
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
26 March 2009 (26.03.2009) PCT WO 2009/036500 Al

(51) International Patent Classification: (74) Agent: GRIFFITH HACK; Level 3, 509 St Kilda Road,
G06F 17/30 (2006.01) Melbourne, Victoria 3004 (AU).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/AU2008/001378 kind of national protection available): AE, AG, AL, AM,

AG, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,

(22) International Filing Date: CI, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, FE,
17 September 2008 (17.09.2008) EG, ES, H, GB, GD, GE, GIL GM, GI,]IN, HR, HU, ID,

IL, IN, IS, Jp, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

(25) Filing Language: English LR, LS, L, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NM, NO, NZ, GM, PG, PH, PL, PT,

(26)Pubicaton angage:Engish RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, S, SV, SY, TJ,
(26) Publication Language: EnglishT, R, UA, UG, US, UZ, VC, VN, ZA, ZM,

(30) Priority Data: ZW*
60/972,948 17 September 2007 (17.09.2007) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GIL
(71) Applicant (for all designated States except US): INIVAI GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

TECHNOLOGIES PTY LTD [AU/AU]; 136 Balcombe ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Road, Mentone, Victoria 3194 (AU). European (AT, BE, BG, CI, CY CZ, DE, DK, EE, ES, H,

FR, GB, GR, 1-IR, I-J, IE, IS, IT, LI, LU, LV, MC, MI, NL,
(72) Inventors; and NO, PL, PT, RO, SE, SI, SK, IR), GAPI (BF, BJ, CF, CG,
(75) Inventors/Applicants (for US only): CROSBIE, CL CM, GA, GN, GQ, GW, ML, MR, NE, SN, ID, IG).

Nicholas, Daryl [AU/AU]; 36 Mather Road, Mount Eliza,
Victoria 3930 (AU). CORDIOLI, Vittorio [IT/AU]; Unit Published:
22, 5 Brindisi Street, Mentone, Victoria 3194 (AU). with international search report

kn(54) Title: LAYOUT MANAGER

A 10Z ,BBR----------, B

-Display 262
CHBrowser Client CDZ

16 Application -2426
- ~Displa---------ipa
- Client

14--- Services Services 2

12-- Watchedil32

Figure I
S(57) Abstract: A computer-implemented system for creating or managing layouts, comprising a browser application and one or

moree display clients for rendering data-oriented views. The browser application is user-operable to select or locate data sources and
Sto select data-oriented views and thereby to control the browser application to control the display clients to render the selected data
Soriented views based on the selected data sources. The browser application may include an icon module for generating increment
icons, the increment icons being user-operable to select the data sources and the data-oriented views.

WO 2009/036500 PCT/AU2008/001378

Layout Manager

Related Application

This application is based on and claims the benefit of the

5 filing date of US application no. 60/972,948 filed 17

September 2007, the content of which as filed is

incorporated herein by reference in its entirety.

Field of the Invention

10 The present invention relates to a layout manager system

and to a method for managing layouts, of particular but by

no means exclusive application in simplifying the

compositing, navigation, and data source provisioning of

persistent data-oriented views.

15

Background of the Invention

In computing, information-based tasks may require a user

to assimilate and manipulate multiple pieces of data in

order to form comparisons between separate but related

20 data sets. For example, a medical researcher or doctor

may wish to compare one or more images obtained from a

patient with a particular pathology with images obtained

from a patient without that pathology.

25 In existing systems, a user typically must manually

aggregate the required data into a meaningful (and

possibly interactive) presentation comprising 'display

elements' that form a 'task-oriented view'.

30 Complex information processing, such as in the medical

example referred to above, often requires the navigation

and manipulation of several task-oriented views and - as a

result - the interaction of multiple display elements,

software applications and data sources. In such cases,

35 the data source selection, configuration and on-screen

organization (e.g. window placement) of the display

elements of each task-oriented view places a considerable

WO 2009/036500 PCT/AU2008/001378

-2

burden on the user. Moreover, the user's ability to

select data sources for the purpose of making valid and

informative comparisons can be limited by his or her

incomplete knowledge of the various metadata differences

5 that exist for a given collection of data sources.

Summary of the Invention

According to a first broad aspect, therefore, the present

invention provides a computer-implemented system for

10 creating or managing layouts, comprising:

a browser application; and

one or more display clients for rendering data

oriented views;

wherein said browser application is user-operable

15 to select or locate data sources and to select data

oriented views and thereby to control said browser

application to control said display clients to render said

selected data-oriented views based on said selected data

sources.

20

Thus, the system is able to generate a layout manager

after having retrieved information stored in different

locations (such as in files and databases, possibly in

different formats), and analysed and evaluated that

25 information.

The browser application may include an icon module for

generating increment icons, the increment icons being

user-operable to select the data sources and the'data

30 oriented views.

Alternatively the browser application may include a tick

box module for generating tick boxes, the tick boxes being

user-operable to select the data sources.

35

In one embodiment, the browser application includes a

user-operable menu for selecting the data sources and the

WO 2009/036500 PCT/AU2008/001378

-3

data-oriented views.

The system may be configured to operate either supervised

or unsupervised.

5

Moreover, in one embodiment the system is controllable to

establish connections between computing devices and

perform an analysis, and to output the results of the

analysis (such as by displaying or printing the results)

10 according to according to user definable settings.

For example, the system may be controllable to search for

the data sources according to one or more user-defined

search criteria.

15

The term 'data-oriented view' (DOV) is used herein to

refer to a task-oriented view, where the display elements

comprising the task-oriented view are provisioned by a

single data source (as further explained below).

