«»UK Patent Application .,GB ,2561682 .,A

(43)Date of A Publication 24.10.2018
(21) Application No: 1802728.4 (51) INT CL:
GOG6F 8/20 (2018.01) GOG6F 8/30 (2018.01)
(22) Date of Filing: 20.02.2018
(56) Documents Cited:
(30) Priority Data: US 20100146060 A1
(31) 62461617 (32) 21.02.2017 (33) US

(58) Field of Search:
INT CL GO6F, G06Q
Other: WPI, EPODOC

(71) Applicant(s):
Sourcecode Technology Holdings Inc
Suite 200, 5150 Village Park Drive SE, Bellevue 98006,
Washington, United States of America

(72) Inventor(s):
Riaan Moolman
Wynand Coenraad Du Toit
Norman Anderson
Eric Johnson Schaffer
Grant Dickinson
Jacob Hendrik du Preez
Olaf Alexander Wagner
Adriaan van Wyk

(74) Agent and/or Address for Service:
Mewburn Ellis LLP
City Tower, 40 Basinghall Street, LONDON,
Greater London, EC2V 5DE, United Kingdom

(54) Title of the Invention: Collaborative design systems, apparatuses, and methods
Abstract Title: Concurrent Collaborative Design of Software

(57) Collaborative design system and method, comprising receiving request messages from a first client device and a
second client device requesting a workflow project for design collaboration, creating a typescript version of the
workflow project from an executable version of the workflow project, and transmitting a copy of the typescript
version of the workflow project to each of the client devices. The method further includes receiving from the first
client device, an instruction that is indicative of a modification to the copy of the typescript version of the workflow
project at the first client device and transmitting the instruction to the second client device causing the second client
device to modify the copy of the typescript version of the workflow project at the second client device. Additionally,
the method includes modifying the executable version of the workflow project based on the instruction.

106

2% B
P / /
01408 CLIENT DEVIGE INTERF, L2 7 L
T01f0s =" CLIENT DEVICE INTERFACE INSTRUCTION EXECUTION
MANAGER FROCESSOR
. SESSION MANAGER m 7
, INSTRUCTION WORKFLOW
e 1 CONVERTER CONVERTER
2 2%
\ /

7
EXECUTABLE RUNTIVE 10
PROCESSOR PROCESSOR

205

04 B2

FIG. 2B

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V ¢89199¢ d9

120718

17122

CLENTC

PROCESSING
SERVER

2122

ANIONA ONISSA00td AdVICINGZINI

 —

i | EGEE /
,...........................k./!,ovN 901

dolel 7By @

;é AFROEIP BN

gna
Pe s
felrle)
Y stglolg peogdr Buppas _a)
> S-NEEY MR ¥R
% 000
il

8L L0l

3/22

201"

d¢ Ol

™~-G07

0"k 757
H0SS300Yd e
LN TR |

3\
97 057
: LEANOD VAMINOD
E...........................m MOTHMOM NOLLONH LSHI :
masa;;;ssew,n sssssssss M, sssssss m% sssssssss H
97 07 "
-
¥
40353004 SOV
01110363 NOILONILSH S e
/ \
957 97

<o

p—

8L L0l

120718

REST (DATA/ INSTRUCTIONS)

4722

MS SAL
COLLAB DBy
Kprx

I
7

N

= e 25
S o
[

T

N
2

N

4]
/e

7
00
% :

i////////////////>

Q///////////////A
4 /
HOS
OB

N\

Y

\ Srlejndu _
§?\;\\‘m\e? z?s\\\ % =B g
NENENENGNN =

N\

\\‘:j

"

A K
204

o —

N\
B
::Sggf <
%Q\ N \S\E:o? AN \;\;\\\\‘\\\\\
N
N

BROWSER

§ RN
S AN
RN TN

FIG. 2C

5122

£ Old

8L L0l

({eug ?
gi =
08 v
Lok
O
o @
& £
A
po" P LS
B S50k G0 o ’
X = iz g@w %
d o ¥ oo | BB
PR ER) R ;nu
mhﬂv . gmm\) u/_ ..LQ_ .HC?}.C‘__._. ﬂv
1403 0501 U0 posiioyreu YDy @ 8 L I <
3 00 SRS
=3 OO _,,:_amgm% U%m
| IShiny
_ eril
i

6/22

dv Ol

YeHonn

uosy

DIUCISSES

P

&

s...

p—

aufisaq]) ereqaeon

@ vy Ol

ang olEh g7

JueLioawl, auenAyadold «

\PLEWSIUL U USIPIO i \pIE UL\ IS8DOU 100417798PL 6 | L PIO-BRRA-IE B OE 0L UL OOPSS, a0UBIeRN08l(0 e
jhu 4osl &

SSfE] 187Slar

(X807 yiBuBIS JauBISa7) 8p0H20IN0S) w ruuf

§ieubisazy 8poryaoinos)

R AU

<
—
-3

8L L0l

g mwm

z_:we,_gé A_jmy_mmmum%mw.mmmf_w% LI §903PRAC0NS Q1L 3R06EEY0 O H0CK SE 0

AQS661£0-60- D008 290 20 0-D0E688

GOUTERE RS STO [77 SRCRADRLL0PE
,mm;m%momum SO% LBy L7 B0BERLL0PE

3 PS mg] LERSCE0EVO0 8608 600y 806723105

L(_)

§5S78 (9o 1T Ba0Re000ps G300y mmﬁg GRORVSRETAL0 S50 Eh A 1

,xm.mmmm%%ﬁ.@ ;q .q s 63 ”___NMQ SR ERGYSSCE0ID S %.mgﬁm

|
1348

m&mm@, u%@,mmﬁ.mmw :

bRl m al wi w LRLE Y

(EPEeSE <750 Lonvh L% [ERAENE

QL 00RBRITTEPE RS ST90ET [y L7 E%ﬂ mmo,q_@.jgm. V3 e 05 T1R86E

U100/ 2100053RLE-8RG-018H- 00 }.mg.,._m orer Co0z 1700V

lnder
Serol 00K YR0RR0 7o 20, 0ok

Qmomg%ﬁm?f £ VA9 CBEVIRG!

>

Se00U 0l R ERET 2 Ber |

%Dm@mgﬁq P_m.&m (0] LeOTTEOS0ROY DREr 103 ERAE

[

CORGRTERLRG B 100

6GECENS- 00 B

JURTA R Sm_.%. 9059050

<Foei,¢ (00CaaE08-L006-018 - 070/-0

T

BRI

7122

LALGRRIVOVIHG S AL 08L Y930
LAARRERVR YRGB 0CRL ORLSSY

3001, [9I0REGR%E 2505 1Y U Z Haveil ,, mqmg., Smm By

E_gi AW

GAZEREEG o

L3

,;@ { mN.uummm“". /

sinossaldie sy (gﬁ BETEREES S8 % w

Sl E = =

680907 6H0ECEVS 3098 Ly Lyt 8490868 uﬁ_gmsm _g‘mga o8 6.6 0075

/3001 /9100598088866 01 10701 RSt R R T

B e R R LHRE6IVEY V6

SoPOL DG TR L g

ER BN A
Il

JSEROL00L | JeiGRCheece Logh Qyef 20/ 00)Lh0e PER R R E i AR

]

FETEREET 8y 0T HSLREMR 00 63ATRAEOVES 2098 By 1yl

b gt

| {22 500

<2
-~
LL2

8L L0l

8/22

g -~
=

: JiRuLasy ooy ;

< i 88y
[T%

[T
<5

PRy
JUTTg mﬂ a0l

o

§O[ALinoas g0

!

~ N0 S - 0 g OoLISDRURY gy Ao MBI NOST guﬁ&, X

8L L0l

120718

9/22

&-{ } JSON
-] Jrodes

=-{}0
1

700

]
gr{} configuration

L

L. @ showFrom : true

}
]
4 1]
W~ e
}
- 3 gystemiName : “Send Emall
£1 lile: “Send Email”
- B intemnalld ;1

- 3 componentld ; 30004
w4 Hu

a-{ } configuration

- [SystemName: “Send Email
- B3 fille: “Send Emall’

~ 3 infernalld: 2

. T3 componentid ; 40000
-] lnks

-4 3 configuration

@-{ } externalReferenceDefinitions
|] trackedReferences

-~ fite: "AY"

-3 comporenild : 50001

604

FIG. 7

120718

10/22

LE_...
o

Codeuen.v\forkﬂaw

w b0 Souroel o WeblDesiyrer Framewerk Codek,en Workdow Process K7

L

3]

-

{1 <sirmeny> This inferfaoe represents e oot model fo the Erval wizard}
faneratocodefGenarateCodedttribute Des g Process_KZProoess)
{Companent (Lovkup Types Emalkven '

Autrori :gTym *,sews‘ﬂ‘ﬁg M

7y Incioates that he From ek shouli he sxpandig on e Ul
;;y,,eacnﬂ‘f)r onal]
Oref erence<£x~nde coelzes, 2 days

1o {get set)
gl address of ha e
si0 auhers Jthanq%

7 sercing e emal]

I I <mlrzry>

{ references E 0

i <summanp Listof for e el
o I)l 1]
[TyueSeriptOntional}

OreferencestFiiz

bing ¥ authors, J"*geuihml’ s} reviews

Usi<SouroeCode WehDesgnar Framework ConeGer Core. Confgured SmarRelds. Expression o {gef set |

{1l <surmmany Listofeciients bt wil be sepisdon e el
[TypeScriptOptional]
{ referencest "'“?"%esi § ahors, 0 chang

List<SourceCode WeDesigne: Framework CodeGen. Core.Configured SmartFelds. Expressiom o gel st

{1l <surmmary Utofecients bt wil be Bindccgled on e el
;;y,,eacrmtm onal]
i re erence<§0 *‘"'"%esi § authers, 0 changss

Code
l i <simmeny> Fal subjectt
{refersnces £0 thangestD auters,) changgs
{ <summary Emal body fich-teidteet il
ie‘erenueC 0 changest 0 authirs, changvk

y> L|st of

e namespace SowrceCode WebDesigner Framework CodeGen Worklow Provess K2Prooess Events Ermal
¢

'”odev‘ebi)esr’ 1 Degloyment K2Process Events Emalibvenitemtander, Sourcecode webDey
. el MalEventlen™)
uav‘s agokZ authors, 2 hengest 4 vork fems 2 revisws

agob 1 authors, | changest? work items 2 reviews

Seuroscods Weble ,gnerFrameworkL:::gPn,ﬁcie,CcnﬁguredSmaﬁFieidﬁ!f:xpressmn from{ ge, sel |

DesignerFramenork Codeen Core Configured Smartftolds. Expression Do
ner Framewark CodeGen.Cors, ConfiguredSmartFields Expression subject{ gel et)

e WablDasigner, ~!am~mk ucaeuen Gore.ConfiguredSmartFicldsExprassion body { gef, sel

{oet st}

f 702

FIG. 8

120718

11722

b K2Designer2014 - Microsoft Visual Studio {Administrator)
Hie Edt View Proect Buld Debug Team Tools Test Anayze
@~ m-EWEF| Y > o Debug o} AnyCPU «| [Fran]
‘Eméiive**ti 1 t EEmanlCo*‘*aqu‘ra fionExtension s @ ElEmaiConfiquralig

iy

———— 7@ Orline JSON Views

& > C 0 | O jsonviewerstack.hu
8 Apps @ Online JSON Viewer B5 K2 Designer B K2 Designer - Powere g8 W

| Viewer | Toxt |

E—]g}JSOE\
i@ Inodes
il T
gr{ Jchildren
a{ /
Lppwizardid : 3001
@ U

r:::« confsczurat ion

----- & svstemNamﬁ “Send Email
----- = aEe “Send Email’

----- ryinternalld - 1

. componentld : 30004

[oR

z} configuration

----- g3 systemName : “Send Emai’
t*iﬂ -“Send Emal’

----- internaim 2

‘‘‘‘‘ m componentid : 40000
in

%con figuration
]

3

externalReferanceDafinitions
[racked% erences

e L5k,
wuwm

ey

----- comgoa‘aentd 50001

FIG. 9

120718

12/22

(Designer20td » licrosclt Visual Studo {Adminshiator)

Fie Edt View Poject Buld Detug Team Tools Test Analyze Window belp
@-0{HB-BESF ?-¢}{])g Hﬂ\v‘:’t]lFa*weM anxqbﬁ
1 EndlEventUlsls el d

Tean Todks Ted Andyze Window Felp
#bﬁig HA L oFameiokcoioSh e Sirerg dn@in glavdeciDreses
nlgalonbxensionts e EmalConfiouraionts CSnarClasshmplementaton e {EmaiConfouratoncs Emaionfiuration s
»f%s EnalContoler ii*’fs sty

ess. K2process events.ema
kl<objecthlodel workTow process
i .!q);

iConf el
K2Pr :

S0P,
stope selectedCol
stope.emaiD
stope.addln =
stope.addCl =

- stope.adaBCC

SC0pe. browaejaer“hls m e'L ;
stope evenlGonfigurat :
SEOpe CRIETERGi =1
stope feloRowSelected =
SCOpE. raw<S ct z

srope el LerrR
is. Stope seles Al i
srope deL En achmen 5=

i K 6 1

s scone i oggiesiaes]

yh _scope.u toquiestates'] = his._scope foggleStates

}

L o R Y .,,

1. scope JsRlchEalt= i sRichEaltbnd| s
¢ Xander Coelzee. 3 oavs aqo |8 auhors, 10 changes F17ougs |18 work ems § 24 reviews |, 4

FIG. 10

T
v

a\

120718

13/22

x w#ﬁﬂg[

»imax
Q o

\.l

1 n v ::El;‘
Web.comfg *° Ve
@@a@vw@w@ &

1oh Solufion Explorer (Gt £

|

®

b ﬂmar*Objﬁ"*Ew Wzard -
{1 ogmtcss
£3 0o "w;: abd
€3 pracessiVizards
astg 1002
€3 sharePoint
ﬂsmaﬁf;rms
&3 fasktep
TS heperls
v 23 smariizards
s g confgPanelaspt

A R A 4

o TS confgPanell
a‘u’fsc)n‘”qunel moon
al Impacihiati
oo [AX@B:“ Hogr
ﬂ ,‘a;\rt;\xbf\ﬁcrv
» £3 tropllowntleny
. » 23 filgPand
lilon gl Team bxplorer— Class View

FIG. 10 CQNTENUED

120718

14 /22

a

o K2Decionerd 14 - Mmool sua!btu*‘ﬁ {Adminglralor)
He Edt View Proect Buld Debug Team Tods Test Analvze Window Fep
Beo|B-EEE Yot

Jebuqvﬂir’mvﬂiﬁu IIFaﬂewwwnquA *i’S'ﬁ*&*ﬁ,iﬂmiﬂﬂEﬂ-ﬂq}wﬁﬁvmmaw

Cymlaenr

?@ v& &

& [EmalFventULss EmalConfgurationBxiensionts & Flimaleonty assiplementalon & ErmalConfuratoncs ® | Sblon Expe
el 'KZDebvnerkoot L JrcenDde.KzDesagner.obij del.workﬂow,p{o'ven @ ElloriralohansSoas o |he
= *Thia nierface represens e object modelfor the Emal wizard -
= expc interface {Emai Confiouration extends objecthiodelworkfow K2Process Eventlonfgeration
EX * ndsates that e From feld shiudd be experncedon e Ui
= | g
= shc\wsmf boolear
& h . .
= *The sl acress of he person seading the ema 1100
.
@'rom: abiecthfoel core configuredSmantFieids. [Exprassion
i
+ Listoftrerecpints for e el
1
& o7 obleshode corermocel odeAray<cofeetloce core confguedimart fession
! L
+Listof e reciien's it wil b inceeopledon el
g bcc’? objecthloc! core model ModeiAmayobiecthocel core configuredSmartFields [Expression”;
: *U: of he recipients that il be. bind copied on the emal
| obj eolblockl coremocel Mocklrawobjecthlodel coraconfgueSmarFisids lBigresin> T WL
*: 1 | .
V
sub; t obyectifodel core configuredSmarthie
i
,Mrﬁ:.! body ticftext/ et i
i
body: cbjectilocslcore configuredSartFieles. B
It 13
*rpcrtant
e 1102
mportant?: bovlean,
L33
*Listatachments for b el
'I i A B! TP
tachments: cbiectbodel core mocel odelArray<obiactiioce! core configuredSmartFieles [Expression;
5% viemder Costres, 20ays agod 2 authors, 7 changest 8 buced work lemed b reviews 14]
HroResulist ErrorLst.. Jleakpom..s Quiput Find Symbol Resuls
I 1.1 1[I 1 I s Y ———— |

B e o 4 11w || B | Be

FIG. 11

120718

15/22

[el@ [Tdlph TR 7 - &

Sonin g8
v 2 X
=t
% © < g
Ve oyl
&

[4

. .
> ﬁmax‘@bjw
» ﬂbfum BViga

gice
> ﬁvzicambp“'me
» ez
L4 ' "’r/ le
3 configurecRuies
3 configurecSrmartieas
5 configureeSmartObjeciResul
63 lferProvicer
653 [rocesss
o £ KProcess
s e athiilies
& BN
g CalSubWorkfow
= tlert
£ defaut
3 el

v

¥ ¥ ¥

v

i d

»

14

mmmmmmm F-)
z > 1S [EmalCor

o oty [Emellor

¥
B B B .
§ e e L}

B

3 D D G s

a.\lanh

o a0 |Fmalfrents i
» nTS IEmalEventslis
& sl aF alis

Team Biglorer Olass View

i I Gt Oh

» 15
User Shortouis = & F 4y
i 1

FIG. 11 CONTINUED

16 /22

&%

et

)

LSS0 072990 1L 2098 K SRyl

ago,_m_m B albisarzyy apogeamig

L Vpilig _m% A LA

55
<
R

)

[P al (e T ey
kd
=

e~

{01lsuoongs

BEEE

Toissaidy]

]

