determine
control information indicating a start of packet is present. In
one example, this start of packet control information is a
special control character K0.
0.142 For each detected packet (step 1225), steps 1230
1240 are performed. In step 1230, wide cell generator 620,
720 encodes one or more new wide striped cells until data
from all narrow input cells of the packet is distributed into the
one or more new wide striped cells. This encoding is further
described below with respect to routine 1400 and FIGS. 15A
D, and 16.
0143. In step 1230, wide cell generator 620 then writes the
one or more new wide striped cells into a plurality of send
queues 625. In the example of FIG. 7, a total of 56 wide cell
generators 720 are coupled to 56 stripes send queues 725. In
this example, the 56 wide cell generators 720 each write
newly generated wide striped cells into respective ones of the
56 stripe send queues 725.

I. Encoding Wide Striped Cells

0144. According to a further feature of the present inven
tion, system and method for encoding wide striped cells is
provided. In one embodiment, wide cell generators 620, 720
each generate wide striped cells which are encoded (step
1230). FIG. 14 is a flowchart of a routine 1400 for encoding
wide striped cells according to an embodiment of the present
invention (steps 1410-1460).

J. Initial Block Encoding
(0145. In step 1410, wide cell generator 620, 720 encodes
an initial block of a start wide striped cell with initial cell
encoding information. The initial cell encoding information
includes control information (such as, a special KO character)
and state information provided in each subblock of an initial
block of a wide striped cell. FIG. 15A shows the encoding of
an initial block in a wide striped cell 1500 according to an
embodiment of the present invention. The initial block is
labeled as cycle 1. The initial block has twenty bytes that
extend across five stripes 1-5. Each stripe has a subblock of
four bytes. The four bytes of a subblock correspond to four
one byte lanes. In this way, a stripe is a data slice of a Subblock
of a wide cell. A lane is a data slice of one byte of the
subblock. In step 1410, then control information (K0) is pro
vided all each lane 0 of the stripes 1-5. State information is
provided in each in each lane I of the stripes 1-5. Also, two
bytes are reserved in lanes 2 and 3 of stripe 5.
0146 FIG. 15B is a diagram illustrating state information
used in a wide striped cell according to an embodiment of the

US 2008/0205407 A1

present invention. As shown in FIG. 15B, state information
for a wide striped cell can include any combination of State
information including one or more of the following: a slot
number, a payload state, and reserved bits. The slot number is
an encoded number, such as, 00, 01, etc. or other identifier
(e.g., alphanumeric or ASCII values) that identifies the blade
(also called a slot) towards which the wide striped cell is being
sent. The payload state can be any encoded number or other
identifier that indicates a particular state of data in the cell
being sent, such as, reserved (meaning a reserved cell with no
data), SOP (meaning a start of packet cell), data (meaning a
cell carrying payload data of a packet), and abort (meaning a
packet transfer is being aborted). Reserved bits are also pro
vided.
0147 In step 1420, wide cell generator(s) 620, 720 dis
tribute initial bytes of packet data into available space in the
initial block. In the example wide striped cell 1500 shown in
FIG. 1 SA, two bytes of data D0, D1 are provided in lanes 2
and 3 of stripe 1, two bytes of data D2, D3 are provided in
lanes 2 and 3 of stripe 2, two bytes of data D4, D5 are provided
in lanes 2 and 3 of stripe 3, and two bytes of data D6, D7 are
provided in lanes 2 and 3 of stripe 4.
0148. In step 1430, wide cell generator(s) 620, 720 dis
tribute remaining bytes of packet data across one or more
blocks in of the first wide striped cell (and subsequent wide
cells). In the example wide striped cell 1500, maximum size
of a wide striped cell is 160 bytes (8 blocks) which corre
sponds to a maximum of 148 bytes of data. In addition to the
data bytes D0-D7 in the initial block, wide striped cell 1500
further has data bytes D8-D147 distributed in seven blocks
(labeled in FIG. 15A as blocks 2-8).
0149. In general, packet data continues to be distributed

until an end of packet condition is reached or a maximum cell
size is reached. Accordingly, checks are made of whether a
maximum cell size is reached (step 1440) and whether the end
of packet is reached (step 1450). If the maximum cell size is
reached in step 1440 and more packet data needs to be dis
tributed then control returns to step 1410 to create additional
wide striped cells to carry the rest of the packet data. If the
maximum cell size is not reached in step 1440, then an end of
packet check is made (step 1450). If an end of packet is
reached then the current wide striped cell being filled with
packet data is the end wide striped cell. Note for small packets
less than 148 bytes, than only one wide striped cell is needed.
Otherwise, more than one wide striped cells are used to carry
a packet of data across multiple stripes. When an end of
packet is reached in step 1450, then control proceeds to step
1460.

K. End of Packet Encoding
0150. In step 1460, wide cell generator(s) 620,720 further
encode an end wide striped cell with end of packet informa
tion that varies depending upon the degree to which data has
filled a wide striped cell. In one encoding scheme, the end of
packet information varies depending upon a set of end of
packet conditions including whether the end of packet occurs
in an initial cycle or Subsequent cycles, at a block boundary,
or at a cell boundary.
0151 FIG. 15C is a diagram illustrating end of packet
encoding information used in an end wide striped cell accord
ing to an embodiment of the present invention. A special
character byte K1 is used to indicate end of packet. A set of
four end of packet conditions are shown (items 1-4). The four
end of packet conditions are whether the end of packet occurs

Aug. 28, 2008

during the initial block (item 1) or during any Subsequent
block (items 2-4). The end of packet conditions for subse
quent blocks further include whether the end of packet occurs
within a block (item 2), at a block boundary (item 3), or at a
cell boundary (item 4). As shown in item 1 of FIG.15C, when
the end of packet occurs during the initial block, control and
state information (K0, state) and reserved information are
preserved as in any other initial block transmission. K1 bytes
are added as data in remaining data bytes.
0152. As shown in item 2 of FIG. 15C, when the end of
packet occurs during a Subsequent block (and notata block or
cell boundary), K1 bytes are added as data in remaining data
bytes until an end of a block is reached. In FIG. 15C, item 2,
an end of packet is reached at data byte D33 (stripe 2, lane 1
in block of cycle 3). K1 bytes are added for each lane for
remainder of block. When the end of packet occurs at a block
boundary of a subsequent block (item3), K1 bytes are added
as data in an entire subsequent block. In FIG. 15C, item3, an
end of packet is reached at data byte D27 (end of block of
block 2). K1 bytes are added for each lane for entire block
(block3). When the end of packet occurs during a subsequent
block but at a cell boundary (item 4), one wide striped cell
having an initial block with K1 bytes added as data is gener
ated. In FIG. 15D, item 4, an end of packet is reached at data
byte D147 (end of celland end of block for block 8). One wide
striped cell consisting of only an initial block with normal
control, state and reserved information and with K1 bytes
added as data is generated. As shown in FIG. 15D, such an
initial block with K1 bytes consists of stripes 1-5 with bytes as
follows: stripe 1 (K0, state, K1, K1), stripe 2 (K0, state,
K1.K1), stripe3 (K0, state, K1.K1), stripe 4 (K0, state,
K1.K1), stripe 5 (K0, state, reserved, reserved).