20

The skilled person will also appreciate that the browser

application may be provided in the form of a 'stand-alone'

browser application, or in the form of a plugin to, or

module of, an existing application, such as an HTML

25 browser (e.g. the Microsoft brand Internet Explorer

browser, Mozilla brand Firefox browser or Apple brand

Safari browser) or a file browser (e.g. Microsoft brand

Explorer or Apple brand Finder). As will also be

appreciated, however, the term 'browser application'

30 refers to any application that can - or can be used to

browse, that is, search, explore, navigate or establish a

connection (whether internally or externally), and with

essentially any form of hardware or electronic content

(whether in HTML or otherwise). It may comprise, for

35 example, a stand-alone software application that

facilitates access to and interaction between different

hardware devices and software, according to the present

WO 2009/036500 PCT/AU2008/001378

-4

invention, or be distributed. The hardware may comprise

computers, mobile computing devices or mobile

telephones...), and the software may comprise databases

and other data sets.

5

The data-oriented views may comprise display elements, the

display clients rendering the data-oriented views by

rendering the display elements.

10 The browser application may include a module for inviting

one or more display clients to render the display elements

constituting a data-oriented view or views, and for

handling return states.

15 In one embodiment, the system includes a UUID module

(typically comprises GUI elements and methods) that is

operable by a user to associate a data-oriented view with

a universal unique identifier, and configured to make the

universal unique identifier available to a display client

20 or clients responsible for rendering the data-oriented

view and to the browser application.

The system may further comprise:

a synchronization service for providing

25 persistent storage and synchronization of records

pertaining to the data-oriented views;

a metadata service for creating, storing,

accessing, discovering and exchanging metadata; and

an application launch service for allowing the

30 browser application to open one or more display clients.

Moreover, in one embodiment, the system is user-operable

to locate or collect information from a plurality of

sources according to user defined criteria, and thereby to

35 locate or collect information from databases, xml files,

binary files, etc, whether stored locally or remotely.

WO 2009/036500 PCT/AU2008/001378

-5

The system may include an event notification system for

managing notifications across multiple tasks.

In a particular embodiment, the invention can simplify the

5 compositing, navigation, and data source selection of

data-oriented views with a software architecture that

includes synchronization, application launching and

metadata services, an event-notification system, browser

application and one or more display clients, GUI elements

10 and methods for associating a data-oriented view with a

Universal Unique Identifier (UUID), the UUID made

available both to display clients responsible for

rendering the data-oriented view's display elements and to

the browser application, GUI elements and methods of the

15 browser application that implement configurable and

movable increment icons that allow the user to easily

select data sources and data-oriented views, and invites

relevant display clients to render the display elements

constituting a data-oriented view or views, and handles

20 return states, a set of standard methods that display

clients must support in order to participate in the

compositing and rendering of one or more data-oriented

views, where those methods are implemented through a

plugin architecture.

25

The system may also include a metadata service configured

to control displaying of data source metadata presented

for browsing or operation of the increment icons.

30 The system may also be adapted to generate increment icons

if needed or according to a user configurable default

setting.

According to a second broad aspect, the present invention

35 provides a computer-implemented method for creating or

managing layouts, comprising:

operating a browser application to select or

WO 2009/036500 PCT/AU2008/001378

-6

locate data sources and to select data-oriented views; and

controlling the browser application to control

the display clients to render the selected data-oriented

views based on the selected data sources.

5

The method may include generating increment icons with a

module of the browser application, and operating the

increment icons to the select data sources and the data

oriented views.

10

The method may include performing the functions of any or

all of the features of the above-described system.

The invention also provides computer program code that

15 when executed by a processor implements the method

described above. The invention also provides a computer

readable medium comprising that program code.

In addition, the invention provides a data packet or

20 packets comprising computer program code that when

executed by a processor implements the method described

above.

Brief Description of the Drawing

25 In order that the invention may be more clearly

ascertained, embodiments -will now be described, by way of

example, with reference to the accompanying drawing, in

which:

Figure 1 is a schematic view of a system

30 comprising a software stack according to an 'embodiment of

the present invention;

Figure 2 is a schematic view of a graphical

canvas generated by the software stack of figure 1, on

which are displayed four exemplary data-oriented views

35 (DOVs), each comprising display elements (DEs), rendered

by respective display clients (DCs) of the software stack;

Figure 3 illustrates an active window ('Views

WO 2009/036500 PCT/AU2008/001378

-7

Table') that is displayed when the 'Views...' menu option

is selected;

Figure 4 illustrates a flow diagram describing

the methods executed by the browser application when the

5 '+1 button described with respect to Figure 3 is left

clicked;

Figure 5A illustrates an active window

('Configure Browser Table') that is displayed when the

'Configure Browser...' menu option is selected according

10 to this embodiment;

Figure 5B illustrates the Configure Browser Table

of Figure 5A after the manipulation of various attributes

and their display;

Figure 6 is a flow diagram of a method executed

15 by the browser application when the show attributes button

of the Configure Browser Table of Figure 5A is left

clicked;

Figure 7 is a view of a browser document

according to certain teachings of the present invention;

20 Figure 8A is a schematic illustration of a

Configurable and Movable Increment Icon (CAMII) entity

relationship data structure according to this embodiment

of the present invention;

Figure 8B is a schematic illustration of an

25 exemplary drop-down list, accessed by right-clicking the

CAMII of Figure 8A, used for indirectly setting the value

of a CAMII's dovUUID property;

Figure 9 is a flow diagram of methods executed by

the browser application and display clients during the

30 updating of an ActiveDOV record according to this

embodiment; and

Figure 10 illustrates the contents of an

exemplary temporary file, created, written and read during

the compositing of a view;

35 Figure 11 is an example of the output displayed

to a display and resulting from the settings shown in

Figure 7;

WO 2009/036500 PCT/AU2008/001378

-8

Figure 12 is an example of the output displayed

to a display and resulting from the use of a system

according to an embodiment of the present invention

operating unsupervised according to user defined criteria;

5 and

Figure 13 is a flow diagram of the method of the

embodiment of Figure 12.