@.v wuBls
A e -@

somamallfe avmw.mw,ﬂmﬂn ﬂmﬂﬁumom a@ 2iagefa

SE soop
[ESETCH

¢l ol

Oleulall

fxauns Heubie

S8POUIC0NZZI8DL 5L EPIG-BR96-IERY-OCGHADE YU L O0PIS, » "0

Jsubiseqzy eponsaineg;

and BNEA gf
awsNALedod &
sousimleoalqo &

Jugtiodws, o

U

pajucs gy A& N“

8L L0l

AR

17122

8hi %ta

Js9pouI00AgPZereR7O6G0-P166-6860960-POZagRSR 00PIS, 1 db e
&V PPEOPYIRLG08Y-1 9.7 paee %U%mwm:_w%mﬁo SR

Jonelniuos) previe lueipiyeliz. plewis)

[

PG

?\h-

-BYbrEeD-0physes, | Apog B

PP “m% -B081r/8G1 1265996, - Joslans -
800 H Hmu
00/ 2 [@
" o[}=
JBOEPRCEPAGE-74Ee-A80yE012-050IC00p, Loy -
zoﬁ,r
oy
0], AJUNoag SMOPUIN, m alamo - Jaubiss(7y mm Jubissq 7y mm BB\ NOST Sui0 @) sddy g

E.xmmwﬁmgmm.}comm .@“ G mv & ...W

8L L0l

120718

18/22

x 3
)
=3
&2 .
=
0=
b=y
e
b= <3
o
s
@3
&
=
£
a3
ax
a
=
£C5
a3
o
B
=
=g
w3
<75
P
—Zx
\>‘)
=53
[
e
53
I
Py
B
ol
<
=gt
~ammm
oy ragonnnne:
53
S5
== =
==
P @
x>
=
= annnnases
&3 <o
o P
Lo ey
e i3
<> P
=r =t
<> <>
[l <2
S5 >
=7 <=
f
e parar}
= =g
< <53
sy prZy
=5 =
<P PN
<> <>
o> =
< =5
i iy
[y e ==
[l b =4
[y pad ey
Ly TES ==
=1 P >
Py [== IS
[= o
(3 s = it
<> i P
G:) ij,j
&2 [
o =
= <
pr=t
b
o2
o |
)
S— =3
¥ e
e o5
B 13
P <3
sl
= o

120718

19/22

o K2esion icrosoft Veus! Shudic (Adm matrab f

Fiie Et Vigw Project Buld Eem Tear Tools Test Avalv Window Felp
| |

HB - BB S|P § (Uehug fdAm GPY <HiFramewark Gor

- e Sty @ol@ fmlio @

Y ‘l::ma;ivon ualonss’ e Weboorly Dedoymetose DefeProcessiiandercs iemRefersnoetandercs

o 'erGe,,.JJorkﬂow =}« SoirceCode Wl esioner Framework CodeCen Worklow Pocess KoPiopes 544
=11 anamespase SouroeCode WebDssigner Frememork Codeen Worklow Process. A2Process Events Ermad

S e [T zesents T aect ode Tt e Ewaih,iwd |

2 lenarateCode{GenerateCode ,
s [Corspt nﬁn(.ac«upT\f‘e .ﬂeplo\mm §2Process Events Erall Emal EventitereHandier, SourcaCode Webld
= Author mg \Msw bml Ccce‘f\‘o !oﬂeQ ' i}

5 2rvi v:Je’ 5 otk e | 2 revigws

& et EraiCnd el

El"mrr'"\an,*E t8s fhat e Fom Tield shouli he 2xpanded on the Ui

[ypeSeriptCotional
fsrffencecﬁ‘/ande Coetes, 2 deysago] ! authr 1 ohange] 2ok fems 1 reviens
ool showFrom { et set |

i w1aw>”errﬁ. diiess .'-'”Dﬂuﬁﬂjl“iit“EE”lal

i efer
Sourceucac Webte«*

Core ConfigusedSmartFields. (Exprassion rom { et se

| ’ii<sMWﬂan/; Listot 1

[pe& riptOslional
{ reference <E frilz
[RhHy uwwel Odﬁ' \tl\l

g | 1auber, 1 *hangel work itam | 1 review

i sane i Frarmawork Codeloen 8 Vore CorfiguredSmartFields. Express

& El I <garmany> Listof copied on e emal

peS 1;t ofional
o (i b

@ |l <surmane Lstorecioents fabwll b hlm-cop:ed o0 tne el

[!_peS,nptwnonal

i <. i By

t)

prassion 0 § galsab |

c<csx:euode.\i\ Wesgne Framsial, deGenLD ComtguradSmariFieids [oxression> bee { get set |
Eh”s rmar\,>~ f
{ referen
Sou e, f‘ebL‘ (Gen,Core ConhuredSmanFields Expression subjact{ oet set)
b <summany> Emal booy e |
fi references thor, § thanges
Sourcgbode ‘etD Framework CoceGen Core ConfiguradSmantFields Expression body | gel sel;

20/22

120718

B & | Quick Launch (Clie) Al 8 x

9 off off ol gi{}vmﬂmv

imporant o0 m bt 8%)0 43
Search Solisfon Explorer (i)
&2 Solfon ‘K2Dssigner2014 148 projects 2
e O Daloyment

deitiacia

= o Fomewct
i |« o CodeGen
bu[ii Gengrelor 3
&3 CodelenSore
< a8 CodeGen SrmatForms
1 CodGenModdow |
= 1,# Properfes
» wRﬂ‘e (NS
3 ConfigureaRues
»ﬂ\“‘ﬂg redomarifields
&3 ConfigwedSmartObjectResult
o3 HemProvider
& (3K Prooese
 £3Process
» 1 Achhifies
« ¢ Dvenls
» 3 CalSubWordow
= £3 (lint
» 3 Defalff
23
/ / / // {EmalConfierafion.cs / / / / /
w9 Emalbvenics
=g il bvenilics
e cellaiakelds
[] f
¥ =

esiner. Deployment K2Process, Versi

=

AN

>3 ProcessDe
w213 [Aciityss
= a3 [AchiiyCo

i £

56 View
NN fb e T B NGRS TN N NN e TN e NN\ 413,05”
E< Sk o

120718

21/22

(SZ—\RT) /

RECEIVE AREQUEST MESSAGE TO OPEN A
WORKFLOW PROJECT

Y

CREATE AN ONLINE COLLABORATIVE SESSION

v

CREATE AN UN-EXECUTABLE VERSION OF THE
WORKFLOW PROJECT FROMAN EXECUTABLE
VERSION

¥

TRANGMIT AN UN-EXECUTABLE VERSION OF THE
WORKFLOW PROJECT

é

RECEIVE AN INSTRUCTION

:

STORE THE INSTRUCTION TO AN INSTRUCTION SET
AND TRANSMIT THE INSTRUCTION TO OTHER DEVICES
THAT ARE PART OF THE SESSION

'

UPDATE THE EXECUTABLE VERSION OF THE
WORKFLOW PROJECT BASED ON THE INSTRUCTION

FIG. 16

1609

120718

22/22

=5

N\

RECENVE EXECUTE REQUEST MESSAGE?

1675~ " PN

END SESSION REQUEST MESSAGE?

%YES

UPDATE THE EXECUTABLE VERGION OF THE
WORKFLOW PROJECT BASED ON UN-PROCESSED
INSTRUCTION

{

CLEARAN INSTRUCTION SET 1628
END THE SESSION 1630
8o)
UPDATE THE EXECUTABLE VERSION OF THE 1618
WORKFLOW PROJECT BASED ON UNPROCESSED [
INSTRUCTION
EXECUTE THE WORKFLOW PROJECTUSING THE |~1620
EXECUTABLE VERSION
Y 1622
TRANSMIT RESULTS RO e
1621

FIG. 17

Intellectual
Property
Office

Application No. GB1802728.4 RTM Date :14 August 2018

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

JavaScript (Page 5, 6, 27)

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

10

15

20

25

30

35

COLLABORATIVE DESIGN SYSTEMS, APPARATUSES, AND METHODS

BACKGROUND

[0001] Online project collaboration is oftentimes associated with unfriendly user
interfaces, limited functionality, cumbersome tools, and system freezes/lag. For
instance, known collaboration applications (e.g., circuit design applications and
mechanical design applications) enable multiple users to view and edit the same project.
However, these known software applications generally require that each user have a
copy of the software application installed on their own device or workstation. The
separate software applications enable each user to have access to a complete version
(or at least a basic version) of the project toolset and an executable version of the
project, which is oftentimes stored in a single location on a host user’s workstation or
on a centrally located server. During collaboration, user devices access the project
located on the host workstation or at the central server. Limited bandwidth at the host
may create lag during the collaboration, leading to increasingly frustrated users. In
addition, some features of a toolset may be restricted from being used for online
collaboration as a result of complexities related to propagating project changes (caused
by the tool) to other devices. This is especially true for viewer versions of an online
collaboration application that do not include complete toolsets.

[0002] Another issue with these known online collaboration applications is that
collaboration is limited to only those devices that have a copy of the software
application. ~ This may be acceptable within enterprises and closed domain
environments where all devices are under information technology (“IT”) management
and can be updated with the latest version of the online collaboration application.
However, this is not acceptable for devices outside the enterprise or closed domain that
do not have the application installed. As workforces become more mobile and some
workforces using more independent contractors, limiting online project collaboration
to devices with the appropriate project software application is not feasible.

[0003] Some applications attempt to overcome these known problems by being
configured to provide online collaboration for a single file or document type. For
instance, many cloud-based online collaboration tools are provided only for a specific
application, such as a word processing application, a spreadsheet application, a
presentation application, or a database application. While such applications are
generally efficient, they limit collaboration to a single document or file, thereby limiting

functionality to the capability of the document/file. These applications are generally

10

15

20

25

30

35

not useful for online collaboration for more sophisticated uses, such as the creation of

executable programs, workflows, or object-oriented programs.

SUMMARY

[0004] The present disclosure provides a new and innovative system, method, and
apparatus for online collaboration for the creation and modification of a workflow
project (e.g., a form, object-oriented program/process, connected business objects,
etc.). The example system, method, and apparatus described herein provide online
collaboration by creating a separation between a runtime environment of a workflow
project and an un-executable version of the workflow project. The separation enables
changes to the workflow project to be recorded (within instruction sets) during a
collaborative session and propagated in real-time among client devices. The instruction
sets enable client devices to provide a current real-time view of a state of a project
without each device having to separately apply the changes to an executable version of
the project or transmit entire copies of a project. Instead, only the modifications are
communicated and made at each device and reflected within an editable, but non-
executable version of the project. The disclosed collaboration environment enables
editing and execution of a workflow project by any of the client devices during a
session.

[0005] In addition to modifying local un-executable versions of a workflow project at
client devices, the instruction sets disclosed herein are also used to modify an
executable version of the workflow project, which is generally located at a centralized
location or a client device. However, since modification of the executable version is
relatively more computationally intensive than modification of a non-executable
version of the workflow project, the modifications are made in the background and
generally unnoticed by client devices. At any time, a client device may transmit an
execution request to a hosting device that contains the executable version of the
workflow project. The request causes the workflow project to execute, with the
result(s) of the execution being transmitted to the client devices in the collaborative
session. The transmission of the results to the client devices provides the appearance
that each device has an executable version of the workflow project when in fact the
executable version is located centrally or only at one device.

[0006] The above-described collaborative configuration uncouples an executable
version of a workflow project from client devices, thereby enabling the workflow
project to be displayed and edited in third-party programs and applications (e.g., web

browsers) that are not specifically configured for the executable version of a project.

10

15

20

25

30

35

This uncoupling accordingly permits collaboration of a workflow project among users
without the need to install project-specific software on their devices. Further, third-
party functionality may be integrated with the un-executable version of the workflow
project since the un-executable version is generally in a format that is more prevalent
in third-party applications. For example, an un-executable version of a workflow
project may be integrated with a third-party messaging or email application that is used
to provide certain users alerts or notification messages when approval or help is needed
by another user in the collaboration environment.

[0007] In an embodiment, a collaborative design apparatus includes a persistent
memory configured to store an executable version of a workflow project, the workflow
project including at least one executable version of an object-orientated process having
attributes and properties. The collaborative design apparatus also includes a model
processing server configured to compile and execute the workflow project based on the
attributes and properties of the executable version of object-orientated process. The
collaborative design apparatus further includes an abstraction interface configured to
define a mapping between (i) the executable version of the object-orientated process
and a typescript version of the object-orientated process including related attributes and
properties, and (ii) the executable version of the workflow project and a typescript
version of the workflow project, where the typescript version of the object-orientated
process and the typescript version of the workflow project are compatible for display
in a web browser.

[0008] The collaborative design apparatus additionally includes an intermediary
processing engine configured to transmit the typescript version of the object-orientated
process and the typescript version of the workflow project to a first client device for
display in the web browser of the first client device and a second client device for
display in the web browser of the second client device and transmit a toolset file to the
first client device and the second client device, the toolset file specifying a user interface
to enable modification of the typescript version of the object-orientated process and the
typescript version of the workflow project. The intermediary processing engine is also
configured to receive, from the first client device, a modify instruction to modity at
least one of the attributes or properties of the typescript version of the object-orientated
process and store the modify instruction in conjunction with the typescript version of
the object-orientated process. The intermediary processing engine is further configured
to transmit the modify instruction to the second client device causing the user interface
to modify the at least one of the attributes or properties of the typescript version of the
object-orientated process displayed within the user interface at the second client device.

The typescript version of the object-orientated process is concurrently displayed, at the

10

15

20

25

30

35

first client device and the second client device, with the modification of the at least one
of the attributes or properties.

[0009] In another embodiment, a collaborative design method includes receiving, in
a server, a first request message from a first client device requesting a workflow project
and receiving, in the server, a second request message from a second client device
requesting the workflow project. The method also includes creating, via the server, a
typescript version of the workflow project from an executable version of the workflow
project and transmitting, from the server, a first copy of the typescript version of the
workflow project to the first client device and a second copy of the typescript version
of the workflow project to the second client device. The example method further
includes receiving, in the server from the first client device, a modify instruction that is
indicative of a modification to the first copy of the typescript version of the workflow
project and transmitting, from the server, the modify instruction to the second client
device causing the second client device to modify the second copy of the typescript
version of the workflow project. Moreover, the example method includes modifying,
via the server, the executable version of the workflow project based on the modify
instruction.

[0010] Additional features and advantages of the disclosed system, method, and
apparatus are described in, and will be apparent from, the following Detailed

Description and the Figures.

BRIEF DESCRIPTION OF THE FIGURES

[0011] FIG. 1 shows a diagram of an example online collaboration environment,
according to an example embodiment of the present disclosure.

[0012] FIG. 2A shows a diagram that is illustrative of an online collaboration between
client devices, according to an example embodiment of the present disclosure.

[0013] FIG. 2B shows a diagram of an intermediary processing engine of the online
collaboration environment shown in FIGS. 1 and 2A, according to an example
embodiment of the present disclosure.

[0014] FIG. 2C shows an example architecture of the online collaboration environment
of FIGS. 1, 2A, and 2B, according to an example embodiment of the present disclosure.
[0015] FIG. 3 shows an example of a second user at a client device modifying a
property or attribute of an email object of a workflow project, according to an example
embodiment of the present disclosure.

[0016] FIG. 4A shows a diagram of a structure of an instruction, according to an

example embodiment of the present disclosure.

10

15

20

25

30

35

[0017] FIG. 4B shows a diagram representing a schema of a workflow project or object
to which the instruction of FIG. 4A can be applied to modify the workflow project or
object, according to an example embodiment of the present disclosure.

[0018] FIG. 5 shows a table representative of a workflow project or object partitioned
into granular sections representative of modifications by respective instructions,
according to an example embodiment of the present disclosure.

[0019] FIG. 6 shows a diagram of a canvas or editing workspace for a workflow
project, which includes an email object (e.g., an object-orientated process having
attributes and properties), according to an example embodiment of the present
disclosure.

[0020] FIG. 7 shows a diagram of a JavaScript Object Notation (“JSON”) object model
of the email object of FIG. 6 at a client device, according to an example embodiment
of the present disclosure.

[0021] FIG. 8 shows a diagram of an interface that includes code specified in an
intermediate model (e.g., one or more APIs) that defines how typescript (e.g., JSON)
code translates or converts to C# code for an executable version of the email object of
FIG. 6, according to an example embodiment of the present disclosure.

[0022] FIG. 9 shows a diagram of the JSON model of the email object of FIG. 6 being
modified to include an ‘important’ property, according to an example embodiment of
the present disclosure.

[0023] FIG. 10 shows a diagram of a code interface editor for adding the ‘important’
property to the JSON model of the email object of FIG. 6, according to an example
embodiment of the present disclosure.

[0024] FIG. 11 shows a diagram of typescript code of the email object with the addition
of the typescript code for the ‘important’ property, according to an example
embodiment of the present disclosure.

[0025] FIG. 12 shows a diagram of a table of instructions including an instruction
specifying the addition of the typescript code for the ‘important’ property discussed in
connection with FIGS. 10 and 11, according to an example embodiment of the present
disclosure.

[0026] FIG. 13 shows a diagram of the ‘important’ property added to the JSON model
of the email object at another client device, according to an example embodiment of the
present disclosure.

[0027] FIG. 14 shows a diagram of a table illustrating changes made to JSON model
of the email object to add the ‘important’ property, according to an example
embodiment of the present disclosure.

10

15

20

25

30

35

[0028] FIG. 15 shows a diagram of the interface of FIG. 8 with the addition of the
‘important’ property, according to an example embodiment of the present disclosure.

[0029] FIGS. 16 and 17 illustrate flow diagrams showing an example procedure to
propagate modifications among executable and non-executable versions of a workflow

project, according to an example embodiment of the present invention.