L. Switching Fabric Transmit Arbitration.
0153. In one embodiment, BIA 600 also includes switch
ing fabric transmit arbitrator 630. Switching fabric transmit
arbitrator 630 arbitrates the order in which data stored in the
stripe send queues 625,725 is sent by transmitters 640, 740 to
the switching fabric. Each stripe send queue 625,725 stores a
respective group of wide striped cells corresponding to a
respective originating source packet processor and a destina
tion slot identifier. Each wide striped cell has one or more
blocks across multiple stripes. During operation the Switch
ing fabric transmit arbitrator 630 selects a stripe send queue
625,725 and pushes the next available cell to the transmitters
640, 740. In this way one full cell is sent at a time. (Alterna
tively, a portion of a cell can be sent.) Each stripe of a wide cell
is pushed to the respective transmitter 640, 740 for that stripe.
In one example, during normal operation, a complete packet
is sent to any particular slot or blade from a particular packet
processor before a new packet is sent to that slot from differ
ent packet processors. However, the packets for the different
slots are sent during an arbitration cycle. In an alternative
embodiment, other blades or slots are then selected in a
round-robin fashion.
M. Cross Point Processing of Stripes including Wide Cell
Encoding
0154) In on embodiment, switching fabric 645 includes a
number n of cross point Switches 202 corresponding to each
of the stripes. Each cross point switch 202 (also referred to
herein as a cross point or cross point chip) handles one data
slice of wide cells corresponding to one respective stripe. In
one example, five cross point switches 202A-202E are pro
vided corresponding to five stripes. For clarity, FIG. 8 shows

US 2008/0205407 A1

only two offive cross point Switches corresponding to stripes
1 and 5. The five cross point switches 202 are coupled
between transmitters and receivers of all of the blades of a
switch as described above with respect to FIG. 2. For
example, FIG. 8 shows cross point switches 202 coupled
between one set of transmitters 740 for stripes of one blade
and another set of receivers 850 on a different blade.
0155 The operation of a cross point 202 and in particular
a port slice 402F is now described with respect to an embodi
ment where stripes further include wide cell encoding and a
flow control indication.
0156 Port slice 402F also receives data from other port
slices 402A-402E, 402G, and 402H. This data corresponds to
the data received at the other seven ports of port slices 402A
402E, 402G, and 402H which has a destination slot number
corresponding to port slice 402F. Port slice 402F includes
seven data FIFOs 530 to store data from corresponding port
slices 402A-402E, 402G, and 402H. Accumulators (not
shown) in the seven port slices 402A-402E, 402G, and 402H
extract the destination slot number associated with port slice
402F and write corresponding data to respective ones of seven
data FIFOs 530 for port slice 402F. As shown in FIG. 5, each
data FIFO 530 includes a FIFO controller and FIFO random
access memory (RAM). The FIFO controllers are coupled to
a FIFO read arbitrator 540. FIFO RAMs are coupled to a
multiplexer 550. FIFO read arbitrator 540 is further coupled
to multiplexer 550. Multiplexer 550 has an output coupled to
dispatcher 560. Dispatch 560 has an output coupled to trans
mit synch FIFO module 570. Transmit synch FIFO module
570 has an output coupled to serializer transmitter(s) 580.
0157 During operation, the FIFORAMs accumulate data.
After a data FIFO RAM has accumulated one cell of data, its
corresponding FIFO controller generates a read request to
FIFO read arbitrator 540. FIFO read arbitrator 540 processes
read requests from the different FIFO controllers in a desired
order, such as a round-robin order. After one cell of data is
read from one FIFO RAM, FIFO read arbitrator 540 will
move on to process the next requesting FIFO controller. In
this way, arbitration proceeds to serve different requesting
FIFO controllers and distribute the forwarding of data
received at different source ports. This helps maintain a rela
tively even but loosely coupled flow of data through cross
points 202.
0158 To process a read request, FIFO read arbitrator 540
switches multiplexer 550 to forward a cell of data from the
data FIFO RAM associated with the read request to dis
patcher 560. Dispatcher 560 outputs the data to transmit
synch FIFO 570. Transmit synch FIFO 570 stores the data
until sent in a serial data stream by serializer transmitter(s)
580 to blade 104F.
0159. Cross point operation according to the present
invention is described further below with respect to a further
embodiment involving wide cell encoding and flow control.

N. Second Traffic Processing Path
0160 FIG. 6 also shows a traffic processing path for back
plane serial traffic received at backplane interface adapter 600
according to an embodiment of the present invention. FIG.9
further shows the second traffic processing path in even more
detail.
0161. As shown in FIG. 6, BIA 600 includes one or more
deserialize receivers 650, wide/narrow cell translators 680,
and serializer transmitters 692 along the second path. Receiv
ers 650 receive wide striped cells in multiple stripes from the

Aug. 28, 2008

switching fabric 645. The wide striped cells carry packets of
data. In one example, five deserializer receivers 650 receive
five subblocks of wide striped cells in multiple stripes. The
wide striped cells carrying packets of data across the multiple
stripes and including originating slot identifier information.
In one digital Switch embodiment, originating slot identifier
information is written in the wide striped cells as they pass
through cross points in the Switching fabric as described
above with respect to FIG. 8.
0162 Translators 680 translate the received wide striped
cells to narrow input cells carrying the packets of data. Seri
alizer transmitters 692 transmit the narrow input cells to
corresponding source packet processors or IBTs.
(0163 BIA 600 further includes stripe interfaces 660 (also
called stripe interface modules), Stripe receive synchroniza
tion queues (685), and controller 670 coupled between dese
rializer receivers 650 and a controller 670. Each stripe inter
face 660 sorts received subblocks in each stripe based on
Source packet processor identifier and originating slot iden
tifier information and stores the sorted received subblocks in
the stripe receive synchronization queues 685.
0164 Controller 670 includes an arbitrator 672, a striped
based wide cell assembler 674, and an administrative module
676. Arbitrator 672 arbitrates an order in which data stored in
stripe receive synchronization queues 685 is sent to striped
based wide cell assembler 674. Striped-based wide cell
assembler 674 assembles wide striped cells based on the
received subblocks of data. A narrowf wide cell translator 680
then translates the arbitrated received wide striped cells to
narrow input cells carrying the packets of data. Administra
tive module 676 is provided to carry out flow control, queue
threshold level detection, and error detection (such as, stripe
synchronization error detection), or other desired manage
ment or administrative functionality.
0.165 A second level of arbitration is also provided
according to an embodiment of the present invention. BIA
600 further includes destination queues 615 and a local des
tination transmit arbitrator 690 in the second path. Destina
tion queues 615 store narrow cells sent by traffic sorter 610
(from the first path) and the narrow cells translated by the
translator 680 (from the second path). Local destination trans
mit arbitrator 690 arbitrates an order in which narrow input
cells stored in destination queues 690 is sent to serializer
transmitters 692. Finally, serializer transmitters 692 then
transmit the narrow input cells to corresponding IBTs and/or
Source packet processors (and ultimately out of a blade
through physical ports).
0166 FIG. 9 further shows the second traffic processing
path in even more detail. BIA 600 includes five groups of
components for processing data slices from five slices. In
FIG.9 only two groups 900 and 901 are shown for clarity, and
only group 900 need be described in detail with respect to one
stripe since the operations of the other groups is similar for the
other four stripes.
(0167. In the second traffic path, deserializer receiver 950 is
coupled to cross clock domain synchronizer 952. Deserializer
receiver 950 converts serial data slices of a stripe (e.g., sub
blocks) to parallel data. Cross clock domain synchronizer 952
synchronizes the parallel data.
(0168 Stripe interface 960 has a decoder 962 and sorter
964 to decode and sort received subblocks in each stripe
based on Source packet processor identifier and originating
slot identifier information. Sorter 964 then stores the sorted
received Subblocks in stripe receive synchronization queues