Detailed Description of the Embodiments

10 Figure 1 is a schematic view of a system comprising a

software stack 10 according to an embodiment of the

present invention. Only components germane to the

understanding of the present invention are shown. The

elements of software stack 10 may be regarded as discrete

15 modules. Software stack 10 is configured for execution on

one or more computing devices in a computing environment,

and to control those devices to perform the tasks

described below.

20 Software stack 10 comprises a file system and system

services layer 12 (the lowest layer), an application

frameworks and services layer 14, and an application layer

16 (the highest layer). (Some other layers of software

and firmware are omitted for clarity.) Generally, the

25 software elements of any particular layer use resources

from the layers below and provide services to the layers

above, but in practice not all components of a particular

software element behave entirely in that manner.

30 File system and system services layer 12 includes a

plurality of files and directories, which are maintained

by the file system of the computing environment.

Application frameworks and services layer 14 is an

amalgamation of functions commonly expressed as two layers

35 (e.g. an applications frameworks layer and an applications

services layer). In this embodiment, both of these layers

12, 14 provide high-level and, commonly, functional

WO 2009/036500 PCT/AU2008/001378

-9

support for application programs that reside in

application layer 16.

Application frameworks and services layer 14 includes an

5 application launching service in the form of Launch

Service 18, a Synchronization Service 20 and a Metadata

Service 22. The Launch Service 18 allows a running

Browser Application 24 to open (i.e. launch or activate)

one or more Display Clients 261, 262,..., 26,, and

10 comprises a high-level framework or API such as Apple

brand LaunchServices Framework. It should be noted that,

because software stack 10 is configured for execution on

one or more computing devices, if more than one Display

Client participates in rendering a particular DOV, those

15 Display Clients may execute on a plurality of computing

devices.

In this embodiment, Synchronization Service 20 is provided

through a high-level framework or API that provides

20 efficient persistent storage and synchronization of DOV

records, and uses Extensible Markup Languange (XML) for

its data model. Suitable examples are Apple brand

SyncServices Framework, Microsoft brand Synchronization

Framework for ADO.NET, or the SyncML API (JAVA). Metadata

25 Service 22 is provided through a high-level framework or

API for the creation, storage, access, discovery, and

exchange of metadata, such as Apple brand 'Spotlight

technology', Microsoft brand ADO.NET, or JAVA Metadata

Interface.

30

Software stack 10 also includes an event-notification

system, such as Kqueue, or an equivalent higher-level

event-notification API that manages notifications across

multiple tasks (such as Apple brand Cocoa

35 NSDistributedNotificationCenter API or the SUN brand Java

System Message Queue API), to facilitate the transmission

(see data flows 28, 30 in Figure 1) of targeted event-

WO 2009/036500 PCT/AU2008/001378

- 10

notification messages to Browser Application 24 and

Display Clients Display Clients 2 6 1, 262, ..., 26n upon

changes to a watched memory 32, in the form of a watched

memory address (such as an array) or a watched persistent

5 store (such as a directory folder on a hard disk). In

this embodiment, watched memory 32 comprises a watched

folder, so is referred to hereinafter as the 'watched

folder.'

10 Figure 2 is a schematic view of a graphical canvas 40

generated by software stack 10 of Figure 1, on which are

displayed four exemplary data-oriented views (DOVs)

generated by software stack 10. First, second, third and

fourth DOVs 42, 44, 46, 48 each comprise one or more

15 display elements (DEs), each of which may comprise a

table, a graph, an image, or any other element capable of

being rendered or otherwise computer-generated (including

an audio element) by a display client. In this example

first DOV 42 comprises display elements DE1 , DE2 , DE3 and

20 DE4. These display elements constitute a 'data source'

comprising discrete visual representations of a data set

(or a subset thereof) or plural related data sets (or

subsets thereof), resolved by a single URI (termed

dataSourceURI); in this example first DOV 42 has the

25 notional dataSourceURI http://path/to/datasourceA.FCS).

Second DOV 44 comprises display elements DE5 , DE6 , DE7 ,

DE8 , DE9, DE10 , DE11 and DE12 , and has notional

dataSourceURI http://path/to/datasourceB.RDF. Third DOV

30 46 comprises display elements DE13 , DE14 , DE15, DE16 , DE2 1 ,

DE22 , DE23 and DE2 4 , with notional dataSourceURI

file:///path/to/data_sourceC.RDF. Fourth DOV 48 comprises

display elements DE17 , DE18, DE19 and DE20 , with notional

dataSourceURI http://path/to/datasourceD.FCS.

35

The dataSourceURI of a DOV can be any legal absolute or

relative path to the corresponding data source. The term

WO 2009/036500 PCT/AU2008/001378

- 11

'resolved' refers herein to the ability to retrieve data,

that is, the data's address is given by the dataSourceURI

or, as may be in the case of hyperlinked data (for

example, HTML or RDF files), can be found by traversing a

5 path, commencing with the dataSourceURI. Graphical canvas

40 is commonly contained on the display area of a single

display device, such as a computer monitor, but in some

embodiments spans plural such display devices with each

display device mapping a portion of the canvas.