DETAILED DESCRIPTION

[0030] The present disclosure relates in general to a method, apparatus, and system
for online collaboration for workflow projects. In particular, the example method,
apparatus, and system disclosed herein are configured to implement an interface that
creates and maps an un-executable version of a workflow project (and included
objects/processes) to an executable version. The un-executable version of a workflow
project may include one or more un-executable or typescript version of object-
orientated processes. The un-executable version is provided in a first programming
language that is configured to display web-based information. For example, the un-
executable version of the workflow project (including representations of underlying
processes/methods/operations) may be specified in TypeScript, eXtensible Markup
Language (“XML”), HyperText Markup Language (“HTML”), JavaScript, Cascading
Style Sheet (“CSS”), and/or other markup or script-based language that is compatible
with a web browser or other user interface-centric application. The specification of the
un-executable version of the workflow project in a markup or script-based language
enables the project to be operated (including all features and toolsets) on virtually any
smartphone, tablet computer, smart-eyewear, smartwatch, laptop computer,
workstation, etc.

[0031] By comparison, the executable version of a workflow project (including
objects/processes) are provided in a second programming language that is configured
to execute one or more processes, methods, procedures to generate a result. The
executable version of a workflow project may include an executable version of an
object-orientated process. Additionally, the executable version of the workflow project
may be specified by, for example C# classes. Further, the executable version of a
workflow project is configured to be located at a centralized server/workstation or at a
hosting client device. In some embodiments, the executable version workflow project
provides one or more results when executed, with the results being transmitted to the
un-executable versions. Locating the executable version of the workflow project at a
single location reduces processing requirements and specialization of the client devices.

10

15

20

25

30

35

Only the device executing the project has to include a specialized software application
capable of executing, for example, C# classes in a runtime environment.

[0032] The example interface disclosed herein manages the propagation of changes
to the workflow project such that they are updated in the un-executable version to
enable subsequent editing by users of local copies of the workflow project. At
approximately the same time or shortly thereafter, the interface applies the changes to
the executable version of the project. Accordingly, the disclosed interface synchronizes
un-executable version changes made by multiple client devices among not only the
client devices but also the executable version of the workflow project. Further, only
the modifications to a workflow project are transmitted, instead of copies of the
workflow projects themselves, thereby reducing bandwidth.

[0033] Reference is made through to instructions and instruction sets that specify
changes to a project. As described herein, instructions and instruction sets capture
changes to a project made by client devices. The changes specify, for example, an
addition or removal of an object-orientated process or business object to a project, a
modification, addition, or removal of a property of an object-orientated process or
business object, a modification, addition, or removal of an attribute of an object-
orientated process or business object, a modification, addition, or removal of a field of
an object-orientated process or business object, and/or a modification, addition, or
removal of a link to an object-orientated process or business object. The changes are
defined within the instruction sets, which are aggregated in a centralized location (e.g.,
a server interface or hosting client device). The aggregated instruction sets are
compiled and transmitted to each client device that is part of the online collaboration of
the project. Each client device applies the instruction sets to an appropriate portion of
the project, thereby updating the project to reflect changes made by each of the users.
The instruction sets may also be converted into executable instructions for modifying
the executable version of the workflow project. The converted instruction sets are
propagated down and applied to the executable version. Accordingly, the executable
version of the workflow project reflects changes made by users in near-real time while
being logically separated from the non-executable versions being modified by the users.
[0034] Reference is also made throughout to workflow projects. As disclosed herein,
a workflow project is programmatically defined by one or more computer-readable
instructions that specify certain methods or actions compartmentalized within discrete
computing objects. Workflow projects may be displayed or operated within an object-
orientated programming environment in which one or more objects are interconnected
to achieve a certain tangible result or output. An object may be specified by attributes

and/or properties that define how certain data is to be acquired, processed, and/or

10

15

20

25

30

35

output. In addition to above, a workflow project may also include a form with fields
and properties. Moreover, a workflow project may include a smartobject that includes
a nested workflow or process.

[0035] In contrast to the method, apparatus, and system disclosed herein, known
online collaboration of project software is susceptible to freezing and pausing of a
project. For instance, known project software has a local version of an executable
version of a project at each client device within the online session. This known software
does not have a non-executable version. Changes made to a project, from any users,
are applied directly to an executable version of the project at each client device. This
means that the executable version of the project has to be recompiled after each change
(or at least before a run/view) command is received at each client device. Recompiling
can take time and cause the project to freeze or pause at times during the collaboration,
which can be frustrating to users. This can be especially frustrating when one user is
compelled to re-execute a project after every change. Further, execution of the project
may cause the respective software applications to temporarily prevent (e.g., lock out)
other users from making changes until the project is recompiled and/or executed.
[0036] The example method, apparatus, and system are configured to overcome
issues with known project software collaboration by separating an executable version
of a project workflow from an un-executable version, which is formatted for display
and interaction in a user interface. The example method, apparatus, and system provide
a level of viewable and editable abstraction that enables the underlying executable
version of the project workflow to be distributed and changed (through the un-
executable version) without having to distribute a specific program designed to execute
the workflow project. In other words, the example method, apparatus, and system
provided a rendering of a workflow project to users in a collaborative environment that
makes it appear the users are interacting with the executable version.

[0037] In some embodiments, the example method, apparatus, and system provide
graphical editing of the un-executable version of the workflow project. The client
devices provide a visualization of a declarative model of the workflow project. This
enables a visual editing environment for workflow projects with a visual authoring
canvas, which can be plugged into many known third-party applications for online
collaboration or operated in conjunction with third-party applications. Further, the
authoring canvas of the workflow project is free-flowing, where objects can be placed
and linked throughout. By comparison, known graphical editing tools are limited to
files, such as documents and spreadsheets, which are locked by coordinates and/or

paragraphs.

10

15

20

25

30

35

[0038] As discussed herein, the example method, apparatus, and system enable
objects in a workflow project to be persisted and run while the online collaboration is
ongoing. Further, a workflow project may be simulated to view effects of changes
without making the changes live. The elements of the workflow project (e.g., a
visualization of a declarative model) can be manipulated by any user of the
collaboration and made immediately available to the other users. Further, the workflow
project may be nested or layered to collaboratively build business objects (e.g.,

smartobjects), forms, and/or higher order workflows.

I Online Collaboration Environment Embodiment

[0039] The example method, apparatus, and system disclosed herein are embodied
within an online collaboration environment 100, illustrated in FIG. 1. The example
environment 100 includes a processing server 102 configured to execute one or more
workflow projects that are stored in a memory 104. As provided in more detail below,
workflow projects define at one or more actions, properties, fields, and/or attributes that
are executable within defined classes and/or code. A workflow project may include a
workflow having one or more interconnected workflow objects that each specify a
method or action. The example processing server 102 includes one or more processors
and/or applications configured to execute the code specified by the objects within a
workflow project. For example, the processing server 102 may be configured to
instantiate and/or execute a workflow project in which objects are specified or defined
by C# classes.

[0040] The example environment 100 also includes an intermediary processing
engine 106 that is communicatively coupled to the processing server 102. In some
embodiments, the intermediary processing engine 106 may be part of the server 102.
In other embodiments, the intermediary processing engine 106 is separate from the
server 102. For example, the intermediary processing engine 106 may be implemented
within a cloud computing environment while the server 102 is located at a central
location. In an embodiment, the intermediary processing engine 106 may be located in
an open domain while the server 102 is located behind a firewall and/or secure gateway
in a closed domain.

[0041] The example intermediary processing engine 106 is configured to map an
executable version of a workflow project (stored at the memory 104) that is provided
in a first language to an un-executable version of the workflow project that is provided
in a second language. For example, the intermediary processing engine 106 is
configured to map or provide conversion of a C# based workflow project (including

objects) to a TypeScript workflow project. The mapping includes defining a structure

10

15

20

25

30

35

10

of properties and attributes of a non-executable version of each object, form, and action
in a workflow that correlates or matches a structure of properties and attributes of an
executable version of the corresponding object, form, and action. The mapping also
includes providing a same set of available features, properties, and/or attributes between
the executable and un-executable version of the object, form, and/or action such that
modifications to the un-executable versions can be propagated to the executable
versions. The mapping may be coded within one or more APIs (e.g., Authoring
Framework APIs) and/or intermediate models (e.g., an abstraction interface) that
correlate typescript (e.g., JSON) code to C# code. The example intermediary
processing engine 106 is configured to store an un-executable version of a workflow
project, including objects, forms, and/or actions within a memory 108.

[0042] As illustrated in FIG. 1, the intermediary processing engine 106 is
communicatively coupled to client devices 110 via a network 112 (e.g., the Internet).
The network 112 may include any local area network, wide area network, private
network, wired network, and/or wireless network (e.g., a cellular and/or Wi-Fi
network). The client devices 110 include any smartphone, tablet computer, smart-
eyewear, smartwatch, laptop computer, desktop computer, workstation, processor,
server, etc. The client devices 110 are configured to operate an application 114 (e.g.,
a web browser, document editing application, etc.) that displays an un-executable
version of a workflow project for online collaboration. The client devices 110 may be
configured to operate in an open domain or a closed domain. For example, the client
devices 110b and 110c may be part of a closed domain 116 that may also include the
processing server 102. A closed domain may comprise an enterprise local area network
(“LAN”), which is separated from the public Internet view one or more gateways,
firewalls, etc.

[0043] While FIG. 1 shows three client devices 110, it should be appreciated that an
online design collaboration session may include any number of client devices 110 in an
open or closed domain. Further, while FIG. 1 shows a single collaborative session, it
should be appreciated that the intermediary processing engine 106 and/or the processing
server 102 may concurrently host tens to hundreds of collaboration sessions. In some
embodiments, a client device 110 may be part of more than one session at a time. For
example, a user may open multiple web browsers, with each web browser displaying a

separate workflow project.

A. Online Collaboration Implementation Embodiment

[0044] FIG. 2A shows an example of an online collaboration between the client

device 110a and the client device 110b. In this example, during an online collaboration

10

15

20

25

30

11

session, the client device 110a is displaying a web browser application 114a and the
client device 110b is displaying another web browser application 114b. The web
browsers 114 display a workflow editing workspace 201 (shown as respective
workspaces 201a and 201b) that may be defined by one or more toolset files (show as
toolset 202a and 202b). The toolset files provide or define features that enable users to
edit workflow projects 204a and 204b within the respective third-party web browser
applications 114a and 114b. The workflow projects 204a and 204b are un-executable
versions of an executable workflow project 205 located at the processing server 102.
[0045] In some embodiments, the example toolset file 202 defines or includes rules
that specify different types of workflow project data services for the design canvas 201
(e.g., a workspace for object-orientated programming). The data services define calls
that, when implemented in an executable version of a workflow project, request access
to backend data or operations. Data services also define operations that a user can
perform within the design canvas 201 to create and/or edit a workflow project. Data
services can include, for example:
o Data Services including saving, loading, and a caching of data from

one or more data sources;

J Popup Services that are responsible for controlling popups (including
modals and non-modals);

o Environment Services that contain defaults needed for a design
environment (e.g., query string parameters), determine where a design
environment is hosted (e.g., SmartForms or SharePoint), and determine
what design environment to display (e.g., Workflow designer or
SmartObject designer, etc.);

J Context Provider Services that store context providers across a design

environment, and are used to access that providers;

o Object Model Services that handles the saving and the loading of the
design environment items and objects to and from a database;

o Process Services that handle process specific actions such as creating

new activities or events;

o Canvas Services that are used to access canvas specific items such as

activities rendered in GoJS;

10

15

20

25

12

Clipboard Services that are responsible for controlling clipboard

functions;

Collaboration Services that are responsible for controlling SignalR

instructions and collaboration;

Command Services that are used to notify other services when a

certain keyboard command is triggered,

Configuration Panel Services that handle the open and close of a
config panel, as well as provide a definition for each tab;

Context Browser Services that provide a context browser with fields

that can be used;

Context Menu Services that are responsible for controlling right click

context menus;

Drag Drop Services that are responsible for controlling drag drop

events;

Filter Panel Services that handle a third panel showing when a filter

control is set into complex mode;

Help Services that use a json config file to return a help url based on a

token specified,;

Item Provider Services including a Context Brower, which is linked to
item providers for identifing what needs to load in the context browser
at what stage (e.g., each tab in the context browser has it’s own item

provider);

Notification Services that are responsible for handling notifications to
the user, client-side logging, suppression of specific messages and

popping toasts for the user;

Plugin Services that register user interface components as plugins and
handle which item providers needs to load for the plugin, and handle
collapse and expansion of the user interface components;

10

15

20

25

30

13

J Recents Services that are responsible for handling areas needed to
display recently used artifacts. It handles the context and the number

of items associated with the context (e.g., recent search for users);

o Recipients Panel Services that are responsible for setting a context of a
rich panel service;

J SmartField Composer Services that handle a display of the SmartField
Composer for a specified SmartField,;

J SmartField Plugin Service that work with a SmartField Composer

Service to load the correct content for the composer;

o SmartWizard Services that are used by the Smart Wizards that handle
events raised by different Smart Wizard controls;

J Toolbox Services that provide functionality for the hosting of plugins

within the toolbox user interface component;

o Undo Redo Services that are responsible for tracking changes to
registered object models and ensure changes can be reverted or

reapplied;

J Validation Services that perform validation within a specified context.
This is used to implement a badging functionality and general

workflow validation; and

o Workflow Settings Services that are used to determine if certain

settings are configured for smart actions.

[0046] In some examples, the intermediary processing engine 106 may transmit the
toolset files when a user of the device 110 requests to view/edit a certain workflow
project. The toolset files operate as a plug-in extension to the web browser. In an
embodiment, a user may receive a text message or email containing a hyperlink to an
Internet Protocol (“IP”) address, web address, or other address at which a workflow
project is being hosted. The address may be located at the intermediary processing
engine 106, the processing server 102, or a third-party server. A user causes the client
device 110 to navigate to the workflow project upon selection of the hyperlink. A

process at the destination of the hyperlink may read plug-ins installed on the browser

10

15

20

25

30

35

14

of the client device 110. If the toolset is not already installed, the process transmits a
toolset file to the client device to install the toolset 202. If the toolset is already
installed, the process may activate or otherwise cause the toolset to be displayed in the
application 114.

[0047] In other embodiments, the toolsets 202 may included or otherwise defined
within a webpage at the destination of a hyperlink to a workflow project. The webpage
includes code or plugins that define features for editing a workflow project. A web site
may be hosted by the intermediary processing engine 106, the processing server 102,
and/or a third-party server.

[0048] In the illustrated embodiment of FIG. 2A, a user of client device 110a may
first create workflow project 204a, which 1s displayed within the workspace design
canvas 20la as an un-executable version. The workflow project 204a defines an
automated process for obtaining approval of a business request. The project 204
includes a number of different objects including a start object 250, which defines a
starting point for the workflow. The project 204 also includes an approval object 252,
which islogically linked to the start object 250. The approval object 252 defines actions
or a form for receiving approval from one or more designated individuals. Downstream
from the approval object 252 is an email object 206, which is configured to
automatically transmit an email upon approval being received through object 252. In
this embodiment, the user has specific domain knowledge and is able to create objects
250, 252, and 206. However, the user does not know how to define or specify fields
for the email object 206.

[0049] While the session is ongoing, the user of client device 110a transmits a request
message (e.g., a text or email) to the user of client device 110b. The request message
includes, for example, a link to the workflow project 204. The user operates the
application 114b on the client device 110b to navigate or otherwise open the same
workflow project during the online collaboration session, which is shown as workflow
project 204b in workspace 201b. The workflow project 204b shows the same canvas
with the same lines and shapes (e.g., the same workflow project 204b) as the workflow
project displayed by the client device 110a.

[0050] The user of client device 110b creates the requested fields for the object 206b,
which is added to the workflow project 204b. A message containing an indication of
the addition of the fields for the object 206b (e.g., an instruction) is transmitted to the
intermediary processing engine 106, which transmits the indication message to the
client device 110a. Upon receiving the indication, the application 114a of the client
device 110a updates the workflow project 204a to include the newly created fields for

the email object 206. At about the same time, the indication of the addition of the newly

10

15

20

25

30

35

15

added fields of the object 206b is converted into executable instructions and sent to the
processing server 102 to update the executable version of the workflow project 205.
[0051] The following describes in more detail process operations for propagating the
addition of the fields of the object 206b at the workspace 201b to (1) the un-executable
version of the project workflow 204a at the workspace 201a of client device 110a and
(i1) the executable version of the workflow project 205 at the processing server 102.
[0052] FIG. 3 shows an example of the second user at client device 110b creating one
or more fields (in section 302) by modifying a property or attribute of the object 206b
of the workflow project 204b. In the illustrated example, the user of client device 110a
does not known which fields needed to construct the email object 206. However, the
user of the client device 110b (e.g., a domain expert) understands what fields are needed
for the email object 206. To create the fields for the object 206b, the user at the client
device 110b defines a new data field at section 302 within the object 206b (e.g., edits a
property or attribute) with the understanding of how that field will be populated and
consumed. The intermediary processing engine 106 receives, from the client device
110b, an instruction indicative of the change to the object 206, and propagates the
instruction to the client device 110a so that the user can use the newly added data field
of the object 206a.

[0053] FIG. 2A shows how the change to the object 206 is propagated from the client
device 110b to the client device 110a. When the user at the client device 110b modifies
the object 206b, a property of the object 206b 1s modified to reflect the newly added
field. The object 206b may contain, for example, a list of available fields that may be
selected by a user. In other examples, values for the fields or properties may added or
a link to data for population into the fields or properties may be added. At the moment
(reflected by Event A, illustrated in FIG. 2A as a circled “A”) the object 206b is
modified, the object 206a at client device 110a is still reflective of the unmodified
object. Shortly thereafter, at Event B, an instruction 210 is generated and sent from the
client device 110b to the intermediary processing engine 106. The instruction 210
specifies the field that was added and identifies the object 206. In other embodiments
where addition modifications to the workflow project 204 are made, the instruction 210
specifies these other modifications. Alternatively, an instruction may be generated for
each modification or an instruction may be generated for changes to made each object.
[0054] At Event C in FIG 2, the instruction 210 is received and queued at the
intermediary processing engine 106. The intermediary processing engine 106
determines that the client device 110a is part of the same collaborative session as the
client device 110b. Accordingly, at Event D, the intermediary processing engine 106

transmits the instruction 210 to the client device 110a (and any other client devices that

10

15

20

25

30

35

16

are part of the same session). In some instances, the instruction 210 may be transmitted
as a JavaScript Object Notation (“JSON”) payload. The workspace 201a applies the
instruction 210 to the object 206a (the un-executable version) such that the object 206a
now mirrors the object 206b. The time between Events A and D may be a few
milliseconds to seconds such that the change appears almost instantaneous.