US 2008/0205407 A1

965. Five groups of 56 stripe receive synchronization queues
965 are provided in total. This allows one queue to be dedi
cated for each group of Subblocks received from a particular
Source per global blade (up to 8 source packet processors per
blade for seven blades not including the current blade).
(0169 Arbitrator 672 arbitrates an order in which data
stored in stripe receive synchronization queues 685 sent to
striped-based wide cell assembler 674. Striped-based wide
cell assembler 674 assembles wide striped cells based on the
received subblocks of data. A narrowf wide cell translator 680
then translates the arbitrated received wide striped cells to
narrow input cells carrying the packets of data as described
above in FIG. 6.
0170 Destination queues include local destination queues
982 and backplane traffic queues 984. Local destination
queues 982 store narrow cells sent by local traffic sorter 716.
Backplane traffic queues 984 store narrow cells translated by
the translator 680. Local destination transmit arbitrator 690
arbitrates an order in which narrow input cells stored in des
tination queues 982,984 is sent to serializer transmitters 992.
Finally, serializer transmitters 992 then transmit the narrow
input cells to corresponding IBTs and/or source packet pro
cessors (and ultimately out of a blade through physical ports).

O. Cell Boundary Alignment
0171 FIG. 15D is a diagram illustrating an example of a
cell boundary alignment condition during the transmission of
wide striped cells in multiple stripes according to an embodi
ment of the present invention. A KO character is guaranteed
by the encoding and wide striped cell generation to be present
every 8 blocks for any given stripe. Cell boundaries among
the stripes themselves can be out of alignment. This out of
alignment however is compensated for and handled by the
second traffic processing flow path in BIA 600.

P. Packet Alignment
0172 FIG. 16 is a diagram illustrating an example of a
packet alignment condition during the transmission of wide
striped cells in multiple stripes according to an embodiment
of the present invention. Cell can vary between stripes but all
stripes are essentially transmitting the same packet or nearby
packets. Since each cross point arbitrates among its sources
independently, not only canthere be a skew inacell boundary,
but there can be as many as seven cell time units (time to
transmit cells) of skew between a transmission of a packet on
one serial link Verus its transmission on any other link. This
also means that packets may be interlaced with other packets
in the transmission in multiple stripes over the Switching
fabric.

Q. Wide Striped Cell Size at Line Rate
0173. In one example, a wide cell has a maximum size of
eight blocks (160 bytes) which can carry a 148 bytes of
payload data and 12 bytes of in-band control information.
Packets of data for full-duplex traffic can be carried in the
wide cells at a 50 Gb/sec rate through the digital switch.

R. IBT and Packet Processing
0.174. The integrated packet controller (IPC) and inte
grated giga controller (IGC) functions are provided with abus
translator, described above as the IPC/IGC Bus Translator
(IBT) 304. In one embodiment, the IBT is an ASIC that
bridges one or more IPC/IC ASIC. In such an embodiment,

Aug. 28, 2008

the IBT translates two 4/5 gig parallel stream into one 10
Gbps serial stream. The parallel interface can be the back
plane interface of the IPC/IGCASICs. The one 10Gbps serial
stream can be further processed, for example, as described
herein with regard to interface adapters and striping.
(0175. Additionally, IBT 304 can be configured to operate
with other architectures as would be apparent to one skilled in
the relevant art(s) based at least on the teachings herein. For
example, the IBT 304 can be implemented in packet proces
sors using 10GE and OC-192 configurations. The function
ality of the IBT 304 can be incorporated within existing
packet processors or attached as an add-on component to a
system.
(0176). In FIG. 17, a block diagram 1700 illustrates the
components of a bus translator 1702 according to one
embodiment of the present invention. The previously
described IBT 304 can be configured as the bus translator
1702 of FIG. 17. For example, IBT 304 can be implemented
to include the functionality of the bus translator 1702.
(0177 More specifically, the bus translator 1702 translates
data 1704 into data 1706 and data 1706 into data104. The data
1706 is received by transceiver(s) 1710 is forwarded to a
translator 1712. The translator 1712 parses and encodes the
data 1706 into a desired format.
0.178 Here, the translator 1712 translates the data 1706
into the format of the data 1704. The translator 1712 is man
aged by an administration module 1718. One or more
memory pools 1716 store the information of the data 1706
and the data 1704. One or more clocks 1714 provide the
timing information to the translation operations of the trans
lator 1712. Once the translator 1712 finishes translating the
data 1706, it forwards the newly formatted information as the
data 1704 to the transceiver(s) 1708. The transceiver(s) 1708
forward the data 1704.
0179. As one skilled in the relevant art would recognize
based on the teachings described herein, the operational
direction of bus translator 1702 can be reversed and the data
1704 received by the bus translator 1702 and the data 1706
forwarded after translation.

0180. For ease of illustration, but without limitation, the
process of translating the data 1706 into the data 1704 is
herein described as receiving, reception, and the like. Addi
tionally, for ease of illustration, but without limitation, the
process of translating the data 1704 into the data 1706 is
herein described as transmitting, transmission, and the like.
0181. In FIG. 18, a block diagram of the reception com
ponents according to one embodiment of the present inven
tion. In one embodiment, bus translator 1802 receives data in
the form of packets from interface connections 1804a-n. The
interface connections 1804a-n couple to one or more receiv
ers 1808 of bus translator 1802. Receivers 1808 forward the
received packets to one or more packet decoders 1810. In one
embodiment, the receiver(s) 1808 includes one or more
physical ports. In an additional embodiment, each of receiv
ers 1808 includes one or more logical ports. In one specific
embodiment, the receiver(s) 1808 consists of four logical
ports.
0182. The packet decoders 1810 receive the packets from
the receivers 1808. The packet decoders 1810 parse the infor
mation from the packets. In one embodiment, as is described
below in additional detail, the packet decoders 1810 copy the
payload information from each packet as well as the addi
tional information about the packet, Such as time and place of
origin, from the start of packet (SOP) and the end of packet