10

A display element is often contained within its own window

(controlled by a window server), though this is not

essential and in this embodiment plural display elements

may be present in a given window. Display elements

15 forming any particular DOV may be rendered contiguously

(e.g. display elements DEI, DE2, DE3 and DE4 constituting

first DOV 42 or display elements DE5 , DE6 , DE7, DE8, DE9,

DEi0 , DE11 and DE12 constituting second DOV 44), or non

contiguously (e.g. display elements DE13 , DE1 4 , DE15 and

20 DE16 in the lower left of display canvas 40 and display

elements DE2 1 , DE2 2 , DE2 3 and DE24 in the lower right of the

display canvas 40, which together constitute third DOV

46).

25 One or more of Display Clients 261, 262,..., 26, are

responsible for rendering the display elements that

constitute DOVs 42, 44, 46, 48. In the example of Figure

2, the display elements constituting first, second and

fourth DOVs 42, 44, 48 are rendered by Display Clients 50,

30 52, 54 respectively. The display elements constituting

third DOV 46 are rendered by two Display Clients 56, 58:

Display Client 56 renders elements DE13 , DE1 4 , DE15 and

DE16 ; Display Client 58 renders elements DE2 1 , DE2 2 , DE23

and DE24

35

Browser Application 24 provides' a 'Views...' menu option

that, when selected, displays in an active window a 'Views

WO 2009/036500 PCT/AU2008/001378

- 12

Table' that summarizes the previously configured data

oriented views. Figure 3 is a schematic view of an

exemplary Views Table 60, displayed following the

selection of the 'Views...' menu option, which comprises

5 seven views each associated with a title (in a 'View Name'

column 62) and comments (in a 'Comment' column 64). Views

Table 60 includes a '+' button 66, for activating the

composition of a ViewRecord (discussed below), a '-'

button 68, for deleting one or plural DOV record and a

10 'Save View' button 70.

In this embodiment, Display Clients support a set of

standard methods in order to participate in the

compositing and rendering of one or more DOVs; these

15 methods are implemented through a plugin architecture.

Table 1 provides an example of such a plugin architecture,

methods of which are discussed below.

TABLE 1: Methods of exemplary Display Client plugin

20

METHOD RETURN DESCRIPTION
TYPE

DISPLAY ELEMENT SELECTION & WINDOW HIGHLIGHTING

displayElement void User-invoked method to enable

Selection recording selection of DE(s)

for the purpose of composing

a DOV record and a

DisplayElements record. May

include methods to provision

and select a menu item in a

context-dependent menu

exposed, for example, by a

right-mouse-click of the

display element. Calls

setWindowBorderSelection

Method.

WO 2009/036500 PCT/AU2008/001378

- 13

setWindowBorder void Called by

Selection displayElementSelection to

highlight the selection of

display elements during the

composition of a DOV.

COMPOSING A DOV RECORD

handleWatchedFolder BOOL. Responds to notification of a

FileRenameEvent YES if file RENAME event in watched

success- folder:

ful.

Determine if Display Client

can participate in

compositing a DOV record. If

NO, display error message to

the user. If YES, then

retrieve the UUID from the

renamed temporary file (the

first line of the temporary

file).

handleDisplay BOOL. Call only if handleWatched

ElementSelection YES if FolderFileRenameEvent returns

success- YES.

ful.

Respond to notifications of

selected display elements

during compositing of DOV

record and DisplayElements

record:

write the displayClientID to

the end of the temporary file

upon the selection of the

first-selected DE, but not

subsequent selections of

DE(s).

WO 2009/036500 PCT/AU2008/001378

- 14

Respond to notification of

file DELETION event in

watched folder:

Create a persistent store, in

the form of DisplayElements
BOOL.

record, of the configurations

required to recreate the
FileDeletionEvent success- rqie orcet h

DOV's DE(s) (given the
ful.

provision of a

dataSourceURI(s). Write out

the DisplayElements' dovUUID

property with the dovUUID

retrieved from the temporary

file.

PARTICIPATE IN A DOV SESSION

handleRequestSync BOOL. Negotiate whether or not to

ActiveDOV YES if join a Sync Session for

success- updating ActiveDOV record

ful. properties.

handleChangedActive BOOL. Respond to changes to

DOVPersistentStore YES if ActiveDOV record properties:

success

ful. (i) use the ActiveDOV dovUUID

value(s) as key(s) for

retrieval of the relevant

DisplayElements record(s).

(ii) use the configuration

information contained in the

DisplayElements record(s),

and the value(s) of ActiveDOV

dovColor property (Table 2)

to render the DOV(s).

Calls setWindowBorderColor

WO 2009/036500 PCT/AU2008/001378

- 15

Returns YES if successful, NO

otherwise.

setWindowBorder void Set to ActiveDov's dovColor

Color value(s) (Table 2). Called by

handleChangedActiveDOV

PersistentStore.

END PARTICIPATION IN A DOV SESSION

handleRequestToExit BOOL. User-invoked method to cease

DOV Session YES if participation in a DOV

success- session. User access to this

ful. method may be provided by a

menu inserted into the

Display Client's main menu.

TABLE 2: Exemplary Sync properties for 'ActiveDOV' record

KEY TYPE DESCRIPTION/VALUE

dovUUID NSArray (NStringi..., Universal Unique

NStringN) Identifier for

each DOV.

dataSourceURI NSArray (NSURLi..., Data Source URI

NSURLN) for each DOV.

dovColor NSArray (NSColor..., Color setting for

NSColorN) each DOV.