[0055] At Event E, which is generally after Event D, the example intermediary
processing engine 106 transmits the instruction 210 to the processing server 102. The
example processing server 102 applies the instruction 210 to the executable version of
the object 206. In some instances, the processing server 102 may not apply the
instruction 210 until a save or commit command is received from either of the client
devices 110. Additionally or alternatively, the processing server 102 may apply the
instruction 210 to an executable version of the object 206 within a temporary version
of the executable version of the workflow project 205. The processing server 102 may
only update a permanent version of the workflow project 205 when a store or commit
message is received from either of the client devices 110 that are in the collaborative
design session. In these instances, the temporary version of the workflow project 205
enables on-demand execution or simulation without the change necessarily being
saved.

[0056] Prior to Event E, in some embodiments, the intermediary processing engine
106 may convert the instruction 210 into a format for updating a version of the object
206 associated with the workflow project 205. The intermediary processing engine 106
may convert the instruction 210 by changes labels and/or data from typescript
specifications or properties into C# classes, functions, or code that modifies
corresponding executable code associated with the object at the workflow project 205.
In some embodiments, the processing server 102, instead of the intermediary processing
engine 106, converts the instruction 210 after Event E.

[0057] As shown in the above-example, the intermediary processing engine 106 of
FIG. 2A propagates changes to the workflow project 204 among the users while
keeping separate the executable version of the workflow project 205. This enables a
rendering or visualization of a declarative model (an un-executable version of the
workflow project 204) to be modified at the user-level in a third-party application, such
as a web browser, while separately updating the executable version of the workflow
project 205 or declarative model, thereby enabling the client devices 110 to modify the

model without having capability of locally executing the model.

B. Intermediary Processing Engine and Processing Server Embodiment

10

15

20

25

30

35

17

[0058] FIG. 2B shows a diagram of the intermediary processing engine 106 and
processing server 102 of FIGS. 1 and 2A, according to an example embodiment of the
present disclosure. It should be appreciated that the operational blocks shown in FIG.
2B are representative of computer-readable instructions or interface specifications
stored in a memory related to the intermediary processing engine 106 and/or the
processing server 102, that when executed, cause either or both of the intermediary
processing engine 106 and/or the processing server 102 to perform certain actions,
routines, algorithms, operations, etc. Accordingly, the operational blocks shown in
FIG. 2B may be logically combined, further partitioned, rearranged, etc. without
deviating from the disclosure herein.

[0059] The intermediary processing engine 106 includes a client device interface 220
configured to communicate with the client devices 110 of FIGS. 1 and 2A. The
interface 220 may include an address, an address-prefix, a domain name, etc.
corresponding to a virtual location of the intermediary processing engine 106 with
respect to the network 112. The example interface 220 is configured to receive
information from the client devices 110, including, for example, request messages to
view or open a workflow project, request messages to provide a workflow project for
collaboration, request messages to execute a workflow project, and/or instructions
indicative of changes or modifications made to one or more workflow projects. The
example interface 220 is also configured to transmit information from the intermediary
processing engine 106 to the client devices 110. The transmitted information includes,
for example, an un-executable version of a workflow project, execution results from a
workflow project, and instructions or instruction sets indicative of changes made to a
workflow project.

[0060] The example client device interface 220 operates in connection with a session
manager 222 to determine which client devices 110 are associated with which
collaborative sessions. Each session corresponds to a different workflow project, of
which an executable version may be stored in the memory 108. The example session
manager 222 maintains separate session lists that each includes an identifier, link, or
address to an un-executable workflow project stored in the memory 108 and addresses,
usernames, and/or identifiers of client devices 110 that are viewing or otherwise
modifying the respective un-executable workflow project. The example client device
interface 220 may also be configured to provide authentication to enable only certain
user of client devices 110 to access certain workflow projects.

[0061] To create a session, the example session manager 222 receives a request
message from one of the client devices 110 identifying a workflow project (or

indicating that a new workflow project is to be created). In some embodiments, the

10

15

20

25

30

35

18

request message may include a hyperlink, address, and/or identifier of the workflow
project. In other embodiments, the request message may initiate a file browsing
interface with the session manager 222 to enable a user to select a workflow project
stored within a directory or other file structure. The intermediary processing engine
106 may store un-executable versions of workflow projects within the memory 108 for
selection. Each of the un-executable versions of the workflow project may include an
identifier, link, and/or address, which is used by the client devices 110 and/or the
intermediary processing engine 106 for identification and access. For example, users
of client devices 110 may share a link or address to a workflow project (or instruct the
intermediary processing engine 106 to transmit an address or link to a workflow project)
to permit other users to access the workflow project during a session.

[0062] In other examples, only an executable version of a workflow project is available
for selection. In these other examples, the session manager 222 provides a file browser
to executable workflow projects stored, for example, in the memory 104 of the
processing server 102. After selection by a user, a workflow converter 224 of the
processing server 102 and/or the intermediary processing engine 106 creates or
generates an un-executable version of the selected workflow project. After conversion,
the session manager 222 stores the un-executable version of the workflow project to the
memory 108 and separately transmits a copy of the un-executable version of the
workflow project to the requesting client device 110.

[0063] After an un-executable version of a workflow project is selected, in some
embodiments, the session manager 222 is configured to store an identifier of the
workflow project to a session list. The session manager 222 also stores an identifier
and/or address of the requesting client device 110 to the session list. The session
manager 222 uses the client device interface 220 to transmit a copy of the un-executable
version of the workflow project (e.g., the workflow project 204 of FIG. 2A).
Transmission includes, for example, transmitting one or more internet protocol (“IP”)
packets that include typescript code for rendering a graphical display of the workflow
project. As shown in FIG. 2A and 3, the graphical display includes icons or pictures
representative of objects, lines or similar graphics indicative of connections between
objects, and fields/tables prompting user selection and/or entry of values. As such, the
typescript code may specify field options for each parameter and/or attribute of an
object.

[0064] In some embodiments, the session manager 222 transmits the copy of the un-
executable version of the workflow project for display within a web browser
application, a form, or other third-party application reader/viewer (e.g., the application
114 of FIGS. 1 and 2A). In other examples, the session manager 222 may record an

10

15

20

25

30

35

19

image of the workflow project, which is transmitted to the client devices 110. In either
embodiment, the example session manager 222 is configured to transmit one or more
toolset files 202 to the client device 110 (if needed) to enable editing of the workflow
projects. The toolset files 202 may be stored in the memory 108 or a separate memory
and provide features or operations that are generally not native to the web browsing or
other third-party viewing application (e.g., the application 114). Instead, the toolset
files 202 define actions or operations a user may perform to add/remove objects, create
linkages or nests among objects, and/or create/define fields/properties/attributes of
objects. In some embodiments, the toolset files 202 are unique per project type or the
workflow project itself.

[0065] The toolset files 202 may include plug-ins for an application operating on the
client device 110 that is rendering the un-executable version of the workflow project.
In other instances, the toolset files 202 may include separate applications that operate
in connection with a viewer application. The session manager 222 is configured to
transmit the toolset files 202 in connection with the selected workflow project. In
examples where a client device 110 may retain a toolset file 202, the session manager
222 may first check whether a toolset file 202 is installed at the client device 110 before
determining if a toolset file 202 is to be transmitted with the workflow project.

[0066] After a session is created, the example session manager 222 is configured to
operate in connection with an instruction manager 226 to process the instructions (e.g.,
modify instructions or messages). As discussed above, client devices 110, during a
session, enable users to modify the un-executable version of a workflow project. Each
modification (or group of modifications) is documented and stored as an instruction at
the application (e.g., the application 114) at the client device 110. The toolset file 202
may include code that specifies how user-provided edits are stored to one or more
instructions, including the format of the instructions. The client device interface 220 is
configured to receive the instructions periodically (e.g., every 1 second, 5 seconds, 10
seconds, 30 sections, etc.), after a user saves the changes, or as the changes are made.
The instructions may include an identifier which identifies the workflow project. The
session manager 222 uses either a source address identifier of the client device 110
included with the IP packets for transmission of the instructions or the identifier within
the instructions to determine a corresponding session.

[0067] The session manager 222 stores the instructions to an instruction set for
subsequent transmission to other client devices 110 that are part of the collaborative
session. In some examples, the session manager 222 creates an instruction set for each
client device 110 that is part of a session, where instructions received from a first client

device 110 are added to instruction sets for other client devices of the same session.

10

15

20

25

30

35

20

This configuration prevents a client device 110 from receiving instructions it has
previously transmitted. In other examples, all instructions received from all client
devices 110 of the same session are stored to a single instruction set, which is then
transmitted periodically (e.g., every 0.5 seconds, 1 second, 5 seconds, 10 seconds, 30
seconds, etc.) to all of the client devices 110 that are part of the session. In yet other
examples, the instructions are broadcast to the client devices 110 after receipt by the
client device interface 220. The toolset files 202 at the client devices 110 include rules
that are operated to apply the instructions to the workflow project, where instructions
that describe changes already made locally become moot.

[0068] The example session manager 222 stores instructions received during a session
to the memory 108 (e.g., an Azure database, a SQL database, an in-memory database,
etc.). This enables the instructions to be stored in conjunction with the un-executable
version of the workflow project. Thus, when a new user joins a session, the session
manager 222 transmits the un-executable version of the workflow project in addition to
the instructions, which define how the project has changed during the session. This
enables the new user to view all changes during a session and ensures that every client
device has the latest ‘version’ of the workflow project available for display.

[0069] The instructions are transmitted from the client device interface 220 in batches
as a JSON array. The instruction manager 226 may shred the instructions into the
database temporary storage 108 as independent instructions. The instructions are then
transmitted by the interface 220 to the client devices 110 via, for example, SignalR in
batches, again as a JSON array. This JSON configuration enables the instructions to be
played one-by-one on every client device 110 regardless of a size of the batch on either
side of the runtime execution. For example, there may be four messages batched from
the ‘source’ client device and sent to the interface 220 for temporary storage and
processing. The session manager 220 already has three instructions in storage when
the batch comes in, bringing the total to seven instructions for processing. Other client
devices 110 may have missed all seven instructions, and in the next batch the devices
receive all seven instructions from the interface 220. This configuration allows for
flexibility of latency and network issues to be handled by the accordion style processing
of the instructions, thereby guaranteeing that every instruction will be eventually
‘played’ on every client device 110.

[0070] In some embodiments, an algorithm operating on the session manager 220
and/or the instruction manager 226 enables the collapsing of multiple related
instructions into a single ‘final’ instruction. For example, if an object is being moved
on a design canvas 201 on the ‘source’ client device 110, then each coordinate change

will become part of the instruction set that will be played on every client device.

10

15

20

25

30

35

21

Although this has the effect of each client device seeing exactly what the source user
did, it can lead to a ‘jittery’ experience. The client devices 110 do not technically need
to play every coordinate move. Instead, the client devices 110 just need to know the
starting and ending coordinates to show the completed move of the object. The
algorithm is configured to enable for this ‘final” answer approach to the instruction set,
which may reduce any jitter or perceived lag that may result from displaying
intermediate movements. This would be similar to the concept of closing the client
session for a period of time and then opening it back up. In this case, the instructions
are not played but instead the last known ‘state’ of the canvas is simply opened on the
client device and then it starts participating in the instructions from there on.

[0071] In some examples, the client device interface 220, the session manager 222,
and/or the instruction manager 226 are configured with SignalR to listen for
messages/instructions from the client devices 110 and persist them to the memory 108
and/or the session manager 222. SignalR is also configured to transmit those same
messages/instructions for the client devices 110 that are part of the collaborative
session. The instruction messages are transmitted using, for example, a JSON payload.
The session manager 222 transmits the instructions by hydrating the temporarily
persisted JSON instructions into a typescript un-executable version of a workflow
project. Interfaces of the toolset 202 at the client device may include interfaces that
apply the changes specified in the instructions to the workflow project. The SignalR
configuration enables client devices 110 to ‘replay’ the same instruction set which,
updates the user interface of the application 114 via an Angular]S two-way binding
approach.

[0072] SignalR includes a library for ASP.NET, which enables the addition of real-
time web functionality to applications (e.g, the applications 114). Real-time web
functionality provides the ability to have server-side code push content (e.g., the
instructions) to the connected client devices 110 as the instructions are received at the
interface 220 and/or manager 226. SignalR, in some embodiments, is operated by the
manager 226 to send instructions to a SignalR hub (such as the interface 220 or a
downstream router), which SignalR will process using a code linked to the hub. The
hub can then determine how to route the instructions. The hub may take the instructions
and save it or broadcast it to the other connected client devices 110. The hub handles
clustered internet information services (“IIS”) instances. This enables, for example,
instructions to be broadcasted to all connected client devices simultaneously.

[0073] As provided above, an instruction (e.g., the instruction 210) records changes to
an object, a workflow project, or changes to workflow projects more generally. An

object defines one or more actions or methods that are performed. The object may

10

15

20

25

30

35

22

include one or more properties that define aspects of the object. For example, a property
or attribute may define or specify who may access an object, how an object is to be
displayed, an input location from a data source or another object, an output location to
a data source or another object, and/or a data type. Properties may also define available
fields for an object. For instance, an unmodified object may be configured to have 20
different fields available. A user may select one or more of the fields (as shown in
section 302 of FIG. 3) for use with the object, thereby activating the field for use.
Values or references may be populated into the fields to designate how data is to be
processed. The instructions accordingly specify how an object or action is to be
configured.

[0074] Other modifications to objects of an un-executable version of a workflow
project that results in the generation of an instruction include (a) drawing an object or
step at x/y coordinates within design canvas 201, (b) configuring or linking
inputs/outputs to an object by drawing a line (including coordinate values), (c)
configuring objects field details (e.g., To addresses, From addresses, and Body Text for
the email object 206), (d) drawing drop-down form controls at x/y coordinates, (e)
configuring drop-down control details for a form or object data source/data value/data
display bindings, (f) an identifier property for a smart-object, and (g) a configuration of
an identifier property as an auto-number including a primary key.

[0075] The example instructions define changes at an abstraction layer to enable
processing of the same instruction by the instruction manager 226 (or at the client
devices 110) for the un-executable version and by the instruction converter 228 and/or
processing server 102 for the executable version. At the abstraction layer, objects and
other items of a workflow project are represented generically via a set of interfaces that
include common framework attributes and methods. The interfaces enable further
translation to different programming languages, thereby allowing for simultaneous
processing of the same instruction for different purposes.

[0076] In some embodiments, the instruction manager 226 is configured to apply
changes specified in the instructions to the un-executable version of the workflow
project just as the client devices 110 also apply the instructions to local copies of the
workflow project. To apply changes specified in instructions, the instruction manager
226 and/or the client device 110 edits the workflow project using, for example, JSON
and QuickPath information specified within the instructions. In other words,
instructions specify changes made to a typescript workflow project in JSON and
QuickPath. The instructions at the destination client devices 110 and instruction
manager 226 provide a typescript specification at an abstraction layer defining how

certain objects, properties, attributes, fields, etc. are to be edited. For example, an

10

15

20

25

30

35

23

instruction that specifies a creation of an object in JSON and QuickPath causes the
instruction manager 226 to create the object within the un-executable version of the
workflow project. In another example, an instruction that specifies a newly created
field in an object and corresponding property values causes the instruction manager 226
to activate the specified field in the object and store the property values.

[0077] Additionally or alternatively, the instructions are used to update the executable
version of the workflow project stored in the memory 104 of the processing server 102.
However, the instructions need to be converted because they are specified in, for
example, a JSON and QuickPath format as an abstraction of the executable version of
the workflow project. The instruction manager 226 transmits the instructions to, for
example, an instruction converter 228, which converts the instructions into a format for
modifying the executable version of the workflow project. The instruction converter
228 may be included with the intermediary processing engine 106 and/or the processing
server 102.

[0078] The example converters 224 and 228 provide an abstraction of the
instruction/processing layer with respect to the executable version of workflow projects
stored in the memory 104. This level of abstraction corresponds to the abstraction layer
at which the instructions are provided. The example converters 224 and 228 are
configured to process objects, including smart-objects (e.g., nested objects), forms,
workflow projects, etc. that have been described via a set of interfaces. In other words,
the converters 224 and 228 define interfaces between executable code of a workflow
project and the corresponding typescript un-executable version and corresponding
instructions. The interfaces of the converters 224 and 228 define, for example, a
structure for creating or modifying objects that is common among C# classes and
typescript classes. The interfaces may include an intermediate model and/or Authoring
Framework APIs (e.g., an abstraction interface). The instructions are layered on the
object structure as a set of generic interfaces. For example, an arbitrary Object XYZ
has properties A, B, C. The converters 224 and 228 are configured to provide
interpretation of the properties for the processing server 102 via an instruction.

[0079] To convert instructions, the example instruction converter 228 includes
different interfaces or a model comprising different interfaces. Each interface may
correspond to a different instruction type, object type, property, attribute, etc. The
instruction converter 228 pushes instructions down to the executable version of the
workflow project. In an example, the instruction converter 228 hydrates temporarily
persisted objects as the generated C# classes and maps the instructions to the Authoring
Framework APIs (e.g., an intermediate model or abstraction interface). The instruction

converter 228 uses a typescript client object model to generate an identical C# object

10

15

20

25

30

35

24

model, which is used by an executable processor 230 at the processing server 102 to
hydrate the executable version with the instructions.