US 2008/0205407 A1

(EOP) sections of the packet. The packet decoders 1810 for
ward the parsed information to memory pool(s) 1812. In one
embodiment, the bus translator 1802 includes more than one
memory pool 1812. In an alternative embodiment, alternate
memory pool(s) 1818 can be sent the information. In an
additional embodiment, the packet decoder(s) 1810 can for
ward different types of information, such as payload, time of
delivery, origin, and the like, to different memory pools of the
pools 1812 and 1818.
0183 Reference clock 1820 provides timing information

to the packet decoder(s) 1810. In one embodiment, reference
clock 1820 is coupled to the IPC/IGC components sending
the packets through the connections 1804a-n. In another
embodiment, the reference clock 1820 provides reference and
timing information to all the parallel components of the bus
translator 1802.
0184 Cell encoder(s) 1814 receives the information from
the memory pool(s) 1812. In an alternative embodiment, the
cell encoder(s) 1814 receives the information from the alter
native memory pool(s) 1818. The cell encoder(s) 1814 for
mats the information into cells.
0185. In the description that follows, these cells are also
referred to as narrow cells. Furthermore, the cell encoder(s)
1814 can be configured to format the information into one or
more cell types. In one embodiment, the cell format is a fixed
size. In another embodiment, the cell format is a variable size.
0186. The cell format is described in detail below with
regard to cell encoding and decoding processes of FIGS. 22.
23A-B, 24, and 25A-B.
0187. The cell encoder(s) 1814 forwards the cells to trans
mitter(s) 1816. The transmitter(s) 1816 receive the cells and
transmit the cells through interface connections 1806a-n.
0188 Reference clock 1828 provides timing information

to the cell encoder(s) 1814. In one embodiment, reference
clock 1828 is coupled to the interface adapter components
receiving the cells through the connections 1806a-n. In
another embodiment, the reference clock 1828 provides ref
erence and timing information to all the serial components of
the bus translator 1802.
0189 Flow controller 1822 measures and controls the
incoming packets and outgoing cells by determining the sta
tus of the components of the bus translator 1802 and the status
of the components connected to the bus translator 1802. Such
components are previously described herein and additional
detail is provided with regard to the interface adapters of the
present invention.
0190. In one embodiment, the flow controller 1822 con
trols the traffic through the connection 1806 by asserting a
ready signal and de-asserting the ready signal in the event of
an overflow in the bus translator 1802 or the IPC/IGC com
ponents further connected.
0191 Administration module 1824 provides control fea
tures for the bus translator 1802. In one embodiment, the
administration module 1824 provides error control and
power-on and reset functionality for the bus translator 1802.
0.192 FIG. 19 illustrates a block diagram of the transmis
sion components according to one embodiment of the present
invention. In one embodiment, bus translator 1902 receives
data in the form of cells from interface connections 1904a-n.
The interface connections 1904a-n couple to one or more
receivers 1908 of bus translator 1902. In one embodiment, the
receiver(s) 1908 include one or more physical ports. In an
additional embodiment, each of receivers 1908 includes one
or more logical ports. In one specific embodiment, the receiv

Aug. 28, 2008

er(s) 1908 consists of four logical ports. Receivers 1908 for
ward the received cells to a synchronization module 1910. In
one embodiment, the synchronization module 1910 is a FIFO
used to synchronize incoming cells to the reference clock
1922. It is noted that although there is no direct arrow shown
in FIG. 19 from reference clock 1922 to synchronization
module 1910, the two module can communicate such that the
synchronization module is capable of synchronizing the
incoming cells. The synchronization module 1910 forwards
the one or more cell decoders 1912.
0193 The cell decoders 1912 receive the cells from the
synchronization module 1910. The cell decoders 1912 parse
the information from the cells. In one embodiment, as is
described below in additional detail, the cell decoders 1912
copy the payload information from each cell as well as the
additional information about the cell. Such as place of origin,
from the slot and state information section of the cell.
0.194. In one embodiment, the cell format can be fixed. In
another embodiment, the cell format can be variable. In yet
another embodiment, the cells received by the bus translator
1902 can be of more than one cell format. The bus translator
1902 can be configured to decode these cell format as one
skilled in the relevant art would recognize based on the teach
ings herein. Further details regarding the cell formats is
described below with regard to the cell encoding processes of
the present invention.
(0195 The cell decoders 1912 forward the parsed informa
tion to memory pool(s) 1914. In one embodiment, the bus
translator 1902 includes more than one memory pool 1914. In
an alternative embodiment, alternate memory pool(s) 1916
can be sent the information. In an additional embodiment, the
cell decoder(s) 1912 can forward different types of informa
tion, such as payload, time of delivery, origin, and the like, to
different memory pools of the pools 1914 and 1916.
0196. Reference clock 1922 provides timing information
to the cell decoder(s) 1912. In one embodiment, reference
clock 1922 is coupled to the interface adapter components
sending the cells through the connections 1904a-n. In another
embodiment, the reference clock 1922 provides reference and
timing information to all the serial components of the bus
translator 1902.
(0197) Packet encoder(s) 1918 receive the information
from the memory pool(s) 1914. In an alternative embodiment,
the packet encoder(s) 1918 receive the information from the
alternative memory pool(s) 1916. The packet encoder(s) 1918
format the information into packets.
0198 The packet format is determined by the configura
tion of the IPC/IGC components and the requirements for the
system.
(0199 The packet encoder(s) 1918 forwards the packets to
transmitter(s) 1920. The transmitter(s) 1920 receive the pack
ets and transmit the packets through interface connections
1906a-n.

0200 Reference clock 1928 provides timing information
to the packet encoder(s) 1918. In one embodiment, reference
clock 1928 is coupled to the IPC/IGC components receiving
the packets through the connections 1906a-n. In another
embodiment, the reference clock 1928 provides reference and
timing information to all the parallel components of the bus
translator 1902.

0201 Flow controller 1926 measures and controls the
incoming cells and outgoing packets by determining the sta
tus of the components of the bus translator 1902 and the status
of the components connected to the bus translator 1902. Such

US 2008/0205407 A1

components are previously described herein and additional
detail is provided with regard to the interface adapters of the
present invention.
0202. In one embodiment, the flow controller 1926 con
trols the traffic through the connection 1906 by asserting a
ready signal and de-asserting the ready signal in the event of
an overflow in the bus translator 1902 or the IPC/IGC com
ponents further connected.
0203 Administration module 1924 provides control fea
tures for the bus translator 1902. In one embodiment, the
administration module 1924 provides error control and
power-on and reset functionality for the bus translator 1902.
0204. In FIG. 20, a detailed block diagram of the bus
translator according to one embodiment, is shown. Bus trans
lator 2002 incorporates the functionality of bus translators
1802 and 1902.
0205. In terms of packet processing, packets are received
by the bus translator 2002 by receivers 2012. The packets are
processed into cells and forwarded to a serializer/deserializer
(SERDES) 2026. SERDES 2026 acts as a transceiver for the
cells being processed by the bus translator 2002. The SER
DES 2026 transmits the cells via interface connection 2006.
0206. In terms of cell processing, cells are received by the
bus translator 2002 through the interface connection 2008 to
the SERDES 2026. The cells are processed into packets and
forwarded to transmitters 2036. The transmitters 2036 for
ward the packets to the IPC/IGC components through inter
face connections 2010a-n.
0207. The reference clocks 2040 and 2048 are similar to
those previously described in FIGS. 18 and 19. The reference
clock 2040 provides timing information to the serial compo
nents of the bus translator 2002. As shown, the reference
clock 2040 provides timing information to the cell encoder(s)
2020, cell decoder(s) 2030, and the SERDES 2026. The ref
erence clock 2048 provides timing information to the parallel
components of bus translator 2002. As shown, the reference
clock 2048 provides timing information to the packet decoder
(s) 2016 and packet encoder(s) 2034.
0208. The above-described separation of serial and paral