5 According to this embodiment, a DOV is associated with a

UUID (Universally Unique Identifier) by the creation of a

WO 2009/036500 PCT/AU2008/001378

- 16

ViewRecord. The ViewRecord of each DOV is composed

through the combined action of Browser Application 24 and

the Display Client(s) associated with that DOV. The

composition of a ViewRecord is summarized in flow diagram

5 74 of Figure 4. At step 76, the user commences by left

clicking on the '+' button 66 of Views Table 60, whereupon

the Browser Application 24 creates a new row 72 in Views

Table 60 and generates a UUID which is then associated

with that row; hence, each row of Views Table 60 has a one

10 to one relationship with a DOV entity. Browser

Application 24 then creates, at step 78, a temporary file

in a watched folder, writes the just-created UUID to the

temporary file 84, then renames the temporary file. At

step 80 a notification of this 'rename event' is

15 immediately detected by each DOV-compliant Display Client

through a notification mechanism (in this embodiment

RENAME Kqueue filter), whereupon each such Display Client,

by invocation of its handleWatchedFolderRenameEvent (see

Table 1) writes a displayClientID (see entries 222, 224,

20 226, 228, 230 of exemplary temporary file 220 of Figure

10), such as in reverse DNS format, to the end of the

renamed temporary file upon selection of a display element

(but not subsequent selections of display elements), then

reads and stores the first line of the temporary file

25 (which contains the UUID) in, for example, an in-memory

array.

Through the action of each Display Client's

displayElementSelection and setWindowBorderSelection

30 methods (see Table 1), the display elements thus selected

are marked as having been selected for inclusion in a DOV,

such as by setting their window border to red for the

duration of the selection process. Other display client

methods employed are handleWatchedFolderFileRenameEvent

35 and handleDisplayElementSelection.

At step 82 the user completes the process of composing a

WO 2009/036500 PCT/AU2008/001378

- 17

view by left-clicking the 'Save View' button 70. This

prompts, at step 84, Browser Application 24 to write an

'END' token (which, in combination with the presence of

the UUID and at least one displayClientID, flags a

5 complete DOV record) to the end of the aforementioned

temporary file; at step 86, Browser Application 24 reads

and parses the contents of the temporary file (an example

of which is shown at 220 in Figure 10) and, at step 88,

uses the parsed temporary file to construct a DOV record

10 (see Table 3) and push-syncs that record to the

Synchronization Service's central (truth) database.

TABLE 3: Exemplary Sync properties for 'DOV' record

Key Type Description/Value

dovUUID NSString Universal Unique

Identifier' for DOV.

displayClientID NSStringi..., Unique identifier for

NSStringN each Display Client, in

standard format (e.g.

reverse DNS-style).

15

At step 90, Browser Application 24 deletes the temporary

file. Then, at step 92, upon the user's left-clicking the

'end selection' button, a notification of the deletion of

the temporary file is sent; at step 94 this notification

20 is detected by each DOV-participating display client's

DELETE Kqueue event filter, instructing the DOV

participating display client, through the action of their

handleWatchedFolderFileDeletionEvent method (see Table 1),

to store - as a 'DisplayElements' record (see Table 4)

25 all configuration information required to reconstruct

those display element(s) that it contributed to the DOV.

TABLE 4: Exemplary Sync properties for 'DisplayElements'

record

WO 2009/036500 PCT/AU2008/001378

- 18

Key Type Description/Value

dovUUID NSString Universal Unique Identifier

for DOV.

displayElements NSData Binary archive containing

configuration information

for each Display Element.

Configuring and Populating the Browser

5 The user configures a browser document with data sources

and associated metadata with the 'configure browser'

table, shown schematically at 96 in Figure 5A. The user

populates the 'data source' column 98 of configure browser

table 96 with a list of data sources (typically files) of

10 potential interest by copy-and-paste or drag-and-drop,

such as with a file browser such as Apple brand Finder or

Microsoft brand Window's Explorer. The user may also

directly add and delete files with the add button 100 and

delete button 102, respectively. (The add button 100

15 retrieves the system's file browser, with which the user

can select additional files.) Upon population of the data

source column 98 with a list of data source files, a show

attributes button 104 is enabled.

20 Pressing the show attributes button 104 causes the browser

client to execute a method (shown as a flow diagram in

Figure 6) that populates a metadata attribute column 106

with a list of unique metadata attributes, sorted

alphabetically. The user can subsequently reorder (drag

25 and-drop between column rows), delete (delete button 102

or delete key action) or merge metadata attributes listed

in the metadata attribute column 106. To merge metadata

attributes, the user selects the attributes to merge, then

left-clicks a merge attributes button 108, whereupon the

30 user is prompted to enter a new name for the merged

WO 2009/036500 PCT/AU2008/001378

- 19

attributes. For example, in the hypothetical example of

Figure 5A, the metadata attributes 'Commentl' 110 and

'Comment2' 112 could be merged. Additionally, the

metadata attributes 'Fluorescence Comp' 114, 'Gating' 116,

5 'Study' 118 and 'Total Events' 120 might be removed from

metadata attribute column 106. The effect of manipulating

these attributes and their display is illustrated in

Figure 5B, in which Comment1 110 and Comment2 112 have

been merged to form a single Comment attribute 122,

10 Fluorescence Comp 114, Gating 116, Study 118 and Total

Events 120 have been removed, and the remaining metadata

attributes in metadata attribute column 106 have been

reordered.

15 Figure 7 is a view of a browser document 130 according to

this embodiment of the present invention. Browser

document 130 includes a browser document table 132

comprising rows 134, each of which identifies a single

file (in Data Source column 136) and associated metadata

20 that is organized into columns that are controllably shown

or hidden; the set of metadata columns is determined by

the metadata attributes selected by the user in their

interaction with the configure browser table 96 of Figure

5A. In the illustrated example, the displayed metadata

25 columns are Data Source 136, Sample ID column 138 and

Comment column 140.