[0080] Information within the instruction are used by the converter 228 to select the
interface. Information within fields of the instruction are uses to populate fields of an
interface, which enable certain C# code or classes to be generated or configured. For
example, an instruction may specify the creation of an email object. The type of the
instruction is used to select an interface for creating objects. The interface includes
fields that correspond to JSON and/or QuickPath information in the instruction.
Selection of the interface and population of the fields causes an executable processor
230 to locate a C# class for generating an object of the type specified by the interface.
The fields of the interface are then used by the processor 230 to populate certain
variables, inputs/outputs, properties, and/or attributes of the located C# class for the
object.

[0081] In another example, an instruction may specify the creation of a property for a
designated object. The instruction includes an identifier of the object. The instruction
converter 228 selects an interface for property creation of an object of the type
specified. The object identifier is used by the executable processor 230 to locate the
corresponding object in the C# code. The specification of the property in the fields of
the interface is used to locate and apply the appropriate C# class property to the object.
Values provided with the property in the instruction are specified in one or more fields
of the interface and used to define variables within the selected C# class property of the
object.

[0082] In some examples, the instruction manager 226 operates in connection with the
instruction converter 228 to apply all instructions as received to the executable version.
In other examples, the instruction manager 226 operates in connection with the
instruction converter 228 to apply instructions after a ‘save’ message is received from
a client device 110. In yet other examples, the processing server 102 may create one or
more temporary copies of the executable version of the workflow project, to which the
instructions are applied. This enables un-saved versions of the executable workflow
project to be operated. The executable processor 230 applies the instructions to the
permanent copy after a ‘save’ message is received or the session is terminated.

[0083] As described above the instruction converter 228 provides a conversion of
abstracted instructions to modify an executable version of a workflow project. In
contrast, the workflow converter 224 includes interfaces for converting an executable
workflow project into a typescript un-executable project. To convert an un-executable
version of a workflow project from an executable version, the workflow converter 224

operates an interface between, for example, C# and TypeScript classes. The workflow

10

15

20

25

30

35

25

converter 224 may include an Authoring API (e.g., application programming interface)
for each of the building blocks of a workflow project including objects, smart-objects,
forms, and workflows. The Authoring Framework API is a set of C# interfaces that
build, persist, and retrieve a declarative representation of the object, artifact, or more
generally, workflow project. The API also enables developers to build all the exact
same artifacts directly via code. The workflow converter 224 operates the APIs to
create un-executable versions of workflow projects that still specify how the workflow
projects are to be displayed and specify properties/attributes of underlying objects,
forms, etc.

[0084] In some examples, a logical model of a workflow project may be created and
stored to the memory 104 and/or 108. The logical model may be un-executable.
However, the logical model is not easily displayable in a web browser or other third-
party applications. In these examples, the workflow converter 224 is configured to
create a typescript version as an un-executable version displayable at the client devices
110 and an executable C# model stored at the processing server 102. The abstraction
of the logical model may be linked via interfaces at the workflow converter 224 into
corresponding typescript classes for the un-executable version and C# classes for the
executable version.

[0085] In some examples, the instruction manager 226 may check for conflicting
instructions, which comprise instructions from two different client devices 110 that
describe a similar change to an object or the project more generally. The instruction
manager 226 may search for conflicts by identifying an object identifier and/or field
associated with the instructions. A match indicates that changes from two different
users may include contradicting or overriding edits. If a conflict is detected, the
instruction manager 226 may transmit a message to the respective client devices 110
prompting a selection of one instruction.

[0086] As shown in FIG. 2B, the processing server 102 includes a cache 232 to store
executable versions of a workflow project (e.g., the workflow project 205) for
modification and/or execution. The cache 232 may include any volatile or non-volatile
memory that enables reading/writing of the executable version of the workflow project.
During a session, the executable processor 230 applies or hydrates instructions to the
executable version of the workflow project to reflect changes made by users. The
changes may be made to a temporary or permanent version of the workflow project.
[0087] As described above, the executable version of a workflow project is available
at the processing server 102 while the non-executable versions of the workflow project
are provided at the client devices 110 and the intermediary processing engine 106. The

applications 114 at the client devices 114 may include a feature that enables a user to

10

15

20

25

30

35

26

execute a workflow project to visualize data flow or results of operating one or more
objects specified within the project. However, the client devices 110, including the
viewer application 114 cannot run the local version of the workflow project because it
is specified in, for example, typescript. Instead, execution requests are transmitted from
the client device 110 to the interface 120 in an execution request message. The
execution request message is routed within the intermediary processing engine 106 to
an execution processor 234. The example execution processor 234 receives the request
message and transmits an execution call to a runtime processor 236 at the processing
server 102. In some instances, the instruction converter 228 may convert the call into
an instruction that causes the runtime processor 236 to execute a specified workflow
project.

[0088] The example request message and/or the request call may include an identifier
of the workflow project. The request message and/or request call may also identify an
object or action if instead a user only specified to execute a portion of the workflow
project. The example runtime processor 236 is configured to locate the requested
workflow project within the cache 232 (or load the workflow project from the memory
104) for execution. In some embodiments, the runtime processor 236 sends an
instruction to the executable processor 230 to apply any pending or outstanding
instructions to the requested workflow project prior to execution. To execute a
workflow project, the example runtime processor 236 compiles C# code of the project
and steps through the generated object code. Results from the execution are stored and
transmitted by the runtime processor 236 to the execution processor 234. The example
execution processor 234 creates one or more messages for the client devices 110 within
the collaborative session. The execution processor 234 may address the messages based
on the session list hosted by the session manager 222. The message(s) include the
results, which are displayed by the applications 114 in conjunction with the displayed
un-executable version of the workflow project. In some embodiment, the execution
processor 234 transmits the results only to the client device 110 that transmitted the
execution request. The execution processor 234 and the runtime processor 236
accordingly provide the appearance to client device(s) 110 within a collaborative
session that execution of a workflow project occurs locally when instead the processing
is offloaded centrally at the processing server 102.

C. Online Collaboration Architecture Embodiment

[0089] FIG. 2C shows an example architecture of the online collaboration environment
100 of FIGS. 1, 2A, and 2B, according to an example embodiment of the present

10

15

20

25

30

35

27

disclosure. In this example, a client device 110 is operating a web browser application
114 to display an un-executable version of a workflow project 204. The un-executable
version of the workflow project is defined as a typescript JSON object model and the
executable version of the workflow project is defined as a ‘kprx’ file. The kprx file
may be permanently stored in the memory 104 and loaded within a SQL table during
editing by a user. In other examples, the executable version of the workflow project
may be specified in XML.

[0090] In an embodiment, a user requests to create a new workflow project via the
application 114. An instruction hub (e.g., the interface 220 and/or the instruction
manager 226 of FIG. 2B) at the intermediary processing engine 106 (powered by
signalR) transmits a call to a collaboration database, which may include memory 104
and/or memory 108. In addition, the application 114 creates a blank workflow project.
[0091] In another embodiment, a user may request to edit an already created workflow
project which is stored at the collaboration database. The request from the user is
received in the intermediary processing engine 106 and transmitted to the processing
server 102 (e.g., a host server). In this embodiment, the request causes the workflow
converter 224 to convert the kprx file of the full declarative executable workflow
project to JSON using APIs, an intermediate model, and/or an abstraction interface that
specify how code is converted into an object model. The object model corresponds to
the un-executable version of the workflow project, which is transmitted from the
intermediary processing engine 106 to the application 114 of the client device 110.
[0092] At the client device 110, the browser application 114 uses, for example,
Angular]S, golS, CSS, Javascript, and HTML to display the JSON object model and
provide functionality for a corresponding toolset file 202. Regarding the JSON object
model of FIG. 2C, services are reusable business logic independent of views.
Directives are used to build up the HTML the user sees in the web browser. The
directives are used to manipulate the output of Document Object Model (“DOM”)
elements based on user interaction. A sample of a directive is a tooltip. This adds an
entire piece of HTML to render more extensive tooltips than what can be done with the
title tag, by using a single attribute added to the element. The directives provide a user
control over the user interface and allow for the user interface that is created to be
reusable between pages (e.g., .aspx pages), by adding the directive element or attribute.
Another sample of directives is for controls, so that they can be reused everywhere in
the design environment.

[0093] Each change that is made to the workflow project via the application 114 is
posted through to SignalR as instructions, stored in a SQL table within memory 108 at

the intermediary processing engine 106. If the browser is closed, a certain amount of

10

15

20

25

30

35

28

time goes by, or the workflow project is deployed, a flush command is sent to SignalR.
All the instructions for that session are reassembled into process JSON. This is then
sent to the deployment code to update the actual kprx executable project workflow. If
instead a save command is received from the user, the krpx is saved to the SQL table
so it can be loaded later. If a deploy command is selected, the kprx file is deployed to
the processing server 102. Once this succeeds and a workflow project is deployed, the
instruction hub is flushed of all instructions for that workflow project.

[0094] SignalR communicates directly with SQL where all other calls go through the
processing server 102. An identical object model on the user interface of the application
114 is provided JSON typescript exists in addition to the backend in C#. The workflow
converter 224 is configured to generate the backend code from the typescript object
model, to keep it in sync. When loading a workflow project, the kprx file is retrieved
from the SQL table and repopulates the object model, serializes the object model to
JSON and then passes that to the application 114 for display. If the JSON is generated
on the user interface application 114 as instructions, the server side object model is
hydrated directly with the same JSON.

[0095] The intermediary processing engine 106 and/or the user interface on the client
device 110 may use caching to limit calls. This may be implemented using Azure and
is handled by a Data Service. A REST call may be made to the intermediary processing
engine 106 to retrieve context browser data where long term caching (cross sessions) is
enabled for that service. The next time a REST call is made with the same signature,
the data may be used from the cache instead of the call actually going out to the

intermediary processing engine 106.

I1. Instruction Embodiments

[0096] The following section provides examples regarding how instructions are
structured and managed by the toolset files 202, the intermediary processing engine
106, and/or the processing server 202 of FIGS. 1, 2A, 2B, and 2C. The code below
highlights different instruction types that may be generated at the client device 110
based on actions being performed by a user on a workflow project. The value
corresponding to the instruction types may be set in a header of an instruction. The
instruction types include instructions for setting a simple property of an object or form,
setting a complex property of an object or form, adding an object, removing an object,
sending a message (such as to create or join a collaborative session), lock an object
from editing by other users, and unlock an object for editing by other users.

10

15

20

25

30

29

public enum InstructionTypes

{
SetSimpleProperty = 1,
SetComplexProperty = 2,
AddObjects = 3,
RemoveObjects = 4,
SendMessage = 5,
LockObject = 6,

UnlockLockObject = 7,

[0097] FIG. 4A shows a diagram of a structure of an instruction 400 (e.g., the
instruction 210 of FIG. 2A), according to an example embodiment of the present
disclosure. The instruction 400 includes fields for context, listing, JSON, an object
reference (e.g., a QuickPath) to the object being modified, a property/attribute name,
and a value. The object may include, for example, the email object 206 of FIG. 2A or
the email object 604 of FIG. 6. The value of the instruction 400 corresponds to a value
of the property/attribute. In addition, the JSON field provides an object value from a
JSON tree. The instructions may have these objects modified before they are
committed to a table. The instructions are programmed or otherwise configured to
specify which objects are modified based on their qp/jsonpath column (e.g., a pointer).
The QuickPath field is provided to update or inject properties at an exact point into the
JSON (similar to XPathin XML) to cause to a specific node to update it. The
QuickPath field identifies a code location needed to apply the instruction to process the
JSON. Below are samples of a code for the QuickPath field:

sid001\8d980618-2¢47-4487-b62e-
65ac3d320fe9\root.nodes[{ "internalld":2 }].children[{ "internalld":1}].configuration.f
ormConfiguration.url

sid001\8d980618-2¢c47-4487-b62e-
65ac3d320feNroot.nodes[{ "internalld":3 }].configuration.deadline.expressHours

[0098] Further, below is an example full object JSON
{

10

15

20

25

30

35

40

30

"nodes": [
{
"isStartActivity": true,
"ui": {
"y": 56,
"topPorts": [
{
"portld": "topPorts_0",
"internalld": 1,
"componentld": 40012
5s
{
"portld": "topPorts_1",
"internalld": 2,
"componentld": 40012
5s
{
"portld": "topPorts 2",
"internalld": 3,
"componentld": 40012
b
I
"leftPorts": [
{
"portld": "leftPorts 0",
"internalld": 1,
"componentld": 40012
3

{
"portld": "leftPorts 1",

"internalld": 2,
"componentld": 40012
5s
{
"portld": "leftPorts 2",
"internalld": 3,
"componentld": 40012
b
I
"bottomPorts": [
{
"portld": "bottomPorts_0",
"internalld": 1,
"componentld": 40012

10

15

20

25

30

35

40

5s

{
"portld": "bottomPorts_1",
"internalld": 2,
"componentld": 40012

5s

{
"portld": "bottomPorts 2",

"internalld": 3,
"componentld": 40012
b
I
"rightPorts": [
{
"portld": "rightPorts 0",
"internalld": 1,
"componentld": 40012
5s
{
"portld": "rightPorts 1",
"internalld": 2,
"componentld": 40012
5s
{
"portld": "rightPorts 2",
"internalld": 3,
"componentld": 40012
3
I
"template": "StartStep",
"componentId": 40009
¥
"systemName": "Start",
"title": "Start",
"internalld": 1,
"componentId": 40000
5s
{
"ui": {
"y": 168,
"showLabel": true,
"topPorts": [
{
"portld": "topPorts_0",

31

10

15

20

25

30

35

40

"internalld": 1,
"componentld": 40012

3

{
"portld": "topPorts_1",
"internalld": 2,
"componentld": 40012

3

{
"portld": "topPorts 2",
"internalld": 3,
"componentld": 40012

b

I
"leftPorts": |

{
"portld": "leftPorts 0",
"internalld": 1,
"componentld": 40012

3

{
"portld": "leftPorts 1",

"internalld": 2,
"componentld": 40012
}’

{
"portld": "leftPorts 2",
"internalld": 3,
"componentld": 40012
b
I
"bottomPorts": [

{

"portld": "bottomPorts_0",

"internalld": 1,
"componentld": 40012
3
{

"portld": "bottomPorts_1",

"internalld": 2,
"componentld": 40012
3
{

"portld": "bottomPorts 2",

32

10

15

20

25

30

35

40

33

"internalld": 3,
"componentld": 40012

b

I
"rightPorts": [

{
"portld": "rightPorts 0",
"internalld": 1,
"componentld": 40012

3

{
"portld": "rightPorts 1",
"internalld": 2,
"componentld": 40012

3

{
"portld": "rightPorts 2",
"internalld": 3,
"componentld": 40012

b

I
"template": "PlaccholderStep",

"componentId": 40009
5
"configuration": §{
"deadline": {
"actionType": 3,
"specificDate": { "componentld": 10008 },
"expressDays": { "componentId": 10008 },
"expressHours": { "componentId": 10008 },
"expressMinutes": { "componentld": 10008 },
"expressSeconds": { "componentld": 10008 },
"noDecadline": true,
"withinWorkingHoursOnly": true,
"componentld": 30025
5
"priority": 1,
"decisionOptionType": 1,
"componentId": 40001
5
"systemName": "PlaceholderStep",
"internalld": 2,
"componentld": 40000

10

15

20

25

30

35

40

34

I
"links": [
{
"fromInternalld": 1,
"toInternalld": 2,
"ui": {
"fromPortld": "bottomPorts_1",
"toPortld": "topPorts_1",
"path": "0,84,0,104,0,112,0,112,0,120,0,140",
"template": "DefaultLine"”
¥
"configuration": { "componentId": 40013 },
"internalld": 1,
"componentId": 50002
b
I
"configuration": {
"processDefinitions": |
{
"internalld": 1,
"componentId": 20000
b
I
"processPriority": 1,
"exceptionSettings": {
"logException": true,
"componentld": 50012
3
5
"title": "Sa2",
"componentld"; 50001
b

[0099] FIG. 4B shows a diagram representing a schema 450 of a workflow project or
object to which the instruction 400 of FIG. 4A can be applied to modify the workflow
project or object, according to an example embodiment of the present disclosure. The
schema 450 1s for a flattened JSON model. A toolset file at a client device 110 uses the
schema 450 for applying instructions to the workflow project or object. The schema
450 accordingly enables instructions to modify discrete sections of the workflow
project or object without affecting other sections.

[00100] The ID field of the schema 450 is a unique identifier that enables the session

manager 222 to differentiate multiple instructions/portions of code for modification.

10

15

20

25

30

35

35

The ID value may be based on a combination of a date/time value with a device
identifier to ensure instructions are unique during a collaborative session. The
SessionID field of FIG. 4B is configured to enable each collaborative session to be
unique to make sure the correct instructions are applied to the appropriate session by
the the session manager 222. The JSON field provides an object value from a JSON
tree. The instructions may have these objects modified before they are committed to a
table. The instructions are programmed or otherwise configured to specify which
objects are modified based on their qp/jsonpath column (e.g., a pointer). As discussed
above. The QuickPath field is provided to update or inject properties at an exact point
into the JSON for modification.

[00101] FIG. 5 shows a table 500 representative of a workflow project or object
partitioned into granular sections for modification by respective instructions, according
to an example embodiment of the present disclosure. Each row in the table 500
represents a node in an object model or workflow project to which an instruction is to
be applied. In other words, each row includes a portion of JSON code that is to undergo
modification to reflect changes to an object or workflow project at another location.
The table 500 is maintained at the client devices 110 during an online session and at the
intermediary processing engine 106 for updating local un-executable versions of
workflow projects. When an instruction is received at a client device 110 and/or the
intermediary processing engine 106, a QuickPath specified in the instruction is used to
select the node or portion typescript code of the object or workflow project. The
selected typescript code (e.g., JSON) is stored to the JSON field in the table 500. The
instruction is then applied to the typescript code such that changes to the code are made.
For example, an instruction that includes the addition of a property adds the property
code to the code included in the JSON column. In another example, a change of a
property or attribute value causes in an instruction causes the value within the specified
portion of the object code to be likewise changed in the table 500. The modified code
is then stored in the JSON column of the table 500 and propagated back to the object
model, or more generally, the workflow project using the QuickPath.