lel operations is a feature of embodiments of the present
invention. In such embodiments, the parallel format of
incoming and leaving packets at ports 2014a-n and 2038a-b.
respectively, is remapped into a serial cell format at the SER
DES 2026.
0209 Furthermore, according to embodiments of the
present invention, the line rates of the ports 2014a-n have a
shared utilization limited only by the line rate of output 2006.
Similarly for ports 2038a-n and input 2008.
0210. The remapping of parallel packets into serial cells is
descibed in further detail herein, more specifically with
regard to FIG. 21E.
0211. In FIG. 21A, a detailed block diagram of the bus

translator, according to another embodiment of the present
invention, is shown. The receivers and transmitters of FIGS.
18, 19, and 20 are replaced with CMOS I/Os. 2112 capable of
providing the same functionality as previously described. The
CMOS I/Os. 2112 can be configured to accommodate various
numbers of physical and logical ports for the reception and
transmission of data.
0212 Administration module 2140 operates as previously
described. As shown, the administration module 2140
includes an administration control element and an adminis
tration register. The administration control element monitors
the operation of the bus translator 2102 and provides the reset

Aug. 28, 2008

and power-on functionality as previously described with
regard to FIGS. 18, 19, and 20. The administration register
caches operating parameters such that the state of the bus
translator 2102 can be determined based on a comparison or
look-up against the cached parameters.
0213. The reference clocks 2134 and 2136 are similar to
those previously described in FIGS. 18, 19, and 20. The
reference clock 2136 provides timing information to the
serial components of the bus translator 2102. As shown, the
reference clock 2136 provides timing information to the cell
encoder(s) 2118, cell decoder(s) 2128, and the SERDES
2124. The reference clock 2134 provides timing information
to the parallel components of bus translator 2102. As shown,
the reference clock 2134 provides timing information to the
packet decoder(s) 2114 and packet encoder(s) 2132.
0214. As shown in FIG. 21A, memory pool 2116 includes
two pairs of FIFOs. Each FIFO pair with a header queue. The
memory pool 2116 performs as previously described memory
pools in FIGS. 18 and 20. In one embodiment, payload or
information portions of decoded packets is stored in one or
more FIFOs and the timing, place of origin, destination, and
similar information is stored in the corresponding header
queue.
0215. Additionally, memory pool 2130 includes two pairs
of FIFOs. The memory pool 2130 performs as previously
described memory pools in FIGS. 19 and 20. In one embodi
ment, decoded cell information is stored in one or more
FIFOs along with corresponding timing, place of origin, des
tination, and similar information.
0216) Interface connections 2106 and 2108 connect pre
viously described interface adapters to the bus translator 2102
through the SERDES 2124. In one embodiment, the connec
tions 2106 and 2108 are serial links. In another embodiment,
the serial links are divided four lanes.

0217. In one embodiment, the bus translator 2102 is an
IBT 304 that translates one or more 4Gbps parallel IPC/IGC
components into four 3.125 Gbps serial XAUI interface links
or lanes. In one embodiment, the back planes are the IPC/IGC
interface connections. The bus translator 2102 formats
incoming data into one or more cell formats.
0218. In one embodiment, the cell format can be a four
byte header and a 32 byte data payload. In a further embodi
ment, each cell is separated by a special K character into the
header. In another embodiment, the last cell of a packet is
indicated by one or more special K1 characters.
0219. The cell formats can include both fixed length cells
and variable length cells. The 36 bytes (4 byte header plus 32
byte payload) encoding is an example of a fixed length cell
format. In an alternative embodiment, cell formats can be
implemented where the cell length exceeds the 36 bytes (4
bytes--32 bytes) previously described.
0220. In FIG. 21B, a functional block diagram shows the
data paths with reception components of the bus translator.
Packet decoders 2150a-b forward packet data to the FIFOs
and headers in pairs. For example, packet decoder 2150a
forwards packet data to FIFO 2152a-band side-band infor
mation to header 2154. A similar process is followed for
packet decoder 2150b. Packet decoder 2150b forwards
packet data to FIFO 2156a-b and side-band information to
header 2158. Cell encoder(s) 2160 receive the data and con
trol information and produce cells to serializer/deserializer
(SERDES) circuits, shown as their functional components
SERDES special character 2162, and SERDES data 2164a-b.
The SERDES special character 2162 contains the special

US 2008/0205407 A1

characters used to indicate the start and end of a cell's data
payload. The SERDES data 2164a-b contains the data pay
load for each cell, as well as the control information for the
cell. Cell structure is described in additional detail below,
with respect to FIG. 21E.
0221) The bus translator 2102 has memory pools 2116 to
act as internal data buffers to handle pipeline latency. For each
IPC/IGC component, the bus translator 2102 has two data
FIFOs and one header FIFO, as shown in FIG. 21A as the
FIFOs of memory pool 2116 and in FIG. 21B as elements
2152a-b, 2154, 2156a-b, and 2158. In one embodiment, side
band information is stored in each of the headers A or B. 32
bytes of data is stored in one or more of the two data FIFOs
A1, A2, or B1.B2 in a ping-pong fashion. The ping-pong
fashion is well-known in the relevant art and involves alter
nating fashion.
0222. In one embodiment, the cell encoder 2160 merges
the data from each of the packet decoders 2150a-b into one 10
Gbps data stream to the interface adapter. The cell encoder
2160 merges the data by interleaving the data at each cell
boundary. Each cell boundary is determined by the special K
characters.
0223) According to one embodiment, the received packets
are 32bit aligned, while the parallel interface of the SERDES
elements is 64 bit wide.
0224. In practice it can be difficult to achieve line rate for
any packet length. Line rate means maintaining the same rate
of output in cells as the rate at which packets are being
received. Packets can have a four byte header overhead (SOP)
and a four byte tail overhead (EOP). Therefore, the bus trans
lators 2102 must parse the packets without the delays of
typical parsing and routing components. More specifically,
the bus translators 2102 formats parallel data inot cell format
using special K characters, as described in more detail below,
to merge state information and slot information (together,
control information) in band with the data streams. Thus, in
one embodiment, each 32 bytes of cell data is accompanied
by a four byte header.
0225 FIG. 21C shows a functional block diagram of the
data paths with transmission components of the bus translator
according to one embodiment of the present invention. Cell
decoder(s) 2174 receive cells from the SERDES circuit. The
functional components of the SERDES circuit include ele
ments 2170, and 2172a-b. The control information and data
are parsed from the cell and forward to the memory pool(s). In
one embodiment, FIFOs are maintained in pairs, shown as
elements 2176a-b and 2176c-d. Each pair forwards control
information and data to packet encoders 2178a-b.
0226 FIG. 21D shows a functional block diagram of the
data paths with native mode reception components of the bus
translator according to one embodiment of the present inven
tion. In one embodiment, the bus translator 2102 can be
configured into native mode. Native mode can include when
a total of 10 Gbps connections are maintained at the parallel
end (as shown by CMOS I/Os. 2112) of the bus translator
2102. In one embodiment, due to the increased bandwidth
requirement (from 8 Gbps to 10 Gbps), the cell format length
is no longer fixed at 32 bytes. In embodiments where a 10
Gbps traffic is channeled through the bus translator 2102.
control information is attached when the bus translator 2102
receives a SOP from the device(s) on the 10Gbps link. In an
additional embodiment, when the bus translator 2102 first
detects a data transfer and is, therefore, coming to an opera
tional state from idle, it attaches control information.