Rows 134 and associated data may be deleted (by selecting

the respective row(s) and then activating - typically by

30 left-clicking - delete button 142) or copied within and

between browser documents.

Horizontal and vertical 'split views' can be created to

facilitate effective navigation of large browser

35 documents; this is also depicted in this figure, in which

the view is divided in two panes 154, 156. That this mode

of display is in operation is flagged to the user by

WO 2009/036500 PCT/AU2008/001378

- 20

dimple 158.

The user can associate one or more DOVs with a

Configurable and Movable Increment Icon (or CAMII,

5 discussed further below) by left-click-selecting one or

more rows 72 of Views Table 60 (see Figure 3) and dragging

(i.e. with mouse button depressed) to a target CAMII.

Releasing the mouse button with the target CAMII 'in

focus' associates the one or more DOVs with that CAMII,

10 and populates a drop-down list (see Figure 8B) from which

the user can select a DOV (as is described below). A DOV

may be associated with any number of CAMII.

In one variation, software stack 10 can generate one or

15 more CAMII and one or more split views to display entities

such as files or records from databases that display

similarities or dissimilarities (described in greater

detail below).

20 Configurable and Movable Increment Icons (CAMIIs)

A valuable functional aspect provided by this embodiment

of the present invention is the ability to create and use

one or more 'Configurable and Movable Increment Icons'

25 (CAMIIs). A user can create a CAMII by dragging an icon

from the CAMII well 144 (of browser document 130 of Figure

7) onto browser document table 132 (such as in DSI column

146 at 148).

30 The user may locate a newly created CAMII, or relocate an

existing CAMII, at any row 134 of browser table 132 that

i) holds data (that is, a CAMII cannot be positioned at an

empty row), and ii) does not already have a CAMII. A user

effects relocation of a CAMII by any of three methods: (i)

35 drag-and-drop, (ii) copy-and-paste, or (iii) use of an UP

or DOWN key (or the like). With CAMII relocation methods

(i) and (ii), the user is free to vertically reposition a

WO 2009/036500 PCT/AU2008/001378

- 21

CAMII across any number of table rows, whereas the extent

of vertical movement of a CAMII by relocation method (iii)

depends on the 'increment behaviour' of a CAMII, which is

itself configurable (discussed below).

5

A CAMII's vertical position within browser document table

132 (i.e. the row 134 in which it is located) sets the

contents of its dataSourceURI attribute (discussed below),

which are updated upon each CAMII relocation event. A

10 CAMII may be deleted by left-click-selecting it and

pressing delete 142 or selecting 'delete' from an

application menu.

Properties determining the configuration of a CAMII are

15 set and accessed via a CAMII entity-relationship data

structure. Figure 8A is a schematic illustration of a

CAMII entity-relationship data structure 170 according to

one embodiment of the present invention. Referring to

Figure 8A, the CAMII entity-relationship data structure

20 includes the following entities, attributes and

relationships: a CAMII entity 172 containing the

attributes status 174a, dovColor 174b, dataSourceURI 174c,

and index 174d (where dovColor and dataSourceURI are

display properties), and the relationships dov 174e and ig

25 174f; an IncrementGroup entity 176 containing the

attributes incrementMembers 178a and incrementValue 178b,

and the relationship camii 178c (which is the inverse

relationship of ig relationship 174f of CAMII entity 172);

a DOV entity 180 containing the attributes comment 182a,

30 dovName 182b, dovUUID 182c and index 182d, and the

relationship camii 182e (the inverse relationship of dov

relationship 174e of CAMII entity 172).

Each CAMII is mapped to one instance of a CAMII entity.

35 The status attribute 174a, which may be modelled as a

Boolean, refers to the active (Boolean value = YES) or

inactive (Boolean value = NO) status of a CAMII. When

WO 2009/036500 PCT/AU2008/001378

- 22

created, each CAMII defaults to an inactive status, which

status is indicated to the user, such as by being

displayed in a different colour or greyed out (not shown).

A CAMII can be toggled between active or inactive status

5 by double-clicking it with the left mouse button.

Referring to Figure 7, to set the increment behaviour of a

CAMII, the user selects the relevant CAMII then chooses or

enters an increment value using a combo box user interface

10 element 150. The increment behaviour of more than one

CAMII can be entered as a group, that is, by selecting two

or more CAMII and then entering an increment value with

user interface element 150. When the increment behaviour

of a CAMII is entered in group fashion, the thus

15 configured CAMII will move in tandem with its group

members, that is, moving any CAMII of that group will

cause all other CAMIIs of that group to move by the

increment value set for the group. Properties of the

increment value of a CAMII are held in the IncrementGroup

20 entity 176, and are accessed by each CAMII object via its

ig relationship 174f. The incrementMembers attribute 178a

contains an array of CAMII entity object identifiers, one

object identifier for each CAMII that 'participates' in a

given increment behaviour configuration. The

25 incrementValue attribute 178b, which may be modelled as an

integer, contains the increment value (i.e. the number of

rows one or more CAMIIs will move up or down in response

to a user's initiating CAMII relocation) for the

'increment group' and defaults to a value of 1.

30

Figure 8B is a schematic illustration of a drop-down list

180, accessed by right-clicking a CAMII, for example CAMII

148 of Figure 7, and used for indirectly setting the value

of a CAMII's dovUUID property. Referring to Figure 8B,

35 right-clicking a CAMII prompts the display of drop-down

list 180, from which the user can left-click-select a DOV

182 from a list of the one or more available DOVs 184

WO 2009/036500 PCT/AU2008/001378

- 23

associated with the CAMII through the mechanism described

above. Upon selection of a DOV, the name of the selected

DOV 182 (dovName) and associated comment (comment)

properties are henceforth displayed as a 'tool tip' upon

5 mousing (i.e. hovering) over a CAMII (unless no DOV is

selected, in which case the default value 'none' is

displayed).