[00102] In some embodiments, the code modifications specified in the instructions are
converted into a format compatible with an executable version of a workflow project.
The instructions may then be applied to the workflow project to modify the appropriate
portions of code. In other examples, the code specified within the JSON field in the
table 500 is converted using one or more APIs into executable code. This converted
executable code is then applied to the appropriate portions of the executable version of
the workflow project. In yet other examples, the complete modified typescript

workflow project is converted into an intermediate model using an Authoring

10

15

20

25

30

35

36

Framework API, which is then used to create an executable version of the workflow
project. The intermediate model is created or operated at the intermediary processing
engine 106 and specifies, for example, interfaces that link JSON code to C# code via
an Authoring Framework API. After an intermediate model and executable version is
created, the instructions and/or the modified typescript code within the table 500 may
be used instead to update the intermediate model. The updates to the intermediate
model are then propagated to the executable version of the workflow project.
Alternatively, a new version of the executable version of the workflow project may be

generated from the intermediate model.

I1I. Workflow Project Embodiments

[00103] The following sections provide examples of executable and un-executable

versions of a workflow project including underlying objects. FIG. 6 shows a diagram
of an example canvas or editing workspace 201 for a workflow project 602, which
includes a mail events object 604. The mail events object 604 specifies one or more
processes that are defined by properties and/or attributes to cause a server or a computer
to perform an operation. The properties and attributes are editable in section 606 of the
editing workspace 201. In some embodiments, a toolset file determines how the
properties and attributes of the object 604 are to be displayed within the section 606.
[00104] The example mail events object 604 causes one or more email messages to be
transmitted to one or more recipients when executed within a workflow project that is
defined by the workflow project 602. The properties or attributes of the email events
object 604 define recipients (and/or originators) or point to a database of recipients
and/or define contents of the email or link to a database (or other object) with the
contents. The properties or attributes of the email events object 604 may also enable
specification of conditions and/or time(s) email messages are to be transmitted. The
section 606 enables users to graphically define properties or attributes by providing
information one or more fields that are programmatically linked to the properties or
attributes.

[00105] FIG. 7 shows a diagram of a JSON object model 700 of the object 604
(including connected lines) of FIG. 6. The object model 700 includes properties and
attributes 702 that define how processes or actions are performed by the email object
604. The JSON object model 700 includes editable properties and/or attributes

2 <
2

including, for example, ‘from’, ‘to’, ‘cc’, ‘bec’, ‘subject’, and ‘body’ attributes. The
JSON model 700 also includes editable properties including a system name, title,
internal id, and component id. Each of the properties and attributes may be edited by a

user using through a graphical interface provided in the section 606, which includes

10

15

20

25

30

35

40

37

tools for modifying the JSON object 604. Accordingly, edits provided by a user in
section 606 are coded into the underlying JSON model 700. It should be appreciated
that the JSON model 700 does not include capability for the email object 702 to be
executed.

[00106] FIG. 8 shows a diagram of an interface 800 that includes code specified in an
intermediate model (e.g., one or more Authoring Framework APIs) that specifies how
typescript (e.g., JSON) code translates or converts to C# code for an executable version
of the email object 604. The code specified in the interface 800 enables an executable
version of the JSON model 700 of FIG. 7 to be created. One or more APIs specified
within the interface 800 define relations between the C# executable code and the JSON
model 700. For example, the ‘from’ attribute of the JSON model 700 is linked via an
API within the interface 800 to executable C# code (managed by the processing server
102) that is associated with the comment: “The email address of the person sending the
email”. Thus, the ‘from’ attribute of the JSON model 700 provides an editable and
viewable abstraction of the related executable code.

[00107] In some embodiments, templates may be used to create and/or modify the
intermediate code shown in FIG. 8, the JSON model 700 of FIG. 7, and/or the C# class
code. The templates may be used when a workflow project is newly created to provide
an overall structure. Additionally or alternatively, the templates may define a code
structure to enable correspondence to one or more APIs, shown for example in the
interface 800. An example C# code template is provided below that is used to create

an executable workflow project file.

/*

* Generated code

*/

using System;

using System.Reflection;
@USINGSECTIONSTART

using @USINGNAMESPACE ; @USINGSECTIONEND

using SourceCode.WebDesigner.Framework.ObjectModel.Core;
using
SourceCode.WebDesigner.Framework.0ObjectModel.Core.Collections;
using
SourceCode.WebDesigner.Framework.0ObjectModel.Core.Deployment;
using Newtonsoft.Json;

using Newtonsoft.Json.Ling;

using System.Diagnostics.CodeAnalysis;

namespace @NAMESPACE

10

15

20

25

30

35

40

45

{
@CLASSDOC

38

[ComponentAttribute (@COMPONENTID)]
public class @CLASSNAME@IFCLASSINHERITTENCE:
@CLASSINHERITTENCE@ENDIFCLASSINHERITTENCE

@WHERECLAUSESTART

class,@ENDADDWHERECLASS @GENERICINTERFACE @ISGENERICNEW new()

where @GENERICNAME: @ADDWHERECLASS

@ENDISGENERICNEW
@WHERECLAUSEEND

{

@IFNOTBASECLASS

/// <summary>

/// Parent object for @SIMPLECLASSNAME
/// </summary>

[IsonIgnore]

[SuppressMessage("Microsoft.Naming",

"CA1709:IdentifiersShouldBeCasedCorrectly"”, Messageld =

"parent"”)]

public @INCLUDENEWobject parent

{

get; set;
}
@ENDIFNOTBASECLASS

/// <summary>

/// Base constructor for @SIMPLECLASSNAME
/// </summary>

public @SIMPLECLASSNAME()

: base()

this.InitializeComponent();

/// <summary>

/// Override constructor for @SIMPLECLASSNAME
/// </summary>

public @SIMPLECLASSNAME(ComponentController

controller, object parent, JObject jsonObject)

@IFBASECLASS: base(controller, parent,

jsonObject)@ENDIFBASECLASS

{

@IFNOTBASECLASS
this.parent = parent;
@ENDIFNOTBASECLASS

10

15

20

25

30

35

40

45

39

@INCLUDECOMPLEXTYPECDI
int cid;
@ENDINCLUDECOMPLEXTYPECDI

if (jsonObject != null) {

@CLASSINITIALIZESTART@IFSIMPLETYPE

this.@ITEMNAME
((dynamic)jsonObject) .@ITEMNAME != null ?
((dynamic)jsonObject) .@ITEMNAME :
this.GetDefaultValue("@ITEMNAME");
@ENDIFSIMPLETYPE@IFDICTIONARYTYPE

this.@ITEMNAME
controller.CreateVariantDictionary<@VARIANTDICTIONARYITEMTYPE>(t
his, ((dynamic)jsonObject).@ITEMNAME);
@ENDIFDICTIONARYYPE@IFCOMPLEXENUMERABLETYPE

this.@ITEMNAME =
controller.CreateVariantList<@VARIANTLISTITEMTYPE>(this,
((dynamic)jsonObject).@ITEMNAME);
@ENDIFCOMPLEXENUMERABLETYPE@IFSIMPLEENUMERABLETYPE

this .@ITEMNAME =
((dynamic)jsonObject) .@ITEMNAME != null ?
((JArray) ((dynamic)jsonObject) .@ITEMNAME) . ToObject<@ITEMTYPE>()
: new @ITEMTYPE();
@ENDIFSIMPLEENUMERABLETYPE@IFGENERICTYPE

this.@ITEMNAME =
((dynamic)jsonObject) .@ITEMNAME != null ?
controller.GetObject<@ITEMTYPE>(this,
((dynamic)jsonObject) .@ITEMNAME) : new @ITEMTYPE();
@ENDIFGENERICTYPE@IFCOMPLEXTYPE

cid =
controller.GetComponentId(((dynamic)jsonObject).@ITEMNAME,
typeof (@ITEMTYPE));

if (cid > @) {
this.@ITEMNAME
controller.GetObject<@ITEMTYPE>(this,
((dynamic)jsonObject) .@ITEMNAME, cid);
} else {
this.@ITEMNAME
@ITEMTYPE(controller, this, ((dynamic)jsonObject).@ITEMNAME);
}
@ENDIFCOMPLEXTYPE@CLASSINITIALIZEEND
@ENSURECOMPONENTID
ComponentAttribute cmpAtt =
this.GetType().GetCustomAttribute<ComponentAttribute>();
if (cmpAtt != null)

new

10

15

20

25

30

35

40

45

40

{
this.componentId = cmpAtt.ComponentId;
}
@ENDENSURECOMPONENTID

} else {
this.InitializeComponent();

private void InitializeComponent() {
@CLASSINITIALIZESTART@IFSIMPLETYPEINIT
this.@ITEMNAME = @ITEMDEFAULTVALUE;
@ENDIFSIMPLETYPEINIT@IFCOMPLEXTYPEINIT
this .@ITEMNAME = new @ITEMTYPE();
@ENDIFCOMPLEXTYPEINIT@CLASSINITIALIZEEND
@ENSURECOMPONENTID
ComponentAttribute cmpAtt =
this.GetType().GetCustomAttribute<ComponentAttribute>();
if (cmpAtt != null)
{
this.componentId = cmpAtt.ComponentId;
b
@ENDENSURECOMPONENTID

}

private dynamic GetDefaultValue(string propName)

Type t =
this.GetType().GetProperty(propName).PropertyType;
if (t.IsValueType) return
Activator.CreateInstance(t);

return null;

@CLASSITEMSTART
@CLASSITEMDOC

@CONTAINSUPPERCASE[SuppressMessage("Microsoft.Naming",
"CA1709:IdentifiersShouldBeCasedCorrectly"”, Messageld =
"@SECTIONITEM")]J@ENDCONTAINSUPPERCASE

@ISITEMTYPELIST[SuppressMessage("Microsoft.Usage",
"CA2227:CollectionPropertiesShouldBeReadOnly")]J@ENDISITEMTYPELIS
T

@IFDEFAULTVALUEHANDLING[JsonProperty("@SECTIONITEM",

10

15

20

25

30

35

40

41

DefaultValueHandling =
DefaultValueHandling.Include) J@ENDIFDEFAULTVALUEHANDLING
public @ITEMTYPE @ITEMNAME
{
@IFSIMPLETYPE
get;
@ENDIFSIMPLETYPE
@IFCOMPLEXTYPE
get;
@ENDIFCOMPLEXTYPE
@IFSIMPLETYPE
set;
@ENDIFSIMPLETYPE
@IFCOMPLEXTYPE
set;
@ENDIFCOMPLEXTYPE

¥
@CLASSITEMEND

}

[00108] An example typescript template is provided below that is used to create an un-
executable workflow project file. The typescript template defines properties and
attributes similar to the C# template that enables an object to be edited in a canvas.
However, the typescript template does not provide code that is executable. In some
embodiments, the example workflow converter 224 is configured to convert, for
example, the above-C# template into the below typescript template using APIs that
abstract the functional code into a graphical representation with editable properties.
This enables an executable version of a workflow project to be created at the processing
server 102 and converted into an un-executable version for editing at the client devices
110.

namespace @NAMESPACE {
"use strict";

export var @INTERFACESIMPLENAMENameSpace: string =
"@NAMESPACE . @INTERFACESIMPLENAME" ;

export var @INTERFACESIMPLENAMEImplementorName: string =
"@NAMESPACE . @STATICCLASSNAME . implementor"”;

export var @INTERFACESIMPLENAMEExporterName: string =
"@NAMESPACE . @STATICCLASSNAME . exporter”;

10

15

20

25

30

35

40

42

@INTERFACEDOC
export interface @INTERFACENAME extends @EXTENDSINTERFACE

@INTERFACEITEMSTART
@INTERFACEITEMDOC

@ITEMNAME: @ITEMTYPE;
@INTERFACEITEMEND

}

var implementorExtenders:

objectModel.core.model.IModelExtender|] [1;

var exporterExtenders:

objectModel.core.model.IModelExtender|] [1;

function @INTERFACESIMPLENAMEImplementor(
object: objectModel.core.model.ModelObject,
objectPropName: string,
genericsImplementors: { [name: string]: any }[],
genericsExporters: { [name: string]: any }[],
dataObject: any,
parameter: any

): any {
@IMPLEMENTERITEMSTART
@IFARRAY

object.createPublicArrayProperty("@IMPLEMENTEDITEMNAME", {
object: object,
propName: "@IMPLEMENTEDITEMNAME"
¥

genericsImplementors.concat(@NAMESPACE .@STATICCLASSNAME.im
plementors),

genericsExporters.concat (@NAMESPACE .@STATICCLASSNAME .expor

ters),
"@IMPLEMENTEDITEMTYPE",
@CUSTOMARRAYRESOLVERPROPERTY,
@CUSTOMARRAYRESOLVERLOOKUP,
@ISREFERENCETRACKINGARRAYSTART,
@ISEXTERNALDEFINITIONSCONTAINER,
@IGNOREEVENTS);

@ENDARRAY

@IFDICTIONARY

10

15

20

25

30

35

40

45

43

object.createPublicDictionaryProperty ("@IMPLEMENTEDITEMNAM
Ell’ {
object: object,
propName: "@IMPLEMENTEDITEMNAME"
¥

genericsImplementors.concat(@NAMESPACE .@STATICCLASSNAME.im
plementors),

genericsExporters.concat (@NAMESPACE .@STATICCLASSNAME .expor

ters),
"@IMPLEMENTEDITEMTYPE",
@CUSTOMARRAYRESOLVERPROPERTY,
@CUSTOMARRAYRESOLVERLOOKUP,
@IGNOREEVENTS);

@ENDDICTIONARY

@IFOBJECT

object.createPublicObjectProperty("@IMPLEMENTEDITEMNAME",

object: object,
propName: "@IMPLEMENTEDITEMNAME"
¥

genericsImplementors.concat(@NAMESPACE .@STATICCLASSNAME.im
plementors),

genericsExporters.concat (@NAMESPACE .@STATICCLASSNAME . expor

ters),

"@IMPLEMENTEDITEMTYPE",

datalObject ?
(dataObject["@IMPLEMENTEDITEMNAME"] || {})["__customImplementor"]
: null,

datalObject ?
(dataObject["@IMPLEMENTEDITEMNAME"] || {})["__customExporter"]
null,

@IGNOREEVENTS);
@ENDOBIJECT
@IFENUMLOOKUP

object.createPubliclLookupProperty("@IMPLEMENTEDITEMNAME",
genericsImplementors.concat(@NAMESPACE .@STATICCLASSNAME . implement
ors), "@IMPLEMENTEDITEMENUMTYPE");
@ENDENUMLOOKUP
@BINDERPROPERTY

10

15

20

25

30

35

40

45

44

object.createPublicBinderProperty("@IMPLEMENTERLOCALITEMNA
ME", "@IMPLEMENTEDITEMNAME", "@RESOLVER", @ISPROPREFERENCE,
@CREATESETTER);
@ENDBINDERPROPERTY
@IFTRACKINGREFERENCE

object.createPublicTrackingReferenceProperty("@IMPLEMENTED
ITEMNAME");
@ENDTRACKINGREFERENCE
@IFVALUE

object.createPublicSimpleProperty("@IMPLEMENTEDITEMNAME",

@IGNOREEVENTS);
@ENDVALUE
@IMPLEMENTERITEMEND
@IMPLEMENTERINTERFACEITEMSTART

@INTERFACECALLER.implementor(

object,

objectPropName,

[@INTERFACESIMPLENAMEImplementors
].concat(genericsImplementors),

[@INTERFACESIMPLENAMEExporters
].concat(genericsExporters),

dataObject,

parameter

)s
@IMPLEMENTERINTERFACEITEMEND

if (implementorExtenders &&

implementorExtenders.length) {

for (var i: number = 9; i <
implementorExtenders.length; i++) {

implementorExtenders[i](object,

dataObject, parameter);

}

¥
@COMPONENTIDSTART

object["componentId"] = @COMPONENTIDVALUE;
@COMPONENTIDEND
return object;

function @INTERFACESIMPLENAMEExporter(output: any, input:
any, genericskExpoters: { [name: string]: any }[], parameter:
any): void {
@EXPORTERITEMSTART

10

15

20

25

30

35

40

45

45

@IFARRAY
if (input.@EXPORTEDITEMNAME &&
input.@EXPORTEDITEMNAME. length) {
output.@EXPORTEDITEMNAME =
input .@EXPORTEDITEMNAME.getJson();
}
@ENDARRAY
@IFDICTIONARY
if (input.@EXPORTEDITEMNAME &&
input.@EXPORTEDITEMNAME. length) {
output.@EXPORTEDITEMNAME =
input .@EXPORTEDITEMNAME.getIson();
}
@ENDDICTIONARY
@IFOBJECT
if (input.@EXPORTEDITEMNAME) {
var tmp =

input.@EXPORTEDITEMNAME.getIson(genericsExpoters.concat (@NAMESPAC

E.@STATICCLASSNAME .exporters), "@EXPORTEDITEMTYPE");
if (tmp && Object.keys(tmp).length) {
output.@EXPORTEDITEMNAME = tmp;

@ENDOBJIECT
@IFENUMLOOKUP
if (input.@EXPORTEDITEMNAME) {
output . @EXPORTEDITEMNAME
input .@EXPORTEDITEMNAME ;
}
@ENDENUMLOOKUP
@IFTRACKINGREFERENCE
if (input.@EXPORTEDITEMNAME) {
output . @EXPORTEDITEMNAME
input .@EXPORTEDITEMNAME ;
}
@ENDTRACKINGREFERENCE
@IFVALUE

if (input.@EXPORTEDITEMNAME &&
Object.getOwnPropertyDescriptor(input, "@EXPORTEDITEMNAME").set
I== undefined) {

output.@EXPORTEDITEMNAME =

input.@EXPORTEDITEMNAME ;