Aug. 28, 2008

0227. In an additional embodiment, as shown in FIG.21D,
two separate data FIFOs are used to temporarily buffer the
uplinking data; thus avoiding existing timing paths.
0228. Although a separate native mode data path is not
shown for cell to packet translation, one skilled in the relevant
art would recognize how to accomplish it based at least on the
teachings described herein. For example, by configuring two
FIFOs for dedicated storage of 10 Gbps link information. In
one embodiment, however, the bus translator 2102 processes
native mode and non-native mode data paths in a shared
operation as shown in FIGS. 19, 20, and 21. Headers and idle
bytes are stripped from the data stream by the cell decoder(s),
such as decoder(s) 2103 and 2174. Valid data is parsed and
stored, and forwarded, as previously described, to the parallel
interface.

0229. In an additional embodiment, where there is a Zero
body cell format being received by the interface adapter or
BIA, the IBT 304 holds one last data transfer for each source
slot. When it receives the EOP with the Zero body cell format,
the last one or two transfers are released to be transmitted
from the parallel interface.

S. Narrow Cell and Packet Encoding Processes
0230 FIG. 21E shows a block diagram of a cell format
according to one embodiment of the present invention. FIG.
21E shows both an example packet and a cell according to the
embodiments described herein. The example packet shows a
start of packet 2190a, payload containing data 2190b, end of
packet 2190c, and inter-packet gap 2190c.
0231. According to one embodiment of the present inven
tion, the cell includes a special character K02190: a control
information 2194; optionally, one or more reserved 2196a-b;
and data 2198a-n. In an alternate embodiment, data 2198a-n
can contain more than D0-D31.

0232. In one embodiment, the four rows or slots indicated
in FIG. 21E illustrate the four lanes of the serial link through
which the cells are transmitted and/or received.
0233. As previously described herein, the IBT 304 trans
mits and receives cells to and from the BIA 302 through the
XAUI interface. The IBT 304 transmits and receives packets
to and from the IPC/IGC components, as well as other con
troller components (i.e., 10GE packet processor) through a
parallel interface. The packets are segmented into cells which
consist of a four byte header followed by 32 bytes of data. The
end of packet is signaled by K1 Special character on any
invalid data bytes within four byte of transfer or four K1 on all
XAUI lanes. In one embodiment, each byte is serialized onto
one XAUI lane. The following table illustrates in a right to left
formation a byte by byte representation of a cell according to
one embodiment of the present invention:

LaneO Lane1 Lane2 Lane3

KO State Reserved Reserved
DO D1 D2 D3

D8 D9 D10 D11
D12 D13 D14 D15

D28 D29 D30 D31

0234. The packets are formatted into cells that consist of a
header plus a data payload. The 4 bytes of header takes one

US 2008/0205407 A1

cycle or row on four XAUI lanes. It has KO special character
on Lane 0 to indicate that current transfer is a header. The
control information starts on Lane 1 of a header.

0235. In one embodiment, the IBT 304 accepts two IPC/
IGC back plane buses and translates them into one 10Gbps
serial stream.

0236. In FIG. 22, a flow diagram of the encoding process
of the bus translator according to one embodiment of the
present invention is shown. The process starts at step 2202
and immediately proceeds to step 2204.
0237. In step 2204, the IBT 304 determines the port types
through which it will be receiving packets. In one embodi
ment, the ports are configured for 4Gbps traffic from IPC/
IGC components. The process immediately proceeds to step
2206.

0238. In step 2206, the IBT304 selects a cell format type
based on the type of traffic it will be processing. In one
embodiment, the IBT304 selects the cell format type based in
part on the port type determination of step 2204. The process
immediately proceeds to step 2208.
0239. In step 2208, the IBT 304 receives one or more
packets from through its ports from the interface connections,
as previously described. The rate at which packets are deliv
ered depends on the components sending the packets. The
process immediately proceeds to step 2210.
0240. In step 2210, the IBT 304 parses the one or more
packets received in step 2208 for the information contained
therein. In one embodiment, the packet decoder(s) of the IBT
304 parse the packets for the information contained within the
payload section of the packet, as well as the control or routing
information included with the header for that each given
packet. The process immediately proceeds to step 2212.
0241. In step 2212, the IBT304 optionally stores the infor
mation parsed in step 2210. In one embodiment, the memory
pool(s) of the IBT 304 are utilized to store the information.
The process immediately proceeds to step 2214.
0242. In step 2214, the IBT 304 formats the information
into one or more cells. In one embodiment, the cell encoder(s)
of the IBT 304 access the information parsed from the one or
more packets. The information includes the data being traf
ficked as well as slot and state information (i.e., control infor
mation) about where the data is being sent. As previously
described, the cell format includes special characters which
are added to the information. The process immediately pro
ceeds to step 2216.
0243 In step 2216, the IBT 304 forwards the formatted
cells. In one embodiment, the SERDES of the IBT 304
receives the formatted cells and serializes them for transport
to the BIA302 of the present invention. The process contin
ues until instructed otherwise.

0244. In FIGS. 23A-B, a detailed flow diagram shows the
encoding process of the bus translator according to one
embodiment of the present invention. The process of FIGS.
23A-B begins at step 2302 and immediately flows to step
2304.

0245. In step 2304, the IBT 304 determines the port types
through which it will be receiving packets. The process
immediately proceeds to step 2306.
0246. In step 2306, the IBT304 determines if the port type
will, either individually or in combination, exceed the thresh
old that can be maintained. In other words, the IBT 304
checks to see if it can match the line rate of incoming packets