The user is able to graphically communicate an association

10 between the display elements of a DOV with an associated

CAMII by left-click-selecting a CAMII and selecting

'highlight display elements' from an application menu that

is then displayed. For example, the colour of the

selected CAMII can be set via a colour well 152; the

15 resulting colour setting is written to the colour

attribute, colour 174b, and sets the ActiveDOV property,

dovColor (see Table 2)). The selected colour is applied

to the display element(s) of the active DOV to highlight

them, by setting the colour of their associated window

20 frame upon DOV invocation. (Display clients call the

setWindowBorderColor method, described below.)

Highlighting a DOV's display elements enables the user to

readily distinguish and identify those elements and their

associated data source where multiple DOVs are

25 simultaneously in view on a graphical canvas. By left

clicking a CAMII and selecting 'remove display highlights'

from the application menu displayed in response, the user

removes the.highlighting effect from display elements

associated with its active DOV.

30

In a variation of this embodiment, browser document 130

includes a user-operable menu to facilitate the selection

of data sources and data-oriented views. Users can select

contiguous or discontinuous rows, and can select from the

35 menu to move up or down one or two, and conceivably more,

rows (such as by selecting 'jump up one row', 'jump down

one row', 'jump up two rows' or 'jump down two rows').

WO 2009/036500 PCT/AU2008/001378

- 24

For example, in use the user might select two contiguous

rows from upper pane 154 and two (non-contiguous) rows

from lower pane 156. The system is configured to respond

by comparing the selected rows, displaying the rows on the

5 screen and - in response to the user clicking the down and

up arrow - display to the screen the resulting windows.

If the user wishes to change his or her selection having,

for example, previously selected rows 3 and 4 from upper

10 pane 154, he or she may subsequently jump to - and select

for display - rows 5 and 6 without having to select rows 4

and 5 first.

Display Client Launch and Rendering of Display Elements

15

Figure 9 is a flow diagram 190 of the methods executed by

the browser application and display clients during the

updating of an ActiveDOV record according to this

embodiment. As illustrated in Figure 9, the methods

20 commence in response to a user's opening a browser

document. Thus, at step 192, DOVCounter is set to 0;

while DOVCounter has a value of 0, the browser application

document can be described as in an inactive mode. In this

mode, any change to the properties of a CAMII will not

25 cause the invocation (display client launch and DE

rendering) of the associated DOV(s).

At step 194, the user selects a browser document window,

then a 'DOV Session' from the browser application menu.

30 At step 196, the DOVCounter value of the selected browser

document is set to 1. At step 198, the browser

application immediately launches (via Launch Services) all

display clients required for display of the DOV(s) that

are associated with active CAMIIs, and push syncs that

35 browser document's active CAMII display properties

(updating ActiveDOV record(s) - see Table 2) to the

Synchronization Service's central (truth) database. If at

WO 2009/036500 PCT/AU2008/001378

- 25

step 200 synchronization of the aforementioned display

properties is found not to have been successful,

processing continues at step 202 where the errors are

caught and responded to. Processing then continues at

5 step 204. If at step 200 synchronization of the

aforementioned display properties is found to have been

successful, processing proceeds directly to step 204.

At step 204, DOVCounter is set to 2. In this mode, a

10 change to any display property of an active DOV (at step

206) will cause the system to respond, at step 208, by

launching the relevant display clients (via Launch

Services) and to push sync changed active CAMII display

properties (updating ActiveDOV record(s) - see Table 2) to

15 Sync Services' truth Database.

If at step 210 synchronization of the display properties

is found not to have been successful, processing continues

at step 212 where the errors are caught and responded to,

20 after which processes returns to step 208. If at step 210

synchronization of the display properties is found to have

been successful, processing continues at step 214.

At step 214, software stack 10 determines whether the user

25 has closed the Browser Document. If so, processing ends.

Otherwise, processing returns to step 206.

Display clients render a DOV or DOVs through the

invocation of three methods (see Table 1). A display

30 clients' handleRequestSyncActiveDOV negotiates whether or

not to join a synchronization session for updating its

ActiveDOV record properties. Upon agreeing to join the

sync session (which may depend on display client-specific

custom logic, such as on the availability of suitable

35 resources for DOV rendering), the

handleChangedActiveDOVPersistentStore method receives a

notification that its ActiveDOV record has changed,

WO 2009/036500 PCT/AU2008/001378

- 26

whereupon it uses the ActiveDOV dovUUID value(s) as key(s)

for retrieval of the relevant DisplayElements record(s).

Subsequently, it uses the configuration information

contained in the DisplayElements record(s), and the

5 value(s) of ActiveDOV dovColor property (see Table 2) to

render the DOV or DOVs.

Figure 11 is an example of the output 240 displayed to a

display and resulting from the settings shown in Figure 7.

10 However, in another variation of this embodiment, software

stack 10 can generate essentially the same result by

conducting an independent search for similarities (or

indeed dissimilarities) in some parameter or parameters of

the data using, for example, statistical analysis, cluster

15 analysis or geometric figures.

In one example, software stack 10 can be controlled to

identify all data files (from a user specified or defined

list of files) that meet some user defined criterion. In

20 the exemplary output 250 shown in Figure 12, the parameter

is that the data files should include a similar percentage

of events in the range identified by a specified marker M1

(from channel 264 to channel 834 in this example), where

'similar' means to within - say - 10%. This can be done

25 in a supervised or unsupervised manner.