}
@ENDVALUE
@EXPORTERITEMEND
@EXPORTERINTERFACEITEMSTART

10

15

20

25

30

35

40

45

46

@EXPORTCALLER.exporter(output, input, [
@STATICCLASSNAME.exporters].concat(genericsExpoters),
parameter);

@EXPORTERINTERFACEITEMEND

if (exporterExtenders && exporterExtenders.length)

for (var i: number = 9; i <
exporterkExtenders.length; i++) {

exporterExtenders[i] (output, input,

parameter);

if (input["__customImplementor"])

output["__customImplementor"] = input["__customImplementor”];
if (input["__customExporter”]) output["__customExporter"]

= input["__customExporter"];

sourceCode.k2Designer.objectModel.core.model.isRequiredPro

psvValid(output, input, [
@EXPORTERREQUIREDPROPERTIES
], false)

export class @STATICCLASSNAME {

constructor() {
return @STATICCLASSNAME.createInstance();

public static get implementor():
objectModel.core.model.IImplementorFunction {
return @INTERFACESIMPLENAMEImplementor;

public static get exporter():
objectModel.core.model.IExporterFunction {
return @INTERFACESIMPLENAMEExporter;

public static get implementors(): { [name: string]:
objectModel.core.model.IImplementorFunction } {
return @INTERFACESIMPLENAMEImplementors;

10

15

20

25

30

35

40

45

47

public static get exporters(): { [name: string]:
objectModel.core.model.IExporterFunction } {
return @INTERFACESIMPLENAMEExporters;

public static extend(implementorExtender:
objectModel.core.model.IModelExtender, exporterExtender:
objectModel.core.model.IModelExtender): void {
if (implementorExtender) {
implementorExtenders = implementorExtenders ||

[1;

implementorExtenders.push(implementorExtender);
}
if (exporterExtender) {
exporterExtenders = exporterExtenders || [];
exporterExtenders.push(exporterExtender);

public static createInstance(config:
@NEWINSTANCEINTERFACE = null, parent:
objectModel.core.model.IModelObjectParent = null, parameter: any
= null): @NEWINSTANCEINTERFACE{
return
objectModel.core.model.ModelObject.createFrom<@NEWINSTANCEINTERFA
CE>(
@INTERFACESIMPLENAMEImplementor,
@INTERFACESIMPLENAMEEXporter, parent, config, parameter);

}

export var @INTERFACESIMPLENAMEImplementors: { [name:

string]: any } = {
@IFNOTBASECLASSE

"ModelBase": @IMPORTERMODELBASE.implementor,
@ENDIFNOTBASECLASSE
@IMPLEMENTORSSTART

"@IMPORTEROREXPORTERNAME " :
@IMPORTEROREXPORTERFUNCTION. implementor,
@IMPLEMENTOREND

¥

export var @INTERFACESIMPLENAMEExporters: { [name:
string]: any } = {

10

15

20

25

30

35

40

48

@EXPORTERSSTART

"@IMPORTEROREXPORTERNAME " :
@IMPORTEROREXPORTERFUNCTION. exporter,
@EXPORTERSEND

¥

objectModel. core.model.addImplementorExporterNameLookup (
@INTERFACESIMPLENAMENameSpace,
@INTERFACESIMPLENAMEImplementor,
@INTERFACESIMPLENAMEExporter,
implementorExtenders,
exporterExtenders

);

@IFISCOMPONENTOBJECT
objectModel.core.model.componentLookup [@COMPONENTIDVALUE]

implementor: @INTERFACESIMPLENAMEImplementor,
exporter: @INTERFACESIMPLENAMEExporter,
implementorExtenders,
exporterExtenders
¥
@ENDIFISCOMPONENTOBJECT

[00109] FIGS. 9 to 15 below illustrate a manner in which the email object 604 of
workflow project 602 is modified at a first client device 110a, with the modification
being propagated to other client devices 110 and the processing server 102. FIG. 9
shows a diagram of the JSON model 700 of the email object 604 of FIG. 6 being
modified to include an ‘important’ property. To add the property, a user of a first client
device 110a selects an ‘important’ field within the section 606 of editing workspace
201. Alternatively, the user may select from a drop-down list of available
properties/attributes to add the ‘important’ flag. Once the ‘important’ flag has been
added as a property to the email object 604, a user may specify the value of the property
to ‘true’ or ‘false’. The value is dependant upon if the email message generated by the
email object 604 is to have a graphical icon indicative of the email’s importance.

[00110] In some other alternative embodiments, a user adds the ‘important’ property
by opening a JSON editor. FIG. 10 shows a diagram of a code interface editor 1000
that is related to the editing workspace 201. In some examples, a toolset may provide

a feature that shows typescript code that specifies the properties/attributes of objects of

10

15

20

25

30

35

49

the workflow project 602. A user may access the editor 1000 to add new properties or
attributes to an object. In the illustrated example, a user activates the ‘important’
property by opening a configuration panel 1002 and selecting a template or function of
an email controller, as shown in box 1004. Selection of the template or function causes
the code within the editor 1000 to be displayed, which corresponds to code for the email
controller (e.g., code defining properties/attributes of the JSON model 700 of the email
object 604). A user changes the typescript code shown in box 1006 to change from

2
2

‘false’ to ‘true’, which activates the ‘important’ property within the object.
Programmatically, this may include the addition of typescript code for the ‘important’
property to the typescript code for the email object 604. FIG. 11 shows a diagram of
the typescript code 1100 of the email object 604 with the addition of the typescript code
for the ‘important’ property, as shown in box 1102. The displayed typescript code 1100
corresponds to an email configuration, shown in box 1104, of the email object 604. The
‘important’ property may be shown as a selectable field within the section 606 of FIG.
6. A user may then set the value of the ‘important’ property of the JSON model 700 of
the email object 604 to be set from ‘false’ to ‘true’.

[00111] At this point, the ‘important’ property and selected value is included within
the email object 604 at the client device 110. The modification has not yet been made
at other client devices 110 that are part of the same collaborative design session. In
addition, the modification has not yet been made to an executable version of the
workflow project 201 located at, for example, the processing server 102 and/or the
memory 104. The propagation of the modification is made using at least one
modification instruction. For example, after a user creates the ‘important’ property at
the first client device 110a, the creation of the ‘important’ property is recorded in an
instruction. As discussed in connection with FIGS. 4A and 4B, the instruction may
include a QuickPath information, JSON information, a property/attribute name, and/or
a property/attribute value that are indicative of the creation of the ‘important” property.
The instructions may be created by, for example, an operation of the toolset (e.g., the
toolset 202) of the client device that codes typescript changes as instructions.

[00112] The modity instruction is transmitted by the first client device 110a to the
intermediary processing engine 106 and/or any other device that includes a SignalR
feature. As illustrated in FIG. 12, the intermediary processing engine 106 stores the
instruction (shown as instruction 1202) to a queue of instructions (e.g., an instruction
set), shown in table 1204. The table 1204 may include a SQL table stored in the
memory 108. At a predetermined time (e.g., every 0.5 seconds, 1 second, 5 seconds,
etc.), the instructions within the table 1204 are transmitted to the other client devices

110 that are part of the collaborative session.

10

15

20

25

30

35

50

[00113] In other instances, the instructions may be transmitted as soon as they are
stored to the table 1204. In these other instances, the instructions (e.g., instructions 0
to 9) may have already been transmitted to the other client devices 110. Accordingly,
the instruction 1202 is transmitted to the other client devices 110 after it is received by
the intermediary processing engine 106 and/or stored to the table 1204 using, for
example, SignalR. The toolsets at the other client devices 110 receive the instruction
1202, which is then applied to the typescript code of the local copy of the un-executable
version of the workflow project 201, as described above in connection with FIGS. 4B
and 5. FIG. 13 shows a diagram of the ‘important’ property added to the JSON model
700 of the email object 604 at one of the other client devices 110. A user of this client
device 110 now has the ability to see that the email object 604 has an ‘important’
property, and the property is set to a value of ‘true’. Accordingly, only changes made
to an object model of a workflow project are transmitted among client devices instead
of complete copies of the project. Further, the modification to the email object 604 is
made without an explicit save command from a user, thereby enabling real-time
collaboration among a plurality of devices.

[00114] In addition to the updating of the email object 604 at the client devices 110,
the email object 604 is also updated at the intermediary processing server 102. This
may include updating the executable version of the workflow project 602 and/or the
un-executable version of the workflow project. In some embodiments, the intermediary
processing engine 106 maintains a copy of the un-executable typescript version of the
workflow project 602 within the memory 108. In addition, the intermediary processing
engine 602 stores a copy of received instructions in the memory 108. Thus, when a
new client device joins a collaborative session, the intermediary processing device 106
can transmit the un-executable version of the workflow project in addition to
instructions to modify the project to reflect changes made during the collaborative
design session.

[00115] In other embodiments, the intermediary processing engine 106 periodically
updates a copy of the un-executable version of the workflow project by applying the
stored instructions. For example, the intermediary processing engine 106 uses a
QuickPath of each instruction to identify a granular portion of typescript code of an
object to be modified. The code, including the applied modification is stored to the
table 1400, as shown in FIG. 14. Box 1402 shows the modification of the typescript
code for the portion of the JSON model 700 of the email object 604 and box 1404 shows
the corresponding QuickPath to add the ‘important’ property to the email object 604.
[00116] The example intermediary processing engine 106 is configured to

communicate with the processing server 102 to update or generate a new version of the

10

15

20

25

30

35

51

executable workflow project 602. In an embodiment, the modifications reflected in
table 1400 are applied to an intermediate model or Authoring Framework API that
specifies how JSON code is converted into C# code. FIG. 15 shows a diagram of the
interface 800 of FIG. 8 with the addition of the ‘important’ property at box 1502. In
this illustrated example, the intermediary processing engine 106 applies the code from
box 1402 in table 1400 to the intermediate model shown in the interface 800. The
intermediate model defines how, for example, JSON code is to be converted into an
intermediate code or structure. The code within the box 1502 references the executable
workflow project, such that a change or modification to the intermediate model causes
a change at the executable workflow project. In other embodiments, the intermediary
processing engine 106 generates a new executable workflow project from the modified
intermediate model, with the APIs within the interface 800 being used with, for example
one or more C# templates to define the C# code for the executable version of the
workflow project 602. Once generated or updated, the executable version of the
workflow project may then be executed at the processing server 102.

V. Flowchart of the Example Process

[00117] FIGS. 16 and 17 are flow diagrams showing an example procedure 1600, to
propagate modifications among executable and non-executable versions of a workflow
project, according to an example embodiment of the present invention. Although the
procedure 1600 is described with reference to the flow diagram illustrated in FIGS. 16
and 17, it will be appreciated that many other methods of performing the acts associated
with the procedure 1600 may be used. For example, the order of many of the blocks
may be changed, certain blocks may be combined with other blocks, and many of the
blocks described are optional. For example, additional blocks may be executed in
embodiments where a user creates a new workflow project. Moreover, it should be
appreciated that the example procedure 1600 is executed for each separate session
hosted by the intermediary processing engine 106 and/or the processing server 102.

[00118] The example procedure 1600 operates on, for example, the intermediary
processing engine 106 and/or the processing server 102 of FIGS. 1, 2A, 2B, and 2C.
The procedure 1600 begins when the intermediary processing engine 106 receives a
request message 1601 from a client device 110 requesting to view/edit a workflow
project (block 1602). The request message 1601 may include a destination address, file
name, identifier, and/or hyperlink to the workflow project. In some embodiments, the
request message 1601 may include a selection made by a user operating a file browsing
application on the client device 110. After the request message is received 1601, the

example intermediary processing engine 106 creates an online collaborative design

10

15

20

25

30

35

52

session (block 1604). The intermediary processing engine 106 may generate a session
identifier and designate the requested workflow project as being part of the session.
The intermediary processing engine 106 also identifies or creates an un-executable
version of the workflow project for the client device (block 1606). In some
embodiments, the intermediary processing engine 106 uses an intermediate model
and/or Authoring Framework APIs to create the un-executable version of the workflow
project from the executable version. As discussed above in connection with FIGS. 8
and 15, the intermediate model may specify how C# code is converted into JSON
typescript code. In other embodiments, the intermediary processing engine 106 may
instead access the memory 108 to retrieve the un-executable version of the workflow
project stored from a previous session. After acquiring the un-executable version of
the workflow project, the intermediary processing engine 106 transmits one or more
messages 1607 to the client device 110 that comprise a copy of the un-executable
version of the workflow project (block 1608). The intermediary processing engine 106
may also send one or more toolset files to enable editing of the workflow project.
[00119] During the online collaboration session, the client device 110 displays the un-
executable version of the workflow project within an application, such as a web
browser. Modifications to the workflow project are recorded in one or more instruction
1609 (e.g., the instruction 210 of FIG. 2A and/or the instruction 400 of FIG. 4A), which
is received at the intermediary processing engine 106 (block 1610). The example
intermediary processing engine 106 stores the received instruction(s) 1609 to an
instruction set (block 1612) within, for example, the memory 108. The intermediary
processing engine 106 also transmits the instruction 1609 and/or the instruction set to
other client devices 110 that are part of the collaborative design session. Transmission
of the instruction(s) 1609 may temporarily cause the client device 110 to prevent users
from editing the same object until editing is complete by the originator of the
instruction. In some examples, the intermediary processing engine 106 applies the
instruction(s) 1609 to a local copy of the un-executable version of the workflow project,
as discussed in connection with FIGS. 4B, 5, and 14. Further, the intermediary
processing engine 106 applies the instruction(s) 1609 to the executable version of the
workflow project using, for example, an intermediate model and/or Authoring
Framework APIs (block 1614).

[00120] The example procedure 1600 continues in FIG. 17 where the intermediary
processing engine 106 determines if an execute request message 1615 has been received
from one of the client devices 110 within the session (block 1616). If the message 1615
has been received, the intermediary processing engine 106 applies any un-processed

instructions to the executable version of the workflow project (block 1618). This action

10

15

20

25

30

35

53

causes the executable version of the workflow project to reflect the current status of the
workflow project as viewed by the users. The processing server 102 then executes the
workflow project using the executable version (block 1620). The processing server 102
records results from the execution, which are then transmitted in one or more messages
1621 to the client devices 110 of the session via the intermediary processing engine 106
(block 1622). The results may comprise loading of data from one or more databases,
outcomes from actions performed on data, a generation of new data, a generation of a
new form, etc. The result contents of the messages 1621 are displayed in conjunction
with the un-executable version of the workflow project at the client devices 110 to
provide an appearance of a local execution of the workflow project. In some
embodiments, the results are only transmitted to the client device 110 that requested the
results.

[00121] After the results are transmitted, or if an execute request message is not
received in block 1616, the intermediary processing engine 106 determines if a request
message 1623 is received specifying that the session is to terminate (block 1624). The
request message 1623 may be an explicit message from the client devices 110 or
determined as client devices 110 leave a session. The intermediary processing engine
106 may internally generate the message 1623 after all client devices 110 have left the
collaborative session.

[00122] After the message 1623 is received or generated, the intermediary processing
engine 106 applies any un-processed instructions to the executable version of the
workflow project (block 1626). The intermediary processing engine 106 may also
apply any un-processed instructions to the local copy of the un-executable version of
the workflow project stored in the memory 108. The intermediary processing engine
106 may then clear the instruction set or a table comprising instructions created during
the session (block 1628). The intermediary processing engine 106 ends the session by
discarding the session identifier and/or preventing modifications from being made to
the workflow project (block 1630). The example procedure 1600 then ends.

V. Additional Features of the Example Collaboration Environment

[00123] In addition to the above-discussed features, the example intermediary
processing engine 106 and/or the processing server 102 may be configured to perform
the following features related to runtime processing of instructions, locking, security
trimming, extensibility, and/or auditing. Regarding runtime, objects that are visually
represented on a design canvas 201 are processed by an Authoring Framework API of
the intermediary processing engine 106 and/or the processing server 102. This allows

a collaborative process to not only result in visual representation that each client device

10

15

20

25

30

35

54

‘sees’ but also a declarative model that is fully able to be executed as a runtime.
Workflows can be run, SmartObjects can be executed, and forms can be displayed.
[00124] Regarding locking, a user may select a property or attribute that locks certain
portions (or locks completely) of an object or action from editing or viewing of one or
more users. For example, an object may have seven properties locked, where the other
remaining properties may be changed. In these situations, locked portions of an object,
or more generally a workflow project, cannot be modified. The example intermediary
processing engine 106 may lock a root object with inherited locked properties from
other objects, etc. Locking may be recorded in instructions, which are sent to other
client devices 110 to lock the corresponding object (e.g., 'this object is locked'). In an
example regarding an email object, a client device can lock the email object down such
that other client devices cannot change tabs. Other client devices can see the object but
cannot interact with it.

[00125] Some instructions may allow for ‘locking’ down a dependency tree. For
instance, a client device may configure a Step or Action within a workflow project. The
Step implements a ‘locking’ interface and defines it at a ‘Step’ level. This ensures that
only one client device can manipulate the object. The other client devices still process
instructions for the object when they are received, but they cannot manipulate the same
object. In another example, locking may be provided at more granularly for a single
configuration page/tab on a Step on the process. It should be appreciated that locking
can be done by either a separate instruction or via properties of the objects themselves.
For example, a client device may receive an instruction to show a tab “visible=true” but
the instruction is processed to ‘lock’ the tab so a user cannot make any changes. In this
example, the client device receives the instruction to show a tab “visible=true” and
‘locks’ it because “lock=true”.