Aug. 28, 2008

without reaching the internal rate maximum. If it can, then the
process proceeds to step 2310. In not, then the process pro
ceeds to step 2308.
0247. In step 2308, given that the IBT 304 has determined
that it will be operating at its highest level, the IBT304 selects
a variable cell size that will allow it to reduce the number of
cells being formatted and forwarded in the later steps of the
process. In one embodiment, the cell format provides for cells
of whole integer multiples of each of the one or more packets
received. In another embodiment, the IBT 304 selects a cell
format that provides for a variable cell size that allows for
maximum length cells to be delivered until the packet is
completed. For example, if a given packet is 2.3 cell lengths,
then three cells will be formatted, however, the third cell will
be a third that is the size of the preceding two cells. The
process immediately proceeds to step 2312.
0248. In step 2310, given that the IBT 304 has determined
that it will not be operating at its highest level, the IBT 304
selects a fixed cell size that will allow the IBT 304 to process
information with lower processing overhead. The process
immediately proceeds to step 2312.
0249. In step 2312, the IBT 304 receives one or more
packets. The process immediately proceeds to step 2314.
(0250. In step 2314, the IBT 304 parses the control infor
mation from each of the one or more packets. The process
immediately proceeds to step 2316.
(0251. In step 2316, the IBT 304 determines the slot and
state information for each of the one or more packets. In one
embodiment, the slot and state information is determined in
part from the control information parsed from each of the one
or more packets. The process immediately proceeds to step
2318.
(0252) In step 2318, the IBT 304 stores the slot and state
information. The process immediately proceeds to step 2320.
(0253) In step 2320, the IBT304 parses the payload of each
of the one or more packets for the data contained therein. The
process immediately proceeds to step 2322.
(0254. In step 2322, the IBT304 stores the data parsed from
each of the one or more packets. The process immediately
proceeds to step 2324.
(0255. In step 2324, the IBT304 accesses the control infor
mation. In one embodiment, the cell encoder(s) of the IBT
304 access the memory pool(s) of the IBT 304 to obtain the
control information. The process immediately proceeds to
step 2326.
(0256 In step 2326, the IBT 304 accesses the data parsed
from each of the one or more packets. In one embodiment, the
cell encoder(s) of the IBT 304 access the memory pool(s) of
the IBT 304 to obtain the data. The process immediately
proceeds to step 2328.
(0257. In step 2328, the IBT 304 constructs each cell by
inserting a special character at the beginning of the cell cur
rently being constructed. In one embodiment, the special
character is K0. The process immediately proceeds to step
2330.

(0258. In step 2330, the IBT 304 inserts the slot informa
tion. In one embodiment, the IBT 304 inserts the slot infor
mation into the next lane, such as space 2194. The process
immediately proceeds to step 2332.
(0259. In step 2332, the IBT304 inserts the state informa
tion. In one embodiment, the IBT 304 inserts the state infor
mation into the next lane after the one used for the slot
information, such as reserved 2196.a. The process immedi
ately proceeds to step 2334.

US 2008/0205407 A1

0260. In step 2334, the IBT 304 inserts the data. The
process immediately proceeds to step 2336.
0261. In step 2336, the IBT 304 determines if there is
additional data to be formatted. For example, if there is
remaining data from a given packet. If so, then the process
loops back to step 2328. If not, then the process immediately
proceeds to step 2338.
0262. In step 2338, the IBT 304 inserts the special char
acter that indicated the end of the cell transmission (of one or
more cells). In one embodiment, when the last of a cells is
transmitted, the special characteris K1. The process proceeds
to step 2340.
0263. In step 2340, the IBT 304 forwards the cells. The
process continues until instructed otherwise.
0264. In FIG. 24, a flow diagram illustrates the decoding
process of the bus translator according to one embodiment of
the present invention. The process of FIG. 24 begins at step
2402 and immediately proceeds to step 2404.
0265. In step 2404, the IBT304 receives one or more cells.
In one embodiment, the cells are received by the SERDES of
the IBT 304 and forwarded to the cell decoder(s) of the IBT
304. In another embodiment, the SERDES of the IBT 304
forwards the cells to a synchronization buffer or queue that
temporarily holds the cells so that their proper order can be
maintained. These steps are described below with regard to
steps 2406 and 2408. The process immediately proceeds to
step 2406.
0266. In step 2406, the IBT 304 synchronizes the one or
more cells into the proper order. The process immediately
proceeds to step 2408.
0267. In step 2408, the IBT 304 optionally checks the one
or more cells to determine if they are in their proper order.
0268. In one embodiment, steps 2506,2508, and 2510 are
performed by a synchronization FIFO. The process immedi
ately proceeds to step 2410.
0269. In step 2410, the IBT 304 parses the one or more
cells into control information and payload data. The process
immediately proceeds to step 24.12.
(0270. In step 24.12, the IBT 304 stores the control infor
mation payload data. The process immediately proceeds to
step 2414.
(0271. In step 2414, the IBT 304 formats the information
into one or more packets. The process immediately proceeds
to step 2416.
(0272. In step 2416, the IBT 304 forwards the one or more
packets. The process continues until instructed otherwise.
(0273. In FIGS. 25A-B, a detailed flow diagram of the
decoding process of the bus translator according to one
embodiment of the present invention is shown. The process of
FIGS. 25A-B begins at step 2502 and immediately proceeds
to step 2504.
(0274. In step 2504, the IBT304 receives one or more cells.
The process immediately proceeds to step 2506.
(0275. In step 2506, the IBT304 optionally queues the one
or more cells. The process immediately proceeds to step
2508.
(0276. In step 2508, the IBT 304 optionally determines if
the cells are arriving in the properorder. If so, then the process
immediately proceeds to step 2512. If not, then the process
immediately proceeds to step 2510.
(0277. In step 2510. The IBT 304 holds one or more of the
one or more cells until the proper order is regained. In one
embodiment, in the event that cells are lost, the IBT 304
provide error control functionality, as described herein, to

Aug. 28, 2008

abort the transfer and/or have the transfer re-initiated. The
process immediately proceeds to step 2514.
(0278. In step 2512, the IBT 304 parses the cell for control
information. The process immediately proceeds to step 2514.
(0279. In step 2514, the IBT 304 determines the slot and
state information. The process immediately proceeds to step
2516.

(0280. In step 2516, the IBT 304 stores the slot and state
information. The process immediately proceeds to step 2518.
0281. In one embodiment, the state and slot information
includes configuration information as shown in the table
below:

Field Name Description

Destination slot number from IBT to SBIA.
IPC can address 10 slots(7 remote, 3 local)
and IGC can address 14 slots (7 remote
and 7 local)
Encode payload state:
OO - RESERVED

State 3:0 Slot Number

State 5:4) Payload State

O1 - SOP
10 - DATA
11 - ABORT

State 6 Source? Encode source? destination IPC id number:
Destination 0- to from IPCO
IPC 1 - to from IPC1

State 7 Reserved Reserved

0282. In one embodiment, the IBT 304 has configuration
registers. They are used to enable Backplane and IPC/IGC
destination slots.
(0283. In step 2518, the IBT 304 parses the cell for data.
The process immediately proceeds to step 2520.
(0284. In step 2520, the IBT304 stores the data parsed from
each of the one or more cells. The process immediately pro
ceeds to step 2522.
(0285. In step 2522, the IBT304 accesses the control infor
mation. The process immediately proceeds to step 2524.
(0286. In step 2524, the IBT 304 access the data. The pro
cess immediately proceeds to step 2526.
(0287. In step 2526, the IBT 304 forms one or more pack
ets. The process immediately proceeds to step 2528.
(0288. In step 2528, the IBT 304 forwards the one or more
packets. The process continues until instructed otherwise.