The results are outputted to a display, as shown at 250 in

Figure 12. In this example, three files have been located

(viz. samplel.fcs, sample2.fcs and sample3.fcs), and are

30 displayed at 250 along with the percentage of events in

the range identified by marker M1 (respectively 46.5%,

42.1% and 43.6%) and plots - on the right of Figure 12

of the data in the range of marker M1.

35 Figure 13 is a flow diagram 260 of the method of this

embodiment whereby the system searches a set list of

available sources (databases, files, etc) for such

WO 2009/036500 PCT/AU2008/001378

- 27

similarities. Thus, at step 262 the system searches the

user defined list of locations or files for sources

meeting the predefined similarity until a match is found

or the end of the list has been reached.

5

At step 264, the system checks whether a match has been

found (i.e. that this is why searching has paused) and, if

so, processing continues at step 266 where the found

source is grouped with the others (if any) already found

10 and the position of the found source is stored in a list

maintained by the system as a database or in a file.

If, at step 264, the system determines that a match had

not been found (and hence that the end of the list had,

15 instead, been reached), processing continues at step 268

where the system outputs the results of the search to a

display or printer. At step 270, the user would typically

inspect or check the results (on the display or printout)

and, if at step 272 the user confirms (such as by

20 activating an 'accept' icon) that the results are

satisfactory, processing continues at step 274 where the

system sets the split viewer and CAMII according to the

grouped groups. At step 276, the system outputs the

results to the display and processing ends.

25

If at step 272 the user does not confirm that the results

are satisfactory (such as by activating a 'reject' icon),

processing ends.

30 Modifications within the scope of the invention may be

readily effected by those skilled in the art. For

example, although the system of Figure 1 - comprising

software stack 10 - is located on a single computing

device, in other embodiments the system may be

35 distributed. It is to be understood, therefore, that this

invention is not limited to the particular embodiments

described by way of example hereinabove.

WO 2009/036500 PCT/AU2008/001378

- 28

In the claims that follow and in the preceding description

of the invention, except where the context requires

otherwise owing to express language or necessary

implication, the word "comprise" or variations such as

5 "comprises" or "comprising" is used in an inclusive sense,

that is, to specify the presence of the stated features

but not to preclude the presence or addition of further

features in various embodiments of the invention.

10 Further, any reference herein to prior art is not intended

to imply that such prior art forms or formed a part of the

common general knowledge in any country.

WO 2009/036500 PCT/AU2008/001378

- 29

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented system for creating or managing

layouts, comprising:

5 a browser application; and

one or more display clients for rendering data

oriented views;

wherein said browser application is user-operable

to select or locate data sources and to select data

10 oriented views and thereby to control said browser

application to control said display clients to render said

selected data-oriented views based on said selected data

sources.

15 2. A system as claimed in claim 1, wherein said browser

application includes an icon module for generating

increment icons, said increment icons being user-operable

to select said data sources and said data-oriented views.

20 3. A system as claimed in claim 1, wherein said system is

configure to operate either supervised or unsupervised.

4. A system as claimed in claim 1, wherein said system is

controllable to establish connections between computing

25 devices and perform an analysis, and to output results of

said analysis according to user definable settings.

5. A system as claimed in claim 1, wherein said system is

controllable to search for said data sources according to

30 one or more user-defined search criteria.

6. A system as claimed in claim 5, wherein said one or

more user-defined search criteria comprise similarity in

one or more user-defined parameters to within a user

35 defined tolerance.

7. A system as claimed in claim 1, wherein said data-

WO 2009/036500 PCT/AU2008/001378

- 30

oriented views comprise display elements, said display

clients rendering said data-oriented views by rendering

said display elements.

5 8. A system as claimed in claim 1, wherein said browser

application includes a module for inviting one or more

display clients to render said display elements

constituting a data-oriented view or views, and for

handling return states.

10

9. A system as claimed in claim 1, including a UUID

module operable by a user to associate a data-oriented

view with a universal unique identifier, and configured to

make said universal unique identifier available to a

15 display client or clients responsible for rendering said

data-oriented view and to said browser application.

10. A system as claimed in claim 9, wherein said UUID

module comprises GUI elements and methods.

20

11. A system as claimed in claim 1, further comprising:

a synchronization service for providing

persistent storage and synchronization of records

pertaining to said data-oriented views;

25 a metadata service for creating, storing,

accessing, discovering and exchanging metadata; and

an application launch service for allowing said

browser application to open one or more display clients.

30 12. A system as claimed in claim 1, including an event

notification system for managing notifications across

multiple tasks.

13. A system as claimed in claim 1, including a metadata

35 service configured to control displaying of data source

metadata presented for browsing or operation of said

increment icons.

WO 2009/036500 PCT/AU2008/001378

- 31

14. A computer-implemented method for creating or

managing layouts, comprising:

operating a browser application to select or

5 locate data sources and to select data-oriented views; and

controlling said browser application to control

said display clients to render said selected data-oriented

views based on said selected data sources.

10 15. A method as claimed in claim 14, including generating

increment icons with a module of said browser application,

and operating said increment icons to said select data

sources and said data-oriented views.

15 16. A method as claimed in claim 14, including employing

a metadata service to control display of data source

metadata presented for browsing or operation of said

increment icons.

20 17. A method as claimed in claim 14, including searching

for said data sources according to one or more user

defined search criteria.

18. A method as claimed in claim 14, wherein said one or

25 more user-defined search criteria comprise similarity in

one or more user-defined parameters to within a user

defined tolerance.

	Abstract
	Description
	Claims
	Drawings