[00126] The example intermediary processing engine 106 may also provide security
locking where the instructions can specify security information. For instance, in
addition to locking defined by the object interface on a client device 110, the
intermediary processing engine 106 could implement a Security Trimmed locking as
well. In an example, a client device possesses information indicative that a changed
object is security trimmed and the current user does not have rights to the object. In this
case the object would then be locked. Additionally, user interface obfuscation
techniques can be applied to the objects that have been secured. This would allow a
client device to show the objects on the canvas but ‘blur’ or ‘dim’ the attributes of those
objects so any details about the object metadata, including the name, would not be
known without a proper security level. Sub-process design patterns can be expanded

with this functionality. A sub-process is typically used to ‘hide’ the ‘secure’ portions of

10

15

20

25

30

35

55

the workflow design. Utilizing the obfuscation approach, this may not be necessary.
The portions that need to be hidden can instead be marked as such and remain in the
same processes layer.

[00127] Regarding extensibility, the example intermediary processing engine 106
abstracts instruction interfaces from the functionality of objects within a declarative
model corresponding to an executable version of the objects. This enables other client
devices to easily process the visualization of the objects, with editing provided through
instructions. This configuration enables third-party applications to be integrated with
or interact with the visualization of the workflow project. For example, a Skype®
‘client application’ could be built to notify a Skype user when a change is made via a
designer — new step added, SmartObject property changed, etc. Additionally, although
the intermediary processing engine 106 and/or the processing server 102 produce
typescript and C# classes, the engine 106 and/or the server 102 can extend the types of
generated objects to other languages, such as, Ruby or Python, thereby allowing for
even greater extensibility with zero effort on the consuming client application. In these
instances, the example intermediary processing engine 106 is configured to describe
the objects via interfaces as before and a generator automatically creates the appropriate
classes. These ‘external’ or third-party client applications can not only respond to the
instructions but can also create their own instructions. For example, an Annotation
block may be added to a design environment. This instruction is processed by a Skype®
client application, which transmits a message to a user: “Please Provide Annotation for
Mail Step”. The user provides the annotation details via Skype®, which sends the
instruction to be processed at the client devices 110 and/or the intermediary processing
engine 106. For example, the designer canvas at a client device receives the instruction
and the Annotation is updated on the screen. External client devices 110 and/or third-
party applications will typically include a SignalR feature that is listening for an
Instruction Type of Send Message. An additional filter can be applied to ensure a user
only responds to certain or needed messages.

[00128] Regarding auditing, instructions are logged to temporary storage 108 (e.g.,
memory) for processing by the listening client devices — both designers as well as the
declarative processing engines at the server 102. By default, not every instruction will
result in permanent storage to a database, only those instructions necessary to rebuild
the declarative model. Depending on capacity and load, the intermediary processing
engine 106 may just transmit the messages through the instruction hub to the other
client devices. The engine 106, the server 102, and/or another device may implement
an auditing ‘client’ configured to log the details of every instruction to permanent

storage allowing auditors to know exactly what steps were taken to build the resulting

10

15

20

25

30

35

56

model. This can be interesting not only for auditors, but also for both usability and
productivity improvements. For example, a simulator can be built to replay the
instructions of multiple design sessions to understand how users use the tools to design
their artifacts (Workflow, SmartObjects, Forms) to help build better training and
potentially change how options are presented to the user. For example, the intermediary
processing engine 106 or another server may determine through instruction data mining
that every user incorrectly clicks three different tabs to find the text box that allows
them to enter the Body for an email. The design expected the user to click on the From
and To addresses first but the data shows that > 80% start with the Body first so the
toolset should be changed to highlight this more intuitively. The intermediary
processing engine 106 may be configured to ensure data exchange sizes, latency,
storage sizes, etc could all be tweaked.

[00129] The example intermediary processing engine 106 may also be configured to
provide support processes. For example, the engine 106 may provide multiple ways to
share a link to a collaborative session: copy/paste in a chat window, send email to user
or multiple users, click a Request Collaboration button and have the system transmit
the link to another client device, etc. This enables a support person to join the same
collaborative session as the customer/partner who is struggling and get real-time

support building the same process.

Aspects of the Example Collaborative Design Systems, Apparatuses, and Methods

[00130] Aspects of the subject matter described herein may be useful alone or in
combination with one or more other aspect described herein. Without limiting the
foregoing description, in a first aspect of the present disclosure, a collaborative design
apparatus comprises a persistent memory configured to store an executable version of
a workflow project, the workflow project including at least one executable version of
an object-orientated process having attributes and properties. The collaborative design
apparatus also includes a model processing server configured to compile and execute
the workflow project based on the attributes and properties of the executable version of
object-orientated process. The collaborative design apparatus further includes an
abstraction interface configured to define a mapping between (1) the executable version
of the object-orientated process and a typescript version of the object-orientated process
including related attributes and properties, and (i1) the executable version of the
workflow project and a typescript version of the workflow project. The typescript
version of the object-orientated process and the typescript version of the workflow
project being compatible to be displayed in a web browser. The collaborative design

apparatus additionally includes an intermediary processing engine configured to

10

15

20

25

30

35

57

transmit the typescript version of the object-orientated process and the typescript
version of the workflow project to a first client device for display in the web browser
of the first client device and a second client device for display in the web browser of
the second client device, transmit a toolset file to the first client device and the second
client device, the toolset file specifying a user interface to enable modification of the
typescript version of the object-orientated process and the typescript version of the
workflow project, receive, from the first client device, a modify instruction to modify
at least one of the attributes or properties of the typescript version of the object-
orientated process, store the modify instruction in conjunction with the typescript
version of the object-orientated process, and transmit the modify instruction to the
second client device causing the user interface to modify the at least one of the attributes
or properties of the typescript version of the object-orientated process displayed within
the user interface at the second client device. Wherein, the typescript version of the
object-orientated process is concurrently displayed, at the first client device and the
second client device, with the modification of the at least one of the attributes or
properties.

[00131] In accordance with a second aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
model processing server is configured to receive the modify instruction and update the
executable version of the object-orientated process based on the modify instruction.
[00132] In accordance with a third aspect of the present disclosure, which may be used
in combination with any other aspect listed herein unless stated otherwise, the model
processing server is configured to receive an execution instruction to execute the
workflow project, execute the updated executable version of the object-orientated
process within the executable version of the workflow project to generate a result of the
workflow project, and transmit the result concurrently to the first client device and the
second client device for display within the respective user interface.

[00133] In accordance with a fourth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
instruction to execute the workflow project is received from at least one of the first
client device, the second client device, and a third client device.

[00134] In accordance with a fifth aspect of the present disclosure, which may be used
in combination with any other aspect listed herein unless stated otherwise, the
modification of at least one of the attributes or properties of the typescript version of
the object-orientated process includes at least one of a property to enable, a property to

disable, a value of a property, a value of an attribute, a field to be added, an activity to

10

15

20

25

30

35

58

be added, an activity to be edited, a creation of a link to another object-orientated
process, and a modification of a link to another object-orientated process.

[00135] In accordance with a sixth aspect of the present disclosure, which may be used
in combination with any other aspect listed herein unless stated otherwise, the toolset
file specifies options of modifying the object-orientated process and options for creating
additional object-orientated process within the workflow project.

[00136] In accordance with a seventh aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
toolset file specifies plug-in operations for the web browser of the first client device
and the second client device.

[00137] In accordance with an eighth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
intermediary processing engine is configured to store the modify instruction to the
persistent memory.

[00138] In accordance with a ninth aspect of the present disclosure, which may be used
in combination with any other aspect listed herein unless stated otherwise, the object-
orientated process includes at least one of (i) attributes and properties related to defined
data, and (i1) one or more actions or methods with regard to the defined data.

[00139] In accordance with a tenth aspect of the present disclosure, which may be used
in combination with any other aspect listed herein unless stated otherwise, the object-
orientated process includes at least one of a business object, a business process, a rule,
a form, and a workflow.

[00140] In accordance with an eleventh aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
modify instruction is transmitted to the second client device within a JSON payload.
[00141] In accordance with a twelfth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
typescript version of the object-orientated process includes a JSON model object.
[00142] In accordance with a thirteenth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, a
collaborative design method includes receiving, in a server, a first request message from
a first client device requesting a workflow project, receiving, in the server, a second
request message from a second client device requesting the workflow project, and
creating, via the server, a typescript version of the workflow project from an executable
version of the workflow project. The example method also includes transmitting, from
the server, a first copy of the typescript version of the workflow project to the first client

device and a second copy of the typescript version of the workflow project to the second

10

15

20

25

30

35

59

client device, receiving, in the server from the first client device, a modify instruction
that is indicative of a modification to the first copy of the typescript version of the
workflow project, and transmitting, from the server, the modify instruction to the
second client device causing the second client device to modify the second copy of the
typescript version of the workflow project. The example method further includes
modifying, via the server, the executable version of the workflow project based on the
modify instruction.

[00143] In accordance with a fourteenth aspect of the present disclosure, which may
be used in combination with any other aspect listed herein unless stated otherwise, the
first request message and the second request message include at least one of an address,
a hyperlink, or a file name of the workflow project.

[00144] In accordance with a fifteenth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
method further comprises receiving, in the server from the first client device, an
execution message requesting an execution of the workflow project, executing, via the
server, the modified executable version of the workflow project to generate a result,
and transmitting, from the server, the result to the first client device for display in
connection with the first copy of the typescript version of the workflow project.
[00145] In accordance with a sixteenth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
method further comprises transmitting, from the server, the result concurrently to the
second client device for display in connection with the second copy of the typescript
version of the workflow project.

[00146] In accordance with a seventeenth aspect of the present disclosure, which may
be used in combination with any other aspect listed herein unless stated otherwise, the
workflow project includes an executable version of an object-orientated process having
attributes and properties, and the typescript version of the workflow project includes an
un-executable version of the object-orientated process with editable attributes and
properties.

[00147] In accordance with an eighteenth aspect of the present disclosure, which may
be used in combination with any other aspect listed herein unless stated otherwise,
creating the typescript version of the workflow project from the executable version of
the workflow project includes applying at least one abstraction interface to that defines
a mapping between the object-orientated process, including the attributes and properties
to the typescript version of the object-orientated process including the editable

attributes and properties.

10

15

20

25

30

60

[00148] In accordance with a nineteenth aspect of the present disclosure, which may
be used in combination with any other aspect listed herein unless stated otherwise, the
first copy of the typescript version of the workflow project is transmitted for display
within a first web browser of the first client device and the first copy of the typescript
version of the workflow project is transmitted for display within a second web browser
of the second client device.

[00149] In accordance with a twentieth aspect of the present disclosure, which may be
used in combination with any other aspect listed herein unless stated otherwise, the
method further comprises transmitting, from the server, a toolset file to the first client
device and the second client device, the toolset file specifying a user interface to enable
modification of the typescript version of the workflow project.

[00150] In accordance with a twenty-first aspect of the present disclosure, any of the
structure and functionality illustrated and described in connection with FIGS. 1 to 17
may be used in combination with any of the structure and functionality illustrated and
described in connection with any of the other of FIGS. 1 to 17 and with any one or more

of the preceding aspects.

Conclusion

[00151] It will be appreciated that all of the disclosed methods and procedures
described herein can be implemented using one or more computer programs or
components. These components may be provided as a series of computer instructions
on any computer-readable medium, including RAM, ROM, flash memory, magnetic or
optical disks, optical memory, or other storage media. The instructions may be
configured to be executed by a processor, which when executing the series of computer
instructions performs or facilitates the performance of all or part of the disclosed
methods and procedures.

[00152] It should be understood that various changes and modifications to the example
embodiments described herein will be apparent to those skilled in the art. Such changes
and modifications can be made without departing from the spirit and scope of the
present subject matter and without diminishing its intended advantages. It is therefore

intended that such changes and modifications be covered by the appended claims.

10

15

20

25

30

35

61

CLAIMS

1. A collaborative design apparatus comprising:

a persistent memory configured to store an executable version of a workflow
project, the workflow project including at least one executable version of an object-
orientated process having attributes and properties,

a model processing server configured to compile and execute the workflow
project based on the attributes and properties of the executable version of object-
orientated process;

an abstraction interface configured to define a mapping between

(1) the executable version of the object-orientated process and a
typescript version of the object-orientated process including
related attributes and properties, and

(i1) the executable version of the workflow project and a typescript
version of the workflow project,

the typescript version of the object-orientated process and the typescript
version of the workflow project being compatible to be displayed
in a web browser; and

an intermediary processing engine configured to:

transmit the typescript version of the object-orientated process and the
typescript version of the workflow project to a first client device
for display in the web browser of the first client device and a
second client device for display in the web browser of the second
client device,

transmit a toolset file to the first client device and the second client
device, the toolset file specifying a user interface to enable
modification of the typescript version of the object-orientated
process and the typescript version of the workflow project,

receive, from the first client device, a modify instruction to modify at
least one of the attributes or properties of the typescript version
of the object-orientated process,

store the modify instruction in conjunction with the typescript version
of the object-orientated process, and

transmit the modify instruction to the second client device causing the
user interface to modify the at least one of the attributes or
properties of the typescript version of the object-orientated

10

15

20

25

30

35

62

process displayed within the user interface at the second client

device,
wherein the typescript version of the object-orientated process is concurrently
displayed, at the first client device and the second client device, with the modification

of the at least one of the attributes or properties.

2. The collaborative design apparatus of Claim 1, wherein the model
processing server is configured to:

receive the modify instruction; and

update the executable version of the object-orientated process based on the
modify instruction.

3. The collaborative design apparatus of Claim 2, wherein the model
processing server is configured to:

receive an execution instruction to execute the workflow project;

execute the updated executable version of the object-orientated process within
the executable version of the workflow project to generate a result of the workflow
project; and

transmit the result concurrently to the first client device and the second client

device for display within the respective user interface.

4. The collaborative design apparatus of Claim 3, wherein the instruction
to execute the workflow project is received from at least one of the first client device,

the second client device, and a third client device.

5. The collaborative design apparatus of Claim 1, wherein the modification
of at least one of the attributes or properties of the typescript version of the object-
orientated process includes at least one of a property to enable, a property to disable, a
value of a property, a value of an attribute, a field to be added, an activity to be added,
an activity to be edited, a creation of a link to another object-orientated process, and a

modification of a link to another object-orientated process.

6. The collaborative design apparatus of Claim 1, wherein the toolset file
specifies options of modifying the object-orientated process and options for creating
additional object-orientated process within the workflow project.

10

15

20

25

30

35

63

7. The collaborative design apparatus of Claim 1, wherein the toolset file
specifies plug-in operations for the web browser of the first client device and the second

client device.

8. The collaborative design apparatus of Claim 1, wherein the intermediary
processing engine is configured to store the modify instruction to the persistent

memory.

9. The collaborative design apparatus of Claim 1, wherein the object-
orientated process includes at least one of (1) attributes and properties related to defined
data, and (i1) one or more actions or methods with regard to the defined data.

10. The collaborative design apparatus of Claim 1, wherein the object-
orientated process includes at least one of a business object, a business process, a rule,

a form, and a workflow.

11. The collaborative design apparatus of Claim 1, wherein the modify

instruction is transmitted to the second client device within a JSON payload.

12. The collaborative design apparatus of Claim 10, wherein the typescript
version of the object-orientated process includes a JSON model object.

13. A collaborative design method comprising:

receiving, in a server, a first request message from a first client device
requesting a workflow project;

receiving, in the server, a second request message from a second client device
requesting the workflow project;

creating, via the server, a typescript version of the workflow project from an
executable version of the workflow project;

transmitting, from the server, a first copy of the typescript version of the
workflow project to the first client device and a second copy of the typescript version
of the workflow project to the second client device;

receiving, in the server from the first client device, a modify instruction that is
indicative of a modification to the first copy of the typescript version of the workflow

project;

10

15

20

25

30

35

64

transmitting, from the server, the modify instruction to the second client device
causing the second client device to modify the second copy of the typescript version of
the workflow project; and

modifying, via the server, the executable version of the workflow project based

on the modify instruction.

14. The collaborative design method of Claim 13, wherein the first request
message and the second request message include at least one of an address, a hyperlink,

or a file name of the workflow project.

15. The collaborative design method of Claim 13, further comprising:

receiving, in the server from the first client device, an execution message
requesting an execution of the workflow project;

executing, via the server, the modified executable version of the workflow
project to generate a result; and

transmitting, from the server, the result to the first client device for display in

connection with the first copy of the typescript version of the workflow project.

16. The collaborative design method of Claim 15, further comprising
transmitting, from the server, the result concurrently to the second client device for
display in connection with the second copy of the typescript version of the workflow

project.

17. The collaborative design method of Claim 13, wherein:

the workflow project includes an executable version of an object-orientated
process having attributes and properties; and

the typescript version of the workflow project includes an un-executable version
of the object-orientated process with editable attributes and properties.

18. The collaborative design method of Claim 17, wherein creating the
typescript version of the workflow project from the executable version of the workflow
project includes applying at least one abstraction interface to that defines a mapping
between the object-orientated process, including the attributes and properties to the
typescript version of the object-orientated process including the editable attributes and

properties.

10

65

19. The collaborative design method of Claim 13, wherein the first copy of
the typescript version of the workflow project is transmitted for display within a first
web browser of the first client device and the first copy of the typescript version of the
workflow project is transmitted for display within a second web browser of the second

client device.

20. The collaborative design method of Claim 19, further comprising
transmitting, from the server, a toolset file to the first client device and the second client
device, the toolset file specifying a user interface to enable modification of the

typescript version of the workflow project.

) n
7, A
az) R

Intellectual
Property
Office

Application No:

Claims searched:

66

GB1802728.4
1-20

Examiner: Dr Matthew Philpott
Date of search: 14 August 2018

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 1-20 US 2010/0146060 A1l
(DISNEY) See figure 10, as well as paragraphs 67-70

Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state

step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but

combined with one or more other documents of
same category.
& Member of the same patent tamily E

before the filing date of this invention.

Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC

| GO6F; G06Q

The following online and other databases have been used in the preparation of this search report

| WPI, EPODOC

International Classification:

Subclass Subgroup Valid From
GO6F 0008/20 01/01/2018
GO6F 0008/30 01/01/2018

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk/ipo

	Front Page
	Drawings
	Description
	Claims
	Search Report