T. Administrative Process and Error Control

0289. In FIG. 26, a flow diagram shows the administrating
process of the bus translator according to one embodiment of
the present invention. The process of FIG. 26 begins at step
2602 and immediately proceeds to step 2604.
0290. In step 2604, the IBT304 determines the status of its
internal components. The process immediately proceeds to
step 2606.
0291. In step 2606, the IBT304 determines the status of its
links to external components. The process immediately pro
ceeds to step 2608.
0292. In step 2608, the IBT304 monitors the operations of
both the internal and external components. The process
immediately proceeds to step 2610.
0293. In step 2610, the IBT 304 monitors the registers for
administrative commands. The process immediately pro
ceeds to step 2612.

US 2008/0205407 A1

0294. In step 2612, the IBT 304 performs resets of given
components as instructed. The process immediately proceeds
to step 2614.
0295). In step 2614, the IBT 304 configures the operations
of given components. The process continues until instructed
otherwise.
0296. In one embodiment, any errors are detected on the
receiving side of the BIA302 are treated in a fashion identical
to the error control methods described herein for errors
received on the Xpnt 202 from the BIA 302. In operational
embodiments where the destination slot cannot be know
under certain conditions by the BIA 302, the following pro
cess is followed:
0297 a. Send an abort of packet (AOP) to all slots.
0298 b. Wait for error to go away.
0299 c. Sync to K0 token after error goes away to begin
accepting data.
0300. In the event that an error is detected on the receiving
side of the IBT 304, it is treated as if the error was seen by the
BIA302 from IBT 304. The following process will be used:

0301 a. Send an AOP to all slots of down stream IPC/
IGC to terminate any packet in progress.

(0302) b. Wait for error to go away.
0303 c. Sync to K0 token after error goes away to begin
accepting data.

U. Reset and Recovery Procedures
0304. The following reset procedure will be followed to
get the SERDES in sync. An external reset will be asserted to
the SERDES core when a reset is applied to the core. The
duration of the reset pulse for the SERDES need not belonger
than 10 cycles. After reset pulse, the transmitter and the
receiver of the SERDES will sync up to each other through
defined procedure. It is assumed that the SERDES will be in
sync once the core comes out of reset. For this reason, the
reset pulse for the core must be considerably greater than the
reset pulse for the SERDES core.
0305 The core will rely on software interaction to get the
core in sync. Once the BIA302, 600, IBT 304, and Xpnt 202
come out of reset, they will continuously send lane synchro
nization sequence. The receiver will set a software visible bit
stating that its lane is in Sync. Once Software determines that
the lanes are in Sync, it will try to get the stripes in Sync. This
is done through software which will enable continuously
sending of stripe synchronization sequence. Once again, the
receiving side of the BIA302 will set a bit stating that it is in
sync with a particular source slot. Once Software determines
this, it will enable transmit for the BIA 302, XPNT 202 and
IBT 3O4.

IV. Control Logic
0306 Functionality described above with respect to the
operation of switch 100 can be implemented in control logic.
Such control logic can be implemented in Software, firmware,
hardware or any combination thereof.

V. Conclusion

0307 While specific embodiments of the present inven
tion have been described above, it should be understood that
they have been presented by way of example only, and not
limitation. It will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the spirit and scope of the invention as

Aug. 28, 2008

defined in the appended claims. Thus, the breadth and scope
of the present invention should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.
What is claimed is:
1. A Switching fabric comprising:
a plurality of cross points that process multiple stripes of

serial data; and
wherein each cross point includes a plurality of port slices.
2. The switching fabric of claim 1, wherein said plurality of

cross points comprise five cross points.
3. The switching fabric of claim 1, wherein each cross point

comprises:
a plurality of ports; and
a plurality of port slices coupled respectively to said ports.
4. The switching fabric of claim 1, wherein each port slice

comprises:
a plurality of FIFOs coupled to other ones of said port

slices; and
a FIFO read arbitrator coupled to each FIFO, wherein said
FIFO read arbitrator arbitrates read requests sent by said
FIFOS.

5. The switching fabric of claim 4, wherein each port slice
further comprises:

a multiplexer coupled to said FIFOs and to said FIFO read
arbitrator; and

a dispatcher coupled to an output of said multiplexer.
6. The switching fabric of claim 1, wherein each port slice

comprises:
an accumulator that writes received data to an appropriate
FIFO in a different port slice.

7. The switching fabric of claim 1, wherein each cross point
comprises eight ports and eight port slices.

8. A cross point that processes a stripe of serial data, com
prising:

a plurality of ports; and
a plurality of port slices coupled respectively to said ports.
9. The cross point of claim 8, wherein each port slice

comprises:
a plurality of FIFOs coupled to other ones of said port

slices; and
a FIFO read arbitrator coupled to each FIFO, wherein said
FIFO read arbitrator arbitrates read requests sent by said
FIFOS.

10. The cross point of claim 9, wherein each port slice
further comprises:

a multiplexer coupled to said FIFOs and to said FIFO read
arbitrator; and

a dispatcher coupled to an output of said multiplexer.
11. The cross point of claim 9, wherein each port slice

comprises:
an accumulator that writes received data to an appropriate
FIFO in a different port slice.

12. The cross point of claim 8, wherein each cross point
comprises eight ports and eight port slices.

13. A method for processing a stripe of data at a cross point,
comprising, at one port slice:

storing data received from other port slices in a plurality of
FIFOs; and

arbitrating the reading of the stored data.
14. The method of claim 13, further comprising:
writing data received from a port at the one port slice to an

appropriate FIFO in a different port slice.

US 2008/0205407 A1

15. A method for processing data in port slice based on
wide cell encoding and an external flow control command,
comprising:

managing 64-bit entries in a receive synch FIFO:
receiving two chunks of 32-bit data from the receive synch

FIFO:
detecting a K0 in a first byte of the received two chunks of

32-bit data; and
extracting a destination slot from a state field in a cell

header when KO is detected.

16. The method of claim 15, further comprising:
determining whether the cell header is low-aligned or high

aligned;
writing 64-bit data to a data FIFO corresponding to the

destination slot when the cell header is either low
aligned or high-aligned;

writing two 64-bit data to two data FIFOs corresponding to
the two destination slots when the cell header is low
aligned and high-aligned; and

filling the second chunk of 32-bit data with idle characters
when a cell does not terminate at the 64-bit boundary and
a subsequent cell is destined for a different slot.

Aug. 28, 2008

17. The method of claim 16, further comprising:
performing an early terminate to a cell that inserts K0 and
ABORT state information in the data when an error
condition is detected.

18. The method of claim 16, further comprising:
stopping requests to a FIFO read arbitrator after a current

cell is completely read from a FIFO RAM when a flow
control condition is detected.

19. The method of claim 16, further comprising:
delivering 64-bit data to a SERDES synch FIFO module

and transmitter when non-idle data is received from a
FIFO read arbitrator;

injecting a first alignment sequence to be transmitted to the
SERDES synch FIFO module and transmitter when the
FIFO read arbitrator indicates that a plurality of FIFO
RAMs are empty

injecting a second alignment sequence to be transmitted to
the SERDES transmitter when a programmable timer
expires and a previous cell has been completely trans
mitted; and

indicating to the FIFO read arbitrator to temporarily stop
serving any requestor until a current pre-scheduled
alignment sequence has been completely transmitted.

c c c c c

